WO2005059203A1 - 透明でガスバリア性の高い基材及びその製造方法 - Google Patents

透明でガスバリア性の高い基材及びその製造方法 Download PDF

Info

Publication number
WO2005059203A1
WO2005059203A1 PCT/JP2004/018323 JP2004018323W WO2005059203A1 WO 2005059203 A1 WO2005059203 A1 WO 2005059203A1 JP 2004018323 W JP2004018323 W JP 2004018323W WO 2005059203 A1 WO2005059203 A1 WO 2005059203A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
gas
frequency electric
electrode
discharge
Prior art date
Application number
PCT/JP2004/018323
Other languages
English (en)
French (fr)
Inventor
Toshio Tsuji
Kazuhiro Fukuda
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2005516296A priority Critical patent/JP4821324B2/ja
Publication of WO2005059203A1 publication Critical patent/WO2005059203A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/473Cylindrical electrodes, e.g. rotary drums
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2441Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes characterised by the physical-chemical properties of the dielectric, e.g. porous dielectric

Definitions

  • the present invention relates to a transparent and highly gas-permeable base material which can be applied to a wide range of uses such as optical members, electronic components, general packaging members, and chemical packaging members, and a display substrate for electorific luminescence using the same. .
  • gas barrier films that have a thin film of a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide formed on the surface of a plastic substrate or film have been used to block various gases such as water vapor and oxygen. It is widely used for the packaging of articles that require refrigeration, and for the purpose of preventing deterioration of foods, industrial supplies and pharmaceuticals. It is also used for liquid crystal display elements, solar cells, electorum luminescence (EL) substrates, etc., in addition to packaging. In particular, transparent substrates, which are being increasingly applied to liquid crystal display elements and EL elements, have recently required long-term reliability, high degree of freedom in shape, and curved display in addition to demands for weight reduction and large size. High demands, such as being possible, have been added, and a film substrate such as a transparent plastic has begun to be used instead of a glass substrate that is heavy and easily broken and difficult to form a large area.
  • a film substrate such as a transparent plastic has begun to be used instead of a glass substrate that is heavy and easily broken and difficult to form a large
  • Plastic films not only meet the above requirements, but also have the advantage of higher productivity and lower costs than glass because they can be used in a roll-to-roll system.
  • film substrates such as transparent plastics are There is a problem that the rear property is inferior. If a base material having poor gas-palliability is used, water vapor and air will permeate, for example, the liquid crystal in the liquid crystal cell will be degraded, and display defects will occur, deteriorating the display quality.
  • Patent Document 1 Packaging materials used for liquid crystal display elements (Patent Document 1) and those obtained by depositing aluminum oxide (Patent Document 2) are known, and all have a water vapor barrier property of about 1 g / mV day. .
  • Patent Document 3 proposes a technique for manufacturing a parier film having an alternate laminated structure of an organic layer and an inorganic layer by a vacuum deposition method.
  • Patent Document 4 discloses a method of performing a treatment, a method of performing treatment using a plasma generated in an atmosphere near the atmospheric pressure composed of argon, helium, or acetone as in Patent Document 5, and the like.
  • Patent Documents 6 and 7 disclose a method of forming a metal-containing thin film by generating discharge plasma by applying an electric field in a gas atmosphere containing a metal compound under a pressure near atmospheric pressure. . Some of these can produce inorganic films at low cost and with good productivity.However, they are not intended to impart gas barrier properties, but are particularly suitable for bending, which is a condition for application to flexiplex display devices. Deterioration of barrier properties was not sufficient.
  • Patent Document 8 discloses a method of forming a barrier film having an alternately laminated structure of an organic layer and an inorganic layer manufactured by using discharge plasma treatment under the vicinity of atmospheric pressure. Since expensive argon is used, it causes cost increase. In addition, since the treatment conditions using a pulse electric field of a known single frequency described in Patent Document 9 are used as the discharge plasma treatment conditions, the plasma density is low, and a good quality film cannot be obtained. Slow film speed and very low productivity.
  • Patent Document 1 Japanese Patent Publication No. 53-129295
  • Patent Document 2 Japanese Patent Application Laid-Open No. 58-217734
  • Patent Document 3 World publication No. 0/0 2 6 9 7 3 Pamphlet
  • Patent Document 4 Japanese Patent Publication No. 2-4 8 6 2 6
  • Patent Document 5 Japanese Patent Application Laid-Open No. H07-474525
  • Patent Document 6 JP-A-10-106387
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2001-49443
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2003-191370
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2001-49443
  • An object of the present invention is to provide a transparent high-barrier film having higher gas barrier performance than conventional ones, excellent environmental durability, and whose barrier performance does not deteriorate even when bent. Disclosure of the invention
  • At least one of the inorganic layers may be formed under atmospheric pressure or a pressure near the atmospheric pressure.
  • a gas containing a thin-film forming gas is supplied to the discharge space, the gas is excited by applying a high-frequency electric field between the discharge spaces, and the substrate is formed by exposing the substrate to the excited gas.
  • the first high-frequency electric field and the second high-frequency electric field are superimposed, and the frequency ⁇ 2 force S of the second high-frequency electric field is higher than the frequency ⁇ of the first high-frequency electric field.
  • the relationship between the electric field strength V i, the second high-frequency electric field strength V 2 and the discharge starting electric field strength IV is as follows:
  • the discharge space includes a first electrode and a second electrode facing each other. 2.
  • substitution 12 The method for producing a substrate according to constitution 1, wherein the thin film forming gas contains at least one selected from an organometallic compound, a metal halide, and a metal hydrogen compound.
  • the organic metal compound contains at least one compound selected from an organic silicon compound, an organic titanium compound, an organic tin compound, an organic zinc compound, an organic indium compound and an organic aluminum compound.
  • FIG. 1 is a schematic view showing an example of a jet type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
  • FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type for treating a substrate between opposed electrodes useful in the present invention.
  • FIG. 3 is a perspective view showing an example of a roll rotating electrode having a conductive metallic base material and a dielectric material coated thereon.
  • FIG. 4 is a perspective view showing an example of the structure of a conductive metal base material of a rectangular cylindrical electrode and a dielectric material coated thereon.
  • the “inorganic layer” used in the present invention refers to a metal atom (Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, C r, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, In, Ir, Sn, Sb, Cs, B a, La, Hf, Ta, W, Tl, Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc.)
  • the layer has a number concentration of more than 5%, preferably 10% or more, more preferably 20% or more.
  • the metal atom concentration of the inorganic film can be measured with an XPS surface analyzer.
  • a gas containing a thin film forming gas is supplied to the discharge space at or near atmospheric pressure, and a high-frequency electric field is applied to the discharge space to excite the gas and expose the substrate to the excited gas. It is formed by this.
  • the high-frequency electric field is obtained by superimposing a first high-frequency electric field and a second high-frequency electric field, and the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ 1 of the first high-frequency electric field,
  • the power density of the second high-frequency electric field is 1 W / cm 2 or more.
  • the supplied gas contains at least a discharge gas and a thin film forming gas.
  • the discharge gas and the thin film forming gas may be supplied as a mixture, or may be supplied separately.
  • the discharge gas is a gas capable of generating a global discharge capable of forming a thin film.
  • Discharge gas includes nitrogen, rare gas, air, There are hydrogen gas, oxygen, and the like, and these may be used alone or as a mixture.
  • nitrogen is preferable as the discharge gas.
  • 50 to 100% by volume of the discharge gas is nitrogen gas.
  • the discharge gas other than nitrogen preferably contains a rare gas in an amount of less than 50% by volume. Further, the amount of the discharge gas is preferably 9 ° to 99.9% by volume based on the total amount of gas supplied to the discharge space.
  • Thin film forming gas is a raw material that excites itself and becomes active, and is chemically deposited on a substrate to form a thin film.
  • the gas supplied to the discharge space for forming the thin film used in the present invention will be described. Basically, they are discharge gas and thin film forming gas, but sometimes additional gas is added. Preferably, the discharge gas contains 90 to 99.9% by volume of the total gas supplied to the discharge space.
  • the thin film forming gas used in the present invention include organometallic compounds, halogen metal compounds, and metal hydride compounds.
  • organometallic compounds useful in the present invention are preferably those represented by the following general formula (I).
  • general formula (I) is preferably those represented by the following general formula (I).
  • M is a metal
  • R 1 is an alkyl group
  • R 2 is an alkoxy group
  • R 3 is a] -diketone coordination group, -keto carboxylate coordination group, -keto carboxylic acid coordination group and ⁇ ketooxy group (ketooxy group)
  • X + y + z m
  • x 0-m
  • x 0-m—1
  • z 0 to m, each of which is 0 or a positive integer.
  • alkyl group for R 1 include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • alkoxy group for R 2 examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a 3,3,3-trifluoropropoxy group.
  • Water of alkyl group It may be one obtained by substituting a fluorine atom for an elementary atom.
  • the group selected from the i3-diketone coordinating group, ⁇ -ketocarboxylic ester coordinating group, ketocarboxylic acid coordinating group, and ketoxoxy group (ketoxoxy coordinating group) of R 3 is a ⁇ -diketone coordinating group.
  • 2,4-pentanedione also called acetylacetone or acetoaceton
  • 1,1,1,5,5,5-hexamethyl-2,4-pentanedione 2,2,6,6-tetramethyl_3, 5-heptanedione, 1,1,1-trifluoro-2,4-pentanedione, and the like.
  • ⁇ _ketocarboxylate coordinating groups include methyl acetate acetate, ethyl acetate acetate, and ethyl acetate acetate. Pill esters, ethyl trimethylacetoacetate, methyl trifluoroacetoacetate, and the like.
  • 3-ketocarboxylic acid coordination groups include: And acetoacetic acid, trimethylacetoacetic acid, and the like.
  • Examples of the ketoxoxy include an acetooxy group (or acetooxy group), a propionyloxy group, a butyryloxy group, an acryloyloxy group, and a methacryloyloxy group. Can be mentioned.
  • the number of carbon atoms of these groups is preferably 18 or less, including the above-mentioned organometallic compounds. Further, as shown in the examples, straight or branched ones, or those in which a hydrogen atom is substituted by a fluorine atom may be used.
  • organometallic compounds having a low risk of explosion are preferred, and organometallic compounds having at least one oxygen in the molecule are preferred.
  • organometallic compounds having at least one oxygen in the molecule are preferred.
  • organometallic compounds having at least one oxygen in the molecule include an organometallic compound containing at least one alkoxy group of R 2 , a mono-diketone coordination group, a ketocarboxylate coordination group, a ⁇ -ketocarboxylic coordination group, and a ketoxoxy group of R 3.
  • Group (ketoxoxy coordination group) A metal compound having at least one group selected from the group is preferred.
  • the titanium compound used in the thin film forming gas useful in the present invention includes an organic titanium compound, a titanium hydride compound, a titanium halide, and the like.
  • examples of the organic titanium compound include triethoxytitanium, trimethoxytitanium, and trititanium.
  • the gas supplied to the discharge space may be mixed with an additive gas that promotes the reaction of forming a thin film, in addition to the discharge gas and the thin film forming gas.
  • the added gas include oxygen, ozone, hydrogen peroxide, carbon dioxide, carbon monoxide, hydrogen, and ammonia. Among them, oxygen, carbon monoxide, and hydrogen are preferable. Mixing is preferred.
  • the content is preferably 0.01 to 5% by volume with respect to the total amount of the gas, whereby the reaction is promoted and a dense and high quality thin film can be formed.
  • the metal of the organometallic compound, metal halide, or metal hydride used in the thin film forming gas Li, Be, B, Na, Mg, Al, Si, K, Ca, S c, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, In, Ir, S n, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Bi, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm , Yb, Lu and the like.
  • various inorganic thin films can be obtained by using a metal compound such as an organometallic compound, a halogen metal compound, or a metal hydride compound together with a discharge gas.
  • a metal compound such as an organometallic compound, a halogen metal compound, or a metal hydride compound together with a discharge gas.
  • the present invention is not limited to this.
  • acid, nitride or oxide nitride containing at least one of Si, Al, In, Sn, Zn, Ti, Cu, Ce, Ta, Zr, Nb, etc. Etc. can be used.
  • the thin film may contain impurities such as a carbon compound, a nitrogen compound, and a hydrogen compound in addition to the metal compound.
  • An organic-inorganic hybrid film can be used as the inorganic film of the present invention.
  • Organic and inorganic The hybrid film can be easily formed by using a mixed gas of an organic metal compound, a halogen metal compound, or a metal hydride compound and an organic material that can be plasma-polymerized as a thin film-forming gas.
  • the organic substance that can be plasma-polymerized include hydrocarbons, vinyl compounds, halogen-containing compounds, and nitrogen-containing compounds.
  • hydrocarbon examples include ethane, ethylene, methane, acetylene, cyclohexane, benzene, xylene, pheninoleacetylene, naphthalene, propylene, camphor, menthol, toluene, isobutylene and the like.
  • bur compound examples include acrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, aryno methacrylate, acrylamide, styrene, ⁇ -methylstyrene, bulpyridine, butyl acetate, Bull methyl ether and the like can be mentioned.
  • halogen-containing compound examples include methane tetrafluoride, ethylene tetrafluoride, propylene hexafluoride, and fluoroalkyl methacrylate.
  • nitrogen-containing compound examples include pyridine, arylamine, butylamine, acrylonitrile, acetate nitrile, benzonitrile, methacrylonitrile, and aminobenzene.
  • the carbon content (% by mass) of the film is preferably 30% or less. . .
  • the thickness of the inorganic layer is 5 ⁇ ⁇ !
  • the range is preferably from about 100 nm to about 100 nm, more preferably from 10 nm to 100 nm, and most preferably from 10 nm to 200 nm.
  • the inorganic layers may be of the same composition or different compositions, and there is no limitation.
  • silicon oxide or silicon oxynitride as the inorganic layer, and most preferably silicon oxynitride.
  • Silicon oxide is described as SiO x .
  • SiO x when SiO x is used as the inorganic layer, it is necessary to use 1.6 x to achieve both good gas barrier properties and high light transmittance. 1.9 is desirable.
  • Silicon oxynitride is expressed as SiO x N y, and the ratio of X and y is defined as a film of oxygen rich when importance is placed on the improvement of adhesion, where 1 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1
  • a nitrogen-rich film is preferably used, with 0 ⁇ x ⁇ 0.8, 0.8, and y1.3.
  • the plasma discharge treatment is performed under a pressure at or near the atmospheric pressure, and the pressure at or near the atmospheric pressure is about 20 kPa to 110 kPa. In order to obtain a good effect, 93 kPa to 104 kPa is preferable.
  • the gas supplied between the opposed electrodes is at least a discharge gas excited by an electric field and a thin film which receives the energy to be in a plasma state or an excited state to form a thin film.
  • a discharge gas excited by an electric field is at least a discharge gas excited by an electric field and a thin film which receives the energy to be in a plasma state or an excited state to form a thin film.
  • a rare gas such as helium or argon
  • the present inventors have studied the use of the discharge gas described above. As a result of examining air, oxygen, nitrogen, carbon dioxide, hydrogen, etc. as alternative discharge gases, we found conditions that can generate high-density plasma with these gases as well, and have excellent thin film formation properties. As a result of examining conditions and methods for forming a dense and uniform thin film, the present invention has been achieved.
  • the discharge condition in the present invention is such that the first high-frequency electric field and the second high-frequency electric field are superimposed on a discharge space, and the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ 1 of the first high-frequency electric field.
  • High and the intensity of the first high-frequency electric field V is the second high frequency
  • the relationship between the electric field strength v 2 and the discharge starting electric field strength IV is
  • the output density force S of the second high-frequency electric field is not less than l WZ cm 2 .
  • High frequency refers to those having a frequency of at least 0.5 kHz.
  • the superimposed high-frequency electric fields are both sine waves, a component is obtained by superimposing the frequency ⁇ 1 of the first high-frequency electric field and the frequency ⁇ 2 of the second high-frequency electric field higher than the frequency ⁇ 1, and the waveform is A sine wave of frequency ⁇ 1 is superposed on a sine wave of higher frequency ⁇ 2 to form a sawtooth waveform.
  • the intensity of the electric field at the start of discharge is defined as the minimum electric field intensity that can cause a discharge in the ⁇ ⁇ electric space (electrode configuration, etc.) and reaction conditions (gas conditions, etc.) used in the actual thin film forming method. Refers to.
  • the electric field at the start of discharge slightly varies depending on the kind of gas supplied to the discharge space, the type of dielectric material of the electrodes, the large separation between the electrodes, and the like. However, in the same discharge space, the intensity of the electric field at the start of discharge is dominant. It is presumed that by applying the high-frequency electric field as described above to the discharge space, a discharge capable of forming a thin film is caused, and high-density plasma necessary for forming a high-quality thin film can be generated.
  • a first high-frequency electric field having a frequency of ⁇ 1 and an electric field strength of the first electrode constituting the opposite electrode is applied.
  • connects the first power source for applying it is to use atmospheric pressure plasma discharge treatment apparatus connected to a second power source for applying a second high frequency electric field to a frequency omega 2 is a field intensity V 2 to the second electrode .
  • the above-mentioned atmospheric pressure plasma discharge processing apparatus includes gas supply means for supplying a discharge gas and a thin film forming gas between the opposed electrodes. Further, it is preferable to have an electrode temperature control means for controlling the temperature of the electrode.
  • a first filter is connected to the first electrode, the first power supply or any one of them, and a second filter is connected to the second electrode, the second power supply or any one of them.
  • the first filter facilitates the passage of the current of the first high-frequency electric field from the first power supply to the first electrode, grounds the current of the second high-frequency electric field, and changes the current from the second electrode 1 to the first electrode. This makes it difficult to pass the current of the second high-frequency electric field.
  • the second filter makes it easier to pass the current of the second high-frequency electric field from the second power supply to the second electrode, grounds the current of the first high-frequency electric field, Use a device that has a function to make it difficult to pass the current of the first high-frequency electric field to the power supply.
  • the term “hard to pass” means that the current is preferably not more than 20%, more preferably not more than 10% of the current.
  • “pass through!” Means that preferably at least 80%, more preferably at least 90% of the current is passed.
  • the atmospheric pressure plasma discharge treatment apparatus of the present invention has a capability of applying a high frequency electric field strength higher than that of the first power supply and the second power supply.
  • the high-frequency electric field intensity (applied electric field intensity) and the discharge starting electric field intensity referred to in the present invention refer to those measured by the following methods.
  • High frequency electric field intensity and V 2 (Unit: k V / mm) of the measuring method: set up a high-frequency voltage probe (P 6 0 1 5 A) on the electrode sections, the output signal of the high frequency voltage probe Connect to an oscilloscope (Tektronix, TDS3012B) and measure the electric field strength.
  • a high-frequency voltage probe P 6 0 1 5 A
  • an oscilloscope Tektronix, TDS3012B
  • Measuring method of electric field intensity at discharge start IV (unit: kV / mm): Discharge gas is supplied between electrodes, electric field intensity between electrodes is increased, and electric field intensity at which discharge starts is calculated as electric field intensity at discharge start IV. Is defined.
  • the measuring device is the same as the above-mentioned high frequency electric field strength measurement. The positional relationship between the high-frequency voltage probe and the oscilloscope used for the above measurement is shown in FIG. 1 described later.
  • the discharge conditions specified in the present invention By adopting the discharge conditions specified in the present invention, even a discharge gas such as nitrogen gas, which requires a high electric field at the start of discharge, can start discharge, maintain a high-density and stable plasma state, and provide a high-performance thin film. The formation can take place.
  • the electric field intensity IV (1/2 vp-p) at the start of discharge is about 3.7 kv mm. Therefore, in the above relationship, the first high-frequency electric field By applying an intensity of ⁇ 3.7 kV / mm, the nitrogen gas can be excited to a plasma state.
  • the frequency of the first power supply is preferably 200 kHz or less. The lower limit is preferably about 1 kHz.
  • the electric field waveform may be a continuous wave or a pulse wave.
  • the frequency of the second power supply is preferably 800 kHz or more. The higher the frequency of the second power supply, the higher the plasma density, and a dense and high-quality thin film can be obtained.
  • the upper limit is preferably about 200MHz.
  • the application of a high-frequency electric field from such two power sources is necessary to start the discharge of a discharge gas having a high discharge-starting electric field strength by the first high-frequency electric field, and the second It is an important point of the present invention that the plasma density is increased by the high frequency of the high frequency electric field and the high power density to form a dense and high quality thin film.
  • the second high-frequency electric field can be maintained while maintaining the uniformity of the discharge.
  • the power density of the field can be improved.
  • a further uniform high-density plasma can be generated, and a further improvement in the film forming speed and an improvement in the film quality can be achieved.
  • the first filter facilitates passage of a current of a first high-frequency electric field from a first power supply to a first electrode, and a current of a second high-frequency electric field.
  • the second filter makes it easier to pass the current of the second high frequency electric field from the second power supply to the second electrode, grounds the current of the first high frequency electric field, and The first high-frequency electric field to the power supply is hardly passed.
  • a filter having a powerful property can be used without limitation.
  • a capacitor of several 10 pF to several tens of thousands of pF or a coil of several AiH can be used according to the frequency of the second power supply.
  • a coil of 10 H or more can be used according to the frequency of the first power supply, and it can be used as a filter by grounding it through these coils or capacitors.
  • the atmospheric pressure plasma discharge treatment apparatus used in the present invention discharges gas between the opposed electrodes, brings the gas introduced between the opposed electrodes into a plasma state, and stands still between the opposed electrodes or between the opposed electrodes. By exposing the transferred substrate to the gas in the plasma state, a thin film is formed on the substrate.
  • an atmospheric pressure plasma discharge treatment apparatus discharges a gas between the opposite electrodes as described above to excite or introduce a gas introduced between the opposite electrodes into a jet state outside the counter electrode.
  • FIG. 1 shows an example of a jet type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
  • the jet type atmospheric pressure plasma discharge processing apparatus is not shown in FIG. 1 (shown in FIG. 2 described later), in addition to the plasma discharge processing apparatus and the electric field applying means having two power supplies. It is a device that has force gas supply means and electrode temperature adjustment means.
  • the plasma discharge treatment apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and a first power supply 2 is provided between the counter electrode and the first electrode 11.
  • the first high-frequency electric field of the frequency ⁇ 1 from 1 and the electric field strength current I i is applied, and the frequency ⁇ 2 from the second power supply 22, the electric field strength V 2 and the current 1 2 are applied from the second electrode 12.
  • the second high-frequency electric field is applied.
  • the first power supply 21 can apply a higher high-frequency electric field strength (V 1 > V 2 ) than the second power supply 2 2, and the first frequency ⁇ 1 of the first power supply 2 1 can be applied to the second power supply 2 2 A frequency lower than the second frequency ⁇ 2 can be applied.
  • a first filter 23 is provided between the first electrode 11 and the first power supply 21 to make it easier to pass a current from the first electrode 21 to the first electrode 11. Further, it is designed such that the current from the second power supply 22 is grounded so that the current from the second power supply 22 to the first power supply 21 hardly passes.
  • a second filter 2 is provided between the second electrode 12 and the second power supply 22 to make it easier to pass the current from the second power supply 22 to the second electrode.
  • Gas G is introduced into the space (discharge space) 13 between the first electrode 11 and the second electrode 12 from the gas supply means as shown in FIG.
  • a high-frequency electric field is applied from 11 and the second electrode 12 to generate a discharge, and while the gas G is in a plasma state, the gas G is blown out in a jet shape below the counter electrode (the lower side of the paper) to form a discharge.
  • the processing space created with material F is filled with gas G ° in the plasma state and transported unrolled from the unwinder of the substrate (not shown) or transported from the previous process A thin film is formed on the substrate F.
  • the medium heats or cools the electrode through the pipe from the electrode temperature adjusting means as shown in FIG.
  • the physical properties and composition of the obtained thin film may change, and it is desirable to appropriately control the change.
  • an insulating material such as distilled water or oil is preferably used.
  • FIG. 1 shows the measuring instruments used to measure the above-mentioned high-frequency electric field strength (added electric field strength) and the electric field strength at the start of discharge.
  • 25 and 26 are high-frequency voltage probes
  • 27 and 28 are oscilloscopes.
  • a plurality of jet-type atmospheric pressure plasma discharge treatment devices can be connected in series and discharged in the same plasma state at the same time, so that they can be treated many times and can be treated at high speed. If each device jets a gas in a different plasma state, a laminated thin film having different layers can be formed. .
  • FIG. 2 is a schematic diagram showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type that passes a substrate between opposed electrodes useful in the present invention.
  • ⁇ Atmospheric pressure plasma discharge treatment device comprises at least a plasma discharge treatment device 30, an electric field applying means 40 having two, a gas supply means 50, an electrode temperature adjusting means 6 Device.
  • Fig. 2 shows the plasma discharge of the substrate F between the counter rotating electrode (first electrode) 35 and the fixed electrode group (second electrode) 36 with the rectangular rotating electrode 35 (discharge space) 32. This is to form a thin film by processing.
  • Discharge space between opposing electrodes between roll rotating electrode (first electrode) 35 and rectangular cylindrical fixed electrode group (second electrode) 36 32 Roll rotating electrode (first electrode) 35
  • the first high-frequency electric field from the first power supply 41 to the frequency ⁇ 1, the electric field strength V and the current Ie, and the square cylindrical fixed electrode group (second electrode) 36 to the second power supply 42 ⁇ 2, the electric field intensity V 2, current I 2 , the second high-frequency electric field is applied.
  • a first filter 43 is provided between the roll rotating electrode (first electrode) 35 and the first power supply 41, and the first filter 43 transmits a current from the first power supply 41 to the first electrode.
  • a second filter 44 is provided between the prismatic fixed electrode group (second electrode) 36 and the second power supply 42, and the second filter 44 is connected from the second power supply 42 to the second electrode. It is designed so that the current from the first power source 41 is easily grounded, and the current from the first power source 41 to the second power source is hardly passed.
  • the roll rotating electrode 35 may be used as the second electrode, and the prismatic fixed electrode group 36 may be used as the first electrode.
  • a first power supply is connected to the first electrode, and a second power supply is connected to the second electrode. It is preferable that the first power supply applies a higher frequency electric field strength (V 1 > V 2 ) than the second power supply.
  • the frequency has the ability to be ⁇ 1 and ⁇ 2.
  • the current is preferably a I E ⁇ I 2.
  • Current I i of the first high frequency electric field is preferably 0. 3mA / cm 2 ⁇ 20mAZcm 2, more preferably 1. OMA da. ] 11 2-20111 / ⁇ 11 2 Dearu.
  • the current I 2 of the second high-frequency electric field is preferably 1 OmA / cm 2 to 100 mA / cm 2 , more preferably 2 OmA / cm 2 to
  • the gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge processing container 31 from the supply port 52 by controlling the flow rate.
  • the base material F is unwound from the original roll (not shown) and conveyed, or is conveyed from the previous process, and is introduced into the base material by the nip roll 65 via the guide roller 64 and the like. Is cut off, and wound while being in contact with the roll rotating electrode 35, while being wound with the rectangular cylindrical fixed electrode group 36. An electric field is applied from both the roll rotating electrode (first electrode) 35 and the rectangular cylindrical fixed electrode group (second electrode) 36, and discharge plasma is generated between the counter electrodes (discharge space) 32. generate.
  • the base material F forms a thin film by a gas in a plasma state while being wound while being in contact with the rotary electrode 35.
  • the base material F is transferred to the next step through a nip roll 66 and a guide roller 67, with the force of a winding machine (not shown).
  • Discharged exhaust gas GZ is discharged from the exhaust port 53.
  • the temperature was adjusted by the electrode temperature adjusting means 60 to heat or cool the roll rotating electrode (first electrode) 35 and the rectangular cylindrical fixed electrode group (second electrode) 36.
  • the medium is sent to both electrodes via the pipe 61 by the liquid sending pump P, and the temperature is adjusted from the inside of the electrodes.
  • Reference numerals 68 and 69 denote partition plates for separating the plasma discharge processing vessel 31 from the outside world.
  • FIG. 3 is a perspective view showing an example of the structure of a conductive metal base material of the rotary ketone electrode shown in FIG. 2 and a dielectric material coated thereon.
  • the roll electrode 35a is formed by coating a conductive metallic base material 35A and a dielectric material 35B thereon.
  • the structure is such that a temperature control medium (water or silicon oil, etc.) can be circulated.
  • FIG. 4 is a perspective view showing an example of the structure of a conductive metal base material of a rectangular cylindrical electrode and a dielectric material coated thereon.
  • the prismatic electrode 36a has a coating of a dielectric material 36B similar to that of FIG. 3 on a conductive metallic base material 36A, and the structure of the electrode is as follows. It is a metal pipe that becomes a jacket that allows temperature control during discharge.
  • the number of the rectangular cylindrical fixed electrodes is plural along the circumference larger than the circumference of the roll electrode, and the discharge area of the electrode is opposed to the rotary electrode 35. It is represented by the sum of the areas of the fixed square cylindrical fixed electrode surface.
  • the roll electrode 35a and the rectangular cylindrical electrode 36a are respectively provided with a dielectric material 35B on a conductive metallic base material 35A and 36A.
  • ceramics as 36 B were sprayed and then subjected to sealing treatment using a sealing material of an inorganic compound. It is sufficient that the ceramic dielectric is covered with a single layer of about 1 mm.
  • a ceramic material used for thermal spraying alumina and silicon nitride are preferably used. Of these, alumina is particularly preferably used because it is easy to process.
  • the dielectric layer may be a lining treated dielectric provided with an inorganic material by lining.
  • titanium metal or titanium alloy As the conductive metallic base material 35 A and 36 A, titanium metal or titanium alloy, silver, platinum, stainless steel, aluminum, iron, or other metal, or a composite material of iron and ceramic or aluminum Although a composite material with ceramics can be mentioned, titanium metal or a titanium alloy is particularly preferred for the reasons described below.
  • the distance between the opposing first and second electrodes is the shortest distance between the surface of the dielectric and the surface of the conductive metal base material of the other electrode when a dielectric is provided on one of the electrodes.
  • a dielectric is provided on both electrodes, it refers to the shortest distance between the dielectric surfaces.
  • the distance between the electrodes is determined by taking into account the thickness of the dielectric provided on the conductive metal base material, the magnitude of the applied electric field, the purpose of using the plasma, etc. From the viewpoint of the performance, the thickness is preferably from 0.1 to 2 Omm, and particularly preferably from 0.5 to 2 mm.
  • a treatment container made of Pyrex (R) glass or the like is preferably used, but a metal container can be used as long as insulation from the electrodes can be obtained.
  • a metal container can be used as long as insulation from the electrodes can be obtained.
  • an aluminum or stainless steel frame Resin may be adhered, and the metal frame may be sprayed with ceramics for insulation.
  • FIG. 1 it is preferable that both side surfaces (up to near the base material surface) of both parallel electrodes are covered with the above-mentioned material.
  • the first power supply (high-frequency power supply) installed in the atmospheric pressure plasma discharge treatment apparatus of the present invention includes:
  • the second power supply (high-frequency power supply)
  • the asterisk (*) indicates an impulse high-frequency power 10 O'kHz). Other than that, only continuous sine wave is marked;
  • the electric power applied between the opposing electrodes is such that a power (output density) of 1 W / cm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge; It generates energy and gives energy to the film forming gas to form a thin film.
  • the upper limit of the power supplied to the second electrode is preferably 50 WZcm 2 , more preferably 20 W / cm 2 .
  • the lower limit is preferably 1.2 ⁇ ⁇ . 1 11 2
  • the discharge area (cm 2 ) refers to the area of the electrode where discharge occurs.
  • the output density can be improved while maintaining the uniformity of the second high-frequency electric field. be able to.
  • Preferably it is 5 W / cm 2 or more.
  • the upper limit of the power supplied to the first electrode is preferably 5 OWZcm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • continuous mode There are a continuous sine wave continuous oscillation mode called continuous mode, and an intermittent oscillation mode called pulse mode in which ON / OFF is performed intermittently. Either of them may be adopted.
  • pulse mode in which ON / OFF is performed intermittently. Either of them may be adopted.
  • a continuous sine wave is preferable because a denser and higher quality film can be obtained.
  • the electrodes used in such a thin film formation method using atmospheric pressure plasma must be able to withstand severe conditions in terms of both structure and performance.
  • Such an electrode is preferably a metal base material coated with a dielectric.
  • the characteristics match between various metallic base materials and the dielectric, and one of the characteristics is a line between the metallic base material and the dielectric.
  • Those combinations difference in thermal expansion coefficient is less than 1 0 X 1 0 one 6 Z ° C.
  • the coefficient of linear thermal expansion is a physical property value of a known material.
  • a combination of a conductive metal base material and a dielectric material having a difference in linear thermal expansion coefficient within this range is as follows.
  • Metallic base material is pure titanium or titanium alloy, dielectric is ceramic sprayed coating
  • Metallic base material is pure titanium or titanium alloy, dielectric is glass lining
  • Metallic base material is a composite material of ceramics and iron, and dielectric is ceramic sprayed coating
  • the metallic base material is a composite material of ceramics and iron, and the dielectric is glass-ying
  • the metal base material is a composite material of ceramics aluminum, and the dielectric material is a ceramic sprayed coating.
  • the metallic base material is a composite material of ceramics and aluminum, and the dielectric is glass lining. From the viewpoint of the difference in linear thermal expansion coefficient, the above item 1 or 2 and 5 to 8 are preferable, and especially item 1 is preferable.
  • titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics. By using titanium or titanium alloy as the metallic base material and by setting the dielectric material to the above, there is no deterioration, especially cracking, peeling or falling off, of the electrode during use, and prolonged under severe conditions. Can withstand the use of
  • the metallic base material of the electrode useful in the present invention is a titanium alloy or titanium metal containing 70% by mass or more of titanium.
  • the force S that can be used without any problem is preferable. Or 80 mass.
  • Those containing / 0 or more titanium are preferred.
  • the titanium alloy or titanium metal useful in the present invention those generally used as industrial pure titanium, corrosion-resistant titanium, high-strength titanium and the like can be used. Examples of industrial pure titanium include TIA, TIB, TIC, and TID, all of which contain an extremely small amount of iron, carbon, nitrogen, oxygen, and hydrogen atoms.
  • the content of titanium is 99% by mass or more.
  • T 15 PB can be preferably used.
  • titanium alloys include T64, T325, T525, TA3, etc., which contain aluminum and also contain vanadium and tin, in addition to the above atoms except for lead.
  • the titanium content is preferably 85% by mass or more.
  • These titanium alloys or titanium metals have a thermal expansion coefficient smaller than that of stainless steel, for example, AISI 316 by about 1 Z2, and are applied on the titanium alloy or titanium metal as a metallic base material as described later. Good combination with dielectric material, can withstand high temperature and long time use.
  • the dielectric be an inorganic compound having a relative dielectric constant of 6 to 45.
  • examples of such a dielectric include alumina and silicon nitride.
  • glass lining materials such as silicate glass and borate glass.
  • a material obtained by spraying ceramics described later, which is provided by a glass lining, is preferable.
  • a dielectric provided by spraying alumina is preferable.
  • the porosity of the dielectric is 10% by volume or less, preferably 8% by volume or less, and more preferably 0% by volume or less. 5% by volume or less.
  • the porosity of the dielectric can be measured by a BET adsorption method or a mercury porosimeter. In the examples described later, the dielectric fragments coated on the metallic base material are measured using a mercury port sizing machine manufactured by Shimadzu Corporation, and the porosity is measured. High durability is achieved by the dielectric having a low porosity.
  • the dielectric material having such voids but having a low porosity there can be mentioned, for example, a high-density, high-adhesion ceramic sprayed coating by an atmospheric plasma spraying method described later.
  • a sealing treatment it is preferable to perform a sealing treatment.
  • the above-mentioned atmospheric plasma spraying method is a technology in which fine powders such as ceramics, wires, etc. are thrown into a plasma heat source and sprayed as fine particles in a molten or semi-molten state onto the metal base material to be coated, forming a film.
  • a plasma heat source is a high-temperature plasma gas that raises the molecular gas to a high temperature, dissociates it into atoms, and gives more energy to emit electrons.
  • the spray speed of this plasma gas is high, and compared to conventional arc spraying and flame spraying, the sprayed material collides with the metal base material at a higher speed, so that a high adhesion strength and a high-density coating can be obtained. .
  • the thermal spraying method for forming a heat shielding film on a high-temperature exposed member described in Japanese Patent Application Laid-Open No. 2000-310655.
  • the porosity of the dielectric (ceramic sprayed film) to be coated as described above can be obtained.
  • Another preferable specification that can withstand high power is that the thickness of the dielectric is 0.5 to 2 mm. This variation in film thickness is desirably 5% or less, preferably 3% or less, and more preferably 1% or less.
  • the inorganic compound a metal oxide is preferable, and among them, a compound containing silicon oxide (SioX) as a main component is particularly preferable. It is preferable that the inorganic compound for pore-sealing treatment is formed by curing by a sol-gel reaction. In the case where the inorganic compound for the sealing treatment contains a metal oxide as a main component, a metal alkoxide or the like is applied as a sealing liquid on the ceramic sprayed film and cured by a sol-gel reaction.
  • the inorganic compound is mainly composed of silica
  • energy treatment to promote the sol-gel reaction. Energy treatments include thermal curing (preferably below 200 ° C) and UV irradiation. Further, as a sealing treatment method, if the sealing liquid is diluted and coating and curing are repeated several times sequentially, the mineralization can be further improved and a dense electrode without deterioration can be obtained.
  • the content of the metal oxide after the curing is preferably 60 mol% or more.
  • the content of Siox (x is 2 or less) after curing is preferably 60 mol% or more.
  • the Si x content after curing is measured by analyzing the tomographic layer of the dielectric layer by XPS (X-ray photoelectron spectroscopy).
  • the electrode is adjusted so that the maximum height Rmax of the surface roughness defined by JISB 0601 at least on the side in contact with the base material is 10 m or less. It is preferable from the viewpoint of obtaining the effects described in the present invention, but more preferably, the maximum value of the surface roughness is adjusted to 8 m or less, and particularly preferably to 7 ⁇ or less. In this way, the thickness of the dielectric and the gap between the electrodes can be kept constant, the discharge state can be stabilized, and the heat shrinkage difference and residual Distortion and cracks due to stress can be eliminated, and high accuracy and durability can be greatly improved.
  • Polishing of dielectric surface Finishing is preferably performed at least on the dielectric that is in contact with the substrate.
  • the center line average surface roughness Ra defined by JISB 0601 is preferably not more than 0.5 ⁇ m, more preferably not more than 0.1 ⁇ .
  • the heat-resistant temperature is 100 ° C. or more. It is more preferably at least 120 ° C, particularly preferably at least 150 ° C. The upper limit is 500 ° C.
  • the heat-resistant temperature refers to the highest temperature that does not cause dielectric breakdown at the voltage used in the atmospheric pressure plasma treatment and can withstand normal discharge. Such a heat-resistant temperature is determined by applying the above-described ceramic spraying or a dielectric provided with a layered glass lining having a different amount of bubbles mixed therein, or by setting a range of a difference in linear thermal expansion coefficient between the metallic base material and the dielectric. This can be achieved by appropriately combining the means for appropriately selecting the materials inside.
  • the ⁇ organic layer '' used in the present invention is a layer in which the content of carbon in the film exceeds 5% in atomic number concentration, preferably 10% or more, more preferably 15% or more. It is.
  • the concentration of carbon atoms in the film can be measured with an XPS surface analyzer.
  • the organic film may be any film as long as it does not warp the film with the gaseous film, does not degrade the performance of the film even when bent, and provides good adhesion of the inorganic layer, for example, an acryloyl group or a metathalyl.
  • a polymer whose main component is a polymer having a volume shrinkage of less than 10% due to a crosslinking reaction obtained by crosslinking a monomer having a group. If the volumetric shrinkage of the organic layer due to the cross-linking reaction exceeds 10%, a large shrinkage stress is generated due to the volume change during the cross-linking reaction, resulting in film warpage and poor adhesion due to stress concentration at the adhesion interface and cracking of the barrier layer. And other structural defects may occur. In addition, it is possible to enhance the gas barrier property by burying not only the inorganic layer but also the defective portion of the layer structure that cannot be completed with the organic layer.
  • the organic layer mainly composed of a polymer having a volume shrinkage of less than 10% due to a crosslinking reaction obtained by crosslinking a monomer having a hydroxyl group is not particularly limited, but may be an epoxy (meth) acrylate or a urethane ( Bifunctional among meth) acrylate, isocyanuric acid (meth) acrylate, pentaerythritol (meth) acrylate, trimethylonolepropane (meth) acrylate, ethylene dalicol (meth) acrylate, polyester (meth) acrylate, etc.
  • a polymer obtained by crosslinking the above-mentioned monomer having an acryloyl group or a methacrylyl group be a main component.
  • These monomers having a bifunctional or higher acryloyl group or a methacryloyl group may be used as a mixture of two or more kinds, or as a mixture of monofunctional (meth) acrylates.
  • isocyanuric acid acrylate, epoxy acrylate, urethane acrylate which has a particularly high degree of crosslinking and a glass transition temperature of 200 ° C or more. It is even more preferable to use as a main component.
  • the thickness of the organic layer is not particularly limited, but is preferably 10 nm to 500 nm, more preferably 10 nm to 200 nm, and most preferably 10 nm to 100 nm. It is. If the thickness of the organic layer is too thin, it becomes difficult to obtain uniformity of the thickness, so that the structural defects of the inorganic layer cannot be efficiently filled with the organic layer, and no improvement in the palliability is observed. On the other hand, if the thickness of the organic layer is too large, cracks are likely to occur in the organic layer due to external force such as bending, so that there is a problem that the barrier property is reduced.
  • Examples of the method for forming the organic compound of the present invention include a coating method, a vacuum film forming method, and an atmospheric pressure plasma CVD.
  • a coating method and an atmospheric pressure plasma CVD method are preferred.
  • Atmospheric pressure plasma CVD can easily form an organic plasma polymerized film by using the above-mentioned plasma polymerizable organic compound as a thin film forming gas.
  • plasma polymerizable organic matter examples thereof include the hydrocarbons, vinyl compounds, halogen-containing compounds, nitrogen-containing compounds, and the like mentioned in the above-mentioned organic-inorganic hybrid film. Vinylic compound is preferred
  • a dense inorganic film can be obtained, so that if the substrate has at least one organic layer and at least one inorganic layer, excellent gas barrier properties can be obtained.
  • the order of laminating the organic film and the inorganic film is not particularly limited, but it is preferable to alternately laminate the organic layer and the inorganic layer.
  • the number of layers is not particularly limited, but is preferably 3 or more, more preferably 5 or more, and most preferably 6 or more.
  • the support used in the present invention will be described.
  • the support used in the present invention is not particularly limited as long as it can form a thin film such as a plate-like, sheet-like or film-like flat shape, or a three-dimensional shape such as a lens or a molded product on its surface.
  • the form or material of the support is not limited as long as the support is exposed to the mixed gas in a plasma state in a stationary state or a transfer state and a uniform thin film is formed.
  • the shape may be a planar shape or a three-dimensional shape, and examples of the planar shape include a glass plate and a resin finolem. Various materials such as glass, resin, pottery, metal, and nonmetal can be used.
  • glass includes a glass plate and a lens
  • resin includes a resin lens, a resin film, a resin sheet, a resin plate, and the like.
  • the resin film can be continuously transferred between or near the electrodes of the atmospheric pressure plasma discharge treatment apparatus according to the present invention to form an inorganic film. It is suitable for mass production, which is not a batch type such as vacuum system such as a vacuum system, and is suitable as a continuous high productivity production system.
  • Examples of the material of the molded product such as a resin film, a resin sheet, a resin lens, and a resin molded product include cenorellose triacetate, cellulose / cellulose diacetate, cellulose acetate propionate and cellulose acetate butylate.
  • ZONEX ZEONO manufactured by ZEON Corporation of Japan
  • AR TON of amorphous cyclopolyolefin resin film manufactured by JSR Corporation
  • Pure Ace of polycarbonate film manufactured by Teijin Limited
  • cellulose triacetate Commercially available products such as film Konikatak KC 4 UX and KC 8 UX (manufactured by Koni Riki Co., Ltd.) can be preferably used.
  • the support used in the present invention is not limited to the above description.
  • the film thickness of the film is preferably from 10 to 100 m, more preferably from 40 to 200 zm.
  • the water vapor permeability of the transparent gas barrier film of the present invention is determined by the JISK 7129 B method when it is used in applications requiring a high degree of water vapor barrier such as an organic EL display or a high-definition color liquid crystal display. Is preferably 1 g / m 2 / day or less, more preferably 0.1 lg Zm 2 less than / day. In particular, in the case of organic EL display applications, even a very small number of dark spots may grow and the display life of the display may be extremely shortened. It is preferable to alternately laminate two or more organic layers and inorganic layers in terms of both water vapor barrier properties and resistance to bending.
  • a set of a portal electrode covered with a dielectric and a plurality of rectangular cylindrical electrodes similarly covered with a dielectric were produced as follows.
  • the portal electrode, which is the first electrode, is coated with a high-density, high-adhesion aluminum sprayed film by a plasma method on a titanium alloy T64 jacket roll metal base material that has cooling means with cooling water. Then, the roll diameter was set to ⁇ ⁇ ⁇ ⁇ . Thereafter, a solution obtained by diluting tetramethoxysilane with ethyl acetate was applied and dried, and then cured by irradiation with ultraviolet light to perform a sealing treatment.
  • the dielectric surface coated in this manner was polished and smoothed, and calored so that Rmax was 5 ⁇ .
  • the porosity of the final dielectric was almost 0% by volume.
  • the content of SiO 2 in the dielectric layer was 75 mo 1%
  • the final thickness of the dielectric was 1 mm (within 1% of variable thickness soil)
  • the relative permittivity of the dielectric was 10%. Met.
  • the difference between the linear thermal expansion coefficient of the conductive metal base material and the dielectric was 1.7 ⁇ 10 16 / ° C, and the heat resistance temperature was 260 ° C.
  • the rectangular cylindrical electrode of the second electrode was formed by coating a hollow rectangular cylindrical titanium alloy T64 with the same dielectric material as described above under the same conditions, thereby forming a group of opposed rectangular cylindrical fixed electrodes.
  • An ARTON film (amorphous cyclopolyolefin resin film, manufactured by JSR) having a thickness of 100 im was used as a support.
  • the following organic layer coating composition was applied and dried on the above substrate, and then cured by UV irradiation to produce an organic layer having a thickness of about 0.5 ⁇ on a resin substrate.
  • the atmospheric pressure plasma discharge treatment apparatus shown in FIG. 2 was used.
  • the first electrode (roll rotating electrode) and the second electrode (square cylindrical fixed electrode group) reach 80 ° C.
  • the roll rotating electrode was rotated by a drive to form a thin film.
  • a silicon oxide film having a thickness of 100 nm was produced.
  • Discharge gas nitrogen 9 8.9 volume 0/0
  • Additive gas oxygen gas 1 vol 0/0
  • an organic layer is formed by using the organic layer coating composition, and an inorganic layer is formed under the same conditions by using the inorganic layer mixed gas composition.
  • a transparent barrier substrate having a layer / inorganic layer configuration was obtained.
  • the film thickness was about 0.5 ⁇ / ⁇ O nmZ, respectively, about 0.5 ⁇ / 100 nm.
  • As a result of measuring the water vapor permeability of the base neo by the JISK 712 B method it was less than 0.1 g / m 2 / day. After the film was wound once on a 30 ⁇ rod, the water vapor permeability was measured again by the JISK 712 B method, but no increase in water vapor permeability was observed.
  • At least one of the inorganic layers may be under atmospheric pressure or a pressure near the atmospheric pressure
  • a gas containing a thin film forming gas is supplied to a discharge space, and a high-frequency electric field is applied to the discharge space to excite the gas and expose a substrate to the excited gas to form the high-frequency electric field.
  • the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ 1 of the first high-frequency electric field.
  • an excellent gas-parliad base material can be obtained by using a method for manufacturing a base material, wherein the output density of the second high-frequency electric field is 1 WZ cm 2 or more.
  • a transparent barrier substrate having a constitution of resin substrate / organic layer / inorganic layer Z organic layer Z inorganic layer was obtained in the same manner as in the above example except that the discharge conditions at the time of forming the inorganic film were as follows.
  • the present invention is a transparent film having a high gas barrier property, and has a characteristic that water vapor parity does not decrease by bending. In addition, it can be produced with a productivity several to several tens times higher than that of a conventional film. If the film of the present invention is applied, for example, as a display element, a light and unbreakable display can be provided at low cost. In addition, when applied to the storage of chemicals and the like, it is possible to realize a storage container that allows the contents to be seen and does not break when dropped, and its industrial value is extremely high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

高いガスバリア性能を持ち、環境耐久性に優れ、かつ曲げてもそのバリア性能が劣化しない透明ハイバリアフィルムが生産性良く提供される。基材の製造方法として、支持体上に少なくとも有機層および無機層を有する基材の製造方法において、前記無機層が、大気圧又はその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し前記放電空間に高周波電界を印加し前記ガスを励起し基材を励起した前記ガスに晒すことで形成され、前記高周波電界は、第1の高周波電界および第2の高周波電界を重畳したものであり、前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、前記第1の高周波電界の強さV1、前記第2の高周波電界の強さV2と放電開始電界の強さIVとがV1≧IV>V2またはV1>IV≧V2を満たし、前記第2の高周波電界の出力密度が1W/cm2以上であることを特徴とする基材の製造方法である。

Description

明細書 透明でガスバリァ性の高い基材及びその製造方法 技術分野
本発明は、 光学部材、 エレクトロ二タス部材、 一般包装部材、 薬品包装部材など の幅広い用途に応用が可能な透明でガスパリァ性の高い基材及ぴこれを用いたェ レクト口ルミネッセンス用ディスプレイ基板に関する。
背景技術
従来より、プラスチック基板やフィルムの表面に酸ィ匕アルミニウム、酸化マグネ シゥム、酸化连素等の金属酸ィヒ物の薄膜を形成したガスバリア性フィルムは、水蒸 気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及ぴ医薬品 等の変質を防止するための包装用途に広く用いられている。 また、包装用途以外に も液晶表示素子、 太陽電池、 エレクト口ルミネッセンス (E L ) 基板等で使用され ている。 特に液晶表示素子、 E L素子などへの応用が進んでいる透明基材には、近 年、軽量化、 大型化という要求に加え、長期信頼性や形状の自由度が高いこと、 曲 面表示が可能であること等の高度な要求が加わり、重く割れやすく大面積ィ匕が困難 なガラス基板に代わって透明プラスチック等のフィルム基材が採用され始めてレヽ る。
また、 プラスチックフィルムは上記要求に応えるだけでなく、 ロールトウロール 方式が可能であることからガラスよりも生産性が良くコストダウンの点でも有利 である。 しかしながら、透明プラスチック等のフィルム基材はガラスに対しガスパ リア性が劣るという問題がある。ガスパリア性が劣る基材を用いると、水蒸気や空 気が浸透し、例えば液晶セル内の液晶を劣化させ、表示欠陥となって表示品位を劣 化させてしまう。
この様な問題を解決するためにフィルム基板上に金属酸化物薄膜を形成してガ スバリア性フィルム基材とすることが知られている。包装材ゃ液晶表示素子に使用 したもの (特許文献 1 ) や酸ィ匕アルミニウムを蒸着したもの (特許文献 2 ) が知ら れており、 いずれも 1 g /m V d a y程度の水蒸気バリア性を有する。
近年では、 さらなるガスバリア性が要求される有機 E Lディスプレイや、液晶デ イスプレイの大型化、高精細ディスプレイ等の開発によりフィルム基板へのガスバ リァ性能について水蒸気バリアで 0 . 1 g /m V d a y程度まで要求が上がって きている。 これに応えるためにより高いバリア性能が期待できる手段として、 低圧 条件下でグロ一放電させて生じるプラズマを用いて薄膜を形成させるスパッタリ ング法や C V D法による成膜検討が行われている。また、有機層/無機層の交互積 層構造を有するパリァ膜を真空蒸着法により作製する技術が特許文献 3に提案さ れている。 しかしながら、 これらの薄膜形成法は低圧条件下で処理を行う必要があ り、低圧を得るために、容器は高価な真空チャンパ一を必要とし、 さらに真空排気 装置を設置する必要がある。 また、真空中で処理するため大面積の基板に処理しよ うとすると、大きな真空容器を使用しなければならず、 かつ、真空排気装置も大出 力のものが必要となる。 その結果、設備が極めて高価なものになると同時に、 吸水 率の高いプラスチック基板の表面処理を行う場合、 吸水した水分が気化するため、 真空引きに長時間を用し、 処理コストが高くなるという問題点もあった。 さ らに、 一回処理を行う毎に、真空容器の真空を壊して取り出し、有機層を形成するなどの 次工程を大気圧下で行う必要があるため、特に、水蒸気バリア性を得るために、 有 機層、 無機層を多層化すればするほど、 生産性が大きく損なわれていた。
一方、大気圧近傍の圧力下で放電プラズマを発生させる方法があり、 ί列えば、 特 許文献 4のような、大気圧近傍のヘリゥムとケトンの混合雰囲気下で発生させたプ ラズマを用いて処理を行う方法や、特許文献 5のような、アルゴン並びにヘリゥム 又はアセトンからなる大気圧近傍の雰囲気下で発生させたプラズマにより処理を 行う方法等が開示されている。 さらに、 特許文献 6 , 7には、 大気圧近傍の圧力下 で、金属化合物を含むガス雰囲気中で電界を印加することにより、放電プラズマを 発生させ金属含有薄膜を形成する方法が開示されている。 これらの中に【ま、安価に 生産性良く、無機膜を作製できるものもあるが、ガスバリァ性の付与を目的とする ものではなく、特にフレキシプル表示デパイスに応用するための条件である曲げに 対するバリア性の劣化については十分なものではなかった。
特許文献 8には、大気圧の近傍下、放電プラズマ処理を利用することにより作製 された有機層 Ζ無機層の交互積層構造を有するバリア膜を形成する方法が開示さ れているが、放電ガスに高価なアルゴンを用いているためコストアップの原因にな る。 また、放電プラズマ処理条件として、特許文献 9に記載されている公知の単周 波数のパルス電界を用いる処理条件を使用している為、プラズマ密度が低く、 良質 な膜が得られないばかり力 製膜速度も遅く、 生産性が非常に低い。
【特許文献 1】 特公昭 5 3 - 1 2 9 5 3号公報
【特許文献 2】 特開昭 5 8 - 2 1 7 3 4 4号公報
【特許文献 3】 世界公開第 0 0 / 0 2 6 9 7 3号パンフレツト
【特許文献 4】 特公平 2— 4 8 6 2 6号公報
【特許文献 5】 特開平 4 - 7 4 5 2 5号公報 【特許文献 6】 特開平 10— 106387号公報
【特許文献 7】 特開 2001— 49443号公報
【特許文献 8】 特開 2003— 191370号公報
【特許文献 9】 特開 2001— 49443号公報
本発明の目的は、従来よりも高いガスバリァ性能を持ち、環境耐久性に優れ、 か つ曲げてもそのバリァ性能が劣化しない透明ハイバリアフィルムを生産性良く提 供することにある。 発明の開示
すなわち本発明は、 以下の構成により達成されるものである。
(構成 1) 支持体の上に少なくとも 1層の有機層と少なくとも 1層の無機層とを 有する基材の製造方法において、前記無機層の少なくとも 1層を、大気圧もしくは その近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し、前記放電空 間に高周波電界を印加することにより前記ガスを励起し、励起した前記ガスに基材 を晒すことにより形成し、前記高周波電界が、第 1の高周波電界および第 2の高周 波電界を重畳したものであり、前記第 1の高周波電界の周波数 ωΐより前記第 2の 高周波電界の周波数 ω 2力 S高く、 前記第 1の高周波電界の強さ V i、 前記第 2の高 周波電界の強さ V2および放電開始電界の強さ I Vとの関係が、
Vx≥ I v>v2
または V1〉 I V≥V2 を満たし、
前記第 2の高周波電界の出力密度が、 1 W/ c m 2以上であることを特徴とする基 材の製造方法。
(構成 2) 前記放電空間が、対向する第 1電極と第 2電極とで構成されることを 特徴とする構成 1に記載の基材の製造方法。
(構成 3) 前記第 2の高周波電界の出力密度が、 5 OWZ cm2以下であること を特徴とする構成 1に記載の基材の製造方法。
(構成 4) 前記第 2の高周波電界の出力密度が、 2 OW/cm2以下であること を特徴とする構成 3に記載の基材の製造方法。
(構成 5 ) 前記第 1の高周波電界の出力密度が 1 WZ c m2以上であることを特 徴とする構成 1に記載の基材の製造方法。
(舉成 6) 前記第 1の高周波電界の出力密度が、 5 OWZ cm2以下であること を特徴とする構成 5に記載の基材の製造方法。
(構成 7 ) 前記第 1の高周波電界おょぴ前記第 2の高周波電界がサイン波である ことを特徴とする構成 1に記載の基材の製造方法。
(構成 8 ) 前記第 1の高周波電界を前記第 1電極に印加し、前記第 2の高周波電 界を前記第 2電極に印加することを特徴とする構成 2に記載の基材の製造方法。
(構成 9) 前記放電空間に供給されるガスが放電ガスを含み、供給される全ガス 量の 9 0〜 99. 9体積%が放電ガスであることを特徴とする構成 1に記載の基材 の製造方法。
(構成 1 0) 前記放電ガスが、 5 0〜1 00体積%の窒素ガスを含有することを 特徴とする構成 9に記載の基材の製造方法。
(構成 1 1 ) 前記放電ガスが、 5 0体積%未満の希ガスを含有することを特徴と する構成 1 0に記載の基材の製造方法。
(構成 1 2) 前記薄膜形成ガスが、 有機金属化合物、 ハロゲン化金属、 金属水素 化合物から選ばれる少なくとも一つを含有することを特徴とする構成 1に記載の 基材の製造方法。 (構成 1 3 ) 前記有機金属化合物が、有機珪素化合物、有機チタン化合物、 有機 錫化合物、有機亜鉛化合物、有機インジウム化合物おょぴ有機アルミニウム化合物 から選ばれる少なくとも一つの化合物を含有することを特徴とする構成 1 2に記 載の基材の製造方法。
(構成 1 4 ) 前記有機層と前記無機層が隣接して積層されたことを特徴とする構 成 1に記載の基材の製造方法。
(構成 1 5 ) 前記有機層と前記無機層が交互に積層されたことを特徴とする構成 1 4に記載の基材の製造方法。
(構成 1 6 ) 構成 1〜 1 5の何れか 1構成に記載の基材の製造方法により製造さ れた基材。 図面の簡単な説明
第 1図は本発明に有用なジ ット方式の大気圧プラズマ放電処理装置の一例を 示した概略図である。
第 2図は本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放 電処理装置の一例を示す概略図である。
第 3図は導電性の金属質母材とその上に被覆されている誘電体を有するロール 回転電極の一例を示す斜視図である。
第 4図は角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の 構造の一例を示す斜視図である。 発明を実施するための最良の形態
次に本発明を実施するための最良の形態について説明するが、本発明はこれによ り限定されるものではない。 以下、 本発明を詳細に説明する。
本発明で用いられる 「無機層」 とは、 膜中の金属原子 (L i、 B e、 B、 Na、 Mg、 A l、 S i、 K、 C a、 S c、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 Cu、 Zn、 Ga、 Ge、 Rb、 S r、 Y、 Z r、 Nb、 Mo、 I n、 I r、 Sn、 S b、 C s、 B a、 La、 Hf、 Ta、 W、 T l、 B i、 Ce、 P r、 Nd、 Pm、 Eu、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Yb、 Lu等) の含有率が原子数濃 度として 5%を超えている層であり、 好ましくは 10%以上、 更に好ましくは 2 0%以上の層である。無機膜の金属原子濃度については、 XPS表面分析装置によ り測定することができる。
大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供 給し、前記放電空間に高周波電界を印加することにより前記ガスを励起し、基材を 励起した前記ガスに晒すことにより形成される。
前記高周波電界が、第 1の高周波電界おょぴ第 2の高周波電界を重畳したもので あり、 前記第 1の高周波電界の周波数 ω 1より前記第 2の高周波電界の周波数 ω 2が高く、 前記第 1の高周波電界の強さ 前記第 2の高周波電界の強さ V2お よび放電開始電界の強さ I Vとの関係が、
Vx≥ I V>V2
または V1> I V≥V2 を満たし、 かつ、
前記第 2の高周波電界の出力密度が、 1 W/ c m2以上であることを特徴とする。 次に、放電空間に供給するガスについて説明する。 供給するガスは、少なくとも 放電ガスおよび薄膜形成ガスを含有する。放電ガスと薄膜形成ガスは混合して供給 してもよいし、別々に供給してもかまわない。 放電ガスとは、薄膜形成可能なグロ 一放電を起こすことのできるガスである。放電ガスとしては、窒素、希ガス、空気、 水素ガス、酸素などがあり、 これらを単独で放電ガスとして用いても、 混合して用 いてもかまわない。 本発明において、 放電ガスとして好ましいのは窒素である。 放 電ガスの 5 0〜1 0 0体積%が窒素ガスであることが好ましい。 このとき、放電ガ スとして窒素以外の放電ガスとしては、希ガスを 5 0体積%未満含有することが好 ましい。また、放電ガスの量は、放電空間に供給する全ガス量に対し、 9◦〜 9 9 . 9体積%含有することが好ましい。薄膜形成ガスとは、 それ自身が励起して活性と なり、 基材上に化学的に堆積して薄膜を形成する原料のことである。
次に、本発明に使用する薄膜を形成するために放電空間に供給するガスについて 説明する。 基本的に放電ガスと薄膜形成ガスであるが、 更に、 添加ガスを加えるこ ともある。 放電空間に供給する全ガス量中、 放電ガスを 9 0〜 9 9 . 9体積%含有 することが好ましい。 本発明に使用する薄膜形成ガスとしては、 有機金属化合物、 ハロゲン金属化合物、 金属水素化合物等を挙げることができる。
本発明に有用な有機金属化合物は下記の一般式 (I ) で示すものが好ましい。 一般式 (I )
R i x MR 2 y R 3 z
式中、 Mは金属、 R 1はアルキル基、 R 2はアルコキシ基、 R 3は ]3—ジケトン配 位基、 ーケトカルボン酸エステル配位基、 —ケトカルボン酸配位基及ぴケトォ キシ基(ケトォキシ配位基)から選ばれる基であり、金属 Mの価数を mとした場合、 x + y + z =mであり、 X = 0〜m、 た x = 0〜m— 1であり、 y = 0〜: m、 z = 0〜mで、 何れも 0または正の整数である。 R 1のアルキル基としては、 メチ ル基、 ェチル基、 プロピル基、 プチル基等を挙げることができる。 R 2のアルコキ シ基としては、例えば、 メ トキシ基、ェトキシ基、プロポキシ基、ブトキシ基、 3 , 3, 3—トリフルォロプロポキシ基等を挙げることができる。 またアルキル基の水 素原子をフッ素原子に置換したものでもよい。 R 3の i3—ジケトン配位基、 β—ケ トカルボン酸エステル配位基、 ケトカルボン酸配位基及びケトォキシ基(ケ ト ォキシ配位基)から選ばれる基としては、 βージケトン配位基として、例えば、 2, 4—ペンタンジオン (ァセチルァセトンあるいはァセトァセトンともいう) 、 1 , 1, 1, 5 , 5 , 5—へキサメチルー 2 , 4—ペンタンジオン、 2, 2, 6, 6 ― テトラメチル _ 3, 5—ヘプタンジオン、 1, 1, 1 _トリフルオロー 2 , 4—ぺ ンタンジオン等を挙げることができ、 β _ケトカルボン酸エステル配位基として、 例えば、 ァセト酢酸メチルエステル、 ァセト酢酸ェチルエステル、 ァセト酢酸プロ ピルエステル、 トリメチルァセト酢酸ェチル、 トリフルォロアセト酢酸メチル等を 挙げることができ、 |3—ケトカルボン酸配位基として、 例えば、 ァセト酢酸、 ト リ メチルァセト酢酸等を挙げることができ、 またケトォキシとして、 例えば、 ァセ ト ォキシ基 (またはァセトキシ基) 、 プロピオニルォキシ基、 ブチリロキシ基、 ァク リロイルォキシ基、 メタクリロイルォキシ基等を挙げることができる。 これらの基 の炭素原子数は、 上記例有機金属示化合物を含んで、 1 8以下が好ましい。 また例 示にもあるように直鎖または分岐のもの、また水素原子をフッ素原子に置換したも のでもよい。
本発明において取り扱いの問題から、爆発の危険性の少ない有機金属化合物が好 ましく、 分子内に少なくとも一つ以上の酸素を有する有機金属化合物が好ましレ、。 このようなものとして R 2のアルコキシ基を少なくとも一つを含有する有機金属ィ匕 合物、 また R 3の 一ジケトン配位基、 ーケトカルボン酸エステル配位基、 β— ケトカルボン酸配位基及びケトォキシ基(ケトォキシ配位基) 力 ら選ばれる基を少 なくとも一つ有する金属化合物が好ましい。
具体的な有機金属化合物について以下に示す。有機珪素化合物としては、例え ίま、 テトラエチルシラン、 テトラメチルシラン、 テトライソプロビルシラン、 テトラブ チノレシラン、 テトラエトキシシラン、 テトライソプロポキシシラン、 テトラブトキ シシラン、 ジメチルジメ トキシシラン、 ジェチルジェトキシシラン、 ジェチノレシラ ンジ (2 , 4一ペンタンジオナート) 、 メチルトリメ トキシシラン、 メチノレトリェ トキシシラン、 ェチルトリエトキシシラン等、珪素水素化合物としては、 テトラ水 素化シラン、へキサ水素化ジシラン等、 ハロゲン化珪素化合物としては、 テトラク 口口シラン、 メチルトリクロロシラン、 ジェチルジク口口シラン等を挙げることが でき、 何れも本発明において好ましく用いることができる。 また、 前記フッ素化合 物を使用することができる。これらの薄膜形成性ガスを 2種以上を同時に混合して 使用することができる。
本発明に有用な薄膜形成性ガスに使用するチタン化合物としては、有機チタン化 合物、チタン水素化合物、ハロゲン化チタン等があり、有機チタン化合物としては、 例えば、 トリエトキシチタン、 トリメ トキシチタン、 トリイソプロポキシチタン、 トリブトキシチタン、 テトラエトキシチタン、 テトライソプロポキシチタン、 メチ ルジメ トキシチタン、ェチルトリエトキシチタン、 メチルトリイソプロポキシチタ ン、 トリェチルチタン、 トリイソプロピルチタン、 トリブチルチタン、 テ卜ラエチ ルチタン、 テトライソプロピルチタン、 テトラブチルチタン、 テトラジメチルアミ ノチタン、 ジメチルチタンジ (2, 4一ペンタンジオナート) 、 ェチルチタントリ ( 2 , 4一ペンタンジオナート) 、チタントリス (2, 4一ペンタンジオナート) 、 チタントリス (ァセトメチルァセタート) 、 トリァセトキシチタン、 ジプロポキシ プロピオニルォキシチタン等、ジブチリロキシチタン、チタン水素化合物と しては モノチタン水素化合物、 ジチタン水素化合物等、 ハロゲン化ヂタンとしては、 トリ クロ口チタン、テトラクロ口チタン等を挙げることができ、何れも本発明において 好ましく用いることができる。またこれらの薄膜形成性ガスを 2種以上を同時に昆 合して使用することができる。
本発明において、放電空間に供給するガスには、放電ガス、薄膜形成性ガスの据 に、薄膜形成の反応を促進する添加ガスを混合してもよい。 添加ガスとしては、 酸 素、 オゾン、 過酸化水素、 二酸化炭素、 一酸化炭素、 水素、 アンモニア等を挙げる ことができるが、酸素、一酸素化炭素及び水素が好ましく、 これらから選択される 成分を混合させるのが好ましい。 その含有量はガス全量に対して 0. 01〜5 積%含有させることが好ましく、 それによつて反応促進され、且つ、緻密で良質な 薄膜を形成することができる。
本発明において、 薄膜形成性ガスに使用する有機金属化合物、 ハロゲン化金属、 金属水素化合物の金属として、 L i、 B e、 B、 Na、 Mg、 A l、 S i、 K、 C a、 S c、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 Cu、 Zn、 Ga、 Ge、 Rb、 S r、 Y、 Z r、 Nb、 Mo、 I n、 I r、 S n、 S b、 C s、 B a、 La、 H f 、 Ta、 W、 T l、 B i、 C e、 P r、 Nd、 Pm、 Eu、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Yb、 L u等を挙げることができる。本発明の薄膜形成方法で、 上記のような有機金属化合物、ハロゲン金属化合物、金属水素化合物等の金属化合 物を放電ガスと共に使用することにより様々な無機薄膜を得ることができる。本狢 明の無機薄膜の例を以下に示す力 本発明はこれに限られるものではない。例えば S i、 A l、 I n、 S n、 Zn、 T i、 Cu、 C e、 Ta、 Z r、 Nb等の 1種以 上を含む酸ィヒ物もしくは窒化物もしくは酸ィ匕窒化物などを用いることができる。 また、 薄膜には、 上記金属化合物以外に、 炭素化合物、 窒素化合物、 水素化合物 等の不純物が含有されてもよい。
本発明の無機膜には有機無機ハイプリッド膜を用いることもできる。有機無機ハ イブリッド膜は、薄膜形成性ガスとして前記の有機金属化合物、またはハロゲン金 属化合物、または金属水素化合物とプラズマ重合可能な有機物の混合ガスを用レ、る ことで容易に形成できる。 プラズマ重合可能な有機物としては、炭化水素、 ビ ル 化合物、含ハロゲン化合物、含窒素化合物を挙げることができる。炭化水素として は、例えば、ェタン、エチレン、 メタン、 アセチレン、 シクロへキサン、ベンゼン、 キシレン、 フエ二ノレアセチレン、 ナフタレン、 プロピレン、 カンフォー、 メン卜一 ノレ、 トルエン、 イソブチレン等を挙げることができる。 ビュル化合物としては、 例 えば、 ァクリル酸、 メチルアタリレート、 ェチルァクリレート、 メチルメタクリレ ート、 ァリノレメタタリレート、 アクリルアミ ド、 スチレン、 α—メチルスチレン、 ビュルピリジン、酢酸ビュル、 ビュルメチルエーテル等を挙げることができる。 含 ハロゲン化合物としては、 四フッ化メタン、 四フッ化工チレン、 六フッ化プロピレ ン、 フロロアルキルメタクリレ一ト等を挙げることができる。含窒素化合物として は、 例えば、 ピリジン、 ァリルァミン、 プチルァミン、 ァクリロ二トリル、 ァセト 二トリル、 ベンゾニトリル、 メタタリロニトリル、 ァミノベンゼン等を挙げること ができる。有機無機ハイプリッドにおいては有機成分が多くなるとバリア膜の 軟 性が増し、曲げによるクラックの発生は改良されるがバリァ性能が劣化するので膜 の炭素含有率 (質量%) として 3 0 %以下が好ましい。 .
無機層の厚みに関しても特に限定しないが、厚すぎると曲げ応力によるクランク の恐れがあり、薄すぎると膜が島状に分布するため、いずれも水蒸気パリア性 悪 くなる傾向がある。上記のことより、それぞれの無機層の厚みは 5 η π!〜 1 0 Ο 0 n mの範囲が好ましく、 さらに好ましくは、 1 O n m〜l 0 O O n mであり、 最も 好ましくは、 1 0 n m〜2 0 0 n mである。 また、 2層以上の場合の無機層は备々 が同じ組成でも別の組成でも良く制限はない。ガスバリァ性と高透明性を両立させ るには無機層として珪素酸ィ匕物や珪素酸化窒化物を使うのが好ましく、最も好まし くは、 珪素酸化窒化物である。 珪素酸ィヒ物は S i Oxと表記され、 たとえば、 無機 物層として S i Oxを用いる場合、良好なガスパリア性と高い光線透過率を両立さ せるためには、 1. 6く Xく 1. 9であることが望ましレ、。 珪素酸化窒化物は S i OxNyと表記されるが、 この Xと yの比率は密着性向上を重視する場合、酸素リ ツチの膜とし、 1く x< 2、 0く yく 1が好ましく、 ガスバリア性向上を重視する 場合、 窒素リッチの膜とし、 0< x< 0. 8、 0. 8く yく 1. 3が好ましい。 本発明において、プラズマ放電処理は、大気圧もしくはその近傍の圧力下で行わ れる力 大気圧もしくはその近傍の圧力とは 20 k P a〜l 1 O k P a程度であり、 本発明に記載の良好な効果を得るためには、 9 3 k P a〜1 04 k P aが好ましい。 本発明の薄膜形成方法において、対向電極間 (放電空間) に供給するガスは、 少 なくとも、電界により励起する放電ガスと、そのエネルギーを受け取ってプラズマ 状態あるいは励起状態になり薄膜を形成する薄膜形成ガスを含んでいる。しかしな がら、 上記の薄膜形成方法では、 ヘリウムやアルゴン等の希ガスの放電ガスでは、 薄膜を形成する際の生産コストが放電ガスのコストに依存するところが多く、また 環境的な見地からも代替の放電ガスの使用を本発明者らは検討していた。その代替 の放電ガスとして、 空気、 酸素、 窒素、 二酸化炭素、 水素等を検討した結果、 これ らのガスであっても同様に高密度プラズマを'発生できる条件を求め、且つ薄膜形成 性に優れ、形成した薄膜が緻密且つ均一となる条件及び方法を検討した結果、本発 明に至ったものである。
本発明における放電条件は、放電空間に、前記第 1の高周波電界と第 2の高周波 電界とを重畳し、 前記第 1の高周波電界の周波数 ω 1より前記第 2の高周波電界 の周波数 ω 2が高く、 且つ、 前記第 1の高周波電界の強さ Vい 前記第 2の高周波 電界の強さ v 2および放電開始電界の強さ I Vとの関係が、
V x≥ I v > v 2
または V 1〉 I V≥V 2 を満广こし、
前記第 2の高周波電界の出力密度力 S、 l WZ c m2以上である。 高周波とは、 少な くとも 0 . 5 k H zの周波数を有するものを言う。
重畳する高周波電界が、 ともにサイン波である場合、第 1の高周波電界の周波数 ω 1と該周波数 ω 1より高い第 2の高周波電界の周波数 ω 2とを重ね合わせた成 分となり、 その波形は周波数 ω 1のサイン波上に、 それより高い周波数 ω 2のサ イン波が重なった鋸歯状の波形と る。本発明において、放電開始電界の強さとは、 実際の薄膜形成方法に使用される ¾^電空間 (電極の構成など) および反応条件 (ガ ス条件など) において放電を起こすことのできる最低電界強度のことを指す。放電 開始電界強度は、放電空間に供給されるガス種や電極の誘電体種または電極間 巨離 などによって多少変動するが、同じ放電空間においては、放電ガスの放電開始電界 強度に支配される。上記で述べたような高周波電界を放電空間に印加することによ つて、薄膜形成可能な放電を起こし、高品位な薄膜形成に必要な高密度プラズマを 発生することができると推定される。
ここで重要なのは、このような高周波電界が対向する電極に印加され、すな ち、 同じ放電空間に印加されることで ¾ る。 特開平 1 1一 1 6 6 9 6号公報のよう に、 印加電極を 2つ併置し、離間した異なる放電空間それぞれに、異なる高周波電界を 印加する方法では、本発明の薄膜形威は達成できない。上記でサイン波等の連続波 の重畳について説明したが、 これに限られるものではなく、両方パルス波であって も、一方が連続波でもう一方がパルス波であってもかまわなレ、。 また、更に第 3の 電界を有していてもよい。 上記本発明の高周波電界を、同一放電空間に印加する具体的な方法としては、対 向電極を構成する第 1電極に周波数 ω 1であって電界強度 ェである第 1の高周 波電界を印加する第 1電源を接続し、第 2電極に周波数 ω 2であって電界強度 V 2 である第 2の高周波電界を印加する第 2電源を接続した大気圧プラズマ放電処理 装置を用いることである。上記の大気圧プラズマ放電処理装置には、対向電極間に、 放電ガスと薄膜形成ガスとを供給するガス供給手段を備える。更に、電極の温度を 制御する電極温度制御手段を有することが好ましい。
また、第 1電極、第 1電源またはそれらの間の何れかには第 1フィルタを、 また 第 2電極、第 2電源またはそれらの間の何れかには第 2フィルタを接続することが 好ましく、第 1フィルタは第 1電源から第 1電極への第 1の高周波電界の電流を通 過しやすくし、第 2の高周波電界の電流をアースして、第 2電¾1から第 1電¾§への 第 2の高周波電界の電流を通過しにくくする。 また、第 2フィルタはその逆で、 第 2電源から第 2電極への第 2の高周波電界の電流を通過しやすくし、第 1の高周波 電界の電流をアースして、第 1電源から第 2電源への第 1の高周波電界の電流を通 過しにくくする機能が備わっているものを使用する。 ここで、 通過しにくレ、とは、 好ましくは、電流の 2 0 %以下、 より好ましくは 1 0 %以下し力通さないことをい う。逆に通過しゃす!/、とは、 好ましくは電流の 8 0 %以上、 より好ましくは 9 0 % 以上を通すことをいう。更に、本発明の大気圧プラズマ放電処理装置の第 1電¾ ^ま、 第 2電源より高い高周波電界強度を印加できる能力を有していることが好ましい。 ここで、本発明でいう高周波電界強度 (印加電界強度) と放電開始電界強度は、 下 記の方法で測定されたものをいう。
高周波電界強度 及び V 2 (単位: k V/mm) の測定方法: 各電極部に高 周波電圧プローブ (P 6 0 1 5 A) を設置し、該高周波電圧プローブの出力信号を オシロスコープ (T e k t r o n i x社製、 TD S 3012 B) に接続し、 電界強 度を測定する。
放電開始電界強度 I V (単位: k V/mm) の測定方法: 電極間に放電ガスを 供給し、 この電極間の電界強度を増大させていき、放電が始まる電界強度を放電開 始電界強度 I Vと定義する。 測定器は上記高周波電界強度測定と同じである。 なお、上記測定に使用する高周波電圧プローブとオシロスコープの位置関係につ いては、 後述の第 1図に示してある。
本発明で規定する放電条件をとることにより、例え窒素ガスのように高い放電開 始電界強度を要する放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を 維持でき、高性能な薄膜形成を行うことができる。上記の測定により放電ガスを窒 素ガスとした場合、 その放電開始電界強度 I V (1/2 vp-p) は 3. 7 kv mm程度であり、 従って、 上記の関係において、 第 1の高周波電界強度を、 ≥ 3. 7 k V/mmとして印加することによつて窒素ガスを励起し、プラズマ状態に することができる。 ここで、第 1電源の周波数としては、 200 kHz以下が好ま しく用いることができる。下限は 1 kHz程度が望ましレ、。またこの電界波形と し ては、 連続波でもパルス波でもよい。 一方、 第 2電源の周波数としては、 800 k Hz以上が好ましく用いられる。 この第 2電源の周波数が高い程、プラズマ密度が 高くなり、緻密で良質な薄膜が得られる。 上限は 200MHz程度が望ましい。 こ のような 2つの電源から高周波電界を印加することは、第 1の高周波電界によつて 高レ、放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また第 2の高周波電界の高い周波数および高い出力密度によりプラズマ密度を高くして 緻密で良質な薄膜を形成することが本発明の重要な点である。 また、第 1の高周波 電界の出力密度を高くすることで、放電の均一性を維持したまま、第 2の高周波電 界の出力密度を向上させることができる。 これにより、更なる均一高密度プラズマ が生成でき、 更なる製膜速度の向上と、 膜質の向上が両立できる。
本発明に用いられる大気圧プラズマ放電処理装置において、前記第 1フィルタは、 第 1電源から第 1電極への第 1の高周波電界の電流を通過しやすくし、第 2の高周 波電界の電流をアースして、第 2電源から第 1電源への第 2の高周波電界の電流を 通過しにくくする。 また、 第 2フィルタはその逆で、 第 2電源から第 2電極への第 2の高周波電界の電流を通過しやすくし、 第 1の高周波電界の電流をアースして、 第 1電源から第 2電源への第 1の高周波電界の電流を通過しにくくする。本発明 4こ おいて、 力かる性質のあるフィルタであれば制限無く使用できる。例えば、第 1フ ィルタとしては、 第 2電源の周波数に応じて数 1 0 p F〜数万 p Fのコンデンサ、 もしくは数 Ai H程度のコイルを用いることができる。 第 2フィルタとしては、 第 1電源の周波数に応じて 1 0 H以上のコイルを用レ、、これらのコイルまたはコン デンサを介してアース接地することでフィルタとして使用できる。
本発明に用いられる大気圧プラズマ放電処理装置は、上述のように、対向電極の 間で放電させ、前記対向電極間に導入したガスをプラズマ状態とし、前記対向電極 間に静置あるいは電極間を移送される基材を該プラズマ状態のガスに晒すことに よって、該基材の上に薄膜を形成させるものである。 また他の方式として、 大気圧 プラズマ放電処理装置は、上記同様の対向電極間で放電させ、該対向電極間に導入 したガスを励起しまたはプラズマ状態とし、該対向電極外にジエツト状に励起また はプラズマ状態のガスを吹き出し、該対向電極の近傍にある基材(静置していても 移送されていてもよい)を晒すことによって該基材の上に薄膜を形成させるジエツ ト方式の装置がある。
第 1図は、本発明に有用なジヱット方式の大気圧プラズマ放電処理装置の一例を 示した概略図である。 ジヱット方式の大気圧プラズマ放電処理装置は、プラズマ放 電処理装置、二つの電源を有する電界印加手段の他に、第 1図では図示してない(後 述の第 2図に図示してある) 力 ガス供給手段、電極温度調節手段を有している装 置である。 プラズマ放電処理装置 1 0は、第 1電極 1 1と第 2電極 1 2から構成さ れている対向電極を有しており、該対向電極間に、第 1電極 1 1からは第 1電源 2 1からの周波数 ω 1、 電界強度 電流 I iの第 1の高周波電界が印加され、 ま た第 2電極 1 2からは第 2電源 2 2からの周波数 ω 2、 電界強度 V 2、 電流 1 2の 第 2の高周波電界が印加されるようになっている。第 1電源 2 1は第 2電?原 2 2よ り高い高周波電界強度 (V 1 > V 2) を印加でき、 また第 1電源 2 1の第 1の周波 数 ω 1は第 2電源 2 2の第 2の周波数 ω 2より低い周波数を印加できる。 第 1電 極 1 1と第 1電源 2 1との間には、第 1フィルタ 2 3が設置されており、第 1電?原 2 1から第 1電極 1 1への電流を通過しやすくし、第 2電源 2 2からの電流をァー スして、第 2電源 2 2から第 1電源 2 1への電流が通過しにくくなるように設計さ れている。 また、第 2電極 1 2と第 2電源 2 2との間には、第 2フィルター 2 設置されており、第 2電源 2 2から第 2電極への電流を通過しやすくし、第 1電?原 2 1からの電流をアースして、第 1電?原 2 1から第 2電源への電流を通過しにくく するように設計されている。第 1電極 1 1と第 2電極 1 2との対向電極間 (放電空 間) 1 3に、後述の第 2図に図示してあるようなガス供給手段からガス Gを導入し、 第 1電極 1 1と第 2電極 1 2から高周波電界を印加して放電を発生させ、ガス Gを プラズマ状態にしながら対向電極の下側(紙面下側)にジエツト状に吹き出させて、 対向電極下面と基材 Fとで作る処理空間をプラズマ状態のガス G° で満たし、図示 してない基材の元卷き (アンワインダー) から卷きほぐされて搬送して来るか、 あ るいは前工程から搬送して来る基材 Fの上に、処理位置 1 4付近で薄膜を形成させ る。薄膜形成中、後述の第 2図に図示してあるよう 電極温度調節手段から媒体が 配管を通つて電極を加熱または冷却する。ブラズマ 電処理の際の基材の温度によ つては、得られる薄膜の物性や組成等は変化するこ とがあり、 これに対して適宜制 御することが望ましい。 温度調節の媒体としては、蒸留水、 油等の絶縁性材料が好 ましく用いられる。 プラズマ放電処理の際、幅手方向あるいは長手方向での基材の 温度ムラができるだけ生じないように電極の内部の温度を均等に調節することが 望まれる。 また、 第 1図に前述の高周波電界強度 加電界強度) と放電開始電界 強度の測定に使用する測定器を示した。 2 5及び 2 6は高周波電圧プローブであり、 2 7及ぴ 2 8はオシロスコープである。ジエツト方式の大気圧プラズマ放電処理装 置を複数基接して直列に並べて同時に同じブラズマ状態のガスを放電させること ができるので、何回も処理され高速で処理すること もできる。 また各装置が異なつ たプラズマ状態のガスをジヱット噴射すれば、異なった層の積層薄膜を形成するこ ともできる。 .
第 2図は本発明に有用な対向電極間で基材を処通する方式の大気圧プラズマ放 電処理装置の一例を示す概略図である。 本発明の: ^気圧プラズマ放電処理装置は、 少なくとも、 プラズマ放電処理装置 3 0、 二つの を有する電界印加手段 4 0、 ガス供給手段 5 0、 電極温度調節手段 6◦を有して 1/、る装置である。 第 2図は、 口 ール回転電極 (第 1電極) 3 5と角筒型固定電極群 (第 2電極) 3 6との対向電極 間(放電空間) 3 2で、基材 Fをプラズマ放電処理して薄膜を形成するものである。 ロール回転電極 (第 1電極) 3 5と角筒型固定電極群 (第 2電極) 3 6との間の放 電空間 (対向電極間) 3 2に、 ロール回転電極 (第ュ電極) 3 5には第 1電源 4 1 から周波数 ω 1、 電界強度 Vい 電流 Iェの第 1の高周波電界を、 また角筒型固定 電極群 (第 2電極) 3 6には第 2電源 4 2から周波数 ω 2、 電界強度 V 2、 電流 I 2の第 2の高周波電界をかけるようになつている。 ロール回転電極 (第 1電極) 3 5と第 1電源 4 1との間には、第 1フィルタ 43が設置されており、第 1フィルタ 43は第 1電源 4 1から第 1電極への電流を通過しやすくし、第 2電源 42からの 電流をアースして、第 2電?原 42から第 1電源への電流を通過しにくくするように 設計されている。 また、 角筒型固定電極群 (第 2電極) 36と第 2電源 42との間 には、第 2フィルタ 44が設置されており、 第 2フィルター 44は、第 2電源 42 から第 2電極への電流を通過しやすくし、 第 1電源 4 1からの電流をアースして、 第 1電源 4 1から第 2電源への電流を通過しにくくするように設計されている。な お、本発明においては、 ロール回転電極 3 5を第 2電極、 また角筒型固定電極群 3 6を第 1電極としてもよい。何れにしろ第 1電極には第 1電源力 また第 2電極に は第 2電源が接続される。 第 1電源は第 2電源より高い高周波電界強度 (V1〉V 2) を印加することが好ましレ、。 また、 周波数は ω 1く ω 2となる能力を有してい る。
また、 電流は Iェ< I 2となることが好ましい。 第 1の高周波電界の電流 I iは、 好ましくは 0. 3mA/cm2〜20mAZcm2、 さらに好ましくは 1. OmA ダ。]112〜20111 / ^112でぁる。 また、 第 2の高周波電界の電流 I 2は、 好まし くは 1 OmA/cm2〜l 00 mA/ cm2, さらに好ましくは 2 OmA/c m2~
1 0 OmA/cm2である。
ガス供給手段 5 0のガス発生装置 5 1で発生させたガス Gは、流量を制御して給 気口 5 2よりプラズマ放電処理容器 3 1内に導入する。基材 Fを、図示されていな ぃ元卷きから巻きほぐして搬送されて来るか、 または前工程から搬送されて来て、 ガイドローノレ 64を経てニップロール 6 5で基材に同伴されて来る空気等を遮断 し、ロール回転電極 3 5に接触したまま卷き回しながら角筒型固定電極群 3 6との 間に移 し、 ロール回転電極 (第 1電極) 3 5と角筒型固定電極群 (第 2電極) 3 6との両方から電界をかけ、対向電極間 (放電空間) 3 2で放電プラズマを発生さ せる。基材 Fは口ール回転電極 3 5に接触したまま卷き回されながらプラズマ状態 のガスにより薄膜を形成する。基材 Fは、 ニップロール 6 6、 ガイドローノレ 6 7を 経て、 図示してない巻き取り機で巻き取る力 次工程に移送する。 放電処理済みの 処理排ガス GZ は排気口 5 3より排出する。薄膜形成中、 ロール回転電極(第 1電 極) 3 5及ぴ角筒型固定電極群 (第 2電極) 3 6を加熱または冷却するために、 電 極温度調節手段 6 0で温度を調節した媒体を、送液ポンプ Pで配管 6 1を経て両電 極に送り、電極内側から温度を調節する。 なお、 6 8及び 6 9はプラズマ放電処理 容器 3 1と外界とを仕切る仕切板である。
第 3図は、第 2図に示した口ール回転電極の導電性の金属質母材とその上に被覆 されている誘電体の構造の一例を示す斜視図である。第 3図において、 ロール電極 3 5 aは導電性の金属質母材 3 5 Aとその上に誘電体 3 5 Bが被覆されたもので ある。 プラズマ放電処理中の電極表面温度を制御するため、 温度調節用の媒体 (水 もしくはシリコンオイル等) が循環できる構造となっている。
第 4図は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の 構造の一例を示す斜視図である。 第 4図において、角筒型電極 3 6 aは、 導電性の 金属質母材 3 6 Aに対し、第 3図同様の誘電体 3 6 Bの被覆を有しており、該電極 の構造は金属質のパイプになっていて、それがジャケットとなり、放電中の温度調 節が行えるようになつている。 なお、角筒型固定電極の数は、上記ロール電極の円 周より大きな円周上に沿って複数本設置されていおり、該電極の放電面積は口ール 回転電極 3 5に対向している全角筒型固定電極面の面積の和で表される。第 4図に 示した角筒型電極 3 6 aは、 円筒型電極でもよいが、角筒型電極は円筒型電極に比 ベて、 放電範囲 (放電面積) を広げる効果があるので、本発明に好ましく用いられ る。第 3図及び第 4図において、 ロール電極 3 5 a及び角筒型電極 3 6 aは、それ ぞれ導電性の金属質母材 3 5 A及ぴ 3 6 Aの上に誘電体 3 5 B及び 3 6 Bとして のセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。 セラミックス誘電体は片肉で l mm程度被覆あればよい。溶射に用いるセラミック ス材としては、 アルミナ '窒化珪素等が好ましく用いられるが、 この中でもアルミ ナが加工し易いので、 特に好ましく用いられる。 また、誘電体層が、 ライニングに より無機材料を設けたライニング処理誘電体であってもよい。
導電性の金属質母材 3 5 A及び 3 6 Aとしては、 チタン金属またはチタン合金、 銀、 白金、 ステンレススティール、 アルミニウム、 鉄等の金属等や、 鉄とセラミッ クスとの複合材料またはアルミニウムとセラミックスとの複合材料を挙げること ができるが、 後述の理由からはチタン金属またはチタン合金が特に好ましい。
対向する第 1電極および第 2電極の電極間距離は、電極の一方に誘電体を設けた 場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離のこ とを言う。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離の ことを言う。 電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加電界 強度の大きさ、プラズマを利用する目的等を考慮して決定される力 いずれの場合 も均一な放電を行う観点から 0 . 1〜2 O mmが好ましく、 特に好ましくは 0 . 5 〜 2 mmでめる。
本発明に有用な導電性の金属質母材及び誘電体についての詳細については後述 する。 プラズマ放電処理容器 3 1はパイレックス (R) ガラス製の処理容器等が好 ましく用いられるが、 電極との絶縁がとれれば金属製を用レ、ることも可能である。 例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミ ド樹脂等を張り付けても良く、該金 .フレームにセラミックス溶射を行レ、絶縁性を とってもよい。 第 1図において、 平行した両電極の両側面 (基材面近くまで) を上 記のような材質の物で覆うことが好ましい。
本発明の大気圧プラズマ放電処理装置に設置する第 1電源(高周波電源) として は、
印加電源記号 メーカー 周波数 製品名
A 1 神鋼電機 3 kHz SPG3-4500
A 2 神鋼電機 5 kHz S PG5-4500
A3 春日電機 1 5 kHz AG 1 -023
A4 神鋼電機 5 0 kH z SPG50— 450 0
A 5 ハイデン研究所 10 0 kH z * PHF- 6 k
A6 パール工業 20 0 kH z CF-2000-2 00 k
A 7 パール工業 40 0 kH z CF- 2000-4 00 k 等の市販のものを挙げることができ、 何れも使用することができる。
また、 第 2電源 (高周波電源) としては、
加電源記号 メ一力一 周波数 製品名
B 1 ノ N— -ル工業 800 kH z CF— 2000- 800 k
B 2 パー -ル工業 2MH z CF— 2000- 2M
B 3 パー -ル工業 13. 56MH z CF— 5000- 1 3M
B 4 パー -ル工業 27MH z C F— 2000- 27M
B 5 パー -ル工業 15 OMH z CF- 2000- 1 50M 等の市販のものを挙げることができ、 何れも好ましく使用できる。
なお、 上記電源のうち、 *印はハイデン研究所インパルス高周波電源 (連続モー ドで 1 0 O'kH z)である。それ以外は連続サイン波のみ印; ¾P可能な高周波電¾¾で ある。本発明においては、 このような電界を印加して、均一で安定な放電状態を保 つことができる電極を大気圧プラズマ放電処理装置に採用することが好ましい。 本発明において、対向する電極間に印加する電力は、第 2電極 (第 2の高周波電 界) に 1W/ cm2以上の電力 (出力密度) を供給し、 放電;^スを励起してプラズ マを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形咸する。 第 2電極に供 給する電力の上限値としては、 好ましくは 50WZcm2、 より好ましくは 20 W /cm2である。 下限値は、 好ましくは 1. 2\^ 。1112で¾る。 なお、 放電面積 (cm2) は、 電極において放電が起こる範囲の面積のことを指す。 また、 第 1電 極 (第 1の高周波電界) にも、 lWZcm2以上の電力 (出力密度) を供給するこ とにより、第 2の高周波電界の均一性を維持したまま、 出力密度を向上させること ができる。 これにより、更なる均一高密度プラズマを生成でき、 更なる製膜速度の 向上と膜質の向上が両立できる。 好ましくは 5W/cm2以上である。 第 1電極に 供給する電力の上限値は、 好まし'くは 5 OWZcm2である。 ここで高周波電界の 波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発 振モードと、パルスモードと呼ばれる ON/OFFを断続的こ行う断続発振モード 等があり、 そのどちらを採用してもよいが、少なくとも第 2電極側 (第 2の高周波 電界) は連続サイン波の方がより緻密で良質な膜が得られるので好ましレ、。 このよ うな大気圧プラズマによる薄膜形成法に使用する電極は、構 的にも、性能的にも 過酷な条件に耐えられるものでなければならない。 このよう ょ電極としては、金属 質母材上に誘電体を被覆したものであることが好ましい。
本発明に使用する誘電体被覆電極においては、様々な金属質母材と誘電体との間 に特性が合うものが好ましく、その一つの特性として、金属質母材と誘電体との線 熱膨張係数の差が 1 0 X 1 0一6 Z°C以下となる組み合わせのものである。 好まし くは 8 X 1 0— 6Z°C以下、 更に好ましくは 5 X 1 0一6 Z°C以下、 吏に好ましくは 2 X 1 0一6 /°C以下である。 なお、 線熱膨張係数とは、 周知の材料特有の物性値 である。線熱膨張係数の差が、 この範囲にある導電性の金属質母材と誘電体との組 み合わせとしては、
1 :金属質母材が純チタンまたはチタン合金で、 誘電体がセラミックス溶射被膜
2 :金属質母材が純チタンまたはチタン合金で、 誘電体がガラスライニング
3 :金属質母材がステンレススティールで、 誘電体がセラミックス溶射被膜
4 :金属質母材がステンレススティールで、 誘電体がガラスライニング
5 :金属質母材がセラミックスおよぴ鉄の複合材料で、誘電体がセラミックス溶射 被膜
6 :金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライユング
7 :金属質母材がセラミツタスおょぴアルミの複合材料で、誘電体がセラミックス 溶射皮膜 ,
8 :金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライ二 ング等がある。線熱膨張係数の差という観点では、上記 1項または 2項および 5〜 8項が好ましく、 特に 1項が好ましい。 本発明において、 金属質母材は、 上記の特 性からはチタンまたはチタン合金が特に有用である。金属質母材をチタンまたはチ タン合金とすることにより、誘電体を上記とすることにより、使用中の電極の劣化、 特にひぴ割れ、 剥がれ、 脱落等がなく、 過酷な条件での長時間の使用に耐えること ができる。本発明に有用な電極の金属質母材は、 チタンを 7 0質量%以上含有する チタン合金またはチタン金属である。本発明において、 チタン合金またはチタン金 属中のチタンの含有量は、 7 0質量%以上であれば、 問題なく使用できる力 S、 好ま しくは 8 0質量。 /0以上のチタンを含有しているものが好ましい。本発明に有用なチ タン合金またはチタン金属は、 工業用純チタン、耐食性チタン、高力チタン等とし て一般に使用されているものを用いることができる。工業用純チタンとしては、 T I A、 T I B、 T I C、 . T I D等を挙げることができ、 何れも鉄原子、 炭素原子、 窒素原子、酸素原子、水素原子等を極僅力含有しているもので、 チタンの含有量と しては、 9 9質量%以上を有している。 耐食性チタン合金としては、 T 1 5 P Bを 好ましく用いることができ、上記含有原子の他に鉛を含有しており、チタン含有量 としては、 9 8質量%以上である。 また、 チタン合金としては、鉛を除く上記の原 子の他に、 アルミニウムを含有し、 その他バナジウムや錫を含有している T 6 4、 T 3 2 5、 T 5 2 5、 T A 3等を好ましく用いることができ、 これらのチタン含有 量としては、 8 5質量%以上を含有しているものである。 これらのチタン合金また はチタン金属はステンレススティール、例えば A I S I 3 1 6に比べて、熱膨張係 数が 1 Z 2程度小さく、金属質母材としてチタン合金またはチタン金属の上に施さ れた後述の誘電体との組み合わせがよく、高温、長時間での使用に耐えることがで きる。
一方、誘電体の求められる特性としては、 具体的には、比誘電率が 6〜4 5の無 機化合物であることが好ましく、 また、 このような誘電体としては、 アルミナ、 窒 化珪素等のセラミックス、 あるいは、 ケィ酸塩系ガラス、 ホウ酸塩系ガラス等のガ ラスライニング材等がある。 この中では、後述のセラミックスを溶射したものゃガ ラスライニングにより設けたものが好ましい。特にアルミナを溶射して設けた誘電 体が好ましい。
または、上述のような大電力に耐える仕様の一つとして、誘電体の空隙率が 1 0 体積%以下、好ましくは 8体積%以下であることで、好ましくは 0体積%を越えて 5体積%以下である。 なお、誘電体の空隙率は、 B E T吸着法や水銀ポロシメータ 一により測定することができる。後述の実施例においては、島津製作所製の水銀ポ 口シメ一ターにより金属質母材に被覆された誘電体の破片を用レ、、空隙率を測定す る。誘電体が、 低い空隙率を有することにより、 高耐久性が達成される。' このよう な空隙を有しつつも空隙率が低い誘電体としては、後述の大気プラズマ溶射法等に よる高密度、高密着のセラミックス溶射被膜等を挙げることができる。更に空隙率 を下げるためには、 封孔処理を行うことが好ましい。
上記、大気ブラズマ溶射法は、 セラミックス等の微粉末、 ワイヤ等をプラズマ熱 源中に投 し、溶融または半溶融状態の微粒子として被覆対象の金属質母材に吹き 付け、 皮膜を形成させる技術である。 プラズマ熱源とは、 分子ガスを高温にし、 原 子に解離させ、更にエネルギーを与えて電子を放出させた高温のプラズマガスであ る。 このプラズマガスの噴射速度は大きく、従来のアーク溶射やフレーム溶射に比 ベて、溶射材料が高速で金属質母材に衝突するため、密着強度が高く、 高密度な被 膜を得ることができる。詳しくは、特開 2 0 0 0 _ 3 0 1 6 5 5号に記載の高温被 曝部材に熱遮蔽皮膜を形成する溶射方法を参照することができる。この方法により、 上記のような被覆する誘電体 (セラミック溶射膜) の空隙率にすることができる。 また、 大電力に耐える別の好ましい仕様としては、誘電体の厚みが 0 . 5〜2 m mであることである。 この膜厚変動は、 5 %以下であることが望ましく、好ましく は 3 %以下、 更に好ましくは 1 %以下である。
誘電体の空隙率をより低減させるためには、上記のようにセラミックス等の溶射 膜に、更に、無機化合物で封孔処理を行うことが好ましい。 前記無機化合物として は、金属酸化物が好ましく、 この中では特に酸化ケィ素 (S i O x ) を主成分とし て含有するものが好ましい。 封孔処理の無機化合物は、ゾルゲル反応により硬化して形成したものであること が好ましい。封孔処理の無機化合物が金属酸化物を主成分とするものである場合に は、金属アルコキシド等を封孔液として前記セラミック溶射膜上に塗布し、 ゾルゲ ル反応により硬化する。無機化合物がシリカを主成分とするものの場合には、アル コキシシランを封孔液として用いることが好ましい。ここでゾルゲル反応の促進に は、エネルギー処理を用いることが好ましレ、。エネルギー処理としては、熱硬化(好 ましくは 2 0 0 °C以下) や、 紫外線照射などがある。 更に封孔処理の仕方として、 封孔液を希釈し、 コーティングと硬化を逐次で数回繰り返すと、 よりいつそう無機 質化が向上し、劣化の無い緻密な電極ができる。本発明に係る誘電体被覆電極の金 属アルコキシド等を封孔液として、セラミックス溶射膜にコーティングした後、 ゾ ルゲル反応で硬化する封孔処理を行う場合、硬化した後の金属酸化物の含有量は 6 0モル%以上であることが好ましい。封孔液の金属アルコキシドとしてアルコキシ シランを用いた場合には、硬化後の S i O x ( xは 2以下)含有量が 6 0モル%以 上であることが好ましい。硬化後の S i 〇 x含有量は、 X P S (X線光電子分光法) により誘電体層の断層を分析することにより測定する。
本発明の薄膜形成方法に係る電極においては、電極の少なくとも基材と接する側 の J I S B 0 6 0 1で規定される表面粗さの最大高さ R m a xが 1 0 m以 下になるように調整することが、 本発明に記載の効果を得る観点から好ましいが、 更に好ましくは、表面粗さの最大値が 8 m以下であり、 特に好ましくは、 7 μ ηι 以下に調整することである。このように誘電体被覆電極の誘電体表面を研磨仕上げ する等の方法により、誘電体の厚み及び電極間のギヤップを一定に保つことができ、 放電状態を安定化できること、更に熱収縮差や残留応力による歪やひび割れを無く し、 且つ、 高精度で、耐久性を大きく向上させることができる。誘電体表面の研磨 仕上げは、 少なくとも基材と接する側の誘電体において行われることが好ましい。 更に J I S B 0 6 0 1で規定される中心線平均表面粗さ R aは 0 . 5 μ m以下 が好ましく、 更に好ましくは 0 . Ι μ ηι以下である。
本発明に使用する誘電体被覆電極において、大電力に耐える他の好ましい仕様と しては、耐熱温度が 1 0 0 °C以上であることである。更に好ましくは 1 2 0 °C以上、 特に好ましくは 1 5 0 °C以上である。 また上限は 5 0 0 °Cである。 なお、耐熱温度 とは、大気圧プラズマ処理で用いられる電圧において絶縁破壊が発生せず、正常に 放電できる状態において耐えられる最も高い温度のことを指す。このような耐熱温 度は、上記のセラミックス溶射や、泡混入量の異なる層状のガラスライニングで設 けた誘電体を適用したり、上記金属質母材と誘電体の線熱膨張係数の差の範囲内の 材料を適宜選択する手段を適宜組み合わせることによつて達成可能である。
本発明で用いられる「有機層」とは、膜中の炭素の含有率が原子数濃度として 5 % を超えている層であり、好ましくは 1 0 %以上、更に好ましくは 1 5 %以上の層で ある。膜中の炭素原子濃度については、 X P S表面分析装置により測定することが できる。 有機膜は、 ガスパリア膜付きのフィルムに反りが無く、 曲げてもそのパリ ァ性能を劣化させず、且つ良好な無機層の密着性が得られるものであれば良く、例 えば、ァクリロイル基またはメタタリロイル基を有するモノマーを架橋させて得ら れる架橋反応による体積収縮率が 1 0 %より小さい高分子を主成分とするものを 用いることが好ましい。有機層の架橋反応による体積収縮率が 1 0 %を越える場合 は、架橋反応時の体積変化による収縮応力が大きく発生し、 フィルムの反りや付着 界面での応力集中による密着不良やバリア層のクラック等の構造欠陥が発生する 恐れがある。また、無機層だけではなくしきれない層構造の欠陥部分を有機層で埋 め、ガスパリア性を高めることも可能である。 ァクリロイル基またはメタタリロイ ル基を有するモノマーを架橋させて得られる架橋反応による体積収縮率が 1 0 % より小さい高分子を主成分とする有機層としては、特に限定しないが、エポキシ(メ タ) アタリレート、 ウレタン (メタ) アタリレート、 イソシァヌル酸 (メタ) ァク リ レート、 ペンタエリスリ トール (メタ) ァクリレート、 トリメチローノレプロパン (メタ) ァクリレート、 エチレンダリコール (メタ) ァクリレート、 ポリエステル (メタ) ァクリレートなどのうち、 2官能以上のァクリロイル基またはメタクリ口 ィル基を有するモノマーを架橋させて得られる高分子を主成分とすることが好ま しい。これらの 2官能以上のァクリロイル基またはメタクリロイル基を有するモノ マーは 2種類以上を混合して用いても、 また 1官能の (メタ) アタリレートを混合 して用いてもよい。 また、 ディスプレイ用途に要求される耐熱性、 耐溶剤性の観点 から、 特に架橋度が高く、 ガラス転移温度が 2 0 0 °C以上である、 イソシァヌル酸 ァクリレート、エポキシァクリレート、 ウレタンァクリレートを主成分とすること がさらに好ましレ、。 有機層厚みについても特に限定はしないが、 1 0 n m〜5 0 0 0 n mが好ましく、 さらに好ましくは、 1 0〜2 0 0 0 n mであり、 最も好ましく は 1 0 n m〜l 0 0 0 n mである。有機層の厚みが薄すぎると、厚みの均一性を得 ることが困難となるため、無機層の構造欠陥を効率よく有機層で埋めることができ ずに、 パリア性の向上は見られない。 逆に有機層の厚みが厚すぎると、 曲げ等の外 力により有機層がクラックを発生し易くなるためバリァ性が低下してしまう不具 合が発生する。 本発明の有機を形成させるための方法としては、 塗布による方法、 真空成膜法、大気圧プラズマ C V D等を挙げることができる。形成方法に特に制限 はないが、 塗布による方法、 大気圧プラズマ C V D法が好ましい。 大気圧プラズマ C V Dは、薄膜形成性ガスとして前記のプラズマ重合可能な有機化合物を用いるこ とで容易に有機系プラズマ重合膜を形成できる。プラズマ重合可能な有機物として は、前述の有機無機ハイプリッド膜において、挙げられた炭化水素、ビニル化合物、 含ハロゲン化合物、含窒素化合物等を挙げることができる。 ビニルイヒ合物が好まし
V、。有機膜形成法に大気圧プラズマ C V Dを用いると有機膜と無機膜を大気圧下で ロールトゥロール方式で基材上に高速に連続成膜することが可能なので飛躍的に 生産性が上がる。本発明の有機物質モノマーの架橋方法に関しては何らその制限は ないが、電子線や紫外線等による架橋が、真空槽内に容易に取り付けられる点や架 橋反応による高分子量化が迅速である点で好ましい。
本発明の大気圧プラズマ C V D条件は緻密な無機膜を得ることができるので、基 材上に少なくとも 1層の有機層と少なくとも 1層の無機層があれば優れたガスバ リァ性が得られる。有機膜と無機膜の積層順は特に限定されないが、有機層と無為 層を交互に積層することが好ましい。積層数については特に限定はしないが、 3層 以上が好ましく、 更に好ましくは 5層以上、 最も好ましくは 6層以上である。 本発明に用いられる支持体について説明する。本発明に用いられる支持体として は、板状、 シート状またはフィルム状の平面形状のもの、 あるいはレンズその他成 形物等の立体形状のもの等の薄膜をその表面に形成できるものであれば特に限定 はない。支持体が静置状態でも移送状態でもプラズマ状態の混合ガスに晒され、均 一の薄膜が形成されるものであれば支持体の形態または材質には制限なレ、。形態的 には平面形状、立体形状でもよく、 平面形状のものとしては、 ガラス板、 樹脂フィ ノレム等を挙げることができる。 材質的には、 ガラス、 樹脂、 陶器、 金属、 非金属等 様々のものを使用できる。 具体的には、 ガラスとしては、 ガラス板やレンズ等、樹 脂としては、 榭脂レンズ、樹脂フィルム、 樹脂シート、樹脂板等を挙げることがで きる。樹脂フィルムは本発明に係る大気圧ブラズマ放電処理装置の電極間または電 極の近傍を連続的に移送させて無機膜を形成することができるので、スパッタリン グのような真空系のようなバッチ式でない、大量生産に向き、連続的な生産性の高 い生産方式として好適である。 ,
樹脂フィルム、 樹脂シート、 樹脂レンズ、 樹脂成形物等成形物の材質としては、 セノレローストリァセテ一ト、 セ /レロースジァセテ一ト、 セルロースァセテ一トプロ ピオネートまたはセルロースァセテ一トプチレートのようなセノレロースエステノレ、 ポリエチレンテレフタレートゃポリエチレンナフタレートのようなポリエステノレ、 ポリエチレンやポリプロピレンのようなポリオレフイン、 ポリ塩化ビニリデン、 ポ リ塩化ビニル、 ポリビュルアルコール、 エチレンビュルアルコールコポリマー、 シ ンジォタクティックポリスチレン、 ポリカーボネート、 ノルボルネン樹脂、 ポリメ チルペンテン、 ポリエーテルケトン、 ポリイミド、 ポリエーテノレスルフォン、 ポリ スルフォン、 ポリエーテルィミ ド、 ポリアミ ド、 フッ素樹脂、 ポリメチルアタリ レ ー ト、ァクリレートコポリマー等を挙げることができる。 これらの素材は単独であ るいは適宜混合されて使用することもできる。 中でもゼォネックスゃゼオノ了 (日 本ゼオン (株) 製) 、 非晶質シクロポリオレフイン樹脂フィルムの AR T O N (ジ エイエスアール (株)製) 、 ポリカーボネートフィルムのピュアエース (帝人 (株) 製)、セルローストリアセテートフィルムのコニカタック K C 4 U X、 K C 8 U X (コニ力 (株) 製) などの市販品を好ましく使用することができる。 また、 本発明 に用いられる支持体は、上記の記載に限定されない。 フィルム形状のものの膜厚と しては 1 0〜1 0 0 0 mが好ましく、 より好ましくは 4 0〜2 0 0 z mである。 本発明の透明ガスバリア性フィルムの水蒸気透過度としては、有機 E Lディスプ レイや高精彩力ラ一液晶ディスプレイ等の高度の水蒸気パリァ性を必要とする用 途に用いる場合、 J I S K 7 1 2 9 B法に従って測定した水蒸気透過度が、 1 g /m 2/ d a y以下であることが好ましく、 さらに好ましくは、 0 . l g Zm 2 /d a y未満である。特に、有機 ELディスプレイ用途の場合には、極わずかであ つても、成長するダークスポットが発生し、ディスプレイの表示寿命が極端に短く なる場合があるため、バリア層を多層化して更に水蒸気透過度を下げる必要があり、 2層以上の有機層無機層を交互に積層させることが、水蒸気バリア性および曲げに 対する耐性の両面から好ましい。
以下本発明の実施例について詳細に説明する力 本発明は、何ら下記実施例に限 定されるものではない。
実施例
〔電極の作製〕
第 2図の大気圧プラズマ放電処理装置において、誘電体で被覆した口ール電極及 ぴ同様に誘電体を被覆した複数の角筒型電極のセットを以下のように作製した。第 1電極となる口ール電極は、冷却水による冷却手段を有するチタン合金 T 64製ジ ャケットロール金属質母材に対して、大気プラズマ法により高密度、高密着性のァ ルミナ溶射膜を被覆し、 ロール径 Ι Ο Ο Οπιηιφ となるようにした。 その後、 .テ トラメトキシシランを酢酸ェチルで希釈した溶液を塗布乾燥後、紫外線照射により 硬化させ封孔処理を行った。 このようにして被覆した誘電体表面を研磨し、平滑に して、 Rma xが 5 μπιとなるようにカロェした。最終的な誘電体の空隙率はほぼ 0 体積%であった。 このときの誘電体層の S i Ox含有率は 75 mo 1 %、 また、最 終的な誘電体の膜厚は 1 mm (膜厚変動土 1%以内) 、誘電体の比誘電率は 10で あった。 更に導電性の金属質母材と誘電体の線熱膨張係数の差は 1. 7 X 10一6 /°Cで、 耐熱温度は 260°Cであった。
一方、第 2電極の角筒型電極は、 中空の角筒型のチタン合金 T 64に対し、上記 同様の誘電体を同条件にて被覆し、対向する角筒型固定電極群とした。 この角筒型 電極の誘電体については上記ロール電極のものと、誘電体表面の R ma x、誘電体 層の S i Ox含有率、また誘電体の膜厚と比誘電率、金属質母材と誘電体の線熱膨 張係数の差、 更に電極の耐熱温度は、第 1電極とほぼ同じ物性値に仕上がった。 こ の角筒型電極を口ール回転電極のまわりに、対向電極間隙を 1 mmとして 25本配 置した。 角筒型固定電極群の放電総面積は、 150 cm (幅手方向の長さ) X4 c m (搬送方向の長さ) X 25本 (電極の数) = 15000 cm2であった。 なお、 何れもフィルタ一は適切なものを設置した。 ' -
(透明ガスパリァ基材の作製)
支持体として、厚さ 100 imの ARTONフィルム (非晶質シクロポリオレフ イン樹脂フィルム、 J SR社製) を使用した。 下記の有機層塗布組成物を上記基材 上に塗布乾燥した後、 UV照射により、硬化させ、樹脂基板上に厚さ約 0. 5 μπι の有機層を作製した。
《有機層塗布組成物》
ジペンタエリスリ トールへキサァクリレート単量体 60質量部
ジペンタエリスリ トールへキサアタリレート 2量体 20質量部
ジペンタエリスリ トールへキサァクリレート 3量体以上の成分
20質量部
ジメトキシベンゾフエノン 4質量部
酢酸ェチル 50質量部
メチルェチルケトン 50質量部
イソプロピルアルコール 50質量部
次に、 第 2図に示した大気圧プラズマ放電処理装置を用いた。 プラズマ放電中、 第 1電極 (ロール回転電極) 及び第 2電極 (角筒型固定電極群) が 80°Cになるよ うに調節保温し、 ロール回転電極はドライブで回転させて薄膜形成を行った。以下 の条件で放電処理を行うことにより、 膜厚 1 0 0 n mの珪素酸化物膜を作製した。
《無機層混合ガス組成物》
放電ガス:窒素 9 8. 9体積0 /0
薄膜形成性ガス:テトラエトキシシラン 0. 1体積0 /0
(リンテック社製気化器にてアルゴンガスに混合して気化)
添加ガス:酸素ガス 1体積0 /0
《無機層成膜条件》
第 1電極側 電源種類 A 5
電界強度 S kVZmm
1 0 0 kH z
出力密度 1 W/c m2
第 2電極側 電源種類 B 3
0. 8 k V/mm
周波数 1 3. 5 6MH z
出力密度 3WZc m2
さらに、 同様にして、前記有機層塗布組成物を用いて有機層、 また前記無機層混 合ガス組成物を用いて同条件で無機層を積層し、樹脂基材 Z有機層 Z無機層/有機 層 /無機層の構成の透明バリア基材を得た。 膜厚は、 それぞれ約 0. 5 μχα/ΐ θ O nmZ約 0. 5 μ / 1 0 0 n mであった。 この基ネオの水蒸気透過度を J I S K 7 1 2 9 B法にて測定した結果、 0. 1 g/m2/d a y未満であった。 この フィルムを 3 0πιπιφ の棒に 1回卷きつけた後、 再度水蒸気透過度を J I S K 7 1 2 9 B法にて測定したが、水蒸気透過度の上昇は見られなかった。 また、 目 視による外観と光学顕微鏡によるガスバリア膜クラックの観察を行った結果、重大 な欠陥点は観察されなかった。ガスバリァ膜の密着性を J I S K 5400法によ り測定した結果、剥離は認められなかった。 この基材を有機 EL用ディスプレイ基 板として用い有機 EL素子を作製し、 80°C、 300時間保存後の 50倍の拡大写 真を撮影しダークスポットの発生を評価したところ、ダークスポットの発生は認め られなかった。以上のように支持体の上に少なくとも 1層の有機層と少なくとも 1 層の無機層とを有する基材の製造方法において、 前記無機層の少なくとも 1層が、 大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給 し、前記放電空間に高周波電界を印加することにより前 Ϊ ガスを励起し、基材を励 起した前記ガスに晒すことにより形成され、前記高周波電界が、第 1の高周波電界 および第 2の高周波電界を重畳したものであり、 前記 1の高周波電界の周波数 ω 1より前記第 2の高周波電界の周波数 ω 2が高く、 Ιϋ記第 1の高周波電界の強 さ 前記第 2の高周波電界の強さ V2および放電開台電界の強さ I Vとの関係 が、'
Vx≥ I V>V2
または V1> I V≥V2 を満たし、
前記第 2の高周波電界の出力密度が、 1WZ cm2以上であることを特徴とする基 材の製造方法を用いることにより優れたガスパリア基ネ を得られることが分かつ た。
比較例
無機膜の形成時の放電条件を以下の条件とした以外は、前記実施例と同様にして 樹脂基材 /有機層/無機層 Z有機層 Z無機層の構成の透明バリァ基材を得た。
《無機層条件》 第 1電極側 電源種類
電界強度 0 . 8 k V/mm
Figure imgf000039_0001
出力密度 3 W/ c m
第 2電極側 未使用
この基材の水蒸気透過度を J I S K 7 1 2 9 Β法にて測定した結果、 0 . 1 g /m V d a y未満であった。 このフイノレムを 3 0 mm の棒に 1回卷きつけた 後、再度水蒸気透過度を J I S K 7 1 2 9 B法にて測定したが、水蒸気透過度の 上昇は見られなかった。また、 目視による外観と光学顕微鏡によるバリア膜クラッ クの観察を行った結果、重大な欠陥点は観察されなかった。 し力 し、バリア膜の密 着性を J I S K 5 4 0 0法により測定した結果、面積割合で約 1割が、剥離され た。 有機 E L用ディスプレイ基板として用い有機 E L素子を作製し、 8 0 °C、 3 0 0時間保存後のダークスポットを 5 0倍の拡大写真を撮影し評価したところ、多数 のダークスポットの発生が観察された。 産業上の利用可能性
本発明は、高いガスバリア性をもつ透明フィルムであり、 曲げることで水蒸気パ リァ性が低下しない.という特性を持つものである。しかも、従来のフィルムに比べ、 数倍から数十倍の生産性で作製することが可能である。本発明のフィルムをたとえ ば表示用素子として適用すれば、軽くて割れないディスプレイを安価に提供できる。 また、薬品などの保存に適用すれば中身が見えて、落としても割れないような保存 容器を実現することも可能であり、 その工業的価値は極めて高い。

Claims

' 請求の範囲
1. 支持体の上に少なくとも 1層の有機層と少なくとも 1層の無機層とを有する 基材の製造方法において、前記無機層の少なくとも 1層を、大気圧もしくはその近 傍の圧力下、放電空間に _薄膜形成ガスを含有するガスを供給し、前記放電空間に高 周波電界を印加することにより前記ガスを励起し、励起した前記ガスに基材を晒す ことにより形成し、前記高周波電界が、第 1の高周波電界おょぴ第 ·2の高周波電界 を重畳したものであり、前記第 1の高周波電界の周波数 ωΐより前記第 2の高周波 電界の周波数 ω 2が高く、 前記第 1の高周波電界の強さ Vい前記第 2の高周波電 界の強さ V2および放電開始電界の強さ I Vとの関係が、
I V>V2
または > を満たし、
前記第 2の高周波電界の出力密度が、 1 WZ c m 2以上であることを特徴とする基 材の製造方法。
2. 前記放電空間が、 対向する第 1電極と第 2電極とで構成されることを特徴と する請求の範囲第 1項記載の基材の製造方法。
3. 前記第 2の高周波電界の出力密度が、 5 OW/ cm2以下であることを特徴 とする請求の範囲第 1項記載の基材の製造方法。
4. 前記第 2の高周波電界の出力密度が、 2 OW/ cm2以下である ことを特徴 とする請求の範囲第 3項記載の基材の製造方法。
5 . 前記第 1の高周波電界の出力密度が 1 WZ c m 2以上であることを特徴とす る請求の範囲第 1項記載の基材の製造方法。 '
6 . 前記第 1の高周波電界の出力密度が、 5 0 W/ c m 2以下である ことを特 ί敷 とする請求の範囲第 5項記載の基材の製造方法。
7 . 前記第 1の高周波電界および前記第 2の高周波電界がサイン波で あること を特徴とする請求の範囲第 1項記載の基材の製造方法。
8 . 前記第 1の高周波電界を前記第 1電極に印加し、 前記第 2の高周波電界を前 記第 2電極に印加することを特徴とする請求の範囲第 2項記載の基材の製造方法。
9 . 前記放電空間に供給されるガスが放電ガスを含み、 供給される全ガス量の 9 0〜9 9 . 9体積%が放電ガスであることを特徴とする請求の範囲第 1項記載の基 材の製造方法。
1 0 . 前記放電ガスが、 5 0〜 1 0 0体積%の窒素ガスを含有することを特徴と する請求の範囲第 9項記載の基材の製造方法。
1 1 . 前記放電ガスが、 5 0体積%未満の希ガスを含有することを特徴とする請 求の範囲第 1 0項記載の基材の製造方法。
1 2 . 前記薄膜形成ガスが、 有機金属化合物、 ハロゲン化金属、 金属水素化合物 から選ばれる少なくとも一つを含有することを特徴とする請求の範囲第 1項記載 の基材の製造方法。
1 3 . 前記有機金属化合物が、有機珪素化合物、有機チタン化合物、 有機錫化合 物、有機亜鉛化合物、有機インジウム化合物および有機アルミニウム化合物から選 ばれる少なくとも一つの化合物 を含有することを特徴とする請求の範囲第 1 2項 記載の基材の製造方法。
1 4 . 前記有機層と前記無機層が隣接して積層されたことを特徴とする請求の範 囲第 1項記載の基材の製造方法。
1 5 . 前記有機層と前記無機層が交互に積層されたことを特徴とする請求の範囲 第 1 4項記載の基材の製造方法。
1 6 . 請求の範囲第 1項〜第 1 5項の何れか 1項記載の基材の製造方法により製
' 造された基材。
PCT/JP2004/018323 2003-12-16 2004-12-02 透明でガスバリア性の高い基材及びその製造方法 WO2005059203A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516296A JP4821324B2 (ja) 2003-12-16 2004-12-02 透明でガスバリア性の高い基材及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-417705 2003-12-16
JP2003417705 2003-12-16

Publications (1)

Publication Number Publication Date
WO2005059203A1 true WO2005059203A1 (ja) 2005-06-30

Family

ID=34697076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018323 WO2005059203A1 (ja) 2003-12-16 2004-12-02 透明でガスバリア性の高い基材及びその製造方法

Country Status (2)

Country Link
JP (1) JP4821324B2 (ja)
WO (1) WO2005059203A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326387A (ja) * 1996-06-06 1997-12-16 Matsushita Electric Ind Co Ltd 薄膜形成方法及びその装置
JP2002043286A (ja) * 2000-07-19 2002-02-08 Tokyo Electron Ltd プラズマ処理装置
JP2003092200A (ja) * 2000-12-12 2003-03-28 Canon Inc 真空処理方法、真空処理装置、半導体装置の製造方法および半導体装置
JP2003105541A (ja) * 2001-09-28 2003-04-09 Konica Corp 膜の形成方法、基材、及び表示装置
JP2004068143A (ja) * 2002-06-10 2004-03-04 Konica Minolta Holdings Inc 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
JP2004084027A (ja) * 2002-08-28 2004-03-18 Konica Minolta Holdings Inc 機能体及びその形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326387A (ja) * 1996-06-06 1997-12-16 Matsushita Electric Ind Co Ltd 薄膜形成方法及びその装置
JP2002043286A (ja) * 2000-07-19 2002-02-08 Tokyo Electron Ltd プラズマ処理装置
JP2003092200A (ja) * 2000-12-12 2003-03-28 Canon Inc 真空処理方法、真空処理装置、半導体装置の製造方法および半導体装置
JP2003105541A (ja) * 2001-09-28 2003-04-09 Konica Corp 膜の形成方法、基材、及び表示装置
JP2004068143A (ja) * 2002-06-10 2004-03-04 Konica Minolta Holdings Inc 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
JP2004084027A (ja) * 2002-08-28 2004-03-18 Konica Minolta Holdings Inc 機能体及びその形成方法

Also Published As

Publication number Publication date
JP4821324B2 (ja) 2011-11-24
JPWO2005059203A1 (ja) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4433680B2 (ja) 薄膜形成方法
JP2010185144A (ja) 誘電体被覆電極及びそれを用いたプラズマ放電処理装置
JP5157169B2 (ja) ガスバリア積層体、有機エレクトロルミネッセンス素子及びガスバリア積層体の製造方法
JP4876918B2 (ja) 透明導電膜
WO2005007927A1 (ja) 薄膜製造方法および形成された薄膜を有する基材
WO2006067952A1 (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材、有機elデバイス
WO2005059202A1 (ja) 薄膜形成方法並びに該方法により薄膜が形成された基材
JP2007038445A (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材及び有機エレクトロルミネッセンスデバイス
JP2007113043A (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材とそれを用いた有機エレクトロルミネッセンスデバイス
JP2005272957A (ja) 表面処理方法及び該表面処理方法により表面処理された基材
JPWO2008047549A1 (ja) 透明導電膜基板及びこれに用いる酸化チタン系透明導電膜の形成方法
JP4899863B2 (ja) 薄膜形成装置及び薄膜形成方法
JP2006236747A (ja) 透明電極及び透明電極の製造方法
JP2011036778A (ja) バリアフィルムの製造方法
JP4686956B2 (ja) 機能体の形成方法
WO2005035824A1 (ja) アモルファス窒化硼素薄膜及びその製造方法、並びに積層膜、透明プラスチックフィルム、及び有機el素子
JP2011036803A (ja) バリアフィルムの製造方法
JP4140289B2 (ja) 大気圧プラズマ放電処理装置、大気圧プラズマ放電処理方法及び光学素子
JP4349052B2 (ja) ディスプレイ用フレネルレンズの製造方法
JP2004198590A (ja) 薄膜有するを物品、その製造方法及び低反射体並びに透明導電性体
WO2005059203A1 (ja) 透明でガスバリア性の高い基材及びその製造方法
JP2004124203A (ja) 薄膜形成方法
JP2004285388A (ja) 薄膜形成装置
JP2006175633A (ja) ガスバリア性薄膜積層体、及びガスバリア性樹脂基材、及び有機elデバイス
JP4432429B2 (ja) ディスプレイ用レンチキュラーレンズの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516296

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase