WO2005055352A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2005055352A1
WO2005055352A1 PCT/JP2004/018251 JP2004018251W WO2005055352A1 WO 2005055352 A1 WO2005055352 A1 WO 2005055352A1 JP 2004018251 W JP2004018251 W JP 2004018251W WO 2005055352 A1 WO2005055352 A1 WO 2005055352A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
unit
combustion
electrode
Prior art date
Application number
PCT/JP2004/018251
Other languages
English (en)
French (fr)
Inventor
Satoshi Nagao
Yoshimi Kubo
Tsutomu Yoshitake
Takashi Manako
Hiroshi Kajitani
Hidekazu Kimura
Eiji Akiyama
Yoshinori Watanabe
Yasutaka Kono
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005516025A priority Critical patent/JP4867347B2/ja
Priority to US10/596,277 priority patent/US20070166587A1/en
Publication of WO2005055352A1 publication Critical patent/WO2005055352A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell.
  • a fuel cell is composed of a fuel electrode and an oxidizer electrode (hereinafter, also referred to as "catalyst electrodes") and an electrolyte provided therebetween.
  • An oxidizing agent is supplied to the electrode and power is generated by an electrochemical reaction.
  • hydrogen is used as fuel.
  • methanol has been used as a fuel, and methanol has been reformed to produce hydrogen by reforming methanol using inexpensive and easy-to-handle methanol, or methanol has been directly used as fuel.
  • the development of direct fuel cells is also actively pursued.
  • reaction at the oxidant electrode is represented by the following formula (3). 3/20 + 6H + + 6e— ⁇ 3H O (3)
  • Patent Document 1 JP-A-1-187776
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5-307970
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heating unit that raises the temperature of a fuel cell body by using a simple mechanism, so that it can be used even when the outside air temperature is low. An object of the present invention is to provide a technology capable of improving the performance.
  • a unit cell including a solid electrolyte membrane, a fuel electrode disposed on the solid electrolyte membrane, and an oxidizing electrode, a heating unit for heating the unit cell, and the fuel electrode
  • the fuel cell is characterized in that the unit cell is heated by conducting the heat generated during the heating to the unit cell.
  • the fuel cell of the present invention has a configuration in which the heat of the heating means is conducted to the unit cells and the unit cells are heated. Further, a part of the fuel supplied to the fuel electrode is supplied to the heating means and burns. Therefore, the unit cells can be reliably heated using the combustion heat of the fuel. Therefore, even when the temperature of the outside air using the fuel cell is low, the startup characteristics of the battery can be improved with a simple mechanism.
  • the fuel cell of the present invention may include one unit cell! /, Or! /, And may include a plurality of unit cells.
  • the heating unit may be provided in contact with the unit cell.
  • the heating means may be configured to include a heating element and a heat conductor provided in contact with the heating element.
  • the heating means may include a heating catalyst for burning the fuel.
  • the fuel can be reliably used by using the catalyst in the heating means. Can be burned. For this reason, the unit cell can be more reliably heated.
  • the heating element may include a heating catalyst.
  • the unit cell that is in contact with the heating element directly or via the heat conductor can be easily heated.
  • liquid fuel may be directly supplied to the fuel electrode.
  • the liquid fuel is directly supplied, there is a particularly high demand for improving the starting characteristics at low temperatures.
  • the configuration of the present invention even when the liquid fuel is directly supplied to the fuel electrode, a simple operation is possible. With this configuration, the unit cell can be heated. Therefore, even when the outside air is at a low temperature, the fuel cell can exhibit sufficient output characteristics.
  • a plurality of the unit cells are provided, a plurality of first electrodes provided on one surface of one solid electrolyte membrane, and a plurality of first electrodes provided on the other surface of the solid electrolyte membrane.
  • a plurality of second electrodes provided so as to face each of the plurality of first electrodes, and a pair of the first electrode and the second electrode facing each other; the solid electrolyte membrane;
  • the unit cell may be configured, and the heating unit may be configured to heat a plurality of the unit cells.
  • the fuel cell of the present invention has a configuration in which a plurality of unit cells share one solid electrolyte membrane. In this way, a configuration in which a plurality of unit cells are arranged in a plane is stably realized. Further, in the fuel cell of the present invention, the plurality of unit cells are heated by the heating means. For this reason, each unit cell constituting the fuel cell can be reliably heated. Therefore, even when the fuel cell is used in a low-temperature environment, good starting characteristics can be ensured.
  • the heating means may be provided in contact with the solid electrolyte membrane.
  • the solid electrolyte membrane is provided in contact with the heating means, a plurality of unit cells sharing the membrane can be simultaneously heated by heating the solid electrolyte membrane. Therefore, even in a fuel cell in which a plurality of unit cells are arranged in a plane, each unit cell can be reliably heated. For this reason, even when the fuel cell is used at a low temperature, good startup characteristics can be ensured.
  • the heating means is provided in contact with the plurality of first electrodes. You may be. By doing so, one electrode-side force can simultaneously heat a plurality of unit cells.
  • the heating means may be provided in contact with the oxidant electrode.
  • the first electrode may be the oxidant electrode. In this way, even in a fuel cell in which the liquid fuel is directly supplied to the fuel electrode, the fuel cell has a small heat capacity and is easily heated. The heating is performed from the oxidant electrode, and the entire cell can be efficiently heated.
  • the fuel cell may include a fuel recovery means for recovering the fuel passing through the fuel electrode to the heating means.
  • a fuel recovery means for recovering the fuel passing through the fuel electrode to the heating means.
  • unused fuel contained in the fuel that has passed through the fuel electrode can be used for combustion in the heating means. For this reason, the fuel use efficiency can be improved.
  • the fuel cell of the present invention may have an oxidant supply means for supplying an oxidant to the heating means. By doing so, the fuel reaction of the fuel in the heating means can be performed more quickly. Therefore, the unit cell can be heated more quickly.
  • the fuel cell of the present invention may further include a cooling water supply means for supplying cooling water to the heating means. This makes it possible to reliably cool the heating means after heating the unit cell. For this reason, overheating of the heating means can be prevented, and the fuel cell can be operated safely.
  • a temperature sensor that measures a heating temperature of the heating means or a temperature of the fuel cell
  • a control unit that controls supply of fuel to the heating means based on the temperature measured by the temperature sensor.
  • the heating means can be driven according to the temperature of the fuel cell.
  • the temperature of the fuel cell can be the inside of the fuel cell, the surface of the fuel cell, the waste liquid of the fuel cell, the exhaust of the fuel cell, or the outside air temperature. Alternatively, a plurality of these temperatures may be used as appropriate.
  • the supply system may include a detachable fuel cartridge. By doing so, the cartridge can be replaced even when the fuel is consumed, and the fuel can be supplemented.
  • the fuel cell is held by the fuel cartridge. The fuel may be supplied to the heating means!
  • the fuel cartridge has a first chamber for holding a first liquid fuel, and a second chamber for holding a second liquid fuel.
  • the chamber has a fuel outlet for leading the first liquid fuel to the heating means, and the second chamber has a fuel outlet for leading the second liquid fuel to the fuel cell body. You may use a fuel outlet.
  • the fuel cartridge has the first chamber and the second chamber, a high-concentration fuel can be provided in addition to a low-concentration fuel for supply.
  • the fuel cell can be heated at a high speed and power, so that the low-temperature startability is further improved.
  • the fuel cell may have a mixing tank for mixing the first liquid fuel and the second liquid fuel.
  • a portable personal computer such as a mobile phone, a notebook, or a PDA (Personal Digita
  • FIG. 1 is a diagram schematically showing the configuration of the fuel cell of the present embodiment.
  • the fuel cell 1301 in FIG. 1 has a single cell structure 101 and a combustion section 1303 provided in contact with the single cell structure 101.
  • the unit cell structure 101 includes a fuel electrode 102 and an oxidant electrode (not shown in FIG. 1), as described later. (Shown), and a solid electrolyte membrane (not shown in FIG. 1) sandwiching them.
  • the fuel cell 1301 has a fuel tank 1327 and a pump 1329.
  • the fuel 124 stored in the fuel tank 1327 is supplied to the combustion unit 1303 and the single cell structure 101.
  • a pump 1329 for adjusting the flow rate of the fuel 124 is provided between the fuel tank 1327 and the combustion section 1303.
  • a pump 1329 is not provided in the fuel supply system connecting the fuel tank 1327 and the single cell structure 101.However, a pump 1329 may be provided if necessary, which will be described later. The same applies to the embodiment.
  • the fuel 124 stored in the fuel tank 1327 is supplied to the single-cell structure 101, and a part of the fuel 124 supplied from the fuel tank 1327 to the combustion unit 1303 from the single-cell structure 101. May be supplied. Further, the fuel 124 that is not used in the fuel electrode 102 may be returned to the fuel tank 1327. Further, the fuel electrode 102 may be configured to include a fuel tank 1327. In this case, a part of the fuel 124 is supplied from the fuel electrode 102 to the combustion unit 1303.
  • the combustion unit 1303 has a catalyst capable of burning the fuel 124.
  • the fuel 124 and the oxidizing agent for combustion are supplied to the combustion section 1303, the fuel 124 is burned and heat of combustion is generated. Then, the single-cell structure 101 in contact with the combustion section 1303 is heated by the combustion heat.
  • the oxidizing agent for combustion can be, for example, air or oxygen gas.
  • the combustion section 1303 is provided with a thermometer 1341 for controlling combustion heat. In addition, a thermometer 1341 is provided in the combustion unit 1303 also in the embodiment described later.
  • the combustion unit 1303 that generates heat by the supply of the fuel 124 has a structure in contact with the single cell structure 101, so that the single cell structure 101 can be heated with a simple configuration. Therefore, even when the fuel cell 1301 is used at a low temperature, the single-cell structure 101 can be easily heated, and the startup characteristics at a low temperature can be improved.
  • FIG. 1 a single cell structure 101 is shown.
  • a plurality of single cell structures 101 may be connected in series.
  • an embodiment in which a plurality of single cell structures 101 are integrated on a plane, or a stack in which a plurality of single cell structures 101 are integrated in a plane direction can be used.
  • FIG. 2 is a sectional view showing an example of the fuel cell having the configuration of FIG.
  • the fuel cell 1311 in FIG. 2 has a single cell structure 101, a combustion section 1303, a fuel tank 1309, a fuel supply pipe 1313 for combustion, and a pump 1329.
  • the combustion unit 1303 is provided in contact with the single cell structure 101 and the fuel tank 1309. Note that the combustion section 1303 need not be in contact with the fuel tank 1309 as long as it is in contact with the single cell structure 101. Further, the combustion section 1303 is provided with a thermometer 1341 for measuring combustion heat.
  • a heat transfer member that transmits combustion heat generated in the combustion unit 1303 may be provided between the combustion unit 1303 and the single cell structure 101. By doing so, the combustion heat can be efficiently transmitted to the single-cell structure 101.
  • a metal having a high thermal conductivity for example, copper, aluminum, titanium, or the like can be used.
  • the fuel tank 1309 is provided in contact with the fuel electrode 102 constituting the single cell structure 101, and is configured to be able to directly supply the fuel 124 to the fuel electrode 102.
  • the fuel tank 1309 is filled with a fuel 124 having a concentration suitable for supplying the single cell structure 101.
  • the detailed configuration of the single cell structure 101 will be described later.
  • the fuel 124 refers to a liquid fuel supplied to the single-cell structure 101, and includes an organic solvent and water as fuel components.
  • a fuel component included in the fuel 124 an organic liquid fuel such as methanol, ethanol, dimethyl ether, or other alcohols, or a liquid hydrocarbon such as cycloparaffin can be used.
  • the fuel component force is ethanol will be described.
  • oxygen gas that can use air may be usually supplied.
  • the concentration of the fuel 124 is appropriately selected.
  • the fuel tank 1309 can contain, as the fuel 124, an aqueous methanol solution having a concentration of, for example, 3% by volume or more and 50% by volume or less.
  • the fuel tank 1309 is preferably formed of a material having resistance to fuel components.
  • it can be formed of polypropylene, polyethylene, Shiridani bur or silicone.
  • the combustion fuel passage 1307 of the combustion unit 1303 includes a combustion fuel passage 1307 provided in a fuel tank 1309. A part of the fuel 124 is supplied from the fuel outlet 1315 via the fuel supply pipe 1313 for combustion. A pump 1329 is provided in the combustion fuel supply pipe 1313, and the amount of fuel 124 supplied to the combustion unit 1303 can be adjusted.
  • a piezoelectric element such as a small piezoelectric motor that consumes very little power
  • a bimorph type piezoelectric pump can be used.
  • a configuration may be adopted in which a thermometer is provided in the fuel cell 1311 and a control unit that controls the operation of the pump 1329 based on the temperature measured by the thermometer. .
  • thermometer As the type of the thermometer, a thermocouple, a thermistor, or the like that can be measured as an electric signal is desirable.
  • the installation location can be any one of a combustion section, the inside of the fuel cell, the surface of the fuel cell, the waste liquid of the fuel cell, the exhaust of the fuel cell, and the outside air. Alternatively, a plurality of these temperatures can be used as appropriate.
  • FIG. 3 is a diagram schematically showing a configuration of the combustion unit 1303.
  • the shape of the combustion portion 1303 is a hollow cylindrical shape, and a catalyst for burning the fuel 124 is held in the combustion catalyst holding portion 1305 between the outer wall and the inner wall of the cylinder.
  • One end of a combustion fuel flow path 1307 penetrating in the length direction of the cylinder communicates with a combustion fuel supply pipe 1313.
  • the inner wall on the side surface of the combustion catalyst holding portion 1305 has a hole for guiding the fuel 124 from the combustion fuel supply pipe 1313 to the inside of the combustion catalyst holding portion 1305.
  • the holes are preferably provided on the entire inner wall.
  • a configuration having more openings on the oxidant electrode 108 side may be adopted.
  • the oxidizer electrode 108 of the single cell structure 101 can be preferentially heated. Since the oxidizer electrode 108 has a smaller heat capacity than the fuel electrode 102 and is more likely to be heated, by heating the oxide electrode 108 preferentially, the entire single-cell structure 101 can be efficiently heated.
  • a material for the inner wall of the combustion catalyst holding portion 1305 for example, a metal mesh, a porous metal sheet, a foamable metal material, or the like can be used.
  • the porous metal sheet is not particularly limited as long as it is a metal sheet penetrating both surfaces thereof and having a hole through which the fuel 124 passes, and sheets having various shapes and thicknesses can be used.
  • a porous metal sheet can be used.
  • a metal fiber sheet may be used.
  • Metal fiber The sheet is not particularly limited as long as one or more metal fibers are formed in a sheet shape. A nonwoven sheet or woven fabric of metal fibers can be used.
  • the material of the inner wall is preferably a material having corrosion resistance to the fuel 124. Further, a metal that is a catalyst for combustion of the fuel 124 is more preferable. Further, as the material of the inner wall, for example, a polymer, ceramics, glass or the like can be applied in addition to metal. Specifically, for example, it may be a sheet made of Iridani fiber or glass fiber.
  • the outer wall of the combustion catalyst holding portion 1305 has an air guide hole for guiding the oxidizing agent 126 for burning the fuel 124 to the inside of the combustion catalyst holding portion 1305. It is preferable that the air guide hole is provided on the entire outer surface of the outer wall of the combustion catalyst holding section 1305, the surface of which is exposed to the outside. By doing so, the combustion of the fuel 124 can be efficiently generated in the entire combustion catalyst holding unit 1305.
  • the oxidizing agent 126 for combustion for example, the same oxidizing agent 126 that is supplied to the oxidizing electrode 108 can be used.
  • the outer wall of the combustion catalyst holding section 1305 can be made of, for example, a porous material.
  • a porous material for example, a material used for the inner wall of the combustion catalyst holding section 1305 can be used.
  • the outer wall of the combustion unit 1303 is in direct contact with the single cell structure 101. In such a case, it is made of a material having excellent thermal conductivity. By doing so, the combustion heat generated in the combustion section 1303 can be reliably transmitted to the single cell structure 101, and the single cell structure 101 can be heated.
  • a structure in which the fuel electrode 102 and the oxidant electrode 108 are insulated from each other to prevent electrical conduction is provided. I do.
  • a configuration can be adopted in which the surface of the combustion section 1303 is in contact with the single-cell structure 101 via an insulating sheet having thermal conductivity.
  • the combustion catalyst holding unit 1305 may have a configuration in which, for example, a combustion catalyst is held on the surface of a porous support.
  • a support for example, a steel wool, a foamed metal, a fine metal wire sintered body, or the like may be used, and the structure may be filled between the inner wall and the outer wall.
  • the method of holding the catalyst for combustion on the surface of the support include a method of spraying and sintering a catalyst metal for combustion on the surface of the support, and a method of holding the catalyst metal for combustion on the surface of the support. And the like.
  • a combustion catalyst held on the surface of the support a catalyst capable of burning a fuel component in the fuel 124 is applied.
  • examples of the combustion catalyst include platinum and an alloy of platinum and ruthenium.
  • the porous support may be made of a catalyst metal for fuel. This makes it possible to simplify the configuration of the combustion catalyst holding section 1305.
  • FIG. 4 is a diagram illustrating a case where the combustion unit 1303 is solid. In this case, the entire inside of the combustion unit 1303 can be used as the combustion catalyst holding unit 1305. Also in this configuration, the fuel 124 that has passed through the combustion fuel supply pipe 1313 is supplied from one end of the combustion unit 1303 to the combustion catalyst holding unit 1305.
  • combustion portion 1303 is not limited to the cylindrical shape shown in Figs. 3 and 4 as long as it can transmit combustion heat to single cell structure 101.
  • FIG. 5 is a diagram showing another configuration of the combustion unit 1303. Since the combustion section 1303 in FIG. 5 has a flat surface on the side surface, good contact with the single cell structure 101 is ensured. Therefore, heat can be more efficiently transmitted from the combustion section 1303 to the single cell structure 101.
  • the single cell structure 101 includes a fuel electrode 102, an oxidant electrode 108, and a solid electrolyte membrane 114. As described above, the fuel 124 is supplied to the anode 102 of the single cell structure 101. Further, an oxidizing agent 126 is supplied to the oxidizing electrode 108.
  • the supply mechanism of the oxidant 126 to the oxidant electrode 108 may be a supply by natural suction or a forced supply using a fan or the like.
  • the oxidizing agent may be supplied by a piezoelectric pump.
  • the supply amount of the oxidizing agent 126 from the pump power can be satisfactorily controlled by changing the frequency or voltage of the inverter or the inverter.
  • the frequency of the inverter or the inverter is changed, the discharge frequency of the pump per unit time can be changed.
  • the discharge per discharge can be changed by changing the displacement of the piezoelectric element. The amount changes.
  • the base 104 and the base 110 are formed of a gas diffusion layer and a current collector.
  • the structure serves also as an electrode.
  • the base 104 and the base 110 can be provided with a fuel electrode side terminal and an oxidant electrode side terminal, respectively.
  • a metal mesh, a porous metal sheet, a foamable metal material, or the like can be used for the bases 104 and 110. In this case, current collection can be performed efficiently without providing a Balta metal current collection member.
  • the solid electrolyte membrane 114 has a role of separating the fuel electrode 102 and the oxidizer electrode 108 and moving hydrogen ions between the two. For this reason, the solid electrolyte membrane 114 is preferably a membrane having high conductivity for hydrogen ions. Further, it is preferable that it is chemically stable and has high mechanical strength.
  • an organic polymer having a polar group such as a strong acid group such as a sulfone group, a phosphate group, a phosphone group, or a phosphine group or a weak acid group such as a carboxyl group is preferably used.
  • organic polymers include aromatic-containing polymers such as sulfonated poly (4-phenoxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoimidazole;
  • Copolymers such as polystyrene sulfonic acid copolymer, polybutyl sulfonic acid copolymer, cross-linked alkyl sulfonic acid derivative, fluorine resin skeleton and fluorine-containing polymer having sulfonic acid strength;
  • Acrylamide-A copolymer obtained by copolymerizing acrylamides such as 2-methylpropanesulfonic acid and atalylates such as n-butyl methacrylate; perfluorocarbon containing a sulfone group (Naphion (manufactured by DuPont) : Registered trademark), Aciplex (Asahi Kasei Corporation: registered trademark));
  • Carboxyl group-containing perfluorocarbon (Flemion S membrane (manufactured by Asahi Glass Co., Ltd.)); and the like.
  • aromatic-containing polymers such as sulfonated poly (4-phenoxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoimidazole are selected, permeation of organic liquid fuel is suppressed. It is possible to suppress the decrease in battery efficiency due to crossover.
  • the fuel electrode 102 and the oxidant electrode 108 respectively include a fuel electrode side catalyst layer 106 and an oxidant electrode side catalyst layer 112 containing carbon particles carrying a catalyst and fine particles of a solid electrolyte.
  • the structure may be formed on the base 104 and the base 110.
  • the catalyst include platinum and an alloy of platinum and ruthenium.
  • the catalyst for the fuel electrode 102 and the catalyst for the oxidizer electrode 108 may be the same or different.
  • the surfaces of the base 104 and the base 110 may be subjected to a water-repellent treatment.
  • a water-repellent treatment As described above, when methanol is used as the fuel 124, carbon dioxide is generated at the fuel electrode 102. If the bubbles of carbon dioxide generated at the fuel electrode 102 stay near the fuel electrode 102, the supply of the fuel 124 to the fuel electrode 102 is hindered, which causes a reduction in power generation efficiency. Therefore, it is preferable to perform a surface treatment on the surface of the substrate 104 with a hydrophilic coating material or a hydrophobic coating material. By performing the surface treatment with the hydrophilic coating material, the fluidity of the fuel 124 on the surface of the substrate 104 is enhanced.
  • hydrophilic coating material examples include titanium oxide, silicon oxide, and the like.
  • hydrophobic coating material examples include polytetrafluoroethylene and silane.
  • the single cell structure 101 is obtained.
  • the combustion heat generated in the combustion unit 1303 can be transmitted to the single-cell structure 101.
  • the fuel cell 1311 When the fuel cell 1311 is used in an environment where the starting characteristics of the fuel cell 1311 are ensured, for example, about 25 ° C. or more, the pump 1329 is used without being driven. In this case, the fuel 124 in the fuel tank 1309 is supplied only to the fuel electrode 102. When the fuel cell 1311 is used at a temperature at which its startup characteristics are good, the fuel 124 is selectively supplied only to the anode 102, thereby suppressing waste of the anode 102 and stabilizing the fuel cell 1311. Can be driven.
  • the pump 1329 is driven and used.
  • part of the fuel 124 in the fuel tank 1309 is supplied to the combustion unit 1303.
  • an oxidizing agent 126 is supplied to the combustion unit 1303 from outside.
  • the fuel 124 is released by the action of the combustion catalyst held on the support in the combustion catalyst holding section 1305. Burns and generates heat of combustion. This combustion heat is transmitted to the single cell structure 101, so that the temperature of the single cell structure 101 increases. Therefore, the startup characteristics of the single-cell structure 101 when used in a low temperature can be improved with a simple configuration.
  • the fuel cell 1311 can exhibit excellent start-up characteristics even when the outside air is used in a low-temperature environment.
  • low temperature refers to a temperature condition under which a sufficient battery voltage of the fuel cell 1311 cannot be obtained. Specifically, for example, the starting characteristics in a low temperature of about 0 to 20 ° C. can be improved.
  • the above temperature is an example, and the presence or absence and the supply amount of the fuel 124 to the combustion unit 1303 can be appropriately adjusted.
  • the fuel cell of this embodiment can include a control unit that can control the operation of pump 1329 based on the temperature measured by thermometer 1341.
  • FIG. 6 is a plan view showing another example of the fuel cell having the configuration of FIG.
  • FIG. 6 shows a configuration of a fuel cell in which a plurality of single cell structures 101 are arranged in a plane.
  • FIG. 6 is a view of the fuel cell viewed from the oxidant electrode 108 side of the single-cell structure 101.
  • the fuel cell in FIG. 6 includes a fuel cell main body 1109 and a fuel cartridge 1103.
  • the fuel cell main body 1109 includes a plurality of single cell structures 101 arranged in a plane, a fuel container 811, a partition plate 853, a fuel outlet pipe 1111, a fuel supply pipe 1343 for combustion, a fuel discharge pipe 1337, and a pump 1117. , A flow control valve 1331, a connector 1123, and a thermometer 1341.
  • FIG. 7 is a sectional view taken along the line AA ′ of FIG.
  • the fuel electrode 102 is provided on one surface of one solid electrolyte membrane 114, and the oxidant electrode 108 is provided on the other surface.
  • the combustion section 1303 is in contact with the end surface of the solid electrolyte membrane 114 via the heat transfer plate 1317.
  • the fuel container 811 is in contact with the fuel electrode 102!
  • the fuel cartridge 1103 is configured to be detachable from the fuel cell main body 1109 by a connector 1123.
  • the fuel cartridge 1103 is filled with a fuel 124 having a suitable concentration to be supplied to the single cell structure 101.
  • the concentration of the fuel 124 can be appropriately selected as in the case of the fuel cell 1311 in FIG.
  • the fuel cartridge 1103 is formed of a material having resistance to fuel components.
  • a material having resistance to fuel components for example, polypropylene, polyethylene, Shiridani vinyl or silicone Can be formed.
  • the fuel 124 is supplied to the fuel container 811 via a fuel outlet pipe 1111.
  • the fuel 124 flowing into the fuel container 811 flows along a plurality of partition plates 853 provided in the fuel container 811 and is sequentially supplied to the plurality of single cell structures 101.
  • the fuel outflow pipe 1111 is provided with a pump 1117. Further, a fuel supply pipe 1343 for combustion is branched downstream of the pump 1117 of the fuel outlet pipe 1111, that is, on the side of the fuel container 811, and the fuel supply pipe 1343 extends from the fuel supply pipe 1343 to the combustion section 1303. Parts will be supplied.
  • a flow control valve 1331 is provided at a branch between the fuel outflow pipe 1111 and the fuel supply pipe for combustion 1343 so that the amount of fuel 124 supplied to the combustion section 1303 can be adjusted.
  • the fuel cell As the pump 1117, a piezoelectric element such as a small-sized piezoelectric motor with very low power consumption can be used as in the case of the fuel cell 1311 in FIG.
  • the fuel cell according to the present embodiment may include a control unit that controls the operations of the pump 1117 and the flow control knob 1331 based on the temperature measured by the thermometer 1341. it can.
  • the combustion unit 1303 holds a catalyst for burning the fuel 124.
  • One end of the combustion part 1303 is connected to a fuel supply pipe 1343 for combustion. Further, the other end of the combustion unit 1303 is connected to a fuel discharge pipe 1337, and the remaining fuel that has passed through the combustion unit 1303 is introduced into the fuel container 811. Note that the residual fuel introduced into the fuel container 811 is introduced into the fuel container 811 together with dioxide carbon produced by combustion, for example, in a state of being vaporized by the heat of combustion of the combustion section 1303.
  • a plurality of fuel electrodes 102 and oxidizer electrodes 108 are provided on both surfaces of one solid electrolyte membrane 114, and the solid electrolyte A plurality of single cell structures 101 sharing a film 114 are formed in the same plane. Since the combustion part 1303 is in contact with the end face of the solid electrolyte membrane 114 via the heat transfer plate 1317, the end face force of the solid electrolyte membrane 114 also reduces the combustion heat generated in the combustion part 1303 in each single cell structure 101. It can be conducted. Therefore, the single cell structure 101 sharing the solid electrolyte membrane 114 can be heated at the same time. Therefore, even when the outside air is at a low temperature, the starting characteristics of the fuel cell are improved. Can be up.
  • a heat transfer member can be provided between the combustion unit 1303 and the fuel container 811.
  • FIG. 8 is a diagram schematically showing the configuration of such a fuel cell.
  • the fuel cell shown in FIG. 8 allows the fuel electrode 102 of the single cell structure 101 to communicate with the combustion section 1303 in the fuel cell 1301 shown in FIG. By doing so, the residual fuel discharged from the fuel electrode 102 of the single cell structure 101 can be supplied to the combustion unit 1303, so that the fuel use efficiency can be improved. Therefore, the fuel cell can be operated stably for a long period of time.
  • a pump 1329 may also be provided in the fuel passage between the single cell structure 101 and the combustion unit 1303.
  • the fuel 124 supplied to the combustion unit 1303 can be guided to the fuel electrode 102 of the single cell structure 101 after passing through the combustion unit 1303. By doing so, the remaining fuel discharged to the outside can be further reduced. Therefore, fuel can be used efficiently.
  • the residual fuel that has passed through the combustion unit 1303 may be supplied to the single-cell structure 101 in a vaporized state together with the gas generated by the combustion of the fuel 124.
  • FIG. 9 is a diagram schematically illustrating another configuration of the fuel cell according to the present embodiment.
  • the fuel supply system includes a fuel tank 1327, a pump 1329 for adjusting the flow rate of the fuel 124, and a fuel supply system provided downstream of the pump 1329 to supply fuel to the combustion unit 1303 and the unit cell structure 101. And a flow control valve 1331 for adjusting the supply amount of the supply 124.
  • the amount of the fuel 124 supplied to the combustion unit 1303 can be adjusted by adjusting the flow control valve 1331.
  • the remaining fuel that has passed through the combustion unit 1303 is introduced into the single cell structure 101 from a fuel supply system that connects the flow rate control valve 1331 and the single cell structure 101.
  • a combustion section 1303 is provided on the opposite side of the fuel electrode 102 of the fuel cell 1301 (FIG. 1) according to the first embodiment, which is not shown, and an oxidation electrode not shown in FIG. Side It is configured to heat.
  • the fuel cell 1311 (FIG. 2) described in the first embodiment has a configuration in which the entire constituent members of the single cell structure 101 are heated.
  • the oxidizer 126 has a smaller heat capacity than the fuel 124.
  • the heating method differs between the fuel electrode 102 side and the oxidant electrode 108 side, and the side of the oxidizer electrode 108 may be easily heated. Therefore, in the present embodiment, a fuel cell configured to efficiently heat such a single cell structure 101 will be described below.
  • FIG. 10 and FIG. 11 are diagrams showing the configuration of the fuel cell of the present embodiment.
  • FIG. 11 is a sectional view taken along line AA ′ of FIG.
  • a heat transfer plate 1317 is provided in contact with the peripheral portion of the base 110 of the oxidant electrode 108, and a thermometer 1341 is provided on the heat transfer plate 1317. ing. Further, the tubular combustion portion 1303 is wrapped around the surface of the oxidant electrode 108 in contact with the heat transfer plate 1317.
  • the oxidizing agent electrode 108 is supplied with a partial oxidizing agent 126 that is not covered by the heat transfer plate 1317 and the burning portion 1303 on the surface of the base 110.
  • the base 110 has a configuration that also serves as a gas diffusion layer and a current collecting electrode. Further, the base 110 has pores through which the oxidizing agent 126 necessary for the battery reaction passes.
  • heat transfer plate 1317 a material having high thermal conductivity is preferably used.
  • a copper plate, an aluminum plate, a titanium plate, or the like can be used.
  • the combustion unit 1303 can have the same configuration as that of the first embodiment.
  • the heat transfer plate 1317 is provided between the combustion section 1303 and the base 110, so that the combustion heat generated in the combustion section 1303 is efficiently transmitted to the oxidizer electrode 108,
  • the oxidant electrode 108 can be selectively or intensively heated.
  • the oxidizer electrode 108 is heated by the heat generated by the electrochemical reaction itself, and furthermore, the oxidizer electrode 108 is rapidly heated by the combustion heat generated in the combustion part 1303.
  • the heat is transmitted to the whole, and the entire single cell structure 101 can be efficiently heated. Therefore, the starting characteristics of the fuel cell in a low-temperature environment can be further improved.
  • FIG. 12 is a plan view showing another configuration of the fuel cell according to the present embodiment.
  • Fig. 12 Fuel Cell The pond has a configuration in which a plurality of single cell structures 101 are arranged in a plane, similarly to the fuel cell of FIG.
  • the combustion section 1303 is in direct contact with the oxidizer electrode 108 (not shown in FIG. 12) of each single cell structure 101. Therefore, the single cell structure 101 can be efficiently heated.
  • the contact surface with the single cell structure 101 in the combustion unit 1303 is formed of an insulating member so that the single cell structures 101 are not electrically connected to each other via the combustion unit 1303.
  • the insulating member for example, an insulating sheet having excellent thermal conductivity can be used.
  • the material of the insulating sheet include a material obtained by adding a heat conductive filler to silicone rubber, epoxy resin, or the like.
  • aluminum can be used as the heat conductive filter.
  • the configuration in which the oxidizer electrode of the single-cell structure 101 is directly heated also applies to the fuel supply system shown in FIGS. 1, 8, and 9 and other embodiments described later. be able to.
  • the fuel supply system includes a fuel container holding the fuel 124 and a fuel tank holding a higher concentration of the liquid fuel than the fuel 124 supplied to the single cell structure 101. It is also possible to adopt a configuration having a concentration fuel container.
  • FIG. 13 is a diagram schematically showing the configuration of the fuel cell according to the present embodiment.
  • the fuel tank 1327 includes a low-concentration fuel tank 1333 and a high-concentration fuel tank 1335.
  • the low-concentration fuel tank 1333 is filled with a low-concentration fuel having a suitable concentration to be supplied to the single-cell structure 101, and the high-concentration fuel tank 1335 has a low-concentration fuel tank 1333.
  • a high concentration fuel 725 having a higher fuel component concentration than the liquid is charged.
  • a pump 1329 is not provided in the fuel supply system connecting the fuel tank 1327 and the single cell structure 101. It may be provided. Further, the fuel 124 that is not used at the fuel electrode 102 may be returned to the fuel tank 1327.
  • the concentrations of the low-concentration fuel and the high-concentration fuel 725 are appropriately selected.
  • the fuel component is S methanol
  • the low-concentration fuel has a concentration of about 50% by volume or less.
  • An aqueous solution of tanol or water can be contained.
  • a methanol aqueous solution or methanol having a higher concentration than the fuel 124 can be stored.
  • the low-concentration fuel tank 1333 is supplied with the high-concentration fuel 725 in the high-concentration fuel tank 1335 by a pump 1329. Then, the fuel 124 adjusted to a predetermined fuel component concentration in the low concentration fuel tank 1333 is supplied to the single cell structure 101.
  • a pump 1329 for supplying fuel 124 from the low concentration fuel tank 1333 to the single cell structure 101 is provided.
  • a part of the high-concentration fuel 725 in the high-concentration fuel tank 1335 is supplied to the combustion unit 1303 by the pump 1329.
  • the single-cell structure 101 can be heated more quickly.
  • FIG. 14 is a diagram showing an example of a fuel cell having the configuration of FIG.
  • the fuel cell 1349 of FIG. 14 has the same basic configuration as the fuel cell of FIG. 2, and includes a mixing tank 1319 instead of the fuel tank 1309 in contact with the base 104.
  • the fuel cell 1349 further includes a high-concentration fuel tank 1321, and a high-concentration fuel supply pipe 1323 for supplying the high-concentration fuel 725 from the high-concentration fuel tank 1321 to the mixing tank 1319 is provided.
  • the amount of the rich fuel 725 flowing through the rich fuel supply pipe 1323 can be adjusted by adjusting the pump 1329.
  • the fuel supply pipe for combustion 1313 is configured to communicate with the high-concentration fuel tank 1321 and the fuel flow path for combustion 1307. Therefore, the high concentration fuel 725 having a high concentration of the fuel component can be directly supplied to the combustion section 1303 from the high concentration fuel tank 1321.
  • the high-concentration fuel 725 can be supplied to the combustion unit 1303, so that a combustion reaction can be efficiently generated in the combustion unit 1303. For this reason, since the single-cell structure 101 can be heated more quickly, the startup characteristics in a low temperature can be further improved.
  • FIG. 15 is a diagram showing a case of a fuel cell having a configuration in which a plurality of single cell structures 101 are arranged in a plane.
  • a combustion unit 1303 is provided in contact with the solid electrolyte membrane 114 (not shown in FIG. 15) constituting the single cell structure 101. Have been killed.
  • the solid electrolyte membrane 114 is shared by bringing the combustion section 1303 into contact with the solid electrolyte membrane 114 forming the single cell structure 101. It is possible to heat a plurality of single cell structures 101 simultaneously. Further, since the high-concentration fuel 725 is supplied to the combustion unit 1303, heating can be performed efficiently.
  • the fuel cartridge 1103 is configured such that a high-concentration fuel tank 1105 and a mixing tank 1107 are detachably connected by a fitting portion (not shown).
  • the high-concentration fuel tank 1105 and the mixing tank 1107 are attached to and detached from the fuel cell main body 1109 in a connected state.
  • the mixing tank 1107 is filled with a low-concentration fuel having a suitable concentration to be supplied to the fuel cell body 1109, and the high-concentration fuel tank 1105 has a higher V than the liquid in the mixing tank 1107. ⁇
  • High-concentration fuel 725 having a fuel component concentration is filled.
  • the fuel circulated through the plurality of single cell structures 101 is recovered to the mixing tank 1107 via the fuel recovery pipe 1113.
  • the fuel 124 that has not been consumed in the single-cell structure 101 can be suitably recovered as a recovered fuel and reused.
  • the fuel cell in FIG. 15 may include a control unit (not shown).
  • the concentration of the recovered fuel 1155 recovered from the fuel recovery pipe 1113 is measured by a concentration meter (not shown), and the concentration from the high-concentration fuel tank 1105 to the mixing tank 1107 is determined according to the measured concentration.
  • the fuel supply may be controlled.
  • the concentration of the fuel component in the mixing tank 1107 is measured by a concentration meter (not shown), and the control unit controls the amount of the high-concentration fuel 725 supplied to the mixing tank 1107 according to the measured concentration. Is also good.
  • FIG. 16 is a diagram schematically showing the configuration of such a fuel cell.
  • the fuel cell of FIG. 16 has a configuration in which the fuel electrode 102 of the single-cell structure 101 communicates with the combustion unit 1303 in the fuel cell of FIG.
  • FIG. 17 is a diagram showing an example of a fuel cell having the configuration of FIG.
  • FIG. 17 shows a configuration in which the remaining fuel that has passed through the base 104 in the fuel cell 1349 shown in FIG. 14 is introduced from the fuel recovery pipe 1347 into the combustion fuel flow path 1307.
  • FIG. 18 is a diagram schematically showing another configuration of the fuel cell according to the present embodiment.
  • the fuel supply system is provided with a pump 1329 for adjusting the flow rate of the high-concentration fuel 725 derived from the high-concentration fuel tank 1335, and a downstream side of the pump 1329.
  • a flow control valve 1331 for adjusting the supply amount of the high-concentration fuel 725 to the high-concentration fuel tank 1333 is provided.
  • the flow control knob 1331 By adjusting the flow control knob 1331, the amount of the high-concentration fuel 725 supplied to the combustion unit 1303 or the low-concentration fuel tank 1333 can be adjusted. In addition, of the fuel 124 that has passed through the single cell structure 101, a powerful fuel component that is not used for the cell reaction is supplied to the combustion unit 1303.
  • FIG. 19 is a diagram schematically showing another example of the fuel supply system of the fuel cell according to the present embodiment.
  • FIG. 20 is a diagram showing an example of a fuel cell having the fuel supply system of FIG.
  • the fuel cell shown in FIG. 19 includes a path through which fuel is supplied from the low-concentration fuel tank 1333 to the single-cell structure 101, and a path through which residual fuel that has passed through the single-cell structure 101 returns to the low-concentration fuel tank 1333. Further, it has a path for supplying the high-concentration fuel 725 in the high-concentration fuel tank 1335 to the low-concentration fuel tank 1333 and a path for supplying the combustion section 1303. In addition, a path is provided for introducing the fuel that has passed through the single cell structure 101 into the combustion unit 1303.
  • the supply of the high-concentration fuel 725 or the residual fuel to the combustion unit 1303 can be switched by a flow control valve 1331, and the flow rate of each can be adjusted by a pump 1329.
  • the remaining fuel that has passed through the single-cell structure 101 can be returned to the low-concentration fuel tank 1333 and reused. Can be.
  • the high-concentration fuel tank 1335 can supply the high-concentration fuel 725, so that the single-cell structure 101
  • the predetermined concentration fuel 124 can be stably supplied for a long period of time.
  • the remaining fuel or the high-concentration fuel 725 that has passed through the single-cell structure 101 can be appropriately selected and supplied to the combustion unit 1303. Therefore, when starting at a low temperature, the high-concentration fuel 725 can be supplied to the combustion unit 1303, and the single-cell structure 101 in contact with the combustion unit 1303 can be quickly and rapidly heated. Then, when the single cell structure 101 has warmed up to a certain extent, the flow control valve 1331 is adjusted to supply the remaining fuel to the combustion unit 1303. If so, the fuel component can be used more efficiently.
  • the low-concentration fuel in the low-concentration fuel tank 1333 and the high-concentration fuel 725 in the high-concentration fuel tank 1335 are mixed. It may be configured to have a mixing tank.
  • FIG. 21 is a diagram schematically showing a fuel supply system of the fuel cell according to the present embodiment.
  • low-concentration fuel 1149 in low-concentration fuel tank 1333 and high-concentration fuel 725 in high-concentration fuel tank 1335 are introduced into mixing tank 1339.
  • the fuel 124 adjusted to a concentration suitable for supply to the fuel cell is supplied from the mixing tank 1339 to the single-cell structure 101.
  • a part of the high-concentration fuel 725 derived from the high-concentration fuel tank 1335 can be supplied to the combustion unit 1303 provided in contact with the single-cell structure 101.
  • a pump 1329 is provided in the supply system of the high-concentration fuel 725, and a predetermined amount of the high-concentration fuel 725 is supplied to the mixing tank 1339 and the combustion unit 1303 by a flow control valve 1331 provided downstream of the pump 1329. It can be supplied.
  • the concentration of the fuel 124 supplied to the single cell structure 101 can be controlled more reliably. Therefore, in the single cell structure 101, the battery reaction can be more stably generated. Further, since the high concentration fuel 725 is supplied to the combustion unit 1303, the single cell structure 101 can be quickly heated in a short time. Therefore, the starting characteristics when the fuel cell is used at a low temperature can be improved.
  • FIG. 22 is a diagram showing another configuration of the fuel cell according to the present embodiment.
  • the basic configuration of the fuel cell shown in Fig. 22 is the same as that of the fuel cell shown in Fig. 21.Residual fuel that has passed through the fuel electrode 102 of the unit cell structure 101 and is recovered in the mixing tank 1339 and the residual fuel that has passed through the combustion unit 1303. Is further provided in the mixing tank 1339.
  • a cooling water introduction path for introducing cooling water into the combustion section 1303 may be provided.
  • the configuration of the fuel cell shown in FIG. 22 will be described as an example.
  • FIG. 23 is a diagram schematically showing a configuration of the fuel cell according to the present embodiment.
  • the fuel cell in FIG. 23 has a configuration in which a cooling water tank 1351 is further provided in the fuel cell in FIG.
  • the cooling water 1353 in the cooling water tank 1351 is configured to be supplied to the combustion unit 1303 by the pump 1329.
  • thermometer 1341 provided in the single-cell structure 101 detects that the single-cell structure 101 has been heated to a certain temperature, The supply of high-concentration fuel 725 is stopped, and cooling water 1353 is supplied from the cooling water tank 1351 to the combustion unit 1303. By doing so, the combustion section 1303 can be quickly cooled. Therefore, heating of the single cell structure 101 can be suppressed, and the fuel cell can be operated more stably.
  • the fuel 124 may be supplied from the low-concentration fuel tank 1333 to the combustion unit 1303 instead of the cooling water.
  • generation of combustion heat can be suppressed.
  • high-concentration fuel 725 can be supplied to the combustion unit 1303 at the start of startup, and fuel 124 can be supplied and used when the single-cell structure 101 is heated to some extent. By doing so, the fuel component can be efficiently used for cereal IJ.
  • an oxidant supply path that actively supplies the oxidant for combustion to the combustion unit 1303 may be further provided.
  • the case of the configuration of the fuel cell shown in FIG. 1 will be described as an example.
  • FIG. 24 is a diagram schematically showing a configuration of the fuel cell according to the present embodiment.
  • the fuel cell of FIG. 24 further includes an oxidizing agent holding portion 1355 in the fuel cell 1301 of FIG. 1, and can supply the oxidizing agent 1357 held in the oxidizing agent holding portion 1355 to the combustion portion 1303.
  • it can It is configured as follows.
  • the speed of the combustion reaction in the combustion unit 1303 can be improved by providing a line for connecting the compressed air to the combustion unit 1303 or supplying an oxidant to the combustion unit 1303 using a fan.
  • the starting characteristics of the fuel cell at a low temperature can be more reliably improved.
  • the pump 1329 is not provided in the fuel supply system connecting the fuel tank 1327 and the single-cell structure 101, but the pump 1329 may be provided if necessary. Further, the fuel 124 which is not used in the fuel electrode 102 may be returned to the fuel tank 1327.
  • the fuel 124 can be introduced into the combustion section 1303, and the oxidant 1357 can be positively supplied to the combustion section 1303. For this reason, in the combustion unit 1303, a combustion reaction can be more reliably generated than when oxygen in the atmosphere is supplied to the combustion unit 1303. For this reason, the starting characteristics of the fuel cell at low temperatures can be more reliably improved.
  • FIG. 1 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing one example of a fuel cell having the configuration of FIG. 1.
  • FIG. 3 is a diagram schematically showing a configuration of a combustion unit of the fuel cell according to the embodiment.
  • FIG. 4 is a diagram schematically showing a configuration of a combustion unit of the fuel cell according to the embodiment.
  • FIG. 5 is a diagram schematically showing a configuration of a combustion unit of the fuel cell according to the embodiment.
  • FIG. 6 is a plan view showing an example of a fuel cell having the configuration of FIG. 1.
  • FIG. 7 is a sectional view taken along the line AA ′ of the fuel cell of FIG. 6.
  • FIG. 8 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment.
  • FIG. 9 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment.
  • FIG. 10 is a sectional view showing an example of the fuel cell according to the present embodiment.
  • FIG. 11 is a sectional view taken along line AA ′ of FIG. 10.
  • FIG. 12 is a plan view showing the configuration of the fuel cell according to the present embodiment.
  • FIG. 13 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment.
  • FIG. 14 is a sectional view showing an example of a fuel cell having the configuration of FIG.
  • FIG. 15 is a plan view showing an example of a fuel cell having the configuration of FIG.
  • FIG. 16 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment.
  • FIG. 17 is a sectional view showing an example of a fuel cell having the configuration of FIG.
  • FIG. 18 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment.
  • FIG. 19 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment.
  • FIG. 20 is a cross-sectional view showing one example of a configuration of a fuel cell having the configuration of FIG. 19.
  • FIG. 21 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment.
  • FIG. 22 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment.
  • FIG. 23 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment.
  • FIG. 24 is a diagram schematically showing a configuration of a fuel cell according to the present embodiment. Explanation of symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

 温度が低い場合でも、燃料電池の温度を上昇させて利用性を高める。  燃料電池1311において、単セル構造101に接して燃焼部1303が設けられている。また、燃料タンク1309は、単セル構造101を構成する燃料極102に接触して設けられ、燃料極102に燃料124を直接供給する。燃料タンク1309に設けられた燃焼用燃料導出口1315から燃焼用燃料供給管1313を経由して燃料124の一部が燃焼部1303に供給される。

Description

明 細 書
燃料電池
技術分野
[0001] 本発明は、燃料電池に関する。
背景技術
[0002] 近年の情報化社会の到来とともに、パーソナルコンピュータ等の電子機器で扱う情 報量が飛躍的に増大し、それに伴い、電子機器の消費電力も著しく増加してきた。 特に、携帯型の電子機器では、処理能力の増加に伴って消費電力の増加が問題と なっている。現在、このような携帯型の電子機器では、一般的にリチウムイオン電池 が電源として用いられている力 リチウムイオン電池のエネルギー密度は理論的な限 界に近づいている。そのため、携帯型の電子機器の連続使用期間を延ばすために、 CPUの駆動周波数を抑えて消費電力を低減しなければならないという制限があった
[0003] このような状況の中で、リチウムイオン電池に変えて、エネルギー密度が大きぐ熱 交換率の高い燃料電池を電子機器の電源として用いることにより、携帯型の電子機 器の連続使用期間が大幅に向上することが期待されて!、る。
[0004] 燃料電池は、燃料極および酸化剤極 (以下、これらを「触媒電極」とも呼ぶ。)と、こ れらの間に設けられた電解質から構成され、燃料極には燃料が、酸化剤極には酸化 剤が供給されて電気化学反応により発電する。燃料としては、一般的には水素が用 いられるが、近年、安価で取り扱いの容易なメタノールを原料として、メタノールを改 質して水素を生成させるメタノール改質型や、メタノールを燃料として直接利用する 直接型の燃料電池の開発も盛んに行われて 、る。
[0005] 燃料として水素を用いた場合、燃料極での反応は以下の式(1)のようになる。
3H → 6H+ + 6e— (1)
2
[0006] 燃料としてメタノールを用いた場合、燃料極での反応は以下の式(2)のようになる。
CH OH + H O → 6H+ + CO + 6e— (2)
3 2 2
[0007] また、いずれの場合も、酸化剤極での反応は以下の式(3)のようになる。 3/20 + 6H+ + 6e— → 3H O (3)
2 2
[0008] 特に、直接型の燃料電池では、メタノール水溶液力 水素イオンを得ることができる ので、改質器等が不要になり、携帯型の電子機器へ適用することの利点が大きい。 また、液体のメタノール水溶液を燃料とするため、エネルギー密度が非常に高いとい う特徴がある。
[0009] ここで、一般に、燃料電池は他の電源に比べて起動性が悪 、と!/、う課題がある。特 に、直接型の燃料電池の発電効率は、温度の低下とともに減少し、温度が低いと、所 望の電圧 z電流を供給することができずに機器を起動できない可能性もある。
[0010] このような燃料電池の起動性の悪さを改善するために、たとえば、燃料電池に電熱 ヒータを付加して強制的に所定の温度まで昇温させる方式が提案されている(特許 文献 1)。また、たとえば、燃料電池起動時に、空気室に燃料のメタノールを直接供給 し、空気極でメタノールを直接燃焼することにより、燃料電池を急速に温度上昇させ ることができ、短時間で最適運転温度とする方式が提案されている(特許文献 2)。 特許文献 1 :特開平 1-187776号公報
特許文献 2:特開平 5— 307970号公報
発明の開示
発明が解決しょうとする課題
[0011] ところが、従来の電熱ヒータを付加する方式では、電熱ヒータを付加するため装置 が大型化してしまい、また、電熱ヒータを加熱するための電源を別途準備しなければ ならないという課題があった。また、空気極でメタノールを直接燃焼する方式におい ても、空気極にメタノールを供給するための配管を設ける必要があり、複数の燃料電 池単セルを含むセルスタックに適用する場合、構造が複雑となり、また装置が大型化 してしまっていた。
[0012] 一方、燃料電池を携帯電話等の携帯型の機器に利用する場合は、屋外で利用す ることも多く、 0°C前後の低温雰囲気下でも使用可能であることが要求される。そのた め、燃料電池を携帯型の機器に用いる場合、周囲温度が低くても短時間で燃料電 池の温度を上昇させて出力を通常のレベルに到達させるための簡便な機構を有する 携帯型燃料電池の提供がますます望まれる。 [0013] 本発明は上記事情を踏まえてなされたものであり、その目的は、簡便な機構で燃料 電池本体の温度を上昇させる加熱部を設けることで、外気の温度が低 ヽ場合でも利 用性を向上させることができる技術を提供することにある。
課題を解決するための手段
[0014] 本発明によれば、固体電解質膜、該固体電解質膜に配設された燃料極、および酸 ィ匕剤極を含む単位セルと、前記単位セルを加熱する加熱手段と、前記燃料極に燃 料を供給する燃料供給系と、を有し、前記燃料の一部が前記燃料供給系から前記加 熱手段に供給され、前記加熱手段に供給される前記燃料が前記加熱手段で燃焼す る際の熱を前記単位セルに伝導させることにより、前記単位セルが加熱されるように 構成されたことを特徴とする燃料電池が提供される。
[0015] 本発明の燃料電池は、単位セルに加熱手段の熱が伝導されて、単位セルが加熱さ れる構成を有する。また、燃料極に供給される燃料の一部が加熱手段に供給されて 、燃焼する。このため、燃料の燃焼熱を用いて確実に単位セルを加熱することができ る。よって、燃料電池を使用する外気の温度が低い場合にも、簡素な機構で電池の 起動特性を向上させることができる。
[0016] 本発明の燃料電池は一つの単位セルを含んで!/、てもよ!/、し、複数の単位セルを含 んでいてもよい。
[0017] 本発明の燃料電池において、前記加熱手段が前記単位セルに接して設けられた 構成とすることができる。また、本発明の燃料電池において、前記加熱手段は、発熱 体と、前記発熱体に接して設けられた熱伝導体と、を有する構成とすることができる。 このようにすれば、単位セルに直接または熱伝導体を介して接して発熱体が設けら れる構成とすることができる。このため、発熱体で発生する燃焼熱を、発熱体に接し て設けられた熱伝導体を経由して、熱伝導体に接して配置された単位セルに効率よ く伝導させ、単位セルを加熱することができる。よって、燃料電池を使用する環境の 温度が低温である場合にも、単位セルを確実に加熱し、燃料電池の起動特性を向上 させることがでさる。
[0018] 本発明の燃料電池において、前記加熱手段は、前記燃料を燃焼させる加熱用触 媒を含んでもよい。このようにすれば、加熱手段において触媒を用いて燃料を確実に 燃焼させることができる。このため、単位セルをさらに確実に加熱することができる。
[0019] 本発明の燃料電池において、前記発熱体が加熱用触媒を含む構成としてもよい。
こうすれば、発熱体に直接または熱伝導体を介して接する単位セルを容易に加熱す ることがでさる。
[0020] 本発明の燃料電池にお!ヽて、前記燃料極に液体燃料が直接供給されてもよ!ヽ。液 体燃料が直接供給される場合、低温中での起動特性を向上させる要求が特に高い 力 本発明の構成を採用することにより、燃料極に液体燃料が直接供給される場合 にも、簡素な構成で単位セルの加熱を行うことが可能となる。このため、外気が低温 の場合であっても、燃料電池に充分な出力特性を発揮させることができる。
[0021] 本発明の燃料電池において、複数の前記単位セルを備え、一枚の固体電解質膜 の一方の面に設けられた複数の第一の電極と、前記固体電解質膜の他方の面に、 複数の前記第一の電極にそれぞれ対向して設けられた複数の第二の電極と、を有し 、対向する一対の前記第一の電極および前記第二の電極と、前記固体電解質膜と カゝら前記単位セルが構成され、前記加熱手段が複数の前記単位セルを加熱するよう に構成されていてもよい。
[0022] 本発明の燃料電池は、複数の単位セルが一枚の固体電解質膜を共有する構成と なっている。こうすれば、複数の単位セルが平面内に配置された構成が安定的に実 現される。また、本発明の燃料電池においては、複数の単位セルが加熱手段により 加熱される。このため、燃料電池を構成する各単位セルを確実に加熱することができ る。よって、燃料電池を低温環境で使用する場合においても、良好な起動特性を確 保することができる。
[0023] 本発明の燃料電池において、前記加熱手段が前記固体電解質膜に接して設けら れていてもよい。固体電解質膜が加熱手段に接して設けられた構成とすれば、固体 電解質膜を加熱することにより、その膜を共有する複数の単位セルを同時に一気に 加熱することが可能となる。よって、複数の単位セルが平面配置された燃料電池にお いても、各単位セルを確実に加熱することができる。このため、燃料電池を低温中で 使用する場合においても、良好な起動特性を確保することができる。
[0024] 本発明の燃料電池において、前記加熱手段が複数の前記第一の電極に接して設 けられていてもよい。こうすることにより、一方の電極側力も複数の単位セルを同時に カロ熱することがでさる。
[0025] 本発明の燃料電池において、前記加熱手段が前記酸化剤極に接して設けられて もよい。また、本発明において、前記第一の電極が前記酸化剤極であってもよい。こ うすれば、燃料極に液体燃料が直接供給される燃料電池においても、熱容量が小さ く加熱されやす!、酸化剤極から加熱を行! ゝ、セル全体を効率よく加熱することができ る。
[0026] 本発明の燃料電池において、前記燃料極を通過した前記燃料を前記加熱手段に 回収する燃料回収手段を有してもよい。こうすれば、燃料極を通過した燃料中に含ま れる未使用のものを加熱手段における燃焼用に利用することができる。このため、燃 料の使用効率を向上させることができる。
[0027] 本発明の燃料電池にお!ヽて、前記加熱手段に酸化剤を供給する酸化剤供給手段 を有してもよい。こうすることにより、加熱手段において燃料の燃料反応をさらに迅速 に行うことができる。このため、単位セルをさらに迅速に加熱することができる。
[0028] 本発明の燃料電池にお!、て、前記加熱手段に冷却水を供給する冷却水供給手段 を有してもよい。こうすれば、単位セルを加熱した後、加熱手段を確実に冷却すること ができる。このため、加熱手段の過加熱を防止し、燃料電池を安全に運転することが できる。
[0029] 本発明において、前記加熱手段における加熱温度もしくは前記燃料電池の温度を 測定する温度センサと、前記温度センサにより測定された温度に基づき前記加熱手 段への燃料の供給を制御する制御部と、をさらに備える構成とすることができる。こう すれば、燃料電池の温度に応じて加熱手段を駆動させることができる。ここで、燃料 電池の温度とは、燃料電池内、燃料電池表面、燃料電池の廃液、燃料電池の排気、 または外気の!/、ずれかとすることができる。またはこれらの温度の複数を適宜用いる ことちでさる。
[0030] 本発明の燃料電池において、前記供給系が着脱可能な燃料カートリッジを含んで もよい。こうすることにより、燃料が消費された際にもカートリッジを交換し、燃料を補 充することができる。本発明の燃料電池において、前記燃料カートリッジに保持され た燃料が前記加熱手段に供給される構成としてもよ!ヽ。
[0031] 本発明の燃料電池において、前記燃料カートリッジは、第一の液体燃料を保持す る第一の室と、第二の液体燃料を保持する第二の室とを有し、前記第一の室は、前 記第一の液体燃料を前記加熱手段に導出するための燃料導出口を有し、前記第二 の室は、前記第二の液体燃料を前記燃料電池本体に導出するための燃料導出口を してちよい。
[0032] 燃料カートリッジは第一の室と第二の室を有するため、供給用の低濃度燃料の他 に、高濃度燃料を備えることができる。高濃度燃料を加熱手段に供給することにより、 速や力に燃料電池を加熱することができるため、低温起動性がさらに良好になる。本 発明において、前記燃料電池は、前記第一の液体燃料と前記第二の液体燃料とを 混合する混合槽を有してもょ ヽ。
[0033] なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を方法 、装置の間で相互に置換したものもまた、本発明の態様として有効である。たとえば、 本発明によれば、上記燃料電池システムを搭載した電気機器が提供される。
発明の効果
[0034] 以上述べたように、本発明によれば、外気の温度が低!ヽ場合でも、燃料電池の温 度を上昇させて利用性を高めることのできる技術が実現される。
発明を実施するための最良の形態
[0035] 以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面 において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
[0036] なお、以下の実施形態で説明する燃料電池の用途は特に限定されないが、たとえ ば携帯電話、ノート型等の携帯型パーソナルコンピュータ、 PDA (Personal Digita
1 Assistant)、各種カメラ、ナビゲーシヨンシステム、ポータブル音楽再生プレーヤ 一等の小型電気機器に適切に用いられる。
[0037] (第一の実施形態)
図 1は、本実施形態の燃料電池の構成を模式的に示す図である。図 1の燃料電池 1301は、単セル構造 101および単セル構造 101に接して設けられた燃焼部 1303 を有する。単セル構造 101は、後述するように、燃料極 102、酸化剤極(図 1では不 図示)、およびこれらを挟持する固体電解質膜 (図 1では不図示)を有する。また、燃 料電池 1301は、燃料タンク 1327およびポンプ 1329を有する。
[0038] 燃料電池 1301において、燃料タンク 1327に収容された燃料 124は、燃焼部 130 3および単セル構造 101に供給される。このときの燃料供給系において、燃料タンク 1 327と燃焼部 1303との間に、燃料 124の流量を調節するポンプ 1329が設けられて いる。なお、図 1の燃料電池では、燃料タンク 1327と単セル構造 101を接続する燃 料供給系にはポンプ 1329が設けられていないが、必要に応じてポンプ 1329を設け てもよく、これは後述の実施形態においても同様である。
[0039] また、図示しないが、燃料タンク 1327に収容された燃料 124を単セル構造 101へ 供給し、単セル構造 101から燃焼部 1303へ燃料タンク 1327から供給された燃料 12 4の一部を供給してもよい。さらに、燃料極 102で未使用となる燃料 124を燃料タンク 1327へ戻すような構成としてもよい。また、燃料極 102が燃料タンク 1327を含む構 成としてもよく、この場合、燃料極 102から燃料 124の一部が燃焼部 1303へ供給さ れる構成になる。
[0040] 燃焼部 1303は、燃料 124を燃焼させることが可能な触媒を有する。燃焼部 1303 に燃料 124および燃焼用の酸化剤が供給されると、燃料 124が燃焼し、燃焼熱が生 じる。そして、燃焼部 1303に接触している単セル構造 101が燃焼熱により加熱され る。燃焼用の酸化剤は、たとえば空気や酸素ガスとすることができる。また、燃焼部 1 303には燃焼熱を制御するための温度計 1341が設けられている。なお、後述する 実施形態にも燃焼部 1303に温度計 1341が設けられて 、る。
[0041] 燃料電池 1301では、燃料 124の供給により発熱する燃焼部 1303が単セル構造 1 01に接した構造となっているため、簡便な構成で単セル構造 101を加熱することが できる。このため、燃料電池 1301を低温中で使用する場合にも容易に単セル構造 1 01を加熱することが可能であり、低温中での起動特性を向上させることができる。
[0042] なお、図 1では、 1つの単セル構造 101が示されている力 複数の単セル構造 101 が直列に接続された構成としてもよい。また、複数の単セル構造 101を平面上に集 積した態様や、複数の単セル構造 101を面方向に集積したスタックとすることもできる [0043] 図 2は、図 1の構成を有する燃料電池の一例を示す断面図である。図 2の燃料電池 1311は、単セル構造 101、燃焼部 1303、燃料タンク 1309、燃焼用燃料供給管 13 13およびポンプ 1329を有する。燃焼部 1303は、単セル構造 101および燃料タンク 1309に接して設けられている。なお、燃焼部 1303は単セル構造 101に接していれ ば、燃料タンク 1309に接していなくてもよい。また、燃焼部 1303には燃焼熱を測定 する温度計 1341が設けられて ヽる。
[0044] また、燃焼部 1303と単セル構造 101との間に、燃焼部 1303で生じた燃焼熱を伝 える伝熱部材を設けてよい。こうすることにより、燃焼熱を単セル構造 101に効率よく 伝導させることができる。伝熱部材として、たとえば熱伝導率が高い金属、たとえば銅 、アルミニウム、チタンなどを用いることができる。
[0045] 燃料電池 1311において、燃料タンク 1309は、単セル構造 101を構成する燃料極 102に接触して設けられ、燃料極 102に燃料 124を直接供給することができる構成と なっている。初期状態では、燃料タンク 1309には、単セル構造 101に供給するため に好適な濃度の燃料 124が充填されている。単セル構造 101の詳細な構成につい ては後述する。
[0046] 本実施形態および以降の実施形態において、燃料 124は、単セル構造 101に供 給される液体燃料を指し、燃料成分である有機溶媒および水を含む。燃料 124に含 まれる燃料成分としては、メタノール、エタノール、ジメチルエーテル、または他のァ ルコール類、あるいはシクロパラフィン等の液体炭化水素等の有機液体燃料を用い ることができる。以下、燃料成分力 タノールである場合を例に説明する。また、酸ィ匕 剤 126としては、通常、空気を用いることができる力 酸素ガスを供給してもよい。
[0047] なお、燃料 124の濃度は適宜選択される。たとえば、燃料成分力メタノールである 場合、燃料タンク 1309には、燃料 124として、たとえば、 3体積%以上 50体積%以 下の濃度のメタノール水溶液を収容することができる。
[0048] 燃料タンク 1309は、燃料成分に対する耐性を有する材料により形成することが好ま しい。たとえば、ポリプロピレン、ポリエチレン、塩ィ匕ビュルまたはシリコーンにより形成 することができる。
[0049] 燃焼部 1303の燃焼用燃料流路 1307には、燃料タンク 1309に設けられた燃焼用 燃料導出口 1315から燃焼用燃料供給管 1313を経由して燃料 124の一部が供給さ れる。燃焼用燃料供給管 1313には、ポンプ 1329が設けられており、燃焼部 1303 に供給する燃料 124の量を調節することができる。
[0050] ポンプ 1329としては、たとえば消費電力が非常に小さい小型の圧電モーター等の 圧電素子を用いることができる。たとえば、バイモルフ型の圧電ポンプを用いることが できる。また、図 2には図示していないが、燃料電池 1311に温度計を設け、また、ポ ンプ 1329の動作を温度計で測定される温度に基づいて制御する制御部を有する構 成としてもよい。
[0051] 温度計の種類としては熱電対、サーミスタ等、電気信号として測定できるものが望ま しい。設置場所としては、燃焼部、燃料電池内、燃料電池表面、燃料電池の廃液、 燃料電池の排気、または外気のいずれかとすることができる。またはこれらの温度の 複数の適宜用いることもできる。
[0052] 図 3は、燃焼部 1303の構成を模式的に示す図である。図 3において、燃焼部 130 3の形状は中空の円筒型であり、筒の外壁と内壁との間の燃焼用触媒保持部 1305 に、燃料 124を燃焼させる触媒が保持されている。また、円筒の長さ方向に貫通する 燃焼用燃料流路 1307の一端は燃焼用燃料供給管 1313に連通している。
[0053] 燃焼用触媒保持部 1305の側面の内壁は、燃料 124を燃焼用燃料供給管 1313か ら燃焼用触媒保持部 1305の内部に導く孔を有する。孔は、内壁の全面に設けられ ていることが好ましい。また、酸化剤極 108の側により多くの開口を有する構成として もよい。こうすれば、単セル構造 101の酸化剤極 108を優先的に加熱することができ る。酸化剤極 108は燃料極 102に比べて熱容量が小さぐ加熱されやすいため、酸 ィ匕剤極 108を優先的に加熱することにより、単セル構造 101全体を効率よく加熱する ことができる。
[0054] 燃焼用触媒保持部 1305の内壁の材料として、たとえば金属メッシュ、多孔質金属 シート、発泡性金属素材などを用いることができる。このうち、多孔質金属シートは、 その両面を貫通し、燃料 124を通過させる孔が形成された金属シートであれば特に 制限されず、様々な形態、厚みのシートを用いることが可能である。たとえば多孔質 の金属薄板を用いることができる。また、金属繊維シートを用いてもよい。金属繊維シ ートは、一本以上の金属繊維がシート状に成形されたものであれば特に制限はなぐ 金属繊維の不織シートまたは織布を用いることができる。
[0055] 内壁の材料は、燃料 124に対する耐食性を有する材料とすることが好ま 、。また 、燃料 124の燃焼の触媒となる金属であればさらに好ましい。さらに、内壁の材料とし て、金属のほかにもたとえば高分子、セラミックス、ガラスなども適用できる。具体的に は、たとえばィ匕学繊維やガラス繊維のシートとしてもょ 、。
[0056] また、燃焼用触媒保持部 1305の外壁は、燃料 124を燃焼させる燃焼用の酸化剤 1 26を燃焼用触媒保持部 1305の内部に導く導気孔を有する。導気孔は、燃焼用触 媒保持部 1305の外壁のうち、表面が外部に露出した部分の全面に設けられている ことが好ましい。こうすること〖こより、燃料 124の燃焼を燃焼用触媒保持部 1305全体 で効率よく生じさせることができる。燃焼用の酸化剤 126には、たとえば酸化剤極 10 8に供給する酸化剤 126と同じものを用いることができる。
[0057] 燃焼用触媒保持部 1305の外壁は、たとえば多孔質材料により構成することができ る。多孔質材料として、たとえば燃焼用触媒保持部 1305の内壁に用いられる材料を 利用することができる。また、図 2に示した燃料電池 1311では、燃焼部 1303の外壁 が単セル構造 101に直接接している。このような場合、熱伝導性に優れた材料により 構成する。こうすること〖こより、燃焼部 1303で発生した燃焼熱を、単セル構造 101に 確実に伝導し、単セル構造 101を加熱することができる。
[0058] なお、外壁に金属等の導電部材を用いる場合には、燃料極 102と酸化剤極 108と の間が電気的に導通することを遮断するため、これらの間が絶縁される構成とする。 たとえば、燃焼部 1303の表面が、熱伝導性を有する絶縁性シートを介して単セル構 造 101に接する構成とすることができる。
[0059] 燃焼用触媒保持部 1305は、たとえば多孔質の支持体の表面に、燃焼用の触媒が 保持された構成とすることができる。支持体として、たとえば、スチールウール、発泡 金属、金属細線焼結体などを用い、これが内壁と外壁との間に充填された構成とす ることができる。また、支持体の表面に燃焼用の触媒を保持される方法としては、たと えば支持体の表面に燃焼用の触媒金属を吹き付けて焼結させる方法や、支持体の 表面に燃焼用の触媒金属をめつきする方法などが挙げられる。 [0060] また、支持体の表面に保持される燃焼用の触媒として、燃料 124中の燃料成分を 燃焼可能な触媒が適用される。具体的には、たとえば、燃料 124としてメタノール水 溶液を用いる場合、燃焼用触媒として、白金や白金とルテニウムの合金等が例示さ れる。
[0061] また、多孔質の支持体を燃料用の触媒金属で構成することもできる。こうすれば、 燃焼用触媒保持部 1305の構成の簡素化が可能である。
[0062] なお、図 3では、燃焼部 1303が中空である場合を例に説明した力 燃焼部 1303 は中実であってもよい。図 4は、燃焼部 1303が中実である場合を示す図である。この 場合、燃焼部 1303の内部全体を燃焼用触媒保持部 1305とすることができる。また、 この構成の場合も、燃焼用燃料供給管 1313を通過した燃料 124が燃焼部 1303の 一端から燃焼用触媒保持部 1305に供給される。
[0063] また、燃焼部 1303の形状は、単セル構造 101に燃焼熱を伝えることが可能な構成 であれば、図 3および図 4に示した円筒型には限定されない。図 5は、燃焼部 1303 の別の構成を示す図である。図 5の燃焼部 1303は、側面に平坦面を有するため、単 セル構造 101との良好な接触性が確保される。このため、燃焼部 1303から単セル構 造 101にさらに効率よく熱を伝播させることができる。
[0064] 図 2にもどり、単セル構造 101の構成を説明する。単セル構造 101は、燃料極 102 、酸化剤極 108および固体電解質膜 114を含む。前述したように、単セル構造 101 の燃料極 102には燃料 124が供給される。また、酸化剤極 108には、酸化剤 126が 供給される。
[0065] 酸化剤極 108への酸化剤 126の供給機構は、図示しないが自然吸気による供給 やファン等を用いて強制的に供給を行ってもよい。また、圧電ポンプによる酸化剤の 供給を行ってもよい。圧電ポンプを用いる場合は、ポンプ力ゝらの酸化剤 126の供給量 をインバータまたはインバータにおける振動数または電圧を変化させることにより良好 に制御することができる。インバータまたはインバータの振動数を変化させた場合、 単位時間あたりのポンプの吐出頻度を変化させることができ、電圧を変化させた場合 は、圧電素子の変位量の変化により 1回の吐出あたりの吐出量が変化する。
[0066] 図 2の単セル構造 101においては、基体 104および基体 110がガス拡散層と集電 電極とを兼ねた構成となっている。図示していないが、基体 104および基体 110には それぞれ燃料極側端子および酸化剤極側端子を設けることができる。基体 104およ び基体 110には、たとえば金属メッシュ、多孔質金属シート、発泡性金属素材等を 用いることができる。こうすれば、バルタ金属性の集電部材を設けなくても、効率よく 集電を行うことができる。
[0067] 固体電解質膜 114は、燃料極 102と酸化剤極 108を隔てるとともに、両者の間で水 素イオンを移動させる役割を有する。このため、固体電解質膜 114は、水素イオンの 伝導性が高い膜であることが好ましい。また、化学的に安定であって機械的強度が 高いことが好ましい。
[0068] 固体電解質膜 114を構成する材料としては、スルフォン基、リン酸基、ホスホン基、 ホスフィン基などの強酸基や、カルボキシル基などの弱酸基などの極性基を有する 有機高分子が好ましく用いられる。こうした有機高分子として、スルフォン化ポリ(4ーフ エノキシベンゾィルー 1, 4 フエ-レン)、アルキルスルフォン化ポリべンゾイミダゾール などの芳香族含有高分子;
ポリスチレンスルフォン酸共重合体、ポリビュルスルフォン酸共重合体、架橋アルキ ルスルフォン酸誘導体、フッ素榭脂骨格およびスルフォン酸力 なるフッ素含有高分 子などの共重合体;
アクリルアミドー 2—メチルプロパンスルフォン酸のようなアクリルアミド類と n ブチルメタ タリレートのようなアタリレート類とを共重合させて得られる共重合体;スルフォン基含 有パーフルォロカーボン (ナフイオン (デュポン社製:登録商標)、ァシプレックス (旭 化成社製:登録商標));
カルボキシル基含有パーフルォロカーボン (フレミオン S膜 (旭硝子社製) );などが例 示される。このうち、スルフォン化ポリ(4 フエノキシベンゾィルー 1, 4 フエ二レン)、ァ ルキルスルフォン化ポリべンゾイミダゾールなどの芳香族含有高分子を選択した場合 、有機液体燃料の透過を抑制でき、クロスオーバーによる電池効率の低下を抑えるこ とがでさる。
[0069] 燃料極 102および酸化剤極 108は、それぞれ、触媒を担持した炭素粒子と固体電 解質の微粒子とを含む燃料極側触媒層 106および酸化剤極側触媒層 112をそれぞ れ基体 104および基体 110上に形成した構成とすることができる。触媒として、白金 や白金とルテニウムの合金等が例示される。燃料極 102および酸化剤極 108の触媒 には同じものを用いても異なるものを用いてもよい。
[0070] 基体 104および基体 110の表面には撥水処理を施してもよい。前述したように、燃 料 124としてメタノールを用いた場合、燃料極 102で二酸化炭素が発生する。燃料 極 102で発生した二酸ィ匕炭素の気泡が燃料極 102付近に滞留すると、燃料極 102 への燃料 124の供給が阻害され、発電効率の低下の原因となる。そこで、基体 104 の表面に、親水性コート材あるいは疎水性コート材による表面処理を行うことが好まし い。親水性コート材により表面処理することで、基体 104の表面における燃料 124の 流動性が高められる。これにより二酸ィ匕炭素の気泡は燃料 124とともに移動しやすく なる。また、疎水性コート材により処理することにより、基体 104の表面に、気泡の形 成の原因となる水分の付着を軽減できる。したがって、基体 104の表面上における気 泡の形成を軽減できる。
[0071] 親水性コート材としては、たとえば酸ィ匕チタン、酸ィ匕ケィ素等が挙げられる。一方、 疎水性コート材としては、ポリテトラフルォロエチレン、シラン等が例示される。
[0072] 以上のようにして単セル構造 101が得られる。これを図 2のように燃焼部 1303に接 して配置することにより、燃焼部 1303にお 、て生じる燃焼熱を単セル構造 101に伝 導させることができる。
[0073] 次に、燃料電池 1311の使用方法について説明する。燃料電池 1311の起動特性 が確保される温度、たとえば 25°C程度以上の環境中で燃料電池 1311を使用する際 には、ポンプ 1329を駆動させずに使用する。この場合、燃料タンク 1309中の燃料 1 24は、燃料極 102にのみ供給される。燃料電池 1311をその起動特性が良好な温度 で使用する際には、燃料 124を燃料極 102にのみ選択的に供給することにより、燃 料極 102の浪費を抑制し、燃料電池 1311を安定的に運転することができる。
[0074] 一方、燃料電池 1311を低温中で使用する際には、ポンプ 1329を駆動させて使用 する。こうすることにより、燃料タンク 1309中の燃料 124の一部が燃焼部 1303に供 給される。また、燃焼部 1303には、外部から酸化剤 126が供給される。すると、燃焼 用触媒保持部 1305中の支持体に保持された燃焼用触媒の作用により燃料 124が 燃焼し、燃焼熱が生じる。この燃焼熱が単セル構造 101に伝わることにより、単セル 構造 101の温度が上昇する。このため、簡素な構成で、低温中で使用する際の単セ ル構造 101の起動特性を向上させることができる。
[0075] このように、燃料電池 1311は、外気が低温の環境で使用される場合にも、すぐれた 起動特性を発揮することができる。なお、ここでいう「低温」とは、燃料電池 1311の電 池電圧が充分に得られない温度条件のことを指す。具体的には、たとえば 0— 20°C 程度の低温中での起動特性を向上させることができる。
[0076] なお、燃料電池 1311の使用において、上記温度は例示であり、燃焼部 1303への 燃料 124の供給の有無および供給量は適宜調整することができる。また、本実施形 態の燃料電池は、ポンプ 1329の動作を温度計 1341で測定される温度に基づいて 制御できる制御部を有することができる。
[0077] 図 6は、図 1の構成を有する燃料電池の別の例を示す平面図である。図 6は、複数 の単セル構造 101を平面的に配置した燃料電池の構成を示す。また、図 6は、単セ ル構造 101の酸化剤極 108の側から燃料電池を見た図である。図 6の燃料電池は、 燃料電池本体 1109および燃料カートリッジ 1103を含む。
[0078] 燃料電池本体 1109は、平面内に配置された複数の単セル構造 101、燃料容器 8 11、仕切板 853、燃料流出管 1111、燃焼用燃料供給管 1343、燃料排出管 1337、 ポンプ 1117、流量調節バルブ 1331、コネクタ 1123、および温度計 1341を含む。
[0079] 図 7は、図 6の A— A'断面図である。 1枚の固体電解質膜 114の一方の面に燃料極 102が設けられ、他方の面に酸化剤極 108が設けられている。燃焼部 1303は、伝熱 板 1317を介して固体電解質膜 114の端面に接している。また、燃料容器 811は燃 料極 102と接して!/ヽる。
[0080] 図 6にもどり、燃料カートリッジ 1103は、コネクタ 1123により燃料電池本体 1109と 着脱可能に構成されている。初期状態では、燃料カートリッジ 1103には、単セル構 造 101に供給するために好適な濃度の燃料 124が充填されている。燃料 124の濃度 は、図 2の燃料電池 1311の場合と同様に、適宜選択することができる。
[0081] また、燃料カートリッジ 1103は、燃料成分に対する耐性を有する材料により形成す ることが好ましい。たとえば、ポリプロピレン、ポリエチレン、塩ィ匕ビニルまたはシリコー ンにより形成することができる。
[0082] 燃料容器 811には、燃料流出管 1111を経由して燃料 124が供給される。燃料容 器 811に流入した燃料 124は、燃料容器 811内に設けられた複数の仕切り板 853に 沿って流れ、複数の単セル構造 101に順次供給される。
[0083] 燃料流出管 1111には、ポンプ 1117が設けられている。また、燃料流出管 1111の ポンプ 1117よりも下流すなわち燃料容器 811側にお 、て、燃焼用燃料供給管 134 3が分岐しており、燃焼用燃料供給管 1343から燃焼部 1303に燃料 124の一部が供 給される。燃料流出管 1111と燃焼用燃料供給管 1343との分岐部には流量調節バ ルブ 1331が設けられており、燃焼部 1303の側に供給する燃料 124の量を調節する ことができる。
[0084] ポンプ 1117として、図 2の燃料電池 1311の場合と同様に、たとえば消費電力が非 常に小さい小型の圧電モーター等の圧電素子を用いることができる。また、図 6には 図示していないが、本実施形態の燃料電池は、ポンプ 1117および流量調節ノ レブ 1331の動作を温度計 1341で測定される温度に基づいて制御する制御部を有する ことができる。
[0085] 燃焼部 1303には、燃料 124を燃焼させる触媒が保持されている。燃焼部 1303の 一端は燃焼用燃料供給管 1343に接続する。また、燃焼部 1303の他端は、燃料排 出管 1337に接続し、燃焼部 1303を通過した残存燃料が燃料容器 811に導入され る。なお、燃料容器 811に導入される残存燃料は、たとえば、燃焼部 1303の燃焼熱 により気化した状態で、燃焼により生じた二酸ィ匕炭素等とともに燃料容器 811に導入 される。
[0086] 図 7を用いて説明したように、図 6の燃料電池においては、 1枚の固体電解質膜 11 4の両面に複数の燃料極 102と酸化剤極 108が設けられており、固体電解質膜 114 を共有する複数の単セル構造 101が同一平面内に形成されている。そして、伝熱板 1317を介して燃焼部 1303が固体電解質膜 114の端面に接して 、るため、固体電 解質膜 114の端面力も各単セル構造 101に燃焼部 1303で発生する燃焼熱を伝導 させることができる。このため、固体電解質膜 114を共有する単セル構造 101を同時 に加熱することができる。よって、外気が低温の場合にも、燃料電池の起動特性を向 上させることができる。
[0087] なお、複数の単セル構造 101を有する燃料電池においても、燃焼部 1303と燃料 容器 811との間に伝熱部材を設けることができる。
[0088] 本実施形態に係る燃料電池において、単セル構造 101を通過した燃料 124のうち 、電池反応に用いられな力つた燃料成分を燃焼部 1303に供給してもよい。図 8は、 このような燃料電池の構成を模式的に示す図である。図 8の燃料電池は、図 1の燃料 電池 1301において、単セル構造 101の燃料極 102と燃焼部 1303とを連通可能と するものである。こうすること〖こより、単セル構造 101の燃料極 102から排出される残 存燃料を燃焼部 1303に供給することができるため、燃料の使用効率を向上させるこ とができる。このため、燃料電池を長期間安定的に運転させることができる。なお、単 セル構造 101と燃焼部 1303との間の燃料の通過経路にも、ポンプ 1329を設けるこ とがでさる。
[0089] また、図 8の燃料電池は、燃焼部 1303に供給された燃料 124を、燃焼部 1303を 通過後、単セル構造 101の燃料極 102に導くこともできる。こうすることにより、外部に 排出される残存燃料をさらに減少させることができる。このため、燃料を効率よく使用 することができる。なお、燃焼部 1303を通過した残存燃料は、燃料 124の燃焼により 発生する気体とともに、気化された状態で単セル構造 101に供給されてもょ ヽ。
[0090] また、図 9は、本実施形態の燃料電池のまた別の構成を模式的に示す図である。
9の燃料電池において、燃料供給系は、燃料タンク 1327と、燃料 124の流量を調 節するポンプ 1329と、ポンプ 1329より下流側に設けられ、燃焼部 1303および単セ ル構造 101への燃料 124の供給量を調節する流量調節バルブ 1331とを有する。
[0091] この構成の場合にも、流量調節バルブ 1331を調節し、燃焼部 1303に供給する燃 料 124の量を調節することができる。また、燃焼部 1303を通過した残存燃料は、流 量調節バルブ 1331と単セル構造 101とを接続する燃料供給系から、単セル構造 10 1に導入される。
[0092] (第二の実施形態)
第二の実施形態では、図示しないが第一の実施形態に記載の燃料電池 1301 (図 1)の燃料極 102の反対側に燃焼部 1303を設け、図 1では不図示である酸ィ匕極側を 加熱する構成となっている。
また、第二の実施形態では、第一の実施形態に記載の燃料電池 1311 (図 2)は、 単セル構造 101の構成部材全体を加熱する構成となっている。ここで、一般に、燃料 極 102に液体燃料が供給される場合、燃料 124に比べて酸化剤 126の方が熱容量 は小さい。このため、燃料極 102側と酸化剤極 108側とで加熱のされ方が異なり、酸 ィ匕剤極 108の側が加熱されやすい場合がある。そこで、本実施形態では、このような 単セル構造 101の加熱を効率よく行う構成の燃料電池について、以下説明する。
[0093] 図 10および図 11は、本実施形態の燃料電池の構成を示す図である。図 11は、図 10の A— A'断面図である。
[0094] 図 10および図 11に示した燃料電池 1345において、酸化剤極 108の基体 110の 周縁部に接して伝熱板 1317が設けられ、さらに伝熱板 1317には温度計 1341を設 けている。また、管状の燃焼部 1303は、伝熱板 1317に接して酸化剤極 108の表面 に巡らされている。
[0095] 酸化剤極 108には、基体 110の表面のうち、伝熱板 1317および燃焼部 1303によ つて被覆されていない部分カゝら酸化剤 126が供給される。なお、第一の実施形態に 記載したように、基体 110はガス拡散層と集電電極とを兼ねた構成となっている。また 、基体 110は電池反応に必要な酸化剤 126を透過させる孔を有する。
[0096] 伝熱板 1317には、熱伝導性の高い材料を用いることが好ましい。たとえば、銅板、 アルミニウム板、チタン板、等を用いることができる。また、燃焼部 1303は、第一の実 施形態と同様の構成とすることができる。
[0097] 本実施形態の燃料電池 1345では、燃焼部 1303と基体 110との間に伝熱板 1317 が設けられているため、燃焼部 1303で生じる燃焼熱を効率よく酸化剤極 108に伝え 、酸化剤極 108を選択的にまたは重点的に加熱することができる。酸化剤極 108は、 電気化学反応により発生する熱により酸化剤極 108自身が熱せられ、さらに、燃焼部 1303で生じる燃焼熱により、酸化剤極 108が速やかに加熱され、また、単セル構造 101全体にその熱が伝わり、単セル構造 101全体を効率よく加熱することができる。 このため、低温環境中での燃料電池の起動特性をさらに向上させることができる。
[0098] 図 12は、本実施形態の燃料電池の別の構成を示す平面図である。図 12の燃料電 池は、図 6の燃料電池と同様に、複数の単セル構造 101を平面的に配置した構成と なっている。
[0099] 図 12の燃料電池では、燃焼部 1303が各単セル構造 101の酸化剤極 108 (図 12 では不図示)に直接接触している。このため、単セル構造 101を効率よく加熱するこ とができる。なお、図 12の構成の場合、燃焼部 1303において、単セル構造 101との 接触面を絶縁部材により構成し、単セル構造 101同士が燃焼部 1303を介して電気 的に接続しないようにする。絶縁部材として、たとえば熱伝導性に優れる絶縁シート を用いることができる。絶縁シートの材料として、たとえば、シリコーンゴムやエポキシ 榭脂等に熱伝導性フイラ一を添加した材料等が挙げられる。熱伝導性のフイラ一とし て、たとえばアルミニウムを用いることができる。
[0100] 本実施形態において、単セル構造 101の酸化剤極を直接加熱する構成は、燃料 供給系が図 1、図 8、および図 9および後述する他の実施形態の態様についても適 用することができる。
[0101] (第三の実施形態)
第一または第二の実施形態に記載の燃料電池において、燃料供給系が、燃料 12 4を保持する燃料容器および単セル構造 101に供給する燃料 124よりも高濃度の液 体燃料を保持する高濃度燃料容器を有する構成とすることもできる。
[0102] 図 13は、本実施形態に係る燃料電池の構成を模式的に示す図である。図 13の燃 料電池において、燃料タンク 1327は、低濃度燃料タンク 1333および高濃度燃料タ ンク 1335からなる。初期状態では、低濃度燃料タンク 1333には、単セル構造 101に 供給するために好適な濃度の低濃度燃料が充填されており、高濃度燃料タンク 133 5には、低濃度燃料タンク 1333中の液体よりも高い燃料成分濃度を有する高濃度燃 料 725が充填されている。なお、第三の実施形態における図 13、図 14の燃料電池 では、燃料タンク 1327と単セル構造 101を接続する燃料供給系にはポンプ 1329が 設けられていないが、必要に応じてポンプ 1329を設けてもよい。さらに、燃料極 102 で未使用となる燃料 124を燃料タンク 1327へ戻すような構成としてもよい。
[0103] 低濃度燃料および高濃度燃料 725の濃度は適宜選択される。たとえば、燃料成分 力 Sメタノールである場合、低濃度燃料中にはたとえば 50体積%以下程度の濃度のメ タノール水溶液または水を収容することができる。また、このとき、高濃度燃料タンク 1 335中には、燃料 124の濃度よりも高濃度のメタノール水溶液またはメタノールを収 容することができる。
[0104] 低濃度燃料タンク 1333には、高濃度燃料タンク 1335中の高濃度燃料 725がボン プ 1329によって供給される。そして、単セル構造 101には、低濃度燃料タンク 1333 にて所定の燃料成分濃度に調製された燃料 124が供給される。図 13において、低 濃度燃料タンク 1333から単セル構造 101に燃料 124を供給するためのポンプ 1329 を設けることちでさる。
[0105] また、高濃度燃料タンク 1335中の高濃度燃料 725の一部は、ポンプ 1329により燃 焼部 1303に供給される。高濃度燃料 725を燃焼部 1303に供給することにより、さら に速やかに単セル構造 101を加熱することができる。
[0106] 図 14は、図 13の構成を有する燃料電池の一例を示す図である。図 14の燃料電池 1349は、図 2の燃料電池と同様の基本構成を有し、基体 104に接する燃料タンク 13 09にかえて混合タンク 1319が設けられている。燃料電池 1349は、さらに高濃度燃 料タンク 1321を有し、高濃度燃料タンク 1321から混合タンク 1319に高濃度燃料 72 5を供給する高濃度燃料供給管 1323が設けられている。高濃度燃料供給管 1323 を流れる高濃度燃料 725の量は、ポンプ 1329を調節することにより調整できる。
[0107] また、燃料電池 1349では、燃焼用燃料供給管 1313は、高濃度燃料タンク 1321と 燃焼用燃料流路 1307に連通する構成となっている。このため、燃焼部 1303に、燃 料成分の濃度が高い高濃度燃料 725を高濃度燃料タンク 1321から直接供給するこ とがでさる。
[0108] 燃料電池 1349では、燃焼部 1303に高濃度燃料 725を供給することができるため 、燃焼部 1303において効率よく燃焼反応を生じさせることができる。このため、単セ ル構造 101をさらに速やかに加熱することができるため、低温中での起動特性をさら に向上させることができる。
[0109] また、図 15は、複数の単セル構造 101と平面的に配置した構成の燃料電池の場合 を示す図である。図 15の燃料電池では、図 6に示した燃料電池と同様に、単セル構 造 101を構成する固体電解質膜 114 (図 15では不図示)に接して燃焼部 1303が設 けられている。図 15に示したように、複数の単セル構造 101を有する燃料電池につ いても、単セル構造 101を構成する固体電解質膜 114に燃焼部 1303を接触させる ことにより、固体電解質膜 114を共有する複数の単セル構造 101を同時に加熱する ことが可能となる。また、高濃度燃料 725を燃焼部 1303に供給するため、効率よく加 熱することができる。
[0110] また、燃料カートリッジ 1103は、高濃度燃料タンク 1105と混合タンク 1107が嵌合 部 (不図示)により着脱可能に連結されてなる。高濃度燃料タンク 1105と混合タンク 1 107は、連結された状態で、燃料電池本体 1109に着脱される。初期状態では、混合 タンク 1107には、燃料電池本体 1109に供給するために好適な濃度の低濃度燃料 が充填されており、高濃度燃料タンク 1105には、混合タンク 1107中の液体よりも高 Vヽ燃料成分濃度を有する高濃度燃料 725が充填されて ヽる。
[0111] また、複数の単セル構造 101を循環した燃料は、燃料回収管 1113を介して混合タ ンク 1107に回収される。こうすることにより、単セル構造 101において消費されなかつ た燃料 124を回収燃料として好適に回収し、再利用することができる。
[0112] なお、図 15の燃料電池は制御部(不図示)を有してもよい。この場合、たとえば、燃 料回収管 1113から回収される回収燃料 1155の濃度が濃度計 (不図示)にて測定さ れ、測定される濃度に応じて高濃度燃料タンク 1105から混合タンク 1107への燃料 の供給を制御するように構成してもよい。また、混合タンク 1107中の燃料成分の濃度 を濃度計 (不図示)により測定し、測定された濃度に応じて混合タンク 1107に供給さ れる高濃度燃料 725の量を制御部が制御する構成としてもよい。
[0113] なお、本実施形態においても、単セル構造 101を通過した燃料 124のうち、電池反 応に用いられなカゝつた燃料成分を燃焼部 1303に供給してもよい。図 16は、このよう な燃料電池の構成を模式的に示す図である。図 16の燃料電池は、図 13の燃料電池 において、単セル構造 101の燃料極 102が燃焼部 1303に連通する構成である。
[0114] 図 17は、図 16の構成を有する燃料電池の一例を示す図である。
図 17は、図 14の燃料電池 1349において、基体 104を通過した残存燃料が燃料 回収管 1347から燃焼用燃料流路 1307に導入されるように構成したものである。
[0115] また、図 18は、本実施形態の燃料電池のまた別の構成を模式的に示す図である。 図 18の燃料電池では、燃料供給系が、高濃度燃料タンク 1335から導出される高濃 度燃料 725の流量を調節するポンプ 1329と、ポンプ 1329より下流側に設けられ、燃 焼部 1303および低濃度燃料タンク 1333への高濃度燃料 725の供給量を調節する 流量調節バルブ 1331とを有する構成としたものである。
[0116] 流量調節ノ レブ 1331を調節することにより、燃焼部 1303または低濃度燃料タンク 1333に供給する高濃度燃料 725の量を調節することができる。また、単セル構造 10 1を通過した燃料 124のうち、電池反応に用いられな力つた燃料成分は燃焼部 1303 に供給される。
[0117] 図 19は、本実施形態の燃料電池の燃料供給系の別の例を模式的に示す図である 。また、図 20は、図 19の燃料供給系を有する燃料電池の一例を示す図である。
[0118] 図 19の燃料電池は、低濃度燃料タンク 1333から単セル構造 101に燃料が供給さ れる経路と、単セル構造 101を通過した残存燃料が低濃度燃料タンク 1333に戻る 経路を備える。また、高濃度燃料タンク 1335中の高濃度燃料 725を低濃度燃料タン ク 1333に供給する経路および燃焼部 1303に供給する経路を有する。また、単セル 構造 101を通過した燃料を燃焼部 1303に導入する経路を有する。燃焼部 1303へ の高濃度燃料 725または残存燃料の供給は、流量調節バルブ 1331によって切替 可能であり、それぞれの流量はポンプ 1329によって調節可能となっている。
[0119] 図 19の燃料電池は、単セル構造 101を通過した残存燃料を低濃度燃料タンク 133 3に戻して再利用することができるため、燃料成分の浪費を抑制し、効率よく使用する ことができる。また、低濃度燃料タンク 1333中の燃料成分の濃度が残存燃料の回収 によって希釈された場合にも、高濃度燃料タンク 1335から高濃度燃料 725を供給す ることができるため、単セル構造 101に所定の濃度燃料 124を長期間安定的に供給 することができる。
[0120] また、図 19の燃料電池では、単セル構造 101を通過した残存燃料または高濃度燃 料 725を適宜選択して燃焼部 1303に供給することができる。このため、低温で起動 する際には高濃度燃料 725を燃焼部 1303に供給し、燃焼部 1303に接する単セル 構造 101を速や力に加熱することができる。そして、単セル構造 101がある程度暖ま つた段階で、流量調節バルブ 1331を調節して燃焼部 1303に残存燃料を供給すれ ば、燃料成分をさらに効率よく使用することができる。
[0121] (第四の実施形態)
第三の実施形態に係る低濃度燃料タンク 1333および高濃度燃料タンク 1335を有 する燃料電池において、低濃度燃料タンク 1333中の低濃度燃料および高濃度燃料 タンク 1335中の高濃度燃料 725を混合する混合タンクを有する構成としてもよい。
[0122] 図 21は、本実施形態の燃料電池の燃料供給系を模式的に示す図である。図 21の 燃料電池は、低濃度燃料タンク 1333中の低濃度燃料 1149および高濃度燃料タン ク 1335中の高濃度燃料 725が混合タンク 1339に導入され、混合タンク 1339にお いて、単セル構造 101に供給するのに好適な濃度に調製された燃料 124が、混合タ ンク 1339から単セル構造 101に供給される構成となって 、る。
[0123] また、単セル構造 101に接して設けられた燃焼部 1303には、高濃度燃料タンク 13 35から導出される高濃度燃料 725の一部を供給することができる。ここで、高濃度燃 料 725の供給系にはポンプ 1329が設けられ、ポンプ 1329の下流に設けられた流量 調節バルブ 1331により、混合タンク 1339および燃焼部 1303に所定の量の高濃度 燃料 725が供給できるようになって 、る。
[0124] このようにすれば、単セル構造 101に供給する燃料 124の濃度をさらに確実に制 御することができる。このため、単セル構造 101において電池反応をさらに安定的に 生じさせることができる。また、燃焼部 1303には高濃度燃料 725が供給されるため、 単セル構造 101を短時間で迅速に加熱することができる。よって、燃料電池を低温 中で使用する際の起動特性を向上させることができる。
[0125] 図 22は、本実施形態の燃料電池の別の構成を示す図である。図 22の燃料電池の 基本構成は図 21の燃料電池と同様である力 単セル構造 101の燃料極 102を通過 した残存燃料を混合タンク 1339に回収する経路および燃焼部 1303を通過した残 存燃料を混合タンク 1339に回収する経路をさらに有する点が異なる。
[0126] これらの回収経路をさらに設けることにより、燃料成分をさらに効率よく利用すること ができる。このため、燃料電池の起動特性を向上させるとともに、長期間安定的に運 転することが可能となる。
[0127] (第五の実施形態) 以上の実施形態に記載の燃料電池において、燃焼部 1303に冷却水を導入する ための冷却水導入経路を設けてもよい。ここでは、図 22の燃料電池の構成を例に説 明する。
[0128] 図 23は、本実施形態に係る燃料電池の構成を模式的に示す図である。図 23の燃 料電池は、図 22の燃料電池において、冷却水タンク 1351をさらに備える構成を有 する。冷却水タンク 1351中の冷却水 1353をポンプ 1329によって燃焼部 1303に供 給することができるように構成されて 、る。
[0129] 図 23の燃料電池を低温中で起動させる場合、燃焼部 1303に高濃度燃料 725を 供給して燃焼熱を発生させ、その熱を単セル構造 101に伝導させて、単セル構造 10 1を加熱する。高濃度燃料 725による燃焼熱により単セル構造 101の過剰な加熱を 防止するために、単セル構造 101に設けた温度計 1341により一定の温度まで加熱 されたことを検知し、燃焼部 1303への高濃度燃料 725の供給を停止するとともに、 冷却水タンク 1351から燃焼部 1303に冷却水 1353を供給する。こうすることにより、 燃焼部 1303を速やかに冷却することができる。このため、単セル構造 101の加熱を 抑制し、燃料電池をさらに安定的に運転することができる。
[0130] なお、低濃度燃料タンク 1333と高濃度燃料タンク 1335を有する燃料電池におい ては、冷却水にかえて、燃焼部 1303に低濃度燃料タンク 1333から燃料 124を供給 することによつても、燃焼熱の発生を抑制することができる。この場合、起動開始時に は燃焼部 1303に高濃度燃料 725を供給し、単セル構造 101がある程度加熱された 段階で燃料 124を供給して使用することができる。こうすることにより、燃料成分を効 率よく禾 IJ用することができる。
[0131] (第六の実施形態)
以上の実施形態に記載の燃料電池において、燃焼部 1303に燃焼用の酸化剤を 積極的に供給する酸化剤供給経路をさらに設けてもよい。以下、図 1の燃料電池の 構成の場合を例に説明する。
[0132] 図 24は、本実施形態に係る燃料電池の構成を模式的に示す図である。図 24の燃 料電池は、図 1の燃料電池 1301において、酸化剤保持部 1355をさらに有し、酸ィ匕 剤保持部 1355中に保持される酸化剤 1357を燃焼部 1303に供給することができる ように構成されている。たとえば、圧縮空気を燃焼部 1303に接続するライン設けたり 、ファンを利用して酸化剤を燃焼部 1303へ供給したりすることで、燃焼部 1303にお ける燃焼反応の速度を向上させるこができ、これにより、低温中での燃料電池の起動 特性をさらに確実に向上させることができる。なお、図 24の燃料電池では、燃料タン ク 1327と単セル構造 101を接続する燃料供給系にはポンプ 1329が設けられていな いが、必要に応じてポンプ 1329を設けてもよい。さらに、燃料極 102で未使用となる 燃料 124を燃料タンク 1327へ戻すような構成としてもよい。
[0133] 図 24の燃料電池では、燃焼部 1303に燃料 124を導入するとともに、酸化剤 1357 を燃焼部 1303に積極的に供給することができる。このため、燃焼部 1303において、 大気中の酸素が燃焼部 1303に供給される場合よりもさらに確実に燃焼反応を生じさ せることができる。このため、低温中での燃料電池の起動特性をさらに確実に向上さ せることができる。
[0134] 以上、本発明を実施形態に基づいて説明した。これらの実施形態は例示であり、そ れらの各構成要素や各処理プロセスの組み合わせに 、ろ 、ろな変形例が可能なこと
、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 図面の簡単な説明
[0135] [図 1]本実施形態に係る燃料電池の構成を模式的に示す図である。
[図 2]図 1の構成を有する燃料電池の一例を示す断面図である。
[図 3]本実施形態に係る燃料電池の燃焼部の構成を模式的に示す図である。
[図 4]本実施形態に係る燃料電池の燃焼部の構成を模式的に示す図である。
[図 5]本実施形態に係る燃料電池の燃焼部の構成を模式的に示す図である。
[図 6]図 1の構成を有する燃料電池の一例を示す平面図である。
[図 7]図 6の燃料電池の A— A'断面図である。
[図 8]本実施形態に係る燃料電池の構成を模式的に示す図である。
[図 9]本実施形態に係る燃料電池の構成を模式的に示す図である。
[図 10]本実施形態に係る燃料電池の一例を示す断面図である。
[図 11]図 10の A— A'断面図である。
[図 12]本実施形態に係る燃料電池の構成を示す平面図である。
[図 13]本実施形態に係る燃料電池の構成を模式的に示す図である。
[図 〇 14]図 13の構成を有する燃料電池の一例を示す断面図である。
1—
[図 15]図 13の構成を有する燃料電池の一例を示す平面図である。
[図 16]本実施形態に係る燃料電池の構成を模式的に示す図である。
[図 17]図 16の構成を有する燃料電池の一例を示す断面図である。
[図 18]本実施形態に係る燃料電池の構成を模式的に示す図である。
[図 19]本実施形態に係る燃料電池の構成を模式的に示す図である。
[図 20]図 19の構成を有する燃料電池の構成の一例を示す断面図である。 圆 21]本実施形態に係る燃料電池の構成を模式的に示す図である。 圆 22]本実施形態に係る燃料電池の構成を模式的に示す図である。 圆 23]本実施形態に係る燃料電池の構成を模式的に示す図である。
[図 24]本実施形態に係る燃料電池の構成を模式的に示す図である。 符号の説明
単セル構造
102 燃料極
104 基体
106 燃料極側触媒層
108 酸化剤極
110 基体
112 酸化剤極側触媒層
114 固体電解質膜
124 燃料
126 酸化剤
725 高濃度燃料
811 燃料容器
853 仕切板
1103 燃料カートリッジ
1105 高濃度燃料タンク 1107 混合タンク
1109 燃料電池本体
1111 燃料流出管
1113 燃料回収管
1117 ポンプ
1123 コネクタ
1149 低濃度燃料
1155 回収燃料
1301 燃料電池
1303 燃焼部
1305 燃焼用触媒保持部
1307 燃焼用燃料流路
1309 燃料タンク
1311 燃料電池
1313 燃焼用燃料供給管
1315 燃焼用燃料導出口
1317 伝熱板
1319 混合タンク
1321 高濃度燃料タンク
1323 高濃度燃料供給管
1327 燃料タンク
1329 ポンプ
1331 流量調節バルブ
1333 低濃度燃料タンク
1335 高濃度燃料タンク
1337 燃料排出管
1339 混合タンク
1341 温度計 1343 燃焼用燃料供給管
1345 燃料電池
1347 燃料回収管
1349 燃料電池
1351 冷却水タンク
1353 冷却水
1355 酸化剤保持部
1357 酸化剤

Claims

請求の範囲
[1] 固体電解質膜、該固体電解質膜に配設された燃料極、および酸化剤極を含む単 位セノレと、
前記単位セルを加熱する加熱手段と、
前記燃料極に燃料を供給する燃料供給系と、を有し、
前記加熱手段が前記単位セルに接して設けられ、
前記燃料の一部が前記燃料供給系から前記加熱手段に供給され、
前記加熱手段に供給される前記燃料が前記加熱手段で燃焼する際の熱を前記単 位セルに伝導させることにより、前記単位セルが加熱されるように構成されたことを特 徴とする燃料電池。
[2] 請求項 1に記載の燃料電池において、前記加熱手段は、発熱体と、前記発熱体に 接して設けられた熱伝導体と、を有することを特徴とする燃料電池。
[3] 請求項 1または 2に記載の燃料電池にぉ ヽて、前記加熱手段は、前記燃料を燃焼 させる加熱用触媒を含むことを特徴とする燃料電池。
[4] 請求項 1乃至 3のいずれかに記載の燃料電池において、前記加熱手段が前記酸 ィ匕剤極に接して設けられていることを特徴とする燃料電池。
[5] 請求項 1乃至 4 ヽずれかに記載の燃料電池にお!ヽて、前記燃料極に液体燃料が 直接供給されることを特徴とする燃料電池。
[6] 請求項 1乃至 5 、ずれかに記載の燃料電池にお!、て、複数の前記単位セルを備え 一枚の固体電解質膜の一方の面に設けられた複数の第一の電極と、
前記固体電解質膜の他方の面に、複数の前記第一の電極にそれぞれ対向して設 けられた複数の第二の電極と、
を有し、
対向する一対の前記第一の電極および前記第二の電極と、前記固体電解質膜と カゝら前記単位セルが構成され、
前記加熱手段が複数の前記単位セルを加熱するように構成されて ヽることを特徴と する燃料電池。
[7] 請求項 6に記載の燃料電池において、前記加熱手段における加熱温度もしくは前 記燃料電池の温度を測定する温度測定手段と、該温度測定手段によって測定され た温度に基づいて前記燃料供給系力 前記加熱手段への燃料の供給を制御する 制御手段とを有することを特徴とする燃料電池。
[8] 請求項 6または 7に記載の燃料電池において、前記加熱手段が前記固体電解質膜 に接して設けられて 、ることを特徴とする燃料電池。
[9] 請求項 6または 7に記載の燃料電池において、前記加熱手段が複数の前記第一の 電極に接して設けられて ヽることを特徴とする燃料電池。
[10] 請求項 1乃至 9 、ずれかに記載の燃料電池にお!、て、前記燃料極を通過した前記 燃料を前記加熱手段に回収する燃料回収手段を有することを特徴とする燃料電池。
[11] 請求項 6または 7に記載の燃料電池にぉ 、て、前記燃料供給系は、前記燃料極に 供給する燃料よりも高濃度の燃料を前記加熱手段へ供給する高濃度燃料供給手段 を有することを特徴とする燃料電池。
[12] 請求項 11に記載の燃料電池にぉ 、て、前記高濃度燃料供給手段から供給される 高濃度の燃料と前記燃料極に供給される燃料とを混合する混合手段を有することを 特徴とする燃料電池。
[13] 請求項 6または 7に記載の燃料電池において、前記加熱手段の加熱温度を冷却水 を用いて制御する加熱温度制御手段を有することを特徴とする燃料電池。
[14] 請求項 6または 7に記載の燃料電池において、前記加熱手段へ酸化剤を供給する 酸化剤供給手段を有することを特徴とする燃料電池。
PCT/JP2004/018251 2003-12-08 2004-12-08 燃料電池 WO2005055352A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005516025A JP4867347B2 (ja) 2003-12-08 2004-12-08 燃料電池
US10/596,277 US20070166587A1 (en) 2003-12-08 2004-12-08 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003408643 2003-12-08
JP2003-408643 2003-12-08

Publications (1)

Publication Number Publication Date
WO2005055352A1 true WO2005055352A1 (ja) 2005-06-16

Family

ID=34650403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018251 WO2005055352A1 (ja) 2003-12-08 2004-12-08 燃料電池

Country Status (4)

Country Link
US (1) US20070166587A1 (ja)
JP (1) JP4867347B2 (ja)
CN (1) CN1890834A (ja)
WO (1) WO2005055352A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128853A (ja) * 2005-11-02 2007-05-24 Samsung Sdi Co Ltd 直接液体燃料電池システム
JP2008097838A (ja) * 2006-10-06 2008-04-24 Hitachi Ltd 燃料電池システム
WO2015037131A1 (ja) * 2013-09-13 2015-03-19 株式会社日立製作所 燃料電池発電システムおよび燃料電池発電方法
US10381665B2 (en) 2013-10-11 2019-08-13 Sk Innovation Co., Ltd. Device and method for heating fuel cell stack and fuel cell system having the device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971604B2 (ja) * 2005-07-29 2012-07-11 キヤノン株式会社 撮像装置
KR100748362B1 (ko) * 2006-11-14 2007-08-09 삼성에스디아이 주식회사 고온형 연료전지 스택 및 이를 채용한 연료전지
US7842426B2 (en) * 2006-11-22 2010-11-30 Gm Global Technology Operations, Inc. Use of a porous material in the manifolds of a fuel cell stack
GB201321309D0 (en) * 2013-12-03 2014-01-15 Ashleigh & Burwood A Catalytic fragrance burner assembly and a method of manufacture thereof
DE102018130171A1 (de) * 2018-11-28 2020-05-28 Carl Freudenberg Kg Elektrochemische Energiespeicherzelle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062064A (ja) * 1983-09-14 1985-04-10 Hitachi Ltd 液体燃料電池
JPS62136774A (ja) * 1985-12-10 1987-06-19 Fuji Electric Co Ltd 燃料電池スタツクの保温方法
JPS6391967A (ja) * 1986-10-03 1988-04-22 Hitachi Ltd 燃料電池と蓄電池を組み合せた電源装置
JPH01187776A (ja) * 1988-01-22 1989-07-27 Hitachi Ltd 燃料電池の起動・停止装置
JP2002313391A (ja) * 2001-04-13 2002-10-25 Honda Motor Co Ltd 燃料電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307970A (ja) * 1992-04-30 1993-11-19 Aqueous Res:Kk 液体燃料電池
US6127058A (en) * 1998-10-30 2000-10-03 Motorola, Inc. Planar fuel cell
CN1348616A (zh) * 1999-04-26 2002-05-08 西门子公司 直接-甲醇-燃料电池的运行方法
JP2002231290A (ja) * 2001-01-26 2002-08-16 Toyota Central Res & Dev Lab Inc 燃料電池システム
US7223490B2 (en) * 2001-04-06 2007-05-29 Honda Giken Kogyo Kabushiki Kaisha Fuel cell employing local power generation when starting at low temperature
US20030003336A1 (en) * 2001-06-28 2003-01-02 Colbow Kevin Michael Method and apparatus for adjusting the temperature of a fuel cell by facilitating methanol crossover and combustion
JP3918999B2 (ja) * 2002-07-23 2007-05-23 株式会社ジーエス・ユアサコーポレーション 直接メタノール形燃料電池システムとその運転方法
JP3711970B2 (ja) * 2002-09-06 2005-11-02 日産自動車株式会社 燃料電池システム
JP2005085636A (ja) * 2003-09-09 2005-03-31 Toagosei Co Ltd 直接アルコール形燃料電池及びその使用方法並びにそれを用いた発電装置
JP2005108580A (ja) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd 燃料電池搭載装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062064A (ja) * 1983-09-14 1985-04-10 Hitachi Ltd 液体燃料電池
JPS62136774A (ja) * 1985-12-10 1987-06-19 Fuji Electric Co Ltd 燃料電池スタツクの保温方法
JPS6391967A (ja) * 1986-10-03 1988-04-22 Hitachi Ltd 燃料電池と蓄電池を組み合せた電源装置
JPH01187776A (ja) * 1988-01-22 1989-07-27 Hitachi Ltd 燃料電池の起動・停止装置
JP2002313391A (ja) * 2001-04-13 2002-10-25 Honda Motor Co Ltd 燃料電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128853A (ja) * 2005-11-02 2007-05-24 Samsung Sdi Co Ltd 直接液体燃料電池システム
JP4656584B2 (ja) * 2005-11-02 2011-03-23 三星エスディアイ株式会社 直接液体燃料電池システム
US8206868B2 (en) 2005-11-02 2012-06-26 Samsung Sdi Co., Ltd. Direct liquid feed fuel cell system having double fuel storage
JP2008097838A (ja) * 2006-10-06 2008-04-24 Hitachi Ltd 燃料電池システム
WO2015037131A1 (ja) * 2013-09-13 2015-03-19 株式会社日立製作所 燃料電池発電システムおよび燃料電池発電方法
US10381665B2 (en) 2013-10-11 2019-08-13 Sk Innovation Co., Ltd. Device and method for heating fuel cell stack and fuel cell system having the device

Also Published As

Publication number Publication date
CN1890834A (zh) 2007-01-03
US20070166587A1 (en) 2007-07-19
JPWO2005055352A1 (ja) 2007-06-28
JP4867347B2 (ja) 2012-02-01

Similar Documents

Publication Publication Date Title
TW533619B (en) Fuel cell, fuel cell generator, and equipment using the same
TWI323953B (ja)
KR101040864B1 (ko) 유체 회수장치 및 이를 채용한 연료전지 시스템
JP4867347B2 (ja) 燃料電池
KR100536218B1 (ko) 연료 전지 시스템
JP2007200726A (ja) 活性化装置、および燃料電池の製造方法
KR100719095B1 (ko) 연료 확산속도 제어물질층을 포함하여 메탄올 크로스오버현상을 억제시킨 직접 메탄올 연료전지
JP5207019B2 (ja) 固体高分子型燃料電池およびこれを備えた電子機器
JP5103754B2 (ja) 燃料電池装置
JP3725451B2 (ja) 燃料電池用燃料供給装置
JP3661643B2 (ja) 燃料電池システム
JP4578238B2 (ja) 燃料電池の始動方法、燃料電池システム及び燃料電池システム搭載車両
JP2006286259A (ja) 発電装置及び加湿装置
JP2004179042A (ja) 固体高分子型燃料電池
JP4969028B2 (ja) 燃料電池モジュールおよび燃料電池システム
JP4678108B2 (ja) 直接ジメチルエーテル形燃料電池
JP3946228B2 (ja) 燃料電池
KR101084078B1 (ko) 연료 전지 시스템 및 그 구동 방법
US7736784B2 (en) Injection nozzle assembly and fuel cell system having the same
JP2009277560A (ja) 燃料カートリッジ及び燃料電池システム
JP2005243570A (ja) 燃料電池
JP2007066918A (ja) 発電方法
KR20070084732A (ko) 가열장치를 장착한 연료전지 시스템
JP2010055815A (ja) 燃料カートリッジ、燃料電池および電子機器
Thermocatalytic et al. Compact, high-efficiency (steam) reforming apparatus with excellent startup performance and complete fuel gas purging on shutdown

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480036551.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005516025

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007166587

Country of ref document: US

Ref document number: 10596277

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10596277

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 04819965

Country of ref document: EP

Kind code of ref document: A1