WO2005053362A1 - 加熱調理器、調理器具および加熱調理システム - Google Patents

加熱調理器、調理器具および加熱調理システム Download PDF

Info

Publication number
WO2005053362A1
WO2005053362A1 PCT/JP2004/012498 JP2004012498W WO2005053362A1 WO 2005053362 A1 WO2005053362 A1 WO 2005053362A1 JP 2004012498 W JP2004012498 W JP 2004012498W WO 2005053362 A1 WO2005053362 A1 WO 2005053362A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooking
heating
cooking utensil
power supply
Prior art date
Application number
PCT/JP2004/012498
Other languages
English (en)
French (fr)
Inventor
Hitoshi Takimoto
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Consumer Marketing Corporation
Toshiba Ha Products Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Toshiba Consumer Marketing Corporation, Toshiba Ha Products Co., Ltd. filed Critical Kabushiki Kaisha Toshiba
Priority to US10/580,216 priority Critical patent/US7473872B2/en
Publication of WO2005053362A1 publication Critical patent/WO2005053362A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/32Time-controlled igniting mechanisms or alarm devices
    • A47J36/321Time-controlled igniting mechanisms or alarm devices the electronic control being performed over a network, e.g. by means of a handheld device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/06Cook-top or cookware capable of communicating with each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the present invention relates to a heating cooker that heats a cooking appliance to cook its contents, a cooking appliance used for the heating cooking appliance, and a heating cooking system.
  • FIG. 19 shows an example of a conventional heating cooker.
  • a thermistor 102 is arranged near the inner periphery of the IH coil 101.
  • the surface temperature of the cooking utensil 103 placed on the top plate 104 is configured to be indirectly detected by the thermistor 102 via the top plate 104.
  • the heating cooker gradually reduces the heating power from high to medium and low as the detected temperature of the thermistor 102 increases. Then, when the temperature change rate of the detected temperature in the low thermal power state becomes smaller than a predetermined determination value, the boiling of water is detected.
  • Japanese Patent Application Laid-Open No. 2003-139385 discloses an apparatus for acquiring the temperature of hot and cold water in a bathtub, which includes a power supply means and a temperature of hot and cold water in the bathtub. There is disclosed a bath temperature detection device including a temperature detection unit that transmits the detected temperature data and a transmission unit that wirelessly transmits detected temperature data to a bath system.
  • the cooking power is stepwise reduced, so that the cooking time becomes longer.
  • the stepwise lowering control of the thermal power is intended to detect the actual temperature of the controller 103 with high accuracy as shown in the following (1) to (3). Therefore, when the step-down control of the thermal power is stopped, the actual temperature of the cooking utensil 103 cannot be detected with high accuracy, and a desired finished cooking state cannot be obtained.
  • An object of the present invention is to provide a heating cooker, a cooking utensil used in the heating cooker, and a heating cooking system capable of obtaining a desired cooking finish state in a short time.
  • the present invention relates to a heating cooker provided with supporting means for supporting the cooking utensil and heating means for heating the cooking utensil.
  • Receiving means capable of receiving temperature information of the cooking utensil transmitted from the outside by infrared rays or temperature information of the food in the cooking utensil;
  • Control means for controlling the driving of the heating means based on the temperature information received by the receiving means.
  • Temperature detection means for outputting a signal corresponding to the temperature of the stored food
  • a cooking appliance comprising: a transmission unit that transmits temperature information according to an output signal from the temperature detection unit to the cooking device by infrared rays.
  • a heating cooking system including these cooking utensils and a heating cooker is provided.
  • the actual temperature of the cooking utensil without performing the step-down control of the heating power Can be detected with high accuracy. For this reason, the cooking utensil can be continuously heated with high heat, and the cooked food can be finished in a desired state in a short time.
  • infrared rays used as a transmission medium for temperature information have a wider transmission area than radio waves and are not affected by magnetic fields, the temperature information can be accurately transmitted to the receiving means without being affected by the setting posture of the cooking utensil. Delivered reliably.
  • FIG. 1 is a perspective view showing an appearance of a cooking heater according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a state in which a dedicated cooking utensil is set on a top plate.
  • FIG. 3 is a block diagram showing an electrical configuration of an inverter circuit unit and an inverter control unit.
  • FIG. 4 is a block diagram showing an electrical configuration of a temperature data transmitting unit and its peripheral circuits.
  • FIG. 5 is a diagram showing a relationship between a detected voltage input to a control circuit and a detected temperature.
  • Fig. 6 (a) is a diagram showing an infrared LED drive signal, (b) is a diagram showing the content of wireless cooking information emitted from the infrared LED, and (c) is output from the infrared light receiving circuit It is a figure showing a detection signal of wireless cooking information.
  • FIG. 7 is a flowchart showing processing contents of automatic boiling water cooking.
  • FIG. 8 is a flowchart showing the contents of a temperature raising process.
  • Fig. 9 is a diagram showing temporal changes in temperature and input electric power in automatic boiling water cooking using a dedicated cooking appliance.
  • Fig. 10 is a diagram showing temporal changes in temperature and input power in automatic boiling water cooking using a general-purpose cooking appliance.
  • FIG. 11 is a second embodiment of the present invention and is a view showing a state in which a dedicated cooking utensil is set on a top plate.
  • FIG. 12 is a block diagram showing an electrical configuration of a temperature data transmitting unit and its peripheral circuits.
  • FIG. 13 is a diagram showing temporal changes in temperature and input electric power in automatic boiling water cooking using a dedicated cooking appliance.
  • FIG. 14 is a view showing a third embodiment of the present invention, in which a dedicated cooking utensil is set on a top plate.
  • FIG. 15 is a block diagram showing an electrical configuration of a temperature data transmitting unit and its peripheral circuits.
  • FIG. 16 is a diagram showing the relationship between the input power of the IH coil and the rectified output from the rectifier circuit.
  • FIG. 17 shows a fourth embodiment of the present invention, and is a block diagram illustrating an electrical configuration of a temperature data transmitting unit and a peripheral circuit thereof.
  • FIG. 18 is a diagram showing the relationship between the input power of the IH coil and the rectified output from the rectifier circuit.
  • FIG. 19 is a diagram showing a state in which a cooking utensil is set on a top plate according to a conventional technique.
  • FIG. 1 is a perspective view showing the appearance of a cooking heater.
  • Cabinet 2 is housed inside system kitchen 1.
  • a top plate 3 made of heat-resistant glass corresponding to a support means is provided.
  • the top plate 3 is exposed on the upper surface of the system kitchen 1.
  • the top plate 3 is colored and opaque so that the inside of the cabinet 2 cannot be seen through the top plate 3.
  • An operation panel 4 is provided on the front of the cabinet 2, and an automatic water heater key 5, a heating power adjustment dial 6, and a tempura key 7 are provided on the operation panel 4. These keys correspond to input means for cooking conditions and can be operated from the front.
  • a circular heating mark 8 is formed on the top plate 3 .
  • the heating mark 8 is colored differently from the coloring of the top plate 3 and a user can place a general-purpose cooking utensil (not shown) or a special cooking utensil 9 (see FIG. 2). It functions as a mark to notify the mounting area to be mounted.
  • a window 12 are formed to the right of the heating mark 8 on the top plate 3.
  • the window portion 12 is a portion where the transparent base material of the top plate 3 appears, and has a light transmitting property.
  • FIG. 2 shows a state in which a dedicated cooking utensil 9 is set on the top plate 3.
  • the dedicated cooking utensil 9 is a one-handed pan made of a magnetic material, and includes a container portion 10 into which the food is put, and a rod-shaped handle portion 11 projecting sideways from the container portion 10.
  • an annular coil base 13 is provided below the heating mark 8, and on the upper surface of the coil base 13, a circle corresponding to the heating means and the primary coil is provided.
  • An annular IH coil 14 is fixed.
  • an internal temperature sensor 15 is provided below the heating mark 8. The temperature sensing part of the internal temperature sensor 15 is pressed against the lower surface of the top plate 3 by the spring force of the sensor spring.
  • the internal temperature sensor 15 corresponds to an indirect temperature detecting unit, an internal temperature detecting unit, and a temperature detecting unit.
  • the lead wire 16 of the internal temperature sensor 15 is connected to the center of the IH coil 14 and the center of the coil base 13. Has been passed.
  • the internal temperature sensor 15 is composed of, for example, a thermistor, and detects the surface temperature of the dedicated cooking utensil 9 and the surface temperature of the general-purpose cooking utensil indirectly via the top plate 3.
  • FIG. 3 shows an electrical configuration of the inverter circuit unit and the inverter control unit housed inside the cabinet 2.
  • the rectifier circuit 17 includes a diode bridge circuit and a smoothing capacitor.
  • a commercial AC power supply 18 is connected to an input terminal of the rectifier circuit 17, and an output terminal of the rectifier circuit 17 is connected to an inverter circuit 19.
  • the inverter circuit 19 mainly includes switching elements connected in a half-bridge configuration.
  • the IH coil 14 is connected to the output terminal of the inverter circuit 19.
  • a high-frequency current is applied to the IH coil 14 from the inverter circuit 19, and the IH coil 14 heats the cooking utensil 9 by induction.
  • an external temperature sensor 20 is attached near the lower end of the outer peripheral surface (side surface) of the container 10 in the cooking utensil 9.
  • the reason for disposing the food near the lower end is to accurately detect the temperature of the food via the side wall of the container 10 even if the amount of the food stored in the container 10 is small.
  • the external temperature sensor 20 corresponds to a temperature detecting unit and an external temperature detecting unit, and includes, for example, a thermistor.
  • the temperature sensing part is a container It is in close contact with the outer peripheral surface of the part 10 and directly detects the surface temperature To of the cooking utensil 9.
  • a pot-side power supply 21 and a temperature data transmitter 23 corresponding to a transmitter are fixed to the handle 11 of the cooking utensil 9.
  • the pot-side power supply 21 is composed of, for example, a 9V primary battery, and supplies a main power supply Vin to a temperature data transmission unit 23 via a power supply switch 22.
  • the power switch 22 is composed of a self-holding slide switch fixed to the handle portion 11, and is mechanically held in an on state or an off state by a slide operation of the plunger 24.
  • the temperature data transmitting section 23 operates when the main power supply Vin is supplied from the pot-side power supply 21, and stops operating when the main power supply Vin is cut off.
  • the temperature data transmission unit 23 inputs a temperature signal from the external temperature sensor 20 through the lead wire 25, and transmits cooking information including a temperature detection result (temperature information) by infrared rays. That is, the temperature data transmission unit 23 automatically starts the transmission of the cooking information when the user turns on the power switch 22, and automatically stops the transmission when the user turns off the power switch 22.
  • FIG. 4 shows an electrical configuration of the temperature data transmitting unit 23 and its peripheral circuits.
  • the temperature data transmission section 23 is composed of a power supply circuit 26, a voltage detection circuit 27, an oscillation circuit 28, a temperature detection circuit 29, an LED drive circuit 30, an infrared LED 31, and a control circuit 32, and can transmit infrared light. ing.
  • the temperature data transmission unit 23 is an infrared transmission module that can be handled as an independent unit.
  • the power supply circuit 26 is a series regulator that reduces the main power supply Vin from the pot-side power supply 21 to generate a 5V stabilized power supply Vo.
  • the temperature data transmission unit 23 operates with this stabilized power supply Vo.
  • the voltage detection circuit 27 corresponding to the output detection unit generates a voltage signal according to the level of the main power supply Vin, and supplies the voltage signal to the control circuit 32.
  • the temperature detection circuit 29 to which the external temperature sensor 20 is connected generates a voltage signal of a level corresponding to the detected temperature, and outputs the voltage signal to the control circuit 32.
  • the control circuit 32 is composed of a micro computer having a CPU, a ROM, a RAM, an I / O, a timer circuit, and the like, and operates in synchronization with an 8 MHz operation clock input from the oscillation circuit 28.
  • the timer circuit outputs an INT signal every set time (for example, every lmsec).
  • the CPU executes the control program from ROM. Read the RAM and execute 1) voltage detection processing, 2) temperature detection processing, and 3) data transmission processing.
  • the voltage detection process is a process for determining whether or not the voltage of the pot-side power supply 21 has dropped to an abnormal level at every set period.
  • the control circuit 32 performs A / D conversion of the voltage signal input from the voltage detection circuit 27, and detects the voltage level of the main power supply Vin based on the A / D conversion value. Then, the detected value of the voltage level is compared with a judgment value stored in the ROM in advance.
  • the control circuit 32 determines that the main power supply Vin is at the normal level when the detected value of the voltage level exceeds the determination value, and determines that the main power supply Vin is at the abnormal level when the detected value of the voltage level is lower than the determination value. I do.
  • the abnormal level is a voltage level at which the control circuit 32 cannot perform a normal processing operation.
  • the temperature detection process is a process of directly detecting the surface temperature To of the cooking utensil 9 for each set period.
  • the ROM of the control circuit 32 stores the relationship between the voltage signal (V) from the temperature detection circuit 29 and the surface temperature To (° C.) of the cooking utensil 9 as shown in FIG.
  • the control circuit 32 performs A / D conversion of the voltage signal input from the temperature detection circuit 29, and reads out the surface temperature To corresponding to the A / D conversion value from the data stored in the ROM. For example, when the voltage signal from the temperature detection circuit 29 is 4. IV, the detected surface temperature To is 75 ° C.
  • an infrared LED 31 corresponding to an infrared element is connected to the control circuit 32 via an LED drive circuit 30.
  • the data transmission process is a process of generating a driving signal of the infrared LED 31 to control the emission of the infrared LED 31 and transmitting cooking information by infrared. This data transmission process is executed every set period in synchronization with the above-described voltage detection process and temperature detection process.
  • the control circuit 32 generates a drive signal based on the detection result of the power supply voltage Vin and the detection result of the surface temperature To, and controls the driving of the LED drive circuit 30 by the drive signal.
  • the detection result and display of the power supply voltage Vin Cooking information including the detection result of the surface temperature To is transmitted by infrared rays.
  • the drive signal is generated by modulating a carrier signal having a preset frequency (for example, 31.25 kHz) and a duty ratio. Modulation of the carrier signal is performed by changing the on / off period.
  • FIGS. 6A and 6B show the drive signal S generated by the control circuit 32.
  • the drive signal S is composed of a header Sl, remaining battery data S2, pan data S3, temperature data S4, and a stop bit S5.
  • the header S1 indicates the start of transmission of the drive signal, and is generated by turning on and off the carrier signal for 5 msec and 3 msec.
  • the stop bit S5 indicates the end of transmission of the drive signal, and is generated by turning the carrier signal on for lmsec and off for 3msec or more.
  • Battery remaining amount data S2, pot data S3, and temperature data S4 are generated by a combination of bit “0” and bit “1”.
  • the bit “0” is generated by turning the carrier signal on and off for lmsec
  • the bit “1” is generated by turning the carrier signal on and off for 2 msec.
  • Battery remaining amount data S2 is composed of 1-bit data indicating whether or not pot-side power supply 21 has been consumed.
  • the CPU of the control circuit 32 determines that the main power supply Vin is at the normal level in the voltage detection processing, the CPU sets “0” in the remaining battery power data S2 in the data transmission processing immediately thereafter. On the other hand, when it is determined that the main power supply Vin is at an abnormal level, “1” is set in the battery remaining amount data S2.
  • the pan data S3 is unique data indicating the type, material, size, and the like of the cooking utensil 9, and is stored in the ROM of the control circuit 32 in advance.
  • This pot data S3 is composed of 3-bit data.
  • the CPU of the control circuit 32 sets the pot data S3 to the data stored in the ROM for each data transmission process.
  • the temperature data S4 is composed of 8-bit data indicating the surface temperature To of the cooking utensil 9.
  • the CPU of the control circuit 32 sets the detected value To of the temperature detection processing to the temperature data S4 in the data transmission processing immediately thereafter. For example, when the detected value To of the temperature detection process is 75 ° C., “11010010” is set as the temperature data S4.
  • a handle cover 33 is attached to the cooking utensil 9.
  • the handle cover 33 is formed of a heat insulating material, and is provided with an external temperature sensor 2 except for the plunger 24. 0, pot side power supply 21, power supply switch 22, temperature data transmission unit 23, and lead wire 25 are covered.
  • the handle cover 33 has a battery exchange opening for exchanging the pot-side power supply 21, and the battery exchange opening is provided with a battery cover so as to be openable and closable.
  • the heat insulating material is made of a material (for example, synthetic resin) having a lower thermal conductivity than the magnetic material that is the base material of the cooking utensil 9.
  • an inverter control unit 34 shown in Fig. 3 is housed inside the cabinet 2.
  • the inverter control section 34 controls the switching of the inverter circuit 19 and is configured as follows.
  • the control circuit 35 corresponding to the control means is mainly composed of a microphone computer provided with a CPU, ROM, RAM, lZ, and the like.
  • An operation unit 36 is connected to the control circuit 35.
  • the operation unit 36 is a means for inputting cooking information such as an automatic water heater key 5, a heating power adjustment dial 6, and a ceiling key 7.
  • the control circuit 35 sets cooking conditions according to the operation content of the operation unit 36, and generates a drive signal based on the cooking conditions.
  • the drive circuit 37 controls the switching of the inverter circuit 19 based on the drive signal from the control circuit 35.
  • a temperature detection circuit 38 is connected to the internal temperature sensor 15 via a lead wire 16.
  • the control circuit 35 detects the surface temperature To of the cooking utensil 9 or the surface temperature Ts of the general-purpose cooking utensil by A / D converting the voltage signal from the temperature detection circuit 38, and detects the detected surface temperature To or Ts. Controls the drive width of the drive signal based on the
  • the current transformer 39 is current detection means for detecting an input current lin from the AC power supply 18 to the rectifier circuit 17.
  • the input current detection circuit 40 outputs a voltage signal of a level corresponding to the input current lin detected by the current transformer 39.
  • the control circuit 35 A / D converts the voltage signal from the input current detection circuit 40 and detects the magnitude of the input current lin.
  • the control circuit 35 detects the electric energy (integrated power) used for the induction heating by integrating the detected value of the input current lin, and detects the detected value of the electric energy and the detected value of the surface temperature Ts.
  • the heating information is obtained by software processing of The detected value of the surface temperature Ts and the electrical energy have a certain correlation.
  • the control circuit 35 acquires the heating information such as the material, weight, and size of the general-purpose cooking utensil based on the correlation between the two, and drives the cooking utensil.
  • the signal width is controlled based on the heating information (thermal power control).
  • the process of acquiring heating information based on the detected value of the input current Iin is executed during general-purpose automatic water heating cooking in which there is no infrared cooking information of the temperature data transmitting unit 23.
  • the heating information of the cooking appliance 9 is obtained based on the pot data S3 of the cooking information, and based on the heating information.
  • the pulse width of the drive signal is controlled.
  • the infrared light receiving circuit 41 corresponding to a receiving means is configured by modularizing an infrared sensor and a signal output circuit, and is arranged below the window 12 of the top plate 3.
  • the infrared light receiving circuit 41 receives the cooking information from the temperature data transmitting section 23 through the window section 12 to generate cooking data.
  • the cooking data is obtained by performing envelope detection on the received light signal of the cooking information as shown in FIG. 6 (c).
  • the infrared light receiving circuit 41 is connected to an interrupt terminal INT of the control circuit 35.
  • the control circuit 35 starts the interrupt program, and stores the remaining battery data S2, the pot data S3, and the temperature data S4 following the header S1 in the RAM as wireless cooking information.
  • “wireless area (NEW)” and “wireless area (OLD)” are formed as storage areas for wireless cooking information.
  • the latest wireless cooking information from the infrared light receiving circuit 41 is stored in the “wireless area (NEW)” by the processing of the interrupt program, and after being processed by the main program for automatic hot water cooking, the “wireless area (OLD)” Moved to
  • the ROM of the control circuit 35 stores a main program for automatic boiling water cooking.
  • the CPU of the control circuit 35 starts a main program for automatic water heater cooking and controls heating.
  • the control circuit 35 is connected with an LED 42 corresponding to a notification unit.
  • the CPU of the control circuit 35 continuously turns on the LED 42 when the consumption “1” of the pot-side power supply 21 is stored in the “wireless area (NEW)” of the RAM as the remaining battery data S2. Flash.
  • the user is notified of the consumption and replacement of the pot-side power supply 21.
  • the LED 42 is provided on the operation panel 4 as shown in FIG.
  • the general-purpose cooking utensil When performing automatic boiling water cooking using a general-purpose cooking utensil, the general-purpose cooking utensil is set at the position of the heating mark 8 and the automatic water heating key 5 on the operation panel 4 is turned on.
  • the special cooking utensil 9 when performing automatic boiling water cooking using the special cooking utensil 9, the special cooking utensil 9 is set at the position of the calorie heat mark 8, and the power switch 22 of the cooking utensil 9 and the automatic heating key 5 of the operation panel 4 are set. Turn on.
  • FIG. 7 is a flowchart showing the processing content of automatic boiling water cooking.
  • the control circuit 35 When detecting the operation of turning on the automatic water heater key 5, the control circuit 35 clears the RAM in step S1 and sets the cooking flag to the temperature raising process. Then, in step S2, the heating power is set to the rated value of 3 kW, and automatic boiling water cooking is started with high heating power.
  • the heating power is adjusted by controlling the energizing time per unit time to the IH coil 14 by the on / off ratio of the switching elements constituting the inverter circuit 19.
  • control circuit 35 proceeds to step S3, and determines whether or not there is a timer signal.
  • the timer signal is output from the timer circuit of the control circuit 35 every set time (for example, every 1 second), and when the control circuit 35 detects the timer signal in step S3, the control circuit 35 proceeds to step S4.
  • step S4 the control circuit 35 determines the setting state of the cooking flag.
  • the cooking flag is set to the temperature raising process at the start of the automatic water heating cooking, and is set to the heat retention process at the end of the temperature raising process.
  • the control circuit 35 executes the temperature increasing process of step S5 when the cooking flag is set to the temperature raising process, and executes the temperature maintaining process of step S6 when the cooking flag is set to the temperature maintaining process. .
  • the temperature increase process in step S5 and the heat retention process in step S6 are performed every time a timer signal is output from the timer circuit.
  • FIG. 8 is a flowchart showing the processing contents of the temperature raising processing.
  • control circuit 35 When the control circuit 35 proceeds to the temperature increasing process in step S5, the control circuit 35 refers to the “wireless area (NEW)” in the RAM in step S11.
  • the “wireless area (NEW)” indicates the latest use state of the dedicated cooking utensil 9 and is in a reset state when a general-purpose cooking utensil is used.
  • the control circuit 35 proceeds to step S12, and performs general-purpose hot water cooking.
  • step S12 the control circuit 35 detects the surface temperature Ts of the cooking utensil based on the output signal acquired from the internal temperature sensor 15 by wire, and stores the detection result in the RAM as wired cooking information.
  • “Wired area (N EW)” and “wired area (OLD)” are secured in the RAM as storage areas for wired cooking information.
  • the latest surface temperature Ts acquired in step S12 is stored in “wired area (NEW)”, and is moved to “wired area (OLD)” in step S16 or S19 described later.
  • control circuit 35 proceeds to step S13, and compares the surface temperature Ts with a determination value Th (for example, 80 ° C.) stored in the ROM in advance.
  • Th for example, 80 ° C.
  • the process proceeds to step S14, and the surface temperature Ts is further compared with a determination value T1 (for example, 50 ° C.) stored in the ROM in advance.
  • step S14 the control circuit 35 proceeds to step S16, and moves the latest surface temperature Ts of the “wired area (NEW)” to the “wired area (OLD)”. Reset “wired area (NEW)” by storing default data in “wired area (NEW)”
  • step S14 the thermal power is set to 2 kW in step S15, and then the process proceeds to step S16. That is, when it is detected based on the output signal from the internal temperature sensor 15 that the surface temperature Ts of the general-purpose cooking utensil has reached the determination value T1, the heating power is reduced from 3 kW to 2 kW, and the cooking utensil is set at 2 kW. Heat continuously with thermal power.
  • step S13 When the control circuit 35 determines that "Ts> Th" in step S13, the process proceeds to step S17, and the IH coil 14 is operated with a low heating power of lkW. That is, when detecting that the surface temperature Ts of the general-purpose cooking appliance has reached the determination value Th (> Tl) based on the output signal from the internal temperature sensor 15, the heating power is reduced from 2 kW to lkW and the cooking appliance is reduced. Is continuously heated with a low heating power of lkW.
  • step S17 When the heating power is set weak in step S17, the control circuit 35 sets the temperature change rate in step S18.
  • the temperature change rate ATs is the change temperature of the cooking utensil per unit time, and the control circuit 35 reads out the surface temperature Ts from the “wired area (NEW)” and “wired area (OLD)” and updates the surface temperature Ts. The difference between the detected value and the previous detected value is also the temperature change rate. Calculate Ts.
  • control circuit 35 proceeds to step S19, moves the surface temperature T s of “wired area (NEW)” to “wired area (OLD)”, and writes default data in “wired area (NEW)”. This resets the “wired area (NEW)” (update process).
  • the control circuit 35 After updating the “wired area (NEW)” and “wired area (OLD)” of the RAM in step S19, the control circuit 35 determines that the temperature change rate ATs calculated in step S20 is stored in the ROM in advance. Compare with the value ⁇ . Here, if “ATs ⁇ ⁇ ”, it is determined that the cooking utensil has reached the recognition temperature Tw, and the process proceeds to step S21 to set the heating flag to the cooking flag.
  • the heating power is gradually changed from high to medium and low based on the output signal from the internal temperature sensor 15 to change the heating state of the cooking utensil. Is gradually reduced, and the process ends when it detects that the temperature rise A Ts of the cooking utensil has become dull.
  • step S22 When the control circuit 35 detects that the wireless cooking information is stored in the “wireless area (NEW)” of the RAM in step S11 of FIG. 8, the process proceeds to step S22.
  • the wireless control information is transmitted by the temperature data transmitting unit 23 of the cooking appliance 9 by infrared rays at every set time, and the control circuit 35 takes this in the external interrupt processing. That is, when the dedicated cooking utensil 9 is used, the wireless cooking information is stored in the “wireless area (NEW)”, and the control circuit 35 performs automatic boiling water cooking suitable for the dedicated cooking utensil 9.
  • step S22 the control circuit 35 reads the battery remaining amount data S2 of "wireless area (NEW)". If the remaining battery data S2 is "0", it is determined that the pot-side power supply 21 is at a normal level, and the LED 42 is turned off in step S23. If the remaining battery level data S2 is "1", it is determined that the pot-side power supply 21 is abnormally low, and the process proceeds to step S24, where the LED 42 is turned on to notify the user that the battery has run out.
  • the battery exhaustion indication is turned on not only when cooking is started while the pot-side power supply 21 is abnormally low, but also when the pot-side power supply 21 abnormally drops during cooking. However, if the pot-side power supply 21 is replaced with a normal one during cooking, the battery remaining amount data S2 transmitted from the temperature data transmission unit 23 becomes “0”. , The battery dead indication is turned off.
  • the control circuit 35 proceeds to step S25, and reads out the temperature data S4 from the “wireless area (NEW)” of the RAM.
  • the temperature data S4 is the surface temperature To of the cooking utensil 9 transmitted from the temperature data transmitting unit 23 by infrared rays.
  • the control circuit 35 calculates the temperature change rate ⁇ To in step S26.
  • the temperature change rate ⁇ To is a change temperature of the cooking utensil 9 per unit time, and the control circuit 35 reads out the surface temperature To from the “wireless area (NEW)” and the “wireless area (OLD)” and outputs the surface temperature To.
  • the temperature change rate ⁇ To is calculated from the difference between the latest detected value of To and the previous detected value.
  • control circuit 35 proceeds to step S27, moves the surface temperature To of “wireless area (NEW)” to “wireless area (OLD)”, and writes default data in “wireless area (NEW)”. By resetting, “wireless area (NEW)” is reset (update processing).
  • step S27 When the control circuit 35 updates the “wireless area (NEW)” and “wireless area ( ⁇ LD)” in the RAM in step S27, the temperature change rate ⁇ To calculated in step S28 is stored in the ROM in advance. Is compared with the judgment value ⁇ . If “ ⁇ ⁇ ⁇ ” here, it is determined that the cooking utensil 9 has reached the boiling temperature recognition temperature Tw, and the flow proceeds to step S21 to set the heating flag to the cooking flag.
  • the dedicated hot water cooking directly detects the surface temperature To while heating the cooking utensil 9 with a high heating power of 3 kW, and the rising temperature ⁇ of the cooking utensil is The process ends when dullness is detected.
  • control circuit 35 determines that the wireless cooking information does not exist in the “wireless area (NEW)” in step S11 during the dedicated automatic hot water cooking, the control circuit 35 switches to the general-purpose hot water cooking. For example, when the pot-side power supply 21 drops to an uncontrollable level during the dedicated hot water cooking, the wireless cooking information from the temperature data transmitting unit 23 is lost, so that the dedicated hot water cooking is switched to the general-purpose hot water cooking.
  • the control circuit 35 sets the heating power to the heat retaining value ( ⁇ lkW) in the heat retaining process of step S6. Then, when the wireless cooking information is present, the heating power is adjusted near the heat retention value so that the wireless surface temperature To is kept at the boiling temperature and the recognition temperature Tw. Adjust the thermal power near the heat retention value so that the surface temperature Ts is kept at the boiling temperature and the recognition temperature Tw
  • the external temperature sensor 20 is directly attached to the cooking utensil 9 and the cooking information including the temperature (temperature information) detected by the external temperature sensor 20 is wirelessly communicated.
  • the actual temperature of the cooking utensil 9 can be detected with high accuracy because the sensor force is not affected by the magnetic field from the coil 14 and the top plate 3 that causes a temperature gradient is not interposed.
  • the cooking utensil 9 can be continuously heated with high heat, and the cooked food can be finished in a desired state in a short time.
  • Infrared was used as a transmission medium for cooking information. Since the infrared transmission area is wide, cooking information that is not affected by the setting posture with respect to the heating mark 8 reaches the infrared receiving circuit 41 without fail. Also, since the infrared rays are not affected by the magnetic field, the adjustment information is not affected by the magnetic field from the IH coil 14.
  • a battery was used for the pot-side power supply 21. This simplifies the electrical configuration without having to supply power from the cooking device.
  • the output of the pot-side power supply 21 was detected to have dropped abnormally, and an abnormality was reported on the heating cooker side. Therefore, the user can be encouraged to replace the pot-side power supply 21 before the infrared transmission of the cooking information is hindered, thereby improving maintainability.
  • An internal temperature sensor 15 was provided on the heating cooker side, and the use state of the internal temperature sensor 15 was controlled according to the infrared transmission state of cooking information. Therefore, when the pot-side power supply 21 drops during the cooking and the infrared transmission of the cooking information disappears during the cooking, the cooking can be continued based on the detection result from the internal temperature sensor 15. Further, when the pot-side power supply 21 is replaced during the cooking and the infrared transmission of the cooking information is restored during the cooking, the cooking can be continued based on the infrared transmission result of the temperature information.
  • the temperature data transmission unit 23 is configured by an infrared transmission module, the temperature data transmission unit 23 can be easily attached to the cooking appliance 9.
  • FIG. 11 shows a state in which the dedicated cooking utensil 9 is set on the top plate 3, and FIG. Shows the electrical configuration of the temperature data transmission unit 23 and its peripheral circuits.
  • the handle portion 11 of the dedicated cooking utensil 9 is provided with a temperature switch 43 as switch means, which is located inside the handle cover 33.
  • the pot-side power supply 21 is connected to a power supply circuit 26 via a temperature switch 43.
  • the temperature switch 43 has a movable contact made of a bimetal, and switches from the off state to the on state at the boundary of the detected temperature Tb. That is, when the surface temperature To of the cookware 9 is equal to or lower than the detected temperature Tb, the temperature switch 43 is turned off, and the temperature data transmitting unit 23 is turned off.
  • the temperature switch 43 is turned on and the temperature data transmitting unit 23 is energized. Therefore, the temperature data transmission unit 23 is activated on condition that the surface temperature To of the cooking utensil 9 exceeds the detected temperature Tb, and starts the infrared transmission of cooking information.
  • the control circuit 35 of the inverter control section 34 controls the automatic boiling water cooking in accordance with the control programs shown in Figs. 7 and 8. That is, even when using the dedicated cooking device 9, since the wireless cooking information does not exist until the surface temperature To reaches the detection temperature Tb, general-purpose water-cooking is performed. After the surface temperature To of the cooking utensil 9 exceeds the detected temperature Tb, since the wireless cooking information is present, a dedicated hot water cooking is performed. The detected temperature Tb is set smaller than the determination value T1 for general-purpose boiling water cooking (for example, 45 ° C.). Therefore, before detecting “Tl ⁇ Ts” in step S14 of FIG.
  • the infrared transmission of cooking information is started from the temperature data transmission unit 23, and in step S15, the heating power is changed from the initial strong output “3kW” to the middle output “3kW”. Before lowering to 2 kW, it switches from general-purpose kettle cooking to special-purpose kettle cooking. That is, as shown in FIG. 13, the cooking utensil 9 is continuously heated with the initial strong heating power until the boiling water reaches the recognition temperature Tw.
  • the second embodiment power is supplied from the pot-side power supply 21 to the temperature data transmission unit 23 according to the surface temperature To of the cooking utensil 9. Therefore, power is supplied from the pot-side power supply 21 to the temperature data transmission unit 23 only when the surface temperature To of the cooking utensil 9 enters an area that requires detection, and cooking information is transmitted from the temperature data transmission unit 23 by infrared radiation. Therefore, the power consumption of the pot-side power supply 21 can be increased.
  • FIG. 14 shows a state in which the dedicated cooking utensil 9 is set on the top plate 3
  • FIG. 15 shows an electrical configuration of the temperature data transmitting unit 23 and its peripheral circuits.
  • An annular loop coil 44 is attached to the dedicated cooking utensil 9 at the lower surface of the container portion 10.
  • the loop coil 44 is a secondary coil magnetically coupled to the IH coil 14 in a state where the cooking utensil 9 is set on the heating mark 8 of the top plate 3, and is connected to the rectifying circuit 45 of the temperature data transmitting unit 23. It is connected.
  • the rectifier circuit 45 converts the induced voltage of the loop coil 44 into DC.
  • the rectifier circuit 45 is connected to a switching power supply circuit 46 corresponding to a stabilized power supply unit.
  • the switching power supply circuit 46 converts the output voltage of the rectifier circuit 45 to a constant voltage, and the temperature data transmission unit 23 operates by receiving power supply from the switching power supply circuit 46.
  • FIG. 16 shows the relationship between the input power (kW) of the IH coil 14 and the rectified output (V) from the rectifier circuit 45.
  • the rectified output from the rectifier circuit 45 increases in proportion to the input power of the IH coil 14. This rectified output is maintained at 10 V or more even if the input power varies between 200 W and 3 kW, so that the switching power supply circuit 46 does not fall below the rated value based on the rectified output from the rectifier circuit 45.
  • a stable level of drive power can be generated
  • the loop coil 44 is arranged at the bottom of the cooking utensil 9, the distance between the loop coil 44 and the IH coil 14 when the cooking utensil 9 is set on the heating mark 8 is reduced. For this reason, even when the electromotive force of the loop coil 44 is large and the output of the IH coil 14 is small, it is possible to generate a power supply necessary for operating the temperature data transmitting unit 23 normally.
  • FIG. 17 shows an electrical configuration of the temperature data transmission unit 23 and its peripheral circuits.
  • a rectification output detection circuit 47 corresponding to a rectification output detection unit is connected to the control circuit 32 of the temperature data transmission unit 23.
  • the rectification output detection circuit 47 outputs a voltage signal of a level corresponding to the rectification output from the rectification circuit 45.
  • the control circuit 32 performs A / D conversion of the voltage signal from the rectified output detection circuit 47, and detects the magnitude of the rectified output based on the A / D conversion result.
  • the rectifier circuit 45 is connected to a power supply circuit 48 corresponding to a stable power supply unit.
  • the power supply circuit 48 generates a drive power supply for the temperature data transmission unit 23, and is composed of a series regulator that reduces the rectified output from the rectifier circuit 45 to 5V.
  • An output suppression circuit 49 is connected to the control circuit 32.
  • the output suppressing circuit 49 includes a transistor 50 and a resistor 51 corresponding to a load. When the control circuit 32 turns on the transistor 50, the rectified output from the rectifier circuit 45 decreases.
  • FIG. 18 shows the relationship between the input power of the IH coil and the rectified output from the rectifier circuit.
  • the control circuit 32 turns on the transistor 50 when the detected value of the rectified output reaches 20V. As a result, a rise in the rectified output is suppressed, and even if the IH coil 14 is driven at a high output of 3 kW, the rectified output is suppressed to 25 V which is lower than the withstand voltage of the power supply circuit 48.
  • the resistor 51 serving as a load is enabled to suppress an increase in the rectified output. It can protect against overvoltage.
  • the temperature data transmission unit 23 is fixed to the handle 11 of the cooking utensil 9, it may be fixed to the container 10, for example. In the case of this configuration, it is preferable to fix the temperature data transmitting unit 23 to a portion of the container unit 10 where the temperature rise is slow. Specifically, the upper end of the container unit 10 is appropriate.
  • the temperature data transmitting unit 23 may be modularized. That is, the temperature data transmitting unit 23 may be molded with a heat-resistant synthetic resin.
  • the infrared transmission module is an assembly in which constituent elements are electrically interconnected in a manner that enables infrared transmission of temperature information, and refers to physically independent units.
  • the control information from the temperature data transmission unit 23 was used.
  • the present invention is not limited to this.
  • a temperature signal from the internal temperature sensor 15 may be used. You can use it.
  • the boiling of water is determined based on the cooking information from temperature data transmitting section 23, it may be determined in addition to this whether or not water is contained in the cooking utensil. In the case of this configuration, based on the cooking information from the temperature data transmission unit 23, when the boiling of water is detected within a predetermined determination time or less, it is determined that the water is in the empty heating state where no water is present, and the automatic boiling cooking is performed. It is preferable to stop.
  • the cooking information from the temperature data transmission unit 23 was used for automatic boiling water cooking, but the cooking utensils 9 were heated to the set temperature, such as, but not limited to, open-air cooking, hot water cooking, and stir-fry cooking. It can be used for automatic cooking.
  • the configuration is such that the surface temperature To of the cooking utensil 9 is detected by the external temperature sensor 20, but the present invention is not limited to this.
  • the temperature of the preparation in the cooking utensil 9 is detected by the external temperature sensor 20
  • the temperature of the food may be transmitted to the cooking device by infrared rays.
  • the temperature information includes, in addition to the absolute temperature of the cooking utensil 9, the relative temperature of the cooking utensil 9 in comparison with a predetermined reference value, the temperature change rate of the cooking utensil 9, the absolute temperature of the cooked food,
  • the information may be information on the relative temperature of the cooked food compared to a predetermined reference value, or the temperature such as the rate of change in the temperature of the cooked food.
  • the external temperature sensor 20 is located at the lower end of the cookware 9.
  • a secondary battery As the pot-side power supply 21, a secondary battery, a solar battery, or the like may be used in addition to the primary battery.
  • the temperature switch 43 may be a spontaneous switch that changes its state according to the temperature of the cooking utensil. Industrial applicability
  • the heating cooker, the cooking utensil, and the heating cooking system according to the present invention are useful for, for example, cooking for finishing a food in a desired state in a short time.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Cookers (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

 本発明は、収容した調理物の温度に応じた信号を出力する温度検出手段(20)と、この温度検出手段(20)からの出力信号に応じた温度情報を加熱調理器に対し赤外線で送信する送信手段(23)とを備えた調理器具(9)、および、調理器具(9)から送信される温度情報を受信可能な受信手段(41)と、受信した温度情報に基づいて加熱手段(14)を駆動制御する制御手段(35)とを備えた加熱調理器、ならびに、これら調理器具(9)と加熱調理器とからなる加熱調理システムである。

Description

明 細 書
加熱調理器、調理器具および加熱調理システム
技術分野
[0001] 本発明は、調理器具を加熱してその内容物を調理する加熱調理器およびその加 熱調理器に用いられる調理器具並びに加熱調理システムに関する。
背景技術
[0002] 図 19は、従来の加熱調理器の一例を示している。 IHコイル 101の内周部近傍には サーミスタ 102が配置されている。トッププレート 104に載置された調理器具 103の表 面温度は、トッププレート 104を介してサーミスタ 102により間接的に検出される構成 となっている。 自動湯沸し調理を行うときには、加熱調理器は、サーミスタ 102の検出 温度が上昇するに従って、火力を高から中、低へと段階的に弱める。そして、低火力 状態において検出温度の温度変化率が所定の判定値に比べて小さくなつたことによ り、水の沸騰を検出している。
[0003] なお、その他の背景技術として、特開 2003-139385号公報には、浴槽内の湯水 の温度を取得するための装置であって、電源手段と、浴槽内の湯水の温度を検出す る温度検出手段と、検出した温度データを風呂システム側に無線送信する送信手段 とを備えた風呂温度検出装置が開示されている。
発明の開示
発明が解決しょうとする課題
[0004] 上記加熱調理器の場合、火力の段階的な下降制御を行っているので、調理時間 が長くなる。この火力の段階的な下降制御は、下記(1)ないし (3)に示すように、調 理器具 103の実際の温度を高精度に検出することを目的としている。従って、火力の 段階的な下降制御を止めた場合には、調理器具 103の実際の温度を高精度に検出 することができず、所望する調理の仕上り状態が得られなレ、。
[0005] (1)サーミスタ 102のリード線 105が IHコイル 101からの磁界の影響を受けて誘導加 熱されるので、サーミスタ 102の検出温度が実際の温度に比べて高くなる。このため 、火力を段階的に弱めることによりリード線 105が受ける磁界の影響を低減し、検出 温度を実際の温度に近付けている。
[0006] (2)調理器具 103とサーミスタ 102との間に、温度勾配を生じさせるトッププレート 10 4が存在するので、調理器具 103を高火力で継続的に加熱したときには、サーミスタ 102の検出温度が実際の温度に追従しない。このため、火力を段階的に弱めること により調理器具 103の昇温を積極的に遅らせ、検出温度を実際の温度に追従させて いる。
[0007] (3)調理器具 103を高火力で継続的に加熱した場合、調理器具 103の実際の温度 は、沸騰温度に達した後も沸騰前と同様の温度変化率で上昇する。このため、検出 温度の温度変化率が判定値を下回った時には、既に水は沸騰した状態にあり、沸騰 検出が遅れてしまう。そこで、火力を段階的に弱めることにより、水が沸騰した時点で 調理器具 103の温度変化率を低下させ、沸騰検出の遅れを防止している。
[0008] 本発明の目的は、短時間で目的の調理仕上り状態を得ることができる加熱調理器 および加熱調理器に用いられる調理器具並びに加熱調理システムを提供することに める。
課題を解決するための手段
[0009] 本発明は、調理器具を支持する支持手段と前記調理器具を加熱する加熱手段とを 備えた加熱調理器にぉレ、て、
外部から赤外線で送信される調理器具の温度情報または調理器具内の調理物の 温度情報を受信可能な受信手段と、
この受信手段が受信した温度情報に基づいて前記加熱手段を駆動制御する制御 手段とを備えたことを特徴とする加熱調理器である。
[0010] また、この加熱調理器に使用可能な調理器具であって、
収容した調理物の温度に応じた信号を出力する温度検出手段と、
この温度検出手段からの出力信号に応じた温度情報を前記加熱調理器に対し赤 外線で送信する送信手段とを備えたことを特徴とする調理器具である。
[0011] さらに、これら調理器具と加熱調理器とからなる加熱調理システムである。
発明の効果
[0012] 本発明によれば、火力の段階的な下降制御を行うことなく調理器具の実際の温度 を高精度に検出することができる。このため、調理器具を高火力で継続的に加熱する ことができ、調理物を短時間で目的の状態に仕上げることができる。また、温度情報 の送信媒体として使用する赤外線は、電波に比べて送信領域が広く且つ磁界の影 響も受けないので、調理器具のセット姿勢に影響されることなく温度情報が受信手段 に正確'確実に届く。
図面の簡単な説明
[図 1]図 1は本発明の第 1実施例であるクッキングヒータの外観を示す斜視図である。
[図 2]図 2は専用の調理器具をトッププレートにセットした状態を示す図である。
[図 3]図 3はインバータ回路部およびインバータ制御部の電気的構成を示すブロック 図である。
[図 4]図 4は温度データ送信部およびその周辺回路の電気的構成を示すブロック図 である。
[図 5]図 5は制御回路に入力される検出電圧と検出温度との関係を示す図である。
[図 6]図 6 (a)は赤外線 LEDの駆動信号を示す図、(b)は赤外線 LEDから投光される 無線調理情報の内容を示す図、(c)は赤外線受光回路から出力される無線調理情 報の検波信号を示す図である。
[図 7]図 7は自動湯沸し調理の処理内容を示すフローチャートである。
[図 8]図 8は昇温処理の処理内容を示すフローチャートである。
[図 9]図 9は専用の調理器具を使用した自動湯沸し調理における温度と入力電力の 時間的変化を示す図である。
[図 10]図 10は汎用の調理器具を使用した自動湯沸し調理内容における温度と入力 電力の時間的変化を示す図である。
[図 11]図 11は本発明の第 2実施例であって、専用の調理器具をトッププレートにセッ トした状態を示す図である。
[図 12]図 12は温度データ送信部およびその周辺回路の電気的構成を示すブロック 図である。
[図 13]図 13は専用の調理器具を使用した自動湯沸し調理における温度と入力電力 の時間的変化を示す図である。 [図 14]図 14は本発明の第 3実施例であって、専用の調理器具をトッププレートにセッ トした状態を示す図である。
[図 15]図 15は温度データ送信部およびその周辺回路の電気的構成を示すブロック 図である。
[図 16]図 16は IHコイルの入力電力と整流回路からの整流出力との関係を示す図で める。
[図 17]図 17は本発明の第 4実施例であって、温度データ送信部およびその周辺回 路の電気的構成を示すブロック図である。
[図 18]図 18は IHコイルの入力電力と整流回路からの整流出力との関係を示す図で める。
[図 19]図 19は従来技術であって、調理器具をトッププレートにセットした状態を示す 図である。
発明を実施するための最良の形態
[0014] 本発明をより詳細に説述するために、添付の図面に従ってこれを説明する。
(実施例 1)
本発明の第 1実施例について、図 1ないし図 10を参照しながら説明する。 図 1は、クッキングヒータの外観を示す斜視図である。システムキッチン 1の内部に は、キャビネット 2が収容されている。このキャビネット 2の上面には、支持手段に相当 する耐熱ガラス製のトッププレート 3が設けられている。このトッププレート 3は、システ ムキッチン 1の上面に露出している。トッププレート 3は、有色不透明に着色されてお り、トッププレート 3を通してキャビネット 2の内部が見えないようになつている。
[0015] キャビネット 2の前面には操作パネル 4が設けられており、この操作パネル 4には自 動湯沸しキー 5、火力調整ダイアル 6および天ぷらキー 7が配設されている。これらの キーは調理条件の入力手段に相当するもので、前方から操作可能となっている。
[0016] トッププレート 3には、円形状の加熱マーク 8が形成されている。この加熱マーク 8は 、上記トッププレート 3の着色とは異なる色に着色されており、使用者に対し、汎用の 調理器具 (図示せず)または専用の調理器具 9 (図 2参照)を載置する載置領域を知 らせる目印として機能する。また、トッププレート 3の加熱マーク 8の右側方には、窓部 12が形成されている。この窓部 12は、トッププレート 3の透明な基材が現れた部分で 、透光性を有している。
[0017] 図 2は、専用の調理器具 9をトッププレート 3にセットした状態を示している。専用の 調理器具 9は磁性材からなる片手鍋であり、調理物が投入される容器部 10と、容器 部 10から側方に突出する棒状の取手部 11とから構成されている。
[0018] キャビネット 2の内部には、加熱マーク 8の下方に位置して円環状のコイルベース 1 3が設けられており、そのコイルベース 13の上面には、加熱手段および一次コイルに 相当する円環状の IHコイル 14が固定されている。また、キャビネット 2の内部には、 加熱マーク 8の下部に位置して内部温度センサ 15が配設されている。内部温度セン サ 15の感温部は、センサスプリングのばね力でトッププレート 3の下面に押付けられ ている。この内部温度センサ 15は、間接温度検出手段、内部温度検出手段、温度検 出手段に相当し、内部温度センサ 15のリード線 16は、 IHコイル 14の中央部および コイルベース 13の中央部に揷通されている。この内部温度センサ 15は例えばサーミ スタから構成されており、専用の調理器具 9の表面温度および汎用の調理器具の表 面温度をトッププレート 3を介して間接的に検出するようになっている。
[0019] 図 3は、キャビネット 2の内部に収容されたインバータ回路部およびインバータ制御 部の電気的構成を示している。整流回路 17は、ダイオードブリッジ回路と平滑コンデ ンサとから構成されている。整流回路 17の入力端子には商用交流電源 18が接続さ れ、整流回路 17の出力端子はインバータ回路 19に接続されている。
[0020] インバータ回路 19は、ハーフブリッジ形に接続されたスイッチング素子を主体に構 成されている。インバータ回路 19の出力端子には IHコイル 14が接続されている。 IH コイル 14にはインバータ回路 19から高周波電流が与えられ、 IHコイル 14は調理器 具 9を誘導加熱する。
[0021] 図 2に示すように、調理器具 9において容器部 10の外周面 (側面)の下端部近くに は、外部温度センサ 20が取り付けられている。下端部近くに配置するのは、容器部 1 0に収容された調理物の量が少なくても、容器部 10の側壁を介して調理物の温度を 精度よく検出するためである。この外部温度センサ 20は、温度検出手段および外部 温度検出手段に相当し、例えばサーミスタから構成されている。その感温部は容器 部 10の外周面に密着し、調理器具 9の表面温度 Toを直接的に検出する。
[0022] 調理器具 9の取手部 11に位置して、鍋側電源 21および送信手段に相当する温度 データ送信部 23が固定されている。鍋側電源 21は例えば 9Vの一次電池から構成さ れており、電源スィッチ 22を介して温度データ送信部 23に主電源 Vinを供給するよう になっている。電源スィッチ 22は、取手部 11に固定された自己保持形のスライドスィ ツチから構成されており、プランジャ 24のスライド操作によりオン状態またはオフ状態 に機械的に保持される。
[0023] 温度データ送信部 23は、鍋側電源 21から主電源 Vinが与えられると動作し、主電 源 Vinが遮断されると動作を停止する。この温度データ送信部 23は、外部温度セン サ 20からリード線 25を通して温度信号を入力し、温度検出結果(温度情報)を含む 調理情報を赤外線で送信する。すなわち、温度データ送信部 23は、使用者が電源 スィッチ 22をオン操作すると自動的に調理情報の送信を開始し、使用者が電源スィ ツチ 22をオフ操作すると自動的に送信を停止する。
[0024] 図 4は、温度データ送信部 23およびその周辺回路の電気的構成を示している。温 度データ送信部 23は、電源回路 26、電圧検出回路 27、発振回路 28、温度検出回 路 29、 LED駆動回路 30、赤外線 LED31および制御回路 32から構成されており、 赤外線を送信可能となっている。温度データ送信部 23は、独立ユニットとして取り扱 うことが可能な赤外線送信モジュールである。電源回路 26は、鍋側電源 21からの主 電源 Vinを降圧して 5Vの安定化電源 Voを生成するシリーズレギユレータである。温 度データ送信部 23は、この安定化電源 Voにより動作する。
[0025] 出力検出部に相当する電圧検出回路 27は、主電源 Vinのレベルに応じた電圧信 号を生成し、その電圧信号を制御回路 32に与えるようになつている。外部温度セン サ 20が接続された温度検出回路 29は、検出温度に応じたレベルの電圧信号を生成 し、その電圧信号を制御回路 32に出力するようになっている。
[0026] 制御回路 32は、 CPU, ROM、 RAM、 I/O,タイマ回路等を備えたマイクロコンビ ユータから構成され、発振回路 28から入力される 8MHzの動作クロックに同期して動 作する。タイマ回路は、設定時間毎 (例えば lmsec毎)に INT信号を出力するように なっている。 CPUは、タイマ回路から INT信号が出力されると、 ROMから制御プログ ラムを読み出して、 1)電圧検出処理、 2)温度検出処理、および 3)データ送信処理を 実行する。
[0027] 以下、各処理の内容について説明する。
1)電圧検出処理
電圧検出処理とは、鍋側電源 21の電圧が異常レベルにまで低下したか否かを、設 定期間毎に判定する処理である。制御回路 32は、電圧検出回路 27から入力された 電圧信号を A/D変換し、その A/D変換値に基づいて主電源 Vinの電圧レベルを 検出する。そして、その電圧レベルの検出値と予め ROMに記憶された判定値とを比 較する。制御回路 32は、電圧レベルの検出値が判定値を上回るときには主電源 Vin が正常レベルにあると判断し、電圧レベルの検出値が判定値を下回るときには主電 源 Vinが異常レベルにあると判断する。この異常レベルとは、制御回路 32が正常に 処理動作を行うことができなくなる電圧レベルを言う。
[0028] 2)温度検出処理
温度検出処理は、調理器具 9の表面温度 Toを設定期間毎に直接的に検出する処 理である。制御回路 32の ROMには、図 5に示すような温度検出回路 29からの電圧 信号 (V)と調理器具 9の表面温度 To (° C)との関係が記憶されている。制御回路 3 2は、温度検出回路 29から入力された電圧信号を A/D変換し、その A/D変換値 に応じた表面温度 Toを ROMの記憶データから読み出す。例えば、温度検出回路 2 9からの電圧信号が 4. IVであるときに、検出される表面温度 Toは 75° Cである。
[0029] 3)データ送信処理
図 4に示すように、制御回路 32には、 LED駆動回路 30を介して赤外線素子に相 当する赤外線 LED31が接続されている。データ送信処理とは、赤外線 LED31の駆 動信号を生成して赤外線 LED31の発光を制御し、調理情報を赤外線により送信す る処理である。このデータ送信処理は、上述した電圧検出処理および温度検出処理 に同期して、設定期間毎に実行される。
[0030] すなわち、制御回路 32は、上記電源電圧 Vinの検出結果および上記表面温度 To の検出結果に基づいて駆動信号を生成し、その駆動信号により LED駆動回路 30を 駆動制御する。これにより、赤外線 LED31から、電源電圧 Vinの検出結果および表 面温度 Toの検出結果を含む調理情報が赤外線により送信される。駆動信号は、予 め設定された周波数 (例えば 31. 25kHz)とデューティ比を持つキャリア信号を変調 することにより生成される。キャリア信号の変調は、オンオフ期間を変更することにより 行われる。
[0031] 図 6の(a)および (b)は、制御回路 32が生成する駆動信号 Sを示している。駆動信 号 Sは、ヘッダ Sl、電池残量データ S2、鍋データ S3、温度データ S4およびストップ ビット S5から構成されている。ヘッダ S1は、駆動信号の送信開始を示すものであり、 キャリア信号を 5msecオン、 3msecオフすることにより生成される。ストップビット S5は 、駆動信号の送信終了を示すもので、キャリア信号を lmsecオン、 3msec以上オフ することにより生成される。電池残量データ S2、鍋データ S3および温度データ S4は 、ビット「0」とビット「1」との組合せにより生成される。ここで、ビット「0」は、キャリア信号 を lmsecオン、 lmsecオフすることにより生成され、ビット「1」は、キャリア信号を lms ecオン、 2msecオフすることにより生成される。
[0032] 電池残量データ S2は、鍋側電源 21の消耗の有無を示す 1ビットデータからなる。
制御回路 32の CPUは、電圧検出処理で主電源 Vinが正常レベルにあると判断した ときには、その直後のデータ送信処理で電池残量データ S2に「0」を設定する。一方 、主電源 Vinが異常レベルにあると判断したときには、電池残量データ S2に「1」を設 定する。
[0033] 鍋データ S3は、調理器具 9の種類、材質、大きさ等を示す固有データであり、制御 回路 32の ROMに予め記憶されている。この鍋データ S3は、 3ビットデータからなる。 制御回路 32の CPUは、データ送信処理毎に、鍋データ S3に上記 ROMに記憶され たデータを設定する。
[0034] 温度データ S4は、調理器具 9の表面温度 Toを示す 8ビットデータからなる。制御回 路 32の CPUは、温度検出処理の検出値 Toをその直後のデータ送信処理で温度デ ータ S4に設定する。例えば温度検出処理の検出値 Toが 75° Cであるときには、温 度データ S4として「11010010」を設定する。
[0035] 調理器具 9には、図 2に示すように、取手カバー 33が取り付けられている。この取手 カバー 33は、断熱材により形成されており、プランジャ 24を除いて外部温度センサ 2 0、鍋側電源 21、電源スィッチ 22、温度データ送信部 23およびリード線 25を覆うよう になっている。この取手カバー 33には、鍋側電源 21を交換するための電池交換口 が形成されており、電池交換口には電池カバーが開閉可能に装着されている。なお 、上記断熱材は、調理器具 9の基材である磁性材に比べて熱伝導率が低い材料 (例 えば合成樹脂)からなる。
[0036] キャビネット 2の内部には、図 3に示すインバータ制御部 34が収納されている。この インバータ制御部 34は、インバータ回路 19をスイッチング制御するものであり、次の ように構成されている。
[0037] 制御手段に相当する制御回路 35は、 CPU, ROM, RAM, lZ〇等を備えたマイク 口コンピュータを主体に構成されている。制御回路 35には操作部 36が接続されてい る。操作部 36は、 自動湯沸しキー 5、火力調整ダイアル 6、天ぶらキー 7等の調理情 報の入力手段である。制御回路 35は、操作部 36の操作内容に応じて調理条件を設 定し、その調理条件に基づいて駆動信号を生成する。
[0038] 駆動回路 37は、制御回路 35からの駆動信号に基づいてインバータ回路 19をスィ ツチング制御するものである。
内部温度センサ 15には、リード線 16を介して温度検出回路 38が接続されている。 制御回路 35は、温度検出回路 38からの電圧信号を A/D変換することにより、調理 器具 9の表面温度 Toまたは汎用の調理器具の表面温度 Tsを検出し、その検出した 表面温度 Toまたは Tsに基づいて駆動信号のノ^レス幅を制御する。
[0039] カレントトランス 39は、交流電源 18から整流回路 17への入力電流 linを検出する電 流検出手段である。入力電流検出回路 40は、カレントトランス 39により検出された入 力電流 linに応じたレベルの電圧信号を出力する。制御回路 35は、入力電流検出回 路 40からの電圧信号を A/D変換して入力電流 linの大きさを検出する。
[0040] 制御回路 35は、入力電流 linの検出値を積分することにより、誘導加熱に使用され た電気エネルギー(積算電力)を検出し、この電気エネルギーの検出値と表面温度 T sの検出値とをソフトウェア処理することにより加熱情報を取得する。表面温度 Tsの検 出値と電気エネルギーとは一定の相関関係を有する。制御回路 35は、両者の相関 関係に基づいて汎用の調理器具の材質、重量、大きさ等の加熱情報を取得し、駆動 信号のノ^レス幅を加熱情報に基づレ、て制御する(火力制御)。
[0041] この入力電流 Iinの検出値に基づく加熱情報の取得処理は、温度データ送信部 23 力 の赤外線調理情報が存在しない汎用の自動湯沸し調理時に実行される。これに 対し、温度データ送信部 23からの赤外線調理情報が存在する専用の自動湯沸し調 理時には、調理情報の鍋データ S3に基づいて調理器具 9の加熱情報が取得され、 その加熱情報に基づいて駆動信号のパルス幅が制御される。
[0042] 受信手段に相当する赤外線受光回路 41は、赤外線センサと信号出力回路とをモ ジュール化して構成され、トッププレート 3の窓部 12の下部に配置されている。この赤 外線受光回路 41は、温度データ送信部 23からの調理情報を窓部 12を通して受光 することにより、調理データを生成する。調理データは、図 6の(c)に示すように、調理 情報の受光信号を包絡検波することにより得られる。
[0043] 図 4に示すように、赤外線受光回路 41は、制御回路 35の割込端子 INTに接続され ている。制御回路 35は、調理データのヘッダ S1を検出すると割込プログラムを起動 し、ヘッダ S1に続く電池残量データ S2と鍋データ S3と温度データ S4を無線調理情 報として RAMに格納する。 RAMには、無線調理情報の格納エリアとして「無線エリ ァ(NEW)」および「無線エリア(OLD)」が形成されてレ、る。赤外線受光回路 41から の最新の無線調理情報は、割込プログラムの処理により「無線エリア(NEW)」に格 納され、 自動湯沸し調理用のメインプログラムで処理された後に「無線エリア(OLD) 」に移される。
[0044] 制御回路 35の ROMには、 自動湯沸し調理用のメインプログラムが記憶されている 。制御回路 35の CPUは、自動湯沸しキー 5がオン操作されると、 自動湯沸し調理用 のメインプログラムを起動し、加熱制御する。
[0045] また、制御回路 35には、図 3に示すように、報知手段に相当する LED42が接続さ れている。制御回路 35の CPUは、加熱制御するときに、 RAMの「無線エリア(NEW )」に電池残量データ S2として鍋側電源 21の消耗「1」が格納されていると、 LED42 を継続的に発光させる。これにより、使用者に対し鍋側電源 21の消耗および交換を 報知する。なお、 LED42は、図 1に示すように、操作パネル 4に設けられている。
[0046] 以下、 自動湯沸し調理用のメインプログラムについて、図 7および図 8を参照しなが ら説明する。
汎用の調理器具を用いて自動湯沸し調理を行うときには、汎用の調理器具を加熱 マーク 8の位置にセットし、操作パネル 4の自動湯沸しキー 5をオン操作する。一方、 専用の調理器具 9を用いて自動湯沸し調理を行うときには、専用の調理器具 9をカロ 熱マーク 8の位置にセットし、調理器具 9の電源スィッチ 22および操作パネル 4の自 動湯沸しキー 5をオン操作する。
[0047] 図 7は、 自動湯沸し調理の処理内容を示すフローチャートである。
制御回路 35は、 自動湯沸しキー 5のオン操作を検出すると、ステップ S1で RAMを クリアし、調理フラグを昇温処理にセットする。そして、ステップ S2で火力を定格値で ある 3kWに設定し、 自動湯沸し調理を強火力で開始する。火力は、インバータ回路 1 9を構成するスイッチング素子のオンオフ比によって、 IHコイル 14への単位時間当り の通電時間を制御することにより調整される。
[0048] その後、制御回路 35はステップ S3に移行し、タイマ信号の有無を判断する。タイマ 信号は、制御回路 35のタイマ回路から設定時間毎 (例えば lsec毎)に出力され、制 御回路 35は、ステップ S3でタイマ信号を検出したときにはステップ S4に移行する。
[0049] 制御回路 35は、ステップ S4に移行すると調理フラグの設定状態を判断する。この 調理フラグは、自動湯沸し調理の開始時に昇温処理にセットされ、昇温処理の終了 時に保温処理にセットされる。制御回路 35は、調理フラグが昇温処理にセットされて レ、るときにはステップ S5の昇温処理を実行し、調理フラグが保温処理にセットされて レ、るときにはステップ S6の保温処理を実行する。このように、ステップ S5の昇温処理 とステップ S6の保温処理は、タイマ回路からタイマ信号が出力される毎に行われる。
[0050] 図 8は、昇温処理の処理内容を示すフローチャートである。
制御回路 35は、ステップ S5の昇温処理に移行すると、ステップ S 11で RAMの「無 線エリア (NEW)」を参照する。この「無線エリア (NEW)」は、専用の調理器具 9の最 新の使用状態を示すもので、汎用の調理器具が使用されているときにはリセット状態 になっている。「無線エリア(NEW)」がリセット状態の場合、制御回路 35はステップ S 12に移行し、汎用の湯沸し調理を行う。
[0051] 以下、汎用の湯沸し調理と専用の湯沸し調理とに分けて説明する。 1.汎用の湯沸し調理について
制御回路 35は、ステップ S12において、内部温度センサ 15から有線で取得した出 力信号に基づいて調理器具の表面温度 Tsを検出し、その検出結果を有線調理情報 として RAMに格納する。 RAMには有線調理情報の格納エリアとして「有線エリア(N EW)」および「有線エリア(OLD)」が確保されている。ステップ S 12で取得した最新 の表面温度 Tsは「有線エリア(NEW)」に格納され、後述するステップ S16または S1 9で「有線エリア(OLD)」に移される。
[0052] 続いて、制御回路 35はステップ S13に移行し、表面温度 Tsを予め ROMに記憶さ れている判定値 Th (例えば 80° C)と比較する。ここで「Ts≤Th」と判断した場合に はステップ S14に移行し、さらに、表面温度 Tsを予め ROMに記憶されている判定値 T1 (例えば 50° C)と比較する。
[0053] 制御回路 35は、ステップ S14で「Tsく Tl」と判断するとステップ S16に移行し、「有 線エリア (NEW)」の最新の表面温度 Tsを「有線エリア(OLD)」に移し、「有線エリア (NEW)」にデフォルトデータを記憶することにより「有線エリア (NEW)」をリセットする
[0054] 一方、ステップ S14で「Tl≤Ts」と判断すると、ステップ S15で火力を 2kWに設定し た後ステップ S16に移行する。すなわち、内部温度センサ 15からの出力信号に基づ いて、汎用の調理器具の表面温度 Tsが判定値 T1に到達したことを検出したときには 、火力を 3kWから 2kWに下げ、調理器具を 2kWの中火力で継続的に加熱する。
[0055] 制御回路 35は、ステップ S13で「Ts >Th」と判断するとステップ S17に移行し、 IH コイル 14を lkWの弱火力で運転する。すなわち、内部温度センサ 15からの出力信 号に基づいて、汎用の調理器具の表面温度 Tsが判定値 Th ( >Tl)に到達したことを 検出したときには、火力を 2kWから lkWに下げ、調理器具を lkWの弱火力で継続 的に加熱する。
[0056] 制御回路 35は、ステップ S17で火力を弱設定すると、ステップ S18で温度変化率
△ Tsを演算する。この温度変化率 ATsは、調理器具の単位時間当りの変化温度で あり、制御回路 35は「有線エリア(NEW)」および「有線エリア(OLD)」から表面温度 Tsを読み出し、表面温度 Tsの最新の検出値と前回の検出値との差力も温度変化率 △ Tsを演算する。
[0057] その後、制御回路 35はステップ S19に移行し、「有線エリア(NEW)」の表面温度 T sを「有線エリア(OLD)」に移し、「有線エリア(NEW)」にデフォルトデータを書き込 むことにより「有線エリア(NEW)」をリセットする(更新処理)。
[0058] 制御回路 35は、ステップ S19で RAMの「有線エリア(NEW)」および「有線エリア( OLD)」を更新すると、ステップ S20で演算した温度変化率 ATsを予め ROMに記憶 されている判定値 ΔΤと比較する。ここで「ATsく Δ Τ」である場合には、調理器具が 湯沸し認識温度 Twに到達したと判断し、ステップ S21に移行して調理フラグに保温 処理をセットする。
[0059] すなわち、汎用の自動湯沸し調理は、図 10に示すように、内部温度センサ 15から の出力信号に基づいて火力を強から中、弱へと段階的に変更して調理器具の加熱 状態を段階的に弱めるものであり、調理器具の昇温度 A Tsが鈍ったことを検出する と終了する。
[0060] 2.専用の湯沸し調理について
制御回路 35は、図 8のステップ S 11において、 RAMの「無線エリア(NEW)」に無 線調理情報が格納されてレ、ることを検出するとステップ S22に移行する。この無線調 理情報は、調理器具 9の温度データ送信部 23が設定時間毎に赤外線で送信するも ので、制御回路 35はこれを外部割込み処理で取り込む。つまり、専用の調理器具 9 が使用されてレ、ると「無線エリア(NEW)」に無線調理情報が格納され、制御回路 35 は専用の調理器具 9に適した自動湯沸し調理を行う。
[0061] 制御回路 35は、ステップ S22において、「無線エリア(NEW)」の電池残量データ S 2を読み出す。ここで電池残量データ S 2が「0」の場合には鍋側電源 21が正常レべ ルにあると判断し、ステップ S23で LED42を消灯する。また、電池残量データ S2が「 1」の場合には鍋側電源 21が異常低下していると判断し、ステップ S24に移行して L ED42を点灯させ、使用者に電池切れを報知する。電池切れ表示は、鍋側電源 21 の異常低下状態で調理が開始されたときは勿論のこと、調理途中で鍋側電源 21が 異常低下した場合にもオンとなる。ただし、調理途中で鍋側電源 21を正常なものと交 換すると、温度データ送信部 23から送信される電池残量データ S2が「0」となるので 、電池切れ表示がオフとなる。
[0062] 続いて、制御回路 35はステップ S25に移行し、 RAMの「無線エリア(NEW)」から 温度データ S4を読み出す。この温度データ S4は、温度データ送信部 23から赤外線 で送信された調理器具 9の表面温度 Toである。制御回路 35は、ステップ S26で温度 変化率 Δ Toを演算する。この温度変化率 Δ Toは、調理器具 9の単位時間当りの変 化温度であり、制御回路 35は「無線エリア(NEW)」および「無線エリア(OLD)」から 表面温度 Toを読み出し、表面温度 Toの最新の検出値と前回の検出値との差から温 度変化率 Δ Toを演算する。
[0063] その後、制御回路 35はステップ S27に移行し、「無線エリア (NEW)」の表面温度 T oを「無線エリア(OLD)」に移し、「無線エリア(NEW)」にデフォルトデータを書き込 むことにより「無線エリア(NEW)」をリセットする(更新処理)。
[0064] 制御回路 35はステップ S27で RAMの「無線エリア(NEW)」および「無線エリア(〇 LD)」を更新すると、ステップ S28で演算した温度変化率 Δ Toを予め ROMに記憶さ れている判定値 Δ Τと比較する。ここで「Δ Τοく ΔΤ」である場合には、調理器具 9が 湯沸し認識温度 Twに到達したと判断し、ステップ S21に移行して調理フラグに保温 処理をセットする。
[0065] すなわち、専用の湯沸し調理は、図 9に示すように、 3kWの強火力で調理器具 9を 加熱しながら直接的に表面温度 Toを検出するものであり、調理器具の昇温度 ΔΤο が鈍ったことを検出すると終了する。
[0066] 制御回路 35は、専用の自動湯沸し調理中に、ステップ S11で「無線エリア(NEW) 」に無線調理情報が存在しないと判断すると、汎用の湯沸し調理に切り換える。例え ば、専用の湯沸し調理中に鍋側電源 21が制御不能レベルに低下したときには、温 度データ送信部 23からの無線調理情報がなくなるので、専用の湯沸し調理から汎用 の湯沸し調理に切り換える。
[0067] 制御回路 35は、図 7のステップ S4で調理フラグが保温処理にセットされていること を検出すると、ステップ S6の保温処理で火力を保温値(< lkW)に設定する。そして 、無線調理情報が存在するときには無線表面温度 Toが湯沸し認識温度 Twに保持 されるように火力を保温値付近で調整し、無線調理情報が存在しないときには有線 表面温度 Tsが湯沸し認識温度 Twに保持されるように火力を保温値付近で調整する
[0068] 以上説明した第 1実施例によれば、調理器具 9に外部温度センサ 20を直接的に取 り付け、外部温度センサ 20による検出温度(温度情報)を含む調理情報を無線通信 することにより加熱制御する。これにより、センサ力 Ηコイル 14からの磁界等の影響 を受けず、温度勾配を生じさせるトッププレート 3も介在しないため、調理器具 9の実 際の温度を高精度に検出することができる。その結果、調理器具 9を強火力で継続 的に加熱することができ、調理物を短時間で目的の状態に仕上げることができる。
[0069] また、調理情報の送信媒体として赤外線を使用した。赤外線は送信可能領域が広 いので、加熱マーク 8に対するセット姿勢に影響されることなぐ調理情報が赤外線受 光回路 41に確実に届くようになる。し力も、赤外線は磁界の影響を受けないので、調 理情報が IHコイル 14からの磁界に影響されることもない。
[0070] 鍋側電源 21に電池を使用した。このため、加熱調理器側から電源を供給する必要 がなぐ電気的構成が簡単になる。
鍋側電源 21の出力が異常低下したことを検出し、加熱調理器側で異常報知を行つ た。このため、調理情報の赤外線送信に支障を来たす前に、使用者に対し鍋側電源 21の交換を促すことができ、メンテナンス性が向上する。
[0071] 加熱調理器側に内部温度センサ 15を設け、内部温度センサ 15の利用状態を調理 情報の赤外線送信状態に応じて制御した。このため、調理途中で鍋側電源 21が低 下し、調理情報の赤外線送信が調理途中で消滅したときには内部温度センサ 15か らの検出結果に基づいて調理を続行することができる。また、調理途中で鍋側電源 2 1が交換され、調理情報の赤外線送信が調理途中で回復したときには、温度情報の 赤外線送信結果に基づいて調理を続行することができる。
[0072] 温度データ送信部 23を赤外線送信モジュールにより構成したので、温度データ送 信部 23を調理器具 9に簡単に装着することができる。
[0073] (実施例 2)
次に、本発明の第 2実施例について図 11ないし図 13を参照しながら説明する。 図 11は、専用の調理器具 9をトッププレート 3にセットした状態を示しており、図 12 は、温度データ送信部 23およびその周辺回路の電気的構成を示している。
専用の調理器具 9の取手部 11には、取手カバー 33内に位置して、スィッチ手段で ある温度スィッチ 43が設けられている。鍋側電源 21は、温度スィッチ 43を介して電 源回路 26に接続されている。温度スィッチ 43は、バイメタルを可動接点とし、検知温 度 Tbを境界にオフ状態からオン状態に切り換わる。すなわち、調理器具 9の表面温 度 Toが検知温度 Tb以下の状態では、温度スィッチ 43がオフとなり温度データ送信 部 23が断電される。一方、調理器具 9の表面温度 Toが検知温度 Tbを上回った状態 では、温度スィッチ 43がオンとなり温度データ送信部 23に通電される。従って、温度 データ送信部 23は、調理器具 9の表面温度 Toが検知温度 Tbを上回ることを条件に 起動し、調理情報の赤外線送信を開始する。
[0074] インバータ制御部 34の制御回路 35は、図 7および図 8に示す制御プログラムに従 つて、 自動湯沸し調理を制御する。すなわち、専用の調理器具 9の使用時であっても 、表面温度 Toが検知温度 Tbに到達するまでは無線調理情報が存在しないので、汎 用の湯沸し調理を行う。そして、調理器具 9の表面温度 Toが検知温度 Tbを上回った 後は、無線調理情報が存在するので、専用の湯沸し調理を行う。この検知温度 Tbは 、汎用の湯沸し調理の判定値 T1に比べて小さく設定されてレ、る(例えば 45° C)。従 つて、図 8のステップ S14で「Tl≤Ts」を検出する前に温度データ送信部 23から調理 情報の赤外線送信が開始され、ステップ S15で火力を初期の強出力「3kW」から中 出力「2kW」に下げる前に、汎用の湯沸し調理から専用の湯沸し調理に切り換わる。 すなわち、調理器具 9は、図 13に示すように、湯沸し認識温度 Twに到達するまで初 期の強火力で継続的に加熱される。
[0075] この第 2実施例によれば、調理器具 9の表面温度 Toに応じて鍋側電源 21から温度 データ送信部 23に電源を与える。このため、調理器具 9の表面温度 Toが検出を要 する領域内に入ったときだけ鍋側電源 21から温度データ送信部 23に電源が与えら れ、温度データ送信部 23から調理情報を赤外線送信するので、鍋側電源 21の消費 量を えること力できる。
[0076] (実施例 3)
次に、本発明の第 3実施例について図 14ないし図 16を参照しながら説明する。 図 14は、専用の調理器具 9をトッププレート 3にセットした状態を示しており、図 15 は、温度データ送信部 23およびその周辺回路の電気的構成を示している。
[0077] 専用の調理器具 9には、容器部 10の下面に位置して円環状のループコイル 44が 取り付けられている。このループコイル 44は、調理器具 9をトッププレート 3の加熱マ ーク 8上にセットした状態で IHコイル 14と磁気的に結合する二次コイルであり、温度 データ送信部 23の整流回路 45に接続されている。整流回路 45は、ループコイル 44 の誘起電圧を直流化するもので、この整流回路 45には安定化電源部に相当するス イッチング電源回路 46が接続されている。スイッチング電源回路 46は、整流回路 45 の出力電圧を定電圧化し、温度データ送信部 23は、スイッチング電源回路 46から電 源供給を受けて動作するようになつている。
[0078] 図 16は、 IHコイル 14の入力電力(kW)と整流回路 45からの整流出力(V)との関 係を示している。整流回路 45からの整流出力は、 IHコイル 14の入力電力に比例し て大きくなる。この整流出力は、入力電力が 200Wから 3kWの間で変動しても 10V 以上に保たれるので、スイッチング電源回路 46は、整流回路 45からの整流出力に基 づいて定格値を下回ることがない安定したレベルの駆動電源を生成することができる
[0079] この第 3実施例によれば、調理器具 9がトッププレート 3の加熱マーク 8上にセットさ れると、ループコイル 44と IHコイル 14とが磁気結合し、 IHコイル 14力 ループコイル 44に電源が供給されるので、調理器具 9に電池を搭載する必要がなくなる。このため 、電池を交換する手間が不要となりメンテナンス性が向上する。
[0080] ループコイル 44を調理器具 9の底部に配置したので、調理器具 9を加熱マーク 8上 にセットした状態でループコイル 44と IHコイル 14との間の距離が短くなる。このため 、ループコイル 44の起電力が大きくなり、 IHコイル 14の出力が小さいときでも、温度 データ送信部 23を正常に動作させるのに必要な電源を生成することができる。
[0081] 整流回路 45からの整流出力をスイッチング電源回路 46によって安定化したので、 I Hコイル 14の出力が変動しても一定レベルの電源を安定的に生成することができる。
[0082] (実施例 4)
次に、本発明の第 4実施例について図 17および図 18を参照しながら説明する。 図 17は、温度データ送信部 23およびその周辺回路の電気的構成を示している。 温度データ送信部 23の制御回路 32には、整流出力検出部に相当する整流出力検 出回路 47が接続されている。この整流出力検出回路 47は、整流回路 45からの整流 出力に応じたレベルの電圧信号を出力する。制御回路 32は、整流出力検出回路 47 からの電圧信号を A/D変換し、その A/D変換結果に基づいて整流出力の大きさ を検出する。
[0083] 整流回路 45には安定電源部に相当する電源回路 48が接続されている。この電源 回路 48は、温度データ送信部 23の駆動電源を生成するものであり、整流回路 45か らの整流出力を 5Vに降圧するシリーズレギユレータから構成されている。制御回路 3 2には出力抑制回路 49が接続されている。この出力抑制回路 49は、トランジスタ 50 と、負荷に相当する抵抗 51とから構成されている。制御回路 32がトランジスタ 50をォ ンすると、整流回路 45からの整流出力が低下する。
[0084] 図 18は、 IHコイルの入力電力と整流回路からの整流出力との関係を示している。
制御回路 32は、整流出力の検出値が 20Vに達するとトランジスタ 50をオンする。こ れにより整流出力の上昇が抑えられ、 IHコイル 14が高出力 3kWで駆動されても、整 流出力は電源回路 48の耐圧以下の 25Vに抑えられる。
[0085] この第 4実施例によれば、整流回路 45からの整流出力が判定値 20Vを超える場合 に、負荷となる抵抗 51を有効化して整流出力の上昇を抑制するので、電源回路 48 を過電圧から保護することができる。
[0086] (その他の実施例)
なお、本発明は上記し且つ図面に示す各実施例に限定されるものではなぐ例え ば以下のように変形または拡張が可能である。
[0087] 温度データ送信部 23を調理器具 9の取手部 11に固定したが、例えば容器部 10に 固定しても良い。この構成の場合、容器部 10のうち温度上昇が鈍い部分に温度デー タ送信部 23を固定することが好ましぐ具体的には容器部 10の上端部が適切である
[0088] 温度データ送信部 23をモジュール化した力 これに加えてパッケージィ匕しても良レ、 すなわち、温度データ送信部 23を耐熱性の合成樹脂でモールドしても良い。なお 、赤外線送信モジュールとは、構成要素を温度情報の赤外線送信が可能な態様に 電気的に相互接続した集合体であり、物理的に独立したユニットをいう。
[0089] 専用の調理器具 9を用いて保温処理を行う場合に温度データ送信部 23からの調 理情報を利用したが、これに限定されるものではなぐ例えば内部温度センサ 15から の温度信号を利用しても良レ、。
[0090] 温度データ送信部 23からの調理情報に基づいて水の沸騰を判断したが、これに加 えて調理器具内に水が入っているか否力、を判断しても良い。この構成の場合、温度 データ送信部 23からの調理情報に基づいて、水の沸騰が所定の判定時間以下で検 出されたときには水が存在しない空焚き状態であると判断し、自動湯沸し調理を停止 することが好ましい。
[0091] 温度データ送信部 23からの調理情報を自動湯沸し調理に利用したが、これに限定 されるものではなぐ天ぶら調理、湯煎調理、炒め物調理等、調理器具 9を設定温度 に加熱して行われる自動調理に利用することができる。
[0092] 外部温度センサ 20によって調理器具 9の表面温度 Toを検出する構成としたが、こ れに限定されるものではなぐ例えば外部温度センサ 20によって調理器具 9内の調 理物の温度を検出し、この調理物の温度を加熱調理器に赤外線で送信しても良い。 この場合、調理器具 9の容器部 10の内周面に外部温度センサ 20を固定すると良い
[0093] 温度情報は、調理器具 9の絶対的な温度の他、所定の基準値と比較した調理器具 9の相対的な温度、調理器具 9の温度変化率、調理物の絶対的な温度、所定の基準 値と比較した調理物の相対的な温度、調理物の温度変化率等の温度に関する情報 であってもよい。
[0094] 調理器具 9をトッププレート 3に載置し易くするためには外部温度センサ 20を調理 器具 9の側面に配置することが好ましぐ調理物の検出温度の精度を高めるためには 外部温度センサ 20を調理器具 9の下端部に配置することが好ましい。
[0095] 鍋側電源 21には、一次電池の他に二次電池や太陽電池などを用いてもよい。
温度スィッチ 43は、調理器具の温度に応じて自ら状態が変わる自発的スィッチで あればよい。 産業上の利用可能性
以上のように、本発明にかかる加熱調理器、調理器具および加熱調理システムは、 調理物を短時間で目的の状態に仕上げる調理等に有用である。

Claims

請求の範囲
[1] 調理器具 (9)を支持する支持手段 (3)と前記調理器具 (9)を加熱する加熱手段(1 4)とを備えた加熱調理器にぉレ、て、
外部から赤外線で送信される前記調理器具 (9)の温度情報または前記調理器具( 9)内の調理物の温度情報を受信可能な受信手段 (41)と、
この受信手段 (41)が受信した温度情報に基づレ、て前記加熱手段(14)を駆動制 御する制御手段(35)とを備えたことを特徴とする加熱調理器。
[2] 請求項 1の加熱調理器において、
前記支持手段 (3)を介して前記調理器具 (9)の温度を検出する温度検出手段(15 )を備え、
前記制御手段(35)は、外部から赤外線で送信される温度情報が存在するときには その温度情報に基づいて前記加熱手段(14)を駆動制御し、前記赤外線で送信され る温度情報が存在しないときには前記温度検出手段(15)により検出された温度情 報に基づいて前記加熱手段(14)を駆動制御すように構成されている。
[3] 外部から赤外線で送信される情報を受信可能な受信手段 (41)を有する加熱調理 器に対して用いられ、前記加熱調理器が有する支持手段(3)によって支持された状 態で前記加熱調理器が有する加熱手段(14)によって加熱される調理器具において 収容した調理物の温度に応じた信号を出力する温度検出手段(20)と、 この温度検出手段(20)からの出力信号に応じた温度情報を前記加熱調理器に対 し赤外線で送信する送信手段 (23)とを備えたことを特徴とする調理器具。
[4] 請求項 3の調理器具において、
前記送信手段(23)に電力を有線で供給する電池(21)を備えている。
[5] 請求項 4の調理器具において、
前記電池(21)と前記送信手段(23)との間の給電路を前記調理物の温度に応じて 開閉するスィッチ手段 (43)を備えてレ、る。
[6] 請求項 4の調理器具において、
前記送信手段(23)は、前記電池(21)の出力電圧を検出する出力検出部(27)を 備えている。
[7] 請求項 5の調理器具において、
前記送信手段(23)は、前記電池(21)の出力電圧を検出する出力検出部(27)を 備えている。
[8] 請求項 3の調理器具において、
前記加熱調理器の加熱手段(14)力 一次コイルに高周波電流を流すことにより誘 導加熱するように構成されている場合、前記加熱手段(14)が駆動された状態で前 記一次コイルと磁気的に結合し、前記送信手段(23)を動作させるための電力を生成 する二次コイル (44)を備えてレ、る。
[9] 請求項 8の調理器具において、
前記二次コイル (44)は、調理物が投入される容器部(10)の底部に設けられてい る。
[10] 請求項 8の調理器具において、
前記送信手段(23)は、前記二次コイル (44)からの出力電圧を整流する整流部(4 5)と、この整流部(45)からの整流出力電圧を安定化する安定化電源部(46)とを備 えている。
[11] 請求項 9の調理器具において、
前記送信手段(23)は、前記二次コイル (44)からの出力電圧を整流する整流部(4 5)と、この整流部(45)からの整流出力電圧を安定化する安定化電源部(46)とを備 えている。
[12] 請求項 10の調理器具において、
前記送信手段 (23)は、
前記整流部 (45)の出力端に接続された負荷(51)と、
前記整流部(45)から前記安定化電源部(48)に与えられる整流出力電圧の大きさ を検出する整流出力検出部 (47)と、
この整流出力検出部 (47)の検出結果に基づいて前記負荷(51)の大きさを調整す ることにより前記整流部(45)から前記安定化電源部(46)に与えられる整流出力電 圧の大きさを制御する整流出力制御部(32)とを備えている。
[13] 請求項 3の調理器具において、
前記送信手段(23)は、赤外線送信モジュールから構成されている。
[14] 調理器具 (9)と、この調理器具 (9)を支持手段(3)により支持した状態で加熱手段(
14)により加熱する加熱調理器とからなる加熱調理システムにおレ、て、
前記調理器具 (9)は、
収容した調理物の温度に応じた信号を出力する温度検出手段(20)と、 この温度検出手段(20)からの出力信号に応じた温度情報を前記加熱調理器に対 し赤外線で送信する送信手段 (23)とを備え、
前記加熱調理器は、
前記調理器具 (9)から赤外線で送信される温度情報を受信可能な受信手段 (41) と、
この受信手段 (41)が受信した温度情報に基づレ、て前記加熱手段(14)を駆動制 御する制御手段(35)とを備えていることを特徴とする加熱調理、:
PCT/JP2004/012498 2003-11-25 2004-08-30 加熱調理器、調理器具および加熱調理システム WO2005053362A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/580,216 US7473872B2 (en) 2003-11-25 2004-08-30 Cooking tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-393808 2003-11-25
JP2003393808A JP4162577B2 (ja) 2003-11-25 2003-11-25 加熱調理器およびその加熱調理器に用いられる調理器具

Publications (1)

Publication Number Publication Date
WO2005053362A1 true WO2005053362A1 (ja) 2005-06-09

Family

ID=34631441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012498 WO2005053362A1 (ja) 2003-11-25 2004-08-30 加熱調理器、調理器具および加熱調理システム

Country Status (6)

Country Link
US (1) US7473872B2 (ja)
JP (1) JP4162577B2 (ja)
KR (1) KR100841490B1 (ja)
CN (1) CN1883232A (ja)
TW (1) TWI316378B (ja)
WO (1) WO2005053362A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983804A1 (en) * 2006-02-07 2008-10-22 Matsushita Electric Industrial Co., Ltd. Induction heating device
WO2012075841A1 (zh) * 2010-12-08 2012-06-14 杭州红泥小厨餐饮管理有限公司 中餐标准化烹饪系统
US8334487B2 (en) 2006-02-07 2012-12-18 Panasonic Corporation Induction heating cooking device
US10440778B2 (en) 2015-10-13 2019-10-08 Whirlpool Corporation Temperature controlling device for an appliance heating element

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053038A (ja) * 2005-08-19 2007-03-01 Matsushita Electric Ind Co Ltd 誘導加熱調理装置
SE529587C2 (sv) * 2005-10-21 2007-09-25 Hans-Goeran Aahlander En matlagningsanordning med sensorinrättning och ett matlagningskärl
JP4851812B2 (ja) * 2006-02-28 2012-01-11 株式会社東芝 温度検出ユニットおよび温度検出ユニットを備えた調理容器
US7355150B2 (en) 2006-03-23 2008-04-08 Access Business Group International Llc Food preparation system with inductive power
EP1937032B1 (en) * 2006-12-20 2020-11-04 Electrolux Home Products Corporation N.V. Household appliance
WO2008091706A1 (en) * 2007-01-25 2008-07-31 Radio Robots Llc Remotely controlled system and method for the preparation of a user-defined food product or beverage
ES2388907T3 (es) * 2007-03-12 2012-10-19 Panasonic Corporation Dispositivo de cocción por inducción
KR100827383B1 (ko) * 2007-03-23 2008-05-06 웅진코웨이주식회사 전압 제어가 가능한 히터
JP2008293889A (ja) * 2007-05-28 2008-12-04 Toshiba Corp 加熱調理器及び調理器具
WO2009001541A1 (ja) * 2007-06-22 2008-12-31 Panasonic Corporation 誘導加熱調理器
ES2430328T3 (es) * 2007-06-22 2013-11-20 Panasonic Corporation Cocina de inducción
US20130240505A1 (en) * 2007-11-30 2013-09-19 Hearthware, Inc. Cooling system for an induction cooktop
WO2009104404A1 (ja) * 2008-02-19 2009-08-27 パナソニック株式会社 誘導加熱調理器
AU2009231676B2 (en) 2008-04-02 2013-10-03 Twilio Inc. System and method for processing telephony sessions
US8837465B2 (en) 2008-04-02 2014-09-16 Twilio, Inc. System and method for processing telephony sessions
CN101352307B (zh) * 2008-09-16 2010-10-27 明高五金制品(深圳)有限公司 半导体制冷片温差发电电子测温锅
DE102008042512A1 (de) * 2008-09-30 2010-04-01 BSH Bosch und Siemens Hausgeräte GmbH Kochfeld und Verfahren zum Betreiben eines Kochfelds
US8964726B2 (en) 2008-10-01 2015-02-24 Twilio, Inc. Telephony web event system and method
DE102008054911A1 (de) 2008-12-18 2010-06-24 BSH Bosch und Siemens Hausgeräte GmbH Intelligentes Lebensmittelzubereitungsgerät
EP2404412B1 (en) 2009-03-02 2019-05-01 Twilio Inc. Method and system for a multitenancy telephone network
ES2560525T3 (es) * 2009-03-19 2016-02-19 Panasonic Corporation Cocina de calentamiento por inducción
WO2011001568A1 (ja) * 2009-07-03 2011-01-06 パナソニック株式会社 誘導加熱装置
US20150028022A1 (en) * 2009-07-21 2015-01-29 Nuwave LLC Induction cooktop
US8912471B2 (en) * 2009-07-24 2014-12-16 Panasonic Corporation Heating cooker
US9210275B2 (en) 2009-10-07 2015-12-08 Twilio, Inc. System and method for running a multi-module telephony application
TWI418255B (zh) * 2009-11-09 2013-12-01 Delta Electronics Inc 智慧型加熱裝置與溫度量測裝置
CN102934517B (zh) * 2010-06-10 2015-05-13 松下电器产业株式会社 感应加热烹调器
US9459926B2 (en) 2010-06-23 2016-10-04 Twilio, Inc. System and method for managing a computing cluster
US9459925B2 (en) 2010-06-23 2016-10-04 Twilio, Inc. System and method for managing a computing cluster
US9338064B2 (en) 2010-06-23 2016-05-10 Twilio, Inc. System and method for managing a computing cluster
US20120208495A1 (en) 2010-06-23 2012-08-16 Twilio, Inc. System and method for monitoring account usage on a platform
US8838707B2 (en) 2010-06-25 2014-09-16 Twilio, Inc. System and method for enabling real-time eventing
KR101492068B1 (ko) * 2010-08-05 2015-02-10 삼성전자 주식회사 유도가열조리기 및 그 제어방법
JP5058318B2 (ja) * 2010-09-10 2012-10-24 三菱電機株式会社 加熱調理器
US8598497B2 (en) 2010-11-30 2013-12-03 Bose Corporation Cooking temperature and power control
US8649268B2 (en) 2011-02-04 2014-02-11 Twilio, Inc. Method for processing telephony sessions of a network
US9648006B2 (en) 2011-05-23 2017-05-09 Twilio, Inc. System and method for communicating with a client application
US20140044123A1 (en) 2011-05-23 2014-02-13 Twilio, Inc. System and method for real time communicating with a client application
US9398622B2 (en) 2011-05-23 2016-07-19 Twilio, Inc. System and method for connecting a communication to a client
DE102011079689B4 (de) 2011-07-22 2014-07-03 E.G.O. Elektro-Gerätebau GmbH Temperaturmessung im Kochgefäß
US20140225448A1 (en) * 2011-09-14 2014-08-14 Panasonic Corporation Non-contact power receiving device and non-contact power transmission device
US10182147B2 (en) 2011-09-21 2019-01-15 Twilio Inc. System and method for determining and communicating presence information
EP2759123B1 (en) 2011-09-21 2018-08-15 Twilio, Inc. System and method for authorizing and connecting application developers and users
EP2590475B1 (de) * 2011-11-04 2019-12-11 BSH Hausgeräte GmbH Induktionsheizvorrichtung
DE102011088918A1 (de) * 2011-12-16 2013-06-20 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Übertragen von Daten, Induktionsheizvorrichtung, induktiv beheizbares Kochgefäß und System
US9066373B2 (en) * 2012-02-08 2015-06-23 General Electric Company Control method for an induction cooking appliance
US9495227B2 (en) 2012-02-10 2016-11-15 Twilio, Inc. System and method for managing concurrent events
US20130264333A1 (en) * 2012-03-09 2013-10-10 Ehsan Alipour Cooking Appliance
US9602586B2 (en) 2012-05-09 2017-03-21 Twilio, Inc. System and method for managing media in a distributed communication network
US20130304928A1 (en) 2012-05-09 2013-11-14 Twilio, Inc. System and method for managing latency in a distributed telephony network
US9240941B2 (en) 2012-05-09 2016-01-19 Twilio, Inc. System and method for managing media in a distributed communication network
US9247062B2 (en) 2012-06-19 2016-01-26 Twilio, Inc. System and method for queuing a communication session
US8737962B2 (en) 2012-07-24 2014-05-27 Twilio, Inc. Method and system for preventing illicit use of a telephony platform
US8948356B2 (en) 2012-10-15 2015-02-03 Twilio, Inc. System and method for routing communications
US8938053B2 (en) 2012-10-15 2015-01-20 Twilio, Inc. System and method for triggering on platform usage
JP5758368B2 (ja) * 2012-10-24 2015-08-05 三菱電機株式会社 加熱調理器、調理器具、及び加熱調理システム
US9253254B2 (en) 2013-01-14 2016-02-02 Twilio, Inc. System and method for offering a multi-partner delegated platform
US9282124B2 (en) 2013-03-14 2016-03-08 Twilio, Inc. System and method for integrating session initiation protocol communication in a telecommunications platform
CN104373972A (zh) * 2013-03-14 2015-02-25 美国好士威尔家用电器有限公司 一种电磁炉冷却系统
US9338280B2 (en) 2013-06-19 2016-05-10 Twilio, Inc. System and method for managing telephony endpoint inventory
US9225840B2 (en) 2013-06-19 2015-12-29 Twilio, Inc. System and method for providing a communication endpoint information service
US9240966B2 (en) 2013-06-19 2016-01-19 Twilio, Inc. System and method for transmitting and receiving media messages
US9483328B2 (en) 2013-07-19 2016-11-01 Twilio, Inc. System and method for delivering application content
US9274858B2 (en) 2013-09-17 2016-03-01 Twilio, Inc. System and method for tagging and tracking events of an application platform
US9137127B2 (en) 2013-09-17 2015-09-15 Twilio, Inc. System and method for providing communication platform metadata
US9325624B2 (en) 2013-11-12 2016-04-26 Twilio, Inc. System and method for enabling dynamic multi-modal communication
US9553799B2 (en) 2013-11-12 2017-01-24 Twilio, Inc. System and method for client communication in a distributed telephony network
US9470423B2 (en) 2013-12-02 2016-10-18 Bose Corporation Cooktop power control system
FR3015210B1 (fr) * 2013-12-20 2016-01-01 Seb Sa Article culinaire inductif communicant et procede d'appairage d'un tel article
WO2015112204A2 (en) * 2014-01-27 2015-07-30 CircuitLab, Inc. Apparatus for cooking and methods
FR3018110B1 (fr) * 2014-02-28 2019-08-23 Seb S.A. Table de cuisson a induction communicante et procede de recherche et de suivi d'un article culinaire communicant sur ladite table
US9344573B2 (en) 2014-03-14 2016-05-17 Twilio, Inc. System and method for a work distribution service
US9226217B2 (en) 2014-04-17 2015-12-29 Twilio, Inc. System and method for enabling multi-modal communication
US9251371B2 (en) 2014-07-07 2016-02-02 Twilio, Inc. Method and system for applying data retention policies in a computing platform
US9774687B2 (en) 2014-07-07 2017-09-26 Twilio, Inc. System and method for managing media and signaling in a communication platform
US9516101B2 (en) 2014-07-07 2016-12-06 Twilio, Inc. System and method for collecting feedback in a multi-tenant communication platform
US9246694B1 (en) 2014-07-07 2016-01-26 Twilio, Inc. System and method for managing conferencing in a distributed communication network
DE102014217010A1 (de) * 2014-08-27 2016-03-03 BSH Hausgeräte GmbH Regeln einer Temperatur eines Garguts
WO2016065080A1 (en) 2014-10-21 2016-04-28 Twilio, Inc. System and method for providing a miro-services communication platform
US9477975B2 (en) 2015-02-03 2016-10-25 Twilio, Inc. System and method for a media intelligence platform
US10419891B2 (en) 2015-05-14 2019-09-17 Twilio, Inc. System and method for communicating through multiple endpoints
US9948703B2 (en) 2015-05-14 2018-04-17 Twilio, Inc. System and method for signaling through data storage
JP5996724B2 (ja) * 2015-06-03 2016-09-21 三菱電機株式会社 加熱調理器
JP6138200B2 (ja) * 2015-07-09 2017-05-31 三菱電機株式会社 加熱調理器
US10659349B2 (en) 2016-02-04 2020-05-19 Twilio Inc. Systems and methods for providing secure network exchanged for a multitenant virtual private cloud
CN107296507A (zh) * 2016-04-15 2017-10-27 松下知识产权经营株式会社 烹调辅助方法以及烹调辅助系统
US10686902B2 (en) 2016-05-23 2020-06-16 Twilio Inc. System and method for a multi-channel notification service
US10063713B2 (en) 2016-05-23 2018-08-28 Twilio Inc. System and method for programmatic device connectivity
US11134321B2 (en) 2016-08-04 2021-09-28 The Vollrath Company, L.L.C. Wireless temperature probe
US10598549B2 (en) 2016-08-04 2020-03-24 The Vollrath Company, L.L.C. Wireless temperature probe
JP6753031B2 (ja) 2016-09-08 2020-09-09 マイヤー インテレクチュアル プロパティーズ リミテッド 調理システムの適応熱制御
TWI607194B (zh) * 2016-12-12 2017-12-01 Jinshunxing Ltd Processing material heating stoves
CN108207047A (zh) * 2016-12-19 2018-06-26 佛山市顺德区美的电热电器制造有限公司 一种控制方法和装置
CN108966390B (zh) * 2017-05-18 2021-03-23 佛山市顺德区美的电热电器制造有限公司 一种防止锅具干烧的方法及装置
EP3413687A1 (en) * 2017-06-09 2018-12-12 Electrolux Appliances Aktiebolag Method for controlling a cooking process by using a liquid
CN107484285A (zh) * 2017-08-28 2017-12-15 广东顺德锐铂汇电子科技有限公司 利用电磁场自助发电无线测温及超温自动控制电路装置
CN109561519A (zh) * 2017-09-25 2019-04-02 佛山市顺德区美的电热电器制造有限公司 加热控制装置和烹饪器具
KR102024554B1 (ko) * 2018-02-26 2019-09-24 엘지전자 주식회사 유도 가열 장치 및 유도 가열 장치의 제어 방법
ES2736078A1 (es) * 2018-06-21 2019-12-23 Bsh Electrodomesticos Espana Sa Dispositivo de cocción
CN111102610B (zh) * 2018-10-26 2021-07-20 佛山市顺德区美的电热电器制造有限公司 运行控制方法、装置、烹饪器具和计算机可读存储介质
KR102311291B1 (ko) * 2020-02-05 2021-10-14 (주)쿠첸 피가열체의 온도를 센싱하는 온도 센서 모듈 및 가열 장치
EP3883340A1 (en) * 2020-03-20 2021-09-22 Electrolux Appliances Aktiebolag Cooking assembly and method for operating such cooking assembly
EP3992531A3 (de) * 2020-10-28 2022-10-19 Miele & Cie. KG Verfahren zum betreiben eines kochsystems, kochgeschirr und steuereinrichtung
BE1028749B1 (de) * 2020-10-28 2022-05-23 Miele & Cie Verfahren zum Betreiben eines Kochsystems, Kochgeschirr und Steuereinrichtung
CN113589865B (zh) * 2021-07-12 2022-07-19 浙江中烟工业有限责任公司 一种脉冲宽度调制的烟草加料筒温控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114298A (ja) * 1987-10-28 1989-05-02 Fujitsu Ten Ltd 遠隔制御装置
JPH0325885A (ja) * 1989-06-20 1991-02-04 Sanyo Electric Co Ltd 誘導加熱調理器
JPH0620766A (ja) * 1992-07-07 1994-01-28 Matsushita Electric Ind Co Ltd コードレス機器
JPH10165294A (ja) * 1996-12-09 1998-06-23 Zojirushi Corp 誘導加熱式炊飯器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710075A (en) * 1971-11-18 1973-01-09 V Jablonowski Therapeutic legging
US3781506A (en) * 1972-07-28 1973-12-25 Gen Electric Non-contacting temperature measurement of inductively heated utensil and other objects
JPS608221A (ja) * 1983-06-28 1985-01-17 Kyoko Hirayama 水虫薬
US5643485A (en) * 1988-04-15 1997-07-01 Midwest Research Institute Cooking utensil with improved heat retention
JP2593204B2 (ja) 1988-09-29 1997-03-26 富士工業株式会社 温度調節機能を有するレンジフード
US6316753B2 (en) * 1998-05-19 2001-11-13 Thermal Solutions, Inc. Induction heating, temperature self-regulating
US6957111B2 (en) * 2001-08-24 2005-10-18 Koninklijke Philips Electronics N.V. Automated system for cooking and method of use
JP2004095312A (ja) 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd 調理器
US6953919B2 (en) * 2003-01-30 2005-10-11 Thermal Solutions, Inc. RFID-controlled smart range and method of cooking and heating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114298A (ja) * 1987-10-28 1989-05-02 Fujitsu Ten Ltd 遠隔制御装置
JPH0325885A (ja) * 1989-06-20 1991-02-04 Sanyo Electric Co Ltd 誘導加熱調理器
JPH0620766A (ja) * 1992-07-07 1994-01-28 Matsushita Electric Ind Co Ltd コードレス機器
JPH10165294A (ja) * 1996-12-09 1998-06-23 Zojirushi Corp 誘導加熱式炊飯器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983804A1 (en) * 2006-02-07 2008-10-22 Matsushita Electric Industrial Co., Ltd. Induction heating device
EP1983804A4 (en) * 2006-02-07 2011-03-30 Panasonic Corp INDUCTION HEATING DEVICE
US8334487B2 (en) 2006-02-07 2012-12-18 Panasonic Corporation Induction heating cooking device
US9055614B2 (en) 2006-02-07 2015-06-09 Panasonic Intellectual Property Management Co., Ltd. Induction heating device
WO2012075841A1 (zh) * 2010-12-08 2012-06-14 杭州红泥小厨餐饮管理有限公司 中餐标准化烹饪系统
US10440778B2 (en) 2015-10-13 2019-10-08 Whirlpool Corporation Temperature controlling device for an appliance heating element
US11252789B2 (en) 2015-10-13 2022-02-15 Whirlpool Corporation Temperature controlling device for an appliance heating element

Also Published As

Publication number Publication date
TWI316378B (en) 2009-10-21
KR20060096452A (ko) 2006-09-11
KR100841490B1 (ko) 2008-06-25
US7473872B2 (en) 2009-01-06
JP2005158407A (ja) 2005-06-16
CN1883232A (zh) 2006-12-20
JP4162577B2 (ja) 2008-10-08
US20070080158A1 (en) 2007-04-12
TW200518637A (en) 2005-06-01

Similar Documents

Publication Publication Date Title
WO2005053362A1 (ja) 加熱調理器、調理器具および加熱調理システム
KR101656115B1 (ko) 스마트 조리 기구
KR101981671B1 (ko) 유도가열조리기 및 그 제어방법
US10129935B2 (en) Wireless kitchen appliance operated on an induction heating cooker
KR100688736B1 (ko) 유도가열장치
WO2015159923A1 (ja) 調理器
EP2798910B1 (en) A wireless kitchen appliance operated on an induction heating cooker
JP2008130399A (ja) 誘導加熱調理器
JP4834681B2 (ja) 加熱調理のシステムおよび調理器具
US20130161317A1 (en) Induction heating cooker and control method thereof
JP2009087743A (ja) 加熱調理システム、加熱調理システムに用いられる加熱調理器および調理器具
JP2005093122A (ja) 加熱調理器
KR102161358B1 (ko) 이중 안전 기능을 갖춘 전자유도가열 조리기
JPH03192684A (ja) 誘導加熱調理器用鍋と誘導加熱調理器
JP2009043587A (ja) 誘導加熱調理器
JP4280167B2 (ja) 加熱調理のシステム
JP2009093804A (ja) 調理器具
KR20210109249A (ko) 유도 가열 구현 가능한 무선 전력 전송 장치 및 그의 제어 방법
JP5009118B2 (ja) 電磁誘導加熱調理器
JP3187320B2 (ja) 電気炊飯器
JP2014229425A (ja) 誘導加熱調理器
JP5029550B2 (ja) 誘導加熱調理器
JPH01143186A (ja) 複合調理器
JP2003317916A (ja) 誘導加熱調理器
KR0152836B1 (ko) 유도가열조리기의 주파수대역 변환회로

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034435.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007080158

Country of ref document: US

Ref document number: 10580216

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067010148

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067010148

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10580216

Country of ref document: US