WO2005052581A2 - Sphärische, magnetische silicagel-träger mit vergrösserter oberfläche für die aufreinigung von nukleinsäuren - Google Patents

Sphärische, magnetische silicagel-träger mit vergrösserter oberfläche für die aufreinigung von nukleinsäuren Download PDF

Info

Publication number
WO2005052581A2
WO2005052581A2 PCT/EP2004/013260 EP2004013260W WO2005052581A2 WO 2005052581 A2 WO2005052581 A2 WO 2005052581A2 EP 2004013260 W EP2004013260 W EP 2004013260W WO 2005052581 A2 WO2005052581 A2 WO 2005052581A2
Authority
WO
WIPO (PCT)
Prior art keywords
particles
magnetic
group
silica gel
hydrosol
Prior art date
Application number
PCT/EP2004/013260
Other languages
English (en)
French (fr)
Other versions
WO2005052581A3 (de
Inventor
Detlef Müller-Schulte
Original Assignee
Magnamedics Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnamedics Gmbh filed Critical Magnamedics Gmbh
Priority to AT04819210T priority Critical patent/ATE477491T1/de
Priority to EP04819210A priority patent/EP1690093B1/de
Priority to US10/580,733 priority patent/US7919333B2/en
Priority to DE502004011531T priority patent/DE502004011531D1/de
Publication of WO2005052581A2 publication Critical patent/WO2005052581A2/de
Publication of WO2005052581A3 publication Critical patent/WO2005052581A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/5434Magnetic particles using magnetic particle immunoreagent carriers which constitute new materials per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent

Definitions

  • the present invention relates to magnetic, (semi-) metal oxide-containing spherical silica gel particles with a high nucleic acid binding capacity, a process for their preparation and their use in the field of bioanalytics and diagnostics.
  • Silica particles have been used in bioanalytics for years to separate and purify nucleic acids, which due to their special physicochemical structure are particularly capable of binding these nucleic acids.
  • Such media which can only be used in column chromatography are described in German Patent DE 32 11 309 (corresponding to US Pat. No. 4,699,717).
  • PCT application EP99 / 08996 describes glass-coated pigments for nucleic acid purification which contain various metal oxides such as zinc, boron, iron, calcium, potassium and / or aluminum. Glass particles with a mica core and incorporated magnetic particles, which, however, tend to sediment quickly, emerge from PCT application EP96 / 02459.
  • the manufacturing processes are time consuming and require technically complex spray drying processes. Ideally spherical particles cannot be produced with this process.
  • nucleic acid separation processes with the aid of magnetic described articles that are able to absorb the nucleic acids after a salt-ethanol precipitation.
  • these methods do not work specifically for nucleic acids, ie the magnetic particles also absorb other biosubstances in parallel.
  • Silanized iron oxide particles for immobilizing enzymes are known from US Pat. No. 4,152,210. Also for the purpose of enzyme immobilization, ferromagnetic particles are described in US Pat. No. 4,343,901, which are produced by a sol-gel technique.
  • the PCT application EP97 / 04828 describes monodisperse magnetic particles which consist of an SiO 2 core which receives magnetic properties by coating with iron oxide. Subsequent silanization of the iron oxide layer enables the particles to bind nucleic acids.
  • US Pat. No. 5,320,944 discloses 0.2-3 .mu.m large magnetic particles which obtain magnetic properties by coating a polymer particle with iron oxides. By further coating the particles with silanes, nylon or polystyrene, antibodies can then be coupled to the particles for use in immunoassays.
  • Iron oxide particles coated with colloidal SiO 2 are disclosed in US Pat. No. 4,280,918.
  • Magnetic silica hybrid particles consisting of a polystyrene core, onto the magnetite and then a silicon Ca layer is polymerized, are known from PCT / US 95/12988. The particles are used for antibody and cell separation.
  • Magnetic silica gel particles of 20-100 ⁇ m in size for enzyme immobilization which are produced by electrostatic coating of nickel powders with silica sols, have been described by Goetz et al. , Biotechn. & Bioengineering, Vol. 3_7, 614, 1991.
  • Organosilanized colloidal silica gel particles as biological separation media are disclosed in PCT application US99 / 00403, with the stability of the colloids and the manner in which the silanization takes center stage.
  • Magnetic particles which contain a magnetic core material and are coated with an inorganic oxide are disclosed in EP 0343 934.
  • Magnetic hybrid particles which consist of a polymer core and which are first coated with a ferrofluid and then coated with a functional polyacrylate are the subject of US Pat. No. 5,648,124.
  • US Pat. Nos. 6,204,033 and 6,514,688 describe spherical, magnetic polymer particles based on polyvinyl alcohol, which can be prepared within a short time by means of inverse suspension polymerization.
  • the polymer particles disclosed therein are not suitable for nucleic acid purification without extensive derivatization steps.
  • the particles known from the prior art have some disadvantages with regard to the separation of nucleic acids, if they are at all suitable for this application: on the one hand, a number of carrier media are not magnetic (US Pat. No. 4,927,750; DE 32 11 309; PCT / US99 / 00403; PCT / EP94 / 01378), so that a rapid separation of the particles, as is required today in automated routine analyzes, is not possible.
  • magnetic particles based on silica or polystyrene which are coated with a magnetic oxide
  • have a high specific density PCT / EP97 / 04828, US 4,152,210, EP 3211309, 5,320,944
  • PCT / EP97 / 04828, US 4,152,210, EP 3211309, 5,320,944 PCT / EP97 / 04828, US 4,152,210, EP 3211309, 5,320,944
  • the use of these particles in an immuno or nucleic acid assay which is predominantly carried out in suspension, is permanently impaired because one has to rely on additional mechanical mixing.
  • the decisive disadvantage of the coated particles is, however, that the metal oxides, both as the core material and as the coating material, despite the subsequent silanization, directly with the analytical solution Can come in contact. This represents a serious problem in nucleic acid analysis, for example in the context of PCR, since the polyases used in the PCR can be deactivated in contact with metals.
  • the object of the present invention is to provide silica gel particles suitable for nucleic acid purification and methods for their production which overcome the disadvantages of the known silica and polymer supports with regard to the preparation-intensive and time-consuming coating techniques and enable efficient production of silica gel-based magnetic particles.
  • the spherical silica gel particles produced by the process according to the invention which have a content of magnetic particles and are encapsulated in the SiO 2 colloids and metal oxides, have a significantly enlarged surface area and have polymer properties which allow nucleic acids in a significant, high concentration (> 20 mg / g carrier).
  • the preparation of the particles according to the invention is based on preformed aqueous silica hydrosols which are mixed with magnetic colloids or magnetic particles and then polycondensed in a heterogeneous phase with addition of base to spherical polymer particles. To further improve the properties, heat treatment of the polymer particles can follow.
  • the silica sols (hydrosols) used in the preparation are prepared by the known processes by hydrolysis of alkoxysilanes with the aid of dilute mineral acids or organic acids such as, for example, acetic acid or formic acid.
  • the alkoxysilanes are dispersed in water and hydrolyzed by adding acid, with the Acceleration of the hydrolysis process is preferably carried out using ultrasound, which also contributes to better mixing of the initially heterogeneous phase.
  • Suitable alkoxysilanes are silicic acid orthoesters of aliphatic alcohols, e.g. Methyl, ethyl or propyl esters can be used individually or as mixtures. As a result, condensation to low-polymer silica hydrosols takes place, which gradually lead to more or less viscous sols through further polycondensation. Depending on the composition, sonication times of 5 to 30 minutes are sufficient, the sonication times generally decreasing with increasing acid concentration.
  • the mineral acids preferably used for the hydrolysis have a concentration of 0.02 to 1 mol / liter, the volume fraction of the acids in the batch being 10-35%, preferably 20-28%.
  • the carboxylic acids are used as pure acids; their volume percentage is usually 15-40%.
  • composition of the gel is largely determined by the type of hydrolysis and polycondensation. Acid catalysis generally leads to higher hydrolysis rates with slowed polycondensation, while conversely the addition of bases promotes polycondensation.
  • controlling the hydrolysis and polycondensation which can be used in a known manner (cf.PCT / EP01 / 08392) to specifically change or adjust the pore structure of the gels, is not sufficient to bring about such a surface enlargement that it enables a significant amount of nucleic acid to be bound.
  • This increase in surface area is surprisingly achieved by adding a prefabricated SiO 2 colloid to the silica sol before the suspension, the particle sizes of which are between 50 and 500 nm.
  • a tetraalkyl orthosilicate is dispersed in an alcoholic ammonia phase.
  • Spherical nanoparticles are formed in the dispersion by hydrolysis of the silanes, the particle sizes of which are determined by the type of reactants used, their concentration, the solvent, the ratio of the phases to one another and the temperature.
  • the reaction rates in methanol are higher than in n-butanol; accordingly, the reaction in methanol gives the smallest particle sizes compared to higher alcohols.
  • the particle size increases with the transition from methyl esters to higher molecular weight esters.
  • the particle sizes can also be influenced by varying the ammonia concentration: the particle size generally decreases with increasing concentration. With the help of this method, depending on the reaction conditions, particles with a size between 50 and 500 nm are selectively formed.
  • the silica colloids are surprisingly so in the subsequent bead production in suspension integrated in the silica beads that the particles formed have a surface area that is 2 to 5 times larger than the silica particles known from the prior art (PCT / EP01 / 08392).
  • the concentration of the added SiO 2 colloids is generally 10 to 40% by volume, preferably 20 to 35% by volume, based on the hydrosol phase, the SiO 2 colloids having a solids content of 10 to 50% by weight. contain.
  • Si0 2 colloids as parameters for increasing the nucleic acid binding
  • metal oxides or semimetal oxides in the silica supports also has an additional positive effect with regard to the nucleic acid binding.
  • the oxides of the metals titanium, copper, cobalt, aluminum, calcium, zirconium, manganese, potassium, barium, magnesium and / or zinc as well as the semi-metals boron and arsenic have proven to be particularly efficient, this selection only as an example and not as Limitation of the invention are to be seen.
  • boron oxide (B 2 0 3 ) and zinc oxide are particularly preferred.
  • corresponding organometallic compounds for example in the form of alkyl derivatives, alcoholates, acetates or alkoxides, are mixed into the hydrosols, so that the added metal compound (s) or semimetal compound (s) during the conversion from the hydrosol to the silica gel is / are incorporated as oxide (s) in the silica gel matrix.
  • Known carrier media have proven to be particularly suitable for silica carriers with a defined boron oxide and zinc oxide content.
  • the boron oxide content is preferably 5-15 mol% and the zinc oxide content is 2 to 10 mol% (based on the silica content).
  • the concentrations of the other metal oxides are generally in the range from 1 to 20 mol%.
  • the metal oxides are generally integrated into the Si0 2 matrix by mixing the corresponding organic components together with the hydrosol formed. The corresponding oxides are then generated during the heat treatment of the gel described below.
  • nucleic acid binding In addition to the modification steps described above, a further procedure has been found to increase nucleic acid binding. This relates to post-treatment of the temperature of the spherical silica particles ("beads") obtained with the aid of dispersion crosslinking.
  • the gels known from the prior art (PCT / EP01 / 08392) are generally present as hydrogels with a high proportion of bound water.
  • the resulting hydrophilic properties of the carriers prevent significant nucleic acid binding (ie more than 1 mg / g of carrier), so that they can only be used to a very limited extent for routine analyzes.
  • the hydrogels obtained are subjected to a temperature treatment that completely removes the water removes the carrier and thereby converts the silica gel particles into solid, anhydrous Si0 2 carriers, which are also generally referred to as xerogels or silica gels.
  • the temperature treatment is generally carried out above 250 ° C., preferably above 500 ° C., preferably using temperature-controlled muffle furnaces.
  • the temperature treatment usually takes 1 to 2 hours, depending on the size and water content of the polymeric carrier.
  • the particle sizes of the polymer beads produced by means of inverse dispersion crosslinking can be adjusted both via the viscosity of the aqueous polymer phase and via the mechanical stirring process. Particles with a size ⁇ 100 ⁇ m are predominantly formed with a viscosity of the sol ⁇ 40 cp and particles> 200 ⁇ m from sols with a viscosity> 40 cp.
  • a preferably commercially available dispersing tool that works according to the rotor-stator principle (eg Ultra-Turrax®) and has a rotation speed of> 10,000 rpm is required.
  • larger polymer beads > 20 ⁇ m can be produced with conventional stirrers at a stirring speed of 800 - 5000 rpm.
  • the stirring process usually takes 3 to 10 seconds.
  • the magnetic particles obtained can then be separated from the dispersion using a hand magnet and cleaned by washing with alcohol and water.
  • silica gel particles are preferably obtained which have particle sizes between 0.5 and 1 ⁇ m, 1 to 10 ⁇ m, 10 to 30 ⁇ m, 30 to 100 ⁇ m and> 100 ⁇ m.
  • the gel particles obtained can be used directly after the temperature treatment described above in accordance with the known methods for purifying nucleic acids.
  • techniques for nucleic acid isolation Sambrook et al. Molecular Cloning, A Laboratory Manual, 2 nd Edition, Cold Spring Harbor Lab. Press, Cold Spring Harbor, New York.
  • magnetic substances are added to the silica sols before they are dispersed in the organic phase.
  • magnetic colloids or ferrofluids as well as ferro-, ferri- or superparamagnetic micro- or nanoparticles that have such a magnetic moment that the silica beads can be separated after encapsulation with a conventional hand magnet.
  • the colloids or ferrofluids are partly commercially available or their preparation is adequately described in the literature (see e.g. PCT / EP96 / 02398 and the literature cited therein) and can be understood by the person skilled in the art at any time.
  • ferrofluids containing charged surfactants, for example in the form of aromatic or aliphatic sulfonic acid derivatives or aliphatic carboxylic acids for stabilization, are particularly suitable for this purpose.
  • Such magnetic subs punches are also commercially available.
  • magnetic particles can also be used for encapsulation that have a solid polymer shell.
  • Magnetic beads of this type which have a shell made of polyvinyl acetate, polyvinyl alcohol, dextran, polyacroline, polystyrene, albumin or alginate and generally have particle sizes of 0.05 to 5 ⁇ m are known from the prior art (see, for example, PCT / EP96 / 02398 and literature cited therein) and are also used commercially, among others offered under the names Dynabeads, BioMag, Estapor, M-PVA, AGOWA, BioBeads or SPHERO, some of which are are registered trademarks. These magnetic particles are used in an analogous manner to the colloids or ferrofluids for the production of the silica particles according to the invention.
  • Suitable dispersants are solvents which are immiscible with the hydrosol phase and in which the hydrosol phase is able to form stable, defined droplets. Examples include hexane, petroleum ether, toluene, carbon tetrachloride, chloroform, trichlorethylene, 1.1.1-trichloroethane, heptane or octane.
  • Preferred solvents are those which have a distribution coefficient (as defined by C. Laane et al., "Biocatalysis in Organic Media", Laane et al. Ed., Elsevier, Amsterdam, pp 65, 1987)> 2. Also mixtures the above solvents with a density of approx. 1 g / cm 3 are well suited for dispersion.
  • emulsifiers or surfactants include surface-active substances or surfactants and stabilizers such as: propylene oxide-ethylene oxide block copolymers, polyglycerol esters, polyoxyethylene sorbitan fatty acid esters, alkylphenyl polyethylene glycol derivatives, polyethylene glycol-castor oil derivatives, block copolymers from castor oil derivatives, polyethylene glycol ether derivatives , Polyoxypropylene-ethylenediamine block copolymers, sorbitan fatty acid esters, polyethylene glycols, polyoxyethylene, modified polyesters, polyoxyethylene alcohol derivatives, polyhydroxy fatty acid-polyethylene glycol block copolymers.
  • surface-active substances or surfactants and stabilizers such as: propylene oxide-ethylene oxide block copolymers, polyglycerol esters, polyoxyethylene sorbitan fatty acid esters, alkylphenyl polyethylene glycol derivatives, polyethylene glycol-castor oil derivatives, block copolymers from castor oil
  • Substances of this type are commercially inter alia, commercially available under the trade name: Synperonic ®, working lacel ®, Brij "Renex ®, Estol® ®, Eu ulgin ®, Pluronic ®, tri- ton, Pr pol, Hypermer, Span, Tween, Tetronic, Prisorine, Dehymuls ® or Lameform ® available.
  • the emulator concentrations relevant for the production of the magnetic particles are between 0.1 and 15% by weight, preferably between 0.5 and 5% by weight, based on the dispersant.
  • the volume ratio of organic phase to hydrosol is usually 5: 1 to 30: 1, the volume ratio of hydrosol to magnetic colloid is 2: 1 to 4: 1, the weight fraction of the magnetic solid in the sol approach being 15-50%.
  • the silica sols containing magnetic colloids, SiO 2 colloids and metal compounds are added to defined spherical silica particles during the dispersion process by adding a base.
  • Stigt. The addition of base leads within a short time (preferably 3 to 20 seconds, generally less than 60 seconds) to solidification (gel formation) of the polymer droplets.
  • concentration of the base used the greater the rate of gel formation.
  • Ammonia or NaOH are preferably used as bases.
  • Sodium hydroxide solution is generally used as a 0.05 to 0.1 molar solution, and ammonia in the form of a 1 to 12% aqueous solution.
  • the volume ratios of base to sol are usually 1: 2 to 1: 4.
  • the manufacturing process for the base particles including the synthesis of the sol and the magnetic colloid, takes less than an hour. Compared to all conventional methods, this means a time saving of at least 30 to 90%.
  • silica gel beads according to the invention with an enlarged surface, especially for nucleic acid purification, the silica gels can also be modified so that their use in
  • Such a type of carrier can be obtained by chemical reaction of the silica gel particles with epoxy-substituted alkoxysilane, such as 3-glycidyloxypropyltrimethoxysilane or 3-glycidyloxypropylmethyldiethoxysilane and then produce the nucleophilic opening of the oxirane ring using tertiary or secondary alkylamines.
  • Ligands in the form of peptides, proteins or enzymes can be covalently bound to the supports modified in this way, whether for separation according to the affinity principle or for use as biocatalysts. Proteins and other ligands can be directly coupled to the halogen-substituted supports by simple incubation.
  • Preparation A 5 ml of tetraethoxysilane are mixed with 37 ml of propanol and quickly mixed with a solution consisting of 1.9 ml of 25% ammonia and 3.7 ml of water. After 30 minutes, Si0 2 colloids with an average particle size of 223 nm are obtained. The colloid is then centrifuged off and the supernatant is pipetted off. The precipitate is dried in an oil pump vacuum for 5 minutes, taken up in 5 ml of water and redispersed using an ultrasound bath.
  • Preparation B A mixture of 90 ml tetraethoxylsilane, 10 ml water and 8.5 ml 0.1 M HCl is sonicated in an ultrasonic bath (approx. 20 minutes) until a homogeneous mixture is formed.
  • the preparation B is then 25 ml of a magnetic colloid, which according to the specification by Shinkai et al. (Biocatalysis, Vol 5, 61, 1991) by oxidation of a 0.6 molar iron (II) salt solution, which was prepared using 0.3 M Na nitrite, was added. There is a brief sonication in the ultrasonic bath for 2 minutes. The received Magnetic dispersion is then mixed with 5 ml of preparation A and 6.5 g of zinc (2, 2, 6, 6-tetramethyl-3, 5-heptanedionate) and sonicated again for 2 minutes.
  • the dispersion obtained is introduced into one liter of trichlorethylene in which 2.5% by weight of Brij 52 and 1.8% by weight of Tween 85 are dissolved.
  • the dispersion is dispersed with stirring (1500 rpm) for a few seconds and then mixed with 45 ml of 1% ammonia solution. The stirring is continued for 5 seconds.
  • the magnetic particles are separated from the dispersion with the aid of a commercially available hand magnet and washed five times each with about 50 ml of methanol and water. Magnetic particles with an average particle size of 38 ⁇ m are obtained. After 12 hours of incubation in water, the particles are washed several times with water and then dried in vacuo for about one hour. The particles are then heated in a muffle furnace at 650 ° C for 1 hour.
  • the magnetic particles obtained in this way can be used according to the known methods for purifying nucleic acids.
  • Preparation A An SiO 2 colloid is prepared from a mixture consisting of 0.63 ml of water, 2.35 ml of saturated aqueous ammonia solution, 0.3 ml of tetraethoxysilane and 1.69 ml of ethanol. Particles with an average size of 245 nm are obtained. The further vacuum treatment as well as processing and redispersion of the colloid is carried out analogously to Example 1.
  • Preparation B A mixture consisting of 100 ml of tetraethoxysilane, 20 ml of water and 5 ml of 0.05 M HC1 is homogenized with the aid of an ultrasonic bath.
  • the dispersion obtained is introduced into 3 liters of trichlorethylene, which contains 3.5% by weight of Span 60 and 1.5% by weight of Tween 85, and is dispersed with stirring (2500 rpm) for 4 seconds. This is followed by the immediate addition of 55 ml of 1% ammonia solution. The stirring is continued for 5 seconds. After 5 minutes, the magnetic particles are separated from the dispersion with the aid of a commercially available hand magnet and washed five times each with about 50 ml of methanol and water. Magnetic particles with an average particle size of 24 ⁇ m are obtained. After 12 hours of incubation in water, the particles are washed several times with water and then dried in vacuo for about one hour. The particles are then heated in a muffle furnace at 650 ° C for 2 hours. The magnetic particles obtained in this way can be used according to the known methods for isolating nucleic acid from biological liquids.
  • 25 ml of tetraethoxysilane are mixed with 7.5 ml of water and 2.5 ml of 0.15 M HC1 and homogenized analogously to Example 1.
  • This sol phase is mixed with 12 ml of ferrofluid EMG 507 (Fa. roTec, Nashua, USA), 4.5 ml triethyl borate, 2.8 ml Si0 2 colloid, which was synthesized analogously to Example 1, and 0.8 g zinc (2,2,6,6-tetramethyl-3,5 -heptanedionate) added.
  • the mixture is sonicated for 5 minutes under ice cooling in an ultrasonic bath.
  • the dispersion is then dispersed with stirring (1800 rpm) in 450 ml of hexane, which contains 1.5% by weight of Span 80 and 4.5% by weight of Dehymuls HRE in solution. 12 ml of 1% ammonia solution are added during the dispersing process. The stirring is continued for 5 seconds.
  • the magnetic particles obtained are separated and worked up analogously to Example 1. Carriers with an average particle size of 84 ⁇ m are produced.
  • the separated magnetic particle fraction is washed analogously to Example 1 with methanol and water. This is followed by multiple washing with 30 ml of dried toluene, which is followed by a two-hour vacuum drying. The product obtained is then heated for 3 hours at 120 ° C.
  • the product is then refluxed 12 hours after the addition of 25 ml of toluene dried over molecular sieves and 0.5 g of 3-aminopropyltriethoxysilane.
  • the magnetic particles are separated magnetically again and washed five times each with toluene and chloroform. This is followed by drying in vacuo for several hours.
  • the amino-modified product is then reacted with 6% glutaraldehyde solution in 10 ml 0.1 M Na carbonate buffer, pH 9.2, for 3 hours at 35 ° C. It is then washed thoroughly with 0.1 M phosphate buffer, pH 7.2.
  • the aldehyde-functionalized magnetic particles obtained are suspended in 8.5 ml of 0.1 M phosphate buffer and incubated in 2 ml of 0.1 M phosphate buffer, pH 7.2, in which 5.5 mg of streptavidin are dissolved. After six hours reaction at 40 ° C, the product is washed five times with phosphate buffer. In order to saturate remaining aldehyde groups, the magnetically separated product is incubated in 10 ml of 0.2 M ethanolamine at room temperature over a period of 5 hours. The magnetic particles subsequently washed several times with phosphate buffer can be used directly by the known methods for binding biotinylated nucleic acids or biotinylated proteins.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Silicon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Sphärische, magnetische Silicagel-Partikel mit einer durch Inkorporation von Si02-Kolloiden vergrößerten Teilchenoberfläche werden mit Hilfe eines inversen Dispersionsvernetzungsverfahrens von Silica-Solen hergestellt. Durch Zumischen bestimmter Metalloxide zu den Silica-Solen und anschließender Temperung können Silicagel-­Partikel mit hohen Nukleinsäurebindungseigenschaften gewonnen werden. Die Magnetpartikel lassen sich zur Nukleinsäure-Separation sowie zur Isolierung von Biomolekülen einsetzen.

Description

Sphärische, magnetische Silicagel-Träger mit vergrößerter Oberfläche für die Aufreinigung von Nukleinsäuren
Die vorliegende Erfindung betrifft magnetische, (Halb-) Metalloxide-enthaltende, sphärische Silicagel-Partikel mit hoher Nukleinsäure-Bindungskapazität, ein Verfahren zu deren Herstellung sowie deren Verwendung im Bereich der Bioanalytik und Diagnostik.
Seit Jahren werden Silica-Partikel in der Bioanalytik zur Abtrennung und Aufreinigung von Nukleinsäuren verwendet, die aufgrund ihrer speziellen physikalisch-chemischen Struktur besonders dazu befähigt sind, diese Nukleinsäuren zu binden. Solche ausschließlich in der Säulenchromatographie einsetzbaren Medien sind in der Deutschen Patentschrift DE 32 11 309 (entsprechend US 4,699,717) beschrieben.
In der PCT Anmeldung EP99/08996 werden, glasbeschichtete Pigmente zur Nukleinsäureaufreinigung beschrieben, die verschiedene Metalloxide wie Zink-, Bor-, Eisen-, Kalzium-, Kalium- und/oder Aluminium enthalten. Glaspartikel mit einem Glimmerkern und inkorporierten Mag etitpartikeln, die jedoch zu einer schnellen Sedimentation neigen, gehen aus der PCT Anmeldung EP96/02459 hervor. Die Herstellungsverfahren sind zeitaufwendig und erfordern technisch aufwendige Sprüh-Trocknungsverfahren. Ideal sphärische Partikel lassen sich mit diesen Verfahren nicht herstellen.
In Anal. Biochem. 201, 166 (1992) bzw. PCT GB91/00212 sind Nukleinsäure-Separationsverfahren mit Hilfe von Magnetpar- tikeln beschrieben, die in der Lage sind die Nukleinsäuren nach einer Salz-Ethanol-Ausfällung zu absorbieren. Diese Verfahren arbeiten jedoch nicht nukleinsäurespezifisch, d.h., die Magnetpartikel absorbieren auch parallel andere Biosubstanzen.
Silanisierte Eisenoxid-Partikel zur Immobilisierung von Enzymen sind aus der US Patentschrift 4,152,210 bekannt. Ebenfalls zum Zwecke der Enzymimmobilisierung sind in der US-Patentschrift 4,343,901 ferromagnetische Partikel beschrieben, die durch eine Sol-Gel-Technik hergestellt werden.
In der PCT-An eldung EP97/04828 werden monodisperse Magnetpartikel beschrieben, die aus einem Si02 Kern bestehen, der durch Beschichten mit Eisenoxid magnetische Eigenschaften erhält. Durch anschließende Silansierung der Eisenoxid- Schicht sind die Teilchen befähigt, Nukleinsäuren zu binden. Analog dazu sind aus der US-Patentschrift 5,320,944 0,2-3 μ große Magnetpartikel bekannt, die durch Beschichten eines Polymerpartikels mit Eisenoxiden magnetische Eigenschaften erhalten. Durch weitere Beschichtung der Partikel mit Silanen, Nylon oder Polystyrol können anschließend Antikörper für den Einsatz in Immunoassays an die Partikel gekoppelt werden. Mit kolloidalem Si02 beschichtete Eisenoxid Partikel sind in der US-Patentschrift 4,280,918 offenbart.
Magnetische Silica-Hybrid-Partikel, bestehend aus einem Polystyrol Kern, auf den Magnetit und anschließend eine Sili- ca-Schicht aufpolymerisiert wird, sind aus PCT/US 95/12988 bekannt. Die Partikel werden für die Antikörper- und Zeil- Separation eingesetzt.
20-100 μm große magnetische Silicagel-Partikel zur Enzymimmobilisierung, die durch elektrostatische Beschichtung von Nickel-Pulvern mit Silica-Solen erzeugt werden, sind von Goetz et al . , Biotechn. & Bioengineering, Vol. 3_7, 614, 1991, beschrieben worden.
Organosilanisierte kolloidale Silicagel-Partikel als biologische Separationsmedien sind in der PCT-Anmeldung US99/00403 offenbart, wobei die Stabilität der Kolloide und Art und Weise der Silanisierung im Vordergrund stehen. Magnetpartikel, die ein magnetisches Kernmaterial enthalten und mit einem anorganischen Oxid beschichtet sind, werden in EP 0343 934 offenbart.
Polymerpartikel, die mit einer magnetische Substanzen enthaltenden Polymerschicht beschichtet sind, auf der ein dritter zur Interaktion mit Biomolekülen befähigter Polymerüberzug aufgetragen ist, sind in der PCT Anmeldung FR97/00912 beschrieben.
10-60 μm große Perlglanzfarbpig ente, die mit Magnetit ummantelt und zur Trennung von biologischen Gemischen vorgesehen sind, gehen aus der PCT-Anmeldung DE97/01300 (korrespondierend US 6,372,517) hervor.
Magnetische Hybridpartikel, die aus einem Polymerkern bestehen, die zunächst mit einem Ferrofluid beschichtet und anschließend mit einem funktioneilen Polyacrylat beschichtet werden, sind Gegenstand der US-Patentschrift 5,648,124. In den US-Patenten 6,204,033 und 6,514,688 werden sphärische, magnetische Polymerpartikel auf der Basis von Polyvi- nylalkohol beschrieben, die mittels inverser Suspensionspolymerisation innerhalb kurzer Zeit herstellbar sind. Die dort offenbarten Polymerpartikel sind jedoch aufgrund der chemisch-physikalischen Eigenschaften des Polyvi- nylalkohols ohne umfangreiche Derivatisierungsschritte nicht zur Nukleinsäure-Aufreinigung geeignet.
Die aus dem Stand der Technik bekannten Partikel weisen in bezug auf die Abtrennung von Nukleinsäuren, sofern sie überhaupt für diese Anwendung geeignet sind, einige Nachteile auf: Zum einen sind eine Reihe von Trägermedien nicht magnetisch (US 4,927,750; DE 32 11 309; PCT/US99/00403; PCT/EP94/01378) , so dass eine rasche Abtrennung der Partikel, wie heute bei automatisierten Routineanalysen gefordert, nicht möglich ist. Zum anderen weisen Magnetpartikel auf Silica- oder Polystyrol-Basis, die mit einem magnetischen Oxid beschichtet sind, eine hohe spezifische Dichte auf (PCT/EP97/04828, US 4,152,210, EP 3211309, 5,320,944), woraus eine unzureichende Dispergier- barkeit verbunden mit einem schnellen Absetzen der Teilchen resultiert. Der Einsatz dieser Teilchen in einem Immunooder Nukleinsäureassay, der vorwiegend in Suspension durchgeführt wird, ist dadurch nachhaltig beeinträchtigt, da man auf eine zusätzliche mechanische Durchmischung angewiesen ist. Der entscheidende Nachteil der beschichteten Partikel besteht jedoch darin, daß die Metalloxide sowohl als Kernmaterial als auch als Beschichtungsmaterial trotz der anschließenden Silanisierung direkt mit der Analysenlδsung in Kontakt kommen können. Dies stellt ein gravierendes Problem bei der Nukleinsäureanalytik, z.B. im Rahmen der PCR, dar, da die bei der PCR benutzten Poly erasen im Kontakt mit Metallen deaktiviert werden können.
Die aus dem Stand der Technik bekannten Verfahren zur Herstellung der Magnetpartikel sind grundsätzlich sehr aufwendig und bedürfen ohne Ausnahme eines mehrstündigen Herstellungsprozesses .
Weiterhin wird in der PCT-Anmeldung EP01/08392, entsprechend DE 100 35 953 AI, ein inverses Suspensionsverfahren zur Herstellung von Silica-Partikeln offenbart, das die aus dem Stand der Technik offensichtlichen Nachteile in bezug auf die stofflichen Gegebenheiten und/oder den zeitlichen und experimentellen Aufwand zu umgehen vermag. Die Basis dieses Verfahrens, auf das hier vollständig inhaltlich Bezug genommen wird, sind Magnetkolloid-enthaltende wäßrige Silica-Sole, die in speziellen organischen Phasen disper- giert werden und während des Dispergiervorganges durch Basenzugabe zu sphärischen Gel-Partikeln verfestigt werden. Der Nachteil der nach diesem Verfahren hergestellten Sili- cagele ist jedoch, dass es sich bei Ihnen um Hydrogele handelt, die infolge des hohen Wassergehaltes sehr polar bzw. hydrophil sind, was die Nukleinsäurebindungs-Kapazität nachhaltig beeinträchtigt. Zudem sind keine, spezifisch die Nukleinsäurebindung unterstützende Trägermodifikationen beschrieben, so daß ein befriedigender Einsatz der Träger bei der Nukleinsäureaufreinigung aufgrund der geringen Bindungskapazität nicht gegeben ist. Ausgehend von diesem Stand der Technik besteht die Aufgabe der vorliegenden Erfindung darin, für die Nukleinsäureauf- reinigung geeignete Silicagel-Partikel und Verfahren zu ihrer Herstellung bereitzustellen, die die Nachteile der bekannten Silica- und Polymerträger im Hinblick auf die präparationsintensiven und zeitaufwendigen Beschichtungs- techniken überkommen und eine effiziente Herstellung magnetischer Partikel auf Silicagel-Basis ermöglichen.
Die nach dem erfindungsgemäßen Verfahren hergestellten sphärischen Silicagel-Partikel, die einen Gehalt an Magnetpartikeln aufweisen, und in die Si02-Kolloide und Metalloxide eingekapselt sind, besitzen eine deutlich vergrößerte Oberfläche und verfügen über Polymereigenschaften, die es gestatten, Nukleinsäuren in signifikanter, hoher Konzentration (> 20 mg/g Träger) zu binden.
Die Präparation der erfindungsgemäßen Partikel geht von vorgeformten wäßrigen Silica-Hydrosolen aus, die mit magnetischen Kolloiden oder Magnetpartikeln vermischt werden und anschließend in heterogener Phase unter Basenzugabe zu sphärischen Polymerpartikeln polykondensiert werden. Zur weiteren Verbesserung der Eigenschaften kann sich eine Wärmebehandlung der Polymerpartikel anschließen.
Die Herstellung der bei der Herstellung eingesetzten Sili- ca-Sole (Hydrosole) erfolgt nach den bekannten Verfahren durch Hydrolyse von Alkoxysilanen mit Hilfe verdünnter Mineralsäuren oder organischen Säuren wie z.B. Essigsäure oder Ameisensäure. Die Alkoxysilane werden in Wasser dispergiert und durch Säurezugabe hydrolysiert, wobei zur Beschleunigung des Hydrolysevorgangs vorzugsweise Ultraschall eingesetzt wird, was auch zur besseren Durchmischung der zunächst heterogenen Phase beiträgt.
Als Alkoxysilane kommen Kieselsäureorthoester aliphatischer Alkohole wie z.B. Methyl-, Ethyl- oder Propylester einzeln oder als Mischungen zum Einsatz. In der Folge findet eine Kondensation zu niederpolymeren Silica-Hydrosolen statt, die nach und nach durch weitere Polykondensation zu mehr oder weniger viskosen Solen führen. Je nach Zusammensetzung reichen Beschallungszeiten von 5 bis 30 Minuten aus, wobei die Beschallungszeiten allgemein mit zunehmender Säurekonzentration abnehmen. Die vorzugsweise zur Hydrolyse eingesetzten Mineralsäuren weisen eine Konzentration von 0,02 bis 1 Mol/Liter auf, wobei der Volumenanteil der Säuren im Ansatz 10-35 %, vorzugsweise 20-28 %, beträgt. Die Carbonsäuren werden als reine Säuren eingesetzt; ihr Volumena - teil beträgt in der Regel 15-40 %.
Die Zusammensetzung des Gels wird entscheidend von der Art und Weise der Hydrolyse und Polykondensation bestimmt. So führt die Säurekatalyse im allgemeinen zu höheren Hydrolyseraten unter verlangsamter Polykondensation, während umgekehrt die Zugabe von Basen die Polykondensation fördert.
Die Steuerung der Hydrolyse und der Polykondensation, die in bekannter Weise dazu genutzt werden kann (vgl. PCT/EP01/08392) , die Porenstruktur der Gele gezielt zu verändern bzw. einzustellen, reicht jedoch nicht aus, um eine solche Oberflächenvergößerung herbeizuführen, die es ermöglicht, eine signifikante Menge Nukleinsäure zu binden. Diese Oberflächenvergrößerung wird überraschenderweise dadurch erreicht, dass dem Silica-Sol vor der Suspension ein vorgefertigtes Si02-Kolloid zugesetzt wird, dessen Teilchengrößen zwischen 50 und 500 nm liegen.
Die Herstellung solcher Kolloide nach dem Stand der Technik ist dem Fachmann auf dem Gebiet hinreichend bekannt. In der Regel wird dabei ein Tetraalkylorthosilikat in einer alkoholischen Ammoniak-Phase dispergiert. Innerhalb kurzer Zeit werden durch Hydrolyse der Silane in der Dispersion sphärische Nanopartikel gebildet, deren Teilchengrößen von der Art der eingesetzten Reaktionspartner, deren Konzentration, dem Lösungsmittel, dem Verhältnis der Phasen untereinander und der Temperatur bestimmt werden. So sind in der Regel die Reaktionsraten in Methanol höher als in n-Butanol; entsprechend liefert die Reaktion in Methanol die kleinsten Teilchengrößen im Vergleich zu höheren Alkoholen. Der Einfluß der Alkoxysilane auf die Teilchengrößen ist allgemein bekannt, die Teilchengröße nimmt beim Übergang von Methylestern zu höhermolekularen Estern zu. In ähnlicher Weise lassen sich die Partikelgrößen auch durch Variation der Ammoniak-Konzentration beeinflussen: mit zunehmender Konzentration nimmt in der Regel die Teilchengröße ab. Mit Hilfe dieses Verfahrens werden, je nach Reaktionsbedingungen, Teilchen mit einer Größe zwischen 50 und 500 nm selektiv gebildet.
Durch Zumischen der Si02-Kolloide zu den Silica-Solen werden die Silica-Kolloide bei der anschließenden Bead- Herstellung in Suspension überraschenderweise in der Weise in die Silica-Beads integriert, dass die entstehenden Partikel gegenüber dem Stand der Technik (PCT/EP01/08392) bekannten Silica-Partikeln eine um den Faktor 2 bis 5 größere zugängliche Oberfläche aufweisen.
Die Konzentration der zugesetzten Si02-Kolloide beträgt in der Regel 10 bis 40 Vol %, vorzugsweise 20 bis 35 Vol.-%, bezogen auf die Hydrosol-Phase, wobei die Si02-Kolloide einen Feststoffanteil von 10 bis 50 Gew.-% enthalten.
Außer der Zugabe von Si02-Kolloiden als Parameter zur Steigerung der Nukleinsäurebindung, hat sich überraschenderweise gezeigt, dass auch die Präsenz bestimmter Metalloxide oder Halbmetalloxide in den Silica-Trägern einen zusätzlichen positiven Effekt in Hinblick auf die Nukleinsäure- Bindung besitzt. Als besonders effizient haben sich hierbei die Oxide der Metalle Titan, Kupfer, Kobalt, Aluminium, Kalzium, Zirkonium, Mangan, Kalium, Barium, Magnesium und/oder Zink sowie der Halbmetalle Bor und Arsen erwiesen, wobei diese Auswahl lediglich als Beispiel und nicht als Einschränkung der Erfindung anzusehen sind. Besonders bevorzugt im Sinne der Erfindung sind Boroxid (B203) und Zinkoxid. Zur Inkorporation der Metalloxide werden entsprechende metallorganische Verbindung z.B. in Form von Alkyl- derivaten, Alkoholaten, Acetaten oder Alkoxiden den Hydrosolen zugemischt, so dass die zugesetzte (n) Metallverbindung (en) oder Halbmetallverbindung (en) bei der Umwandlung von dem Hydrosol in das Silicagel als Oxid(e) in die Silicagel-Matrix inkorporiert wird/werden .
Unter dem Gesichtspunkt der zu verbessernden Nukleinsäurebindung im Vergleich zu den aus dem Stand der Technik be- kannten Trägermedien haben sich vor allem Silica-Träger mit einem definierten Boroxid- und Zinkoxidgehalt als besonders gut geeignet herausgestellt. Dabei beträgt der Boroxid- Gehalt vorzugsweise 5 - 15 Mol % und der Zinkoxid-Gehalt 2 bis 10 Mol % (bezogen auf den Silica-Gehalt) . Die Konzentrationen der übrigen Metalloxide liegen in der Regel im Bereich von 1 bis 20 Mol %. Durch die Inkorporation von insbesondere Bor- und Zinkoxiden konnte die Nukleinsäure- Bindung um mehr als 25 % gegenüber Trägern nach dem Stand der Technik gesteigert werden. Die Integration der Metall- oxide in die Si02-Matrix erfolgt im allgemeinen durch Zusammenmischen der entsprechenden organischen Komponenten mit dem gebildeten Hydrosol. Die korrespondierenden Oxide entstehen dann bei der nachfolgend beschriebenen Wärmebehandlung des Gels.
Über die oben beschriebenen Modifikationsschritte hinaus hat sich eine weitere Verfahrensweise als nukleinsäurebin- dungssteigernd herausgestellt. Dies betrifft eine Temperaturnachbehandlung der mit Hilfe der Dispersionsvernetzung gewonnenen sphärischen Silica-Partikel („Beads") . Die nach dem Stand der Technik bekannten Gele (PCT/EP01/08392) , liegen in der Regel als Hydrogele mit einem hohen Anteil gebundenen Wassers vor. Die daraus resultierenden hydrophilen Eigenschaften der Träger verhindern eine signifikante Nu- kleinsäurebindung (d.h. mehr als 1 mg/g Träger) , so dass diese nur sehr eingeschränkt für routinemäßige Analysen herangezogen werden können. Dieser Nachteil läßt sich bei dem erfindungsgemäßen Verfahren nun überraschenderweise dadurch beheben, dass die gewonnen Hydrogele einer Temperaturbehandlung unterzogen werden, die das Wasser vollständig aus dem Träger entfernt und dadurch die Kieselgel-Partikel in feste, wasserfreie Si02-Träger, die auch allgemein als Xe- rogele oder Silicagele bezeichnet werden, umwandelt. Die Temperaturbehandlung erfolgt in der Regel oberhalb 250 °C, vorzugsweise oberhalb 500 °C, wobei vorzugsweise temperaturgeregelte Muffelöfen zur Anwendung gelangen. Die Temperaturbehandlung dauert in der Regel 1 bis 2 Stunden, je nach Größe und Wassergehalt der polymeren Träger.
Die Teilchengrδßen der mittels inverser Dispersionsvernetzung hergestellten Polymerbeads lassen sich sowohl über die Viskosität der wäßrigen Polymerphase als auch über den mechanischen Rührprozess einstellen. So werden Teilchen mit einer Größe < 100 μm vorwiegend bei einer Viskosität des Sols < 40 cp und Teilchen > 200 μm aus Solen mit einer Viskosität > 40 cp gebildet.
Zur Herstellung besonders feiner Partikel-Fraktionen (< 10 μm) ist ein vorzugsweise handelsübliches Dispergierwerk- zeug, das nach dem Rotor-Stator-Prinzip arbeitet (z.B. Ul- tra-Turrax®) und eine Umdrehungsleistung von > 10.000 U/min aufweist erforderlich. Größere Polymerbeads (> 20 μm) lassen sich demgegenüber mit herkömmlichen Rührern bei einer Rührgeschwindigkeit von 800 - 5000 U/min herstellen. Der Rührvorgang dauert in der Regel 3 bis 10 Sekunden. Die gewonnenen Magnetpartikel können anschließend mit Hilfe eines Handmagneten aus der Dispersion abgetrennt und durch Waschen mit Alkohol und Wasser gereinigt werden. Bevorzugt werden so Silicagel-Partikel erhalten, die Partikelgrößen zwischen 0,5 und 1 μm, 1 bis 10 μm, 10 bis 30 μm, 30 bis 100 μm und >100 μm aufweisen. Die gewonnenen Gel-Partikel können im Anschluß an die oben beschriebene Temperaturbehandlung direkt gemäß den bekannten Methoden zur Aufreinigung von Nukleinsäuren verwendet werden. In Hinblick auf Techniken zur Nukleinsäure- Isolierung wird auf Sambrook et al . : Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbour Lab. Press, Cold Spring Harbour, New York, verwiesen.
Um den Silica-Beads magnetische Eigenschaften zu verleihen, werden den Silica-Solen vor der Dispersion in der organischen Phase magnetische Substanzen zugemischt. Hierfür sind z.B. Magnetkolloide oder Ferrofluide sowie ferro-, ferri- oder superparamagnetische Mikro- oder Nanopartikel, die über ein solches magnetisches Moment verfügen, so dass nach ihrer Einkapselung die Silica-Beads mit einem herkömmlichen Handmagneten abgetrennt werden können. Die Kolloide bzw. Ferrofluide sind z.T. kommerziell verfügbar oder ihre Herstellung ist in der Literatur hinreichend beschrieben (siehe z.B. PCT/EP96/02398 und darin zitierte Literatur) und kann von dem Fachmann auf diesem Gebiet jeder Zeit nachvollzogen werden.
Das entscheidende Kriterium für die Auswahl geeigneter Kolloide bzw. Ferrofluide stellt ihre homogene Dispergierbar- keit im Silica-Sol dar, d.h., das Magnetkolloid darf im Kontakt mit der Sol-Phase nicht ausflocken oder agglomerieren. Vor allem Ferrofluide, die geladene Tenside z.B. in Form aromatischer oder aliphatischer Sulfonsäurederivate oder aliphatischer Carbonsäuren zur Stabilisierung enthalten, sind dafür besonders geeignet. Derartige Magnetsub- stanzen sind auch, wie schon erwähnt, kommerziell erhältlich.
Die Möglichkeit der einfachen und gezielten Einstellung des Magnetanteils im erfindungsgemäßen Silicagel-Partikel durch Zumischen des Magnetkolloids, die dieses Verfahren gegenüber dem Stand der Technik auszeichnet, eröffnet ein breites AnwendungsSpektrum, das über die bloße Auftrennung von Biomolekülen und Nukleinsäuren oder die Biomolekülanalyse, wie in PCT/EP01/08392 und der darin zitierten Literatur beschrieben, weit hinausgeht.
Neben den in nanopartikulärer Form vorliegenden Magnetkolloiden oder Ferrofluiden sind grundsätzlich auch Magnetpartikel zur Einkapselung verwendbar, die über eine feste Polymerhülle verfügen. Solche Magnetbeads, die eine Hülle aus Polyvinylacetat, Polyvinylalkohol, Dextran, Polyacro- lein, Polystyrol, Albumin oder Alginat aufweisen und allgemein Teilchengrößen von 0,05 bis 5 μm aufweisen, sind aus dem Stand der Technik bekannt (siehe z.B. PCT/EP96/02398 und darin zitierte Literatur) und werden auch kommerziell u.a. unter den Bezeichnungen Dynabeads, BioMag, Estapor, M- PVA, AGOWA, BioBeads oder SPHERO angeboten, wobei es sich z.T. um eingetragene Warenzeichen handelt .Diese Magnetpartikel werden in analoger Weise wie die Kolloide bzw. Ferrofluide zur Herstellung der erfindungsgemäßen Silica- Partikel eingesetzt.
Nach Zugabe der Magnetkolloide, der die Oberfläche vergrößernden Si02-Kolloide sowie der Metallverbindungen zu dem Silica-Sol erfolgt die Dispersion der Mischung in einem or- ganischen Dispergiermittel. Als geeignete Dispergiermittel kommen dafür Lösungsmittel in Frage, die mit der Hydrosol- Phase nicht-mischbar sind und in dem die Hydrosol-Phase in der Lage ist stabile, definierte Tröpfchen zu bilden. Beispiele hierfür sind Hexan, Petrolether, Toluol, Tetrachlorkohlenstoff, Chloroform, Trichlorethylen, 1.1.1-Trichlor- ethan, Heptan oder Octan. Vorzugsweise kommen solche Lösungsmittel in Betracht, die einen Verteilungskoeffizienten (gemäß Definition nach C. Laane et al . , „Biocatalysis in Organic Media", Laane et al . Hrsg., Elsevier, Amsterdam, pp 65, 1987) > 2 aufweisen. Auch Mischungen der obigen Lösungsmittel mit einer Dichte von ca. 1 g/cm3 sind gut zum Dispergieren geeignet.
Zur Steigerung der Qualität der Silica-Dispersionen im Hinblick auf Uniformität und Kugelgestalt hat es sich überraschenderweise als vorteilhaft erwiesen, der organischen Phase einen oder mehrere Emulgatoren bzw. Tenside zuzusetzen. Hierzu zählen oberflächenaktive Substanzen, bzw. Tenside und Stabilisatoren wie z.B.: Propylenoxid-Ethylen- oxid-Blockcopolymere, Polyglycerinester, Polyoxyethylen- Sorbitan-Fettsäureester, Alkylphenylpolyethylenglykol- Derivate, Polyethylenglykol-Castoröl-Derivate, Blockcopolymere aus Rizinusöl-Derivaten, Polyethylenglykol-ether- derivate, Polyoxypropylen-Ethylendiamin-Blockcopolymere, Sorbitan-Fettsäureester, Polyethylenglykole, Polyoxyethy- len- , modifizierte Polyester, Polyoxyethylen-Alkohol- Derivate, Polyhydroxyfettsäure-Polyethylenglykol- Blockcopolymere. Substanzen dieser Art sind kommerziell im Handel u.a. unter der Handelsbezeichnung: Synperonic®, Ar- lacel®, Brij", Renex®, Estol®, Eu ulgin®, Pluronic®, Tri- ton , Pr pol , Hypermer , Span , Tween , Tetronic , Priso- rine , Dehymuls® oder Lameform® erhältlich.
Die für die Herstellung der Magnetpartikel relevanten E ul- gatorkonzentrationen liegen zwischen 0,1 und 15 Gew.-%, vorzugsweise zwischen 0,5 und 5 Gew. -%, bezogen auf das Dispergiermittel .
Alternativ zu klassischen organischen Lösungsmitteln als Dispergiermedium lassen sich auch herkömmliche Pflanzenöle mit einer Viskosität von 50 bis 500 cp sowie Mischungen von Pflanzenölen mit den organischen Lösungsmitteln einsetzen. Die Verwendung organischer Lösungsmittel hat jedoch gegenüber den Ölen den Vorteil, dass diese eine geringere Viskosität besitzen, wodurch die Separation der Silica-Partikel aus dem Reaktionsgemisch sowie die anschließenden Waschvorgänge innerhalb weniger Sekunden mit Hilfe eines handelsüblichen Handmagneten durchgeführt werden kann. Im Falle der Öle würde die Separation einschließlich der Waschprozesse erheblich länger (z.T. über Stunden) in Anspruch nehmen. Ein weiterer Vorteil ist die Möglichkeit, die organischen Flüssigkeiten durch Redestillation wiederzugewinnen.
Das Volumenverhältniß organische Phase zu Hydrosol beträgt in der Regel 5:1 bis 30:1, das Volumenverhältnis Hydrosol zu Magnetkolloid 2:1 bis 4:1 , wobei der Gewichtsanteil des magnetischen Festkörpers im Sol-Ansatz 15-50 % beträgt.
Im letzten Syntheseschritt werden die Magnetkolloide-, Si02-Kolloide- und Metallverbindungen-enthaltenden Silica- Sole während des Dispersionsvorganges durch Zugabe einer Base zu definierten sphärischen Silica-Partikeln verfe- stigt. Die Basenzugabe führt innerhalb kurzer Zeit (bevorzugt 3 bis 20 Sekunden, i.a. weniger als 60 Sekunden) zu einer Verfestigung (Gelbildung) der Polymertröpfchen. Die Gelbildungsgeschwindigkeit ist dabei um so größer, je höher die Konzentration der eingesetzen Base ist. Als Basen kommen vorzugsweise Ammoniak oder NaOH zum Einsatz. Natronlauge wird in der Regel als 0,05 bis 0,1 molare Lösung, Ammoniak in Form einer 1 bis 12 %igen wäßrigen Lösung eingesetzt. Die Volumenverhältnisse Base zu Sol liegen üblicherweise bei 1:2 bis 1:4.
Da die Gelierungsreaktion sehr rasch abläuft, erfordert der Herstellungsprozeß für die Basispartikel einschließlich der Synthese des Sols und des Magnetkolloids einen Zeitaufwand von weniger als einer Stunde. Das bedeutet gegenüber allen herkömmlichen Verfahren mindestens eine Zeitersparnis von 30 bis 90 %.
Neben dem Einsatz der erfindungsgemäßen Silicagel-Beads mit vergrößerter Oberfläche speziell für die Nukleinsäureauf- reinigung können die Silicagele darüber hinaus so modifiziert werden, dass ihr Einsatz in der
Separationstechnologie signifikant erweitert werden kann. Es ist aus Patentschriften DE 32 11 309 (entsprechend US 4,699,717), hier als Referenz angeführt, bekannt, daß insbesondere Medien mit kationischen Gruppen (Anionenaustau- scher) für die Nukleinsäure- und Protein-Auftrennung hervorragend geeignet sind. Ein solcher Trägertyp läßt sich durch chemische Umsetzung der Silicagel-Partikel mit Epoxy- substituiertem Alkoxysilan wie z.B. 3-Glycidyloxypropyl- trimethoxysilan oder 3-Glycidyloxypropylmethyldiäthoxysilan und anschließende nukleophile Öffnung des Oxiranringes mittels tertiärer oder sekundärer Alkylamine herstellen. Auch die Synthese stark und schwach saurer Ionenaustauscher sowie von Metallchelat-Trägern ist durch Umsetzung der beschriebenen Epoxy-substituierten Silicagel-Partikel mit Hilfe von Carbonsäuren, Sulfiten, Thiosulfaten bzw. Amino- substituierten Carbonsäuren, z.B. Nitrilotriessigsaure oder Iminodiessigsäure, möglich.
Die Funktionalisierung der Silica-Basisbeads zu speziellen TrägerSystemen ist nicht nur auf die Synthese von von Ionenaustauschern beschränkt. In einer besonderen Ausführungsform können die Si02-Träger mit substituierten Alkylalkoxysilanen der allgemeinen Formel X- (CH2)n-Si- (OR) 3, wobei X ein Halogen, Cyano-, NH2- oder Mercapto-Rest, n = 1-6, vorzugsweise 3, R ein Alkyl-, Trialkysilyl-Rest oder H ist, umgesetzt werden. An die so modifizierten Träger lassen sich, sei es für die Separation nach dem Affinitätsprinzip oder für den Einsatz als Biokataylsatoren, Liganden in Form von Peptiden, Proteinen oder Enzymen kovalent binden. Proteine und andere Liganden können dabei durch einfache Inkubation mit den Halogen-substituierten Trägern direkt gekoppelt werden.
Ohne auf weitere detaillierte Ausführungen diese Kopplungen und Modifikationen betreffend einzugehen, die u.a. in „Me- thods in Enzymology"*λ, Vol. 135, Part B, Hrsg. K. Mosbach, Academic Press, Orlando, 1987, in „Scientific and Clinical Applications of Magnetic Carriers", Häfeli et al . (Hrsg.), Plenum Press, New York ,1997, sowie in „Immobilized Biomo- lecules in Analysis", T. Cass und F.S. Ligler Hrsg., Oxford University Press, 1998, beschrieben sind, wird davon ausgegangen, daß ein Fachmann auf diesem Gebiet die speziellen Reaktionsmethoden hinreichend kennt und daher die Beschreibung grundsätzlich nutzen kann. Die beschriebenen Ausführungsformen sind daher in keiner Weise als limitierende Offenbarungen aufzufassen.
In den nachfolgenden Beispielen werden die erfindungsgemäßen Verfahren und Produkte näher beschrieben.
Beispiel 1
Präparation A: 5 ml Tetraethoxysilan werden mit 37 ml Pro- panol vermischt und rasch mit einer Lösung, bestehend aus 1,9 ml 25 %igem Ammoniak und 3,7 ml Wasser, verrührt. Nach 30 Minuten fallen Si02-Kolloide mit einer mittleren Teilchengröße von 223 nm an. Das Kolloid wird anschließend ab- zentrifugiert und der Überstand abpipettiert . Das Prazipitat wird 5 Minuten im Olpumpenvakuum getrocknet, in 5 ml Wasser aufgenommen und unter Anwendungen eines Ultraschallbades redispergiert .
Präparation B: Eine Mischung aus 90 ml Tetraethoxylsilan, 10 ml Wasser und 8,5 ml 0,1 M HCl werden in einem Ultraschallbad solange beschallt (ca. 20 Minuten) bis sich eine homogene Mischung bildet.
Der Präparation B werden sodann 25 ml eines Magnetkolloides, das gemäß der Vorschrift von Shinkai et al . (Biocata- lysis, Vol 5, 61, 1991) durch Oxidation einer 0,6 molaren Eisen (II) salz-Lδsung, die unter Verwendung von 0,3 M Na- Nitrit hergestellt wurde, zugegeben. Es folgt eine kurze Beschallung im Ultraschallbad für 2 Minuten. Die erhaltene Magnetdispersion wird sodann mit 5 ml der Präparation A und 6,5 g Zink- (2, 2, 6, 6-tetramethyl-3, 5-heptandionat) versetzt und nochmal 2 Minuten beschallt. Die erhaltene Dispersion wird in einem Liter Trichlorethylen, in dem 2,5 Gew.-% Brij 52 und 1,8 Gew.-% Tween 85 gelöst sind, eingetragen. Die Dispersion wird unter Rühren (1500 U/Min.) einige Sekunden dispergiert und sodann mit 45 ml 1 %iger Ammoniak-Lösung versetzt. Es wird 5 Sekunden weitergerührt. Nach 5 Minuten werden die Magnetpartikel mit Hilfe eines handelsüblichen Handmagneten aus der Dispersion abgetrennt und je fünfmal mit ca. 50 ml Methanol und Wasser nachgewaschen. Es werden Magnetpartikel mit einer mittleren Teilchengröße von 38 μm gewonnen. Nach 12 -stündiger Inkubation in Wasser werden die Partikel nochmals mehrfach mit Wasser gewaschen und anschließend ca. eine Stunden im Vakuum getrocknet. Anschließend werden die Partikel in einem Muffelofen bei 650 °C 1 Stunde erhitzt. Die so gewonnen Magnetpartikel können nach den bekannten Methoden zur Aufreinigung von Nukleinsäuren verwendet werden.
Beispiel 2
Präparation A: Ein Si02-Kolloid wirdaus einer Mischung, bestehend aus 0,63 ml Wasser, 2,35 ml gesättigter wäßriger Ammoniaklösung, 0,3 ml Tetraethoxysilan und 1,69 ml Etha- nol, hergestellt. Es fallen Teilchen mit einer mittleren Größe von 245 nm an. Die weitere Vakuumbehandlung sowie Aufarbeitung und Redispersion des Kolloids erfolgt analog Beispiel 1. Präparation B: Eine Mischung, bestehend aus 100 ml Te- traethoxysilan, 20 ml Wasser und 5 ml 0,05 M HC1, wird unter Zuhilfenahme eines Ultraschallbades homogenisiert. Zu dieser Sol-Phase werden 30 ml Magnetkolloid (analog Beispiel 1) zugemischt und 2 Minuten im Ultraschallbad behandelt. Diese Dispersion wird anschließend mit der Präparation A sowie mit 4,8 g Zinkacetat vermischt und für 5 Minuten beschallt.
Die erhaltene Dispersion wird in 3 Litern Trichlorethylen, das 3,5 Gew.-% Span 60 und 1,5 Gew.-% Tween 85 gelöst enthält, eingetragen und unter Rühren (2500 U/Min.) 4 Sekunden dispergiert. Es folgt die unmittelbare Zugabe von 55 ml 1 %iger Ammoniaklösung. Es wird 5 Sekunden weitergerührt. Nach 5 Minuten werden die Magnetpartikel mit Hilfe eines handelsüblichen Handmagneten aus der Dispersion abgetrennt und je fünfmal mit ca. 50 ml Methanol und Wasser nachgewaschen. Es werden Magnetpartikel mit einer mittleren Teil- chengröße von 24 μm gewonnen. Nach 12 -stündiger Inkubation in Wasser werden die Partikel nochmals mehrfach mit Wasser gewaschen und anschließend ca. eine Stunden im Vakuum getrocknet. Anschließend werden die Partikel in einem Muffelofen bei 650 °C 2 Stunden erhitzt. Die so gewonnen Magnetpartikel können nach den bekannten Methoden zur Nu- kleinsäureisolierung aus biologischen Flüssigkeiten eingesetzt werden.
Beispiel 3
25 ml Tetraethoxysilan werden mit 7,5 ml Wasser und 2,5 ml 0,15 M HC1 versetzt und analog Beispiel 1 homogenisiert. Dieser Sol-Phase werden 12 ml Ferrofluid EMG 507 (Fa. Fer- roTec, Nashua, USA), 4,5 ml Triethylborat, 2,8 ml Si02- Kolloid, das analog Beispiel 1 synthetisiert wurde, und 0,8 g Zink- (2,2, 6, 6-tetramethyl-3, 5-heptandionat) zugesetzt. Die Mischung wird für 5 Minuten unter Eiskühlung im Ultraschallbad beschallt. Die Dispersion wird anschließend unter Rühren (1800 U/min) in 450 ml Hexan, das 1,5 Gew.-% Span 80 und 4,5 Gew. -% Dehymuls HRE gelöst enthält, dispergiert. Während des Dispergiervorganges werden 12 ml 1 %ige Ammoniaklösung zugefügt. Es wird 5 Sekunden weitergerührt. Separation und Aufarbeitung der gewonnenen Magnetpartikel erfolgt analog Beispiel 1. Es entstehen Träger mit einer mittleren Teilchengröße von 84 μm. Die abgetrennte Magnetpartikel-Fraktion wird analog Beispiele 1 mit Methanol und Wasser gewaschen. Es folgt mehrfaches Waschen mit je 30 ml getrocknetem Toluol, dem sich eine zweistündige Vakuumtrocknung anschließt. Das anfallende Produkt wird sodann 3 Stunden bei 120 °C und anschließend nochmal 1 Stunden bei 650 °C im Muffelofen erhitzt. Das Produkt wird anschließend 12 Std. nach Zugabe von 25 ml über Molekularsieb getrocknetem Toluol und 0,5 g 3-Aminopropyltriethoxysilan am Rückfluß erhitzt. Die Magnetpartikel werden wieder magnetisch abgetrennt und je fünfmal mit Toluol und Chloroform nachgewaschen. Es folgt mehrstündige Trocknung im Vakuum. Das aminomodifizierte Produkt wird anschließend mit 6 %iger Glutaraldehyd-Lösung in 10 ml 0,1 M Na-Carbonat-Puffer, pH 9.2, für 3 Stunden bei 35 °C umgesetzt. Es wird anschließend intensiv mit 0,1 M Phosphat-Puffer, pH 7.2, nachgewaschen. Die gewonnenen Aldehyd- funktionalisierten Magnetpartikel werden in 8,5 ml 0,1 M Phosphat-Puffer suspendiert und in 2 ml 0,1 M Phosphat-Puffer, pH 7.2, in dem 5,5 mg Streptavidin gelöst sind, inkubiert. Nach sechsstün- diger Reaktion bei 40 °C wird das Produkt fünfmal mit Phosphat-Puffer nachgewaschen. Um verbliebene Rest- Aldehydgruppen abzusättigen, wird das magnetisch abgetrennte Produkt in 10 ml 0,2 M Äthanolamin bei Raumtemperatur über einen Zeitraum von 5 Stunden inkubiert. Die anschließend mehrfach mit Phosphat-Puffer gewaschenen Magnetpartikel können direkt nach den bekannten Verfahren zur Bindung biotinylierter Nukleinsäuren oder biotinylierter Proteine verwendet werden.

Claims

Patentansprüche
1. Sphärische Silicagel-Partikel, die einen Gehalt an Magnetpartikeln aufweisen, und in die Si02-Kolloide und ein. oder mehrere Oxide, die aus der Gruppe ausgewählt sind, die Metalloxide und Halbmetalloxide umfaßt, eingekapselt sind.
2. Silicagel-Partikel gemäß Anspruch 1, dadurch gekennzeichnet, dass der Anteil der Si02-Kolloide im Partikel 10 bis 40 Gew.-% beträgt, wobei die eingelagerten Si02- Kolloide vorzugsweise eine Teilchengröße von 50 bis 500 nm aufweisen, und der Anteil der Oxide vorzugsweise 1 bis 20 Mol %, bezogen auf den Silica-Gel-Gehalt, beträgt.
3. Silicagel-Partikel gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Partikel vorzugsweise bei Temperaturen oberhalb 250°C temperaturbehandelt sind.
4. Silicagel-Partikel gemäß Anspruch 1 bis 3, dadurch gekennzeichnet, dass der Magnetpartikelgehalt in den Silica- gel-Partikeln 15 bis 50 Gew. -5s beträgt, wobei die Magnetpartikel vorzugsweise aus der Gruppe ausgewählt sind, die Magnetkolloide, Ferrofluide und ferro-, ferri- oder su— perpara agnetische Nanopartikel umfaß .
5. Silicagel-Partikel gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Partikelgrößen zwischen 0,5 und 1 μm, 1 bis 10 μm, 10 bis 30 μm, 30 bis 100 μm odear > 100 μm eingestellt sind.
6. Silicagel-Partikel gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Oxide ausgewählt sind aus der Gruppe, die Zirkon, Titan, Kupfer, Kobalt, Aluminium, Kalzium, Kalium, Mangan, Barium, Magnesium und Zink um- fasst, und die Halbmetalloxide ausgewählt sind aus der Gruppe, die Bor und Arsen umfasst.
7. Silicagel-Partikel gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Partikel funktioneile Gruppen aufweisen, die mit Verbindungen reagieren, ausgewählt aus der Gruppe der Oligopeptide, Proteine, Oligosac- charide, Polysaccharide, Nukleinsäuren, Antikörper, Antikörperfragmente Enzyme oder Kombinationen daraus, und wobei die funktionellen Gruppen vorzugsweise aus der Gruppe ausgewählt sind, die Aldehyd-, Carboxyl-, A ino-, Hydroxyl- , Mercapto- und Oxiranfunktionen oder Kombinationen daraus umfasst .
8. Verfahren zur Herstellung sphärischer, magnetischer Silicagel-Partikel, dadurch gekennzeichnet dass: a) Alkoxysilane durch saure Katalyse zu einem Hydrosol umgewandelt werden, b) dem Hydrosol ein Si02-Kolloid zur Vergrößerung der O- berfläche der Silicagel-Partikel zugemischt wird, c) dem Hydrosol magnetische Partikel zugesetzt werden, so daß die Silicagel-Partikel magnetische Eigenschaften erhalten, d) dem Hydrosol eine oder mehrere Verbindungen, ausgewählt aus der Gruppe der Metallverbindungen oder Halbmetallverbindungen oder Kombinationen daraus, zugesetzt wird/werden, e) die so erhaltene Hydrosol-Mischung, die die Magnetpartikel, Verbindungen, ausgewählt aus der Gruppe der Me- tallverbindungen oder Halbmetallverbindungen oder Kombinationen daraus, und Si02-Kolloide enthält, in einem mit der Hydrosol-Phase nicht mischbaren Dispergiermittel dispergiert wird, f) die Hydrosol-Mischung, die die Magnetpartikel, Metallverbindung(en) und Si02-Kolloide enthält, während des Dispergiervorganges durch Basenzugabe zu festen Gel- Partikeln verfestigt wird, und g) die so erhaltenen Gel-Partikel anschließend durch eine Temperaturbehandlung zu festen Silicagel-Partikeln (Xerogelen) umgewandelt werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Volumenverhältniß von Hydrosol zu Dispergiermittel 1:5 bis 1:30 beträgt, und dass vorzugsweise als Dispergiermittel Pflanzenöle mit einer Viskosität von 50 bis 500 cp oder organische Lösungsmittel mit einem Verteilungskoeffizienten > 2 im Oktanol-Wasser-System, die aus der Gruppe ausgewählt sind, die chlorierte Kohlenwasserstoffe, Alkane mit einer Kohlenstoffkettenlänge mit mehr als 7 C-A.tom.en oder Aromaten oder Mischungen derselben umfasst, verwendet werden.
10. Verfahren nach einem der Ansprüche 8 und 9, dadurch gekennzeichnet, dass die Dispergierung mechanisch mit einer Rührgeschwindigkeit von 500 bis 20.000 U/Min. und nicht länger als 10 Sekunden gerührt wird, so dass vorzugsweise ein vorbestimmter Teilchendurch esser im Bereich von 0,5 bis 2000 um erzielt wird, wobei Teilchendurchmesser* zwi- sehen 0,5 und 1 μm, 1 bis 10 μm, 10 bis 30 μm, 30 bis 100 μm oder > 100 μm besonders bevorzugt sind.
11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass als Alkoxysilane Kieselsäureorthoester aliphatischer Alkohole mit einer Kohlenstoffkettenlänge von 1 bis 5 C-Atomen verwendet werden.
12. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass bei der säurekatalysierten Hydrolyse der Alkoxysilane die Säure ausgewählt ist aus der Gruppe, die verdünnte Mineralsäuren, Organische Säuren oder Kombinationen daraus umfasst, wobei der Volumenanteil der verdünnten Mineralsäuren in der Hydrosol-Silan-Phase 10 bis
35 % und vorzugsweise 20 bis 28 beträgt, und der Volumenanteil der organischen Säuren in der Hydrosol-Phase vorzugsweise 15 bis 40 % beträgt.
13. Verfahren nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die Umwandlung der Alkoxysilane zum Hydrosol für 5 bis 30 Minuten unter Ultraschall durchgeführt wird.
14. Verfahren nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass die dem Hydrosol zugesetzten magnetischen Substanzen ausgewählt sind aus der Gruppe, die Magnetkolloide, Ferrofluide, ferro-, ferri- oder superparamagnetische Partikel umfasst.
15. Verfahren nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass dem Dispergiermittel eine oder mehrere oberflächenaktiven Substanz (en) zugemischt werden, ausgewählt vorzugsweise aus der Gruppe, die Sorbitan- Fettsäureester, Propylenoxid-Ethylenoxid-BLockcopolymere, Polyglycerinester, Polyoxyethylen-Sorbitan- ettsäureester, Alkylphenylpolyethylenglykol-Derivate, Poljrethylenglykol- Castoröl-Derivate, Blockcopolymere aus Rizinusöl-Derivaten, Polyethylenglykol-Etherderivate, Polyoxypropylen- Ethylendiamin-Blockcopolymere, Polyethylencjlykole, Polyoxy- ethylen-, modifizierte Polyester, Polyoxyefchylen-Alkohol- Derivate und/oder Polyhydroxyfettsäure-Polyethylenglykol- Blockcopolymere oder Kombinationen daraus umfaßt, wobei der der Anteil der Oberflächenaktivensubstanz (en) 0,1 bis 15 Gew. -?s, bezogen auf das Dispergiermittel, beträgt.
16. Verfahren nach einem der Ansprüche 8 bis 15, dadurch gekennzeichnet, dass während des Dispergiexrvorgangs 10 bis 30 Vol. -%, bezogen auf die Hydrosol-Phase, einer 1 bis
20 %igen Base zugesetzt werden, wobei die Base vorzugsweise Ammoniak ist.
17. Verfahren nach einem der Ansprüche 8 bis 16, dadurch gekennzeichnet, dass der Anteil einer oder mehrerer Verbindungen im Hydrosol, die aus der Gruppe ausgewählt ist/sind, die Me allverbindungen, Halbmetallverbindungen oder Kombinationen daraus umfasst, 1 bis 20 Mol % beträgt, wobei die Metalle der Verbindung(en) vorzugsweise ausgewählt sind aus der Gruppe, die Zirkon, Titan, Kupfer, Kobalt, Aluminium, Kalzium, Kalium, Mangan, Barium, Magnesium, und Zink umfasst, und wobei die Halbmetalle der Verbindung(en) vorzugsweise ausgewählt sind aus der Gruppe, die Bor und Arsen umfasst, und die Metallverbindungen vorzugrsweise in Form von Verbindungen vorliegen, die ausgewählt sind aus der Gruppe, die Acetate, Fumarate, Alkoholate, Ethylendiamin- tetraessigsäure, Nitrilotriessigsaure, Alkcylderivate, Porphinderivate und Carboxylatderivate oder Kombinationen daraus umfasst.
18. Verfahren nach den Ansprüchen 8 bis 17, dadurch gekennzeichnet, dass die Hydrosol-Partikel über einen Zeitraum von einer bis mehreren Stunden einer
Temperaturbehandlung bei Temperaturen > 250 °C unterworfen und dadurch zu Silicagel-Partikeln umgewandelt werden.
19. Verfahren nach einem der Ansprüche 8 bis 18, dadurch gekennzeichnet, dass die Silicagel-Partikel in einem weiteren Verfahrensschritt umgesetzt werden mit substituierten Alkylalkoxysilanen der allgemeinen Formel X- (CH2)n-Si- (OR)3, wobei X ausgewählt ist aus der Gruppe, die Aldehyd-, Epoxy- , Halogen-, Cyano-, NH2- oder Mercapto-Reste umfaßt, n = 1- 6, vorzugsweise 3, und R einen Alkyl-, Trialkysilyl-Rest oder H bedeuten.
20. Verwendung der magnetischen Partikel nach einem der Ansprüche 1 bis 7 zur Aufreinigung oder Isolierung von Verbindungen ausgewählt aus der Gruppe, die Nukleinsäuren, Proteine, Antikörper, oder Antikörper-Fragmente sowie biotinylierter Nukleinsäure, Proteine, Antikörper oder Antikörper-Fragmente umfasst, als Ionenaustauscher oder Metallchelat-Träger, als Träger für Biokatalysatoren wie Proteine, Peptide, Enzyme, als Protein- und Zell- Einkapselungsmatrix oder als Adsorber für die Hemoperfusi- on.
PCT/EP2004/013260 2003-11-25 2004-11-23 Sphärische, magnetische silicagel-träger mit vergrösserter oberfläche für die aufreinigung von nukleinsäuren WO2005052581A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT04819210T ATE477491T1 (de) 2003-11-25 2004-11-23 Sphärische, magnetische silicagel-träger mit vergrösserter oberfläche für die aufreinigung von nukleinsäuren
EP04819210A EP1690093B1 (de) 2003-11-25 2004-11-23 Sphärische, magnetische silicagel-träger mit vergrösserter oberfläche für die aufreinigung von nukleinsäuren
US10/580,733 US7919333B2 (en) 2003-11-25 2004-11-23 Spherical and magnetical silicagel carriers having an increase surface for purifying nucleic acids
DE502004011531T DE502004011531D1 (de) 2003-11-25 2004-11-23 Sphärische, magnetische silicagel-träger mit vergrösserter oberfläche für die aufreinigung von nukleinsäuren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10355409.2 2003-11-25
DE10355409A DE10355409A1 (de) 2003-11-25 2003-11-25 Sphärische, magnetische Silicagel-Träger mit vergrößerter Oberfläche für die Aufreinigung von Nukleinsäuren

Publications (2)

Publication Number Publication Date
WO2005052581A2 true WO2005052581A2 (de) 2005-06-09
WO2005052581A3 WO2005052581A3 (de) 2005-09-09

Family

ID=34625295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/013260 WO2005052581A2 (de) 2003-11-25 2004-11-23 Sphärische, magnetische silicagel-träger mit vergrösserter oberfläche für die aufreinigung von nukleinsäuren

Country Status (5)

Country Link
US (1) US7919333B2 (de)
EP (1) EP1690093B1 (de)
AT (1) ATE477491T1 (de)
DE (2) DE10355409A1 (de)
WO (1) WO2005052581A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1907585A2 (de) * 2005-07-01 2008-04-09 Promega Corporation Netzwerk aus auftriebspartikeln für die biomolekülreinigung und verwendung von auftriebspartikeln oder dem netzwerk aus auftriebspartikeln zur biomolekülreinigung
WO2008058996A2 (de) * 2006-11-16 2008-05-22 Qiagen Gmbh Verfahren zur herstellung von magnetischen kieselsäurepartikeln
EP1992693A1 (de) * 2007-04-20 2008-11-19 Roche Diagnostics GmbH Absorption von Nukleinsäuren an eine Festphase unter Bedingungen mit niedrigem Salzgehalt
WO2010149150A3 (de) * 2009-06-22 2011-05-26 Deklatec Gmbh Farblose, magnetische polymerpartikel für den hochempfindlichen nachweis von biologischen substanzen und pathogenen im rahmen der bioanalytik und diagnostik
DE102012201774A1 (de) * 2012-02-07 2013-08-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetisch abtrennbare Mikropartikel mit einer silikatischen Hülle, Verfahren zu ihrer Herstellung sowie ihre Verwendung

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078224B1 (en) * 1999-05-14 2006-07-18 Promega Corporation Cell concentration and lysate clearance using paramagnetic particles
EP1963526A4 (de) 2005-12-09 2009-11-18 Promega Corp Nukleinsäurereinigung mittels bindungsmatrix
EP2031010B1 (de) * 2006-06-08 2014-04-23 The University of Tokushima Verfahren zur herstellung von neuem siliciumdioxid-nanoteilchen und verwendung des siliciumdioxid-nanoteilchens
US7868145B2 (en) * 2007-07-11 2011-01-11 Industrial Technology Research Institute Magnetic particles containing a copolymer core, magnetic layer and silicon layer
US8053744B2 (en) * 2009-04-13 2011-11-08 Src, Inc. Location analysis using nucleic acid-labeled tags
US8039613B2 (en) 2009-08-28 2011-10-18 Promega Corporation Methods of purifying a nucleic acid and formulation and kit for use in performing such methods
US8222397B2 (en) * 2009-08-28 2012-07-17 Promega Corporation Methods of optimal purification of nucleic acids and kit for use in performing such methods
US8703493B2 (en) 2010-06-15 2014-04-22 Src, Inc. Location analysis using fire retardant-protected nucleic acid-labeled tags
BRPI1002273B1 (pt) * 2010-07-26 2024-04-30 Nanum Nanotecnologia S/A Processo de obtenção de ferritas magnéticas nanoparticuladas e funcionalizadas para fácil dispersão e ferritas magnéticas obtidas através do mesmo
US8716027B2 (en) 2010-08-03 2014-05-06 Src, Inc. Nucleic acid-labeled tags associated with odorant
WO2013106948A1 (zh) * 2012-01-18 2013-07-25 芮宝生医股份有限公司 磁性微粒复合物的制作方法
DE102012012523B4 (de) 2012-06-26 2015-02-12 Magnamedics Gmbh Reinigung von Nukleinsäuren
FR3031063B1 (fr) * 2014-12-30 2017-02-10 Biomerieux Sa Complexe multicouches, procede de fabrication et utilisation du complexe
WO2016123101A1 (en) 2015-01-27 2016-08-04 Circulomics Inc. Hierarchical silica lamella for magnetic nucleic acid extraction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214710A (ja) * 1997-01-28 1998-08-11 Tosoh Corp 磁性シリカゲル及びその製造方法
DE10035953A1 (de) * 2000-07-21 2002-01-31 Fraunhofer Ges Forschung Sphärische, magnetische Silica-Partikel mit einstellbarer Teilchen- und Porengröße sowie einstellbarem Magnetgehalt für die Aufreinigung von Nukleinsäuren und anderen Biomolekülen
US6545143B1 (en) * 1998-11-30 2003-04-08 Roche Diagnostics, Gmbh Magnetic particles for purifying nucleic acids
US20030148101A1 (en) * 2000-03-24 2003-08-07 Philippe Sauer Porous ferro-or ferrimagnetic glass particles for isolating molecules

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152210A (en) 1971-08-27 1979-05-01 Beecham Group Limited Biologically active materials attached to a ferromagnetic support
US3843540A (en) 1972-07-26 1974-10-22 Us Interior Production of magnetic fluids by peptization techniques
US3917538A (en) 1973-01-17 1975-11-04 Ferrofluidics Corp Ferrofluid compositions and process of making same
US4070286A (en) 1976-06-15 1978-01-24 E. I. Du Pont De Nemours And Company Macroporous microspheroids and a process for their manufacture
FR2461521A1 (fr) 1979-07-20 1981-02-06 Anvar Fluides magnetiques, notamment ferrofluides, et procede pour leur obtention
US4280918A (en) 1980-03-10 1981-07-28 International Business Machines Corporation Magnetic particle dispersions
US4343901A (en) 1980-10-22 1982-08-10 Uop Inc. Magnetic support matrix for enzyme immobilization
DE3211309A1 (de) 1982-03-26 1983-09-29 Metin Dipl.-Ing. 6100 Darmstadt Colpan Chromatographisches verfahren zur isolierung von makromolekuelen
US4628037A (en) 1983-05-12 1986-12-09 Advanced Magnetics, Inc. Binding assays employing magnetic particles
DE3508000A1 (de) 1985-03-04 1986-09-04 Schering AG, Berlin und Bergkamen, 1000 Berlin Ferromagnetische partikel fuer die nmr-diagnostik
PT81498B (pt) 1984-11-23 1987-12-30 Schering Ag Processo para a preparacao de composicoes para diagnostico contendo particulas magneticas
US5746999A (en) 1984-11-23 1998-05-05 Schering Aktiengesellschaft Magnetic particles for diagnostic purposes
US4927749A (en) 1986-04-09 1990-05-22 Jeanette Simpson Reagent for cell separation
US4927750A (en) 1986-04-09 1990-05-22 Jeanette Simpson Cell separation process
US4827945A (en) 1986-07-03 1989-05-09 Advanced Magnetics, Incorporated Biologically degradable superparamagnetic materials for use in clinical applications
DE3717209A1 (de) 1987-05-22 1988-12-01 Diagen Inst Molekularbio Mittel zur selektiven adsorption von biopolymeren
ES2066851T3 (es) 1988-05-24 1995-03-16 Anagen Uk Ltd Particulas atraibles magneticamente y metodo de preparacion.
JP2979414B2 (ja) 1989-09-29 1999-11-15 富士レビオ株式会社 磁性粒子およびそれを用いた免疫測定法
GB9003253D0 (en) 1990-02-13 1990-04-11 Amersham Int Plc Precipitating polymers
US5209998A (en) 1991-11-25 1993-05-11 Xerox Corporation Colored silica particles
DE4316136A1 (de) 1993-05-13 1994-11-17 Merck Patent Gmbh Verfahren und Träger für die Gelpermeationschromatographie
US5648124A (en) 1993-07-09 1997-07-15 Seradyn, Inc. Process for preparing magnetically responsive microparticles
US6103379A (en) 1994-10-06 2000-08-15 Bar-Ilan University Process for the preparation of microspheres and microspheres made thereby
IL111186A (en) 1994-10-06 1999-09-22 Univ Bar Ilan Process for the preparation of microspheres and microspheres made thereby
DE19520398B4 (de) 1995-06-08 2009-04-16 Roche Diagnostics Gmbh Magnetisches Pigment
KR100463475B1 (ko) 1995-06-08 2005-06-22 로셰 디아그노스틱스 게엠베하 자기성피그먼트
DE19528029B4 (de) 1995-07-31 2008-01-10 Chemagen Biopolymer-Technologie Aktiengesellschaft Magnetische Polymerpartikel auf der Basis von Polyvinylalkohol, Verfahren für ihre Herstellung und Verwendung
WO1997034150A1 (en) 1996-03-14 1997-09-18 Abbott Laboratories Binding members extending from particles for immunoassay
FR2749082B1 (fr) 1996-05-24 1998-06-26 Bio Merieux Particules superparamagnetiques et monodispersees
DE19638591A1 (de) 1996-09-20 1998-04-02 Merck Patent Gmbh Kugelförmige magnetische Partikel
WO1998058257A1 (de) 1997-06-18 1998-12-23 Innova Gesellschaft Zur Entwicklung Und Vermarktung Innovativer Produkte Mbh Magnetische partikel mit biologisch aktiven rezeptoren
AT405767B (de) 1997-09-17 1999-11-25 Hawa Gerhard Dr Verfahren zur herstellung eines optischen sensors sowie schichtstruktur zur verwendung in analytischen prozessen
DE19800294A1 (de) 1998-01-07 1999-07-08 Mueller Schulte Detlef Dr Induktiv aufheizbare magnetische Polymerpartikel sowie Verfahren zur Herstellung und Verwendung derselben
US6015843A (en) 1998-01-14 2000-01-18 Dendreon Corporation Process for making silanized colloidal silica
US6310199B1 (en) * 1999-05-14 2001-10-30 Promega Corporation pH dependent ion exchange matrix and method of use in the isolation of nucleic acids
US6454143B1 (en) * 2002-02-01 2002-09-24 Randy C. Young Apparatus and method for dispensing particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214710A (ja) * 1997-01-28 1998-08-11 Tosoh Corp 磁性シリカゲル及びその製造方法
US6545143B1 (en) * 1998-11-30 2003-04-08 Roche Diagnostics, Gmbh Magnetic particles for purifying nucleic acids
US20030148101A1 (en) * 2000-03-24 2003-08-07 Philippe Sauer Porous ferro-or ferrimagnetic glass particles for isolating molecules
DE10035953A1 (de) * 2000-07-21 2002-01-31 Fraunhofer Ges Forschung Sphärische, magnetische Silica-Partikel mit einstellbarer Teilchen- und Porengröße sowie einstellbarem Magnetgehalt für die Aufreinigung von Nukleinsäuren und anderen Biomolekülen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 1998, Nr. 13, 30. November 1998 (1998-11-30) -& JP 10 214710 A (TOSOH CORP), 11. August 1998 (1998-08-11) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1907585A2 (de) * 2005-07-01 2008-04-09 Promega Corporation Netzwerk aus auftriebspartikeln für die biomolekülreinigung und verwendung von auftriebspartikeln oder dem netzwerk aus auftriebspartikeln zur biomolekülreinigung
EP1907585A4 (de) * 2005-07-01 2010-04-07 Promega Corp Netzwerk aus auftriebspartikeln für die biomolekülreinigung und verwendung von auftriebspartikeln oder dem netzwerk aus auftriebspartikeln zur biomolekülreinigung
WO2008058996A2 (de) * 2006-11-16 2008-05-22 Qiagen Gmbh Verfahren zur herstellung von magnetischen kieselsäurepartikeln
WO2008058996A3 (de) * 2006-11-16 2009-03-26 Qiagen Gmbh Verfahren zur herstellung von magnetischen kieselsäurepartikeln
EP1992693A1 (de) * 2007-04-20 2008-11-19 Roche Diagnostics GmbH Absorption von Nukleinsäuren an eine Festphase unter Bedingungen mit niedrigem Salzgehalt
WO2010149150A3 (de) * 2009-06-22 2011-05-26 Deklatec Gmbh Farblose, magnetische polymerpartikel für den hochempfindlichen nachweis von biologischen substanzen und pathogenen im rahmen der bioanalytik und diagnostik
DE102012201774A1 (de) * 2012-02-07 2013-08-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetisch abtrennbare Mikropartikel mit einer silikatischen Hülle, Verfahren zu ihrer Herstellung sowie ihre Verwendung

Also Published As

Publication number Publication date
EP1690093B1 (de) 2010-08-11
US20070087385A1 (en) 2007-04-19
DE502004011531D1 (de) 2010-09-23
US7919333B2 (en) 2011-04-05
EP1690093A2 (de) 2006-08-16
ATE477491T1 (de) 2010-08-15
DE10355409A1 (de) 2005-06-30
WO2005052581A3 (de) 2005-09-09

Similar Documents

Publication Publication Date Title
EP1690093B1 (de) Sphärische, magnetische silicagel-träger mit vergrösserter oberfläche für die aufreinigung von nukleinsäuren
DE60130757T2 (de) Silizium beschichtete nanopartikel
JP2757964B2 (ja) 磁気吸引性粒子及びその製法
Caruso Nanoengineering of particle surfaces
DE69507482T2 (de) Hochdispergierte magnetische metalloxidteilchen,produktionsverfahren und anwendung
DE68906185T2 (de) Poröse Zirconiumoxid-Kügelchen mit hoher Stabilität.
CA2452407C (en) Preparation of polymer particles
AU2001261841A1 (en) Coated nanoparticles
DE10153639A1 (de) Superparamagnetisches Eisenoxid enthaltende Kompositpartikel
DE10035953A1 (de) Sphärische, magnetische Silica-Partikel mit einstellbarer Teilchen- und Porengröße sowie einstellbarem Magnetgehalt für die Aufreinigung von Nukleinsäuren und anderen Biomolekülen
KR20070068871A (ko) 무기계 나노입자가 내포된 메조 세공 실리카 나노입자 및그 제조 방법
EP2812899B1 (de) Magnetisch abtrennbare mikropartikel mit einer silikatischen hülle, verfahren zu ihrer herstellung sowie ihre verwendung
DE19638591A1 (de) Kugelförmige magnetische Partikel
CN109096499B (zh) 超顺磁纳米磁珠及其制备方法和可控乳化/破乳性能应用
DE69007455T2 (de) Magnetisierbare Polysilsesquioxanmikrokugeln, Verfahren zu ihrer Herstellung und ihre Verwendung in der Biologie.
WO2008058996A2 (de) Verfahren zur herstellung von magnetischen kieselsäurepartikeln
WO2010089098A1 (de) Verfahren und mittel für die tuberkulose diagnostik
JP2558908B2 (ja) 磁性微粒子の製造方法
JPH0744100B2 (ja) 磁性流体組成物とその製造方法
Arshad et al. Synthesis, Characterization of Si/Fe^ sub2^ O^ sub 3^ Nanoparticles and their Antibacterial Activity against Staphylococcus aureus and Escherichia coli
GB2355012A (en) Paramagnetic polymer particles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007087385

Country of ref document: US

Ref document number: 10580733

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004819210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004819210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10580733

Country of ref document: US