WO2005044447A1 - 複合酸化型チタニア系光触媒及びその用途 - Google Patents

複合酸化型チタニア系光触媒及びその用途 Download PDF

Info

Publication number
WO2005044447A1
WO2005044447A1 PCT/JP2004/015945 JP2004015945W WO2005044447A1 WO 2005044447 A1 WO2005044447 A1 WO 2005044447A1 JP 2004015945 W JP2004015945 W JP 2004015945W WO 2005044447 A1 WO2005044447 A1 WO 2005044447A1
Authority
WO
WIPO (PCT)
Prior art keywords
based photocatalyst
sample
photocatalyst
titer
resin
Prior art date
Application number
PCT/JP2004/015945
Other languages
English (en)
French (fr)
Inventor
Osamu Takagi
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to JP2005515268A priority Critical patent/JPWO2005044447A1/ja
Publication of WO2005044447A1 publication Critical patent/WO2005044447A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • B01J35/77Compounds characterised by their crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/10Infrared [IR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g

Definitions

  • the present invention relates to a photocatalyst that also has a photocatalytic activity by visible light and can suppress the resin degradation action as compared with conventional photocatalysts.
  • Photocatalysts that undergo a chemical reaction upon irradiation with light include a photocatalyst, which is known to decompose and purify waste, deodorize by decomposing gas molecules that cause malodor, and synthesize hydrogen by decomposing water. Have been.
  • Such photocatalysts have been spotlighted because of their convenience, and are used by kneading them into fats or adding them to paints.
  • a photocatalyst is kneaded into a resin or added to a paint, these substrates are decomposed and deteriorated by the photocatalytic action, causing discoloration, poor processing, a reduction in resin strength, and the like, and their applications are limited.
  • yarn breakage occurs during spinning, drawing and knitting, making it impossible to produce a product.
  • a photocatalyst is carried inside porous particles such as silica zeolite or between layers of a layered conjugate to reduce poisoning by reducing the contact area with resin (for example, see Patent Document 1).
  • Patent Documents 2 and 3 an attempt to reduce the contact area with resin by coating a porous ceramic on the surface of the photocatalyst particles (see Patent Document 4 and Patent Document 5, for example) .
  • these photocatalysts cannot not only obtain sufficient photocatalytic performance (oxidative decomposability upon light irradiation), but also have little effect on the processability of fibers due to the difficulty in controlling the particle size. Furthermore, it was a power that could not sufficiently suppress fat coloring.
  • Patent Document 7 A method for producing an anatase-type titanium oxide in the presence of a compound that generates ammonia by thermal hydrolysis in an aqueous solution containing a metal component such as vanadium has been reported (eg, For example, see Patent Document 7).
  • This patent document describes the use of Group Vb of the periodic table containing niobium. However, what is produced by this production method is used for a catalyst carrier and the like.
  • Non-Patent Document 1 For example, see Non-Patent Document 1). This report mentions photocatalytic activity. NbO coating on calcined titanium oxide improves photocatalytic activity
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 33100 (Claims)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-355872 (Claims)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-354768 (Claims)
  • Patent Document 4 JP-A-09-225319 (Claims)
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2001-286728 (Claims)
  • Patent Document 6 JP-A-09-267037 (Claims)
  • Patent Document 7 Japanese Patent Application Laid-Open No. 07-267641 (Claims)
  • Non-patent Document 1 Masasuke Takada, et al., "Effects of Addition of A1203 and Nb205 on Electrical Conductivity of Ti02 Sintered Body", Journal of the Ceramic Society of Japan, 1976, Vol. 84, No. 5, p. 237-241
  • Non-Patent Document 2 J Solid State Chem., 1995, 115, ⁇ 187-
  • the present invention is a composite oxide type niobium titer-based photocatalyst having a niobium content of 0.1 to 25 mol% with respect to titanium.
  • the composite oxidation type titanium has a pore volume of 0.05 to 10 cm 3 Zg and a crystallite diameter of 5 to 100 nm.
  • the composite oxidation type titanium-based photocatalyst contains a brookite-type crystal phase.
  • the composite oxidized titanium - ⁇ based photocatalysts which may be in 0.01 containing one 20 mole 0/0 trivalent atom to titanium atom, the trivalent atom of aluminum, cerium, of iron At least one thing.
  • the composite oxidation type titanium-based photocatalyst has at least one or more near infrared infrared absorption peaks of 5400 to 4400 cm 1 , and more preferably has at least two absorption peaks.
  • the composite oxidized titer-based photocatalyst contains an anatase crystal
  • the a-axis lattice constant of the anatase crystal is 3.775-3.95 A and the c-axis lattice constant is 9.46-1. 10 A thing.
  • the composite oxidized titanium-based photocatalyst contains a rutile crystal
  • the lattice constant of the a-axis of the rutile crystal is 4.598-4.668A
  • the lattice constant of the c-axis is 2.96-3. . 2A.
  • the present invention is a titer-based photocatalyst composition containing the composite oxidation-type titania-based photocatalyst, a compounding agent, and Z or another photocatalyst.
  • the present invention is a product containing the composite oxidation-type titania-based photocatalyst or the above-described titania-based photocatalyst composition.
  • the present invention is a functional dispersion containing the composite oxidation-type titer-based photocatalyst or the titer-based photocatalyst composition, and a functional processed product obtained by using the functional dispersion.
  • a functional resin composition obtained by kneading the composite oxidation-type titer-based photocatalyst or the titer-based photocatalyst composition, and a fiber, sheet, film or film containing the functional resin composition is provided. It is a molded product.
  • the composite oxidation type titania-based photocatalyst of the present invention exhibits excellent photocatalytic performance under visible light, for example, under a commercially available fluorescent lamp. Therefore, unlike the general photocatalyst, the composite oxidized titaure-based photocatalyst of the present invention has antifouling properties, antibacterial properties, toxic gases such as aldehyde gas, and toxic gases and the like in homes and the like where ultraviolet irradiation is extremely low. Can decompose It can be used for environmental purification and pollution prevention.
  • the titer-based photocatalyst of the present invention is a complex oxidized type titer-based photocatalyst that causes less coloring of the resin during compounding.
  • this is referred to as a titania-based photocatalyst.
  • the mole% of the niobium content in the titer-based photocatalyst was calculated from the following formula based on the mole value of the titanium atom and the mole value of the niobium atom in the titer-based photocatalyst.
  • 0.1 to 25 mol% is preferred to obtain the effect of reducing the coloring of fat and the photocatalytic activity by visible light. More than 1 mol% to 22 mol% is preferred, and 3 to 20 mol% is more preferred. Particularly preferred is 415 mol%.
  • the content of niobium in the titer-based photocatalyst is less than 0.1 mol%, the effect of reducing the coloring of the resin is hardly obtained. In particular, when the content is less than 3 mol%, the effect of reducing the coloring of the resin is hardly obtained.
  • the niobium content in the titer-based photocatalyst is more than 25 mol%, it is not preferable because it is disadvantageous in terms of cost that the effect of reducing coloring of the resin and the photocatalytic activity by visible light are increased.
  • a trivalent atom can be added to the titer-based photocatalyst in addition to the titanium atom and the niobium atom.
  • Preferred examples of the trivalent atom include aluminum, cerium, and iron, and it is preferable that at least one of these trivalent atoms is included in the titer-based photocatalyst. More preferred as the trivalent atom are aluminum and Z or cerium, and particularly preferred is aluminum.
  • Monore 0/0 force S preferably further 1 one 18 Monore 0/0 power S, most preferably from 2 one 15 mol%.
  • niobium, trivalent atoms, and the like form a complex oxide that cannot be a mixture.
  • components other than titanium, niobium, and trivalent atoms may be in a range that does not greatly affect the effects of the present invention.
  • the titer-based photocatalyst of the present invention is a porous composite oxide, and is characterized in that it has a disk shape in which the central portion swells in a convex shape on both sides.
  • the size of the titer-based photocatalyst is preferably from 0.01 to 10 / z m, and more preferably from 0.3 to 4 / z m in consideration of the dispersion in resin and the strength of the resin. Whether the porous body is a titanium-based photocatalyst can be confirmed by the hysteresis force of the nitrogen adsorption / desorption amount when the relative pressure of nitrogen mixed with helium is changed.
  • the pore volume In order to obtain an excellent photocatalytic effect in a titania-based photocatalyst, the pore volume must be 0.0.
  • the average pore diameter of the titer-based photocatalyst is preferably 3 to 80 nm, more preferably 5 to 50 nm, and still more preferably 6 to 40 nm.
  • the crystallite size of the titer-based photocatalyst can be determined by precisely separating peaks from a powder X-ray diffraction pattern and calculating by the Rietveld method, or by a transmission electron microscope.
  • the crystallite diameter of the titer-based photocatalyst is preferably 5-100 nm, more preferably 7-500 nm, and particularly preferably 10-200 nm. If the crystallite diameter of the titer-based photocatalyst is too large, the specific surface area may decrease, and the reaction efficiency as a photocatalyst may decrease.If the crystallite diameter is too small, the crystals may condense during drying and the like. The diameter increases, and there is a possibility that defects may occur during processing as a coating film or a molded body.
  • the crystal form of the titer-based photocatalyst of the present invention is a brookite-type crystal phase which may contain an anatase type crystal and a Z or rutile type crystal from a powder X-ray diffraction pattern.
  • the titer-based photocatalyst may preferably include only an anatase-type crystal and a Z- or rutile-type crystal, which is preferably only a brookite-type crystal. If the ratio is small, it may be acceptable to include amorphous.
  • Chita present invention - ⁇ based photocatalysts be subjected to pyridine adsorption treatment 1420- 1460cm 1 And no absorption peak at 1590-1620cm- 1 .
  • Titania-based photocatalysts that show no absorption peak at a specific wavelength even after such pyridine adsorption treatment have few Lewis acid sites, which are considered to be the cause of resin degradation. That is, the titer-based photocatalyst of the present invention has substantially no Lewis acid sites. Note that the Lewis acid point in the titer-based photocatalyst indicates a place that acts as a Lewis acid on the titania-based photocatalyst.
  • the titer-based photocatalyst of the present invention comprises an aqueous titanium solution (for example, titanium sulfate or titanium sulfate dissolved in water) and an aqueous niobium solution (for example, a solution obtained by dissolving niobium pentoxide niobium in water using shinic acid or the like). )
  • a titanium-based photocatalyst can be obtained by heating a mixture of an aqueous titanium solution, an aqueous niobium solution, and an aqueous solution of a trivalent atomic salt.
  • the heating time for obtaining the titer-based photocatalyst should be a time during which the titer-based photocatalyst precipitates.
  • the heating time is, for example, 11 to 300 hours.
  • the amount of oxalic acid relative to niobium pentoxide or niobium when preparing the aqueous niobium solution is preferably equimolar to niobium, more preferably about 10 times mol, more preferably more than equimolar to 15 times mol.
  • the aqueous solution of a trivalent atom salt is a solution in which a salt of a trivalent atom is dissolved in water.
  • a trivalent salt solution of nitric acid or a trivalent salt solution of sulfuric acid can be used.
  • Specific examples include aluminum nitrate, cerium nitrate, iron nitrate, aluminum sulfate, cerium sulfate, and iron sulfate.
  • the pH of the mixed solution may be adjusted using an alkali.
  • a substance that generates an alkali by thermal decomposition may be used (for example, urea or hexamethylenetetramine).
  • the pH may be adjusted using an alkali.
  • alkali used examples include an alkali metal hydroxide, an alkaline earth metal hydroxide, an alkali metal carbonate, an alkaline earth metal carbonate, an alkali metal bicarbonate, and an alkaline earth metal.
  • Bicarbonate, ammonia salt e.g., aqueous ammonia, Examples thereof include ammonium, ammonium acetate, urea, and hexamethylenetetramine, and these may be used alone or in combination of two or more.
  • alkali metals lithium, sodium and potassium are preferred, and lithium is particularly preferred.
  • alkaline earth metals calcium, strontium, and calcium are more preferred, and calcium is more preferred.
  • alkaline earth metals and alkali metals alkali metals are preferred.
  • inorganic alkalis such as alkali metals and ammonia salts, ammonia salts are preferable.
  • ammonia salt ammonium carbonate, urea and hexamethylenetetramine are preferred.
  • the temperature of the heat treatment of the mixed solution when producing the titer-based photocatalyst is preferably from 50 to 150 ° C, more preferably from 60 to 120 ° C, and still more preferably from 65 to 105 ° C. . If the temperature of the heat treatment is 50 ° C. or lower, the crystallinity of the generated titania-based photocatalyst is likely to be reduced, so that the catalytic performance of the titania-based photocatalyst may be reduced.
  • the post-heating temperature is preferably from 200 to 1200 ° C, more preferably from 300 to 1000 ° C, and still more preferably from 600 to 850 ° C. If the post-heating temperature is 200 ° C or lower, there is a possibility that residual organic components may remain even after washing, and it may not be possible to reduce the colorability at the time of mixing with the resin. When heating is performed as described above, the photocatalytic performance may be deteriorated.
  • Decomposition of aldehyde gases such as formaldehyde and acetoaldehyde, and decomposition gases such as toluene, and decomposition substances such as organic compounds in solution using a titer-based photocatalyst can be.
  • it is possible to further enhance the decomposition performance by mixing the titer-based photocatalyst with an adsorptive substance such as activated carbon or silica gel, or by mixing with another photocatalyst. .
  • Examples of the compounding agent to be mixed with the titania-based photocatalyst include a substance that physically adsorbs the compound and a substance that chemically absorbs the compound.
  • Examples of the substance that physically adsorbs the compound include a microparticle having a large specific surface area and a porous substance such as activated carbon and zeolite such as aerosil. If the specific surface area of the adsorptive substance is small, the amount of adsorbed compound will decrease. Therefore, a specific surface area of 10 m 2 / g or more is preferable because the decomposition reaction efficiency by the photocatalyst is low.
  • Examples of the substance that chemically absorbs include a substance that chemically reacts with an ion exchanger or a compound to be adsorbed, or a substance that carries a substance that chemically reacts with the compound to be adsorbed.
  • Examples of the substance that chemically reacts with the target compound include, for example, an amine conjugate that causes a Schiff reaction with aldehydes such as formaldehyde dimethyl aldehyde. And clay minerals having a cation exchange property.
  • a functional dispersion By dispersing the titania-based photocatalyst of the present invention in a solvent, a functional dispersion can be obtained.
  • the method for dispersing the titania-based photocatalyst is not particularly limited.
  • a functional dispersion can be prepared by mixing a dispersion medium or the like with a high-concentration titania-based photocatalyst (forming a high-concentration paste). Further, this functional dispersion can be diluted with a dispersion medium, a diluent and a binder component to prepare a functional dispersion.
  • Decomposition targets such as offensive odors in a living environment include a plurality of gases and a plurality of solutions, which are rarely single components. Therefore, it is preferable to use a plurality of compounding agents suitable for decomposing or adsorbing various target components.
  • a case of a bad smell is taken as an example. It is said that the main gas of sweat odor is ammonia, acetic acid, isovaleric acid and nonenal, which is an unsaturated aldehyde.
  • a deodorant for sweat odor one containing a compounding agent such as a deodorant suitable for a basic gas, a deodorant suitable for an acidic gas, and a deodorant suitable for an aldehyde gas is used. It is preferable to use them in combination. Examples of these are tetravalent metal phosphates which are insoluble or hardly soluble in water, and aluminum silicates.
  • At least one compound selected from the group supports a compound having a primary amino group in the molecule. At least one compound selected from the group consisting of at least one compound selected from the group consisting of a talcite hydride compound, a hydrated talcite hydrate product, a hydrated zirconium oxide, a zirconium oxide, and a hydrated titanium oxide. It is preferable to use a combination of at least one kind and a titer-based photocatalyst.
  • a deodorant suitable for a basic gas For sweat odor and excretion odor, a deodorant suitable for a basic gas, a deodorant suitable for an acidic gas, a deodorant suitable for an aldehyde gas, and a deodorant suitable for a sulfur-based gas And a functional dispersion using a titanium-based photocatalyst together.
  • a functional component obtained by using a deodorant suitable for a basic gas, a deodorant suitable for an acidic gas, a deodorant suitable for an aldehyde gas, and a deodorant suitable for a sulfur-based gas in combination with a titania-based photocatalyst It is preferable to use a liquid dispersion.
  • the mixing ratio of basic gas, acidic gas, aldehyde gas and sulfur-based gas is different for sweat odor, excretion odor and tobacco odor.
  • the deodorant for sweat odor, excretion odor and tobacco odor is a mixture of a suitable odor component and a suitable odor component at a suitable ratio.
  • a deodorant that can be used in combination with a titania-based photocatalyst is a substance carrying a compound having a primary amino group in the molecule; a tetravalent metal ring that is insoluble or hardly soluble in water.
  • One or more deodorants may be used in combination.
  • the activity of the photocatalyst can be imparted to the substrate by using a titania-based photocatalyst or a functional dispersion in which a composition of the titania-based photocatalyst and a compounding agent is blended.
  • the solid content of the titania-based photocatalyst or the composition of the titania-based photocatalyst and the compounding agent in the functional dispersion is preferably 0.1 to 70%, more preferably 0.5 to 60%. In particular, it is preferably 115%. If the solid content in the functional dispersion is less than 0.1%, the dispersion stability may be deteriorated due to the low viscosity of the dispersion. If the solid content in the functional dispersion exceeds 70%, the viscosity of the dispersion becomes too high, which may make it difficult to produce, and the handling properties of the product may be poor.
  • the content of the titanium-based photocatalyst is preferably 10 to 90%, more preferably 20 to 85%. In particular, it is preferable to contain 30-80%.
  • the deviation of the method for producing the dispersion of the inorganic powder can be used.
  • a titanium-based photocatalyst may be added to a dispersion medium such as water and a polymer-based dispersant, and the mixture may be stirred and dispersed by a sand mill, disperser, ball mill, or the like.
  • a dispersion medium such as water
  • a dispersion medium such as water
  • surfactants, defoamers, preservatives, viscosity modifiers, leveling agents, binder components, antibacterial agents, antifungal agents, flame retardants, antioxidants Add a matting agent, anti-corrosion agent, coupling agent, metal powder, glass powder, fragrance, deodorant, and pigment, etc. as required, and use a sand mill, disperser, ball mill, etc. What is necessary is just to stir and disperse.
  • the dispersion medium can be used without limitation, and preferably has water solubility and hydrophilicity.
  • the protic solvent include water and alcohol
  • examples of the aprotic solvent include dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetrahydrofuran, and acetone.
  • a particularly preferred dispersion medium is water.
  • the polymer dispersant used in the present invention is preferably a copolymer (resin) having at least an acidic functional group.
  • the basic skeleton of the polymer-based dispersant is preferably composed of an ester chain, a vinyl chain, an acryl chain, an ether chain, a Z or urethane chain, etc., and a part of hydrogen atoms in the molecule is a halogen atom. May be substituted.
  • acrylic resins, polyester resins and alkyd resins are preferred, and acrylic resins and polyester resins are particularly preferred.
  • the acidic functional group include a carboxyl group, a sulfone group, and a phosphate group, and among them, a phosphate group is preferable.
  • the acid value of the copolymer (resin) containing an acidic functional group is preferably from 5 to 150 mgKOHZg. If the acid value is less than 5 mgKOHZg, the dispersion stability may decrease, which is not preferable. If the acid value exceeds 150 mgK OHZg, sufficient dispersion stability of the particles may not be obtained.
  • the acidic functional groups may be arranged at random in the resin molecule, but those in which the acidic functional groups are arranged at the terminal portion of the molecule due to a block or graft structure have a dispersion-stable structure. Easy to take, so preferred! / ,.
  • This molecular weight is preferably in the range of 500-100,000 in terms of mass average molecular weight, more preferably 750-10000. If the molecular weight is less than 500, the dispersing effect may be lowered, which is not preferable. If it is more than 100,000, coagulation action and viscosity increase may occur.
  • the polymer dispersant used may be one kind or a plurality of kinds.
  • the amount U of the polymer dispersant is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the solid content of the titanium-based photocatalyst and the compounding agent. , More preferably 1 to 10 parts by mass, and particularly preferably 2 to 8 parts by mass. If the amount of the polymer-based dispersant is less than 0.1 parts by mass, dispersion may not be sufficient and reagglomeration may be easily caused. If the amount of the polymer-based dispersant is more than 15 parts by mass, dispersibility may be reduced (depression phenomenon) due to an excessive dispersant.
  • any of amphoteric surfactants, aionic surfactants, and non-ionic surfactants may be used!
  • amphoteric surfactants include those having a carboxylate, a sulfate, a sulfonate, or a phosphate as an a-one moiety, and an ammine salt or a quaternary ammonium salt as a cation moiety.
  • the alkyl betaines include lauryl betaine, stearyl betaine, cocoamidopropyl betaine, and 2-p-decyl-hydroxyethylimidazolium betaine, each of which has a salty amino acid type.
  • Examples thereof include lauryl j8-alanine, stearyl-j8-alanine, lauryl di (aminoethyl) glycine, octyldi (aminoethyl) glycine, and dioctyl (aminoethyl) glycine.
  • ionic surfactant examples include higher alcohol sulfates, alkylbenzene sulfonates, and aliphatic sulfonic acids.
  • non-ionic surfactant examples include an alkyl ester type, an alkyl ether type, and an alkyl phenyl ether type of polyethylene glycol.
  • a single surfactant or a plurality of surfactants may be used.
  • antifoaming agents include foam-breaking, foam-suppressing and defoaming agents, and any of them may be used!
  • foam breaking property include a polysiloxane solution.
  • any known preservatives can be used. Oleic, organotin, organoiod, thiazole, imidazole, nitrile derivatives and the like.
  • known viscosity modifiers can be used with deviations.
  • cellulosic thickeners such as methinoresenololose, canoleboxy methinoresenorelose, methinolehydroxycenorelose, methinole hydroxypropylcellulose, and hydroxyethylcellulose; natural polysaccharides such as gum arabic, gum trangum and guar gum Various polyacrylamide polymers; polyethylene oxide; polyvinyl alcohol.
  • leveling agents can be used, and deviations can be used.
  • cellosolves such as ethylene glycolone monomethinoleatenoate, ethylene glycolone mononoteinoreatenoate, and ethylene glycolone monobutynoateatenore; polypropylene glycolone monomethyl ether, polypropylene glycol monoethyl ether, propylene glycol Carbinates such as diethylene glycolone monoethynoleatenole and diethylene glycolonelenobutyl ether; triglycolone ethereone such as triethylene glycol monomethyl ether and tripropylene glycol monomethylenoleate Dicyandiamide; urea and the like.
  • a binder resin such as an acrylic acid type or a urethane type commonly used for surface treatment of fibers, nonwoven fabrics, sheets and the like
  • a functional dispersion containing a titania-based photocatalyst the solid content of the titanium-based photocatalyst in the functional dispersion containing the binder resin and the titanium-based photocatalyst is preferably 5 to 50%, more preferably 7 to 45%. 10-40% is preferred.
  • the mixing ratio between the solid content of the titanium-based photocatalyst and the like and the binder resin is preferably such that the resin solid content is 10 to 300 parts by mass per 100 parts by mass of the solid content of the titanium-based photocatalyst and the like. More preferably, 15 to 250 parts by mass is used, and particularly preferably, 20 to 200 parts by mass is used. ⁇ If the resin solid content is less than 10 parts by mass, the sticking force when attaching the functional dispersion to fibers, nonwoven fabrics, sheets, etc. may not be sufficient, and the titer-based photocatalyst may fall off. Photocatalytic performance may be reduced. If the resin solids content exceeds 300 parts by mass, the titanium-based photocatalyst may be covered with resin when processed into fibers, nonwoven fabrics, sheets, etc. Therefore, the photocatalytic performance may not be sufficiently exhibited.
  • the resin melting temperature when kneading the titer-based photocatalyst to the resin is not particularly limited as long as the resin is not deteriorated and the molding temperature.
  • the molding temperature is preferably from 100 to 400 ° C, more preferably from 120 to 300 ° C, and still more preferably from 150 to 280 ° C.
  • the method for kneading the resin and the titania-based photocatalyst is not particularly limited.
  • a titania-based photocatalyst can be mixed with a resin at a high concentration (made into a masterbatch) and then further diluted with a resin to form a sheet, a fiber, a filter, and a molded article.
  • a masterbatch By using such a masterbatch, the dispersibility of the titanium-based photocatalyst is further improved, and the performance of the functional resin can be improved.
  • the functional resin containing a titer-based photocatalyst decomposes gases such as aldehyde gases such as formaldehyde and acetoaldehyde in the atmosphere, and gases of organic solvents such as toluene, and decomposes organic compounds in the solution. can do.
  • the functional resin may be kneaded with an adsorptive substance such as activated carbon or silica gel, or may be used in combination with another photocatalyst. By doing so, it is possible to more easily exhibit the decomposition performance.
  • Examples of the compounding agent to be kneaded with the functional resin containing a titer-based photocatalyst include a substance that physically adsorbs a substance to be decomposed and a substance that chemically absorbs a substance to be decomposed.
  • Examples of the substance that physically adsorbs the substance to be decomposed include ultrafine particles such as a porous substance such as activated carbon and zeolite such as aerosil.
  • a specific surface area of 5 m 2 Zg or more is preferable because the specific surface area of the substance that physically adsorbs the compound is small and the amount of adsorbed compound is small.
  • Examples of the substance that chemically absorbs include an ion exchanger, a substance that chemically reacts with the compound to be adsorbed, and a substance that carries a substance that chemically reacts with the compound to be adsorbed.
  • Examples of the substance that chemically reacts with the compound to be adsorbed include an aminy conjugate that causes a Schiff reaction with aldehydes such as formaldehyde and acetoaldehyde.
  • Examples of the substance supporting the substance that undergoes the chemical reaction include porous silica and a clay mineral having cation exchange properties.
  • a compounding agent to be mixed with the functional resin containing a titania-based photocatalyst one compounding agent is used. It may be used or a plurality of compounding agents may be used. Each mixing ratio can be appropriately changed depending on the environment in which the composition is used without any particular limitation.
  • Various functional additives are added not only for the antifouling property, deodorant property and antibacterial property, which are the functions of the functional resin containing titania-based photocatalyst, but also for improving the function and making it a composite function. It is also possible.
  • Specific compounds include antifouling agents, antibacterial agents, ultraviolet absorbers, antistatic agents, dispersants, pigments, dyes, antioxidants, light stabilizers, flame retardants, foaming agents, and impact modifiers. , Glass fibers, metal stones, moisture proofing agents, bulking agents, coupling agents, flow improvers, wood flour, water proofing agents, leveling agents and the like.
  • the amount of the titanium-based photocatalyst kneaded with the resin may be within a range where the photocatalytic performance is exhibited and the resin properties such as viscosity are not significantly impaired by the combination.
  • the kneading amount of the preferred titer-based photocatalyst is preferably 0.05 to 60% with respect to the resin, more preferably 0.1 to 20%, and particularly preferably 0.3 to 10%. .
  • the amount of the titania-based photocatalyst kneaded is too large, the viscosity of the resin increases and the workability is reduced, and a clean surface may not be obtained. If the amount is too small, sufficient photocatalytic performance may not be exhibited.
  • the resin component of the functional resin containing a titer-based photocatalyst is not particularly limited, and any resin such as natural resin, semi-synthetic resin and synthetic resin may be used.
  • Thermoplastic resin, thermosetting resin ⁇ It is okay for the fat to be misaligned.
  • the specific resin may be any of resin for molding, resin for fiber, and rubber-like resin.
  • resin for molding polyethylene, polypropylene, vinyl chloride, ABS resin, AS resin, and nylon resin. Fats, polyester resins, poly-Shi-Dani vinylidene resins, polystyrene, polyacetal, polycarbonate, PBT, phenol resins, alkyd resins, aminoalkyd resins, acrylic resins, silicone resins, fluorine resins, epoxy resins , Urethane resin, saturated polyester resin, melamine resin, urea resin, tetrafluoroethylene resin, unsaturated polyester resin, rayon, acetate, polyvinyl alcohol, cupra, triacetate, natural rubber, silicone rubber , Styrene butadiene rubber, ethylene propylene rubber, fluoro rubber, nitrinole rubber Chlorsulfonated polyethylene rubber, butadiene rubber, synthetic natural rubber, butyl rubber, urethane rubber, acrylic rubber and the like.
  • Base materials include building exterior walls, roof exterior surfaces, rooftop surfaces, window glass exterior surfaces, window glass interior surfaces, room walls, floor surfaces, ceiling surfaces, blinds, curtains, road protection walls, tunnel interior walls, and lighting. Exterior surfaces, reflecting surfaces of lighting lamps, interior and exterior surfaces of vehicles such as passenger cars, buses and trains, mirror surfaces, glass exterior surfaces, and glass interior surfaces.
  • Examples of the method of supporting the titer-based photocatalyst include a method of spraying a photocatalyst after applying a paint or a binder or a method of mixing and spraying a photocatalyst into a paint or a binder, but are not limited to these methods. .
  • the titer-based photocatalyst of the present invention hardly causes coloring or deterioration of the resin and has a controlled particle size, it can be kneaded into a synthetic resin and further used for fibers and films. It can be processed and used.
  • a binder having good photocatalytic activity is preferable, such as siloxane resin, silicon resin, fluorine resin, and silicate glass.
  • a binder having a light-transmitting property is more preferable.
  • those having water repellency, such as siloxane resin and fluorine resin are preferable.
  • the photocatalyst When a titanium-based photocatalyst is applied to the surface of a substrate to form a film, the photocatalyst may be applied to the entire surface of the substrate or to a part thereof. Further, the coating solution containing the titer-based photocatalyst may be applied directly to the substrate or may be applied via a primer layer. In particular, when the base material is metallic or vitreous, the use of a primer layer is preferred for improving the adhesive strength.
  • a titanium-based photocatalyst may be added to the glaze and used on a ceramic surface or enamel. Mix or mix a titanium-based photocatalyst with silica gel, alumina, etc. You can also. Also, depending on the resin, it is preferable to add a lubricant such as zinc stearate from the viewpoint of further suppressing coloring.
  • titania-based photocatalyst can be applied include a reflector, a cover or an umbrella portion of a lighting device; a filter as a range hood, a hood or a fan portion; a table, a cupboard, a wall, a tile or a ceiling as a kitchen accessory.
  • Walls, toilet seats, or toilets for toilets Bathtubs, walls, tiles, or ceilings for bathrooms; Clogs, closets, stances, underfloor storages, rice boxes, cooler boxes, or trash boxes; Exterior materials, bricks, partitions, brans, sashes or floors; beddings, futons, pillows or blankets; curtains; carpets; household appliances such as TVs, videos, stereos, coolers, stoves, vacuum cleaners, washing machines, refrigerators, electric pots, Kotatsu, rice cooker, shaver, waste shaver or dryer; as cookware Bees, tea bottles or frying pans; cups, bowls or bowls as tableware; window glasses or handles as automobiles; bicycles; hats, nogs, watches, fishing rods or shoes as portable items; uniforms, suits, socks, underwear as clothing; Coats, jiambas, sweaters, trainers, shirts, pants, kimonos, skirts, stockings or tights; wastewater treatment facilities, septic tanks, s
  • the parts include, for example, teeth of a shaver and a waste shaver.
  • a titania-based photocatalyst As a substance to which a titania-based photocatalyst can be applied, bacteria, power rubbing, and the like can be sterilized by using a ceiling, a wall, a floor, or the like that is exposed to light.
  • the titer-based photocatalyst of the present invention also has an activity in visible light, it can exhibit a decomposing effect and a bactericidal effect with ordinary lighting fixtures that require irradiation with ultraviolet light such as black light. For this reason, it can be used in hospitals, food factories, pharmaceutical factories, cosmetic factories, etc., or can be incorporated into air conditioning facilities.
  • the functional dispersion containing a photocatalyst containing a titania-based photocatalyst can be used for various products required to impart gas decomposability such as deodorization, antibacterial properties and antifouling properties. Examples of this use include those described above.
  • a functional dispersion containing a titania-based photocatalyst which is processed by impregnating a filter or the like, is used for an air purifier, an air conditioner, a humidifier, etc. to purify air, take measures against a sick house, and store water. It can be applied to tanks etc. Furthermore, by using it as a paint or a sheet in a drainage ditch or a filtration section, it is possible to keep slime from sticking and keep it clean.
  • the sheet 'film when the sheet 'film is coated with the functional dispersion, it can be used for various purposes such as wrapping, garbage bags, vinyl houses, wings, and seals applied to the surfaces of glass and mirrors.
  • Examples of uses of the functional resin containing a titer-based photocatalyst include those described above.
  • Titanium sulfate was dissolved in pure water to prepare an aqueous solution having a titanium concentration of 0.5 molZ liter (aqueous titanium solution).
  • Niobium pentoxide and niobium oxalate were dissolved in pure water to prepare an aqueous solution having a niobium concentration of 0.5 molZ liter (aqueous niobium solution).
  • Aluminum nitrate was dissolved in pure water to prepare an aqueous solution having an aluminum concentration of 0.5 molZ liter (aqueous aluminum solution).
  • Cerium nitrate was dissolved in pure water to prepare an aqueous solution having a cerium concentration of 0.5 mol Z liter (cerium aqueous solution).
  • HMT aqueous solution Hexamethylenetetramine was dissolved in pure water to prepare an ImolZ liter aqueous solution (hereinafter, HMT aqueous solution).
  • the temperature was raised to 90 ° C, and the mixture was stirred for 24 hours. Then, cool to room temperature, filter, wash with pure water,
  • Sample K was synthesized. The powder X-ray analysis pattern of the sample was measured.
  • Sample L was synthesized in the same manner as in Example 11, except that the niobium solution was changed to 5 ml. The powder X-ray analysis pattern of the sample was measured.
  • Sample K prepared in Example 11 was heated at 300 ° C. for 4 hours to synthesize Sample N.
  • the powder X-ray analysis pattern of the sample was measured.
  • Sample M prepared in Example 13 was heated at 600 ° C. for 2 hours to synthesize Sample O.
  • the powder X-ray analysis pattern of the sample was measured.
  • anatase titania As a comparative example of high-purity anatase titania, a commercially available titer (Ishihara Sangyo Co., Ltd., Daledo ST-01) was used.
  • the above ST-01 was kept at 600 ° C. for 24 hours in an ammonia stream to obtain a nitrogen-substituted titer.
  • a muskmelon-type titer (manufactured by Taihei Chemical Industry Co., Ltd.) was used as the silica-coated titer.
  • Example 16 A muskmelon-type titer (manufactured by Taihei Chemical Industry Co., Ltd.) was used as the silica-coated titer.
  • niobium content (mol%) in Samples A to E was determined by measuring each atom by ICP analysis. Table 1 shows the results.
  • Table 2 shows the results of identifying the crystal phase of the data obtained by measuring the powder X-ray diffraction of Samples FJ and Comparative Samples AC. Table 2 also shows the niobium content (Nb content wt%) by X-ray fluorescence, the average particle size (; zm) by laser diffraction particle size distribution measurement, and the crystallite size (nm) by scanning electron microscope observation.
  • the measurement method of the IR ⁇ vector was measured using an infrared absorption device (Nicolet Impact400D) equipped with an ATR accessory called “DuraScope TM” (SensIR Technology).
  • Fig. 9 shows the IR spectrum of sample F
  • Fig. 10 shows the IR spectrum of comparative sample B.
  • the sample K-10 has a light absorbing property in the visible light region, and is highly likely to be a visible light responsive material.
  • Comparative Sample A was found to have low light absorption in the visible light region
  • Comparative Sample B was found to have light absorption in the visible light region in the nitrogen-substituted type.
  • the powder X-ray diffraction pattern force and crystal phase of Sample K-O and Comparative Samples A and B were identified, and the lattice constant of the peak force crystal whose diffraction peak was separated by the Rietveld method was determined.
  • the niobium content was determined by measuring each element by ICP analysis.
  • the crystal lattice constant (A) of anatase type crystal and rutile type crystal Table 3 shows the results of the content of the zeolite crystal (%) and the content of niobium relative to titanium (mol%).
  • Figure 13 shows the near-infrared absorption spectra of sample M and heat-treated samples N and O.
  • FIG. 14 shows the results of Comparative Sample A.
  • the heat-treated sample N also has absorption peaks in the near-infrared absorption bands I, II, and III
  • the heat-treated sample O also has absorption peaks in the near-infrared absorption bands I and III.
  • the titer-based photocatalyst of the present invention is 5400-4400 cm. It has an absorption peak in the near infrared.
  • the test under fluorescent light is performed with a fluorescent light (NEC Corporation: FL40SSEX-D / 37-HG, 37 watts, with UV cut film attached), illuminance 1000 lux (Tokyo Glass Instruments Co., Ltd .: measured with FLX-1330) ).
  • the dark place test was performed in a dark place surrounded by a light shielding plate.
  • the methylene blue solution was prepared by dissolving a reagent (special grade of methylene blue reagent manufactured by Kishidai Dangaku Co., Ltd.) in pure water to prepare a 10 ppm concentration solution.
  • a reagent special grade of methylene blue reagent manufactured by Kishidai Dangaku Co., Ltd.
  • the methylene blue decomposition test was performed by placing 0.1 g of each of Samples A-E, K-O and Comparative Sample A-C in a glass Petri dish with a diameter of 4 cm, adding 5 ml of methylene blue solution, and adding the solution under the above three conditions. (21 ⁇ 1 ° C).
  • the methylene blue decomposition activity was evaluated as the time until the blue color of methylene blue became visually colorless as the decomposition time. The results are shown in Table 4.
  • Pear Add a photocatalyst, and the color of the resin is the same.
  • Impossible Cannot be pulled as a thread
  • Knitting Can be woven as a cloth (possible) Weave! / ⁇ (not possible)
  • Disperse sample F using dispersant Disperbyk-180 (manufactured by BYK Japan KK, an alkylammonium salt of a block copolymer containing a phosphoric acid group. Acid value 94 mgKOH / g, amine value 94 mgKOHZg average molecular weight 1000) did.
  • the dispersion formulation was as follows: 2.3 parts by mass of dispersant per 100 parts by mass of water (4.6 parts by mass per 100 parts by mass of deodorant solids), 50 parts by mass of sample F, preservative 0.3 parts by mass of Vestside # 300 (manufactured by Dainippon Ink and Chemicals, Inc.), 0.2 parts by mass of antifoaming agent Disperbyk-022 (manufactured by Big Chemie Japan KK), and a thickener Metroose SH15000 (Shin-Etsu) 13 parts by mass of a 4% aqueous solution of Idani Kagaku Kogyo Co., Ltd.) was added, and the mixture was stirred with a sand mill at 3000 rpm for 20 minutes to obtain a paste-type dispersion F containing a titer-based photocatalyst.
  • the solid content of the titania-based photocatalyst in this dispersion was 30% by mass. Perform the same operation on Sample G-J and Comparative Samples A-C! To obtain a paste-like dispersion G-J containing the titania-based photocatalyst and Comparative Samples. Liquid A-C was obtained.
  • 100% cotton fabric (fabric weight lOOgZm 2 ) was dipped, picked up at a squeezing ratio of 70%, and dried at 150 ° C to obtain test cloths FJ and AC.
  • the cotton fabric was cut into 20 cm X 20 cm from arbitrary three places, placed in a Tedlar bag, injected with 3 L of air containing 14 ppm of acetoaldehyde gas, and allowed to stand under ultraviolet irradiation for 24 hours.
  • the residual gas concentration in the Tedlar bag was measured using a gas detector tube (No. 92L manufactured by Gastech).
  • UV irradiation was performed at an intensity of lmWZcm 2 .
  • Table 8 shows the results.
  • "ND" indicates that acetoaldehyde was not detected.
  • Example 24 the discoloration of each test cloth after the deodorization test was examined visually. Table 9 shows the results. [0093] [Table 9]
  • Table 10 shows the results. “ND” indicates that acetoaldehyde could not be detected.
  • Dispersions FJ have a photocatalyst and are more excellent in resistance to discoloration by ultraviolet irradiation than Comparative Dispersions AC.
  • Sample F Add 5 parts by weight of Sample F to 100 parts by weight of a commercial paint (Nippi Fresh, Egg White manufactured by Kanye Co., Ltd.), stir with a sand mill at 3000 rpm for 20 minutes, and test for the content of titer-based photocatalyst Paint F was obtained.
  • Samples JJ and comparative powders A to C were treated in the same manner to obtain test paints JJ and titer-based photocatalyst containing test paints GG and comparative test paints AC.
  • Example 28 Example 28
  • Test paint F containing a titer-based photocatalyst was applied to an aluminum steel plate (5 cm ⁇ 15 cm) with a bar coater (# 20), and then air-dried for 1 mm to obtain a test coated plate F. The same operation was performed for the test paints G-J and the comparative test paints A-C! To obtain test-coated plates G-J and comparative test-coated plates AC. In addition, a plate coated with a paint containing no titer-based photocatalyst was prepared in the same manner as a blank.
  • Example 12 After the antifouling test conducted in Example 28, the test coated plate and the comparative test coated plate were visually inspected for discoloration. Table 12 shows the results. When the paint on the test-coated plate and the comparative test-coated plate was colored yellow, it was indicated as “yellowing”, and when it was colored yellow-brown, as "yellow-brown".
  • test paints A to E have a photocatalyst and are more excellent in resistance to discoloration by ultraviolet irradiation than the comparative test paints AC.
  • sample F One part of the sample F was kneaded with 100 parts of the acrylic resin, and a lgZm 2 sheet was molded to obtain a sample sheet F. The same operation was performed for Sample GJ and Comparative Powder AC to prepare Sample Sheet GJ and Comparative Sample Sheet AC. In addition, a resin sheet was molded in the same manner as described above without the addition of powder to obtain a blank.
  • the initial coloring property and the discoloration property of the sample sheets F-J and the comparative sample sheets A-C after 96 hours of ultraviolet irradiation were visually examined.
  • the ultraviolet irradiation was performed using an ultraviolet lamp (Toshiba Lighting & Technology Corp .: FL20SBLB-A, 20 watts) and adjusting the UV intensity to lmWZcm 2 (measured by Minolta Co., Ltd .: UV radiometer, UM-10). It was carried out in. bra Table 13 shows the test results for
  • Example 30 Each sample sheet prepared in Example 30 was cut into a size of 10 cm ⁇ 10 cm, placed in a Tedlar bag, and 3 liters having an acetoaldehyde gas concentration of 14 ppm were injected.
  • the Tedlar bag was irradiated with ultraviolet light for 24 hours under the same conditions as in Example 31, and the residual acetoaldehyde gas concentration after 24 hours was measured using a gas detector tube (No. 92L manufactured by Gastech Co., Ltd.). The test results are shown in Table 14.
  • Example 30 Each sample sheet prepared in Example 30 was cut into 30 cm ⁇ 30 cm, placed in a Tedlar bag, and 1 liter of a formaldehyde gas having a concentration of 5 ppm was injected. This tedra One bag was illuminated with 3,000 lux visible light for 24 hours using a fluorescent lamp equipped with an ultraviolet cut film. After the irradiation, the residual acetoaldehyde gas concentration was measured using a gas detector tube (No. 91L and 91LL, manufactured by Gastech Co., Ltd.). The test results are shown in Table 15.
  • Antifouling test (methylene blue decomposition test): visible light irradiation
  • Example 30 In order to evaluate the antifouling performance of each sample sheet prepared in Example 30, a methylene bleed decomposition test was performed. As a test method, a liquid phase finolem adhesion method for 2003 (http://www.photocatalysis.com/index.html) determined by the Photocatalyst Product Technology Council was used. However, fluorescent light (Toshiba Lifetec Z illuminance 2000LUX) was used as the light source. Table 16 shows the results.
  • sample sheet F-J was used as a photocatalyst sheet.
  • the coloring was excellent and no discoloration due to irradiation or ultraviolet irradiation was observed.
  • Sample F was added to a polyester resin for fibers at a concentration of 3% by mass, melted and stringed. Thereafter, the yarn was raised from a draw ratio of 2 times until the yarn was broken. Further, the degree of coloring of the drawn yarn was measured. Sample G, comparative powder A, and comparative powder C were similarly processed. For Comparative Powder C, the thread was broken and melted, and a stringing test could not be performed.
  • Example 35 10 g of the fiber produced in Example 35 was rubbed off, and an acetoaldehyde gas decomposition test was carried out in the same manner as in Example 32. The test results are shown in Table 18.
  • Example 35 10 g of the fiber produced in Example 35 was squeezed out, put into a Tedlar nog, and 3 L of air containing 5 ppm of hydrogen sulfide gas was put therein, and a gas decomposition test was carried out in the same manner as in Example 33. Use a gas detector tube (Gastech Co., Ltd. No. 4LL) to measure the concentration of residual sulfur gas. And measured. The test results are shown in Table 19.
  • the titania-based photocatalyst of the present invention is a photocatalyst that exhibits excellent photocatalytic performance under visible light, for example, under a commercially available fluorescent lamp.
  • the titer-based photocatalyst of the present invention can be used as it is as a powder. By adding or kneading it to a paint or resin, fiber or the like, and processing it, a paint or resin having photocatalytic performance in response to visible light, Fibers and the like can be obtained.
  • the functional dispersion containing the titer-based photocatalyst of the present invention can be used as a functional processed product in fibers, nonwoven fabrics, filters, films, paints, papers, molded articles and the like.
  • the functional resin containing the titer-based photocatalyst of the present invention can be processed into a molded product, a sheet, a thread, and the like, and can be used as a plate, a film, a filter, a fiber, and the like.
  • the titer-based photocatalyst of the present invention differs from general photocatalysts in that the amount of ultraviolet irradiation is extremely small, and it can be used in homes, etc., for antifouling, antibacterial, and toxic gases such as aldehyde gas.
  • the attached substance can be decomposed and used for environmental purification.
  • FIG. 1 shows the result of measuring the powder X-ray diffraction pattern of titer-based photocatalyst sample A.
  • FIG. 2 The result of measuring the powder X-ray diffraction pattern of the titanium-based photocatalyst sample B.
  • FIG. 3 The result of measuring the powder X-ray diffraction pattern of titer-based photocatalyst sample C.
  • FIG. 4 The result of measuring the powder X-ray diffraction pattern of titer-based photocatalyst sample D.
  • FIG. 5 The result of measuring the powder X-ray diffraction pattern of the titer-based photocatalyst sample E.
  • FIG. 6 shows a result of measuring a powder X-ray diffraction pattern of Comparative Sample A.
  • FIG. 7 shows a result of measuring a powder X-ray diffraction pattern of Comparative Sample B.
  • FIG. 8 shows a result of measuring a powder X-ray diffraction pattern of Comparative Sample C.
  • FIG. 13 Near-infrared absorption spectra of titer-based photocatalyst sample M, titer-based photocatalyst sample N, and titer-based photocatalyst sample O.
  • FIG. 14 Near-infrared absorption spectrum of comparative sample A.
  • the vertical axis in FIG. 18 is the value of Int. Zcps.
  • the horizontal axis in Fig. 18 is the value of 20 Zdeg.
  • the horizontal axis in FIGS. 9 and 10 indicates the wave number (cm 1 ) of infrared rays.
  • FIGS. 9 and 10 The vertical axis in FIGS. 9 and 10 indicates the absorbance.
  • the solid line in FIG. 9 shows the IR vector of the pyridine adsorption treatment (Pyr +) of the titer-based photocatalyst sample F (Pyr +).
  • the solid line in FIG. 10 shows the IR ⁇ vector of the sample (Pyr +) obtained by performing the pyridine adsorption treatment on the comparative sample B.
  • the dashed line in FIG. 9 shows the IR spectrum of the titer-based photocatalyst sample F.
  • the dashed line in FIG. 10 shows the IR spectrum of Comparative Sample B.
  • the vertical axis in FIGS. 11 and 12 is an arbitrary scale.
  • the horizontal axis in FIGS. 11 and 12 is the wavelength nm.
  • K in FIG. 11 indicates a titer-based photocatalyst sample K.
  • L in FIG. 11 indicates a titer-based photocatalyst sample L.
  • M in FIG. 11 and FIG. 13 indicates a titer-based photocatalyst sample M.
  • N in FIG. 11 and FIG. 13 indicates a titer-based photocatalyst sample N.
  • O in FIGS. 11 and 13 indicates a titanium-based photocatalyst sample O.
  • a in FIGS. 12 and 14 shows Comparative Sample A.
  • FIG. 12 shows the comparative sample B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

【課題】  本発明は、樹脂や塗料に配合しても樹脂等の変色や劣化を起こさず、且つ十分な光触媒性能を発揮する光触媒に関するものである。 【解決手段】  本発明のチタニアは、チタンに対しニオブ含有量が0.1~25モル%であるチタニア系光触媒である。また、チタニア系光触媒は細孔容積が0.05~10cm3/gであり、結晶子径が5nm~1000nmを有するものである。チタニア系光触媒はブルッカイト型の結晶相を含むものである。チタン原子に対し3価原子を0.01~20モル%含有するチタニア系光触媒であり、3価原子がアルミニウム、セリウム、鉄のうち少なくとも一つのものであるチタニア系光触媒である。そして、本発明のチタニア系光触媒を含有する製品である。

Description

明 細 書
複合酸化型チタニア系光触媒及びその用途
技術分野
[0001] 本発明は、可視光による光触媒活性をも有し、今までの光触媒に比べ榭脂劣化作 用を抑制することができる光触媒に関するものである。
背景技術
[0002] 光照射により、化学反応を呈するものとして光触媒があり、これには廃棄物の分解 浄化、悪臭の原因となる気体分子の分解による無臭化、及び水の分解による水素の 合成等が知られている。
このような光触媒は、その便利さから脚光を浴びており、榭脂に練りこんだり塗料に 添加して使用されている。しかし、光触媒を榭脂に練りこんだり塗料に添加した場合、 これらの基材を光触媒作用により分解'劣化させる為、変色や加工不良、榭脂強度 低下等を起こし、用途が限定されている。特に、繊維に練り込み加工した場合には、 紡糸、延伸及び編成時に糸切れ等が生じて、製品にすることが不可能であるときが める。
この為、基材を劣化させない様々な工夫が提案されている。例えば、シリカゃゼォ ライト等の多孔質体粒子の内部や層状ィ匕合物の層間に光触媒を担持させ、榭脂との 接触面積を減少させることにより被毒を少なくしたり(例えば特許文献 1、特許文献 2、 及び特許文献 3参照)、光触媒粒子の表面に多孔質セラミックを被覆して、榭脂との 接触面積を減少させる試みである(例えば特許文献 4及び例えば特許文献 5参照)。 しかし、これら光触媒では充分な光触媒性能 (光照射時の酸化分解性)を得ること が出来ないばかりか、粒径の制御が困難であるため繊維等の加工性に影響を及ぼ すことも少なくなぐさらに榭脂着色を充分抑制することも出来な力つた。
[0003] ニオブを Nb O換算で二酸化チタン質量の 0. 1— 5wt%含有するルチル型または
2 5
アナターゼ型のチタユアが報告されて 、る(例えば特許文献 6参照)。
バナジウム等の金属成分を含有する水溶液中で熱加水分解によりアンモニアを発 生する化合物の存在下でアナターゼ型酸ィ匕チタンの製造方法が報告されて 、る(例 えば特許文献 7参照)。この特許文献にはニオブを含む周期律表第 Vb族を用いるこ とが記載されている。但し、この製造方法で作製されるものは触媒担体等に用いられ るものである。
[0004] 酸化チタン焼結体の電気伝導度におよぼす Nb Oの添加効果が報告されて!ヽる(
2 5
例えば非特許文献 1参照)。この報告では光触媒活性にっ ヽて言及されて ヽな ヽ。 焼成した酸化チタン上に Nb Oをコーティングして光触媒活性を向上させたことが
2 5
報告されて!ヽる (例えば非特許文献 2参照)。
[0005] 特許文献 1:特開平 11 33100号公報 (特許請求の範囲)
特許文献 2:特開 2000-355872号公報 (特許請求の範囲)
特許文献 3:特開 2000— 354768号公報 (特許請求の範囲)
特許文献 4:特開平 09— 225319号公報 (特許請求の範囲)
特許文献 5:特開 2001-286728号公報 (特許請求の範囲)
特許文献 6:特開平 09— 267037号公報 (特許請求の範囲)
特許文献 7:特開平 07- 267641号公報 (特許請求の範囲)
非特許文献 1 :高田雅介、外 3名、「Ti02焼結体の電気伝導度におよぼす A1203お よび Nb205の添加効果」、窯業協会誌、 1976年、第 84卷、第 5号、 p237—241 非特許文献 2 :J Solid State Chem. , 1995年, 115卷, ρ187- 発明の開示
発明が解決しょうとする課題
[0006] 本発明は、榭脂ゃ塗料等に配合してもこれらに対して変色や劣化を起こさず、且つ 可視光による光触媒活性をも有する光触媒を提供することである。また、当該光触媒 を榭脂等に配合又は付着させるための方法及び当該光触媒を用いた製品を提供す ることである。
課題を解決するための手段
[0007] 本発明者は、上記の課題を解決するために鋭意検討した結果、特定の組成の多孔 質複合酸ィ匕物からなるチタユアが、上記問題を解決することを見出し、本発明を完成 するに至った。すなわち本発明は、チタンに対しニオブ含有量が 0. 1— 25モル%で ある複合酸化物型ニオブ チタ-ァ系光触媒である。また、当該複合酸化型チタ-ァ 系光触媒は細孔容積が 0. 05— 10cm3Zgであり、結晶子径が 5— lOOOnmを有す るものである。当該複合酸化型チタ-ァ系光触媒はブルッカイト型の結晶相を含むも のである。当該複合酸化型チタ-ァ系光触媒は、チタン原子に対し 3価原子を 0. 01 一 20モル0 /0含有していてもよいものであり、当該 3価原子はアルミニウム、セリウム、 鉄のうち少なくとも一つのものである。
また当該複合酸化型チタ-ァ系光触媒は、 5400— 4400cm 1の近赤外〖こ吸収ピ ークを少なくとも 1個以上有するものであり、より好ましくは吸収ピークを少なくとも 2個 有するものである。
また、当該複合酸化型チタ-ァ系光触媒にアナターゼ型結晶を含む場合、このァ ナターゼ型結晶の a軸の格子定数が 3. 775— 3. 95 A及び c軸の格子定数が 9. 46 一 10 Aのものである。また、当該複合酸化型チタ-ァ系光触媒にルチル型結晶を含 む場合、このルチル型結晶の a軸の格子定数が 4. 598— 4. 668A及び c軸の格子 定数が 2. 96-3. 2Aのものである。
本発明は、当該複合酸化型チタニア系光触媒と、配合剤及び Z又は他の光触媒と を含有するチタ-ァ系光触媒組成物である。
本発明は、当該複合酸化型チタニア系光触媒又は上記記載のチタニア系光触媒 組成物を含有する製品である。
本発明は、当該複合酸化型チタ-ァ系光触媒又はチタ-ァ系光触媒組成物を含 有する機能性分散液であり、当該機能性分散液を用いてなる機能性加工製品である 本発明は、当該複合酸化型チタ-ァ系光触媒又はチタ-ァ系光触媒組成物を混 練してなる機能性榭脂組成物であり、当該機能性榭脂組成物を含有してなる繊維、 シート、フィルム又は成型品である。
発明の効果
本発明の複合酸化型チタニア系光触媒は、可視光、例えば市販蛍光灯下で優れ た光触媒性能を発揮するものである。このようなことから、本発明の複合酸化型チタ ユア系光触媒は、一般的な光触媒のものと異なり紫外線照射が極めて少ない家の中 等において防汚、抗菌、アルデヒドガス等の有毒ガス等や附着した物質を分解するこ とができ、環境浄ィ匕や汚染防止等に用いることができる。
発明を実施するための最良の形態
[0009] 以下本発明につ 、て詳細に説明する。なお、「%」だけのときは質量%を示す。
〇複合酸化型チタニア系光触媒
本発明のチタ-ァ系光触媒とは、配合時に樹脂の着色が少ない複合酸ィ匕物型チタ 二ァ系光触媒である。以下これをチタニア系光触媒と称する。
チタ-ァ系光触媒におけるニオブ含有量のモル%の算出は、チタ-ァ系光触媒中 のチタン原子のモル値とニオブ原子のモル値とから下記式で行った。
チタ-ァ系光触媒中のニオブのモル0 /0 =
(ニオブ原子のモル値 Z (チタン原子のモル値 +ニオブ原子のモル値)) X loo チタ-ァ系光触媒におけるニオブの含有量は、榭脂の着色低減効果を得るために
0. 1一 25モル%が好ましぐ榭脂の着色低減効果と可視光により光触媒活性とを得 るためには 1モル%超から 22モル%が好ましぐ更に 3— 20モル%が好ましぐ特に 4一 15モル%が好ましいものである。チタ-ァ系光触媒におけるニオブ含有量が 0. 1モル%未満では榭脂の着色低減効果が得られにくぐ特に 3モル%未満では榭脂 の着色低減効果が得られにくい。チタ-ァ系光触媒におけるニオブ含有量を 25モル %超としても、榭脂の着色低減効果と可視光による光触媒活性とが高まらすコスト的 に不利になるため好ましくな 、。
[0010] 光触媒効果を更に向上させるため、チタ-ァ系光触媒中にはチタン原子とニオブ 原子との他に 3価原子を添加することができる。この 3価原子としてはアルミニウム、セ リウム及び鉄が好ましいものとして挙げられ、これら 3価原子のうち少なくともひとつの 原子がチタ-ァ系光触媒に含まれることが好ましい。当該 3価原子として更に好まし いものは、アルミニウム及び Z又はセリウムであり、特に好ましいものはアルミニウムで ある。 3価原子を添加するときの比率は、チタニア系光触媒中のチタン原子に対し 0. 01— 20モノレ0 /0であり、 0. 2— 19モノレ0 /0力 S好ましく、更に 1一 18モノレ0 /0力 S好ましく、 2 一 15モル%が最も好ましい。このモル%の算出方法は、上記ニオブ原子におけるチ タニア系光触媒中の含有量と同様に行った。即ち、チタ-ァ系光触媒中における 3 価原子のモル値から下記式を用いて算出した。 チタニア系光触媒中の 3価原子のモル% =
(3価原子のモル値 Z (チタン原子のモル値 + 3価原子のモル値)) X 100
[0011] チタニア系光触媒の光触媒性能及び榭脂着色抑制効果を得るためには、ニオブ や 3価原子等は混合物ではなぐ複合酸ィ匕物になっていることが必要である。また、 チタン、ニオブ、及び 3価原子以外の成分が混入していても本発明の効果に大きな 影響を及ぼさな 、範囲であれば構わな 、。
[0012] 本発明のチタ-ァ系光触媒は、多孔質複合酸化物であり、形状としては中心部が 両面凸状に膨れた円盤状であることが特徴である。チタ-ァ系光触媒の大きさは、 0 . 01— 10 /z mが好ましぐ榭脂への分散及び力卩ェ性を考慮すると 0. 3— 4 /z mがより 好ましい。チタ-ァ系光触媒の多孔質体であるかの確認は、ヘリウムを混合した窒素 相対圧を変化させた場合の窒素吸脱着量のヒステリシス力も行うことができる。
チタニア系光触媒において優れた光触媒効果を得るためには、細孔容積が、 0. 0
5— 10cm3Zgが好ましぐより好ましくは 0. 1— 5cm3Zgであり、更に好ましくは 0. 3 一 5cm3/gである。また、チタ-ァ系光触媒の平均細孔径としては 3— 80nmが好ま しぐより好ましくは 5— 50nmであり、更に好ましくは 6— 40nmである。
[0013] チタ-ァ系光触媒の結晶子径としては、粉末 X線回折パターンを精密にピーク分離 してリートベルト法により計算することにより、あるいは透過型電子顕微鏡により求める ことができる。チタ-ァ系光触媒の結晶子径は、 5— lOOOnmが好ましぐ更に好まし くは 7— 500nmであり、特に好ましくは 10— 200nmである。チタ-ァ系光触媒の結 晶子径が大き過ぎると比表面積が低下して光触媒としての反応効率が低下するおそ れがあり、結晶子径が小さすぎても結晶が乾燥時等に凝結して粒径が大きくなり塗膜 や成型体として加工時に不良を生じるおそれがある。
[0014] 本発明のチタ-ァ系光触媒の結晶形態は、粉末 X線回折パターンから、アナター ゼ型結晶及び Z又はルチル型結晶を含むこともあるブルッカイト型結晶相である。チ タニア系光触媒において榭脂着色抑制効果を得るにため、チタ-ァ系光触媒はブル ッカイト型結晶のみ力 なるものが好ましぐアナターゼ型結晶及び Z又はルチル型 結晶を含んで ヽても良ぐ僅かな比率であれば非晶質が含まれて ヽても良 ヽ。
[0015] 本発明のチタ-ァ系光触媒は、ピリジン吸着処理を行なっても 1420— 1460cm 1 及び 1590— 1620cm— 1に吸収ピークを認めないものである。このようなピリジン吸着 処理を行なっても特定波長に吸収ピークが認められないチタニア系光触媒は、榭脂 劣化を引き起こす原因と考えられるルイス酸点が少ないものである。即ち、本発明の チタ-ァ系光触媒は、実質的にルイス酸点を有しないものである。なお、チタ-ァ系 光触媒中のルイス酸点とは、チタニア系光触媒にぉ 、てルイス酸として作用する場 所を示す。
[0016] 〇チタニア系光触媒の製造方法
本発明のチタ-ァ系光触媒は、チタン水溶液 (例えば硫酸チタン又は硫酸チタ- ルを水に溶解したもの)とニオブ水溶液 (例えば五酸ィ匕ニオブを篠酸等を用いて水に 溶解したもの)との混合液を加熱処理するものから製造することができる。又はチタン 水溶液、ニオブ水溶液及び 3価原子塩の水溶液との混合液を加熱処理することによ りチタ-ァ系光触媒が得られる。チタ-ァ系光触媒を得るための加熱時間は、チタ- ァ系光触媒が沈殿する時間であればょ 、。当該加熱時間は、例えば 1一 300時間で める。
ニオブ水溶液を作製するときの五酸ィ匕ニオブ等に対する蓚酸の配合量は、ニオブ と等モルー 10倍モル程度添加することが好ましぐ等モル超一 5倍モル添加すること が更に好ましい。
3価原子塩の水溶液は、 3価原子の塩を水に溶解したものであり、例えば、硝酸 3価 原子塩溶液あるいは硫酸 3価原子塩溶液等を用いることができる。具体的には、硝 酸アルミニウム、硝酸セリウム、硝酸鉄、硫酸アルミニウム、硫酸セリウム及び硫酸鉄 等が例示できる。
[0017] 本発明のチタ-ァ系光触媒を製造するとき、アルカリを用いて混合液の pH調整を 行っても良い。この時、熱分解によりアルカリを発生する物を用いても良い(例えば、 尿素やへキサメチレンテトラミン等)。また、チタ-ァ系光触媒が沈殿した後、アルカリ を用いて pH調整を行っても良 、。
使用するアルカリとしては、アルカリ金属の水酸化物、アルカリ土類金属の水酸ィ匕 物、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、アルカリ金属の炭酸水素塩 、アルカリ土類金属の炭酸水素塩、アンモニア系塩 (例えばアンモニア水溶液、炭酸 アンモ-ゥム、酢酸アンモ-ゥム、尿素、及びへキサメチレンテトラミン等)が例示でき 、これらを一種又は複数組合わせても良い。
アルカリ金属の中では、リチウム、ナトリウム、及びカリウムが好ましぐ特にリチウム 力 り好ましい。アルカリ土類金属のなかでは、カルシウム、ストロンチウム、及びバリ ゥムが好ましぐ特にカルシウムがより好ましい。アルカリ土類金属とアルカリ金属とで はアルカリ金属の方が好ましい。なお、アルカリ金属等の無機アルカリとアンモニア系 塩とでは、アンモニア系塩が好ましい。アンモニア系塩としては、炭酸アンモ-ゥム、 尿素及びへキサメチレンテトラミンが好まし 、。
[0018] チタ-ァ系光触媒を製造する時の混合液の加熱処理の温度としては、 50— 150°C が好ましぐ 60— 120°Cがより好ましぐ 65— 105°Cが更に好ましい。当該加熱処理 の温度が 50°C以下である場合は、生成するチタニア系光触媒の結晶性が低下しや すくなることから、チタニア系光触媒の触媒性能が低下する恐れがある。
[0019] このようにして得られたチタ-ァ系光触媒を後加熱することによって、更にチタ-ァ 系光触媒の可視光応答性や光触媒活性等の性能を向上させることができる。
後加熱する温度としては、 200— 1200°Cが好ましぐ 300— 1000°Cがより好ましく 、 600— 850°Cが更に好ましい。後加熱温度が 200°C以下であると、洗浄後にも残 存する有機分が残存している可能性があり、榭脂への配合時の着色性を低減できな いことがあり、 1200°C以上で加熱すると、光触媒性能が悪くなるおそれがある。
[0020] 〇配合剤について
チタ-ァ系光触媒を用いて、大気中のホルムアルデヒドやァセトアルデヒド等のアル デヒド類ガスやトルエン等の分解対象ガスを分解したり、溶液中の有機化合物等の分 解対象物質を分解することができる。このようなとき、チタ-ァ系光触媒と、活性炭や シリカゲル等の吸着性物質とを混合したり、又は他の光触媒と混合することにより、更 に分解性能を発揮しやすくすることが可能である。
チタニア系光触媒と混合する配合剤としては、物理的に化合物を吸着する物質や 化学的に化合物を吸収する物質が例示できる。物理的に化合物を吸着する物質とし ては、比表面積が大き!、活性炭ゃゼオライト等の多孔性物質ゃァエロジル等の超微 粒子が挙げられる。吸着性物質の比表面積が小さいと、化合物の吸着量が少なくな り、光触媒による分解反応効率が低くなるため 10m2/g以上の比表面積が好ましい 。化学的に吸収する物質としては、イオン交換体や吸着対象の化合物と化学反応を する物質、又は吸着対象の化合物と化学反応する物質を担持した物質が挙げられる 。この対象化合物と化学反応する物質としては、例えばホルムアルデヒドゃァセトァ ルデヒド等のアルデヒド類に対してシッフ反応を生じるアミンィ匕合物が挙げられ、この 化学反応する物質を担持する物質としては、多孔質シリカや陽イオン交換性を有す る粘土鉱物等が挙げられる。
[0021] 本発明のチタニア系光触媒を溶媒に分散することによって、機能性分散液を得るこ とができる。チタニア系光触媒を分散する方法としては、特に制限は無い。例えば、 分散媒等と高濃度のチタニア系光触媒を配合 (高濃度ペースト化)して機能性分散 液を作製することができる。更に、この機能性分散液を分散媒ゃ希釈液、バインダー 成分を用いて希釈して機能性分散液を作製することもできる。
[0022] 生活環境における悪臭等の分解対象は、単一の成分であることは殆どなぐ複数の ガスや複数の溶液が共存している。よって、各種対象成分の分解や吸着等に好適な 配合剤を複数併用することが好まし 、。
複数のガスが分解対象となるものの一つとして、悪臭の場合を例に挙げる。汗臭の 主要ガスは、アンモニア、酢酸、イソ吉草酸及び不飽和アルデヒドであるノネナール 等と言われている。このことから、汗臭用の脱臭剤としては、塩基性ガスに好適な消 臭剤、酸性ガスに好適な消臭剤、及びアルデヒドガスに好適な消臭剤等の配合剤を 配合したものを併用することが好ましい。このものの一例としては、水に対して不溶性 又は難溶性の 4価金属リン酸塩、ケィ酸アルミニウム力 選ばれる化合物の少なくとも 1種以上のもの;分子内に第 1級アミノ基を有する化合物を担持した化合物のもの;ハ イド口タルサイトイ匕合物、ハイド口タルサイト焼成物、水和酸化ジルコニウム、酸化ジル コニゥム、及び水和酸ィ匕チタン力も選ばれる少なくとも 1種類以上もの、から選ばれる 少なくとも 1種以上のものとチタ-ァ系光触媒とを併用することが好ましい。
[0023] 汗臭及び排泄臭であれば、塩基性ガスに好適な消臭剤、酸性ガスに好適な消臭 剤、アルデヒドガスに好適な消臭剤、及び硫黄系ガスに好適な消臭剤と、チタ-ァ系 光触媒とを併用した機能性分散液とすることが好ましい。また、タバコ臭に対しては、 塩基性ガスに好適な消臭剤、酸性ガスに好適な消臭剤、アルデヒドガスに好適な消 臭剤、及び硫黄系ガスに好適な消臭剤と、チタニア系光触媒とを併用した機能性分 散液とすることが好ましい。なお、汗臭、排泄臭及びタバコ臭は、塩基性ガス、酸性ガ ス、アルデヒドガス及び硫黄系ガスの混合比率が異なるものである。このことから、こ れら汗臭、排泄臭及びタバコ臭に対する消臭剤は、各臭気成分に対し好適なものを 好適な比率で混合させるものである。
[0024] 例えば、チタニア系光触媒と併用することができる消臭剤としては、分子内に第 1級 アミノ基を有する化合物を担持した物;水に対して不溶性または難溶性の 4価金属リ ン酸塩;銅、亜鉛およびマンガンカゝら選ばれる少なくとも 1種以上の金属イオンを担持 した水に対して不溶性または難溶性の 4価金属リン酸塩;ケィ酸アルミニウム;ケィ酸 亜鉛;酸化亜鉛;ハイド口タルサイトイ匕合物;ハイド口タルサイト焼成物;水和酸化ジル コ-ゥム;酸ィ匕ジルコニウムおよび水和酸ィ匕チタン等が挙げられる。併用する消臭剤 としては、 1種を用いても複数のものを用いても良い。
[0025] チタニア系光触媒又はチタニア系光触媒と配合剤との組成物を配合した機能性分 散液を用いて、基材に対し光触媒の活性を付与させることができる。
[0026] 機能性分散液中におけるチタニア系光触媒又はチタニア系光触媒と配合剤との組 成物等の固形分は、 0. 1一 70%が好ましぐ更に 0. 5— 60%が好ましぐ特に 1一 5 5%が好ましい。機能性分散液中の固形分が 0. 1%以下であると、分散液の粘度が 低いため分散安定性が悪くなることがある。機能性分散液中の固形分が 70%を超え ると、分散液の粘度が高くなりすぎて製造が難しくことがあり、また製品のハンドリング 性も悪くなることがあるため好ましくない。また、チタ-ァ系光触媒と配合剤との組成 物において、チタ-ァ系光触媒は 10— 90%含有していることが好ましぐ更に 20— 85%含有して 、ることが好ましぐ特に 30— 80%含有して 、ることが好まし 、。
[0027] 〇機能性分散液の製造方法
機能性分散液の製造は、無機粉末の分散液を作製する方法の!/、ずれも用いること ができる。例えば、機能性分散液の製造は、水等の分散媒及び高分子系分散剤に チタ-ァ系光触媒を添加し、サンドミル、デイスパー、又はボールミル等により攪拌し 分散させればよい。また例えば、本発明の機能性分散液の製造は、水等の分散媒、 高分子系分散剤及びチタニア系光触媒に、更に界面活性剤、消泡剤、防腐剤、粘 度調整剤、レべリング剤、バインダー成分、抗菌剤、防カビ剤、難燃剤、酸化防止剤 、つや消し剤、防鲭剤、カップリング剤、金属粉、ガラス粉、芳香剤、消臭剤、及び顔 料等力も選ばれるものを必要に応じて添加して、サンドミル、デイスパー、又はボール ミル等により攪拌し分散させればよい。
[0028] 〇分散媒
本発明において分散媒は制限なく用いることができ、好ましくは水溶性、親水性を 有するものである。具体的にはプロトン性溶媒としては水、アルコールが例示され、非 プロトン性溶媒としてはジメチルホルムアミド、ジメチルァセトアミド、ジメチルスルフォ キシド、テトラヒドロフラン、アセトン等が挙げられる。なかでも好ましい分散媒は水で める。
[0029] 〇高分子系分散剤
本発明で使用する高分子系分散剤は、少なくとも酸性官能基を有する共重合体( 榭脂)が好ましい。高分子系分散剤の基本骨格は、エステル連鎖、ビニル連鎖、ァク リル連鎖、エーテル連鎖及び Z又はウレタン連鎖等で構成されて ヽるものが好ましく 、分子中の水素原子の一部がハロゲン原子で置換されていてもよい。これらの中でも アクリル榭脂、ポリエステル榭脂及びアルキド榭脂が好ましぐ特にアクリル榭脂とポリ エステル榭脂が好適である。酸性官能基は、カルボキシル基、スルホン基、及びリン 酸基等が例示され、なかでもリン酸基が好ましい。酸性官能基を含む共重合体 (榭脂 )の酸価は 5— 150mgKOHZgであることが好ましい。この酸価が 5mgKOHZg未 満であると分散安定性が低下することがあるので好ましくない。また酸価が 150mgK OHZgを超えると充分な粒子の分散安定性が得られな 、ことがある。酸性官能基は 、榭脂の分子中に全くランダムに配置されていてもよいが、ブロック又はグラフト構造 により、酸性官能基が分子中の末端部分に配置されているものが分散安定ィヒ構造を とり易 、ため好まし!/、。この分子量は好ましくは質量平均分子量で 500— 100000の 範囲であり、更に好ましくは 750— 10000である。この分子量が 500未満では分散効 果が低下することがあり好ましくなぐまた 100000を上回ると凝集作用や粘度上昇が 起こる恐れがあるため好ましくな 、。 本発明にお 、て用いる高分子系分散剤は、 1種を用いても複数のものを用いても 良い。
[0030] 本発明にお 、て高分子系分散剤の好ま U、添加量は、チタ-ァ系光触媒や配合 剤等の固形分 100質量部に対して、 0. 1一 15質量部であり、更に好ましくは 1一 10 質量部であり、特に好ましくは 2— 8質量である。高分子系分散剤の添加量が 0. 1質 量部より少ないと、分散が充分でなく再凝集しやすいことがある。また、高分子系分散 剤の添加量が 15質量部より多いと過剰な分散剤の影響で分散性が低下 (デプレ一 シヨン現象)する恐れなどがあるので好ましくな!/、。
[0031] 〇界面活性剤
本発明において界面活性剤は両性界面活性剤、ァ-オン性界面活性剤、ノ-オン 性界面活性剤の 、ずれのものを用いてもよ!、。
両性界面活性剤としては、ァ-オン部分としてカルボン酸塩、硫酸エステル塩、ス ルホン酸塩、リン酸エステル塩を、カチオン部分としてはァミン塩、第 4アンモ-ゥム塩 を持つものが挙げられ、具体的にはアルキルべタインとしては、ラウリルべタイン、ステ ァリルべタイン、ココアミドプロピルべタイン、 2—ゥンデシルーヒドロキシェチルイミダゾ リウムべタインの各々の塩力 アミノ酸タイプのものとしてはラウリル j8—ァラニン、ス テアリル- j8—ァラニン、ラウリルジ (アミノエチル)グリシン、ォクチルジ (アミノエチル) グリシン、ジォクチル (アミノエチル)グリシンの各々の塩が挙げられる。
ァ-オン性界面活性剤の例としては、高級アルコールの硫酸エステル、アルキルべ ンゼンスルホン酸塩、脂肪族スルホン酸等が挙げられる。
ノ-オン性界面活性剤の例としては、ポリエチレングリコールのアルキルエステル型 、アルキルエーテル型、アルキルフエ-ルエーテル型等が挙げられる。
本発明にお 、て用いる界面活性剤は、 1種を用いても複数のものを用いても良 、。
[0032] 〇消泡剤
本発明において消泡剤は破泡性、抑泡性、脱泡性のものがあるがいずれのものを 用いてもよ!、。破泡性の例としてはポリシロキサン溶液を挙げることができる。
[0033] 〇防腐剤
本発明において防腐剤は公知のものはいずれも用いることができ、例えば、フエノ ール系、有機錫系、有機ョード系、チアゾール系、イミダゾール系、二トリル誘導体等 である。
[0034] 〇粘度調整剤
本発明にお 、て粘度調整剤は公知のものは 、ずれも用いることができる。例えば、 メチノレセノレロース、カノレボキシメチノレセノレロース、メチノレヒドロキシセノレロース、メチノレ ヒドロキシプロピルセルロース、ヒドロキシェチルセルロース等のセルロース系増粘剤 ;アラビアガム、トランガンガム、グァーガム等の天然多糖類;各種ポリアクリルアミド系 ポリマー;ポリエチレンォキシド;ポリビニルアルコール等がある。
[0035] 〇レベリング剤
本発明にお 、てレベリング剤は公知のものは!、ずれも用いることができる。例えば エチレングリコーノレモノメチノレエーテーノレ、エチレングリコーノレモノェチノレエーテノレ、 エチレングリコーノレモノブチノレエーテノレ等のセロソルブ系;ポリプロピレングリコーノレ モノメチルエーテル、ポリプロピレングリコールモノェチルエーテル、プロピレングリコ 一ノレエーテノレ系;ジエチレングリコーノレモノエチノレエーテノレ、ジエチレングリコーノレモ ノブチルエーテル等のカルビナート系;トリエチレングリコールモノメチルエーテル、ト リプロピレングリコーノレモノメチノレエーテノレ等のトリグリコーノレエーテノレ系;ロート油;ジ シアンジアミド;尿素等がある。
[0036] チタニア系光触媒含有の機能性分散液に繊維、不織布、シート等の表面処理に通 常使用されているアクリル酸系やウレタン系等のバインダー榭脂を混合することも可 能である。このとき、バインダー榭脂とチタ-ァ系光触媒とを含んだ機能性分散液中 のチタ-ァ系光触媒等の固形分は 5— 50%が好ましぐ 7— 45%が更に好ましぐ特 に 10— 40%が好ましい。また、チタ-ァ系光触媒等の固形分とバインダー榭脂との 混合比は、チタ-ァ系光触媒等の固形分 100質量部に対し、榭脂固形分が 10— 30 0質量部が好ましぐ更に 15— 250質量部が好ましぐ特に 20— 200質量が好ましい 。榭脂固形分が 10質量部より少ないと、機能性分散液を用いて繊維、不織布、シー ト等に添着させる際の固着力が充分ではない恐れがあるため、チタ-ァ系光触媒が 脱落して光触媒性能が低下することがある。また、榭脂固形分が 300質量部を超える と、繊維、不織布、シート等に加工した際にチタ-ァ系光触媒が榭脂で覆われる恐れ があるため光触媒性能が充分発現しないことがある。
[0037] 本発明のチタ-ァ系光触媒を榭脂に混練することによって、機能性榭脂を得ること ができる。チタ-ァ系光触媒を榭脂に混練する時の榭脂溶融温度としては、特に榭 脂が劣化しな 、成型温度であれば制限は無 、。この成形温度としては 100°C— 400 °Cが好ましぐ 120— 300°Cがより好ましぐ 150— 280°Cが更に好ましい。
榭脂とチタニア系光触媒とを混練する方法としては、特に制限は無い。例えば、チ タニア系光触媒を高濃度で榭脂に配合 (マスターバッチ化)後、更に樹脂で希釈して シートや繊維、フィルター及び成型体にすることができる。このようなマスターバッチを 用いることにより、チタ-ァ系光触媒の分散性がより向上し、機能性榭脂の性能を向 上させることができる。
[0038] 〇機能性榭脂への配合剤につ!/、て
チタ-ァ系光触媒含有の機能性榭脂は、大気中のホルムアルデヒドゃァセトアル デヒド等のアルデヒド類ガスやトルエン等の有機溶媒のガス等のガスを分解したり、溶 液中の有機化合物等を分解することができる。このようなとき、当該機能性榭脂に、 活性炭やシリカゲル等の吸着性物質を混練したり、又は他の光触媒を併用すること ができる。このようにすることで、更に分解性能を発揮しやすくすることが可能である。
[0039] チタ-ァ系光触媒含有の機能性榭脂に混練する配合剤としては、物理的に分解対 象物質を吸着する物質や化学的に分解対象物質を吸収する物質が例示できる。 物理的に分解対象物質を吸着する物質としては、活性炭ゃゼオライト等の多孔性 物質ゃァエロジル等の超微粒子が挙げられる。物理的に化合物を吸着する物質の 比表面積が小さ 、と、化合物の吸着量が少なくなることから 5m2Zg以上の比表面積 が好ましい。化学的に吸収する物質としては、イオン交換体、吸着対象の化合物と化 学反応する物質、又は吸着対象の化合物と化学反応する物質を担持した物質等が 挙げられる。この吸着対象の化合物と化学反応する物質としては、例えばホルムアル デヒドやァセトアルデヒド等のアルデヒド類に対してシッフ反応を生じるアミンィ匕合物 が挙げられる。また、この化学反応する物質を担持する物質としては、多孔質シリカ や陽イオン交換性を有する粘土鉱物等が挙げられる。
[0040] チタニア系光触媒含有の機能性榭脂に配合する配合剤としては 1種類の配合剤を 使用しても、あるいは複数の配合剤を用いても良い。それぞれの配合割合は特に制 限はなぐ使用する環境により適宜変化させることができる。
[0041] チタニア系光触媒含有の機能性榭脂の機能である防汚性、消臭性および抗菌性 に限らず、機能性の向上や複合機能性とするために様々な機能性添加剤を配合す ることも可能である。具体的な配合物としては、防汚剤、抗菌剤、紫外線吸収剤、帯 電防止剤、分散剤、顔料、染料、酸化防止剤、耐光安定剤、難燃剤、発泡剤、耐衝 撃強化剤、ガラス繊維、金属石鹼、防湿剤、増量剤、カップリング剤、流動改良剤、 木粉、防鲭剤、レべリング剤等があげられる。
[0042] 〇配合量について
榭脂にチタ-ァ系光触媒を混練する量については、光触媒性能を発揮して且つ配 合により粘性等の榭脂物性が大きく損なわれな 、範囲であれば構わな 、。この好ま しいチタ-ァ系光触媒の混練量としては、榭脂に対し 0. 05— 60%が好ましぐ更に 好ましくは 0. 1— 20%であり、特に 0. 3— 10%がより好ましい。前述したように、チタ 二ァ系光触媒の混練量が多すぎると、榭脂の粘性が増加し、作業性が低下するばか りか綺麗な表面を得る事が出来ないことがある。また少なすぎる場合には、十分な光 触媒性能を発揮する事が出来ないことがある。
[0043] 〇榭脂成分について
チタ-ァ系光触媒含有の機能性榭脂の榭脂成分としては、特に制限はなぐ天然 榭脂、半合成樹脂及び合成樹脂のいずれであっても良ぐまた熱可塑性榭脂、熱硬 化性榭脂の 、ずれであっても良 、。
具体的な榭脂としては、成型用榭脂、繊維用榭脂、ゴム状榭脂のいずれであっても よぐ例えばポリエチレン、ポリプロピレン、塩化ビニル、 ABS榭脂、 AS榭脂、ナイ口 ン榭脂、ポリエステル榭脂、ポリ塩ィ匕ビニリデン榭脂、ポリスチレン、ポリアセタール、 ポリカーボネイト、 PBT、フエノール榭脂、アルキド榭脂、アミノアルキド榭脂、アクリル 榭脂、シリコーン榭脂、フッ素榭脂、エポキシ榭脂、ウレタン榭脂、飽和ポリエステル 榭脂、メラミン榭脂、ユリア榭脂、四フッ化工チレン榭脂、不飽和ポリエステル榭脂、レ 一ヨン、アセテート、ポリビュルアルコール、キュプラ、トリアセテート、天然ゴム、シリコ ーンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム、フッ素ゴム、二トリノレゴム 、クロルスルフォン化ポリエチレンゴム、ブタジエンゴム、合成天然ゴム、ブチルゴム、 ウレタンゴム、アクリルゴム等が挙げられる。
〇用途について
チタ-ァ系光触媒は、付着、担持、塗布、含浸、又は溶着等により基材表面に実用 に耐えうる強度で形成できれば、いずれの方法でもよぐその方法は限定されない。 基材としては、建築物の外壁面、屋根外面、屋上面、窓ガラス外面、窓ガラス内面 、部屋の壁面、床面、天井面、ブラインド、カーテン、道路の防護壁、トンネルの内壁 、照明灯の外面、照明灯の反射面、乗用車やバスや電車等の車両の内装面や外面 、鏡の表面、ガラス外面、ガラス内面等を挙げることができる。
チタ-ァ系光触媒の担持方法としては、塗料やバインダーを塗布した後に光触媒 を吹き付ける方法又は塗料やバインダー中に光触媒を混入させて吹き付ける方法等 が挙げられるが、これらの方法に限られるわけではない。特に本発明のチタ-ァ系光 触媒は、これによる榭脂の着色や劣化がほとんどなぐ且つ粒径も制御されたものと なっているため、合成樹脂への練り込み、更に繊維やフィルム等に加工して使用する ことも可能である。
チタ-ァ系光触媒にバインダーを添加して使用する場合には、光触媒活性に対し て耐性のあるバインダーが良ぐ例えばシロキサン榭脂、シリコン榭脂、フッ素榭脂、 及びケィ酸ガラス等が挙げられる。また、混合されたチタニア系光触媒をより有効に 利用するには、バインダーとして透光性を有するものがより好適である。また、汚れが 付きにくい点を考えると、シロキサン榭脂、フッ素榭脂等の撥水性を有するものが好ま しい。
チタ-ァ系光触媒を基材表面に塗布して膜を形成させる場合には、基材の表面全 面に塗布してもよいし、一部に塗布してもよい。また、チタ-ァ系光触媒を含有する塗 液は、基材に直接塗布してもよいし、プライマー層を介して塗布してもよい。特に基材 が金属、ガラス質の場合には、プライマー層を介する方が接着強度向上の上で好ま しい。
また、チタ-ァ系光触媒を釉薬に添加して陶器表面やホーローに入れて用いても 良 、。チタ-ァ系光触媒をシリカゲルやアルミナ等と混合又は渾融させて用いること もできる。また、榭脂によってはステアリン酸亜鉛等の滑剤を添加することも着色を更 に抑制する点で好ましい。
[0045] チタニア系光触媒が適用できる用途としては、照明器具の反射板、カバー若しくは 傘部;レンジフードとしてフィルター、フード若しくはファン部;キッチン周り品としてテ 一ブル、食器棚、壁、タイル若しくは天井部;トイレ周り品として壁、便座若しくは便器 ;浴室周り品として浴槽、壁、タイル部若しくは天井部;収納具として下駄箱、押入、タ ンス、床下収納庫、米櫃、クーラーボックス若しくはごみ箱;建材として外装材、レンガ 、間仕切り、ふすま、障子若しくは床;寝具としてふとん、まくら若しくは毛布;カーテン ;じゅうたん;家電製品としてテレビ、ビデオ、ステレオ、クーラー、ストーブ、掃除機、 洗濯機、冷蔵庫、電気ポット、こたつ、炊飯器、シェーバー、むだ毛剃り器若しくはド ライヤ一;調理器具としてなベ、茶瓶若しくはフライパン;食器としてコップ、茶碗若し くはどんぶり鉢;自動車として窓ガラス若しくはハンドル;自転車;携帯品として帽子、 ノッグ、時計、釣竿若しくは靴;衣類として制服、背広、靴下、下着、コート、ジヤンバ 一、セーター、トレーナー、ワイシャツ、ズボン、着物、スカート、ストッキング若しくはタ イツ;浄ィ匕設備として排水処理設備、浄化槽、空気浄化器、水浄化器若しくは生ゴミ 処理器;水槽としてプール、観賞魚用水槽、生けす用水槽若しくは池周り用石;又は 動物用品としてペット小屋、犬小屋若しくは鳥力ご等が挙げられ、これらの部品の表 面又は内面に光触媒が形成されているもの等が挙げられる。
前記部品とは、例えば、シェーバー及びむだ毛剃り器についていうと、その歯等が 挙げられる。
[0046] チタニア系光触媒が適用できるものとして、光が当たる天井、壁や床等使用するこ とにより、細菌や力ビ等を殺菌することができる。また、本発明のチタ-ァ系光触媒は 可視光での活性も有することから、ブラックライト等の紫外線照射が必要なぐ普通の 照明器具で分解効果や殺菌効果を出すことができる。このことから、病院、食品工場 、製薬工場、及びィ匕粧品工場等に用いたり、空調施設に組み入れることもできる。
[0047] チタニア系光触媒含有の光触媒含有の機能性分散液は消臭性等のガス分解性、 抗菌性および防汚性の付与等が求められる様々な製品に利用可能である。そして、 この用途として上記に記載したものが例示できる。 [0048] 具体的に、チタニア系光触媒含有の機能性分散液をフィルターに添着等で加工し たものは、空気清浄器やエアーコンディショナー、加湿器等に使用して空気の浄化、 シックハウス対策、貯水タンク等に応用可能となる。更に排水溝や濾過部に塗料或い はシートとして用いる事により、ヌメリを着き難ぐ且つ清潔に保つ事が出来る。
[0049] 繊維に当該機能性分散液を添着 '加工した場合、汚れ'臭いが付きにくい、雑菌の 繁殖を抑制する等の点を考えると、白衣やエプロン等を含む衣料品、テント、包帯、 水着、釣り糸、魚網等様々な用途が考えられる。衣類として制服、背広、靴下、下着、 コート、ジャンパー、セーター、トレーナー、ワイシャツ、ズボン、着物、スカート、ストツ キング若しくはタイツ等が挙げられる。更に寝具としてふとん、まくら若しくは毛布、力 一テン、カーペット、マット、じゅうたん等が挙げられる。
更にシート'フィルムに機能性分散液をコートした場合、ラップ、ゴミ袋や、ビニール ハウス、合羽、ガラス ·鏡の表面に貼るシール等様々な用途が挙げられる。
[0050] チタ-ァ系光触媒含有の機能性榭脂の用途としては、上記に記載したものが例示 できる。
[0051] <実施例 >
以下、本発明の実施例を説明するが、これに限定されるものではない。
[0052] 〇使用溶液の調製
硫酸チタ-ルを純水に溶かし、チタン濃度 0. 5molZリットルの水溶液を調製した( チタン水溶液)。
五酸ィ匕ニオブと蓚酸とを純水に溶かし、ニオブ濃度 0. 5molZリットルの水溶液を 調製した (ニオブ水溶液)。
硝酸アルミニウムを純水に溶かし、アルミニウム濃度 0. 5molZリットルの水溶液を 調整した (アルミニウム水溶液)。
硝酸セリウムを純水に溶かし、セリウム濃度 0. 5molZリットルの水溶液を調整した( セリウム水溶液)。
へキサメチレンテトラミンを純水に溶かし、 ImolZリットルの水溶液を調製した(以 下 HMT水溶液)。
尿素を純水に溶かし、 2molZリットルの水溶液を調製した (以下尿素水溶液)。 実施例 1
[0053] 〇チタ-ァ系光触媒サンプル Aの合成
フラスコ中にチタン水溶液 800ml及びニオブ水溶液 200mlを入れ、混合する。こ の混合液を 80°Cに加温し、 4時間撹拌する。その後、室温まで放冷、濾過し、純水で 洗浄後、 120°Cで乾燥し、さらに 600°Cで焼成してサンプル Aを合成した。当該サン プルの粉末 X線解析パターンを測定した。
実施例 2
[0054] 〇チタ-ァ系光触媒サンプル Bの合成
フラスコ中にチタン水溶液 800ml、ニオブ水溶液 100ml及びアルミニウム水溶液を 100ml添加し、混合する。この混合液を 80°Cに加温し、 4時間撹拌する。その後、室 温まで放冷、濾過し、純水で洗浄後、 120°Cで乾燥し、さらに 700°Cで焼成してサン プル Bを合成した。当該サンプルの粉末 X線解析パターンを測定した。
実施例 3
[0055] 〇チタ-ァ系光触媒サンプル Cの合成
フラスコ中にチタン水溶液 500ml、ニオブ水溶液 100mlを添加'混合し、 80°C2時 間保持後、尿素水溶液を 400ml添加し、混合する。この混合液を 100°Cに加温し、 2 時間撹拌する。その後、室温まで放冷した後、濾過した。この濾過物を純水で洗浄後 、 120°Cで乾燥し、さらに 800°Cで焼成してサンプル Cを合成した。当該サンプルの 粉末 X線解析パターンを測定した。
実施例 4
[0056] 〇チタ-ァ系光触媒サンプル Dの合成
フラスコ中にチタン水溶液 500ml、ニオブ水溶液 100mlとセリウム水溶液 100mlを 添加'混合し、 80°Cで 2時間保持後、 HMT水溶液を 400ml添カロし、混合する。この 混合液を 100°Cに加温し、 2時間撹拌する。その後、室温まで放冷した後、濾過した 。この濾過物を純水で洗浄後、 120°Cで乾燥し、さらに 400°Cで焼成してサンプル D を合成した。当該サンプルの粉末 X線解析パターンを測定した。
実施例 5 [0057] 〇チタ-ァ系光触媒サンプル Eの合成
フラスコ中にチタン水溶液 500ml、ニオブ水溶液 100mlとアルミニウム水溶液 100 mlを添加'混合し、 80°C2時間保持する。その後、室温まで放冷した後、濾過した。 この濾過物を純水で洗浄後、 120°Cで乾燥し、さらに 700°Cで焼成してサンプル Eを 合成した。当該サンプルの粉末 X線解析パターンを測定した。
実施例 6
[0058] 〇チタ-ァ系光触媒サンプル Fの合成
フラスコ中にチタン水溶液 800ml及びニオブ水溶液 200mlを入れ、混合する。こ の混合液を 80°Cに加温し、 4時間撹拌する。その後、室温まで放冷、濾過し、純水で 洗浄後、 120°Cで乾燥し、さらに 600°Cで 4時間加熱してサンプル Fを合成した。当 該サンプルの粉末 X線解析パターンを測定した。
実施例 7
[0059] 〇チタ-ァ系光触媒サンプル Gの合成
フラスコ中にチタン水溶液 500ml、ニオブ水溶液 100mlを入れ、混合し、 80°Cで 2 時間保持後、尿素水溶液を 400ml混合する。この混合液を 100°Cに加温し、 2時間 撹拌する。その後、室温まで放冷した後、濾過した。この濾過物を純水で洗浄後、 12 0°Cで乾燥し、さらに 800°Cで 4時間加熱してサンプル Gを合成した。当該サンプル の粉末 X線解析パターンを測定した。
実施例 8
[0060] 〇チタニア系光触媒サンプル Hの合成
フラスコ中にチタン水溶液 500ml、ニオブ水溶液 100mlとセリウム水溶液 100mlを 入れ、混合し、 80°Cで 2時間保持後、 HMT水溶液を 400ml混合する。この混合液 を 100°Cに加温し、 2時間撹拌する。その後、室温まで放冷した後、濾過した。この濾 過物を純水で洗浄後、 120°Cで乾燥し、さらに 400°Cで 4時間加熱してサンプル Hを 合成した。当該サンプルの粉末 X線解析パターンを測定した。
実施例 9
[0061] 〇チタ-ァ系光触媒サンプル Iの合成 フラスコ中にチタン水溶液 900ml、ニオブ水溶液 100mlを入れて 2時間室温で混 合し、その後 80°Cで 2時間保持する。その後、室温まで放冷した後、濾過した。この 濾過物を純水で洗浄後、 120°Cで乾燥し、さらに 800°Cで 4時間加熱してサンプル I を合成した。当該サンプルの粉末 X線解析パターンを測定した。
実施例 10
[0062] 〇チタ-ァ系光触媒サンプル Jの合成
フラスコ中にチタン水溶液 500ml、ニオブ水溶液 100mlとアルミニウム水溶液 100 mlを入れて混合し、 80°Cで 2時間保持する。その後、室温まで放冷した後、濾過した 。この濾過物を純水で洗浄後、 120°Cで乾燥し、さらに 700°Cで 4時間加熱してサン プル Jを合成した。当該サンプルの粉末 X線解析パターンを測定した。
実施例 11
[0063] 〇チタニア系光触媒サンプル Kの合成
フラスコ中にチタン溶液 500ml、ニオブ溶液 50ml、および HMT溶液 500mlを添 加し、充分混合する。この混合液を 80°Cに加温し、 2時間撹拌する。次にこの溶液を
90°Cに昇温し、 24時間撹拌した。その後、室温まで放冷、濾過し、純水で洗浄後、 1
20°Cで乾燥し、サンプル Kを合成した。当該サンプルの粉末 X線解析パターンを測 疋した。
実施例 12
[0064] 〇チタニア系光触媒サンプル Lの合成
ニオブ溶液 5mlとした以外は、実施例 11と同様に操作し、サンプル Lを合成した。 当該サンプルの粉末 X線解析パターンを測定した。
実施例 13
[0065] 〇チタニア系光触媒サンプル Mの合成
フラスコ中にチタン溶液 500ml、ニオブ溶液 100ml、および尿素溶液を 1000ml添 加し、充分混合する。この混合液を 80°Cに加温し、 2時間撹拌する。次にこの溶液を 90°Cに昇温し、 24時間撹拌した。その後、室温まで放冷し、濾過し、純水で洗浄後 、 120°Cで乾燥し、サンプル Mを合成した。当該サンプルの粉末 X線解析パターンを 測定した。
実施例 14
[0066] 〇チタニア系光触媒サンプル Nの合成
実施例 11で調製したサンプル Kを 300°Cで 4時間加熱し、サンプル Nを合成した。 当該サンプルの粉末 X線解析パターンを測定した。
実施例 15
[0067] 〇チタニア系光触媒サンプル Oの合成
実施例 13で調製したサンプル Mを 600°Cで 2時間加熱し、サンプル Oを合成した。 当該サンプルの粉末 X線解析パターンを測定した。
[0068] <比較例 1 >
〇比較サンプル A
高純度アナターゼ型チタニアの比較例として、市販チタ-ァ (石原産業 (株),ダレ ード ST— 01)を用いた。
〇比較サンプル B
上記 ST— 01をアンモニア気流中 600°Cで 24時間保持して窒素置換型チタ-ァを 得た。
〇比較サンプル C
シリカ被覆チタ-ァとしてマスクメロン型チタ-ァ (太平化学産業 (株)製)を用いた。 実施例 16
[0069] 〇結晶性分析
チタ-ァ系光触媒サンプル並びに比較サンプル A— Cについて粉末 X線回折パタ ーン分析を行った。この回折パターンから結晶相の同定を行った(ブルックカイト:ブ ルックカイト型結晶、アナターゼ:アナターゼ型結晶、ルチル:ルチル型結晶を表す) 。これらの中でサンプル A— E及び比較サンプル A— Cの粉末 X線回折パターンを図 1一 8に示す。
また、サンプル A— E中のニオブ含有量 (mol%)は、 ICP分析法で各原子を測定し て求めた。これらの結果を表 1に記載する。
[0070] [表 1] 結日日相 ニオブ含有量 mol% サンプル A ブ レツカイト 20 サンプル B ブルッカイト 1 0 サンプル C ブルッカイト +ルチル +アナタ一ゼ 1フ サンプル D ブルッカイト +アナタ一ゼ 1 7 サンプル E ブルッカイト 1 7 比較サンプル A アナターゼ
比較サンプル B アナターゼ
比較サンプル C アナターゼ+ルチル
[0071] 〇結晶性、ニオブ含有量、平均粒径、結晶子径の分析
サンプル F— J、及び比較サンプル A— Cの粉末 X線回折の測定データ力 結晶相 を同定した結果を表 2に記載した。また蛍光 X線によるニオブの含有量 (Nb含有量 w t%)、レーザー回折式粒度分布測定による平均粒径(; z m)、走査型電子顕微鏡観 察による結晶子径 (nm)も表 2に示した。
[0072] [表 2]
Figure imgf000023_0001
[0073] 〇多孔質性分析及び細孔測定
GEMINI (島津 (株)製)を用いた窒素ガス多点 BET測定法を用いて吸着及び脱 着試験をサンプル Fについて実施した。このヒステリシスの結果からサンプル Fは、多 孔質であることが判明した。またサンプル Fの平均細孔径は、約 lOnmであった。 外のサンプル G— Jにつ ヽても測定した結果、ほぼ同じ結果であった。
[0074] 〇光触媒中のルイス酸点の測定
0. Olgのサンプル Fに ImolZリットルのピリジン水溶液を 5mL添カ卩し、室温で 30 分間振盪した。その後、サンプル Fをろ別'水洗し、暗所で乾燥させ、 1400— 1700c m_1の赤外線 (IR)スペクトルを測定した (pyr+)。サンプル G、サンプル H、比較サンプ ル八、比較サンプル B、および比較サンプル Cについても同様な処理を行い、 IRスぺ タトルを測定した。また、ピリジン吸着処理を行なわないものについても同様に IRスぺ タトルを測定した (pyr一)。
IR ^ベクトルの測定方法は、「DuraScope™」(SensIRテクノロジ一社製)という AT Rアクセサリーを取り付けた赤外線吸収装置 (Nicolet社製 Impact400D)により測 疋した。
図 9にサンプル Fの、図 10に比較サンプル Bの IRスペクトルを示す。
この結果、サンプル F、 G、及び Hの pyr+の IR ^ベクトルは、約 1440cm— 1を中心に 1 420cm— 1力ら 1460cm— 1の吸収ピークと約 1605cm— 1を中 、に 1590cm— 1力ら 1620c m_1の吸収ピークが比較サンプルのものに比べ認められなかった。このこと力ら、本発 明のチタ-ァ系光触媒は、ピリジン水溶液処理を行なっても 1420— 1460cm 1及び 1590cm— 1620cm— 1に明確な吸収ピークを持たないものである。
実施例 17
[0075] 〇光吸収性試験
サンプル K一 O並びに比較サンプル Aおよび Bの光吸収性を検討するために、 UV vis拡散反射法(日本分光 (株): UV— VISスペクトルメーター, V— 550)によって 30 0— 500nmの吸光度を測定した。
この測定結果を図 11 (サンプル K一 O)および図 12 (比較サンプル Aおよび B)に示 す。
サンプル K一 Oは、可視光領域での光吸収性があり、可視光応答型材料である可 能性が高いことが判る。また、比較サンプル Aの可視光領域での光吸収性が低いこと 、比較サンプル Bの窒素置換型では可視光領域での光吸収性があることが分力つた 実施例 18
[0076] 〇結晶性分析
サンプル K一 O並びに比較サンプル Aおよび Bの粉末 X線回折パターン力 結晶 相の同定を行い、回折ピークをリートベルト法で分離したピーク力 結晶の格子定数 を求めた。また、ニオブ含有量は、 ICP分析法で各元素を測定して求めた。
これらの、アナターゼ型結晶およびルチル型結晶の結晶格子定数(A)、アナター ゼ型結晶の含有量(%)およびチタンに対するニオブ含有量 (mol%)の結果を表 3 示した。
[0077] [表 3]
Figure imgf000025_0001
実施例 19
[0078] 〇近赤外吸収スペクトル分析
拡散反射用アクセサリを具備したフーリエ変換方式の近赤外分光分析装置 (ニコレ 一社製 MAGNA750型:光源 タングステンハロゲン白色ランプ、検出器 DTGS、 ビームスプリッタ CaF )を用いて、サンプル Mの近赤外吸収スペクトル分析を行った
2
。測定波長領域 8000— 4000cm 分解能 8cm 積算回数 256回の条件で測定 した拡散反射近赤外スペクトルをクベルカ ムンク補正計算によって透過スペクトル 相当の吸光度に変換し、近赤外吸収スペクトルを得た。また、熱処理品であるサンプ ル?^、 Oおよび、比較サンプル Aについても同様の条件で分析した。
サンプル M並びに熱処理を実施したサンプル Nおよび Oの近赤外吸収スペクトル を図 13に示す。また、比較サンプル Aの結果を図 14に示す。
[0079] サンプノレ M【こお!ヽて ίま 4640cm— 4920cm— および 5160cm— 1等【こ吸収ピーク が観測された (これらの吸収ピークは、それぞれ近赤外吸収帯 I、 II、および IIIとする) 。これに対して、図 14の比較サンプル Aには、近赤外吸収帯 Iおよび II等に存在する 吸収ピークが観測されな力つた。すなわちチタ-ァ系光触媒には、従来から光触媒と して用いられる純粋な酸化チタンには存在しない官能基の存在が証された。さらには 、熱処理を施したサンプル Nにおいても近赤外吸収帯 I、 II、および IIIに吸収ピークが 存在し、熱処理したサンプル Oにおいても近赤外吸収帯 Iおよび IIIに吸収ピークが存 在することが観測された。即ち、本発明のチタ-ァ系光触媒は 5400— 4400cm 近赤外に吸収ピークを有するものである。
実施例 20
[0080] 〇メチレンブルー分解試験
サンプル A— E、K一 O並びに比較サンプル A— Cの光触媒の性能を検討するため に、紫外線照射下、蛍光灯下及び暗所でのメチレンブルーの分解性を評価した。 紫外線照射による試験は、紫外線ランプ (東芝ライテック (株): FL20SBLB— A, 2 0ワット)により紫外線強度を 1. OmW' cm 2 (ミノルタ (株): UVラジオメーター, UM— 10により測定)に調整した条件で実施した。蛍光灯下試験は、蛍光灯 (NEC (株): F L40SSEX-D/37-HG, 37ワット、 UVカットフィルムを取り付ける)により照度 100 0ルクス (東京硝子器械 (株): FLX— 1330により測定)に調整した条件で実施した。 また、暗所試験は、光遮蔽板により囲み、暗所で実施した。
メチレンブルー溶液は、試薬 (キシダイ匕学 (株)製メチレンブルー試薬特級)を純水 に溶解し、 lOppmの濃度溶液を調製した。
メチレンブルー分解試験の方法は、直径 4cmのガラス製シャーレにサンプル A— E 、 K一 Oと比較サンプル A— Cをそれぞれ 0. lgずつ入れ、メチレンブルー溶液を 5m 1添加して、前述した 3条件下に静置した(21 ± 1°C)。
メチレンブルー分解活性は、メチレンブルーの青色が目視で無色になるまでの時 間を分解時間として評価した。この結果を表 4に記載した。
[0081] [表 4]
Figure imgf000026_0001
実施例 21
[0082] 〇榭脂劣化性試験 ·着色性
サンプル A— E並びに比較サンプル A— Cによる榭脂劣化性を調べるために、イン ジェクシヨン成型を実施した。先ず各サンプルを榭脂に対して 0. 3%添加、混合し、 適宜加熱された成型機により lmm厚みのプレートを成型した。榭脂としてはポリェチ レン及びポリエステルを用いた。成型した榭脂の着色判定は目視で行なった。これら の結果を表 5に記載した。
•変色ナシ:光触媒を入れな!/、で成型した榭脂の色と変わらな!/ヽ
•黄変:成型した榭脂が黄色に着色した
•黄茶変:成型した樹脂が黄茶色に着色した
•茶変:成型した榭脂が茶色に着色した
[0083] [表 5]
Figure imgf000027_0001
[0084] 〇榭脂劣化性試験'加工性
サンプル A— E並びに比較サンプル A— Cによる繊維への加工性を調べた。即ち、 各光触媒を繊維用ポリエステルに 1%添加し、この各光触媒添加繊維用ポリエステル を 4倍延伸し (太さ約 10デニール)、この延伸した糸を用いて 10cm幅の筒編みに編 成加工を行なった。これらの結果を表 6に示した。
'榭脂着色 (繊維用ポリエステルに添加したときの着色性)
ナシ:光触媒を入れて 、な ヽ榭脂の色と変わらな ヽ
変色:光触媒を入れて 、な 、榭脂の色と変わったもの
•延伸(糸の太さを 10デニールで 2倍又は 4倍に延伸したとき, 糸として引けるかについて)
可:糸として引ける
不可:糸として引けない
'編成 (延伸処理で得た糸を用いて布を織れるか)
糸切れ:ァリナシで表示
編成:布として織れる(可)織れな!/ヽ(不可)で表示
[0085] [表 6]
Figure imgf000028_0001
実施例 22
[0086] 〇ガス分解試験
フッ化ビュル製バック(フッ化ビニル製フィルムを袋状に加工して使用、以下テドラ 一バックと称する)にサンプル A— E、 K一 O及び比較サンプル A— Cをそれぞれ 0. 1 g封入後、 lOOppmのァセトアルデヒドガスを含有する空気を 3リットル注入した。これ らを喑所、蛍光灯照射下、又は紫外線照射下 (メチレンブルー分解試験と同じ条件) に静置した。試験開始から 2時間後に、これらテドラーバッグ中のァセトアルデヒドの 残存濃度をガス検知管 (ガステック製 No. 92及び No. 92L)で測定した。また、サン プルを添カ卩しない系でも同様に試験し、ブランクとした。ァセトアルデヒドガスの検出 限界は 0. Ippmである。それぞれの残存ガス濃度を表 7に示す。残存ガス濃度が低 V、ほどガス分解性能 (触媒)が高 、ことを意味する。
[0087] [表 7] 外 昭射 ノし 曰厂ノ
サノンプリレ A 捨出山眼ドふ界] 11下 4 ^ n n m Q π π m サ、 "ノ "^ノJレ R *^屮15 界] 1下 |j ■ Q » r» m サンプ Jレ C 抬山屮圍 界!^下 3 Π r» n m Q *^ π m サ、 プノノし门 T¾ PJx -ir ¾ Γ ゥ r\ n m Q r\ m 卄、ノプノレ F Q ¾ m 卄ソソ *^プノノ Jしレ T¾ Q PJ -Jr Γ Π n n m
计、 "メ/ノし 1し . P屮Q Pi思じ 下 ^ リϊ |J |J »" (J fJ ノ 徐國山屮 界づ「 1 1下 π m サンプル N 検出限界以下 2 5 p p m 9 0 p p m サンプル 0 検出限界以下 2 0 p p m 9 5 p p m 比較サンプル A ^ 0 ppm 8 0 p p m 9 5 p p m 比較サンプル B 1 5 ppm 7 5 p p m 8 5 p p m 比較サンプル C 8 0 ppm 9 0 p p m 9 5 p p m
ブランク 1 0 O ppm 1 0 0 p p m 1 0 0 p p m
[0088] サンプル A— E及び K Oにおいては、紫外線照射下での残存ガス濃度が暗所で の残存ガス濃度よりも明らかに低下し、ァセトアルデヒドガス分解性能が高いことが判 つた。更に蛍光灯照射下においてもガス濃度が比較サンプルよりも低下しており、ガ ス分解性能が発現して 、ることが明らかであった。
実施例 23
[0089] 〇光触媒含有分散液の作成
サンプル Fを分散剤 Disperbyk-180 (ビックケミー ·ジャパン株式会社製,リン酸基 を含むブロック共重合体のアルキルアンモ-ゥム塩。酸価 94mgKOH/g。アミン価 94mgKOHZg平均分子量 1000)を用いて分散した。この分散処方としては、水 10 0質量部に対して分散剤を 2. 3質量部(消臭剤固形分 100質量部に対して 4. 6質量 部)、サンプル Fを 50質量部、防腐剤べストサイド # 300 (大日本インキ化学工業株 式会社製)を 0. 3質量部、消泡剤 Disperbyk - 022 (ビックケミー ·ジャパン株式会社 製)を 0. 2質量部、増粘剤メトロース SH15000 (信越ィ匕学工業株式会社製)の 4% 水溶液を 13質量部添加し、サンドミルにて 3000rpm、 20分間攪拌し、チタ-ァ系光 触媒含有のペースト状の分散液 Fを得た。なお、この分散液中のチタニア系光触媒 固形分は 30質量%であった。サンプル G— J及び比較サンプル A— Cにつ!/、ても同 様の操作を行い、チタニア系光触媒含有のペースト状の分散液 G— J、及び比較分 散液 A— Cを得た。
実施例 24
[0090] 〇消臭剤含有分散液を用いて加工した綿生地の消臭性評価
純水 100質量部に対してチタ-ァ系光触媒含有のペースト状分散液 Fを 10質量部 (チタ-ァ系光触媒粉末として 3質量部)、アクリル系バインダー (KB— 4900 固形分 45質量%、東亞合成 (株)製)を 6. 7質量部添加した懸濁液 Fを作製した。チタ-ァ 系光触媒含有のペースト状分散液 G— J、比較分散液 A— Cについても同様の操作 を行 ヽ各懸濁液を作製した。
これらの懸濁液に綿 100%の生地(生地質量 lOOgZm2)をデイツビングし、絞り率 70%でピックアップし、 150°Cで乾燥し、試験布 F— J及び比較試験布 A— Cを得た。 この綿生地を任意の 3箇所から 20cm X 20cmを切り取りテドラーバッグに入れ、ァセ トアルデヒドガス濃度 14ppm含有する空気を 3L注入し、 24時間紫外線照射下で静 置した。そのテドラーバッグ中の残存ガス濃度をガス検知管 (ガステック製 No. 92L) を用いて測定した。
紫外線照射下での静置条件は、 UVを lmWZcm2の強度で照射した。その結果を 表 8に示した。なお、「N. D.」とは、ァセトアルデヒドが検出できな力つたことを示す。
[0091] [表 8]
Figure imgf000030_0001
実施例 25
[0092] 〇消臭剤含有分散液を用いて加工した試験布の変色性評価
実施例 24において消臭試験後の各試験布について、変色を目視で調べた。その 結果を表 9に示した。 [0093] [表 9]
Figure imgf000031_0001
実施例 26
[0094] 〇消臭剤含有分散液を用いて加工した綿生地の消臭性評価:可視光照射
実施例 24で作製した試験布 F— J及び比較試験布 A— Cを任意の 3箇所から 30cm X 30cmを切り取りテドラーバッグに入れ、ァセトアルデヒドガス濃度 14ppm含有する 空気を 3L注入し、 24時間可視光照射下で静置した。そのテドラーバッグ中の残存ガ ス濃度をガス検知管 (ガステック製 No. 92L)を用いて測定した。ただし、光源は蛍光 灯 (東芝ライフテック Z照度 2000LUX)を使用した。
その結果を表 10に示した。なお、「N. D.」とは、ァセトアルデヒドが検出できなかつ たことを示す。
[0095] [表 10]
Figure imgf000031_0002
[0096] 実施例 24— 26の結果から、分散液 F— Jは比較分散液 A— Cに比較して光触媒を 有し且つ紫外線照射による耐変色性が優れて ヽる。
実施例 27 [0097] 〇光触媒含有塗料の作製
サンプル Fを巿販塗料(関ぺ株式会社製ノヽピオフレッシュ,エッグホワイト) 100質量 部に対して 5質量部添加し、サンドミルにて 3000rpm、 20分間攪拌し、チタ-ァ系光 触媒含有の試験塗料 Fを得た。サンプル G— J及び比較粉末 A— Cにつ ヽても同様 に処理して、チタ-ァ系光触媒含有の試験塗料 G— J、比較試験塗料 A— Cを得た。 実施例 28
[0098] 〇光触媒含有塗料を用いて加工した塗布板の防汚性能
チタ-ァ系光触媒含有の試験塗料 Fをアルミ鋼板(5cm X 15cm)にバーコ一ター( # 20)で塗布後、 1晚風乾し、試験塗布板 Fを得た。試験塗料 G— J及び比較試験塗 料 A— Cにつ 、ても同様の操作を行!、、試験塗布板 G— J及び比較試験塗布板 A— Cを得た。またチタ-ァ系光触媒を含有しない塗料を塗布した板を同様に作製し、ブ ランクとした。
これらの塗布板の防汚性能を評価する為に、メチレンブルー分解試験を実施した。 試験方法としては、光触媒製品技術協議会の定める 2003年度版(
http://www.photocatalysis.convmdex.html)揿ネ目フイノレム密着法 用いに。に 7こし、 光源は蛍光灯 (東芝ライフテック Z照度 2000LUX)を使用した。試験結果を表 11に 示した。メチレンブルーが脱色された場合を「脱色」と、メチレンブルーの色が残って V、る場合を「脱色ナシ」と表示した。
[0099] [表 11]
Figure imgf000032_0001
実施例 29 [0100] 〇光触媒含有塗料を用いて加工した塗布板の変色性評価
実施例 28で実施した防汚試験後の試験塗布板及び比較試験塗布板の変色を目 視で調べた。その結果を表 12に示した。試験塗布板及び比較試験塗布板の塗料が 黄色く着色した場合を「黄変」と、黄茶色に着色した場合を「黄茶変」と表示した。
[0101] [表 12]
Figure imgf000033_0001
[0102] 実施例 28、 29の結果から、試験塗料 A— Eは比較試験塗料 A— Cに比較して光触 媒を有し且つ紫外線照射による耐変色性が優れていると判断できる。
実施例 30
[0103] 〇チタ-ァ系光触媒混練シート(サンプルシート F— J,比較サンプルシート A— C)の 作製
アクリル系榭脂 100部に対して 1部のサンプル Fを混練し、 lgZm2のシートを成型 してサンプルシート Fとした。サンプル G— J、比較粉末 A— Cについても同様に操作 して、サンプルシート G— J、比較サンプルシート A— Cを作製した。また、粉末無添加 で同様に操作して榭脂シートを成型し、ブランクとした。
実施例 31
[0104] 〇シート着色性試験:紫外線照射
サンプルシート F— Jおよび比較サンプルシート A— Cの初期着色性及び紫外線照 射を 96時間した後の変色性を目視で調べた。この紫外線照射は、紫外線ランプ (東 芝ライテック (株): FL20SBLB— A, 20ワット)を用い紫外線強度を lmWZcm2 (ミノ ルタ (株): UVラジオメーター, UM— 10により測定)に調整した条件で実施した。ブラ ンクに対する試験結果を表 13に示した
[0105] [表 13]
Figure imgf000034_0001
実施例 32
[0106] 〇ガス分解性試験:紫外線照射
実施例 30で作製した各サンプルシートを 10cm X 10cmに切り取り、テドラーバッグ に入れ、ァセトアルデヒドガスの濃度が 14ppmのものを 3リットル注入した。このテドラ 一バッグに紫外線を実施例 31と同じ条件で 24時間照射し、 24時間後の残存ァセト アルデヒドガス濃度をガス検知管 (ガステック株式会社製 No. 92L)を用いて測定し た。試験結果を表 14に示した。
[0107] [表 14]
Figure imgf000034_0002
実施例 33
[0108] 〇ガス分解性試験:可視光照射
実施例 30で作製した各サンプルシートを 30cm X 30cmに切り取り、テドラーバッグ に入れ、ホルムアルデヒドガスの濃度が 5ppmのものを 1リットル注入した。このテドラ 一バッグに紫外線カットフィルムを取り付けた蛍光灯により照度 3000ルクス可視光を 24時間照射した。照射後、残存ァセトアルデヒドガス濃度をガス検知管 (ガステック株 式会社製 No. 91L及び 91LL)を用いて測定した。試験結果を表 15に示した。
[0109] [表 15]
Figure imgf000035_0001
実施例 34
[0110] 〇防汚試験 (メチレンブルー分解試験):可視光照射
実施例 30で作製した各サンプルシートの防汚性能を評価する為に、メチレンブル 一分解試験を実施した。試験方法としては、光触媒製品技術協議会の定める 2003 年度版(http://www.photocatalysis.com/index.html)液相フイノレム密着法を用いた。 ただし、光源は蛍光灯 (東芝ライフテック Z照度 2000LUX)を使用した。結果を表 1 6に己載した。
[0111] [表 16]
Figure imgf000035_0002
[0112] 上記消臭試験結果及び防汚試験結果からサンプルシート F— Jは光触媒シートとし て優秀であり、作製時の着色及び紫外線照射による変色が認められな力つた。 実施例 35
[0113] 〇紡糸性
繊維用ポリエステル榭脂にサンプル Fを 3質量%濃度で添加し、溶融し糸曳きを行 なった。その後、この糸を延伸倍率を 2倍から糸切れがするまで上昇させていった。ま た、延伸後の糸の着色度合いを測定した。サンプル G、比較粉末 A、及び比較粉末 Cについても同様に実施した。なお、比較粉末 Cについては、糸切れして溶融し糸曳 き試験ができな力つた。
この試験結果を表 17に示した。
[0114] [表 17]
Figure imgf000036_0001
実施例 36
[0115] 〇各繊維のガス分解性:紫外線照射
実施例 35で作製した繊維を 10gは力り取り、実施例 32と同様にァセトアルデヒドガ ス分解試験を実施した。この試験結果を表 18に示した。
[0116] [表 18]
Figure imgf000036_0002
実施例 37
[0117] 〇各繊維のガス分解性:可視光照射
実施例 35で作製した繊維を 10gは力り取り、テドラーノッグに入れ、これに硫化水 素ガス 5ppmを含有する空気 3リットルを入れ、実施例 33と同様にガス分解試験を実 施した。残存硫ィ匕水素ガス濃度はガス検知管 (ガステック株式会社製 No. 4LL)を用 いて測定した。この試験結果を表 19に示した
[0118] [表 19]
Figure imgf000037_0001
産業上の利用可能性
[0119] 本発明のチタニア系光触媒は、可視光、例えば市販蛍光灯下で優れた光触媒性 能を発揮する光触媒である。本発明のチタ-ァ系光触媒は粉体のままでも使用でき る力 塗料ゃ榭脂、繊維等に添加あるいは混練し、加工することによって、可視光に 応答する光触媒性能を有する塗料ゃ榭脂、繊維等を得ることが出来る。例えば本発 明のチタ-ァ系光触媒を含有させた機能性分散液は、繊維、不織布、フィルター、フ イルム、塗料、紙、成形品等に用いて機能性加工製品とすることができる。また本発 明のチタ-ァ系光触媒を含有させた機能性榭脂は、成型体、シート、糸等に加工す ることができ、板、フィルム、フィルター、繊維等として使用することが出来る。
このようなことから、本発明のチタ-ァ系光触媒は、一般的な光触媒のものと異なり 紫外線照射が極めて少な 、家の中等にぉ 、て防汚 ·抗菌 ·アルデヒドガス等の有毒 ガス等や附着した物質を分解することができ、環境浄ィ匕に用いることができる。 図面の簡単な説明
[0120] [図 1]チタ-ァ系光触媒サンプル Aの粉末 X線回折パターンを測定した結果。
[図 2]チタ-ァ系光触媒サンプル Bの粉末 X線回折パターンを測定した結果。
[図 3]チタ-ァ系光触媒サンプル Cの粉末 X線回折パターンを測定した結果。
[図 4]チタ-ァ系光触媒サンプル Dの粉末 X線回折パターンを測定した結果。
[図 5]チタ-ァ系光触媒サンプル Eの粉末 X線回折パターンを測定した結果。
[図 6]比較サンプル Aの粉末 X線回折パターンを測定した結果。
[図 7]比較サンプル Bの粉末 X線回折パターンを測定した結果。
[図 8]比較サンプル Cの粉末 X線回折パターンを測定した結果。
[図 9]チタニア系光触媒サンプル Fとチタニア系光触媒サンプル Fにピリジン吸着処 理を行なったもの(Pyr+)の 1400— 1700cm— 1の IR ^ベクトル
[図 10]比較サンプル Bと比較サンプル Bにピリジン吸着処理を行なったもの(Pyr+)の 1400— 1700cm— 1の IR ^ベクトル
[図 11]チタニア系光触媒サンプル K一 Oの UV— vis拡散反射法によって吸光度を測 定した結果。
[図 12]比較サンプル Aおよび比較サンプル Bの UV— vis拡散反射法によって吸光度 を測定した結果。
[図 13]チタ-ァ系光触媒サンプル M、チタ-ァ系光触媒サンプル Nおよびチタ-ァ 系光触媒サンプル Oの近赤外吸収スペクトル。
[図 14]比較サンプル Aの近赤外吸収スペクトル。
符号の説明
図 1一 8の縦軸は、 Int. Zcpsの値である。
図 1一 8の横軸は, 2 0 Zdegの値である。
図 9および図 10の横軸は、赤外線の波数 (cm 1)を示す。
図 9および図 10の縦軸は、吸収度を示す。
図 9の実線は、チタ-ァ系光触媒サンプル Fにつ 、てピリジン吸着処理を行なった もの(Pyr+)の IR ^ベクトルを示す。
図 10の実線は、比較サンプル Bについてピリジン吸着処理を行なったもの(Pyr+) の IR ^ベクトルを示す。
図 9の破線は、チタ-ァ系光触媒サンプル Fの IRスペクトルを示す。
図 10の破線は、比較サンプル Bの IRスペクトルを示す。
図 11一 12の縦軸は、任意スケールである。
図 11一 12の横軸は、波長 nmである。
図 13— 14の縦軸は、任意スケールである。
図 13— 14の横軸は、波数 cm 1である。
図 11の Kは、チタ-ァ系光触媒サンプル Kを示す。
図 11の Lは、チタ-ァ系光触媒サンプル Lを示す。
図 11と図 13との Mは、チタ-ァ系光触媒サンプル Mを示す。 図 11と図 13との Nは、チタ-ァ系光触媒サンプル Nを示す。 図 11と図 13との Oは、チタ-ァ系光触媒サンプル Oを示す。 図 12と図 14との aは、比較サンプル Aを示す。
図 12の bは、比較サンプル Bを示す。

Claims

請求の範囲
[1] チタンに対しニオブ含有量が 0. 1— 25モル%である複合酸ィ匕型チタ-ァ系光触 媒。
[2] 細孔容積が 0. 05— 10cm3Zgであり、結晶子径が 5nm— lOOOnmである請求項
1に記載の複合酸化型チタ-ァ系光触媒。
[3] ブルッカイト型の結晶相を含む請求項 1一 2にそれぞれ記載の複合酸ィ匕型チタ-ァ 系光触媒。
[4] チタンに対しニオブ含有量が 3— 22モル%である請求項 1一 3にそれぞれ記載の 複合酸化型チタ-ァ系光触媒。
[5] チタンに対し 3価原子を 0. 01— 20モル%含有する請求項 1一請求項 4にそれぞ れ記載の複合酸化型チタニア系光触媒。
[6] 3価原子がアルミニウム、セリウム、鉄のうち少なくとも一つのものである請求項 5記 載の複合酸化型チタニア系光触媒。
[7] 請求項 1一 6にそれぞれ記載の複合酸化型チタニア系光触媒を含有する機能性分 散液。
[8] 請求項 1一 6にそれぞれ記載の複合酸化型チタニア系光触媒を含有する機能性榭 脂組成物
[9] 請求項 1一 6にそれぞれ記載の複合酸化型チタニア系光触媒を含有する製品。
PCT/JP2004/015945 2003-11-06 2004-10-27 複合酸化型チタニア系光触媒及びその用途 WO2005044447A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515268A JPWO2005044447A1 (ja) 2003-11-06 2004-10-27 複合酸化型チタニア系光触媒及びその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-377594 2003-11-06
JP2003377594 2003-11-06

Publications (1)

Publication Number Publication Date
WO2005044447A1 true WO2005044447A1 (ja) 2005-05-19

Family

ID=34567153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015945 WO2005044447A1 (ja) 2003-11-06 2004-10-27 複合酸化型チタニア系光触媒及びその用途

Country Status (2)

Country Link
JP (1) JPWO2005044447A1 (ja)
WO (1) WO2005044447A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174936A (ja) * 2005-12-27 2007-07-12 Toagosei Co Ltd クーラーボックス
WO2011115237A1 (ja) * 2010-03-15 2011-09-22 株式会社キャタラー 光触媒フィルター及びそれを具備する脱臭装置
JP2013220403A (ja) * 2012-04-19 2013-10-28 National Institute For Materials Science 可視光応答性光触媒とその製造方法
WO2014132607A1 (ja) * 2013-02-27 2014-09-04 パナソニック株式会社 酸化チタン粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材
CN105196836A (zh) * 2014-06-28 2015-12-30 冷庆林 一种利用汽车尾气为车内供暖的方法
JP2019173207A (ja) * 2018-03-28 2019-10-10 俊夫 小室 フォトン及びイオンを発生する健康増進組成物
JP2022076646A (ja) * 2020-11-10 2022-05-20 Dic株式会社 金属化合物を担持した酸化チタンの水性組成物
JPWO2022138187A1 (ja) * 2020-12-22 2022-06-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745345A (en) * 1980-06-30 1982-03-15 Shibitsuto Spa Catalyst for optically decomposing water
JPH09267037A (ja) * 1996-04-01 1997-10-14 Titan Kogyo Kk 二酸化チタンを基体とする光触媒及びその製造方法
JP2000169147A (ja) * 1998-12-01 2000-06-20 Agency Of Ind Science & Technol チタニア粉体
JP2004196641A (ja) * 2002-12-16 2004-07-15 Masanori Hirano アナターゼ型結晶組成物およびその製造法
JP2004195439A (ja) * 2002-12-20 2004-07-15 Jfe Steel Kk 光触媒およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745345A (en) * 1980-06-30 1982-03-15 Shibitsuto Spa Catalyst for optically decomposing water
JPH09267037A (ja) * 1996-04-01 1997-10-14 Titan Kogyo Kk 二酸化チタンを基体とする光触媒及びその製造方法
JP2000169147A (ja) * 1998-12-01 2000-06-20 Agency Of Ind Science & Technol チタニア粉体
JP2004196641A (ja) * 2002-12-16 2004-07-15 Masanori Hirano アナターゼ型結晶組成物およびその製造法
JP2004195439A (ja) * 2002-12-20 2004-07-15 Jfe Steel Kk 光触媒およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SABATE J. ET AL.: "Nature and properties of pure and Nb-doped TiO2 ceramic membranes affecting the photocatalytic degradation of 3-chlorosalicylic acid as a model of halogenated organic compounds", JOURNAL OF CATALYSIS, vol. 134, 1992, pages 36 - 46, XP002989316 *
UEDA H. ET AL.: "Kashiko ni oto suru hikari shokubai.antei radical-gata muki kobunshi zairyo", JOURNAL OF THE CHEMICAL SOCIETY OF JAPAN, no. 10, 1992, pages 1044 - 1051, XP002989317 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174936A (ja) * 2005-12-27 2007-07-12 Toagosei Co Ltd クーラーボックス
WO2011115237A1 (ja) * 2010-03-15 2011-09-22 株式会社キャタラー 光触媒フィルター及びそれを具備する脱臭装置
JPWO2011115237A1 (ja) * 2010-03-15 2013-07-04 株式会社キャタラー 光触媒フィルター及びそれを具備する脱臭装置
JP2013220403A (ja) * 2012-04-19 2013-10-28 National Institute For Materials Science 可視光応答性光触媒とその製造方法
JPWO2014132607A1 (ja) * 2013-02-27 2017-02-02 パナソニックIpマネジメント株式会社 酸化チタン粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材
WO2014132607A1 (ja) * 2013-02-27 2014-09-04 パナソニック株式会社 酸化チタン粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材
CN105196836A (zh) * 2014-06-28 2015-12-30 冷庆林 一种利用汽车尾气为车内供暖的方法
JP2019173207A (ja) * 2018-03-28 2019-10-10 俊夫 小室 フォトン及びイオンを発生する健康増進組成物
JP2022076646A (ja) * 2020-11-10 2022-05-20 Dic株式会社 金属化合物を担持した酸化チタンの水性組成物
JP7238877B2 (ja) 2020-11-10 2023-03-14 Dic株式会社 金属化合物を担持した酸化チタンの水性組成物
JPWO2022138187A1 (ja) * 2020-12-22 2022-06-30
WO2022138187A1 (ja) * 2020-12-22 2022-06-30 Dic株式会社 酸化チタン組成物
JP7235162B2 (ja) 2020-12-22 2023-03-08 Dic株式会社 酸化チタン組成物

Also Published As

Publication number Publication date
JPWO2005044447A1 (ja) 2007-05-17

Similar Documents

Publication Publication Date Title
US9517459B2 (en) Photocatalytic coating film and method for producing same
JP6721035B2 (ja) 抗ウイルス剤、コーティング組成物、樹脂組成物及び抗ウイルス製品
Colmenares et al. Polypropylene nonwoven filter with nanosized ZnO rods: Promising hybrid photocatalyst for water purification
JPWO2007023558A1 (ja) 酸化タングステン系光触媒及びその製造方法並びに消臭・防汚機能を有する繊維布帛
JPWO2006046443A1 (ja) Voc除去機能を有する繊維布帛
JP4293801B2 (ja) 活性管状酸化チタン粒子、該酸化チタン粒子を含む触媒および消臭剤
JP6929518B2 (ja) 多孔質シリカ、及び、消臭剤
JP2007098294A (ja) 複合光触媒体
JP2006082071A (ja) 光触媒組成物、内装用建材、塗料、合成樹脂成形体、光触媒の活用方法及び有害物質の分解方法
JP2021522061A (ja) 窒素ドープされたTiO2ナノ粒子及び光触媒におけるその使用
CA2967381A1 (en) Compositions comprising diatom frustules and applications thereof
JP5127134B2 (ja) 管状酸化チタン粒子からなる消臭剤
WO2005044447A1 (ja) 複合酸化型チタニア系光触媒及びその用途
JP4810678B2 (ja) 光触媒の製造方法、光触媒の使用方法及び有害物質の分解方法
TW201625322A (zh) 除臭劑以及除臭製品
TWI627999B (zh) Titanium oxide carrying a transition metal compound
JP2004243307A (ja) 高活性光触媒粒子およびその製造方法ならびにその用途
Kumar et al. Production of self-cleaning cement using modified titanium dioxide
JP4647334B2 (ja) 光触媒液体組成物
JP4980204B2 (ja) 酸化チタン系消臭剤の製造方法
JP2004262941A (ja) 防臭・抗菌・防カビ被覆用組成物
JP4534454B2 (ja) 硫黄系悪臭の消臭に適した消臭剤
JP2010075898A (ja) 光触媒、光触媒の製造方法、光触媒機能性組成物
WO2007026796A1 (ja) 光触媒
KR100922010B1 (ko) 금속-유기 화합물 복합체, 이를 포함하는 광촉매 졸 및코팅용 조성물

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515268

Country of ref document: JP

122 Ep: pct application non-entry in european phase