WO2005043609A1 - 熱処理装置及び熱処理方法 - Google Patents

熱処理装置及び熱処理方法 Download PDF

Info

Publication number
WO2005043609A1
WO2005043609A1 PCT/JP2004/016213 JP2004016213W WO2005043609A1 WO 2005043609 A1 WO2005043609 A1 WO 2005043609A1 JP 2004016213 W JP2004016213 W JP 2004016213W WO 2005043609 A1 WO2005043609 A1 WO 2005043609A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
processing container
processed
recipe
predetermined
Prior art date
Application number
PCT/JP2004/016213
Other languages
English (en)
French (fr)
Inventor
Youngchul Park
Kazuhiro Kawamura
Wenling Wang
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/577,145 priority Critical patent/US20070074660A1/en
Priority to EP04799419A priority patent/EP1684336A4/en
Publication of WO2005043609A1 publication Critical patent/WO2005043609A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Definitions

  • the present invention relates to a heat treatment apparatus for heat-treating an object to be processed such as a semiconductor wafer, and in particular, predicts the temperature of the object to be processed using a thermal model, and controls heat processing based on the prediction result.
  • the present invention relates to a heat treatment apparatus and a heat treatment method.
  • a horizontal heat treatment apparatus and a vertical heat treatment apparatus are known as batch heat treatment apparatuses for performing heat treatment such as film formation, oxidation, and diffusion on a large number of semiconductor wafers at once.
  • batch heat treatment apparatuses for performing heat treatment such as film formation, oxidation, and diffusion on a large number of semiconductor wafers at once.
  • vertical heat treatment equipment is becoming mainstream because of the low air entrainment.
  • the heat treatment apparatus performs heat treatment while controlling processing conditions such as a processing temperature, a processing pressure, and a gas flow rate so as to match target values set in a recipe.
  • processing conditions such as a processing temperature, a processing pressure, and a gas flow rate so as to match target values set in a recipe.
  • it is necessary to measure the temperature of the wafer, the pressure in the reactor, the gas flow rate, and the like.
  • the pressure in the reactor can be measured relatively accurately by a pressure gauge. Further, the gas flow rate can be measured relatively accurately by a mass flow controller or the like including a flow meter arranged in the supply pipe.
  • measuring the temperature of the wafer is difficult.
  • a method of mounting a temperature sensor on a wafer is also conceivable, but in this case, a semiconductor element cannot be formed at the mounting position of the temperature sensor. Further, impurities from the temperature sensor may contaminate the entire inside of the reaction furnace, and may reduce the yield of semiconductor devices.
  • the in-plane temperature difference and the surface temperature difference depend on how the upper and lower heaters are controlled with respect to the wafers W arranged at the upper end and the lower end of the wafer port. There is a possibility that the film thickness and the film quality become non-uniform due to the temperature difference between them.
  • heaters are provided on the side, above and below the object to be processed, the temperature of the object to be processed is predicted using a thermal model, and heat treatment is performed based on the predicted temperature.
  • a heat treatment apparatus an object is to provide a heat treatment apparatus and a heat treatment method capable of performing temperature control more accurately.
  • Another object of the present invention is to provide a heat treatment apparatus and a heat treatment method for suppressing generation of particles.
  • the present invention provides a processing container accommodating an object to be processed, a plurality of heaters for heating the object to be processed, a plurality of temperature sensors for respectively detecting temperatures at a plurality of predetermined positions in the processing container.
  • a thermal model for estimating the temperature of the processing object stored in the processing container from outputs of the plurality of temperature sensors, and a recipe in which a desired temperature of the processing object is defined.
  • a storage unit that estimates the temperature of the object to be processed using the outputs of the plurality of temperature sensors and the thermal model, and stores the predicted temperature of the object to be processed in the recipe specified in the recipe.
  • a heat treatment apparatus for controlling the plurality of heaters, each of which controls a desired temperature of the object to be processed specified in the recipe and a desired temperature of the predetermined portion. is there.
  • the temperature of a predetermined portion other than the object to be processed is also set as the control target, so that the inside of the processing container is compared with the case where only the temperature of the target is set as the control target. Temperature control can be performed more accurately. Thereby, generation of particles can be suppressed.
  • At least one other predetermined position in the processing container is the processing container. May include an internal heater.
  • the at least one other predetermined portion in the processing container may include a predetermined position on an inner wall surface of the processing container.
  • the at least one other predetermined portion in the processing container may include the upper heater and the lower heater.
  • an exhaust pipe is connected above the processing container, and the upper heater is disposed so as to surround the exhaust pipe.
  • an upper heater and a lower heater are arranged corresponding to an upper part and a lower part of the object to be processed accommodated in the processing container.
  • an upper temperature sensor is disposed as one of the plurality of temperature sensors between the object to be processed and the upper heater accommodated in the processing container,
  • the at least one other predetermined location may include the upper temperature sensor and the lower heater.
  • an exhaust pipe is connected above the processing container, and the upper heater is arranged so as to surround the exhaust pipe.
  • the heat treatment apparatus further comprises: means for introducing a gas into a gas inlet of the processing container; and means for exhausting a gas from a gas outlet of the processing container. It is preferable that at least one predetermined portion is set between the gas inlet and the most downstream portion of the object to be processed on a path from the gas inlet to the gas outlet.
  • the thermal model is based on outputs of the plurality of temperature sensors during the heat treatment, the temperature of the object to be processed housed in the processing container during the heat treatment, and the processing volume. And estimating a temperature of at least one other predetermined portion in the vessel, wherein the recipe includes a desired temperature of the object to be processed during the heat treatment and a desired temperature of the predetermined portion.
  • the control unit estimates the temperature of the object to be processed and the temperature of the predetermined part during the heat treatment using the outputs of the plurality of temperature sensors and the thermal model, and The plurality of heats are adjusted so that the temperature of the object to be processed and the temperature of the predetermined portion are respectively equal to the desired temperature of the object to be processed and the desired temperature of the predetermined portion during the heat treatment specified in the recipe.
  • the data is controlled.
  • the heat treatment apparatus further includes a load Z unloading means for loading the object to be processed into the processing container and unloading the processed object from the processing container
  • the thermal model is based on the outputs of the plurality of temperature sensors during loading and during Z or unloading, and calculates the temperature of the object contained in the processing container during loading and during Z or unloading.
  • the recipe is configured to estimate a temperature of at least one other predetermined portion in the processing container, and the recipe includes a desired temperature of the workpiece during loading and Z or unloading.
  • the desired temperature of the predetermined part is defined, and the control unit uses the outputs of the plurality of temperature sensors and the thermal model to load and Z or unload the object to be processed.
  • the predicted temperature of the object to be processed and the temperature of the predetermined part are respectively adjusted during loading and Z or unloading specified in the recipe.
  • the plurality of heaters are controlled to match a temperature and a desired temperature of the predetermined portion.
  • the present invention provides a processing container for accommodating the object to be processed, a plurality of heaters for heating the object to be processed, and a plurality of temperatures for respectively detecting temperatures at a plurality of predetermined positions in the processing container.
  • a heat treatment method for controlling a heat treatment apparatus comprising: a sensor; and applying outputs of the plurality of temperature sensors to a preset heat model to obtain a temperature of the object to be processed and a temperature in the processing container.
  • a predicting step of predicting a temperature of at least one other predetermined site, and a temperature of the object to be processed predicted in the predicting step.
  • a control step of controlling the plurality of heaters so that a temperature and a temperature of the predetermined portion match a predetermined temperature of the object to be processed and a predetermined temperature of the predetermined portion. It is a method characterized by the following.
  • the present invention provides a processing container for accommodating an object to be processed, a plurality of heaters for heating the object to be processed, and a plurality of temperatures for respectively detecting temperatures at a plurality of predetermined positions in the processing container.
  • a program for controlling a heat treatment apparatus comprising: a sensor configured to apply an output of the plurality of temperature sensors to a preset thermal model, thereby obtaining a temperature of the object to be processed and another temperature in the processing container.
  • a control procedure for controlling the plurality of heaters so as to match a desired temperature of the predetermined portion.
  • the present invention provides a processing container for accommodating an object to be processed, a plurality of heaters for heating the object to be processed, and a plurality of temperatures for detecting temperatures at a plurality of predetermined positions in the processing container, respectively.
  • a program for controlling a heat treatment apparatus comprising: a sensor configured to apply an output of the plurality of temperature sensors to a preset thermal model, thereby obtaining a temperature of the object to be processed and another temperature in the processing container.
  • a control procedure for controlling the plurality of heaters to match a desired temperature of the predetermined portion and a computer-readable recording medium storing a program for causing a computer to execute the steps. .
  • the present invention provides a processing container for accommodating an object to be processed, a plurality of heaters for heating the object to be processed, and a plurality of temperatures for respectively detecting temperatures at a plurality of predetermined positions in the processing container.
  • a thermal model for estimating a temperature of the processing object housed in the processing container from outputs of the plurality of temperature sensors; and
  • a storage unit for storing a recipe in which a desired temperature of the processing object is specified; The temperature of the object to be processed is predicted using a heat storage model, and the plurality of the plurality of objects are made to match the predicted temperature of the object to be processed with a desired temperature of the object specified in the recipe.
  • a control unit that controls the heaters of the above, wherein the thermal model is configured to output the outputs of the plurality of temperature sensors together with the temperature of the object to be processed contained in the processing container,
  • the recipe is also configured to estimate the temperature of at least one of the predetermined portions.
  • the recipe also specifies a desired temperature of the predetermined portion, and the control section outputs the outputs of the plurality of temperature sensors.
  • the temperature of the target object and the temperature of the predetermined portion are predicted using the thermal model and the thermal model.
  • Each of the predicted temperature of the target object and the temperature of the predetermined portion is defined in the recipe.
  • the said It is a control device according to claim that such One to control the desired temperature, and vector plurality of heaters to match the desired temperature of the plant constant region of the physical body.
  • control device or each component of the control device can be realized by a computer system.
  • a program for causing a computer system to realize the control device or each component of the control device, and a computer-readable recording medium storing the program are also covered by the present invention.
  • control device or each component of the control device is realized by a program such as an OS operating on a computer system, a program including various instructions for controlling the program such as the OS, and the program Is also protected by this case.
  • the recording medium includes not only a floppy disk or the like that can be recognized as a single unit, but also a network that propagates various signals.
  • FIG. 1 is a diagram showing a configuration of a heat treatment apparatus according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a control unit of the heat treatment apparatus of FIG. 1.
  • FIG. 3A is a diagram showing an example of data stored in a thermal model storage unit in FIG.
  • FIG. 3B is a diagram showing an example of data stored in the recipe storage unit of FIG.
  • FIG. 4 is a perspective view for explaining a temperature measurement position of the lower heater.
  • FIG. 5 is a diagram showing an example of a setup recipe.
  • FIG. 6 is a diagram showing an example of a process recipe.
  • FIG. 7 is a schematic diagram showing a configuration example of a temperature measuring device.
  • FIG. 8 is a schematic longitudinal sectional view showing a state where the arm of the temperature measuring device is inserted into the port.
  • FIG. 9 is a flowchart for explaining a procedure for calibrating a reference thermal model and generating a calibrated thermal model.
  • FIG. 10 is a diagram showing a state in which, for each set temperature of a setup recipe, an expected temperature based on a reference heat model and an actually measured temperature are stored in association with each other.
  • FIG. 11 is a diagram for explaining a correction amount for a reference thermal model.
  • FIG. 12A is a flowchart showing a processing procedure at the time of loading.
  • FIG. 12B is a flowchart showing a processing procedure at the time of unloading.
  • FIG. 13 is a flowchart for explaining an example of a film forming process.
  • the vertical heat treatment apparatus 1 As shown in FIG. 1, the vertical heat treatment apparatus 1 according to the present embodiment
  • the processing container 11 accommodates a wafer W as an object to be processed, and performs a predetermined heat treatment, for example, a CVD process on the wafer W.
  • the processing container 11 is formed of a material having heat resistance and corrosion resistance, for example, quartz glass.
  • the processing vessel 11 has a single-pipe structure in which the upper end and the lower end are open, and the upper end is narrowed to a small diameter to form an exhaust portion 12.
  • the exhaust unit 12 is connected to a vacuum pump or the like via an exhaust pipe (not shown) or the like.
  • a gas inlet (introduction port) 13 for introducing a processing gas or an inert gas into the processing container 11 is disposed below the processing container 11.
  • the gas introduction section 13 is provided with a plurality of gas supply system pipes 14 leading to a gas source.
  • the processing gas introduced from the gas introduction part 13 rises in the processing vessel 11 and After being subjected to a predetermined heat treatment of W, the gas is exhausted from the exhaust unit 12.
  • the lower end of the processing container 11 is formed in a flange shape.
  • the lower end 15 is a lid 2 made of a heat-resistant and corrosion-resistant material such as stainless steel.
  • the lid 21 Opened and closed by one.
  • the lid 21 is raised and lowered by an elevator (not shown).
  • the lid 21 closes the lower end 15 of the processing vessel 11 at the raised position, and is closed at the lowered position.
  • the lower end 15 of the processing container 11 is opened.
  • O-ring 22 is arranged.
  • a rotating column 23 is provided so as to be rotatable.
  • a rotating table 24 is fixed to the upper end of the rotating column 23.
  • a drive section 25 for rotating and driving the rotating column 23 is provided below the lid 21.
  • the port 26 is placed on the turntable 24 with the lid 21 lowered. Thereafter, when the lid 21 is raised to seal the lower end 15 of the processing container 11, the loading of the port 26 into the processing container 11 is completed. After the heat treatment is completed, the lid 21 is lowered and the port 26 is unloaded. Further, during the heat treatment, the rotary table 24 is rotated by the drive unit 25, so that the wafer W is uniformly heat-treated.
  • a peripheral heater 31 for heating and raising the temperature of the wafer W accommodated in the processing container 11 from its peripheral portion is arranged.
  • the peripheral heater 31 is arranged in a vertical cylindrical shape so as to surround the processing vessel 11.
  • the peripheral heater 31 is composed of, for example, a plurality of rod-shaped resistance heating elements.
  • the peripheral heater 31 of the present embodiment includes a main heater 31 a that heats the entire peripheral surface of the processing container 11, and an upper sub-heater 31 b that heats the upper peripheral surface of the processing container 11.
  • a lower heater sub-heater 3 1 c for heating the peripheral surface on the lower end side of the processing vessel 11, and the main heater 31 a and the sub-heaters 31 b and 31 c are The processing containers 11 are alternately arranged in the circumferential direction.
  • An upper heater 32 is provided above the processing container 11.
  • the upper surface heater 32 is formed in a donut shape around the exhaust part 12,
  • the upper surface heater 32 prevents the temperature of the wafer W from lowering due to heat radiation from the exhaust unit 12 of the processing chamber 11.
  • a lower surface heater 33 is provided below the processing container 11.
  • the lower surface heater 33 is arranged below the turntable 24 in the processing container 11, and is fixed on the lid 21 by a support member 35.
  • the lower surface heater 33 is formed in a donut shape so that the rotating column 23 penetrates a central portion thereof. Thereby, the lower surface heater 33 prevents the temperature of the wafer from being lowered due to heat radiation through the lid 21 and the like.
  • the temperature sensor S 1 is located at a position corresponding to the upper portion of the port 26, the temperature sensor S 2 is located at a position corresponding to the center of the port 26, the temperature sensor S 3 is located at a position corresponding to the lower portion of the port 26, Each is arranged.
  • a temperature sensor S 4 is disposed at a position between the upper surface heater 32 and the upper end surface of the port 26 in the processing container 11. Further, a temperature sensor S5 is disposed in the processing vessel 11 at a position between the lower surface heater 33 and the turntable 24.
  • the temperature sensors S4 and S5 are housed in, for example, a quartz tube in order to prevent the occurrence of metal contamination in the processing chamber 11.
  • the outputs (detected temperatures) of the temperature sensors S 1 S 5 predict the respective surface temperatures of the wafer W placed on the port 26, the upper heater 32, and the lower heater 33, as described later ( Estimation; prediction).
  • the heat treatment apparatus 1 includes a control unit 100 that controls the entire apparatus.
  • the control unit 100 includes a temperature sensor S 1 S 5, an operation panel 121, a pressure gauge (group) 122, a heater controller 122, a mass flow controller 1 2 4, Valve open / close control unit 1 2 5, Vacuum pump 1 2 6, Port elevator Data 127 etc. are connected.
  • the temperature sensors S 1 S 3 measure the temperature of the outer wall surface of the processing container 11 and notify the control unit 100.
  • the temperature sensor S4 measures the temperature in the vicinity of the upper heater 32 and notifies the controller 100 of the measured temperature.
  • the temperature sensor S5 measures the temperature in the vicinity of the lower heater 33 and notifies the controller 100 of the measured temperature.
  • the operation panel 1 2 1 includes a display screen and operation buttons.
  • the operator's operation and Z or an instruction are transmitted to the control unit 100 via the operation button.
  • Various information from the control unit 100 is displayed on the display screen.
  • the pressure gauge (group) 122 measures the pressure of each section in the processing vessel 11 and the exhaust section 12, and notifies the control section 100 of the measured value.
  • the heater controller 123 individually controls the heaters 31a, 31b, 31c, 32, and 33. Specifically, the heater controller 123 supplies current to the heaters 31a, 31b, 31c, 32, and 33 and heats them in response to an instruction from the control unit 100. In addition, the heater controller 123 individually measures the power consumption of each of the heaters 31 a, 31 b, 31 c, 32, and 33 and notifies the control unit 100 of the measured value.
  • the mass flow controller 124 is arranged in each pipe, and controls the flow rate of gas flowing through each pipe to the amount specified by the control unit 100. Further, the mass flow controller 124 measures the flow rate of the gas that actually flows, and notifies the control unit 100 of the measured value.
  • the valve opening / closing control unit 125 is disposed in each pipe, and controls the opening degree of a valve disposed in each pipe to a value instructed by the control unit 100.
  • the vacuum pump 126 is connected to the exhaust unit 12 of the processing container 11 via an exhaust pipe or the like, and exhausts the gas in the processing container 11.
  • the port elevator 127 loads the port 26 placed on the rotary table 24 into the processing vessel 11 by raising the lid 21, and lowers the lid 21. Then, the port 26 placed on the turntable 24 is unloaded from the processing container 11.
  • the control unit 100 includes a thermal model storage unit 111, a recipe storage unit 112, a ROM 113, a RAM 114, and an IZO port. It consists of 115, a CPU 116, and a bus 117 interconnecting them.
  • the thermal model storage unit 111 stores a standard thermal model M1 and a standard thermal model M1 created using a standard apparatus having the same specifications as the heat treatment apparatus 1.
  • the calibration heat model M 2 and the calibration thermal model M 2 generated and calibrated (customized) for the heat treatment apparatus 1 are stored.
  • the reference heat model M1 is stored in the heat model storage unit 111.
  • the reference thermal model M1 is corrected to generate a calibration thermal model M2, which is stored in the thermal model storage unit 111.
  • Both the reference thermal model M1 and the calibration thermal model M2 are the output signals (measurement temperature) of the temperature sensors S1 and S5 and the power supplied to the heaters 31a33 (the heater controller connected to the heaters 31a33).
  • This is a model (mathematical model; higher-order multidimensional matrix) for estimating the temperature inside the processing vessel 11 from the indicated value indicating the amount of power supplied from 123).
  • the reference heat model M 1 is generated using the reference device, and is common to a plurality of heat treatment devices 1 having the same specification.
  • the calibration heat model M2 is generated so that the thermal characteristics of each device are accurately reflected when setting up each heat treatment device 1, and is used for actual operation (process processing). Things.
  • the reference thermal model M1 is mounted on the upper part of the port 26 based on the output signals (measured temperatures) of the temperature sensors S1 and S5 and the power supplied to the heaters 31a33.
  • Wafer (port upper wafer) Temperature of central part P 1 and peripheral part P 2 of W, center of port 26 Wafer (port central part wafer) Temperature of central part P of W, port 3 Wafer placed on the lower part of 26 (port lower wafer)
  • Temperature of central part P 4 and peripheral part P 5 of W temperature of 5 places in total
  • temperature sensor arranged on port 26
  • the temperature of S4 the temperatures of two points P6 and P7 on the lower heater 33, and the temperatures of predetermined positions P8 and P9 (FIG.
  • the temperature measurement positions P 6 and P 7 on the lower heater 33 are located symmetrically with respect to the center point of the donut-shaped lower heater 33.
  • positions P 8 and P 9 on the inner surface of the side wall of the processing container 11 are respectively approximately 1 Z 3 above and between the upper end and the lower end of the side wall of the processing container 11, and approximately 1 This is the position of Z3.
  • the reference thermal model M1 converts the temperatures to the temperatures (target values) specified in the recipe.
  • the power to be supplied to each of the heaters 31a, 31b, 31c, 32, and 33 is determined to make them match.
  • the method of generating the reference thermal model M1 is disclosed in, for example, US Pat. No. 5,517,594.
  • the calibration thermal model M2 has the same structure as the reference thermal model M1 except that the calibration thermal model M2 is customized so that the temperature of each part can be accurately estimated according to the thermal characteristics unique to the heat treatment apparatus 1. It is.
  • the recipe storage unit 112 of FIG. 2 stores a setup recipe R 1 and a plurality of process recipes R 2.
  • the setup recipe R1 is executed when the reference thermal model M1 of the heat treatment apparatus 1 is calibrated to generate the calibrated thermal model M2.
  • the setup recipe R1 specifies that the temperature of the temperature measurement position P1 P9 and the temperature of the sensor S4 be raised stepwise with respect to time.
  • the setup recipe R1 specifies the pressure in the processing container 11, the type and gas flow rate of the gas supplied into the processing container, the gas supply start timing, the stop timing, and the like.
  • the process recipe R2 is a heat treatment (process) actually performed by the user. It is a recipe prepared for each. As shown in FIG. 6, the process recipe R 2 according to the present embodiment includes the temperature change of each part from the loading of the semiconductor wafer W to the processing vessel 11 to the unloading of the processed wafer W, 11 Defines the pressure change in 1, the start and stop timing of the supply of the processing gas, and the supply amount of the processing gas.
  • the process recipe R 2 includes, for each process, a temperature measurement position P 1 P 5 of the wafer W, a temperature of the temperature sensor S 4, and a temperature measurement position P 6, P 7 of the lower heater 33.
  • the change in the temperature, the temperature at the temperature measurement positions P8 and P9 on the inner surface of the side wall of the processing container 11 is defined.
  • the control unit 100 of the heat treatment apparatus 1 controls the wafer W on the basis of information such as the measured temperature of the temperature sensors S1 S5 and the power supplied from the heater controller 123 to each heater.
  • the heaters 31a-33 are controlled such that the temperature at the temperature measurement position P1P5 is predicted, and the predicted temperature matches the temperature specified by the process recipe R2. Further, the control unit 100 determines the temperature of the temperature sensor S 4 and the lower surface heater 33 based on information such as the measured temperature of the temperature sensor S 1 S 5 and the power supplied from the heater controller 123 to each heater. Of the temperature measurement positions P 6, P and the temperature measurement positions P 8, P 9 of the inner surface of the side wall of the processing vessel 11, and make sure that the predicted temperature matches the temperature specified by the process recipe R 2. Next, the heaters 31a and 33 are controlled.
  • the ROM 113 shown in FIG. 2 is a recording medium that includes an EEPROM, a flash memory, a hard disk, and the like, and stores an operation program of the CPU 116 and the like.
  • the RAM 114 functions as a work area for the CPU 116.
  • the IZO port 1 15 is a temperature sensor S1 S5, an operation panel 121, a pressure gauge
  • the bus 1 17 is used for transmitting information between components.
  • the CPU (Central Processing Unit) 116 forms the center of the control unit 100.
  • the CPU 116 executes the control program stored in the ROM 113, and according to the instruction from the operation panel 121, and according to the Z or the recipe stored in the recipe storage unit 112, the heat treatment apparatus. Control the operation of 1.
  • the temperature measuring device 51 includes a support column 52, and a first sixth arm portion 535 extending horizontally from the support column 52.
  • the first to third arms 53, 54, 55 can be inserted into the upper slot, the center slot, and the lower slot of the port 26 from the side, respectively. It extends to.
  • the fourth arm portion 56 extends so as to be close to and opposed to the temperature measurement positions P 6 and P 7 of the lower surface heater 33, while avoiding the rotary support 23.
  • the fifth and sixth arms 57, 58 extend so as to face the temperature measurement positions P8 and P9 on the side wall of the processing container 11.
  • thermocouples TC 1 and TC 2 are arranged on the first arm 53 at positions facing the central portion P 1 and the edge portion P 2 of the port upper wafer W, respectively. Have been.
  • the second arm 54 has a position facing the center P3 of the wafer W at the center of the port.
  • thermocouple TC3 is located.
  • thermocouples TC4 and TC5 are arranged at positions facing the central portion P4 and the edge portion P5 of the port lower wafer W, respectively.
  • thermocouples TC6 and TC7 are disposed at positions facing the temperature measurement positions P6 and P7 of the lower surface heater 33, respectively.
  • the fifth arm 57 is provided with a thermocouple TC 8 at a position facing the temperature measurement position P 8 on the side wall of the processing container 11.
  • thermocouple TC 9 is disposed on the sixth arm 58 at a position facing the temperature measurement position P 9 on the side wall of the processing container 11.
  • thermocouples TC1 and TC9 are close to each other at the temperature measurement positions P1 and P9 without contact. They are arranged in contact with each other, and can measure the temperature at each temperature measurement position P 1 P 9 almost accurately.
  • the output signal lines of these thermocouples TC are connected to the IZO port 115 of the control unit 100 during setup.
  • This set-up operation is performed by determining a delicate difference in thermal characteristics between each heat treatment apparatus 1 and the reference apparatus, and correcting the reference heat model M1 stored in the heat model storage unit 111. This is an operation for creating a calibration heat model M2 unique to the heat treatment apparatus 1.
  • the operator operates the port 26 on which the dummy wafer W is mounted and the temperature measurement device.
  • the control unit 100 (CPU 116) lowers the port elevator 127 and lowers the wafer port lid 21.
  • the operator places the port 26 on which the dummy wafer W is mounted on the rotary table 24 via a robot (not shown).
  • the operator places the temperature measuring device 51 on the lid 21 via a robot (not shown), and attaches the first and sixth arms 5 35 58 to FIGS. 7 and 8. Position it at the specified position shown.
  • the operator operates the operation panel 12 1 to instruct the wafer port lid 21 to rise.
  • the control unit 100 (CPU 116) raises the port elevator 127, raises the lid 21, and connects the port 26 and the temperature measuring device 51. Load into processing vessel 1 1
  • the operator operates the operation panel 1 2 1 to instruct the start of the calibration process of the reference thermal model M 1.
  • control unit 100 starts the following processing (operation) in accordance with the calibration processing program stored in the ROM 113.
  • Step S11 First, while monitoring the output of the pressure gauge 122, the control unit 100 controls the valve opening / closing control unit 125, the vacuum pump 126, etc. The pressure is reduced to the pressure (step S11). [0092] Subsequently, the control unit 100 sets the target temperature of the temperature measurement position P1P9 and the sensor S4 in the processing container 11 to the first temperature (for example, 500 ° C) according to the setup recipe R1. ) (Step S1 2).
  • step S 15 the predicted value and the measured value of each temperature of the temperature measurement position P 1 P 9 and the temperature sensor S 4 are associated with each other and stored in the RAM 114 (step S 15).
  • control unit 100 determines whether or not the setup processing has been completed for all temperatures set in the setup recipe R1 (step S16). If not completed (step S16; No), the process returns to step S12, and the same process is repeated for the next set temperature.
  • step S 16 when the setup process for all the temperatures set in the setup recipe R 1 has been completed (step S 16; Yes), at that point, FIG. As shown, a correspondence table between the measured temperature and the expected temperature is obtained on the RAM 114. Then, the process proceeds to step S18.
  • step S18 based on the correspondence table formed on RAM114, the temperature TR1TR9 actually measured by thermocouple TC1TC9 and the temperature actually measured by temperature sensor S4 TR 10 is compared with the temperature TPTP 9 at the temperature measurement position P 1 P 9 and the temperature TP 10 at the temperature sensor S 4, which are predicted using the reference thermal model M 1, respectively. A correction value is determined.
  • the method of obtaining the correction value is arbitrary.
  • the correction value is calculated according to the following Equation 1. A positive value can be obtained.
  • Correction value Ai Predicted value by reference thermal model M 1 TP i -Measured value TF ⁇ ⁇ ⁇ 'Equation 1
  • the subscript i is one of a value 19 corresponding to the temperature measurement position P1P9 and a value 10 corresponding to the temperature sensor S4.
  • correction value A i may be expressed as a function form of i.
  • a linear function f (TP) representative of these is obtained using the least squares method, and this is used as the correction value A. You may.
  • a calibration thermal model M2 is created by calibrating the reference thermal model M1, and stored in the thermal model storage unit 111 (step S19). That is, as shown by the following equation 2, a calibration thermal model M2 is created that predicts a value obtained by correcting the expected value TP by the reference thermal model M1 with the correction value Ai, and the thermal model storage unit 1 1 1 Is stored in
  • the correction value A is represented by a function f (TP) as shown in FIG. 11 and the predicted temperature by the reference heat model M1 is TO, the predicted temperature is TO-f (TO)
  • the reference thermal model M1 is calibrated.
  • control unit 100 lowers the port elevator 127 so that the lid 2
  • the operator operates the operation panel 121 to carry out the port 26 and the temperature measuring device 51 from the processing container 11 via a robot (not shown).
  • the calibration thermal model M2 stored in the thermal model storage unit 1 1 1 is thereafter used to predict the temperature of the temperature measurement position P1 P9 and the temperature of the temperature sensor S4 in an actual process. You. Next, an operation of performing a heat treatment such as a film forming process and a diffusion process using the calibrated thermal model M 2 calibrated as described above will be described with reference to FIGS. 12 and 13.
  • the operator operates the operation panel 1 2 1 to specify a process to be executed.
  • the CPU 1 16 reads the process recipe of the process to be executed from the recipe storage unit 1 12 and stores the process recipe in the RAM 1 14. I do.
  • the recipe shown in FIG. 6 has been selected.
  • the operator operates the operation panel 12 1 and places the port 26 loaded with the wafer W to be processed on the rotary table 24 by a robot (not shown). Then, the operator instructs loading of port 26.
  • the control unit 100 controls the port elevator 127 to load the port 26 while maintaining the temperature of the inner surface of the processing vessel 11 at the temperature specified by the process recipe. .
  • the CPU 1 16 of the control unit 100 controls the port elevator 1 27 to load the port 26, as shown in FIG. S 2 1) and a heater controller that detects the temperature with the temperature sensor S 1 S 5 that matches the expected temperature of the temperature measurement position P 8, P 9 of the inner wall of the processing vessel 11 to the temperature specified by the process recipe.
  • the operation of controlling the heaters 3 1 3 3 via 1 2 3 is repeated until the completion of loading of the port 26 is detected (Step S 23; Yes).
  • the control unit 100 exhausts the inside of the processing container 11 and, via the heater controller 123, matches the temperature of each unit to the temperature specified by the recipe.
  • the heater 3 1 3 3 is controlled.
  • the control unit 100 controls the on-off valve control unit 125. Then, the supply of the processing gas is started.
  • the heat treatment is performed while the pressure in the processing container 11, the temperature of each part, the gas flow rate, the exhaust amount, and the like are controlled according to the recipe.
  • the control unit 100 The temperature measurement positions P 6 and P 7 of the lower heater 33, the temperature measurement positions P 8 and P 9 of the side wall of the processing container 11, and the expected temperatures of the temperature sensor S 4 are matched with the temperatures specified by the recipe.
  • the heater 3 1 33 is controlled.
  • the CPU 1 16 measures the temperature with the temperature sensor S1 S5, and fetches a measured value such as heater power (step S31). ).
  • the CPU 116 applies the measured value to the calibration thermal model M2 to predict the temperature of the temperature measurement position P1P9 and the temperature of the temperature sensor S4 (step S32). .
  • the CPU 1 16 determines the temperature measurement position P based on the calibration heat model M2.
  • the CPU 116 captures the measured values of the pressure gauge 122 and the mass flow controller 124, etc., and matches the pressure, gas flow rate, and the like in the processing vessel 11 with values specified by the process recipe. In particular, it controls the mass flow controller 124, the valve opening / closing controller 125, and the vacuum pump 126.
  • the CPU 1 16 determines whether or not the processing has been completed, for example, whether or not the processing has continued for a predetermined time (step S35). If not completed (Step S35; No), the process returns to Step S31 to continue. If the processing has been completed (Step S35; Yes), the process processing ends, and the purge processing and the like start.
  • the expected temperature (estimated temperature) of the wafer W match the temperature specified by the recipe, but also the portion other than the wafer W in the processing chamber 11, specifically, Is controlled so that the estimated temperature of the lower surface heater 33, the side surface of the processing container 11, and the estimated temperature of the temperature sensor S4 respectively match the temperature specified by the recipe.
  • the fluctuation (variation) of the gas decomposition effect is suppressed, for example, in a CVD process, as compared with a case where only the temperature of the wafer W is predicted and controlled.
  • the process can be executed with little variation (variation) from the originally intended process in the process recipe, and a result close to the expected result can be obtained.
  • control unit 100 switches the on-off valve control unit 125 to the vacuum pump.
  • the process gas supply is stopped by controlling the heater controller 1 2 6 and the heater controller 1 2 3 etc. Instead, the purge gas is supplied and the process gas in the process vessel 11 is exhausted while the process gas in the process vessel 11 is exhausted. Is cooled while being pressurized.
  • the control elevator 100 controls the elevator 1 27 to unload the port 26. Is done. During this unloading, that is, while the wafer W is being taken out of the processing container 11, the control unit 100 sets the expected temperature at the temperature measurement positions P8 and P9 on the inner surface of the processing container 11 in the recipe. The heaters 3 1 3 3 are controlled so that the set constant temperature is maintained. During this time, the control unit 100 controls the vacuum pumps 126 and the like to suck and exhaust particles generated in the processing container 11 from the exhaust unit 12.
  • the CPU 1 16 of the control unit 100 controls the port elevator 1 27 to unload the port 26 ( Step S25), and the heater while detecting the temperature with the temperature sensor S1 S5 that matches the expected temperature of the temperature measurement position P8, P9 of the inner wall of the processing vessel 11 to the temperature specified by the process recipe.
  • the operation of controlling the heater 33 via the controller 123 (step S26) and the processing vessel 11 are evacuated.
  • the operation of controlling the vacuum pump 1 26 (Step 27) is repeated until the completion of unloading of the port 26 is detected (Step S28; Yes).
  • the heat treatment apparatus performs not only the temperature of the wafer but also the part other than the predetermined wafer W in the processing chamber 11 (the temperature sensor S 4, The temperature of the lower heater 33 and the inner surface of the processing vessel 11 are also estimated, and temperature control (heater control) is performed so that the estimated temperature matches the temperature of a preset recipe. Therefore, compared to a case where only the temperature of the wafer W is predicted and controlled, a variation in processing is suppressed, and a stable high-quality film can be formed.
  • the temperature of the inner surface of the processing container 11 is controlled to a substantially constant value, thereby preventing the sediment on the inner surface of the processing container 11 from peeling. Becomes possible. As a result, generation of particles can be suppressed.
  • the present invention is not limited to the above embodiment, and various modifications and applications are possible.
  • the respective expected temperatures of the lower surface heater 33, the temperature sensor S4, and the inner surface of the processing container 11 are made to match the temperature specified by the recipe. Such control is performed.
  • the present invention is not limited to this.
  • the temperature of the inner surface of the processing chamber 11 may be excluded from the control target, and only the temperature of the wafer W and the temperatures of the lower surface heater 33 and the temperature sensor S4 may be set as expected / control targets.
  • the temperatures of the temperature measurement positions P 6 and P 7 of the lower surface heater 33 and the temperature measurement positions P 8 and P 9 of the inner surface of the processing vessel 11 are predicted, respectively. Each is controlled to match the temperature specified by the recipe.
  • the present invention is not limited to this.
  • only the average temperature at the temperature measurement positions P6 and P7 of the bottom heater 33 is predicted, and the predicted average temperature is specified by the recipe.
  • the heater 3 1 3 3 may be controlled so as to match the temperature to be set.
  • only the average temperature at the temperature measurement positions P8 and P9 on the inner surface of the processing vessel 11 is predicted, and the heaters 31-3 are controlled so that the predicted average temperature matches the temperature specified by the recipe. You may.
  • the average temperature of the temperature measurement positions P6 and P7 and the average temperature of Z or the temperature of the temperature measurement positions P8 and P9 are predicted in the thermal model storage unit 1 1 1.
  • the recipe storage unit 112 the recipe of the average temperature of the temperature measurement positions P6 and P7 and the average temperature of Z or the average temperature of the temperature measurement positions P8 and P9 is stored. You.
  • the CPU 116 estimates the average temperature of the temperature measurement positions P6 and P7 and the average temperature of Z or the temperature of the temperature measurement positions P8 and P9, and calculates the estimated temperature.
  • the heater 3 1 3 3 is controlled via the heater controller 1 2 3 so as to match the temperature specified by the recipe.
  • the thermal model may individually predict the temperatures at the temperature measurement positions P6 and P9.
  • the CPU 116 calculates the average value of the predicted temperatures, and calculates the average temperature of the temperature measurement positions P6 and P7 and the Z or the temperature of the temperature measurement positions P8 and P9.
  • the heaters 31 to 33 are controlled via the heater controllers 123 so that the average temperature is made to match the temperature specified by the recipe.
  • another location may be a temperature control target.
  • the temperature at any position of the port 26 and the temperature of the temperature sensor S5 can be predicted and controlled.
  • a model for estimating the temperature and Z at the predetermined position of the port 26 or the temperature of the temperature sensor S5 is created.
  • a recipe for the temperature (change) of temperature sensor S5 is created.
  • the heater 31 is controlled such that the predicted temperature of the ports 26 and Z or the temperature sensor S5 matches the temperature of the created recipe.
  • the locations subject to temperature control are arbitrary. However, considering the flow of the processing gas, pressure distribution, etc., it is desirable to select and set a location where the temperature of the location directly or indirectly affects the process.
  • the number and arrangement positions of temperature sensors for temperature estimation can be changed as appropriate. .
  • the number is not limited to five, and may be arranged on the inner wall of the processing container 11.
  • the heat treatment apparatus 1 to which the present invention is applied is not limited to the above-described embodiment, and can be arbitrarily changed.
  • the processing vessel 11 has a double-tube structure, for example, and the number of semiconductor wafers W that can be accommodated in the port 26 is a large capacity (for example, about 100 to 150). Or a smaller capacity (eg, 150 sheets).
  • the type of heat treatment is also arbitrary. That is, the present invention is not limited to the CVD apparatus, but is applicable to various batch-type heat treatment apparatuses such as an oxidation apparatus and an etching apparatus.
  • the device configuration and the operation thereof are not limited to the above embodiment.
  • the number of side heaters is three and the number of internal heaters is two, but the number and arrangement of heaters are arbitrary.
  • the heater is not limited to the electric resistance type, and may be a heating lamp or the like.
  • the configuration for measuring the temperature of a wafer or the like is not limited to a thermocouple, and any temperature sensor can be applied.
  • thermal model and the design method thereof are not limited to the model and the design method disclosed in US Patent No. 5,517,594, but may be any model and any design method. Can be adopted.
  • the temperature of upper heater 32 is approximated by the temperature of temperature sensor S 4, and the temperature of lower heater 33 is determined by thermocouple TC 8, Measured directly at TC 9.
  • thermocouple TC 8 Measured directly at TC 9.
  • other techniques can be used. For example, it is possible to measure the temperature using a radiation thermometer or the like.
  • the control unit 100 in the above embodiment may be a dedicated system, but can also be realized by a normal computer system.
  • the general-purpose computer can be used as the control unit 100. can do.
  • a computer program (at least a part of) for performing the above-described calibration processing can be stored in a computer-readable recording medium such as a CD-ROM or a DVD-ROM and distributed.
  • Such a computer program can be transferred to the RAM 114 via the IZO port 115. The transferred program is executed by the CPU 116 to execute the above-described calibration processing.
  • the means for supplying the computer program to the computer system is arbitrary. That is, in addition to the mode of supplying via a predetermined recording medium as described above, the mode of supplying via a communication line, a communication network, a communication system, or the like may be adopted. Specifically, for example, a program posted on a bulletin board (BBS) of a communication network may be superimposed on a carrier wave via the network and transferred to the IZO port 115.
  • BSS bulletin board
  • the computer program may be executed similarly to other applications under the control of OS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

明 細 書
熱処理装置及び熱処理方法
技術分野
[0001 ] 本発明は、 半導体ウェハ等の被処理体を熱処理する熱処理装置に関し、 特 に、 被処理体の温度を熱モデルを用いて予想し、 当該予想結果に基づいて熱 処理の制御を行う熱処理装置及び熱処理方法に関する。
背景技術
[0002] 多数の半導体ウェハに対して成膜処理、 酸化処理、 拡散処理などの熱処理 を一括して行うバッチ式熱処理装置として、 横型熱処理装置や縦型熱処理装 置が知られている。 最近では、 大気の巻き込みが少ない等の理由から、 縦型 熱処理装置が主流になリつつある。
[0003] 熱処理装置は、 処理温度、 処理圧力、 ガス流量などの処理条件をレシピに 定められた目標値に一致させるように制御しながら、 熱処理を行う。 このよ うな熱処理を適切に行うため、 ウェハの温度、 反応炉内の圧力、 ガス流量な どを測定する必要がある。
[0004] 反応炉内の圧力は、 圧力計により、 比較的正確に測定が可能である。 また 、 ガス流量は、 供給管に配置された流量計を含むマスフローコントローラ等 により、 比較的正確に測定が可能である。 しかし、 ウェハの温度の測定は困 難である。 ウェハに温度センサを装着する手法も考えられるが、 この場合、 温度センサの装着箇所に半導体素子を形成することができない。 さらに、 温 度センサからの不純物が反応炉内全体を汚染し、 半導体装置の歩留まリを低 下させる虞がある。
[0005] この問題を解決するための技術が、 例えば、 特開 2 0 0 2 - 2 5 9 9 7号公 報及び米国特許第 5, 5 1 7, 5 9 4号明細書に開示されている。 この技術 においては、 反応炉に複数の温度センサが配置され、 これらの温度センサの 出力と反応炉を加熱するヒータへの供給電力などに関する熱モデル (数学モ デル) に基づいてウェハの温度が刻一刻と予想され、 当該予想値を用いて前 記ヒータへの供給電力が制御される。 この技術によれば、 ウェハの温度を比 較的正確に非接触で予想して、 当該予想値に基づいて熱処理装置を好適に制 御することができる。
[0006] 従来、 この種の熱処理装置においては、 日本国特許出願公開公報第 2 0 0 2- 2 5 9 9 7号の図 1に示されているように、 処理容器内の高さ方向の温度 の均一性を確保するため、 反応管 (反応炉) の側面にヒータが設けられる構 成が一般的である。
[0007] 近時、 半導体装置の多品種少量生産の要望が高まっている。 この要望に併 せて、 小型の処理容器を備える (比較的少量のウェハを処理する) バッチ式 縦型熱処理装置が開発されている。 一方、 処理対象のウェハの大型化が進ん でいる。 このため、 処理容器の高さ Tに対する径 Rの比が大きくなる傾向に める。
[0008] このような構成では、 処理容器内の高さ方向の温度の均一性を確保するこ とが困難であるという問題がある。 このような問題を解決するため、 処理容 器内の上方部及び下方部に平面状のヒータ (上面ヒータ、 下面ヒータ) を備 えるバッチ式縦型熱処理装置が開発されている。
発明の要旨
[0009] しかし、 このような熱処理装置においては、 ウェハポートの上端部及び下 端部に配置されたウェハ Wに関して、 上面ヒータ及び下面ヒータをどのよう に制御するかによって、 面内温度差及び面間温度差が生じて膜厚及び膜質が 不均一になるおそれがある。
[0010] また、 このような熱処理装置においては、 ウェハポートの処理容器内への ロード時、 及び、 処理容器からのアンロード時、 処理容器の内面温度が急激 に変化する。 このため、 処理容器の内面に付着して層を成している反応生成 物が剥がれ、 所謂パーティクルを生じ得る。 このパーティクルは、 処理対象 のウェハ Wに付着し、 以後のプロセスに影響を与えるおそれがある。
[0011 ] 同様の問題は、 半導体ウェハに限らず、 様々な被処理体を処理する他の熱 処理装置に共通する。 [0012] 本発明は、 このような事情の下に成されたものであり、 より的確に温度制 御を行うことが可能な熱処理装置及び熱処理方法を提供することを目的とす る。
[0013] また、 本発明は、 被処理体の側方、 上方及び下方にヒータを備え、 熱モデ ルを用いて被処理体の温度を予想し、 予想した温度に基づいて、 熱処理を行 う熱処理装置において、 よリ的確に温度制御を行うことが可能な熱処理装置 及び熱処理方法を提供することを目的とする。
[0014] また、 本発明は、 パーティクルの発生を抑制する熱処理装置及び熱処理方 法を提供することを目的とする。
[0015] 本発明は、 被処理体を収容する処理容器と、 前記被処理体を加熱する複数 のヒータと、 前記処理容器内の複数の所定位置の温度をそれぞれ検出する複 数の温度センサと、 前記複数の温度センサの出力から前記処理容器内に収容 された前記被処理体の温度を推定するための熱モデルと、 前記被処理体の所 望の温度が規定されたレシピと、 を記憶する記憶部と、 前記複数の温度セン ザの出力と前記熱モデルとを用いて前記被処理体の温度を予想すると共に、 当該予想された前記被処理体の温度を前記レシピに規定された前記被処理体 の所望の温度と一致させるベく前記複数のヒータを制御する制御部と、 を備 え、 前記熱モデルは、 前記複数の温度センサの出力から、 前記処理容器内に 収容された前記被処理体の温度と共に、 前記処理容器内の他の少なくとも一 つの所定部位の温度をも推定するように構成されており、 前記レシピには、 前記所定部位の所望の温度をも規定されており、 前記制御部は、 前記複数の 温度センサの出力と前記熱モデルとを用いて前記被処理体の温度と前記所定 部位の温度とを予想すると共に、 当該予想された前記被処理体の温度及び前 記所定部位の温度の各々を前記レシピに規定された前記被処理体の所望の温 度及び前記所定部位の所望の温度と一致させるベく前記複数のヒータを制御 するようになつていることを特徴とする熱処理装置である。
[0016] この構成によれば、 被処理体以外の所定部位の温度をも制御対象とするこ とにより、 被処理体の温度だけを制御対象とする場合に比して、 処理容器内 の温度制御をより的確に行うことができる。 これにより、 パーティクルの発 生を抑えることもできる。
[0017] 例えば、 前記複数のヒータのうちの 1つとして、 前記処理容器内に内部ヒ ータが配置されている場合、 前記処理容器内の他の少なくとも一つの所定部 位は、 前記処理容器内の内部ヒータを含み得る。
[0018] あるいは、 前記処理容器内の他の少なくとも一つの所定部位は、 前記処理 容器の内壁面の所定位置を含み得る。
[0019] あるいは、 前記複数のヒータのうちの 2つとして、 前記処理容器内に収容 される被処理体の上方部及び下方部に対応して、 上部ヒータ及び下部ヒータ が配置されている場合、 前記処理容器内の他の少なくとも一つの所定部位は 、 前記上部ヒータ及び前記下部ヒータを含み得る。
[0020] この場合、 好ましくは、 前記処理容器の上方には、 排気管が接続されてお リ、 前記上部ヒータは、 前記排気管を取り巻くように配置される。
[0021 ] あるいは、 前記複数のヒータのうちの 2つとして、 前記処理容器内に収容 される被処理体の上方部及び下方部に対応して、 上部ヒータ及び下部ヒータ が配置されており、 前記処理容器内に収容された前記被処理体と前記上部ヒ ータとの間に、 前記複数の温度センサのうちの 1つとして、 上部温度センサ が配置されている場合には、 前記処理容器内の他の少なくとも一つの所定部 位は、 前記上部温度センサ及び前記下部ヒータを含み得る。
[0022] この場合も、 好ましくは、 前記処理容器の上方には、 排気管が接続されて おり、 前記上部ヒータは、 前記排気管を取り巻くように配置される。
[0023] また、 熱処理装置が、 前記処理容器のガス導入口にガスを導入する手段と 、 前記処理容器のガス排出口からガスを排気する手段と、 を更に備える場合 、 前記処理容器内の他の少なくとも一つの所定部位は、 前記ガス導入口から 前記ガス排出口に至る経路上の、 前記ガス導入口から前記被処理体の最下流 側の部位までの間に設定されることが好ましい。
[0024] また、 前記熱モデルは、 熱処理中の前記複数の温度センサの出力から、 当 該熱処理中の前記処理容器内に収容された前記被処理体の温度と前記処理容 器内の他の少なくとも一つの所定部位の温度とを推定するように構成されて おり、 前記レシピには、 熱処理中の前記被処理体の所望の温度と前記所定部 位の所望の温度とが規定されており、 前記制御部は、 前記複数の温度センサ の出力と前記熱モデルとを用いて熱処理中の前記被処理体の温度と前記所定 部位の温度とを予想すると共に、 当該予想された前記被処理体の温度及び前 記所定部位の温度の各々を前記レシピに規定された熱処理中の前記被処理体 の所望の温度及び前記所定部位の所望の温度と一致させるベく前記複数のヒ ータを制御するようになっていることが好ましい。
[0025] 更には、 熱処理装置が、 被処理体を前記処理容器内にロードすると共に処 理済みの被処理体を当該処理容器からアンロードするロード Zアンロード手 段を更に備える場合には、 前記熱モデルは、 ロード中及び Zまたはアンロー ド中の前記複数の温度センサの出力から、 当該ロード中及び Zまたはアン口 ード中の前記処理容器内に収容された前記被処理体の温度と前記処理容器内 の他の少なくとも一つの所定部位の温度とを推定するように構成されておリ 、 前記レシピには、 ロード中及び Zまたはアンロード中の前記被処理体の所 望の温度と前記所定部位の所望の温度とが規定されておリ、 前記制御部は、 前記複数の温度センサの出力と前記熱モデルとを用いてロード中及び Zまた はアンロード中の前記被処理体の温度と前記所定部位の温度とを予想すると 共に、 当該予想された前記被処理体の温度及び前記所定部位の温度の各々を 前記レシピに規定されたロード中及び Zまたはアンロード中の前記被処理体 の所望の温度及び前記所定部位の所望の温度と一致させるベく前記複数のヒ ータを制御するようになっていることが好ましい。
[0026] また、 本発明は、 被処理体を収容する処理容器と、 前記被処理体を加熱す る複数のヒータと、 前記処理容器内の複数の所定位置の温度をそれぞれ検出 する複数の温度センサと、 を備えた熱処理装置を制御する熱処理方法であつ て、 予め設定された熱モデルに前記複数の温度センサの出力を適用して、 前 記被処理体の温度と、 前記処理容器内の他の少なくとも一つの所定部位の温 度と、 を予想する予想工程と、 前記予想工程にて予想された前記被処理体の 温度及び前記所定部位の温度を、 予め規定された前記被処理体の所望の温度 及び前記所定部位の所望の温度に一致させるベく、 前記複数のヒータを制御 する制御工程と、 を備えたことを特徴とする方法である。
[0027] あるいは、 本発明は、 被処理体を収容する処理容器と、 前記被処理体を加 熱する複数のヒータと、 前記処理容器内の複数の所定位置の温度をそれぞれ 検出する複数の温度センサと、 を備えた熱処理装置を制御するプログラムで あって、 予め設定された熱モデルに前記複数の温度センサの出力を適用して 、 前記被処理体の温度と、 前記処理容器内の他の少なくとも一つの所定部位 の温度と、 を予想する予想手順と、 前記予想工程にて予想された前記被処理 体の温度及び前記所定部位の温度を、 予め規定された前記被処理体の所望の 温度及び前記所定部位の所望の温度に一致させるベく、 前記複数のヒータを 制御する制御手順と、 をコンピュータに実行させるプログラムである。
[0028] あるいは、 本発明は、 被処理体を収容する処理容器と、 前記被処理体を加 熱する複数のヒータと、 前記処理容器内の複数の所定位置の温度をそれぞれ 検出する複数の温度センサと、 を備えた熱処理装置を制御するプログラムで あって、 予め設定された熱モデルに前記複数の温度センサの出力を適用して 、 前記被処理体の温度と、 前記処理容器内の他の少なくとも一つの所定部位 の温度と、 を予想する予想手順と、 前記予想工程にて予想された前記被処理 体の温度及び前記所定部位の温度を、 予め規定された前記被処理体の所望の 温度及び前記所定部位の所望の温度に一致させるベく、 前記複数のヒータを 制御する制御手順と、 をコンピュータに実行させるプログラムを記録したコ ンピュータ読み取リ可能な記録媒体である。
[0029] あるいは、 本発明は、 被処理体を収容する処理容器と、 前記被処理体を加 熱する複数のヒータと、 前記処理容器内の複数の所定位置の温度をそれぞれ 検出する複数の温度センサと、 を備えた熱処理装置を制御する制御装置であ つて、 前記複数の温度センサの出力から前記処理容器内に収容された前記被 処理体の温度を推定するための熱モデルと、 前記被処理体の所望の温度が規 定されたレシピと、 を記憶する記憶部と、 前記複数の温度センサの出力と前 記熱モデルとを用いて前記被処理体の温度を予想すると共に、 当該予想され た前記被処理体の温度を前記レシピに規定された前記被処理体の所望の温度 と一致させるベく前記複数のヒータを制御する制御部と、 を備え、 前記熱モ デルは、 前記複数の温度センサの出力から、 前記処理容器内に収容された前 記被処理体の温度と共に、 前記処理容器内の他の少なくとも一つの所定部位 の温度をも推定するように構成されており、 前記レシピには、 前記所定部位 の所望の温度をも規定されており、 前記制御部は、 前記複数の温度センサの 出力と前記熱モデルとを用いて前記被処理体の温度と前記所定部位の温度と を予想すると共に、 当該予想された前記被処理体の温度及び前記所定部位の 温度の各々を前記レシピに規定された前記被処理体の所望の温度及び前記所 定部位の所望の温度と一致させるベく前記複数のヒータを制御するようにな つていることを特徴とする制御装置である。
[0030] 前記制御装置または前記制御装置の各構成要素は、 コンピュータシステム によって実現され得る。 コンピュータシステムに前記制御装置または前記制 御装置の各構成要素を実現させるためのプログラム及び当該プログラムを記 録したコンピュータ読取り可能な記録媒体も、 本件の保護対象である。
[0031 ] さらに、 前記制御装置または前記制御装置の各構成要素が、 コンピュータ システム上で動作する O S等のプログラムによって実現される場合、 当該 O S等のプログラムを制御する各種命令を含むプログラム及び当該プログラム を記録した記録媒体も、 本件の保護対象である。
[0032] ここで、 記録媒体とは、 フロッピーディスク等の単体として認識できるも のの他、 各種信号を伝搬させるネッ卜ワークをも含む。
図面の簡単な説明
[0033] [図 1 ]は、 本発明の一実施の形態に係る熱処理装置の構成を示す図である。
[図 2]は、 図 1の熱処理装置の制御部の構成を示す図である。
[図 3A]は、 図 2の熱モデル記憶部に記憶されるデータの例を示す図である。
[図 3B]は、 図 2のレシピ記憶部に記憶されるデータの例を示す図である。
[図 4]は、 下面ヒータの温度測定位置を説明するための斜視図である。 [図 5]は、 セッ卜アップレシピの一例を示す図である。
[図 6]は、 プロセスレシピの一例を示す図である。
[図 7]は、 温度測定装置の構成例を示す概略図である。
[図 8]は、 温度測定装置の腕部がポー卜内に挿入された状態を示す概略縦断面 図である。
[図 9]は、 基準熱モデルを校正して校正熱モデルを生成する手順を説明するた めのフローチヤ一卜である。
[図 10]は、 セットアップレシピの各設定温度について、 基準熱モデルによる 予想温度と実測温度とが対応付けて記憶される様子を示す図である。
[図 11 ]は、 基準熱モデルに対する補正量について説明するための図である。
[図 12A]は、 ロード時の処理手順を示すフローチヤ一卜である。
[図 12B]は、 アンロード時の処理手順を示すフローチヤ一卜である。
[図 13]は、 成膜プロセス処理の一例を説明するためのフローチヤ一卜である 発明を実施するための最良の形態
[0034] 以下、 添付の図面を参照しつつ、 本発明の実施の形態について説明する。
[0035] 本実施の形態に係る縦型の熱処理装置 1は、 図 1に示すように、 処理容器
(反応管) 1 1を備える。 処理容器 1 1は、 被処理体としてのウェハ Wを収 容して、 当該ウェハ Wに所定の熱処理、 例えば C V D処理、 を施すようにな つている。 処理容器 1 1は、 耐熱性および耐食性を有する材料、 例えば石英 ガラス、 により形成されている。 処理容器 1 1は、 上端と下端とが開放され た単管構造を有し、 上端部は細径に絞られて排気部 1 2を形成している。 排 気部 1 2は、 図示せぬ排気管などを介して、 真空ポンプ等に接続されている
[0036] 処理容器 1 1の下部には、 処理容器 1 1内に処理ガスや不活性ガスを導入 するためのガス導入部 (導入ポート) 1 3が配置されている。 ガス導入部 1 3には、 ガス源に通じる複数のガス供給系の配管 1 4が揷通されている。 ガ ス導入部 1 3から導入される処理ガスは、 処理容器 1 1内を上昇してウェハ Wの所定の熱処理に供された後、 排気部 1 2から排気される。
[0037] 処理容器 1 1の下端部は、 フランジ状に形成されている。 当該下端部 1 5 は、 ステンレス等の耐熱性および耐食性を有する材料から形成された蓋体 2
1により開閉される。 蓋体 2 1は、 図示せぬエレベータにより昇降される。 蓋体 2 1は、 上昇位置で、 処理容器 1 1の下端部 1 5を密閉し、 下降位置で
、 処理容器 1 1の下端部 1 5を開放する。
[0038] 処理容器 1 1の下端部 1 5と蓋体 2 1との間には、 気密を確保するための
Oリング 2 2が配置されている。
[0039] 蓋体 2 1の中央部には、 回転支柱 2 3が回転可能に立設されている。 回転 支柱 2 3の上端には、 回転テーブル 2 4が固定されている。
[0040] また、 蓋体 2 1の下部には、 回転支柱 2 3を回転駆動する駆動部 2 5が設 けられている。
[0041 ] 回転テーブル 2 4の上には、 例えば 6 0枚の半導体ウェハ Wを高さ方向に 所定間隔で搭載可能な石英ガラス製のポート (ウェハポート) 2 6が載置さ れる。 ポート 2 6は、 蓋体 2 1が降下された状態において回転テーブル 2 4 上に載置される。 その後、 蓋体 2 1が上昇されて処理容器 1 1の下端部 1 5 を密閉する時、 処理容器 1 1内へのポート 2 6のロードが完了する。 熱処理 が完了した後、 蓋体 2 1が降下されて、 ポート 2 6がアンロードされる。 ま た、 熱処理中は、 駆動部 2 5によって回転テーブル 2 4が回転させられるた め、 ウェハ Wは均一に熱処理される。
[0042] 処理容器 1 1の周囲には、 処理容器 1 1内に収容されたウェハ Wをその周 縁部から加熱昇温させるための周面ヒータ 3 1が配置されている。 周面ヒー タ 3 1は、 処理容器 1 1の周囲を取り囲むように鉛直方向の筒状に配設され ている。 周面ヒータ 3 1は、 例えば複数の棒状の抵抗発熱体から構成される 。 本実施の形態の周面ヒータ 3 1は、 処理容器 1 1の周面全体を加熱するメ インヒータ 3 1 aと、 処理容器 1 1の上端側の周面を加熱する上端サブヒー タ 3 1 bと、 処理容器 1 1の下端側の周面を加熱する下端サブヒータ 3 1 c と、 から構成され、 メインヒータ 3 1 aとサブヒータ 3 1 b、 3 1 cとが、 処理容器 1 1の周方向に交互に配置されている。
[0043] 処理容器 1 1の上方には、 上面ヒータ 3 2が設けられている。
[0044] 上面ヒータ 3 2は、 排気部 1 2の周囲にドーナツ状に形成され、 支持部材
3 4により処理容器 1 1に固定されている。 これにより、 上面ヒータ 3 2は 、 処理容器 1 1の排気部 1 2からの放熱によるウェハ Wの温度の低下を防ぐ
[0045] 処理容器 1 1の下方には、 下面ヒータ 3 3が設けられている。
[0046] 下面ヒータ 3 3は、 処理容器 1 1内の回転テーブル 2 4の下方に配置され 、 支持部材 3 5により蓋体 2 1上に固定されている。 下面ヒータ 3 3は、 そ の中央部を回転支柱 2 3が貫通するように、 ドーナツ状に形成されている。 これにより、 下面ヒータ 3 3は、 蓋体 2 1等を介した放熱によりウェハ の 温度が低下するのを防止する。
[0047] 処理容器 1 1の外周面には、 鉛直方向に一列に、 3つの温度センサ S 1 S 3が配置されている。 温度センサ S 1はポート 2 6の上部に対応する位置に 、 温度センサ S 2はポート 2 6の中央部に対応する位置に、 温度センサ S 3 はポー卜 2 6の下部に対応する位置に、 それぞれ配置されている。
[0048] また、 処理容器 1 1内の上面ヒータ 3 2とポート 2 6の上端面との間の位 置に、 温度センサ S 4が配置されている。 また、 処理容器 1 1内の下面ヒー タ 3 3と回転テーブル 2 4との間の位置に、 温度センサ S 5が配置されてい る。 温度センサ S 4と S 5とは、 処理容器 1 1内の金属汚染の発生を防止す るため、 例えば、 石英チューブに収納されている。
[0049] 温度センサ S 1 S 5の出力 (検出温度) は、 後述するように、 ポート 2 6に載置されたウェハ W、 上面ヒータ 3 2および下面ヒータ 3 3の各表面温 度を予想 (推定;予測) するために使用される。
[0050] 熱処理装置 1は、 装置全体の制御を行う制御部 1 0 0を備えている。
[0051 ] 図 2に示すように、 制御部 1 0 0には、 温度センサ S 1 S 5、 操作パネ ル 1 2 1、 圧力計 (群) 1 2 2、 ヒータコントローラ 1 2 3、 マスフローコ ントローラ 1 2 4、 弁開閉制御部 1 2 5、 真空ポンプ 1 2 6、 ポー卜エレべ ータ 1 27等が接続されている。
[0052] 温度センサ S 1 S 3は、 処理容器 1 1の外壁面の温度を測定して、 制御 部 1 00に通知する。 温度センサ S 4は、 上面ヒータ 32近傍の温度を測定 して、 制御部 1 00に通知する。 温度センサ S 5は、 下面ヒータ 33近傍の 温度を測定して、 制御部 1 00に通知する。
[0053] 操作パネル 1 2 1は、 表示画面と操作ポタンとを備える。 操作ポタンを介 して、 オペレータの操作及び Zまたは指示が制御部 1 00に伝えられる。 ま た、 制御部 1 00からの様々な情報が、 表示画面に表示される。
[0054] 圧力計 (群) 1 22は、 処理容器 1 1内及び排気部 1 2内の各部の圧力を 測定し、 測定値を制御部 1 00に通知する。
[0055] ヒータコントローラ 1 23は、 ヒータ 3 1 a、 3 1 b、 3 1 c、 32, 3 3を個別に制御する。 具体的には、 ヒータコントローラ 1 23は、 制御部 1 00からの指示に応答して、 ヒータ 3 1 a、 3 1 b、 3 1 c、 32, 33に 通電してこれらを加熱する。 また、 ヒータコントローラ 1 23は、 各ヒータ 3 1 a、 3 1 b、 3 1 c、 32, 33の消費電力を個別に測定して、 測定値 を制御部 1 00に通知する。
[0056] マスフローコントローラ 1 24は、 各配管に配置され、 各配管を流れるガ スの流量を制御部 1 00から指示された量に制御する。 また、 マスフローコ ントローラ 1 24は、 実際に流れたガスの流量を測定して、 測定値を制御部 1 00に通知する。
[0057] 弁開閉制御部 1 25は、 各配管に配置され、 各配管に配置された弁の開度 を制御部 1 00から指示された値に制御する。
[0058] 真空ポンプ 1 26は、 処理容器 1 1の排気部 1 2に排気パイプ等を介して 接続され、 処理容器 1 1内のガスを排気する。
[0059] ポートエレベータ 1 27は、 蓋体 2 1を上昇させることにより、 回転テー ブル 24上に載置されたポート 26を処理容器 1 1内にロードし、 蓋体 2 1 を下降させることにより、 回転テーブル 24上に載置されたポート 26を処 理容器 1 1からアンロードする。 [0060] 制御部 1 00は、 図 2に示すように、 熱モデル記憶部 1 1 1と、 レシピ記 憶部 1 1 2と、 ROM 1 1 3と、 RAM 1 1 4と、 I ZOポー卜 1 1 5と、 CPU 1 1 6と、 これらを相互に接続するバス 1 1 7と、 から構成される。
[0061] 熱モデル記憶部 1 1 1には、 図 3 Aに示すように、 熱処理装置 1と同一仕 様の基準装置を用いて作成された基準熱モデル M 1と、 基準熱モデル M 1を 熱処理装置 1用に校正 (カスタマイズ) して生成された校正熱モデル M 2と 、 が記憶される。 熱処理装置 1の製造当初は、 基準熱モデル M 1のみが熱モ デル記憶部 1 1 1に記憶されている。 熱処理装置 1のセットアップ処理によ リ、 基準熱モデル M 1を修正して校正熱モデル M 2が生成されて、 これが熱 モデル記憶部 1 1 1に格納される。
[0062] 基準熱モデル M 1と校正熱モデル M 2とは、 共に、 温度センサ S1 S5の 出力信号 (測定温度) 及びヒータ 31 a 33への供給電力 (ヒータ 31 a 33に接続されたヒータコントローラ 1 23からの供給電力量を示す指示 値) 等から処理容器 1 1内の温度を予想するためのモデル (数学モデル;高 次-多次元行列) である。 ただし、 基準熱モデル M 1は、 基準装置を用いて 生成されたものであり、 同一仕様の複数の熱処理装置 1に共通のものである 。 一方、 校正熱モデル M 2は、 各熱処理装置 1のセッ卜アップ時に、 個々の 装置の熱特性が正確に反映されるように生成されたものであり、 実際の運用 (プロセス処理) に使用されるものである。
[0063] より詳細には、 基準熱モデル M 1は、 温度センサ S1 S 5の出力信号 (測 定温度) 及びヒータ 31 a 33への供給電力等から、 ポート 26の上部に 載置されているウェハ (ポート上部ウェハ) Wの中心部 P 1および周縁部 P 2の温度、 ポート 26の中央部に載置されているウェハ (ポート中央部ゥェ ハ) Wの中心部 P 3の温度、 ポート 26の下部に載置されているウェハ (ポ 一卜下部ウェハ) Wの中心部 P 4および周縁部 P 5の温度 (計 5箇所の温度 ) と、 ポート 26の上に配置されている温度センサ S 4の温度、 下面ヒータ 33上の 2点 P 6, P7の温度、 及び、 処理容器 1 1の側壁の内面上の所定 位置 P8, P9 (図 1 ) の温度、 を予想する。 [0064] なお、 ポー卜中央部ウェハ Wについて周縁部の温度が測定されないのは、 ポー卜 2 6の中央部は熱的に安定した領域であり、 ウェハ Wの中心部 P 3と 周縁部との温度差がほとんど生じなからである。 すなわち、 中心部 P 3の温 度のみで、 ポー卜中央部ウェハ W全体の温度を代表できる。
[0065] 下面ヒータ 3 3上の温度測定位置 P 6及び P 7は、 図 4に示すように、 ド 一ナツ状の下面ヒータ 3 3の中心点に対して点対象の位置にある。
[0066] また、 処理容器 1 1の側壁の内面上の位置 P 8と P 9とは、 それぞれ、 処 理容器 1 1の側壁の上端と下端間の上ほぼ 1 Z 3の位置、 下ほぼ 1 Z 3の位 置である。
[0067] また、 基準熱モデル M 1は、 予想した 1 0箇所 (位置 P 1 P 9及びセン サ S 4 ) の温度に基いて、 それらの温度をレシピで規定される温度 (目標値 ) に一致させるために、 各ヒータ 3 1 a、 3 1 b、 3 1 c、 3 2、 3 3に供 給すべき電力を求める。 なお、 基準熱モデル M 1を生成する手法は、 例えば 、 米国特許第 5, 5 1 7, 5 9 4号公報などに開示されている。
[0068] 校正熱モデル M 2は、 熱処理装置 1に固有の熱特性に従って正確に各部の 温度を推定することができるようにカスタマイズされたものである点以外は 、 基準熱モデル M 1と同一構造である。
[0069] 図 2のレシピ記憶部 1 1 2には、 図 3 Bに示すように、 セットアップ用レ シピ R 1と複数のプロセス用レシピ R 2とが記憶されている。
[0070] 熱処理装置 1の製造当初は、 セッ卜アップ用レシピ R 1のみが格納される 。 セットアップ用レシピ R 1は、 熱処理装置 1の基準熱モデル M 1を校正し て校正熱モデル M 2を生成する際に実行されるものである。 セッ卜アップ用 レシピ R 1は、 図 5に示すように、 温度測定位置 P 1 P 9及びセンサ S 4 の温度を時間に対して階段状に昇温することを規定する。 また、 セットアツ プ用レシピ R 1は、 処理容器 1 1内の圧力、 処理容器内へ供給されるガスの 種類とガス流量、 ガスの供給開始タイミング,停止タィミングなどを規定す る。
[0071 ] 一方、 プロセス用レシピ R 2は、 ユーザが実際に行う熱処理 (プロセス) 毎に用意されるレシピである。 本実施の形態のプロセス用レシピ R 2は、 図 6に示すように、 処理容器 1 1への半導体ウェハ Wのロードから処理済みの ウェハ Wのアンロードまでの、 各部の温度の変化、 処理容器 1 1内の圧力変 化、 処理ガスの供給の開始及び停止のタイミング、 処理ガスの供給量などを 規定する。
[0072] なお、 プロセス用レシピ R 2は、 各プロセスに関して、 ウェハ Wの温度測 定位置 P 1 P 5の温度、 温度センサ S 4の温度、 下面ヒータ 33の温度測 定位置 P 6, P7の温度、 処理容器 1 1の側壁内面の温度測定位置 P 8、 P 9の温度、 の変化を規定する。
[0073] 熱処理装置 1の制御部 1 00は、 温度センサ S 1 S 5の測定温度、 ヒ一 タコン卜ローラ 1 23から各ヒータへ供給される供給電力などの情報に基づ いて、 ウェハ W上の温度測定位置 P 1 P 5の温度を予想し、 予想した温度 がプロセス用レシピ R2が規定する温度に一致するように、 ヒータ 31 a- 33を制御する。 さらに、 制御部 1 00は、 温度センサ S 1 S 5の測定温 度、 ヒータコントローラ 1 23から各ヒータへ供給される供給電力などの情 報に基づいて、 温度センサ S 4の温度と下面ヒータ 33の温度測定位置 P 6 , P の温度と処理容器 1 1の側壁内面の温度測定位置 P 8, P9の温度と を予想し、 予想した温度がプロセス用レシピ R 2が規定する温度に一致する ように、 ヒータ 31 a 33を制御する。
[0074] 図 2に示す ROM 1 1 3は、 EEPROM、 フラッシュメモリ、 ハードデ イスクなどから構成され、 CPU 1 1 6の動作プログラム等を記憶する記録 媒体である。 RAM 1 1 4は、 CPU 1 1 6のワークエリアなどとして機能 する。
[0075] IZOポート 1 1 5は、 温度センサ S1 S5、 操作パネル 1 21、 圧力計
1 22、 ヒータコントローラ 1 23、 マスフローコントローラ 1 24、 弁開 閉制御部 1 25、 真空ポンプ 1 26、 ポートエレベータ 1 27等に接続され 、 データや信号の入出力を制御する。
[0076] バス 1 1 7は、 各構成要素の間での情報の伝達に利用される。 [0077] C P U (Centra l Process i ng Un i t) 1 1 6は、 制御部 1 0 0の中枢を構成 する。 C P U 1 1 6は、 R O M 1 1 3に記憶された制御プログラムを実行し 、 操作パネル 1 2 1からの指示に従って、 及び Zまたは、 レシピ記憶部 1 1 2に記憶されているレシピに従って、 熱処理装置 1の動作を制御する。
[0078] 次に、 熱処理装置 1のセッ卜アップ動作において使用される温度測定装置
5 1について説明する。
[0079] 温度測定装置 5 1は、 図 7に示すように、 支柱 5 2と、 支柱 5 2から水平 方向に伸びる第 1 第 6の腕部 5 3 5 8と、 を備える。 第 1から第 3の腕 部 5 3, 5 4, 5 5は、 図 8に示すように、 ポート 2 6の上部スロット、 中 央部スロッ卜、 下部スロッ卜にそれぞれ側方から挿入され得るように延びて いる。 第 4の腕部 5 6は、 回転支柱 2 3を避けつつ、 下面ヒータ 3 3の温度 測定位置 P 6, P 7に近接して対向するように延びている。 第 5及び第 6の 腕部 5 7, 5 8は、 処理容器 1 1の側壁の温度測定位置 P 8と P 9に対向す るように延びている。
[0080] 図 7に示すように、 第 1の腕 5 3には、 ポート上部ウェハ Wの中央部 P 1 とエッジ部 P 2とにそれぞれ対向する位置に、 熱電対 T C 1と T C 2が配置 されている。
[0081 ] 第 2の腕 5 4には、 ポート中央部ウェハ Wの中央部 P 3に対向する位置に
、 熱電対 T C 3が配置されている。
[0082] 第 3の腕 5 5には、 ポート下部ウェハ Wの中央部 P 4とエッジ部 P 5とに それぞれ対向する位置に、 熱電対 T C 4と T C 5が配置されている。
[0083] 第 4の腕 5 6には、 下面ヒータ 3 3の温度測定位置 P 6と P 7とにそれぞ れ対向する位置に、 熱電対 T C 6と T C 7が配置されている。
[0084] 第 5の腕 5 7には、 処理容器 1 1の側壁の温度測定位置 P 8に対向する位 置に熱電対 T C 8が配置されている。
[0085] 第 6の腕 5 8には、 処理容器 1 1の側壁の温度測定位置 P 9に対向する位 置に熱電対 T C 9が配置されている。
[0086] 熱電対 T C 1 T C 9は、 各温度測定位置 P 1 P 9に対して非接触で近 接して配置され、 各温度測定位置 P 1 P 9の温度をほぼ正確に測定可能で ある。 これらの熱電対 T Cの出力信号線は、 セッ卜アップ時に、 制御部 1 0 0の I ZOポー卜 1 1 5に接続される。
[0087] 次に、 熱処理装置 1のセットアップ動作について、 図 9のフローチャート を参照して説明する。 このセッ卜アップ動作は、 個々の熱処理装置 1と基準 装置との間の微妙な熱特性の差を求めて、 熱モデル記憶部 1 1 1に記憶され ている基準熱モデル M 1を修正して熱処理装置 1に固有の校正熱モデル M 2 を作成する作業である。
[0088] まず、 操作者は、 ダミーウェハ Wを搭載したポート 2 6及び温度測定装置
5 1を、 処理容器 1 1内に配置 (ロード) する。 具体的には、 操作者は、 操 作パネル 1 2 1を操作して、 ウェハポート蓋体 2 1の降下を指示する。 この 指示に応答して、 制御部 1 0 0 ( C P U 1 1 6 ) は、 ポー卜エレベータ 1 2 7を降下させて、 ウェハポート蓋体 2 1を降下させる。 ウェハポート蓋体 2 1が降下すると、 操作者は、 図示しないロボットを介して、 回転テーブル 2 4上に、 ダミーウェハ Wを搭載したポート 2 6を配置する。 また、 操作者は 、 図示しないロボッ卜を介して、 温度測定装置 5 1を蓋体 2 1上に載置する と共に、 その第 1 第 6の腕部 5 3 5 8を図 7及び図 8に示す所定位置に 位置決めする。 次に、 操作者は、 操作パネル 1 2 1を操作して、 ウェハポー ト蓋体 2 1の上昇を指示する。 この指示に応答して、 制御部 1 0 0 ( C P U 1 1 6 ) は、 ポー卜エレベータ 1 2 7を上昇させて、 蓋体 2 1を上昇させ、 ポー卜 2 6及び温度測定装置 5 1を処理容器 1 1内にロードする。
[0089] 続いて、 操作者は、 操作パネル 1 2 1を操作して、 基準熱モデル M 1の校 正処理の開始を指示する。
[0090] この指示に応答して、 制御部 1 0 0は、 R O M 1 1 3に記憶されている校 正処理用プログラムに従って以下の処理 (動作) を開始する。
[0091 ] まず、 制御部 1 0 0は、 圧力計 1 2 2の出力をモニタしながら、 弁開閉制 御部 1 2 5及び真空ポンプ 1 2 6等を制御し、 処理容器 1 1内を所定圧力ま で減圧する (ステップ S 1 1 ) 。 [0092] 続いて、 制御部 1 00は、 処理容器 1 1内の温度測定位置 P 1 P 9及び センサ S 4の目標温度を、 セットアップレシピ R 1に従って、 第 1の温度 ( 例えば、 500°C) に設定する (ステップ S 1 2) 。
[0093] 処理容器 1 1内の温度が安定した時点で、 温度センサ S 1 S 5及び熱電 対 TC 1 TC 9で各温度測定位置の温度が実測される (ステップ S 1 3)
[0094] 続いて、 温度センサ S 1 S 5の測定温度及びヒータ 3 1 33への供給 電力等の情報が、 基準熱モデル M 1に適用される。 これにより、 温度測定位 置 P 1
Figure imgf000019_0001
P 9 (モニタウェハ Wの中央部及び周縁部の温度測定位置 P 1 5、 下面ヒータ 33の温度測定位置 P 6, P 7, 処理容器 1 1の側壁内面の 温度測定位置 P 8, P 9) 、 及び、 温度センサ S 4の各温度が予想される ( ステップ S 1 4) 。
[0095] 次に、 温度測定位置 P 1 P 9及び温度センサ S 4の各温度の予想値と実 測値とが対応付けられて、 RAM 1 1 4に記憶される (ステップ S 1 5) 。
[0096] 次に、 制御部 1 00は、 セッ卜アップレシピ R 1で設定されている全ての 温度についてのセッ卜アップ処理が終了したか否かを判断する (ステップ S 1 6) 。 終了していない場合には (ステップ S 1 6 ; N o) 、 処理工程はス テツプ S 1 2に戻って、 次の設定温度について同様の処理が繰り返される。
[0097] 一方、 セッ卜アップレシピ R 1で設定されている全ての温度についてのセ ッ卜アップ処理が終了した場合には (ステップ S 1 6 ; Y e s) 、 その時点 で、 図 1 0に示すように、 実測温度と予想温度との対応表が RAM 1 1 4上 で得られる。 そして、 処理工程はステップ S 1 8に進む。
[0098] ステップ S 1 8においては、 RAM 1 1 4上に形成された対応表に基づい て、 熱電対 T C 1 T C 9で実測された温度 T R 1 T R 9及び温度センサ S 4で実測された温度 TR 1 0と、 基準熱モデル M 1を用いて予想された温 度測定位置 P 1 P 9の温度 T P T P 9及び温度センサ S 4の温度 T P 1 0と、 がそれぞれ比較され、 ウェハ Wの温度の補正値が求められる。
[0099] 補正値を求める手法は任意であるが、 例えば、 以下の数式 1に従って、 補 正値を求めることができる。
補正値 Ai =基準熱モデル M 1による予想値 TP i -実測値 TF^ ■ ■ '数式 1
ここで、 添え字の iは、 温度測定位置 P 1 P 9に対応する値 1 9及び温 度センサ S 4に対応する値 1 0のいずれかである。
[0100] なお、 補正値 A i は、 iの関数の形式として表されてもよい。 例えば、 予 想値 T P -実測値 T R が図 1 1に示すようにばらついた場合、 例えば最小 二乗法を用いてこれらを代表する一次関数 f (TP ) を求め、 これを補正 値 A として利用してもよい。
[0101] 次に、 基準熱モデル M 1を校正することによって校正熱モデル M 2が作成 され、 熱モデル記憶部 1 1 1に格納される (ステップ S 1 9) 。 即ち、 以下 の数式 2で示すように、 基準熱モデル M 1による予想値 TP を補正値 A i で補正した値を予想するような校正熱モデル M 2が作成され、 熱モデル記憶 部 1 1 1に格納される。
校正熱モデル M 2による予想値 TQ =基準熱モデル M 1による予想値 T
P -補正値 A ■ ■ ■数式 2
[0102] 例えば、 補正値 A が図 1 1に示すような関数 f (TP ) で表され、 基 準熱モデル M 1による予想温度が TOとすると、 予想温度が TO- f (TO) となるように、 基準熱モデル M 1が校正される。
[0103] 以上により、 基準熱モデル M 1が熱処理装置 1用に校正 (カスタマイズ) された校正熱モデル M 2が得られる。
[0104] その後、 制御部 1 00は、 ポートエレベータ 1 27を降下させて、 蓋体 2
1を降下させ、 ポート 26及び温度測定装置 51をアンロードする。 そして
、 操作者は、 操作パネル 1 21を操作して、 図示しないロボッ卜を介して、 ポート 26及び温度測定装置 51を処理容器 1 1から搬出する。
[0105] 熱モデル記憶部 1 1 1に記憶された校正熱モデル M 2は、 その後、 実際の プロセスで温度測定位置 P 1 P 9の温度及び温度センサ S 4の温度を予想 するために使用される。 [0106] 次に、 上述のように校正された校正熱モデル M 2を用いて、 成膜処理、 拡 散処理等の熱処理を行う動作を図 1 2, 図 1 3を参照して説明する。
[0107] まず、 操作者は、 操作パネル 1 2 1を操作して、 実行対象のプロセスを特 定する。 操作パネル 1 2 1からの操作指示に応答して、 C P U 1 1 6は、 実 行対象のプロセスのプロセスレシピをレシピ記憶部 1 1 2から読み出し、 当 該プロセスレシピを R A M 1 1 4上に格納する。 ここでは、 図 6に示すレシ ピが選択されたものとする。
[0108] 操作者は、 操作パネル 1 2 1を操作して、 図示せぬロボッ卜によって処理 対象のウェハ Wが積載されたポー卜 2 6を回転テーブル 2 4上に載置する。 そして、 操作者は、 ポート 2 6のロードを指示する。 この指示に応答して、 制御部 1 0 0は、 処理容器 1 1の内面の温度をプロセスレシピが指定する温 度に維持しながら、 ポートエレベータ 1 2 7を制御してポート 2 6をロード する。
[0109] 具体的に説明すると、 制御部 1 0 0の C P U 1 1 6は、 図 1 2 Aに示すよ うに、 ポート 2 6をロードするためにポートエレベータ 1 2 7を制御する動 作 (ステップ S 2 1 ) と、 処理容器 1 1の内壁の温度測定位置 P 8, P 9の 予想温度をプロセスレシピが規定する温度に一致させるベく温度センサ S 1 S 5で温度を検出しつつヒータコントローラ 1 2 3を介してヒータ 3 1 3 3を制御する動作 (ステップ S 2 2 ) を、 ポート 2 6のロードの完了が検 出されるまで (ステップ S 2 3 ; Y e s ) 繰り返す。
[0110] ポート 2 6のロードが完了すると、 制御部 1 0 0は、 処理容器 1 1内を排 気すると共に、 ヒータコントローラ 1 2 3を介して各部の温度をレシピが規 定する温度に一致させるベくヒータ 3 1 3 3を制御する。 処理容器 1 1内 の排気が完了し、 処理容器 1 1内のウェハを含む各部の温度がプロセスレシ ピが指定する温度と一致すると、 制御部 1 0 0は、 開閉弁制御部 1 2 5を介 して、 処理ガスの供給を開始する。
[0111 ] 以後、 処理容器 1 1内の圧力、 各部の温度、 ガス流量、 排気量などがレシ ピに従って制御されながら、 熱処理が進められる。 この間、 制御部 1 0 0は 、 下面ヒータ 33の温度測定位置 P 6、 P 7、 処理容器 1 1の側壁の温度測 定位置 P 8、 P 9、 及び、 温度センサ S 4の各予想温度をレシピが規定する 温度に一致させるベくヒータ 3 1 33を制御する。
[0112] 具体的に説明すると、 図 1 3に示すように、 CPU 1 1 6は、 温度センサ S 1 S 5により温度を測定し、 また、 ヒータ電力などの測定値を取り込む (ステップ S 3 1 ) 。
[0113] 続いて、 CPU 1 1 6は、 前記測定値を校正熱モデル M 2に適用して、 温 度測定位置 P 1 P 9及び温度センサ S 4の温度を予想する (ステップ S 3 2) 。
[0114] 続いて、 CPU 1 1 6は、 校正熱モデル M 2に基づいて、 温度測定位置 P
1 P 5の予想温度をプロセスレシピが指定するウェハ温度に一致させ、 温 度測定位置 P 6、 P 7の予想温度の平均値をプロセスレシピが規定する下面 ヒータ 33の温度に一致させ、 温度測定位置 P 8、 P 9の予想温度の平均値 をプロセスレシピが規定する処理容器 1 1の内面の温度に一致させ、 温度セ ンサ S 4の予想温度をプロセスレシピが指定する温度センサ S 4の温度に一 致させるべく、 ヒータコントローラ 1 23を介して、 ヒータ 3 1 33への 供給電力を制御する (ステップ S 33) 。
[0115] 続いて、 CPU 1 1 6は、 圧力計 1 22及びマスフローコントローラ 1 2 4等の測定値を取り込み、 処理容器 1 1内の圧力やガス流量などをプロセス レシピが規定する値と一致させるベく、 マスフローコントローラ 1 24, 弁 開閉制御部 1 25, 真空ポンプ 1 26等を制御する。
[0116] 続いて、 CPU 1 1 6は、 処理が終了したか否か、 例えば処理が一定時間 継続したか否か、 を判別する (ステップ S 35) 。 終了していなければ (ス テツプ S 35 ; N o) 、 ステップ S 3 1に戻って処理が継続される。 終了し ていれば (ステップ S 35 ; Y e s) 、 当該プロセス処理は終了し、 パージ 処理などが開始される。
[0117] 以上のように、 ウェハ Wの予想温度 (推定温度) をレシピが規定する温度 に一致させるだけでなく、 処理容器 1 1内のウェハ W以外の部分、 具体的に は、 下面ヒータ 3 3と処理容器 1 1の側面と温度センサ S 4の推定温度を、 それぞれレシピが規定する温度と一致させるように制御が行われる。 これに より、 ウェハ Wの温度のみを予想して制御する場合に比して、 例えば C V D 系プロセスにおいては、 ガス分解効果の変動 (バラツキ) が抑えられる。 こ れにより、 プロセスレシピが本来予定しているプロセスからの変動 (バラッ キ) が小さい状態でプロセスを実行でき、 予定している結果に近い結果を得 ることができる。
[01 18] さらに、 プロセス毎に適切にレシピが設定されれば、 ガス分解効果を促進 或いは鈍化させることが可能である。 これにより、 ユーザにとって望ましい 成膜結果が得られる。
[0119] 成膜処理が終了すると、 制御部 1 0 0が開閉弁制御部 1 2 5、 真空ポンプ
1 2 6、 ヒータコントローラ 1 2 3等を制御して、 プロセスガスの供給が停 止され、 代わりに、 パージガスが供給されて、 処理容器 1 1内の処理ガスが 排気されながら処理容器 1 1内が昇圧されつつ冷却される。
[0120] 処理容器 1 1内の圧力が大気圧まで上がり、 温度が所定温度まで低下され ると、 制御部 1 0 0によリボー卜エレベータ 1 2 7が制御されて、 ポート 2 6がアンロードされる。 このアンロードの間、 即ち、 ウェハ Wを処理容器 1 1から取り出している間、 制御部 1 0 0は、 処理容器 1 1の内面の温度測定 位置 P 8、 P 9の予想温度がそれぞれレシピで設定された一定温度に維持さ れるように、 ヒータ 3 1 3 3を制御する。 また、 この間、 制御部 1 0 0が 真空ポンプ 1 2 6等を制御して、 排気部 1 2から、 処理容器 1 1内で発生さ れるパーティクルを吸引排気する。
[0121 ] 具体的に説明すると、 制御部 1 0 0の C P U 1 1 6は、 図 1 2 Bに示すよ うに、 ポート 2 6をアンロードするためにポートエレベータ 1 2 7を制御す る動作 (ステップ S 2 5 ) と、 処理容器 1 1の内壁の温度測定位置 P 8, P 9の予想温度をプロセスレシピが規定する温度に一致させるベく温度センサ S 1 S 5で温度を検出しつつヒータコントローラ 1 2 3を介してヒータ 3 3を制御する動作 (ステップ S 2 6 ) と、 処理容器 1 1内を排気するように 真空ポンプ 1 2 6を制御する動作 (ステップ 2 7 ) とを、 ポート 2 6のアン ロードの完了が検出されるまで (ステップ S 2 8 ; Y e s ) 繰り返す。
[0122] ポート 2 6のアンロードが終了すると、 操作者は、 操作パネル 1 2 1を操 作して、 図示せぬロボッ卜によって回転テーブル 2 4上からポート 2 6を取 リ出す。
[0123] 以上説明したように、 本実施の形態にかかる熱処理装置は、 成膜処理時に 、 ウェハの温度だけでなく、 処理容器 1 1内の所定のウェハ W以外の部分 ( 温度センサ S 4, 下面ヒータ 3 3、 処理容器 1 1の内側面) の温度をも推定 し、 それらの推定温度を予め設定されたレシピの温度と一致させるように温 度制御 (ヒータ制御) を行う。 従って、 ウェハ Wの温度だけを予想して制御 する場合に比して、 処理のバラツキが抑えられ安定して高い品質の成膜を行 うことができる。
[0124] また、 ポート 2 6のロード及びアンロードの間、 処理容器 1 1内面の温度 がほぼ一定値に制御されることにより、 処理容器 1 1の内面の堆積物が剥離 することを抑えることが可能となる。 これにより、 パーティクルの発生を抑 える事ができる。
[0125] この発明は、 上記実施の形態に限定されず、 種々の変形及び応用が可能で ある。 例えば、 上記実施の形態においては、 処理中に、 ウェハ Wの温度以外 に、 下面ヒータ 3 3と温度センサ S 4と処理容器 1 1の内面との各予想温度 をレシピが規定する温度と一致させるような制御が行われている。 しかし、 本発明はこれに限定されない。 例えば、 処理中に、 処理容器 1 1の内面の温 度が制御対象から外され、 ウェハ Wの温度と下面ヒータ 3 3と温度センサ S 4の温度のみを予想■制御対象としてもよい。
[0126] また、 上記実施の形態においては、 下面ヒータ 3 3の温度測定位置 P 6、 P 7, 処理容器 1 1の内面の温度測定位置 P 8、 P 9の各温度がそれぞれ予 想され、 それぞれ、 レシピが指定する温度と一致するように制御される。 し かし、 本発明はこれに限定されない。 例えば、 下面ヒータ 3 3の温度測定位 置 P 6及び P 7の平均温度のみが予想され、 予想した平均温度がレシピが指 定する温度と一致するようにヒータ 3 1 3 3が制御されてもよい。 或いは 、 処理容器 1 1の内面の温度測定位置 P 8及び P 9の平均温度のみが予想さ れ、 予想した平均温度がレシピが指定する温度と一致するようにヒータ 3 1 - 3 3が制御されてもよい。
[0127] この場合には、 熱モデル記憶部 1 1 1には、 温度測定位置 P 6と P 7の温 度の平均温度及び Zまたは温度測定位置 P 8と P 9の温度の平均温度を予想 する熱モデルが格納され、 レシピ記憶部 1 1 2には、 温度測定位置 P 6と P 7の温度の平均温度及び Zまたは温度測定位置 P 8と P 9の温度の平均温度 のレシピが格納される。 C P U 1 1 6は、 熱モデルに基づいて、 温度測定位 置 P 6と P 7の温度の平均温度及び Zまたは温度測定位置 P 8と P 9の温度 の平均温度を予想し、 当該予想温度をレシピが規定する温度と一致させるベ く、 ヒータコントローラ 1 2 3を介してヒータ 3 1 3 3を制御する。
[0128] 熱モデルは、 温度測定位置 P 6 P 9の温度を個別に予想してもよい。 こ の場合には、 C P U 1 1 6が、 予想した温度の平均値を計算し、 温度測定位 置 P 6と P 7の温度の平均温度及び Zまたは温度測定位置 P 8と P 9の温度 の平均温度をそれぞれレシピが規定する温度と一致させるベく、 ヒータコン 卜ローラ 1 2 3を介してヒータ 3 1 - 3 3を制御する。
[0129] また、 他の箇所が温度の制御対象とされ得る。 例えば、 ポート 2 6の任意 の位置の温度や温度センサ S 5の温度が、 予想及び制御の対象とされ得る。 この場合には、 ポー卜 2 6の所定位置の温度及び Zまたは温度センサ S 5の 温度を予想するモデルが作成され、 さらに、 プロセスの実行に最適なポート 2 6の所定位置の温度及び Zまたは温度センサ S 5の温度 (の変化) のレシ ピが作成される。 そして、 作成されたレシピの温度にポート 2 6及び Zまた は温度センサ S 5の予想温度が一致するように、 ヒータ 3 1が制御される。
[0130] 温度制御の対象とされる箇所は任意である。 但し、 処理ガスの流れ、 圧力 分布などを考慮し、 その箇所の温度が直接又は間接的にプロセスに影響を与 えるような箇所が選択、 設定されることが望ましい。
[0131] さらに、 温度予想用の温度センサの数や配置位置は、 適宜変更可能である 。 数は 5つに限定されず、 配置位置は、 処理容器 1 1の内壁に配置する等し てもよい。
[0132] また、 この発明が適用される熱処理装置 1も、 上記実施の形態のものに限 定されず、 任意に変更可能である。 例えば、 処理容器 1 1が例えば二重管構 造であったリ、 ポート 2 6に収容できる半導体ウェハ Wの数がょリ大容量 ( 例えば、 約 1 0 0枚から 1 5 0枚) であったり、 あるいは、 より小容量 (例 えば、 1 5 3 0枚) であってもよい。
[0133] また、 熱処理の種類も任意である。 すなわち、 本発明は、 C V D装置に限 らず、 酸化装置、 エッチング装置、 等の様々なバッチ式熱処理装置に適用可 能である。
[0134] また、 機器構成やそれらの動作も、 上記実施の形態に限定されない。 例え ば、 上記実施の形態では、 側面ヒータの数を 3つ、 内部ヒータの数を 2つと したが、 ヒータの数や配置は任意である。 また、 ヒータは、 電気抵抗型のも のに限定されず、 加熱ランプなどでもよい。 また、 ウェハ等の温度を測定す るための構成も、 熱電対に限定されず、 任意の温度センサを適用可能である
[0135] また、 熱モデル及びその設計手法も、 米国特許 5, 5 1 7, 5 9 4に開示 されたモデル及びその設計手法に限定されるものではなく、 任意のモデル及 び任意の設計手法を採用可能である。
[0136] さらに、 上記実施の形態では、 熱モデルを生成する段階で、 上面ヒータ 3 2の温度については、 温度センサ S 4の温度で近似され、 下面ヒータ 3 3の 温度については、 熱電対 T C 8, T C 9で直接測定されている。 しかし、 他 の手法を使用することも可能である。 例えば、 放射温度計などを用いて温度 を測定することが可能である。
[0137] また、 上記実施の形態における制御部 1 0 0は、 専用のシステムであって もよいが、 通常のコンピュータシステムによっても実現可能である。 例えば 、 汎用コンピュータに、 上述の校正処理を実行するためのプログラムをイン ストールすることにより、 当該汎用コンピュータを制御部 1 0 0として利用 することができる。 例えば、 上述の校正処理を行うためのコンピュータプロ グラム (の少なくとも一部) は、 CD-ROMや DVD-ROMなどのコンビ ユータ読み取リ可能な記録媒体に格納して配布され得る。 このようなコンビ ユータプログラムは、 I ZOポー卜 1 1 5を介して RAM 1 1 4に転送され 得る。 転送されたプログラムは、 CPU 1 1 6で実行されて、 上述の校正処 理を実行する。
[0138] また、 コンピュータシステムにコンピュータプログラムを供給するための 手段は、 任意である。 すなわち、 上述のように所定の記録媒体を介して供給 する態様の他、 通信回線、 通信ネッ卜ワーク、 通信システム等を介して供給 する態様も採用され得る。 具体的には、 例えば、 通信ネッ卜ワークの掲示板 (BBS) に掲示されたプログラムが、 ネットワークを介して搬送波に重畳 されて、 I ZOポート 1 1 5に転送されてもよい。
[0139] なお、 汎用コンピュータにおいては、 前記コンピュータプログラムは、 O Sの制御下で他のアプリケーションと同様に実行されてもよい。

Claims

請求の範囲
[1 ] 被処理体を収容する処理容器と、
前記被処理体を加熱する複数のヒータと、
前記処理容器内の複数の所定位置の温度をそれぞれ検出する複数の温度セ ンサと、
前記複数の温度センサの出力から前記処理容器内に収容された前記被処理 体の温度を推定するための熱モデルと、 前記被処理体の所望の温度が規定さ れたレシピと、 を記憶する記憶部と、
前記複数の温度センサの出力と前記熱モデルとを用いて前記被処理体の温 度を予想すると共に、 当該予想された前記被処理体の温度を前記レシピに規 定された前記被処理体の所望の温度と一致させるベく前記複数のヒータを制 御する制御部と、
を備え、
前記熱モデルは、 前記複数の温度センサの出力から、 前記処理容器内に収 容された前記被処理体の温度と共に、 前記処理容器内の他の少なくとも一つ の所定部位の温度をも推定するように構成されており、
前記レシピには、 前記所定部位の所望の温度をも規定されておリ、 前記制御部は、 前記複数の温度センサの出力と前記熱モデルとを用いて前 記被処理体の温度と前記所定部位の温度とを予想すると共に、 当該予想され た前記被処理体の温度及び前記所定部位の温度の各々を前記レシピに規定さ れた前記被処理体の所望の温度及び前記所定部位の所望の温度と一致させる ベく前記複数のヒータを制御するようになっている
ことを特徴とする熱処理装置。
[2] 前記複数のヒータのうちの 1つとして、 前記処理容器内に内部ヒータが配 置されており、
前記処理容器内の他の少なくとも一つの所定部位は、 前記処理容器内の内 部ヒータを含んでいる
ことを特徴とする請求項 1に記載の熱処理装置。
[3] 前記処理容器内の他の少なくとも一つの所定部位は、 前記処理容器の内壁 面の所定位置を含んでいる
ことを特徴とする請求項 1または 2に記載の熱処理装置。
[4] 前記複数のヒータのうちの 2つとして、 前記処理容器内に収容される被処 理体の上方部及び下方部に対応して、 上部ヒータ及び下部ヒータが配置され ており、
前記処理容器内の他の少なくとも一つの所定部位は、 前記上部ヒータ及び 前記下部ヒータを含んでいる
ことを特徴とする請求項 1に記載の熱処理装置。
[5] 前記処理容器の上方には、 排気管が接続されており、
前記上部ヒータは、 前記排気管を取リ巻くように配置されている ことを特徴とする請求項 4に記載の熱処理装置。
[6] 前記複数のヒータのうちの 2つとして、 前記処理容器内に収容される被処 理体の上方部及び下方部に対応して、 上部ヒータ及び下部ヒータが配置され ており、
前記処理容器内に収容された前記被処理体と前記上部ヒータとの間に、 前 記複数の温度センサのうちの 1つとして、 上部温度センサが配置されておリ 前記処理容器内の他の少なくとも一つの所定部位は、 前記上部温度センサ 及び前記下部ヒータを含んでいる
ことを特徴とする請求項 1に記載の熱処理装置。
[7] 前記処理容器の上方には、 排気管が接続されており、
前記上部ヒータは、 前記排気管を取リ巻くように配置されている ことを特徴とする請求項 6に記載の熱処理装置。
[8] 前記処理容器のガス導入口にガスを導入する手段と、
前記処理容器のガス排出口からガスを排気する手段と、
を更に備え、
前記処理容器内の他の少なくとも一つの所定部位は、 前記ガス導入口から 前記ガス排出口に至る経路上の、 前記ガス導入口から前記被処理体の最下流 側の部位までの間に設定されている
ことを特徴とする請求項 1に記載の熱処理装置。
[9] 前記熱モデルは、 熱処理中の前記複数の温度センサの出力から、 当該熱処 理中の前記処理容器内に収容された前記被処理体の温度と前記処理容器内の 他の少なくとも一つの所定部位の温度とを推定するように構成されておリ、 前記レシピには、 熱処理中の前記被処理体の所望の温度と前記所定部位の 所望の温度とが規定されておリ、
前記制御部は、 前記複数の温度センサの出力と前記熱モデルとを用いて熱 処理中の前記被処理体の温度と前記所定部位の温度とを予想すると共に、 当 該予想された前記被処理体の温度及び前記所定部位の温度の各々を前記レシ ピに規定された熱処理中の前記被処理体の所望の温度及び前記所定部位の所 望の温度と一致させるベく前記複数のヒータを制御するようになっている ことを特徴とする請求項 1乃至 8のいずれかに記載の熱処理装置。
[10] 被処理体を前記処理容器内にロードすると共に処理済みの被処理体を当該 処理容器からアンロードするロード Zァンロード手段
を更に備えたことを特徴とする請求項 1に記載の熱処理装置。
[11] 前記熱モデルは、 ロード中及び Zまたはアンロード中の前記複数の温度セ ンサの出力から、 当該ロード中及び Zまたはアンロード中の前記処理容器内 に収容された前記被処理体の温度と前記処理容器内の他の少なくとも一つの 所定部位の温度とを推定するように構成されておリ、
前記レシピには、 ロード中及び Zまたはアンロード中の前記被処理体の所 望の温度と前記所定部位の所望の温度とが規定されておリ、
前記制御部は、 前記複数の温度センサの出力と前記熱モデルとを用いて口 一ド中及び Zまたはアンロード中の前記被処理体の温度と前記所定部位の温 度とを予想すると共に、 当該予想された前記被処理体の温度及び前記所定部 位の温度の各々を前記レシピに規定されたロード中及び Zまたはアンロード 中の前記被処理体の所望の温度及び前記所定部位の所望の温度と一致させる ベく前記複数のヒータを制御するようになっている
ことを特徴とする請求項 1 0に記載の熱処理装置。
[12] 被処理体を収容する処理容器と、
前記被処理体を加熱する複数のヒータと、
前記処理容器内の複数の所定位置の温度をそれぞれ検出する複数の温度セ ンサと、
を備えた熱処理装置を制御する熱処理方法であって、
予め設定された熱モデルに前記複数の温度センサの出力を適用して、 前記 被処理体の温度と、 前記処理容器内の他の少なくとも一つの所定部位の温度 と、 を予想する予想工程と、
前記予想工程にて予想された前記被処理体の温度及び前記所定部位の温度 を、 予め規定された前記被処理体の所望の温度及び前記所定部位の所望の温 度に一致させるベく、 前記複数のヒータを制御する制御工程と、
を備えたことを特徴とする方法。
[13] 被処理体を収容する処理容器と、
前記被処理体を加熱する複数のヒータと、
前記処理容器内の複数の所定位置の温度をそれぞれ検出する複数の温度セ ンサと、
を備えた熱処理装置を制御するプログラムであって、
予め設定された熱モデルに前記複数の温度センサの出力を適用して、 前記 被処理体の温度と、 前記処理容器内の他の少なくとも一つの所定部位の温度 と、 を予想する予想手順と、
前記予想工程にて予想された前記被処理体の温度及び前記所定部位の温度 を、 予め規定された前記被処理体の所望の温度及び前記所定部位の所望の温 度に一致させるベく、 前記複数のヒータを制御する制御手順と、
をコンピュータに実行させるプログラム。
[14] 被処理体を収容する処理容器と、
前記被処理体を加熱する複数のヒータと、 前記処理容器内の複数の所定位置の温度をそれぞれ検出する複数の温度セ ンサと、
を備えた熱処理装置を制御するプログラムであって、
予め設定された熱モデルに前記複数の温度センサの出力を適用して、 前記 被処理体の温度と、 前記処理容器内の他の少なくとも一つの所定部位の温度 と、 を予想する予想手順と、
前記予想工程にて予想された前記被処理体の温度及び前記所定部位の温度 を、 予め規定された前記被処理体の所望の温度及び前記所定部位の所望の温 度に一致させるベく、 前記複数のヒータを制御する制御手順と、
をコンピュータに実行させるプログラム
を記録したコンピュータ読み取リ可能な記録媒体。
被処理体を収容する処理容器と、
前記被処理体を加熱する複数のヒータと、
前記処理容器内の複数の所定位置の温度をそれぞれ検出する複数の温度セ ンサと、
を備えた熱処理装置を制御する制御装置であって、
前記複数の温度センサの出力から前記処理容器内に収容された前記被処理 体の温度を推定するための熱モデルと、 前記被処理体の所望の温度が規定さ れたレシピと、 を記憶する記憶部と、
前記複数の温度センサの出力と前記熱モデルとを用いて前記被処理体の温 度を予想すると共に、 当該予想された前記被処理体の温度を前記レシピに規 定された前記被処理体の所望の温度と一致させるベく前記複数のヒータを制 御する制御部と、
を備え、
前記熱モデルは、 前記複数の温度センサの出力から、 前記処理容器内に収 容された前記被処理体の温度と共に、 前記処理容器内の他の少なくとも一つ の所定部位の温度をも推定するように構成されており、
前記レシピには、 前記所定部位の所望の温度をも規定されておリ、 前記制御部は、 前記複数の温度センサの出力と前記熱モデルとを用いて前 記被処理体の温度と前記所定部位の温度とを予想すると共に、 当該予想され た前記被処理体の温度及び前記所定部位の温度の各々を前記レシピに規定さ れた前記被処理体の所望の温度及び前記所定部位の所望の温度と一致させる ベく前記複数のヒータを制御するようになっている
ことを特徴とする制御装置。
少なくとも 1台のコンピュータを含むコンピュータシステムによって実行 されて、 前記コンピュータシステムに
被処理体を収容する処理容器と、
前記被処理体を加熱する複数のヒータと、
前記処理容器内の複数の所定位置の温度をそれぞれ検出する複数の温度セ ンサと、
を備えた熱処理装置を制御する制御装置であって、
前記複数の温度センサの出力から前記処理容器内に収容された前記被処理 体の温度を推定するための熱モデルと、 前記被処理体の所望の温度が規定さ れたレシピと、 を記憶する記憶部と、
前記複数の温度センサの出力と前記熱モデルとを用いて前記被処理体の温 度を予想すると共に、 当該予想された前記被処理体の温度を前記レシピに規 定された前記被処理体の所望の温度と一致させるベく前記複数のヒータを制 御する制御部と、
を備え、
前記熱モデルは、 前記複数の温度センサの出力から、 前記処理容器内に収 容された前記被処理体の温度と共に、 前記処理容器内の他の少なくとも一つ の所定部位の温度をも推定するように構成されており、
前記レシピには、 前記所定部位の所望の温度をも規定されておリ、 前記制御部は、 前記複数の温度センサの出力と前記熱モデルとを用いて前 記被処理体の温度と前記所定部位の温度とを予想すると共に、 当該予想され た前記被処理体の温度及び前記所定部位の温度の各々を前記レシピに規定さ れた前記被処理体の所望の温度及び前記所定部位の所望の温度と一致させる ベく前記複数のヒータを制御するようになっている
ことを特徴とする制御装置
を実現させるプログラム。
少なくとも 1台のコンピュータを含むコンピュータシステム上で動作する 第 2のプログラムを制御する命令が含まれておリ、
前記コンピュータシステムによって実行されて、 前記第 2のプログラムを 制御して、 前記コンピュータシステムに
被処理体を収容する処理容器と、
前記被処理体を加熱する複数のヒータと、
前記処理容器内の複数の所定位置の温度をそれぞれ検出する複数の温度セ ンサと、
を備えた熱処理装置を制御する制御装置であって、
前記複数の温度センサの出力から前記処理容器内に収容された前記被処理 体の温度を推定するための熱モデルと、 前記被処理体の所望の温度が規定さ れたレシピと、 を記憶する記憶部と、
前記複数の温度センサの出力と前記熱モデルとを用いて前記被処理体の温 度を予想すると共に、 当該予想された前記被処理体の温度を前記レシピに規 定された前記被処理体の所望の温度と一致させるベく前記複数のヒータを制 御する制御部と、
を備え、
前記熱モデルは、 前記複数の温度センサの出力から、 前記処理容器内に収 容された前記被処理体の温度と共に、 前記処理容器内の他の少なくとも一つ の所定部位の温度をも推定するように構成されており、
前記レシピには、 前記所定部位の所望の温度をも規定されておリ、 前記制御部は、 前記複数の温度センサの出力と前記熱モデルとを用いて前 記被処理体の温度と前記所定部位の温度とを予想すると共に、 当該予想され た前記被処理体の温度及び前記所定部位の温度の各々を前記レシピに規定さ れた前記被処理体の所望の温度及び前記所定部位の所望の温度と一致させる ベく前記複数のヒータを制御するようになっている
ことを特徴とする制御装置
を実現させるプログラム。
少なくとも 1台のコンピュータを含むコンピュータシステムによって実行 されて、 前記コンピュータシステムに
被処理体を収容する処理容器と、
前記被処理体を加熱する複数のヒータと、
前記処理容器内の複数の所定位置の温度をそれぞれ検出する複数の温度セ ンサと、
を備えた熱処理装置を制御する制御装置であって、
前記複数の温度センサの出力から前記処理容器内に収容された前記被処理 体の温度を推定するための熱モデルと、 前記被処理体の所望の温度が規定さ れたレシピと、 を記憶する記憶部と、
前記複数の温度センサの出力と前記熱モデルとを用いて前記被処理体の温 度を予想すると共に、 当該予想された前記被処理体の温度を前記レシピに規 定された前記被処理体の所望の温度と一致させるベく前記複数のヒータを制 御する制御部と、
を備え、
前記熱モデルは、 前記複数の温度センサの出力から、 前記処理容器内に収 容された前記被処理体の温度と共に、 前記処理容器内の他の少なくとも一つ の所定部位の温度をも推定するように構成されており、
前記レシピには、 前記所定部位の所望の温度をも規定されておリ、 前記制御部は、 前記複数の温度センサの出力と前記熱モデルとを用いて前 記被処理体の温度と前記所定部位の温度とを予想すると共に、 当該予想され た前記被処理体の温度及び前記所定部位の温度の各々を前記レシピに規定さ れた前記被処理体の所望の温度及び前記所定部位の所望の温度と一致させる ベく前記複数のヒータを制御するようになっている ことを特徴とする制御装置
を実現させるプログラムを記録したコンピュータ読取り可能な記録媒体。 少なくとも 1台のコンピュータを含むコンピュータシステム上で動作する 第 2のプログラムを制御する命令が含まれておリ、
前記コンピュータシステムによって実行されて、 前記第 2のプログラムを 制御して、 前記コンピュータシステムに
被処理体を収容する処理容器と、
前記被処理体を加熱する複数のヒータと、
前記処理容器内の複数の所定位置の温度をそれぞれ検出する複数の温度セ ンサと、
を備えた熱処理装置を制御する制御装置であって、
前記複数の温度センサの出力から前記処理容器内に収容された前記被処理 体の温度を推定するための熱モデルと、 前記被処理体の所望の温度が規定さ れたレシピと、 を記憶する記憶部と、
前記複数の温度センサの出力と前記熱モデルとを用いて前記被処理体の温 度を予想すると共に、 当該予想された前記被処理体の温度を前記レシピに規 定された前記被処理体の所望の温度と一致させるベく前記複数のヒータを制 御する制御部と、
を備え、
前記熱モデルは、 前記複数の温度センサの出力から、 前記処理容器内に収 容された前記被処理体の温度と共に、 前記処理容器内の他の少なくとも一つ の所定部位の温度をも推定するように構成されており、
前記レシピには、 前記所定部位の所望の温度をも規定されておリ、 前記制御部は、 前記複数の温度センサの出力と前記熱モデルとを用いて前 記被処理体の温度と前記所定部位の温度とを予想すると共に、 当該予想され た前記被処理体の温度及び前記所定部位の温度の各々を前記レシピに規定さ れた前記被処理体の所望の温度及び前記所定部位の所望の温度と一致させる ベく前記複数のヒータを制御するようになっている ことを特徴とする制御装置
を実現させるプログラムを記録したコンピュータ読取り可能な記録媒体。
PCT/JP2004/016213 2003-10-30 2004-11-01 熱処理装置及び熱処理方法 WO2005043609A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/577,145 US20070074660A1 (en) 2003-10-30 2004-11-01 Thermal processing appratus and thermal processing method
EP04799419A EP1684336A4 (en) 2003-10-30 2004-11-01 HEAT TREATMENT DEVICE AND HEAT TREATMENT PROCESS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003371291 2003-10-30
JP2003-371291 2003-10-30
JP2004306040A JP4712343B2 (ja) 2003-10-30 2004-10-20 熱処理装置、熱処理方法、プログラム及び記録媒体
JP2004-306040 2004-10-20

Publications (1)

Publication Number Publication Date
WO2005043609A1 true WO2005043609A1 (ja) 2005-05-12

Family

ID=34554755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016213 WO2005043609A1 (ja) 2003-10-30 2004-11-01 熱処理装置及び熱処理方法

Country Status (6)

Country Link
US (1) US20070074660A1 (ja)
EP (1) EP1684336A4 (ja)
JP (1) JP4712343B2 (ja)
KR (1) KR100882633B1 (ja)
TW (1) TW200520036A (ja)
WO (1) WO2005043609A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684902B1 (ko) * 2005-05-30 2007-02-20 삼성전자주식회사 온도 조절 장치 및 이를 가지는 기판 처리 장치, 그리고상기 장치의 온도를 제어하는 방법

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211235B2 (en) * 2005-03-04 2012-07-03 Picosun Oy Apparatuses and methods for deposition of material on surfaces
JP4658818B2 (ja) * 2006-01-19 2011-03-23 株式会社山武 温度推定方法および装置
US7869888B2 (en) 2006-05-31 2011-01-11 Tokyo Electron Limited Information processing apparatus, semiconductor manufacturing system, information processing method, and storage medium
JP5040213B2 (ja) 2006-08-15 2012-10-03 東京エレクトロン株式会社 熱処理装置、熱処理方法及び記憶媒体
JP5005388B2 (ja) * 2007-03-01 2012-08-22 東京エレクトロン株式会社 熱処理システム、熱処理方法、及び、プログラム
JP5106932B2 (ja) * 2007-06-28 2012-12-26 日本エア・リキード株式会社 流体供給システム
JP5028352B2 (ja) * 2007-10-19 2012-09-19 株式会社日立国際電気 温度制御方法、温度補正値取得方法、半導体製造方法、基板処理装置
JP5101243B2 (ja) * 2007-10-29 2012-12-19 東京エレクトロン株式会社 基板処理装置,基板処理装置の制御方法,およびプログラム
US8354135B2 (en) * 2008-03-17 2013-01-15 Tokyo Electron Limited Thermal processing apparatus, method for regulating temperature of thermal processing apparatus, and program
JP5766647B2 (ja) * 2012-03-28 2015-08-19 東京エレクトロン株式会社 熱処理システム、熱処理方法、及び、プログラム
JP6280407B2 (ja) * 2014-03-19 2018-02-14 東京エレクトロン株式会社 基板処理方法、プログラム、制御装置、基板処理装置及び基板処理システム
US10254179B2 (en) 2014-12-25 2019-04-09 Fujitsu Limited Enclosure surface temperature estimation method and electronic apparatus
KR101830124B1 (ko) * 2017-04-06 2018-02-20 (주)앤피에스 기판 처리 장치
CN112530826B (zh) * 2020-11-27 2024-05-17 北京北方华创微电子装备有限公司 半导体热处理设备的承载装置及半导体热处理设备
KR102605999B1 (ko) * 2021-03-17 2023-11-23 세메스 주식회사 처리액 제공 유닛 및 이를 구비하는 기판 처리 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517594A (en) 1994-10-17 1996-05-14 Relman, Inc. Thermal reactor optimization
JP2002025997A (ja) 2000-07-06 2002-01-25 Tokyo Electron Ltd バッチ式熱処理装置及びその制御方法
JP2002043226A (ja) * 2000-07-24 2002-02-08 Tokyo Electron Ltd 熱処理装置および熱処理方法
EP1189261A2 (en) 2000-09-13 2002-03-20 Tokyo Electron Limited Batch-type heat treatment apparatus and method for controlling it
JP2005026397A (ja) * 2003-07-01 2005-01-27 Tokyo Electron Ltd 熱処理装置及びその校正方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3423671B2 (ja) 2000-06-19 2003-07-07 上商株式会社 縦葺き型金属屋根板同士間の連結構造
US7135659B2 (en) * 2001-03-05 2006-11-14 Tokyo Electron Limited Heat treatment method and heat treatment system
JP2003031647A (ja) * 2001-07-19 2003-01-31 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
JP3836696B2 (ja) * 2001-08-31 2006-10-25 株式会社東芝 半導体製造システムおよび半導体装置の製造方法
JP2003209063A (ja) * 2001-11-08 2003-07-25 Tokyo Electron Ltd 熱処理装置および熱処理方法
JP4276813B2 (ja) * 2002-03-26 2009-06-10 株式会社日立国際電気 熱処理装置および半導体製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517594A (en) 1994-10-17 1996-05-14 Relman, Inc. Thermal reactor optimization
JP2002025997A (ja) 2000-07-06 2002-01-25 Tokyo Electron Ltd バッチ式熱処理装置及びその制御方法
JP2002043226A (ja) * 2000-07-24 2002-02-08 Tokyo Electron Ltd 熱処理装置および熱処理方法
EP1189261A2 (en) 2000-09-13 2002-03-20 Tokyo Electron Limited Batch-type heat treatment apparatus and method for controlling it
JP2002091574A (ja) * 2000-09-13 2002-03-29 Tokyo Electron Ltd バッチ式熱処理装置及びその制御方法
JP2005026397A (ja) * 2003-07-01 2005-01-27 Tokyo Electron Ltd 熱処理装置及びその校正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1684336A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684902B1 (ko) * 2005-05-30 2007-02-20 삼성전자주식회사 온도 조절 장치 및 이를 가지는 기판 처리 장치, 그리고상기 장치의 온도를 제어하는 방법
US7637114B2 (en) 2005-05-30 2009-12-29 Samsung Electronics Co., Ltd. Temperature-adjusting unit, substrate processing apparatus with the unit, and method of regulating temperature in the apparatus

Also Published As

Publication number Publication date
JP4712343B2 (ja) 2011-06-29
JP2005159317A (ja) 2005-06-16
EP1684336A1 (en) 2006-07-26
TW200520036A (en) 2005-06-16
US20070074660A1 (en) 2007-04-05
KR100882633B1 (ko) 2009-02-06
TWI355014B (ja) 2011-12-21
KR20060114284A (ko) 2006-11-06
EP1684336A4 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
TWI409851B (zh) Adjust the gas flow processing system, processing methods and memory media
JP3802889B2 (ja) 熱処理装置及びその校正方法
US8501599B2 (en) Substrate processing apparatus and substrate processing method
WO2005043609A1 (ja) 熱処理装置及び熱処理方法
JP5040213B2 (ja) 熱処理装置、熱処理方法及び記憶媒体
US7896649B2 (en) Heat system, heat method, and program
CN107230654B (zh) 控制装置、基板处理系统、基板处理方法以及存储介质
JP5788355B2 (ja) 熱処理システム、熱処理方法、及び、プログラム
JP5049303B2 (ja) 熱処理装置、熱処理装置の温度調整方法、及び、プログラム
JP2002091574A (ja) バッチ式熱処理装置及びその制御方法
JP2009111042A (ja) 基板処理装置,基板処理装置の制御方法,およびプログラム
JP2010118605A (ja) 基板処理装置および半導体装置の製造方法、温度制御方法
JP5049302B2 (ja) 熱処理装置、熱処理装置の温度調整方法、及び、プログラム
JP6596316B2 (ja) 熱処理システム、熱処理方法、及び、プログラム
KR20030076382A (ko) 열처리 방법 및 열처리 장치
JP6353802B2 (ja) 処理システム、処理方法、及び、プログラム
JP6378639B2 (ja) 処理システム、処理方法、及び、プログラム
JP6578101B2 (ja) 処理システム及び処理方法
JP4686887B2 (ja) 成膜方法
JP4509360B2 (ja) 熱処理方法
JP2005333032A (ja) モニタ用被処理体の温度換算関数の形成方法、温度分布の算出方法及び枚葉式の熱処理装置
JP6335128B2 (ja) 熱処理システム、熱処理方法、及び、プログラム
JP2005236248A (ja) 温度検出システム
JP2002130961A (ja) 熱処理装置の校正方法及び熱処理装置の数学モデル生成・校正方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020057011807

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048114399

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007074660

Country of ref document: US

Ref document number: 10577145

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004799419

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004799419

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057011807

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10577145

Country of ref document: US