WO2005043089A1 - 電動パワーステアリング装置の制御装置 - Google Patents

電動パワーステアリング装置の制御装置 Download PDF

Info

Publication number
WO2005043089A1
WO2005043089A1 PCT/JP2004/016502 JP2004016502W WO2005043089A1 WO 2005043089 A1 WO2005043089 A1 WO 2005043089A1 JP 2004016502 W JP2004016502 W JP 2004016502W WO 2005043089 A1 WO2005043089 A1 WO 2005043089A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
angle
cos
sin
motor
Prior art date
Application number
PCT/JP2004/016502
Other languages
English (en)
French (fr)
Inventor
Tetsuro Otsuka
Atsushi Horikoshi
Yuho Aoki
Original Assignee
Nsk Ltd.
Nsk Steering Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003374341A external-priority patent/JP4672253B2/ja
Priority claimed from JP2003406321A external-priority patent/JP2005168242A/ja
Application filed by Nsk Ltd., Nsk Steering Systems Co., Ltd. filed Critical Nsk Ltd.
Priority to US10/578,267 priority Critical patent/US7382295B2/en
Priority to EP04799525A priority patent/EP1684051A1/en
Publication of WO2005043089A1 publication Critical patent/WO2005043089A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • G01D5/24461Failure detection by redundancy or plausibility
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • the present invention relates to a control device for an electric power steering device, and more particularly to an electric power steering device having an abnormality detection function of an angle detector of a motor used in an electric power steering device and taking into consideration a protection operation against a failure of the angle detector.
  • a control device for an electric power steering device, and more particularly to an electric power steering device having an abnormality detection function of an angle detector of a motor used in an electric power steering device and taking into consideration a protection operation against a failure of the angle detector.
  • An electric power steering device that applies an auxiliary load to the steering device of an automobile using the rotational force of a motor applies the driving force of the motor to the steering shaft or rack shaft by a transmission mechanism such as a gear or a belt through a reduction gear.
  • An auxiliary load is applied.
  • a simple configuration of such an electric power steering device will be described with reference to FIG.
  • the axis 102 of the steering handle 101 is connected to the tie rod 106 of the steered wheels via the reduction gear 103, the universal joints 104a and 104b, and the pinion rack mechanism 105. ing.
  • the shaft 102 is provided with a tonnolek sensor 107 for detecting the steering torque of the steering wheel 101, and a motor 108 for assisting the steering force of the steering wheel 101 is provided. It is connected to axis 102 via reduction gear 103.
  • Japanese Patent No. 3136973 discloses a detection abnormality of a resolver, which is one of the angle detectors, and the details will be described with reference to FIG.
  • the device for detecting an angle includes a resolver 10 and an angle detection processing unit for calculating a rotation angle 0 by processing a signal output from the resolver 10.
  • a resolver digital conversion (RDC) circuit 14 is provided as an example of the angle detection processing unit.
  • Some resolver-to-digital converters 14 are also provided with a function to detect anomalies in the resonator 10.A failure detection signal is output from the E terminal of the resolver-to-digital converter 14 in FIG. You. However, the performance of the anomaly detection is limited and not sufficient, so that an anomaly detection circuit as described below may be provided.
  • the carrier oscillation circuit 12 transmits a carrier signal si ⁇ ⁇ t to a resolver 10 for detecting the rotation angle ⁇ of the motor 108, thereby corresponding to the rotation angle ⁇ ⁇ from the resolver 10.
  • the sin signal (si ⁇ t ⁇ si ⁇ ) and the cos signal (si ⁇ t ⁇ cos ⁇ ) are output.
  • the rotation angle ⁇ ⁇ is calculated in the resolver digital conversion circuit 14 to which the sin signal and the cos signal are input, and the calculated rotation angle ⁇ ⁇ ⁇ ⁇ is taken into the CPU circuit 16, and the motor 108 is controlled based on the rotation angle ⁇ . Is done.
  • the reference amplitude which is the peak value of si ⁇ t
  • the peak value setting circuit 24 and the carrier signal sin ⁇ t are compared by the comparison circuit 22 to detect the peak time.
  • the AD converter 44 and the AD converter 46 which play the role of a sample and hold, if the sin signal and the cos signal are latched, the sin angle signal (si ⁇ ) and the cos angle signal ( cos ⁇ ) can be detected.
  • the sin signal and the carrier It is necessary to execute the AD conversion of the cos signal and the interrupt due to the peak timing of the carrier wave, and the calculation of (si ⁇ ⁇ ) 2 + (cos ⁇ ) 2 , and the calculation requires a long processing time.
  • the sin signal and the carrier it is necessary to execute the AD conversion of the cos signal and the interrupt due to the peak timing of the carrier wave, and the calculation of (si ⁇ ⁇ ) 2 + (cos ⁇ ) 2 , and the calculation requires a long processing time.
  • when performing software processing there is a problem that places a burden on the CPU, and when performing processing using hardware, there is a problem that a large amount of hardware is required.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a motor for use in a control device of an electric power steering device for detecting an abnormality or an incomplete disconnection state (rare short) of a motor angle detector.
  • An object of the present invention is to provide a control device for an electric power steering device capable of detecting an abnormality or the like quickly and without burdening a CPU, and without requiring addition of a large number of hardware.
  • JP-A-2003-260200 As an example, a control device disclosed in JP-A-2003-260200 will be described with reference to FIG.
  • the vehicle speed V detected by the vehicle speed sensor 3 13 and the torque value Tr detected by the torque sensor 107 are input to the torque command value calculation section 3 19, and the torque command value calculation section At 3 19, the torque command value T ref is calculated.
  • the torque command value T ref and the resolver digital conversion circuit 3 1 1 Is output to the current command value calculating means 320, and the current command values I dref and I qref are calculated.
  • the motor currents Ia, Ib, and Ic are detected by the current detector 312, and the motor currents Ia, Ib, and Ic are three-phase /
  • the two-phase converter 327 converts the current into two-phase currents Id and Iq on the d-q axis.
  • the deviation 1 (1, ⁇ Iq) between the current command values Idref, Iqref and the motor current Id, 1 ⁇ is calculated.
  • the calculated deviations ⁇ Id, ⁇ I q is input to the PI controller 3 2 3, and the voltage command values V dref and V qref are calculated so that the deviation ⁇ I becomes zero, and the voltage command values V (1 6 £, ⁇ ( 1 1 6 £ Are converted into three-phase voltage command values V aref, V bref, and V cref by the two-phase / three-phase conversion means 3 2 4.
  • the PWM control unit 3 25 5 outputs the three-phase voltage command values V aref, V bref , V cref, and drives an inverter circuit 32 6 composed of FETs to supply motor currents I a, lb and I c to the motor 108.
  • a resolver 3 which is an example of an angle detector 1 0 and the position detection circuit 3 1 1 which is the angle detection means (mainly the resolver digital conversion circuit (RDC circuit) detects the rotation angle 0 of the motor 108, and the rotation angle ⁇ is 2 4 and Used in three-phase Z two-phase converter 327.
  • an abnormality judging means 340 is provided, and when an abnormality of the resolver 3110 3 resolver digital conversion circuit 311 is detected, there is no reverse torque to the intention of operating the steering wheel depending on the position of the rotation angle 0.
  • processing such as continuing assistance by the electric power steering device for a short time is performed.
  • it may be necessary to stop the electric power steering device immediately and shift the handle to manual operation.
  • the present invention has been made in view of the circumstances described above, and an object of the present invention is to provide a power steering device that can be used even when an angle detector for detecting a rotation angle 0 of a motor of an electric power steering device fails.
  • An object of the present invention is to provide a control device for an electric power steering device that can continue control of the electric power steering device irrespective of the position of the rotation angle 0. Disclosure of the invention
  • a carrier signal (si ⁇ t) having a predetermined frequency is supplied in order to detect a rotation angle ⁇ of the motor, which is necessary for control for applying a steering assist force by a motor to a steering system of a vehicle. Then, a sin signal (sin cot * sin 0) having a waveform obtained by amplitude-modulating the carrier signal with sin 0 and a cos signal (si ⁇ t ⁇ cos ⁇ ) having a waveform obtained by amplitude-modulating the carrier signal are generated.
  • the present invention relates to a control device for an electric power steering device having an angle detector, An abnormal region determination map comprising two values of a value corresponding to n ⁇ and a value corresponding to the cos ⁇ , and comprising an abnormal region determination map composed of a normal region and an abnormal region.
  • An abnormal region determination map comprising two values of a value corresponding to n ⁇ and a value corresponding to the cos ⁇ , and comprising an abnormal region determination map composed of a normal region and an abnormal region.
  • the object of the present invention is that the abnormal region determination map sets a value corresponding to the sin ⁇ ⁇ as an X coordinate value, a value corresponding to c 0 s 0 as a ⁇ coordinate value, and A rectangle ⁇ centered on the origin where the values of the X coordinate and the ⁇ coordinate are both zero on the area formed by the axis and the ⁇ axis, and a rectangle ⁇ centered on the origin. This is achieved by making the area surrounded by the small rectangle j3 the normal area.
  • the object of the present invention is to provide a method for detecting the sin 0 and the cos 0 in synchronism with the carrier signal or at a period that is an integral multiple of the period of the carrier. This is achieved by detecting
  • the object of the present invention is to provide an angle detection processing circuit for detecting an abnormality of the angle detector from the carrier signal, the sin signal and the cos signal, and the abnormal region determination map, This is achieved by double monitoring the abnormality of the angle detector with the abnormal region determination map.
  • a carrier signal (si ⁇ t) having a predetermined frequency is supplied in order to detect a rotation angle ⁇ of the motor, which is necessary for control for applying a steering assist force by a motor to a steering system of a vehicle. Then, a sin signal (sin cot * sin 0) having a waveform obtained by amplitude-modulating the carrier signal with sin 0 and a cos signal (si ⁇ t ⁇ c OS ⁇ ) having a waveform obtained by amplitude-modulating the carrier signal are generated.
  • the object of the present invention is to detect a sin angle signal (si ⁇ ⁇ ) and a cos angle signal (cose) from the S in signal and the cos signal, respectively.
  • Angle processing means for outputting a rotation angle signal formed from a signal formed from an angle signal and a signal formed from the sin angle signal; and the motor is controlled based on the rotation angle signal. It is reached by the thing.
  • the object of the present invention is that the motor is a three-phase brushless motor, a signal generated from the cos angle signal is a 1-bit signal indicating whether the value of the cos angle signal is positive or negative, and the sin This is achieved by the fact that the signals generated from the angle signals are two 1-bit signals indicating the respective results determined by the two thresholds for determining the level of the value of the sin angle signal. You.
  • the object of the present invention is to provide the sin angle signal and the cos angle signal from the sin signal and the cos signal in synchronization with the carrier signal or in synchronization with a cycle of an integral multiple of the carrier cycle. This is achieved by detecting
  • the object of the present invention is to provide a secondary angle processing means for receiving the angle processing means, and a main angle processing means for detecting the rotation angle 0, wherein the main angle processing means has failed. In this case, it is achieved by controlling the motor based on the rotation angle signal output from the sub-angle processing means instead of the rotation angle ⁇ detected by the main angle processing means.
  • the object of the present invention is to provide a motor in which the current supplied to the motor when controlled based on the rotation angle 0 is a sine wave current and the motor is controlled based on the rotation angle signal.
  • the current supplied is achieved by being a square-wave current.
  • FIG. 1 is a configuration diagram of a general electric power steering device.
  • FIG. 2 is a block diagram showing an example of a conventional device for detecting an abnormality of an angle detector.
  • FIG. 3 is a flowchart showing an example of a conventional abnormality detection process.
  • FIG. 4 is a diagram showing a relationship between a carrier signal, a sin signal, and a cos signal.
  • FIG. 5 is a block diagram showing an example of a conventional control device for handling abnormal rotation angle detection of a motor.
  • FIG. 6 is a diagram showing the basic concept of the abnormal area determination map of the present invention.
  • FIG. 7 is a block diagram showing a first embodiment of the present invention.
  • FIG. 8 is a flowchart showing an example of the soft processing of the first embodiment.
  • FIG. 9 is a diagram showing an example of an abnormal area determination map softly embodied.
  • FIG. 10 is a block diagram showing a second embodiment of the present invention.
  • FIG. 11 is a block diagram showing a detailed configuration example of the abnormality determination circuit in the second embodiment.
  • FIG. 12 is a diagram for explaining the principle of detecting a rotation angle signal according to the present invention.
  • FIG. 13 is a diagram showing the relationship between the Hall sensor signal and the rotation angle.
  • FIG. 14 is a block diagram of a device according to a third embodiment of the present invention.
  • FIG. 15 is a block diagram showing a detailed configuration example of the angle processing means of the present invention.
  • FIG. 16 is a flow chart showing an operation example when a part of the angle processing means of the present invention is processed by software.
  • FIG. 17 is a block diagram showing a device according to a fourth embodiment of the present invention.
  • the basic idea of the present invention is to prepare an abnormal area determination map composed of a value corresponding to sin 0 and a value corresponding to cos 0, and a normal area and an abnormal area. Based on the angle information si ⁇ t tcos0 and sin ⁇ t ⁇ sin0 obtained from the angle detector, the angle information sin0 and cos0 are detected without calculating them. As it is, mapping is performed on the abnormal area determination map to determine whether it is abnormal or normal.
  • the abnormal region determination map is composed of si ⁇ and cos0, and in FIG. 6, the X-axis is associated with sin0 and the Y-axis is associated with cos ⁇ .
  • the abnormal area determination map three concentric circles and two rectangles are displayed with the origin G (0, 0) as the center.
  • the large square ⁇ is a square with a side of 2 XP max
  • the small square is a square with a side force of S 2 X (P min / f 2).
  • the normal region indicates a normal range in a hatched area surrounded by a large square ⁇ and a small square, and indicates an abnormal range in other areas.
  • P mi ⁇ or P max of the determination criteria described above can be used to adjust the abnormality detection accuracy by using P max and P min in consideration of the effects of detection accuracy and the number of motor poles.
  • P max and P min By appropriately setting these Pmax and Pmin, it is possible to detect an abnormality in the detection accuracy of the resolver due to a failure during motor driving or aging.
  • (sin 0) 2 + (cos ⁇ ) 2 0.9 and 1.1 Is intended to indicate a normal range of 0.9 (si ⁇ ⁇ ) 2 + (cos ⁇ ) 2 ⁇ 1.1. Therefore, it can be seen that the range (shaded area) considered as a normal area in the present invention is wider than the conventional normal area.
  • the reason why the normal region is a wide region is that the present invention does not perform the calculation of (si ⁇ ⁇ ) 2 + (cos ⁇ ) 2 .
  • the problem with this processing is that if the calculation of (si ⁇ ⁇ ) 2 + (cos ⁇ ) 2 is performed by software, the load on the CPU is required, and processing time is required, and high-speed processing cannot be performed.
  • the determination area (shaded area) of the present invention needs to be wider than the conventional determination range.
  • the combination of (sin 6, cos ⁇ ) is ⁇ , D, and E, it is determined that the combination is normal, and when it is B and C, it is determined to be abnormal.
  • point A is normal even with the conventional judgment standard
  • points B and C are abnormal even with the conventional judgment standard.
  • D point and The points E and E are abnormal in the conventional criterion, but are determined to be normal in the present invention.
  • the output of the resolver 10 becomes abnormal in most cases when a short-to-power or ground fault occurs in the resolver circuit or wiring, and the combination (sin 0, cos ⁇ ) is a trajectory reciprocating on the X-axis or the Y-axis, and does not stay at point D or ⁇ for a long time.
  • the processing of (sin 0) 2 + (cos 0) 2 has been conventionally performed.
  • an abnormality that greatly affects the steering behavior can be sufficiently detected in the above-described determination region. Therefore, there is no practical problem even if a situation that hardly occurs actually is considered.
  • the processing speed is significantly increased, and the effect of greatly reducing the load on the CPU is obtained.
  • the sin signal (sin cot ⁇ sin ⁇ ⁇ ⁇ ) and the cos signal (sin ⁇ t ⁇ cos ⁇ ) output from the resolver 10 are sent to the CPU via an AD converter (not shown). Input to circuit 16.
  • the carrier wave The carrier signal si ⁇ t output from the oscillation circuit 12 is not directly input to the CPU circuit 16 but is input to the peak detection circuit 20 to detect the peak time of the carrier wave si ⁇ t.
  • the carrier signal si ⁇ t is input to the peak detection circuit 20, and the peak value of the carrier signal si ⁇ t indicated by the peak value setting circuit 24 is compared with the carrier by the comparison circuit 22. The peak time is detected based on the comparison result.
  • the frequency dividing circuit 32 arranged between the peak detecting circuit 22 and the CPU circuit 16 sends the peak of the carrier wave to the CPU circuit 16 at a period that is a multiple of the period of the carrier wave si ⁇ ⁇ t that is slower. input.
  • the dividing circuit 16 is unnecessary.
  • a zero crossing time of the carrier wave si ⁇ t may be detected, and the peak time may be shifted by ⁇ / 2.
  • the CPU circuit 16 reads the peak time at the peak of the carrier signal si ⁇ t or, when passing through the frequency dividing circuit 32, thins out to an integral multiple of the carrier wave period (step S 201) ).
  • a sine angle signal which is s in 0 is detected from the s in signal (s i ⁇ ⁇ t ⁇ s in i) power (step S 202).
  • a cos angle signal which is cos0 is detected from the cos signal (sincot'cos0) power (step S203).
  • step S 204 the combination of the sin angle signal and the cos angle signal (sin ⁇ , c 0 s ⁇ ) is mapped onto the abnormal region determination map shown in FIG. 6 (step S 204), and the combination It is determined whether the value is abnormal or normal (step S205). For example, when the sin angle signal and the cos angle signal are a combination of the points A in FIG. 6 (sin 01, cos ⁇ 1), it is determined to be normal. And sin angle signal and cos angle signal If is the combination of points B in FIG. 6 (sin 0 2, cos 0 2), it is determined to be abnormal. Finally, in the case of abnormality, some protection operation is performed, such as limiting the amount of assistance of the electric power steering device (step S206).
  • FIG. 9 shows an example of the abnormal region determination map corresponding to FIG.
  • the thresholds for the normal and abnormal judgments of the values of the sin angle signal (si ⁇ ) and the cos angle signal (cos 0) are set as a table, and the normal area (shaded area) and abnormal area as shown in Fig. 9 are set. Is configured. In this way, it is possible to make a determination without using an IF sentence in software.
  • the normal / abnormal state is determined based on the combination of the sin angle signal and the cos angle signal. Therefore, the calculation of (si ⁇ ⁇ ) 2 + (cos ⁇ ) 2 is performed as in the related art. Since there is no need, the processing speed is high, and there is an excellent effect that the CPU resource consumption for interrupt processing and AD conversion is small and the burden on the CPU is small. In addition, if the peak time of the carrier is read at a period that is an integral multiple of the period of the carrier using a divider circuit, the burden on the CPU can be further reduced.
  • an abnormality such as an angle detector can be detected using the abnormal region determination map, if the abnormality detection of the resolver digital conversion circuit 14 is also used, the abnormality of the angle detector and the like can be monitored twice. For this reason, the reliability can be further improved compared to monitoring of the resolver digital conversion circuit alone.
  • an abnormality determination circuit 18 is provided before the sin signal, the cos signal, and the carrier wave signal are input to the CPU 16. After determining whether the sin signal or cos signal is normal or abnormal, the result is input to the CPU 16.
  • the carrier signal si ⁇ ⁇ t is input to the peak detection circuit 20, and the peak value of the carrier signal si ⁇ ⁇ t indicated by the peak value setting circuit 24 and the carrier are compared in the comparison circuit 22, and the peak is determined by the comparison result. Time is detected.
  • the divider 32 is connected to the output of the peak detector 32, but if the divider 32 is not provided, it is synchronized with the detected peak.
  • the sample and hold circuit (hereinafter referred to as the “SH circuit”) 26 holds the sin angle signal (si ⁇ ) power from the sin signal at S 6, and the cos signal from the cos signal at the SH circuit 28 (cos 0 ) Is held.
  • a low-pass finoletor circuit (LPF circuit) 34 and a circuit 36 are provided, respectively, for noise removal.
  • LPF circuit low-pass finoletor circuit
  • the abnormal area determination circuit 30 can be configured by combining a comparison circuit for comparing voltage levels, and the like.
  • the combination (si ⁇ ⁇ , cos ⁇ ) of the input sin angle signal and the cos angle signal S For example, if it is point A (sin 01, cos ⁇ 1) in FIG. 6, it is determined to be normal. If the sin angle signal and the cos angle signal are a combination of points B in FIG. 6 (sin02, cos ⁇ 2), it is determined to be abnormal.
  • the output of the abnormal area determination circuit 30 indicating normal or abnormal becomes the output of the abnormality determination circuit 18.
  • the present invention can be processed by hardware.
  • the burden on the U circuit 16 can be reduced.
  • the present invention does not need to execute the operation of (si ⁇ ⁇ ) 2 + (cos ⁇ ) 2 as in the related art, and can be constituted only by a comparison circuit for comparing voltage levels including the peak detection circuit 20.
  • the hardware configuration is simple and the processing speed is high.
  • a frequency dividing circuit 32 is provided between the peak detecting circuit 20 and the SH circuits 26 and 311 circuits 28, and the operation is as follows.
  • the SH circuit 26 does not synchronize with the peak of the carrier wave si ⁇ ⁇ t, but synchronizes with the slower period of an integral multiple of the carrier wave period. (Si ⁇ ⁇ ) is held, and the cos angle signal (cos 0) is held by the SH circuit 28 from the cos signal. Then, the sin angle signal and the cos angle signal detected by the SH circuit 26 and the SH circuit 28 are input to the abnormal region determination circuit 30, respectively, and normal abnormality is determined.
  • the number of acquisitions to the CPU circuit 16 and the number of processings associated therewith are reduced.
  • the load on the CPU circuit is reduced.
  • the abnormal region determination circuit Can be used to detect anomalies such as an angle detector. If the anomaly detection function of the resolver digital conversion circuit 14 is also used, then the anomalies of the angle detector etc. can be monitored twice. Reliability can be improved compared to a single monitor. By the way, if the resolver digital conversion circuit that detects the motor rotation angle 0 fails, the rotation angle 0 detected by the resolver digital conversion circuit based on the signal output from the angle detector may be unreliable. I'm in love.
  • the resolver digital conversion circuit breaks down, for example, a Hall sensor or a photo sensor disposed every 120 degrees around the rotor of a three-phase motor using the sin signal and the cos signal output from the resolver. It is possible to detect rotation angle information that is as accurate as the rotation angle information output by the IC. The principle will be described below.
  • the sin signal (si ⁇ t ⁇ sln ⁇ ) and the cos signal (sin cot 'cos S) output from the resolver as an angle detector are synchronized with the peak value of the carrier signal si ⁇ t. Then, the ⁇ signal and the cos signal are held by shifting the ⁇ 2 phase from the zero crossing point, and the si ⁇ angle signal (sin 0) and the cos angle signal (cose) are detected, respectively.
  • FIG. 12 shows the detected sin angle signal and the detected cos angle signal.
  • the rotation angle signals output by three Hall sensors arranged at 120 ° intervals around the rotor of the three-phase motor are Equivalent information can be obtained.
  • a magnitude judgment is performed using the level of the value of the si XI angle signal and two thresholds ("0.5" and "0.5"). Is performed, and the judgment results are set to Lebell and Lebe12, respectively. Specifically, it is as follows.
  • Fig. 13 shows the rotation angle area obtained by dividing the rotor position of the motor into 360 degrees for 360 degrees.
  • Table 1 shows the relationship between and SI, A, B, and C.
  • the 3-bit signals (A, B, C) are a signal formed from the cos angle signal and a 3-bit rotation angle signal formed from the sin angle signal.
  • the signal S 1 also changes shape. This is a 3-bit rotation angle signal. Signal by polarity and level judgment of resolver signal
  • Table 2 shows the values of 52, A, B, and C.
  • the relationship between the rotation angle area and the 3-bit rotation angle signal (hereinafter, referred to as “3-bit signal”) composed of (A, B, C) is as follows.
  • the three-bit signal does not have the same value in each rotation angle area, and the rotation angle area of the rotor and the three-bit signal can correspond one-to-one.
  • the three-bit signal does not have the same value in each rotation angle area, and the rotation angle area of the data and the three-bit signal can be associated one-to-one.
  • Table 1 shows that, except for the rotation angle area (150 ° to 210 °), the 3-bit signal of Table 1 and the 3-bit signal of Table 2 were obtained for all rotation angle areas. Signals are the same. For example, when the rotor is in the rotation angle area (330 ° to 30 °), the 3-bit signal (0, 0, 1) in Table 1 is the same as the 3-bit signal (0, 0, 1) in Table 2. Yes, the 3-bit signal (0, 1, 1) in Table 1 is the same as the 3-bit signal (0, 1, 1) in Table 2 even in the rotation angle area (30 ° to 90 °). .
  • the difference between Tables 1 and 2 is that if the conversion is performed again, the 3-bit output signal of the angle processing circuit and the 3-bit output signal of the Hall sensor are equal in all the rotation angle areas of the rotor. Become. For example, in the rotation angle area (150 ° to 210 °), if (0, 0, 0) in Table 1 is converted back to (1, 1, 0) in Table 2, the output signal of the resolver will be input. All the 3-bit rotation angle signals detected by the angle processing circuit can be converted back to the 3-bit rotation angle signals obtained by the Hall sensor. When specifically implemented, conversion between the S1 signal and the S2 signal is easier than conversion between three-bit signals. In this case, since the 3-bit rotation angle signal is the same signal as the Hall sensor, the angle processing is performed by directly applying the Hall sensor abnormality detection method (for example, Japanese Patent Application No. 2003-3502275). Circuit abnormalities can be detected.
  • the Hall sensor abnormality detection method for example, Japanese Patent Application No. 2003-3502275. Circuit abnormalities can be detected.
  • a rectangular-wave current control of a motor can be performed by a 3-bit rotation angle signal formed from signals of three Hall sensors arranged every 120 degrees around the rotor of the motor. Have been. In other words, it is clear that if the 3-bit rotation angle signal detected by the angle processing circuit is converted into the 3-bit rotation angle signal of the Hall sensor, the motor can be controlled in the same manner as the rectangular wave current.
  • FIG. 14 is a block diagram showing the entire control device of the electric power steering device including the angle processing circuit 50 of the present invention.
  • FIG. 15 is a diagram showing the angle processing circuit 50 implemented by hardware.
  • FIG. 2 is a block diagram showing details of a processing circuit 50.
  • the embodiment shown in Fig. 14 is used for the vector control unit used in normal control (portion surrounded by broken line A) and the abnormal situation when the resolver-to-resolver digital conversion circuit becomes abnormal. It consists of rectangular wave control (the part surrounded by the line B).
  • Switching between the vector control unit A and the rectangular wave control unit B is performed by using the resolver digital conversion circuit 311 because the resolver digital converter 311 generally has an E terminal that is an abnormality detection terminal that monitors its own abnormality.
  • the failure detection function of the digital conversion circuit 311 is used.
  • the switching may be executed by the E terminal signal of the angle processing circuit 50.
  • the vector control unit described in the related art used in normal control will be described.
  • the torque value Tr detected by the torque sensor 107 and the vehicle speed value V detected by the vehicle speed sensor 313 are input to the torque command value calculator 319, and the torque command value Tref is output. .
  • the switch 450 usually selects the vector control unit A based on the signal of the output terminal E of the failure detection function of the resolver digital conversion circuit 311.
  • the torque command value T ref is input to the current command value calculation section 452-2-1, and the current command values I dref and I qref are calculated.
  • the calculated deviation ⁇ I is calculated by the PI controller 4 5 4 is input to 1 to calculate the voltage command values V dref, V dref
  • the voltage command values V dref, V qref are input to the two-phase conversion means 4 5 5— 1 and converted to three phases. Are converted to the voltage command values V aref, V bref, and V cref.
  • the switch 455-1 is normally provided as a voltage command signal based on the signal of the output terminal E of the failure detection function of the resolver digital conversion circuit 311 and is output from the two-phase Z-three-phase converter 455-1.
  • the output voltage command values V aref, V bref, and V cref are selected.
  • the PWM control section 325 generates a PWM signal based on the voltage command value, and the inverter circuit 326 supplies the motor currents Ia, lb, and Ic to the motor 108 based on the PWM signal. I do.
  • the motor 108 is controlled by the IE sinusoidal current using the vector control. This is made possible by accurately detecting the rotation angle ⁇ of the motor 108.
  • the information on the rotation angle ⁇ of the motor 108 is obtained from the resolver 310 power, the carrier wave sin ⁇ t output from the resolver 310, the sin signal, and the cos signal as a resolver digital conversion circuit 3 1 as a main angle processing circuit. Input to 1 and output 0 rotation angle.
  • the rotation angle 0 is used for two-phase / three-phase conversion or three-phase / two-phase conversion in the process of the above-described control operation.
  • the resolver digital conversion circuit 311 is always operating in IE, the rotation angle ⁇ ⁇ output from the resolver digital conversion circuit is accurate and reliable information, and the control is executed based on the rotation angle. Good,
  • the resolver digital conversion circuit 311 fails and if it is desired to maintain the assist by using the electric power steering device, the resolver digital conversion circuit 311 switches from the resolver digital conversion circuit 311 to the angle processing circuit 50. If the motor 108 is driven by rectangular wave current control based on a 3-bit rotation angle signal corresponding to a Hall sensor output from the degree processing circuit 50, the assistance can be continued.
  • the resolver-to-digital converter 311 monitors the resolver 310 and the resolver-to-digital converter 311 by itself, and outputs a failure signal from the E terminal when an error occurs.
  • the switch 450 and the switch 451 are switched, and the switch 450 connects the torque command value calculation section 319 and the current command value calculation section 4522-2,
  • the switch 45 1 connects the PI control section 45 4-2 to the PWM control section 3 25.
  • the torque command value T ref output from the torque command value calculation section 3 19 and the 3-bit rotation angle signal output from the angle processing circuit 50 as the sub-angle processing circuit are combined with the current command value calculation section 4 It is input to 52-2, and the current command values Iaref, Ibref, and Icref for rectangular wave current control are output.
  • the deviation between the motor currents la, Ib, and Ic detected by the current detectors 312 and the current command values Iaref, Ibref, and Icref is calculated by the subtraction unit 4553_2.
  • the deviation is input to the PI control unit 454-2.
  • the PI control unit 4 5 4-2 outputs voltage command values V aref, Vbref, and Vcref.
  • the voltage command values V aref, V bref, and V cref are input to the PWM control unit 325 through the switch 451.
  • the PWM controller 3 25 generates a PWM signal for rectangular wave current control based on the voltage command value, and the inverter circuit 326 supplies the rectangular wave currents la, Ib, and Ic to the motor 108. I do. In this way, when the rotation angle 0 of the motor cannot be detected correctly, rectangular wave current control can be performed based on the 3-bit rotation angle signal output from the angle processing circuit 50, and the ASIC of the electric power steering device can be controlled. Can be continued.
  • the angle processing circuit 50 inputs a cos signal, a sin signal, and a carrier signal and outputs a 3-bit rotation angle signal.
  • the carrier signal si ⁇ ⁇ t is input to the peak detection circuit 5 10, and the peak value of the carrier indicated by the peak value setting device 5 12 is compared with the carrier by the level detection circuit 5 1 Peak times can be detected. Alternatively, the peak time may be detected by detecting the zero cross point of the carrier wave and shifting the phase by ⁇ / 2.
  • a signal indicating the peak time of the carrier wave output from the peak detection circuit 501 is input to the frequency division circuit 501.
  • the frequency dividing circuit 5-1 is for extracting a frequency that is an integral multiple of the frequency of the carrier.
  • the present invention can be realized even without the divider circuit 501, and when the divider circuit 501 does not exist, the sampling and holding of the sin signal and the c0s signal described later are performed.
  • the synchronization is synchronized with the period of the carrier wave and is held frequently.
  • the frequency dividing circuit 501 when the frequency dividing circuit 501 is present, the sampling and holding timing of the sine signal and the cos signal is set to be a fraction of the period of the carrier wave, and the sampling and holding is performed at that frequency.
  • the presence or absence of the frequency divider circuit or the frequency of the frequency division is determined depending on the balance between the accuracy of the sine signal and the cos signal to be obtained and the burden of the frequency of sampling and holding.
  • the SH circuit is synchronized with the timing of the output signal of the divider circuit 501 or, if the divider circuit 501 is not present, in synchronization with the timing of the output signal of the peak detection circuit 501.
  • 5 0 2 the input co The cos angle signal (cos 0) is sampled and held by sampling and holding the s signal (sin co t 'cos 0), and the input sin signal (si ⁇ ⁇ t ⁇ By sampling and holding sin ⁇ ), the si ⁇ angle signal (si ⁇ 0) is sampled and held.
  • an angle signal detection circuit which is a circuit for detecting a cos angle signal and a sin angle signal, which is a portion surrounded by a broken line C in FIG. 15, is known as a conventional technique.
  • the cos angle signal output from the LPF circuit 503-1 is input to the level detection circuit 521 for detecting the polarity shown in Table 1 above.
  • the sin angle signal output from the LPF circuit 53-3-2 detects the level detection circuit 523 for detecting Lebe11 in Table 1 and the Lebe12 in Table 1 Input to the level detection circuit 5 25 for Then, the level detection circuit 521 compares the set value (0) indicated by the setting unit 522 with the cos angle signal to determine sign (cos 0), which is the polarity of the cos angle signal. For example, "1" is output for a positive value and "0" is output for a negative value.
  • the sin angle signal input to the level detection circuit 5 23 is compared with the set value (0.5) indicated by the setting unit 5 2 4. If the sin angle signal is larger than 0.5, it is set to “1”. Is output, and when the sin angle signal is smaller than 0.5, “0” is output and the value of Lebell is determined. Similarly, the sin angle signal input to the level detection circuit 5 25 is compared with the set value (0.5) indicated by the setting unit 5 26, and the sin angle signal is smaller than 0.5. (If the absolute value of the si ⁇ angle signal is greater than 0.5 when compared with the absolute value), “1” is output. If the sin angle signal is greater than 0.5 (compared with the absolute value).
  • each level detection circuit that is, the 3-bit signal formed by the output signals of the level detection circuit 521, the level detection circuit 523, and the level detection circuit 525 forms the basis of the rotation angle signal. .
  • the 3-bit signal composed of the output of each level detection circuit is input to the conversion circuit 520 for making the same output form as the signal of the Hall sensor arranged every 120 degrees in the motor, and the conversion is performed.
  • a 3-bit rotation angle signal obtained from the circuit 520 is output.
  • the conversion circuit 520 may be configured with a table and configured to output a 3-bit signal corresponding to the output of the Hall sensor in response to a 3-bit input signal.
  • the determination result of the polarity value using the cos angle signal and the level value of the sin angle signal is obtained by using the 3-bit rotation angle signal having the values of Lebe 11 and Lebe 12.
  • the motor was controlled by square-wave current, the polarity using the sin angle signal and the 3-bit rotation angle signal that used the judgment result of the level value of the cos angle signal as the values of Lebell and Lebe12 could be used. Needless to say, the motor can be controlled by a square wave current.
  • the hardware processing section detects the sin angle signal (si ⁇ ⁇ ) and the cos angle signal (cos 0) of the angle processing circuit 50 in FIG. 14, and these signals are used as LPF circuits 503-3-1
  • the processing up to the point where the signal passes through the LPF circuit 503-3-2 (the angle signal detection circuit surrounded by the broken line A) is processed by the hardware.
  • the part that forms a 3-bit signal equivalent to the Hall sensor detection signal (the part surrounded by the line B) is subjected to software processing in the CPU circuit as follows.
  • the cos angle signal (cos ⁇ ) and the sin angle signal (sie ⁇ i) are read (step S201), and the polarity of the cos angle signal is determined. If its polarity (sig n (cos ⁇ )) is positive, it is “1”; if it is negative, it is “0”.
  • FIG. 17 shows a fourth embodiment of the present invention.
  • the vector control unit A of the third embodiment is replaced with a pseudo vector control unit F.
  • the pseudo vector control unit (hereinafter referred to as “PVC control unit”) F calculates the current command value as three-phase I aref, I bref, and I cref, but calculates the current command value from the torque command value T ref.
  • the vector control is used during the calculation. Therefore, since it is necessary to correctly detect the rotation angle 0 of the motor, it is necessary that the resolver 310 and the resolver digital conversion circuit 311 operate correctly.
  • the switch 450 and the switch 451 are connected to the input of the current command value calculation unit 452-1. And the output of the 2-phase / 3-phase converter 4 5 6—1.
  • the current command value calculator 4 5 2-1 and the 2-phase / 3-phase converter 4 5 6-1-1 calculate the current command values I avrref, Ibvrref, and levref for the PVC control.
  • the motor is controlled based on the current command value.
  • the resolver 311 or the resolver digital converter 311 fails, the rectangular wave current control should be executed if the resolver digital converter 311 described in the third embodiment detects a failure. Is the same.
  • the case where the main angle processing circuit, the sub angle processing circuit, and the control unit corresponding to the main angle processing circuit exist are described.
  • the output of the angle processing means of the present invention is used. Based on the three-bit rotation angle signal, not only when the resolver digital conversion circuit described above fails, it is also possible to constantly control the motor with a rectangular wave current.
  • the resolver digital conversion circuit When the resolver digital conversion circuit is used as main angle processing means and the angle processing means of the present invention is used as sub angle processing means, and when the resolver digital conversion circuit is operating normally, the rotation output from the resolver digital conversion circuit is used. Controls the motor with sinusoidal current based on the angle of 0 and resolver digital If the conversion circuit breaks down, the motor can be switched from sine wave current control to rectangular wave current based on the 3-bit rotation angle signal output from the sub-angle processing means.
  • the limit is set by the rotation angle (rotational position) of the motor when the resolver digital conversion circuit fails.
  • the motor can be controlled by the square-wave current without receiving it.
  • the electric power steering device can be continuously controlled without being limited by the rotation angle (rotation position) of the motor when the resolver-to-digital converter circuit breaks down, which was a problem in the past, and the handle operation suddenly becomes a manual operation.
  • According to c present invention can be expected Al operation [the previously explained excellent effect without discomfort steering Te, in order to determine the abnormality of the angle detector, obtained on the basis of the information output angle detector or al With respect to sin 0 and cos 0, since si ⁇ ⁇ and cos 0 can be directly mapped to the abnormal region determination map without performing the operation of (si ⁇ )) 2 + (cose) 2 and determined,
  • the processing speed is faster, the software processing does not impose a burden on the CPU, and the hardware processing has an excellent effect of not requiring many hardware components required for the processing.
  • a sin angle signal and a cos angle signal are detected from the sin signal and the cos signal, respectively, and a rotation angle signal formed from a signal formed from the detected cos angle signal and a signal formed from the sin angle signal is detected. If the rotation angle signal is provided, the rotation angle signal is equivalent to the rotation angle signal output from the Hall sensor disposed around the motor, so that the electric power steering can control the motor with a rectangular wave current. There is an effect that a device control device can be provided.
  • the motor is a three-phase motor
  • the 1-bit signal indicating the sign of the cos angle signal and the level of the sin angle signal
  • angle processing means capable of detecting a 3-bit rotation angle signal formed from the 2-bit signal indicating the bell
  • the 3-bit rotation angle signal will be around 120 degrees around the 3-phase motor. Since it is equivalent to the rotation angle signal output by the hall sensor arranged for each motor, there is an effect that it is possible to provide a control device of an electric power steering device capable of performing rectangular wave current control of the motor.
  • the sub angle processing means comprising the angle processing means is used.
  • a map that can determine whether the combination of COS OS is normal or abnormal is prepared.-The detected combination of sin 0 and cos 0 is mapped and determined, so processing is simple, processing speed is high, and the load on the CPU is small. It is possible to improve functions as a whole.

Abstract

レゾルバの異常を検出するために、sinθ及びcosθに対して2乗演算処理を実行して異常判定をしていたために、処理時間が長くなり、またCPUへの負担が大きかった。本発明では、sinθ及びcosθの組み合わせが正常或いは異常の判定ができるマップを用意し、検出したsinθ及びcosθの組み合わせを写像して判定するので処理が簡単で処理速度が速く、CPUへの負担が少なくて済む。また、モータの周囲に配置されたホールセンサ程度の回転角度信号を検出してモータを矩形波電流制御すればアシストを継続できる。

Description

明 細 書 電動パヮーステアリング装置の制御装置 技術分野
本発明は電動パワーステアリング装置の制御装置に関し、 特に電動パ ワーステアリング装置に用いられるモータの角度検出器の異常検出機能 を具備すると共に、 角度検出器の故障に対する保護動作を考慮した電動 パワーステアリング装置の制御装置に関する。 背景技術
自動車のステアリング装置をモータの回転力で補助負荷付勢する電動 パワーステアリング装置は、 モータの駆動力を減速機を介してギア又は ベルト等の伝達機構によ り、 ステアリ ングシャフ ト或いはラック軸に補 助負荷付勢するようになつている。 このような電動パワーステアリング 装置の簡単な構成を第 1図を参照して説明する。 操向ハンドル 1 0 1の 軸 1 0 2 は減速ギア 1 0 3、 ユニバーサルジョイント 1 0 4 a及び 1 0 4 b、 ピニオンラック機構 1 0 5を経て操向車輪のタイロッ ド 1 0 6に 結合されている。 軸 1 0 2には, 操向ハンドル 1 0 1の操舵トルクを検 出する トノレクセンサ 1 0 7が設けられており、 操向ハンドル 1 0 1の操 舵力を捕助するモータ 1 0 8が、 減速ギア 1 0 3を介して軸 1 0 2に連 結されている。
このよ うな電動パワーステアリ ング装置のモータ 1 0 8の制御にとつ てモータの回転角度 Θ を検出することは非常に重要であり、 角度検出に 異常が発生した場合は、 直ちに異常を検出して適当な安全策を講じる必 要がある。 そこで、 従来より異常検出に関し、 種々の検出方法や検出装 置が開発されてきた。
例えば日本国特許第 3 1 3 6 9 3 7号では、 角度検出器の 1つである レゾルバの検出異常について開示しており、 その内容を、 第 2図を参照 して説明する。
角度を検出するための装置は、 レゾルバ 1 0 と、 レゾルバ 1 0から出 力される信号を処理して回転角度 0 を算出するための角度検出処理部と で構成される。 角度検出処理部の一例と してレゾルバディジタル変換 (RDC) 回路 1 4が設けられている。 そして、 異常検出をする対象は、 レゾルバディ ジタル変換回路 1 4 を除く レゾルバ 1 0及ぴレゾノレバ 1 0 への配線等であり、 その方法はレゾルバ 1 0の出力信号である s i n信 = s 1 η ω t · s l n θ ) 及び c o s l 号 ( = s ι n ω t · c o s ) の異常を検出してレゾルバ 1 0の異常を検出するのが一般的である。 なお、 レゾルパディジタル変換回路 1 4にもレゾノレノ 1 0の異常を検 出する機能が備えられたものがあり、 第 2図のレゾルパディジタル変換 回路 1 4の E端子から異常検出信号が出力される。 しかし、 その異常検 出の性能も限定的なもので充分なものではないので、 以下に説明するよ うな独自の異常検出回路を設けている場合がある。
第 2図において、 搬送波発振回路 1 2は、 モータ 1 0 8 の回転角度 Θ を検出するためのレゾルバ 1 0に搬送波信号 s i η ω t を送信し、 これ により レゾルバ 1 0から回転角度 Θに対応した s i n信号 ( s i η ω t · s i η θ ) 及ぴ c o s信号 ( s i η ω t · c o s Θ ) が出力される。 s i n信号と c o s信号を入力されたレゾルバディジタル変換回路 1 4 において回転角度 Θが算出され、 算出された回転角度 Θが C P U回路 1 6に取り込まれ、 回転角度 Θに基いてモータ 1 0 8は制御される。
s i n信号及び c 0 s信号を用いてレゾルバ 1 0等の異常を検出する 様子を、 第 3図のフローチャートを参照して説明する。 s i n信号から s i n 0を算出する方法としては、 搬送波 s i η ω t のピークに同期して s i n信号をサンプリングすると、 s i n信号のピ —ク値がホールドされ、 s i n信号の包絡線である s i n角度信号 ( s i η Θ ) を検出することができる。 同様に、 c o s信号力、ら c o s角度 信号 ( c o s 0 ) を算出することができる。 これら s i n o> t、 s i n Θ及ぴ c o s Θの関係を図示すると、 第 4図のようにな る。 上述の処理 を具体的に説明すると、 第 2図において、 搬送波発振回路 1 2から出力 された搬送波 s i η ω tのピークを検出するために、 s i η ω tのピー ク値である基準振幅を表わすピーク値設定回路 2 4と搬送波信号 s i n ω t とを比較回路 2 2にて比較し、 そのピーク時を検出する。 そのピー ク時に同期して、 サンプルホールドとしての役割を果たす A Dコンパ一 タ 4 4及び ADコンバータ 4 6において、 s i n信号及び c o s信号を ラッチすれば s i n角度信号 ( s i η Θ ) 及び c o s角度信号 ( c o s θ ) を検出することができる。
このようにして検出された s i n角度信号 ( s i η Θ ) 及ぴ c o s角 度信号 ( c o s Θ ) が C P U回路 (C P U若しくは MP Uを主とする演 算処理回路) 1 6に取り込まれ、 第 3図に示すフローチャー トの処理を 実行する。 即ち、 先ず s i n角度信号 ( s i n 0 ) 及ぴ c o s角度信号 ( c 0 s Θ ) が C P U回路 1 6に取り込まれ (ステップ S 3 0 1 )、 C P U回路 1 6は ( s i η Θ ) 2 + ( c o s Θ ) 2 = Pの演算を実行し (ス テツプ S 3 0 2 )、 Pの値が 0. 9く Pく 1. 1に存在するか否かによ り正常か否かを判定する (ステップ S 3 0 3 )。
日本国特許第 3 2 1 6 4 9 1号 2では、 ( s i n 0 ) 2 + ( c o s Θ ) 2 = Pの演算を実行し、 P = 1か否かを判定して異常を検出している (ス テツプ S 3 0 3 )。
しかし、 どちらの方法を実行しても、 搬送波に同期した s i n信号及 び c o s信号の A D変換、 搬送波ピークタイミングによる割り込み、 さ らに ( s i η Θ ) 2 + ( c o s θ ) 2の演算などを実行する必要があり、 その演算は処理時間を多く必要とする。 また、 ソフ トウェア処理する場 合は、 C P Uへの負担となる問題があり、 ハードウェアで処理する場合 は、 多くのハードウェアが必要となる問題がある。
本発明は上述のような事情から成されたものであり、本発明の目的は、 電動パワーステアリング装置の制御装置に用いられるモータの角度検出 器の異常や不完全な断線状態 (レアショート) の異常などを迅速に、 且 つ C P Uの負担にならないように、 しかも多くのハードゥエァの追加を 必要としないで検出することができる電動パワーステアリング装置の制 御装置を提供することにある。
一方、 電動パワーステアリ ング装置では、 運転手のハン ドル操作に対 応した所望のトルクを出力するようにモータ制御を正しく実行する必要 がある。 そして、 モータを正しく制御するためには、 各種センサを利用 して電動パワーステアリ ング装置の状態を検出する必要がある。 センサ から得られる検出信号は電動パワーステアリング装置の制御にとつて非 常に重要なものであるから、 センサの故障を速や'かに検出して、 それに 対応した制御、 保護を実行する必要がある。 例えばセンサの 1つである モータ角度検出器の故障検出後の制御は、 車輛の安全操舵にとって非常 に重要な課題であり、 従来から種々の制御装置が考えられてきた。
一例として特開 2 0 0 3— 2 6 0 2 0号公報の制御装置を、 第 5図を 参照して説明する。
第 5図において、 車速センサ 3 1 3で検出された車速 V及ぴトルクセ ンサ 1 0 7で検出されたトルク値 T rはトルク指令値演算部 3 1 9に入 力され、 トルク指令値演算部 3 1 9でトルク指令値 T r e f が算出され る。 次に、 トルク指令値 T r e f とレゾルバディ ジタル変換回路 3 1 1 の出力するモータ 1 0 8の回転角度 0 とが電流指令値算出手段 3 2 0に 入力され、 電流指令値 I d r e f 、 I q r e f が算出される。 一方、 モ ータ 1 0 8が通電されると、 モータ電流 I a, I b , I cが電流検出器 3 1 2で検出され、 それらモータ電流 I a , I b , I cは 3相 / 2相変 換部 3 2 7で d— q軸の 2相電流 I d, I qに変換される。
減算手段 3 2 1において、 電流指令値 I d r e f 、 I q r e f とモー タ電流 I d、 1 ^との偏差 1 (1, Δ I qが算出される。 算出された偏 差 Δ I d , Δ I qはそれぞれ P I制御部 3 2 3に入力され、 偏差 Δ Iが 零になるように電圧指令値 V d r e f 、 V q r e f が算出され、 電圧指 令値 V (1 6 £ 、 ¥ (1 1 6 £は 2相 / 3相変換手段 3 2 4において 3相 の電圧指令値 V a r e f 、 V b r e f , V c r e f に変換される。 P W M制御部 3 2 5は、 3相の電圧指令値 V a r e f 、 V b r e f , V c r e f に基いて F E Tで構成されるィンバータ回路 3 2 6を駆動し、 モー タ 1 0 8にモータ電流 I a, l b , I cを供給する。 また、 角度検出器 の一例であるレゾルバ 3 1 0と角度検出手段である位置検出回路 3 1 1 (主にレゾルバディジタル変換回路 (RDC 回路) によってモータ 1 0 8の回転角度 0が検出され、 回転角度 Θは 2相/ 3相変換部 3 2 4や 3 相 Z 2相変換部 3 2 7などで利用される。
このような電動パワーステアリ ング装置の制御において、 レゾルバ 3 1 0やレゾルパディジタル変換回路 3 1 1の検出が異常になった場合、 回転角度 0を正しく検出できなくなり、 正しい制御が不可能となる。 こ のため、 基本的には電動パワーステアリ ング装置を停止し、 ハン ドル操 作をマニュアル操作状態に遷移することが行われている。
しかし、 電動パワーステアリング装置によるハンドル操作のアシス ト が無くなり、 突然マニュアル操作に遷移するこ とはハン ドル操作に大き な違和感を与え好ましくない。 そこで、 特開 2 0 0 3— 2 6 0 2 0号公 報では異常判定手段 3 4 0を設け、 レゾルバ 3 1 0ゃレゾルバディジタ ル変換回路 3 1 1 の異常を検出した時は、 回転角度 0 の位置によっては ハンドル操作の意思と逆トルクが発生しないので、 短時間だけ電動パヮ ーステアリング装置によるアシス トを継続するなどの処理をしている。 しかし、 別の回転角度 Θの位置によっては電動パワーステアリ ング装置 を直ちに停止し、 ハン ドルをマニュアル操作に遷移する必要がある場合 がある。
このように回転角度 eの異常を検出した場合の制御では、 異常を検出 した時の回転角度 6の位置によつて電動パワーステアリ ング装置の制御 を継続できなかったり、継続時間に大きな制限があるなどの問題がある。 また、 近年の電動パワーステア リ ング装置搭載車輛の大型化に伴い、 マ ニュアル操作ではドライバへの負荷が大きく好ましく ない。
本発明は上述のような事情から成されたものであり 、本発明の目的は、 電動パワーステアリング装置のモータの回転角度 0 を検出するための角 度検出器が故障した場合でも、 故障時の回転角度 0の位置に拘わらず電 動パワーステアリング装置の制御を継続できる電動パワーステアリング 装置の制御装置を提供することにある。 発明の開示
本発明は、 車両の操舵系にモータによる操舵補助力を付与するための 制御に必要な前記モータの回転角度 Θを検出するため、 所定の周波数か らなる搬送波信号 ( s i η ω t ) を供給し、 前記搬送波信号を s i n 0 により振幅変調した波形を有する s i n信号 ( s i n co t * s i n 0 ) 及ぴ c o s 0 により振幅変調した波形を有する c o s信号 ( s i η ω t · c o s θ ) を発生する角度検出器を具備する電動パワーステアリ ン グ装置の制御装置に関するものであり、 本発明の上記目的は、 前記 s i n Θに対応する値と前記 c o s Θに対応する値との 2値から構成され、 かつ正常領域と異常領域とから構成される異常領域判定マップを具備し. 前記 s i n信号と前記 c o s信号とからそれぞれ算出された前記 s i n
Θ と前記 c o s Θを前記異常領域判定マップに写像して、 前記角度検出 器の異常を判定することによって達成される。
また、 本発明の上記目的は、 前記異常領域判定マップが、 前記 s i n Θに対応する値を X座標の値とし、 前記 c 0 s 0 に対応する値を Υ座標 の値とし、 互いに直行する X軸と Υ軸とから構成される領域上に、 X座 標及び Υ座標との値が共に零である原点を中心に構成される四角形 αと 前記原点を中心に構成される前記四角形ひ よ り小さい四角形 j3 とから囲 まれる領域が正常領域となることによって達成される。
更に、 本発明の上記目的は、 前記搬送波信号に同期して、 或いは、 前 記搬送波の周期の整数倍の周期で、 前記 s i n 0及ぴ前記 c o s 0を検 出する前記 s i n 0及び前記 c o s Θを検出することによって達成され る。
本発明の上記目的は、 前記搬送波信号、 前記 s i n信号及び前記 c o s信号から前記角度検出器の異常を検出する角度検出処理回路と前記異 常領域判定マップとを具備し、 前記角度検出処理回路と前記異常領域判 定マップとにより、 前記角度検出器の異常を二重に監視することによつ て達成される。
本発明は、 車両の操舵系にモータによる操舵補助力を付与するための 制御に必要な前記モータの回転角度 Θを検出するため、 所定の周波数か らなる搬送波信号 ( s i η ω t ) を供給し、 前記搬送波信号を s i n 0 により振幅変調した波形を有する s i n信号 ( s i n co t * s i n 0 ) 及び c o s Θ により振幅変調した波形を有する c o s信号 ( s i η ω t · c O S θ ) を発生する角度検出器を具備する電動パワーステアリン グ装置の制御装置に関するものであり、 本発明の上記目的は、 前記 S i n信号及ぴ前記 c o s信号からそれぞれ s i n角度信号 ( s i η Θ ) 及 び c o s角度信号 ( c o s e ) を検出し、 前記 c o s角度信号から形成 される信号と、 前記 s i n角度信号から形成さ; る信号とから形成され る回転角度信号を出力する角度処理手段を具備し、 前記回転角度信号に 基いて前記モータが制御されることによって達虎される。 また、 本発明 の上記目的は、 前記モータが 3相ブラシレスモータであり、 前記 c o s 角度信号から作成される信号が、 前記 c o s角度信号の値の正負を表示 する 1 ビッ ト信号であり、 前記 s i n角度信号^ら作成される信号が、 前記 s i n角度信号の値のレベルを判定する 2つの閾値によって大小を 判定されたそれぞれの結果を表示する 2つの 1 ビッ ト信号であることに よつて達成される。
また、本発明の上記目的は、前記 s i n信号及ぴ前記 c o s信号から、 前記搬送波信号に同期して、 或いは前記搬送波 周期の整数倍の周期に 同期して、 前記 s i n角度信号及び前記 c o s角度信号をそれぞれ検出 することによつて達成される。
本発明の上記目的は、 前記角度処理手段から響成される副角度処理手 段と、 前記回転角度 0を検出するための主角度 理手段とを具備し、 前 記主角度処理手段が故障した場合、 前記主角度 理手段が検出した前記 回転角度 Θに代えて、 前記副角度処理手段の出力する前記回転角度信号 に基いて前記モータを制御することによつて達 される。
更に、 本発明の上記目的は、 前記回転角度 0 に基いて制御される場合 の前記モータに通電される電流は正弦波電流で り、 前記回転角度信号 に基いて制御される場合の前記モータに通電さ る電流は矩形波電流で あることによって達成される。 図面の簡単な説明
第 1図は一般的な電動パワーステアリング装置の構成図である。
第 2図は、 従来の角度検出器の異常検出を行う装置例を示すプロック 構成図である。
第 3図は従来の異常検出の処理例を示すフローチヤ一トである。
第 4図は搬送波信号、 s i n信号及び c o s信号の関係を示す図であ る。
第 5図は従来のモータの回転角度検出異常に対応する制御装置の一例 を示すプロック構成図である。
第 6図は本発明の異常領域判定マップの基本概念を示す図である。 第 7図は本発明の第 1実施例を示すプロ ック構成図である。
第 8図は第 1実施例のソフ ト処理例を示すフローチヤ一トである。 第 9図は異常領域判定マップをソフ ト的に具体化した一例を示す図で める。
第 1 0図は本発明の第 2実施例を示すブロック構成図である。
第 1 1図は第 2実施例における異常判定回路の詳細な構成例を示すブ ロック構成図である。
第 1 2図は本発明の回転角度信号を検出するための原理を説明するた めの図である。
第 1 3図はホールセンサ信号と回転角度の関係を示す図である。
第 1 4図は本発明の第 3実施例を示す装置のプロック構成図である。 第 1 5図は本発明の角度処理手段の詳細構成例を示すプロック構成図 である。
第 1 6図は本発明の角度処理手段の一部をソフ トウェアで処理した場 合の動作例を示すフローチャートである。
第 1 7図は本発明の第 4実施例の装置を示すプロック構成図である 発明を実施するための最良の形態
本発明の基本的な考えは、 s i n 0に対応する値と c o s 0に対応す る値から構成され、 かつ正常領域と異常領域とから構成される異常領域 判定マップを準備して、 レゾルバなどの角度検出器から得られた情報で ある角度情報 s i η ω t · c o s 0及ぴ s i n ω t · s i n 0を基に角 度情報 s i n 0及び c o s 0を検出し、 それらを演算することなく、 そ のまま異常領域判定マップ上に写像 (マッピング) して異常か正常かを 判定する。
先ず、 本発明で最も重要な異常領域判定マップについて第 6図を参照 して説明する。異常領域判定マップは s i η Θ及び c o s 0で構成され、 第 6図においては、 X軸に s i n 0を、 Y軸に c o s Θ をそれぞれ対応 させて構成されている。 異常領域判定マップには、 原点 G ( 0, 0 ) を 中心に 3つの同心円及び 2つの四角形が表示されている。
最初に 3つの同心円について説明する。 一番內俱 ί|の同心円は ( s i n Θ ) 2 + ( c o s Θ ) 2= Pm i n、 真中の同心円ほ ( s i η Θ ) 2 + ( c o s θ ) 2 = 1、 一番外側の同心円は ( s i η 0 ) 2 + ( c o s θ ) 2 = Ρ m a χの円がそれぞれ表示されている。 大きな四角形 αは一辺が 2 X P m a Xの正方形であり、 小さな四角形 は一辺力 S 2 X ( P m i n / f 2 ) の四角形である。 ここで、 正常領域とは、 大きな四角形 αと小さな 四角形 に囲まれた斜線部範囲が正常範囲を示し、 それ以外の領域は異 常範囲を示す。 なお、 上述した判定基準の P m i η或いは P m a Xは検 出の精度やモータの極数などの影響を考慮して、 P m a X及ぴ P m i n により異常検出精度を調整することができる。 これら P m a x及ぴ Pm i nを適切に設定することにより、 モータ駆動中の故障や経年変化によ るレゾルバの検出精度の異常を検出できる。 ここで、 ( s i n θ ) 2 + ( c o s Θ ) 2 = 1は従来技術で使用した正 常の判定基準であり、 ( s i n 0 ) 2+ ( c o s Θ ) 2 = 0. 9及ぴ 1 . 1は、 0. 9く ( s i η Θ ) 2 + ( c o s θ ) 2 < 1 . 1 の正常範囲を 示すためのものである。 よって、 本発明で正常領域と見なす範囲 (斜線 部領域) は、 従来の正常範囲より広いことが分かる。
このように正常領域が広い領域になっている理由は、 本発明では ( s i η Θ ) 2 + ( c o s Θ ) 2の演算を実施していないことにある。 従来 の異常判定では ( s i η θ ) 2 + ( c o s Θ ) 2の演算を実施した後で、 その結果が ( s i η Θ ) 2 + ( c o s θ ) 2 = 1、 或いは 0 . 9 く ( s i η Θ ) 2 + ( c o s Θ ) 2 < 1 . 1で判定していた。 この処理で問題 となるのは、 ( s i η Θ ) 2 + ( c o s θ ) 2の演算がソフ トウェアで処 理する場合は C P Uの負担となり、 処理時間も必要で高速に処理できな かった。 ハードウェアで処理する場合も、 これらの処理のためのハード ウェアが必要となり、 部品点数を多く必要とする問題があった。 ところ が、 本発明では ( s i η Θ ) 2 + ( c o s θ ) 2の処理を行わず、 s i η ω t · s ί η θ及び s i η ω t · c o s 0 力 ら得られた s ί η θ及び c o s Θをそのまま組み合わせ、 例えば ( s ί η θ 1、 c o s θ 1 ) を 上述した異常領域判定マップにそのまま写像して正常、 異常を判定する ことにした。 この結果、 判定のための処理が早く、 また、 処理のための C P Uへの負担を大幅に緩和することができるからである。
しかじ、 ( s i n 0 ) 2 + ( c o s 0 ) 2の処理を実行しなくなっため、 本発明の判定領域 (斜線部範囲) は従来の判定範囲より広く とる必要が 生じる。 例えば第 6図において、 ( s i n 6 、 c o s θ ) の組み合わせ が Α点、 D点、 E点の場合は正常であり、 B点、 C点の場合は異常と判 定される。 A点は従来の判定基準でも正常であり、 B点、 C点は従来の 判定基準でも異常であるので、 判定結果に変更はない。 しかし、 D点及 び E点は、 従来の判定基準では異常であるが、 本発明では正常と判定さ れる。 従来は ( s i η Θ ) 2 + ( c o s Θ ) 2の処理を実行していたた め、 D点及び E点の異常判定が可能であつたが、 本発明では組み合わせ ( s i n 6 、 c o s 0 ) をそのまま写像するため、 厳密な判定ができな くなつたことによる。
しかし、 実用的な面を考慮すれば、 D点や E点の判定を厳密に実行す る必要がないのである。 つまり、 レゾルバ 1 0の出力が異常となるのは、 ほとんどの場合、 レゾルバの回路や配線に天絡、 地絡が発生する場合で あり、 そのような原因を起因とする組み合わせ ( s i n 0、 c o s θ ) は X軸或いは Y軸上を往復する軌跡となり、 D点や Ε点に長く留まるこ とは無いからである。 つまり、 現実にはほとんど有り得ない事態を判定 するために、 従来は ( s i n 0 ) 2+ ( c o s 0 ) 2の処理を実行して いたことになる。 また、 不完全な断線であっても、 ステアリ ングの挙動 に大きく影響する異常については上述した判定領域で充分検出可能であ る。 よって、 現実にほとんど発生しない事態を考慮しなくても実用上問 題はなく、 その結果、 本発明では処理速度が格段に高速になり、 C P U への負担を大幅に軽減できる効果が得られる。
以上が、 本発明の最も重要な異常領域判定マップについての説明であ る。 以下、 図を参照して本発明の好適な実施例について説明する。
[第 1実施例]
先ず、 本発明をソフ トウェアで処理した場合の実施例について説明す る。
第 7図において、 レゾルバ 1 0力、ら出力される s i n信号 ( s i n co t · s i n Θ ) 及ぴ c o s信号 ( s i n ω t · c o s Θ ) は、 図示しな い AD変換器を経由して C P U回路 1 6に入力される。 なお、 搬送波発 振回路 1 2から出力される搬送波信号 s i η ω t は直接 C P U回路 1 6 に入力されず、 ピーク検出回路 2 0に入力されて搬送波 s i η ω tのピ 一ク時を検出する。 具体的には、 搬送波信号 s i η ω tがピーク検出回 路 2 0に入力され、 ピーク値設定回路 2 4の示す搬送波信号 s i η ω t のピーク値と搬送波が比較回路 2 2にて比較され、 その比較結果によつ てピーク時が検出される。 ピーク検出回路 2 2 と C P U回路 1 6の間に 配設された分周回路 3 2は、 搬送波 s i η ω tの周期の整数倍の遅い周 期で、 搬送波のピーク時を C P U回路 1 6へ入力する。 搬送波の周期に 同期して搬送波のピーク時を C P U回路 1 6へ入力する場合は、 分周回 路 1 6は不要である。 また、搬送波 s i η ω tの零クロス時を検出して、 π / 2のタイミングだけずらしてピーク時としても良い。
次に、 C P U回路 1 6内の処理について、 第 8 図のフローチャートを 参照して説明する。
先ず、 C P U回路 1 6は、 搬送波信号 s i η ω tのピーク時、 或いは 分周回路 3 2を経由した場合は搬送波の周期の整数倍に間引いて、 ピー ク時を読み込む (ステップ S 2 0 1 )。 その搬送波 s i η ω tのピーク に同期して、 s i n信号 ( s i η ω t · s i n Θ ) 力 ら s i n 0である s i n角度信号を検出する (ステップ S 2 0 2 )。 同様に、 搬送波 s i n c tのピークに同期して、 c o s信号 ( s i n co t ' c o s 0 ) 力 ら c o s 0である c o s角度信号を検出する (ステ ップ S 2 0 3 )。
次に、 前記 s i n角度信号及ぴ c o s角度信^の組み合わせ ( s i n Θ、 c 0 s Θ ) が第 6図で示した異常領域判定マップに写像され (ステ ップ S 2 0 4)、 その組み合わせの値について異常か正常かを判定する (ステップ S 2 0 5 )。 例えば、 前記 s i n角度信号及ぴ c o s角度信 号が第 6図の A点の組み合わせ ( s i n 0 1、 c o s θ 1 ) であった場 合には、 正常と判定する。 そして、 s i n角度信号及び c o s角度信号 が第 6図の B点の組み合わせ ( s i n 0 2 、 c o s 0 2 ) であつた場合 には、 異常と判定する。 最後に、 異常の場合は、 電動パワーステアリ ン グ装置のアシス ト量を制限するなど、 何らかの保護動作に入る (ステツ プ S 2 0 6 )。
なお、第 6図に対応する異常領域判定マップの一例を、第 9図に示す。 s i n角度信号 ( s i η Θ ) 及ぴ c o s角度信号 ( c o s 0 ) の値の正 常、 異常の判定の閾値をテーブルとして設定し、 第 9図のような正常領 域 (斜線部) 及び異常領域が構成される。 このようにすれば、 ソフ トゥ エアで I F文を使用せずに判定することが可能である。
このように本実施例の異常判定では、 s i n角度信号及ぴ c o s角度 信号の組み合わせで正常異常を判定するので、従来のように ( s i η Θ ) 2 + ( c o s Θ ) 2の演算を実行する必要がないので処理速度が速く、 また、 割り込み処理、 A D変換の C P Uリ ソース消費が少なく、 C P U への負担が少なくて良いという優れた効果がある。 また、 分周回路を用 いて、 搬送波の周期の整数倍の周期で搬送波のピーク時を読み込めば、 C P Uへの負担は更に少なくできる。
更に、 異常領域判定マップを用いて角度検出器などの異常を検出でき るので、 レゾルパディジタル変換回路 1 4の有する異常検出も使用すれ ば、 角度検出器などの異常を二重に監視できる。 このため、 レゾルバデ イジタル変換回路単独の監視に比較し、 信頼性を一層向上させることが できる。
[第 2実施例]
ハードウエア処理による第 2実施例を、 第 1 0図及び第 1 1図を参照 して説明する。 第 1 0図に示すように、 s i n信号、 c o s信号及ぴ搬 送波信号が C P U 1 6に入力される前段に異常判定回路 1 8が配設され, s i n信号、 c o s信号の正常異常を判定した後に、 その結果を C P U 1 6に入力するようになつている。
第 1 1図を参照して、 異常判定回路 1 8の構成及び動作を説明する。 搬送波信号 s i η ω tがピーク検出回路 2 0に入力され、 ピーク値設定 回路 2 4の示す搬送波信号 s i η ω tのピーク値と搬送波とが比較回路 2 2において比較され、 その比較結果によってピーク時が検出される。 第 1 1図では、 分周回路 3 2がピーク検出回路 3 2の出力に接続されて いるが、 分周回路 3 2が配設されていない場合は、 その検出されたピー ク時に同期して、 サンプルホールド回路 (以下、 「 S H回路」 と記す) 2 6で s i n信号から s i n角度信号 ( s i η θ ) 力 Sホールドされ、 ま た、 S H回路 2 8で c o s信号から c o s角度信号 ( c o s 0 ) がホー ルドされる。 S H回路 2 6及ぴ S H回路 2 8 の出力 ίこローパスフィノレタ 回路 (L P F回路) 3 4及びし 回路 3 6がそれぞれ配設されている が、 ノイズ除去のためのものである。 なお、 分周回路 3 2がピーク検出 回路 3 2の出力側に配設されている場合については、 後述する。
次に、 検出された s i n信号及び c o s信号が異常領域判定マップに 相当するハードウエア構成の異常領域判定回路 3 0に入力され、 正常異 常が判定される。 異常領域判定回路 3 0は、 電圧レベルを比較する比較 回路などを組み合わせて構成することができ、 入力された s i n角度信 号及ぴ c o s角度信号の組み合わせ ( s i η Θ、 c o s Θ ) 力 S、 例えば 第 6図の A点 ( s i n 0 1、 c o s θ 1 ) であった場合には正常と判定 する。 また、 前記 s i n角度信号及び c o s角度信号が第 6図の B点の 組み合わせ ( s i n 0 2、 c o s Θ 2 ) であった場合には異常と判定す る。 正常或いは異常を示す異常領域判定回路 3 0の出力が、 異常判定回 路 1 8の出力となる。
このように本発明をハードウエアで処理することも可能であり、 C P U回路 1 6の負担を軽減することができる。本発明は、従来のように( s i η Θ ) 2 + ( c o s Θ ) 2の演算を実行する必要がなく、 ピーク検出 回路 2 0を含めて電圧レベルを比較する比較回路のみで構成でき、 ハー ドウエア構成が簡単で処理速度も速くなる。
次に、 分周回路 3 2がピーク検出回路 3 2の出力側に配設されている 場合について、 第 1 1図を参照して説明する。 s i n角度信号及び c o s角度信号のサンプリングを搬送波信号のピークに同期して頻繁にサン プリングする必要はなく、 第 1実施例のように、 間引いてサンプリング しても本発明の効果は期待できる。 これは、 異常検出の精度或いは速度 の問題に関わるもので、 厳密に検出しょう とすればサンプリングを頻繁 にする方が好ましいが、 実用的な見地からすれば、 搬送波信号のピーク に同期して頻繁にサンプリングする必要はなレ、。
分周回路 3 2がピーク検出回路 2 0と S H回路 2 6、 3 11回路 2 8 と の間に配設されており、 その動作は次のようになる。 分周回路 3 2の動 作によって、 搬送波 s i η ω tのピーク時に同期せずに、 搬送波の周期 の整数倍の周期の遅い周期に同期して、 S H回路 2 6で s i n信号から s i n角度信号 ( s i η Θ ) がホールドされ、 また、 S H回路 2 8で c o s信号から c o s角度信号 ( c o s 0 ) がホールドされる。 そして、 S H回路 2 6及び S H回路 2 8で検出された s i n角度信号及ぴ c o s 角度信号がそれぞれ異常領域判定回路 3 0に入力され、 正常異常が判定 される。
上述したように、 s i n信号及び c o s信号を搬送波の周期の整数倍 の周期の遅い周期に同期して読み込んで判定することにより、 C P U回 路 1 6への取り込み回数及びそれに伴う処理回数が減少し、 C P U回路 の負担が小さくなる。
また、 本発明をハードウェア構成とした場合でも、 異常領域判定回路 を用いて角度検出器などの異常を検出できるので、 レゾルバディジタル 変換回路 1 4が持っている異常検出機能も使用すれば、 角度検出器など の異常を二重に監視できるので、 レゾルバディジタル変換回路単独の監 視に比べて信頼性を向上させることができる。 ところで、 モータの回転角度 0を検出する レゾルバディジタル変換回 路が故障した場合、 角度検出器から出力される信号に基いてレゾルバデ ィジタル変換回路で検出される回転角度 0は信頼性の欠いたものになつ ている。 そこで、 レゾルバディジタル変換回路が故障した場合でも、 レ ゾルバから出力される s i n信号及び c o s信号を用いて、 例えば 3相 モータのロータの回りに 1 2 0度毎に配設されたホールセンサ或いはホ ール I Cが出力する回転角度の情報と、 精度的に同程度の回転角度情報 を検出することが可能である。 その原理を以下に説明する。
角度検出器と してのレゾルバから出力された s i n信号 ( s i η ω t · s l n Θ ) 及ぴ c o s信号 ( s i n co t ' c o s S ) 力 ら、 搬送波 信号 s i η ω tのピーク値に同期して、 又は零クロス点から πノ 2位相 をずらして、 s i η信号及び c o s信号をホールドして、 s i η角度信 号 ( s i n 0 ) 及び c o s角度信号 ( c o s e ) がそれぞれ検出される。 第 1 2図は、 検出された s i n角度信号及び c o s角度信号を示した ものである。 ここで、 s i n角度信号及び c o s角度信号に対して、 次 のような処理をすると、 3相モータのロータ回りに 1 2 0° 間隔で配置 された 3個のホールセンサが出力する回転角度信号と同等の情報を得る ことができる。
先ず c o s角度信号から形成される信号を求めるために, c o s角度 信号の極性を判定する。 つまり s i g n ( c o s Q ) が正である力 、 負 であるかを判定する。 c o s Θが正の場合、 C = s i g n ( c o s Θ ) = 1 とする。 c o s eが負の場合、 C = s i g n ( c o s Θ ) = 0とする。 次に、 s i n角度信号から形成される信号を求めるために、 s i XI角 度信号の値のレベルと 2つの閾値 (" 0. 5 " と "一 0. 5 ") とを用い て大小の判定を行い、 その判定結果をそれぞれ L e b e l l と L e b e 1 2とする。 具体的には、 下記の通りである。
s i η Θ > 0. 5の場合、 B = L e b e l l ( s i η θ > 0. 5 ) η θ < 0. 5の場合、 B = L e b e l l ( s i n θ > 0. 5 )
= 0
及び
n Θ < - 0. 5の場合、 A= L e b e l 2 ( s i n Θ <
— 0. 5 ) = 1
n Θ > - 0. 5の場合、 A= L e b e l 2 ( s i n Θ <
一 0. 5 ) = 0 モータのロータ位置を 3 6 0度に対して 6分割した回転角度ェリアを 第 1 3図に示す。 この角度ェリ了に対応した c o s Θ の極性- C、 s i η Θのレベル判定 L e b e l l = B、 L e b e l 2 =A、 S 1 = 4 A + 2 B + Cをそれぞれ定義し、 回転角度エリアと S I , A, B, Cとの関 係を表に示すと、 表 1のようになる。 ここで、 3ビッ ト信号 (A, B , C) が c o s角度信号から形成される信号と、 s i n角度信号から形成 される 3 ビッ トの回転角度信号となるが、 信号 S 1 も形を変えた 3 ビッ トの回転角度信号である。 レゾルバ信号の極性及ぴレベル判定による信号
Figure imgf000021_0001
回転角度ェリア ( 3 3 0° 〜 3 0° ) では、 レゾルバからの出力信号 に基いて作成される組み合わせ 3ビッ トの回転角度信号(L e b e 1 2, L e b e l l、 s i g n ( c o s θ )) は、 ( 0、 0、 1 ) となる。 回転 角度エリア ( 3 0° 〜 9 0° ) では、 ( 0、 1、 0 ) の 3 ビッ ト回転角 度信号が形成される。 S l = 6, 7はレゾルノ 又はレゾルバディジタル 変換回路のどちらかの故障を示す。
同様に第 1 3図に示すように、 ロータの回 りに 1 2 0度毎に配設され た 3個のホールセンサ H S 1 , H S 2 , H S 3の出力信号を、 A-H S 3の出力信号、 B =H S 2の出力信号、 C = H S 1の出力信号、 S 2 =
4 A + 2 B + Cとそれぞれ定義し、 表 1の回転角度ェリァに対応して、
5 2 , A, B, Cの値を示すと表 2のようになる。
ホールセンサ信号
回転角度エリ S2=4A+2B+ A = H S 3 B=H S 2 C =H S 1 ァ C
3 3 0 〜 3 1 0 0 1 0°
3 0〜 9 0 ° 3 0 1 1
9 0 〜 1 5 2 0 1 0 0。
1 5 0 〜 2 1 6 1 1 0 0°
2 1 0 〜 2 7 4 1 0 0 0°
2 7 0 〜 3 3 5 1 0 1 0°
無し (エラー) 0 0 0 0 無し (エラー) 7 1 1 1 表 ― 2
ここで、 回転角度ェリアと (A, B , C) で構成さ れる 3 ビッ トの回 転角度信号 (以下、 「 3 ビッ ト信号」 と記す) との関係をみると、 先ず 表 1において、 各回転角度エリア同士で 3ビッ ト信号が互いに同じ値に なることはなく、 ロータの回転角度ェリアと 3ビッ ト信号を一対一で対 応させることができる。 次に、 表 2においても、 各回転角度エリア同士 で 3ビッ ト信号が互いに同じ値になることはなく、 口 ータの回転角度ェ リアと 3ビッ ト信号を一対一で対応させることができ る。
次に、 表 1 と表 2を比較すると、 回転角度ェリア ( 1 5 0 ° 〜 2 1 0° ) を除いて、 全ての回転角度ェリアにおいて、 表 1の 3ビッ ト信号 と表 2の 3 ビッ ト信号が同じである。例えばロータが回転角度ェリア( 3 3 0° 〜 3 0° ) では、 表 1の 3ビッ ト信号 ( 0 , 0 , 1 ) と表 2の 3 ビッ ト信号 ( 0, 0 , 1 ) は同じであり、 回転角度エ リア ( 3 0° 〜 9 0 ° ) でも、 表 1の 3 ビッ ト信号 ( 0, 1, 1 ) と表 2の 3 ビッ ト信号 ( 0 , 1, 1 ) は同じである。 唯一、 回転角度エリア ( 1 5 0° 〜 2 1 0 ° ) で、 表 1の 3 ビッ ト信号 ( 0, 0, 0 ) と表 2の 3 ビッ ト信号 ( 1 , 1 , 1 ) が異なる。 S 1 と S 2との関係で表現すれば、 回転角度エリア ( 1 5 0° 〜2 1 0° ) では、 S 1 = 0で S 2 = 6 となり、 ステップ S 1 とステップ S 2は異なった値をとる。
そこで、 表 1 と表 2の異なる部分は、 変換し直せばロータの全ての回 転角度エリアで当該角度処理回路の出力の 3ビッ ト信号と、 ホールセン サの 3ビッ トの出力信号とが等しくなる。 例えば回転角度ェリア ( 1 5 0° 〜2 1 0° ) において、 表 1の ( 0, 0、 0 ) を表 2の ( 1, 1, 0 ) に変換し直せば、 レゾルバの出力信号を入力とする角度処理回路で 検出した 3 ビッ トの回転角度信号は、 全てホールセンサで得られる 3 ビ ッ トの回転角度信号に変換し直すことができる。 具体的に実施する場合 は、 3ビッ ト信号同士の変換より、 S 1信号と S 2信号との変換の方が 容易である。 この場合、 3 ビッ トの回転角度信号はホールセンサと同等 の信号であるので、 ホールセンサ異常検出方法 (例えば特願 2 0 0 3— 3 5 2 2 7 5 ) などをそのまま適用して角度処理回路の異常を検出する ことができる。
一方、 モータのロータの回りに 1 2 0度毎に配設された 3個のホール センサの信号から形成される 3 ビッ トの回転角度信号で、 モータを矩形 波電流制御できることは従来から良く知られている。 つまり、 角度処理 回路で検出された 3ビッ トの回転角度信号をホールセンサの 3 ビッ トの 回転角度信号に変換すれば、 同じようにモータを矩形波電流制御できる ことは明らかである。
また、 以上の説明は 3相モータを一例と した説明であつたが、 3相以 外の n相モータ ( 5相、 7相 ' · ·) であっても、 適切に s i n角度信 号や c o s角度信号のレベル判定を n箇所 (IIビッ ト) で行えば、 n相 モータの周囲に配されたホールセンサから得られる回転角度信号と同等 の回転角度信号を得られることは言うまでもない。 [第 3実施例]
以上説明した本発明の理論に基いて、 本発明の好適な実施例を、 第 5 図に対応させて示す第 1 4図を参照して説明する。 第 1 4図は本発明の 角度処理回路 5 0を含む電動パワーステアリング装置の制御装置全体を 示すプロック構成図であり、 第 1 5図は角度処理回路 5 0をハー ドウヱ ァで実現し、 角度処理回路 5 0の詳細を示すプロック構成図である。 第 1 4図の実施例は、 通常の制御で使用されるべク トル制御部 (破線 Aで囲まれた部分) と、 レゾルバゃレゾルバディジタル変換回路が異常 になった場合の異常事態に使用する矩形波制御 (被線 Bで囲まれた部 分) とで構成されている。 ベク トル制御部 Aと矩形波制御部 Bとの切替 えは、 レゾルバディジタル変換回路 3 1 1は一般的に自己の異常を監視 している異常検出端子である E端子を備えているので、 レゾルバディジ タル変換回路 3 1 1の故障検出機能を利用している。 また、 角度処理回 路 5 0に自己の異常を監視している異常検出端子の E端子を備えている 場合は、 角度処理回路 5 0の E端子信号で切替えを実行しても良い。 先ず、 通常の制御で使用される従来技術で説明したべク トル制御部の 方から説明する。 トルクセンサ 1 0 7で検出され こ トルク値 T r と車速 センサ 3 1 3で検出された車速値 Vとが トルク指令値演算部 3 1 9に入 力され、 トルク指令値 T r e f が出力される。 そして、 スィッチ 4 5 0 はレゾルバディジタル変換回路 3 1 1の故障検出機能の出力端子 Eの信 号に基き、 通常はべク トル制御部 Aを選択している。
トルク指令値 T r e f は電流指令値算出部 4 5 2 - 1に入力され、 電 流指令値 I d r e f 、 I q r e f が算出される。 算出された電流指令値 I d r e f 、 I q r e f と、 電流検出回路 3 1 2で検出され、 3相 Z 2 相変換部 4 5 6— 1で変換された電流 I d , I q とが減算部 4 5 3 - 1 で偏差 Δ Ι (1、 Δ I q ( A I d = I d r e f — I d、 Δ I q = I q r e f — I q) が算出される。 次に、 算出された偏差 Δ I が P I制御部 4 5 4一 1に入力され、 電圧指令値 V d r e f 、 V d r e f が算出される。 電圧指令値 V d r e f 、 V q r e f は 2相ノ 3栢変換手段 4 5 5— 1に 入力され、 3相に変換された電圧指令値 V a r e f , V b r e f , V c r e f に変換される。
スィッチ 4 5 1は、 レゾルバディジタル変換回路 3 1 1の故障検出機 能の出力端子 Eの信号に基き、 通常は電圧指令恢と して、 2相 Z 3相変 換部 4 5 5— 1から出力された電圧指令値 V a r e f , V b r e f , V c r e f を選択している。 その電圧指令値に基き PWM制御部 3 2 5は P WM信号を発生させ、ィンバータ回路 3 2 6はその P WM信号に基き、 モータ 1 0 8にモータ電流 I a, l b , I cを徙給する。
通常、 ベタ トル制御を用いてモータ 1 0 8は IE弦波電流による制御が 実行されている。 これは、 モータ 1 0 8の回転角度 Θ を精度良く検出で きることで可能となる。 具体的には、 モータ 1 0 8の回転角度 Θ の情報 は、 レゾルバ 3 1 0力、ら出力された搬送波 s i n ω t、 s i n信号及び c o s信号が主角度処理回路としてのレゾルバディジタル変換回路 3 1 1に入力され、 回転角度 0が出力される。 そして、 回転角度 0は、 上述 した制御動作の過程で 2相/ 3相変換や 3相/ 2 相変換などに利用され ている。 レゾルバディジタル変換回路 3 1 1が IE常に動作している場合 は、 レゾルパディジタル変換回路から出力される回転角度 Θは精度の良 い信頼できる情報なので、 その回転角度に基いて制御が実行されれば良 レ、。
しかし、 レゾルバディジタル変換回路 3 1 1が故障した場合、 電動パ ワーステアリング装置を用いて継続してアシス ト を維持したい場合、 レ ゾルバディジタル変換回路 3 1 1から角度処理回路 5 0へ切り替え、 角 度処理回路 5 0が出力するホールセンサ相当の 3 ビッ トの回転角度信号 に基いてモータ 1 0 8を矩形波電流制御で駆動すれば、 アシス トの継続 が可能である。
以下、 レゾルパ 3 1 0及ぴレゾルバディジタル変換回路 3 1 1が異常 になった場合の矩形波電流制御によるモータ制御について説明する。 角 度処理回路 5 0については、 後で詳細に説明するので、 先ず矩形波電流 制御について説明する。
レゾルパディジタル変換回路 3 1 1は、 レゾルバ 3 1 0及びレゾルバ ディジタル変換回路 3 1 1を自己監視しており、 異常になると E端子か た故障信号を出力する。 これによつて、 スィ ッチ 4 5 0及びスィッチ 4 5 1は切り替えられ、 スィッチ 4 5 0はトルク指令値演算部 3 1 9 と電 流指令値演算部 4 5 2— 2とを連結し、 スィ ッチ 4 5 1は P I制御部 4 5 4— 2と P WM制御部 3 2 5 とを連結する。
よって、 トルク指令値演算部 3 1 9から出力されたトルク指令値 T r e f と、 副角度処理回路としての角度処理回路 5 0の出力である 3 ビッ ト回転角度信号とが電流指令値演算部 4 5 2 - 2に入力され、 矩形波電 流制御のための電流指令値 I a r e f , I b r e f , I c r e f が出力 される。 次に、 電流検出器 3 1 2で検出されたモータ電流 l a , I b , I c と、 電流指令値 I a r e f , I b r e f , I c r e f との偏差が減 算部 4 5 3 _ 2で算出され、 その偏差は P I制御部 4 5 4— 2に入力さ れる。 P I制御部 4 5 4 - 2は電圧指令値 V a r e f , V b r e f , V c r e f を出力する。
スィッチ 4 5 1を介して、 この電圧指令値 V a r e f , V b r e f , V c r e f が PWM制御部 3 2 5に入力される。 P WM制御部 3 2 5は 電圧指令値に基いて矩形波電流制御用の PWM信号を発生し、 インバー タ回路 3 2 6はモータ 1 0 8に矩形波電流 l a , I b, I cを供給する。 このようにして、 モータの回転角度 0が正しく検出できない時は、 角度 処理回路 5 0の出力する 3 ビッ トの回転角度信号に基いて矩形波電流制 御を可能とし、 電動パワーステアリング装置のアシス ト継続が可能とな る。
次に、 第 1 5図を参照して、 本発明の要部である角度処理回路 5 0の 詳細な構成及び動作を説明する。
角度処理回路 5 0は c o s信号、 s i n信号、 搬送波信号を入力して 3 ビッ トの回転角度信号を出力する。 搬送波信号 s i η ω tがピーク検 出回路 5 1 0に入力され、 ピーク値設定器 5 1 2が示す搬送波のピーク 値と搬送波とがレベル検出回路 5 1 1で比較されることにより、 搬送波 のピーク時を検出することができる。 或いは搬送波の零クロス点を検出 し、 位相を π / 2ずらすことによって、 ピーク時を検出しても良い。 次に、 ピーク検出回路 5 1 0から出力する搬送波のピーク時を示す信 号が分周回路 5 0 1に入力される。 分周回路 5 Ο 1は、 搬送波の周波数 の整数倍の周波数を取り出すためのものである。 なお、 分周回路 5 0 1 が存在しなくても本発明は実現可能であり、 分周回路 5 0 1が存在しな い場合は、 後述する s i n信号及び c 0 s信号のサンプルホールドのタ ィミングを搬送波の周期に同期させ、 頻繁にホールドすることになる。 一方、 分周回路 5 0 1が存在する場合は、 s i n信号及び c o s信号の サンプルホールドのタイミングを搬送波の周期の整数分の一とし、 その 頻度でサンプルホールドすることになる。 求める s i n信号及ぴ c o s 信号の精度の粗さとサンプルホールドする頻度の負担との兼ね合いによ つて、 分周回路の有無或いは分周の周期が決定される。
次に、 分周回路 5 0 1の出力信号のタイミングに同期して、 或いは分 周回路 5 0 1が存在しない場合は、 ピーク検出回路 5 1 0の出力信号の タイミングに同期して、 S H回路 5 0 2— 1において、 入力された c o s信号 ( s i n co t ' c o s 0 ) に対してサンプルホールドすることに より c o s角度信号 ( c o s 0 ) がサンプルホールドされ、 S H回路 5 0 2— 2において、 入力された s i n信号 ( s i η ω t · s i n Θ ) に 対してサンプルホールドすることにより s i η角度信号 ( s i η 0 ) が サンプルホールドされる。 さらに、 ノイズを除去するために、 c o s角 度信号及び s i n角度信号はローパスフィルタ回路 (以下、 「L P F回 路」 と記す) 5 0 3— 1及ぴ L P F回路 5 0 3 - 2をそれぞれ通過する。 c o s角度信号及び s i n角度信号を検出するための回路である第 1 5 図の破線 Cで囲まれた部分である角度信号検出回路は、 従来技術として 知られている。
本発明の要部となる部分について、 以下説明する。
先ず、 L P F回路 5 0 3— 1から出力される c o s角度信号が、 上記 表 1の極性を検出するためのレベル検出回路 5 2 1に入力される。 同様 に、 L P F回路 5 0 3— 2力 ら出力される s i n角度信号は、 表 1の L e b e 1 1を検出するためのレベル検出回路 5 2 3及ぴ表 1の L e b e 1 2を検出するためのレベル検出回路 5 2 5にそれぞれ入力される。 そ して、 レベル検出回路 5 2 1において、 設定器 5 2 2が示す設定値 ( 0 ) と c o s角度信号とが比較されることにより、 c o s角度信号の極性で ある s i g n ( c o s 0 ) が判定され、 例えば正の場合は 「 1」 が、 負 の場合は 「 0」 が出力される。
また、 レベル検出回路 5 2 3に入力された s i n角度信号は、 設定器 5 2 4が示す設定値 (0. 5 ) と比較され、 s i n角度信号が 0. 5よ り大きい場合は 「 1」 が出力され、 s i n角度信号が 0. 5より小さい 場合は 「0」 が出力され、 L e b e l l の値が決定される。 同様に、 レ ベル検出回路 5 2 5に入力された s i n角度信号は、 設定器 5 2 6が示 す設定値 (一 0. 5 ) と比較され、 s i n角度信号が一 0. 5より小さ い場合 (絶対値で比較すると、 s i η角度信号の絶対値が 0 . 5より大 きい場合) は 「 1」 が出力され、 s i n角度信号が一 0 . 5より大きい 場合 (絶対値で比較すると、 s i n角度信号の絶対値が 0 . 5より小さ い場合) は 「0」 が出力され、 L e b e 1 2の値が決定される。 各レべ ル検出回路の出力、即ちレベル検出回路 5 2 1 、 レベル検出回路 5 2 3、 レベル検出回路 5 2 5の出力信号によって形成される 3 ビッ ト信号が回 転角度信号の基礎となる。
なお、 設定器 5 2 4及び設定器 5 2 6が示す 「 0 . 5」 及び 「一 0 · 5」 は、 s i n角度信号のピーク値を 「 1」 と した場合の 5 0 %のレべ ルを示す値である。
各レベル検出回路の出力から構成される 3 ビッ ト信号は、 モータに 1 2 0度毎に配設されたホールセンサの信号と同じ出力形態にするための 変換回路 5 2 0に入力され、 変換回路 5 2 0から求める 3 ビッ トの回転 角度信号が出力される。 変換回路 5 2 0はテーブルで構成し、 3 ビッ ト の入力信号に対してホールセンサの出力に対応する 3ビッ ト信号を出力 するよう構成すれば良い。 以上説明した各回路の処理を経て、 変換回路 5 2 0から出力される 3 ビッ ト信号力 S、 最終的に角度処理回路 5 0の出 力である回転角度信号となる。
なお、 上記実施例では、 c o s角度信号を用いた極性と s i n角度信 号のレベル値の判定結果を L e b e 1 1及ぴ L e b e 1 2の値と した 3 ビッ トの回転角度信号を用いてモータを矩形波電流制御したが、 s i n 角度信号を用いた極性と、 c o s角度信号のレベル値の判定結果を L e b e l l及び L e b e 1 2の値とした 3 ビッ トの回転角度信号を用いて も、 モータを矩形波電流制御できることは言うまでもない。
また、 上述した実施例では、 角度処理手段をハードウェアで実現した 場合について説明したが、 角度処理手段の一部を第 1 6図のフローチヤ 一トに示す方法でソフ ト ウェア的に実現することも可能である。
先ず、 ハードウエアで処理する部分とソフ トウェアで処理する部分に 分ける。 ハードウエアで処理する部分は、 第 1 4図の角度処理回路 5 0 の s i n角度信号 ( s i η θ ) 及ぴ c o s角度信号 ( c o s 0 ) を検出 し、 それら信号が L P F 回路 5 0 3— 1及ぴ L P F回路 5 0 3— 2を通 過するところまで (破線 Aで囲まれた角度信号検出回路) はハードゥエ ァで処理する。 その後の処理からホールセンサ検出信号相当の 3ビッ ト 信号を形成するところ (被線 Bで囲まれた部分) を C P U回路において、 以下のようにソフトウェァ処理する。
即ち、 c o s角度信号 ( c o s Θ ) 及ぴ s i n角度信号 ( s i η Θ ) を読み込み (ステップ S 2 0 1 )、 c o s角度信号の極性を判定する。 その極性 ( s i g n ( c o s Θ )) が正なら 「 1」、 負なら 「0」 とする
(ステップ S 2 0 2 )。 一方、 s i n角度信号 ( s i η Θ ) 力 0. 5 よ り大きいか小さレヽ力、を半 II定する。 即ち、 s i n 0 > O . 5なら L e b e 1 1 = 「 1」 であり、 s i η Θ < 0. 5なら L e b e l l = 「 0」 であ る (ステップ S 2 0 3 )。 同じように、 s i n角度信号が一 0. 5より 大きいか小さいかを判定する。 即ち、 s i n 0 <— O . 5なら L e b e
1 2 = 「 1」 であり、 s i η Θ > - 0. 5なら L e b e l 2 = 「0」 で ある (ステップ S 2 0 4 )。 次に、 求めた c o s角度信号の極性である s i g n ( c o s 0 ) 及ぴ L e b e l l , L e b e l 2より構成される 3 ビッ ト信号を形成する (ステップ S 2 0 5 )。 最後に、 当該 3 ビッ ト 信号をホールセンサ信号に相当する信号に変換し、 3 ビッ トの回転角度 信号を算出する (ステップ S 2 0 6 )。 このようにすれば、 ソフ トゥェ ァとしても本実施例を実現することができる。
[第 4実施例] 第 1 7図は本発明の第 4実施例を示している。 第 4実施例は、 第 3実 施例のベタ トル制御部 Aを疑似べク トル制御部 Fに置き換えたものであ る。 疑似べク トル制御部 (以下、 「P VC制御部」 と記す) Fは、 電流 指令値を 3相 I a r e f 、 I b r e f , I c r e f として算出するが、 トルク指令値 T r e f から電流指令値を算出する途中でベタ トル制御を 利用している。 よって、 モータの回転角度 0を正しく検出する必要があ るので、 レゾルバ 3 1 0及びレゾルバディジタル変換回路 3 1 1が正し く動作している必要がある。
先ず、 レゾルバ 3 1 0及びレゾルバディジタル変換回路 3 1 1が正し く動作してレヽる場合は、 スィツチ 4 5 0及びスィツチ 4 5 1は、 電流指 令値演算部 4 5 2— 1の入力と 2相 / 3相変換部 4 5 6— 1の出力とを 選択する。 電流指令値演算部 4 5 2— 1及ぴ 2相/ 3相変換部 4 5 6— 1は、 P V C制御用の電流指令値 I a v r e f , I b v r e f , l e v r e f を算出する。 この電流指令値に基いてモータは制御される。
一方、 レゾノレバ 3 1 0又はレゾルバディジタル変換回路 3 1 1が故障 した場合は、 第 3実施例で説明したレゾルバディジタル変換回路 3 1 1 が故障を検出した場合は、矩形波電流制御を実行することは同じである。 以上説明したのは、 主角度処理回路と副角度処理回路、 それに対応し た制御部が存在した場合について説明したが、 レゾルパディジタル変換 回路が存在しない場合は、 本発明の角度処理手段の出力する 3 ビッ トの 回転角度信号に基いて、 上述したレゾルバディジタル変換回路の故障時 だけではなく、 常時モータを矩形波電流制御することも可能である。 また、 レゾルバディジタル変換回路を主角度処理手段とし、 本発明の 角度処理手段を副角度処理手段と した場合、 レゾルバディジタル変換回 路が正常動作している場合は、 レゾルバディジタル変換回路の出力する 回転角度 0に基いてモータを正弦波電流で制御し、 レゾルバディジタル 変換回路が故障した場合は、 副角度処理手段の出力する 3ビッ トの回転 角度信号に基いて、 モータを正弦波電流制御から矩形波電流に切り替え て制御することができる。
よって、 主角度処理手段であるレゾルバディジタル変換回路が故障し て副角度処理手段を用いてモータを制御する場合、 レゾルパディジタル 変換回路が故障したときのモータの回転角度 (回転位置) によって制限 を受けることなく、モータを矩形波電流で制御できる優れた効果がある。 また、 従来課題であったレゾルパディジタル変換回路が故障したときの モータの回転角度 (回転位置) によって制限を受けることなく、 電動パ ワーステアリ ング装置を継続して制御でき、 ハン ドル操作が突然マニュ アル操作【こなってハンドル操作に違和感のない優れた効果を期待できる c 本発明によれば、 角度検出器の異常を判定するために、 角度検出器か ら出力された情報を基に得られた s i n 0及び c o s 0に対して、 ( s i η Θ ) 2 + ( c o s e ) 2の演算を実行せずに s i η Θ及び c o s 0 をそのまま異常領域判定マップに写像して判定できるので、 従来と比較 して処理速度が速く、 ソフ トウェア処理の場合は C P Uに負担がかから ず、 或い【まハードウエア処理の場合は処理に必要なハードウヱァ部品を 多数必要と しない優れた効果がある。
s i n信号及び c o s信号からそれぞれ s i n角度信号及び c o s角 度信号を検出し、 検出した c o s角度信号から形成される信号と、 s i n角度信号から形成される信号とから形成される回転角度信号を検出で きる角度処理手段を具備すれば、 当該回転角度信号はモータの周囲に配 置したホールセンサが出力する回転角度信号と等価なので、 モータを矩 形波電流 ϋ御することが可能となる電動パワーステアリング装置の制御 装置を提供できる効果がある。 例えばモータが 3相モータの場合、 c o s角度信号の正負を表示する 1 ビッ ト信号と、 s i n角度信号の値のレ ベルを表示する 2ビッ ト信号とから形成される 3ビッ トの回転角度信号 を検出できる角度処理手段を具備すれば、 当該 3ビッ トの回転角度信号 は 3相モータの周囲に 1 2 0度毎に配置したホールセンサが出力する回 転角度信号と等価なので、 モータを矩形波電流制御することが可能とな る電動パワーステアリング装置の制御装置を提供できる効果がある。 また、 主角度処理手段と副角度処理手段の二重系で回転角度信号を検 出している場合、 主角度処理手段が故障になったとき、 前記角度処理手 段から構成される副角度処理手段によってモータを矩形波電流制御する ことによって、 マニュアル操作に遷移することなく電動パワーステアリ ング装置によるアシス トを維持することが可能となる。 産業上の利用可能性
本発明のような簡易な副角度処理手段を設けることで、 角度処理手段 に故障が生じてもアシス トが停止することのない故障に強い電動パワー ステア リ ング装置を提供することができる。 本発明では、 s i n 0及び
C O S Θの組み合わせが正常或いは異常の判定ができるマップを用意し- 検出した s i n 0及び c o s 0の組み合わせを写像して判定するので、 処理が簡単で処理速度が速く、 C P Uへの負担が少なくて済み、 全体に 機能アップを図ることが可能となる。

Claims

B冃 求 の 範 囲
1. 車両の操舵系にモータによる操舵補助力を付与するための制御に必 要な前記モータの回転角度 0 を検出するため、 所定の周波数からなる搬 送波信号 s i η ω tを供給し、 前記搬送波信号を s i n 0により振幅変 調した波形を有する s i n信号 ( s i n co t ' s i n 0 ) 及ぴ c o s 0 により振幅変調した波形を有する c o s信号 ( S i n c t ' C O S 0 ) を発生する角度検出器を具備する電動パワーステアリング装置の制御装 置において、 前記 s i n 0に対応する値と前記 c o s Θに対応する値と の 2値から構成され、 かつ正常領域と異常領域とから構成される異常領 域判定マップを具備し、 前記 s i η Θ信号及び前記 c o s 0信号からそ れぞれ算出された前記 s i n 0及び前記 c o S 0を前記異常領域判定マ ップに写像して、 前記角度検出器の異常を判定すことを特徴とする電動 パワーステアリング装置の制御装置。
2. 前記異常領域判定マップが、 前記 s i n 0に対応する値を X 座標 の値と し、 前記 c o s Θに対応する値を Y 座標の値と し、 互いに直交 する X軸及び Y軸で構成される領域上に、 X座標及ぴ Y座標の値が共 に零である原点を中心に構成される四角形 αと、 前記原点を中心に構成 される前記四角形 αより小さい四角形 とから囲まれる領域が正常領域 となる請求の範囲第 1項に記載の電動パワーステアリ ング装置の制御装
3 . 前記搬送波信号に同期して、 或いは前記搬送波の周期の整数倍の周 期で、 前記 s i n 0及ぴ前記 c o s 0を検出する請求の範囲第 1項又は 第 2項に記載の電動パワーステアリング装置の制御装置。
4. 前記搬送波信号、 前記 s i n 0及ぴ前記 c o s 0から前記角度検出 器の異常を検出する角度検出処理回路と前記異常領域判定マップとを具 備し、 前記角度検出処理回路と前記異常領域判定マップとにより、 前記 角度検出器の異常を 2重に監視する請求の範囲第 1項乃至第 3項のいず れかに記載の電動パワーステアリング装置の制御装置。
5. 車両の操舵系にモータによる操舵補助力を付与するための制御に必 要な前記モータの回転角度 0を検出するため、 所定の周波数からなる搬 送波信号 ( s i η ω t ) を供給し、 前記搬送波信号を s i η Θにより振 幅変調した波形を有する s i n信号 ( s i n co t * s i n 0 ) 及ぴ c o s Θにより振幅変調した波形を有する c o s信号 ( s i η ω t · c o s θ ) を発生する角度検出器を具備する電動パワーステアリング装置の制 御装置において、 前記 s i n信号及ぴ前記 c o s信号からそれぞれ s i n角度信号 ( s i η Θ ) 及ぴ c o s角度信号 ( C O S 0 ) を検出し、 前 記 c o s角度信号から作成される信号と、 前記 s i n角度信号から作成 される信号とから作成される回転角度信号を出力する角度処理手段を具 備し、 前記回転角度信号に基いて前記モータが制御されることを特徴と する電動パワーステアリング装置の制御装置。
6. 前記モータが 3相ブラシレスモータであり、 前記。 o s角度信号か ら作成される信号が、 前記 c o s角度信号の値の正負を表示する 1 ビッ ト信号であり、 前記 s i n角度信号から作成される信号が、 前記 s i n 角度信号の値のレベルを判定する 2つの閾値によって大小を判定された それぞれの結果を表示する 2つの 1 ビッ ト信号である請求の範囲第 5項 に記載の電動パワーステアリング装置の制御装置。
7 . 前記 s i n信号及び前記 c o s信号から、 前記搬送波信号に同期し て、 或いは、 前記搬送波の周期の整数倍の周期に同期して、 前記 s i n 角度信号及び前記 c o s角度信号をそれぞれ検出する請求の範囲第 5項 又は第 6項に記載の電動パワーステアリング装置の制御装置。
8 . 前記角度処理手段から構成される副角度処理手段と、 前記回転角度 Θを検出するための主角度処理手段とを具備し、 前記主角度処理手段が 故障した場合、前記主角度処理手段が検出した前記回転角度 0に代えて、 前記副角度処理手段の出力する前記回転角度信号に基いて前記モータを 制御する請求の範囲第 5項乃至第 7項のいずれかに記載の電動パワース テアリング装置の'制御装置。
9 , 前記回転角度 Θに基いて制御される場合の前記モータに通電される 電流は正弦波電流であり、 前記回転角度信号に基いて制御される場合の 前記モータに通電される電流は矩形波電流である請求の範囲第 8項に記 載の電動パワーステアリング装置の制御装置。
PCT/JP2004/016502 2003-11-04 2004-11-01 電動パワーステアリング装置の制御装置 WO2005043089A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/578,267 US7382295B2 (en) 2003-11-04 2004-11-01 Control unit for electric power steering apparatus
EP04799525A EP1684051A1 (en) 2003-11-04 2004-11-01 Controller for electric power-steering apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-374341 2003-11-04
JP2003374341A JP4672253B2 (ja) 2003-11-04 2003-11-04 電動パワーステアリング装置の制御装置
JP2003406321A JP2005168242A (ja) 2003-12-04 2003-12-04 電動パワーステアリング装置の制御装置
JP2003-406321 2003-12-04

Publications (1)

Publication Number Publication Date
WO2005043089A1 true WO2005043089A1 (ja) 2005-05-12

Family

ID=34554803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016502 WO2005043089A1 (ja) 2003-11-04 2004-11-01 電動パワーステアリング装置の制御装置

Country Status (3)

Country Link
US (1) US7382295B2 (ja)
EP (1) EP1684051A1 (ja)
WO (1) WO2005043089A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1849683A1 (en) * 2006-04-27 2007-10-31 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Rotational angle detector
US7388527B2 (en) * 2004-06-01 2008-06-17 Tamagawa Seiki Kabushiki Kaisha Method of detecting abnormality of R/D converter
CN103863389A (zh) * 2012-12-12 2014-06-18 株式会社捷太格特 旋转角检测装置以及具备其的电动动力转向装置
CN104067509A (zh) * 2012-01-27 2014-09-24 三菱电机株式会社 电动机控制装置及电动助力转向装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731405B1 (en) * 2005-06-10 2009-06-03 Nsk Ltd., Controller of electric power steering apparatus
JP5282376B2 (ja) * 2007-06-29 2013-09-04 日本精工株式会社 電動パワーステアリング装置
US8116944B2 (en) * 2008-04-28 2012-02-14 Nexteer (Beijing) Technology O., Ltd. Systems and methods involving torque disturbance rejection
JP5148394B2 (ja) * 2008-07-11 2013-02-20 株式会社東芝 マイクロコンピュータ,モータ制御システム
JP2010048760A (ja) * 2008-08-25 2010-03-04 Jtekt Corp レゾルバの異常検出装置および電気式動力舵取装置
DE102008059401A1 (de) * 2008-11-27 2010-06-10 Micronas Gmbh Halbleiterchip und Verfahren zum Erzeugen von Impulsflanken, die der Bewegung eines mechanischen Teiles synchron zugeordnet sind
KR101313370B1 (ko) * 2009-06-26 2013-10-01 미쓰비시덴키 가부시키가이샤 검지 디바이스, 및 엘리베이터 또는 에스컬레이터의 제어 장치
US8188896B2 (en) * 2009-10-20 2012-05-29 Kabushiki Kaisha Toshiba Digital converter for processing resolver signal
DE102009055991A1 (de) * 2009-11-23 2011-05-26 Pilz Gmbh & Co. Kg Sicherheitsschaltungsanordnung und Verfahren zum fehlsicheren Überwachen einer Bewegungsgröße
WO2011061345A1 (de) 2009-11-23 2011-05-26 Pilz Gmbh & Co. Kg Sicherheitsschaltungsanordnung und verfahren zum fehlersicheren überwachen einer bewegungsgrösse
DE102009047633B4 (de) * 2009-12-08 2020-10-08 Robert Bosch Gmbh Verfahren und Vorrichtungen zur Störfeldkompensation von Sensorsignalen in einer elektrischen Hilfskraftlenkung
JP5807770B2 (ja) 2010-12-15 2015-11-10 株式会社ジェイテクト 回転角検出装置
JP5803428B2 (ja) * 2011-08-25 2015-11-04 株式会社ジェイテクト 回転センサ、及び回転角検出装置
CN103946673B (zh) 2011-11-24 2016-08-24 丰田自动车株式会社 旋转角检测装置以及具有旋转角检测装置的电动动力转向装置
JP6086205B2 (ja) 2012-12-12 2017-03-01 株式会社ジェイテクト 位相差検出装置およびそれを備えた回転角検出装置
JP2014219364A (ja) * 2013-05-10 2014-11-20 株式会社ジェイテクト 回転角検出装置
JP6024970B2 (ja) * 2012-12-12 2016-11-16 株式会社ジェイテクト 回転角検出装置およびそれを備えた電動パワーステアリング装置
EP2743647B1 (en) * 2012-12-12 2015-09-16 JTEKT Corporation Rotation angle detection device
JP6024971B2 (ja) * 2012-12-12 2016-11-16 株式会社ジェイテクト 回転角検出装置
US8868298B2 (en) * 2013-03-04 2014-10-21 Ford Global Technologies, Llc Electric power assist steering motor sensor redundancy
DE102013211322A1 (de) * 2013-06-17 2014-12-18 Continental Teves Ag & Co. Ohg Verfahren zum Überprüfen eines Sensorsignals
CN105659491B (zh) * 2013-10-22 2018-09-07 三菱电机株式会社 电动机控制装置
JP2015136272A (ja) * 2014-01-20 2015-07-27 ルネサスエレクトロニクス株式会社 半導体デバイス及び駆動装置
DE102014225580A1 (de) * 2014-12-11 2016-06-16 Robert Bosch Gmbh Verfahren und Verfahren zum Betreiben eines Resolvers, Resolvereinrichtung
DE102015211247A1 (de) * 2015-06-18 2016-12-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Verarbeitung eines Signals
US10884037B2 (en) * 2016-09-12 2021-01-05 Texas Instruments Incorporated Angular resolver imbalance detection
KR101836705B1 (ko) * 2016-09-26 2018-03-09 현대자동차주식회사 정현파 생성 장치 및 방법
CN113359026A (zh) * 2020-03-06 2021-09-07 比亚迪股份有限公司 电机参数诊断装置及系统
CN111726047B (zh) * 2020-06-29 2022-05-06 德尔福科技(苏州)有限公司 一种适用于电机控制的旋转变压器软件解码方法
JP2022187735A (ja) * 2021-06-08 2022-12-20 東京エレクトロン株式会社 異常検出方法及び異常検出装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135016U (ja) * 1987-02-27 1988-09-05
JPH04191615A (ja) * 1990-11-27 1992-07-09 Fanuc Ltd エンコーダの内挿回路
JPH05322598A (ja) * 1992-05-15 1993-12-07 Okuma Mach Works Ltd 位置検出装置
JPH0972758A (ja) * 1995-09-08 1997-03-18 Toyota Motor Corp レゾルバ異常検出装置及び方法
JP2002005690A (ja) * 2000-05-06 2002-01-09 Koninkl Philips Electronics Nv 角度測定装置
JP2003166803A (ja) * 2001-12-04 2003-06-13 Toyoda Mach Works Ltd 位置検出器の補正方法、及び、電気式動力舵取装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545929Y2 (ja) 1987-03-31 1993-11-30
JP3136937B2 (ja) 1995-02-06 2001-02-19 トヨタ自動車株式会社 レゾルバの断線検出方法及び装置
JP2000074694A (ja) * 1998-08-27 2000-03-14 Hitachi Ltd 回転センサの異常検出装置及び異常検出方法
JP3593050B2 (ja) * 2001-03-27 2004-11-24 三菱電機株式会社 位置検出装置の異常検出方法および装置並びに電動パワーステアリング装置
JP2002310727A (ja) * 2001-04-13 2002-10-23 Mitsubishi Electric Corp 位置検出装置の異常検出装置およびその方法
JP3630410B2 (ja) * 2001-05-22 2005-03-16 三菱電機株式会社 位置検出装置および異常検出装置
JP3600805B2 (ja) 2001-07-11 2004-12-15 三菱電機株式会社 電動パワーステアリング装置およびこれに用いられる異常検出時の制御方法
US6885927B2 (en) * 2002-04-17 2005-04-26 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling an electric power steering system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135016U (ja) * 1987-02-27 1988-09-05
JPH04191615A (ja) * 1990-11-27 1992-07-09 Fanuc Ltd エンコーダの内挿回路
JPH05322598A (ja) * 1992-05-15 1993-12-07 Okuma Mach Works Ltd 位置検出装置
JPH0972758A (ja) * 1995-09-08 1997-03-18 Toyota Motor Corp レゾルバ異常検出装置及び方法
JP2002005690A (ja) * 2000-05-06 2002-01-09 Koninkl Philips Electronics Nv 角度測定装置
JP2003166803A (ja) * 2001-12-04 2003-06-13 Toyoda Mach Works Ltd 位置検出器の補正方法、及び、電気式動力舵取装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388527B2 (en) * 2004-06-01 2008-06-17 Tamagawa Seiki Kabushiki Kaisha Method of detecting abnormality of R/D converter
EP1849683A1 (en) * 2006-04-27 2007-10-31 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Rotational angle detector
US20070252590A1 (en) * 2006-04-27 2007-11-01 Kabushiki Kaisha Tokai Rika Denki Seisakusho Rotational Angle Detector
US7358719B2 (en) 2006-04-27 2008-04-15 Kabushiki Kaisha Tokai Rika Denki Seisakusho Rotational angle detector
CN104067509A (zh) * 2012-01-27 2014-09-24 三菱电机株式会社 电动机控制装置及电动助力转向装置
CN103863389A (zh) * 2012-12-12 2014-06-18 株式会社捷太格特 旋转角检测装置以及具备其的电动动力转向装置
CN103863389B (zh) * 2012-12-12 2017-10-20 株式会社捷太格特 旋转角检测装置以及具备其的电动动力转向装置

Also Published As

Publication number Publication date
EP1684051A1 (en) 2006-07-26
US7382295B2 (en) 2008-06-03
US20070146169A1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
WO2005043089A1 (ja) 電動パワーステアリング装置の制御装置
US10232875B2 (en) Motor control unit, failure detecting method, and electric power steering apparatus and vehicle equipped with the same
JP3480843B2 (ja) 電動パワーステアリング制御装置及び制御方法
US6593714B2 (en) Motor control apparatus with a current sensor diagnostic apparatus and a current sensor diagnostic method
JP5621598B2 (ja) モータ制御装置及び電動パワーステアリング装置
KR100728430B1 (ko) 모터 제어 장치
US8710775B2 (en) Electric power steering apparatus
JP7102407B2 (ja) インバータ装置、及び、電動パワーステアリング装置
US8958951B2 (en) Motor control device and electric power steering apparatus
WO2009123107A1 (ja) モータ制御装置および電動パワーステアリング装置
US10411621B2 (en) Drive device for three-phase synchronous motor
US7577505B2 (en) Electric power steering apparatus
JP2006335252A (ja) 電動パワーステアリング装置
US20050049770A1 (en) Fault detection in an electric power-assisted steering system
JP2006081327A (ja) インバータの故障検出装置
JP2007274849A (ja) 電動式パワーステアリング装置
JP5343367B2 (ja) 電動パワーステアリング装置の制御装置
WO2005057774A1 (ja) モータ制御装置およびそれを用いた車両用操舵装置
EP2530829B1 (en) Motor control unit and vehicle steering system
JP2006050803A (ja) モータ駆動装置
JP6394885B2 (ja) 電動パワーステアリング装置
KR100814757B1 (ko) 추정된 blac 모터의 위치 정보를 이용하는 인터락회로구현방법
US9227658B2 (en) Rotary electric machine control apparatus having abnormality detection function
JP2005168242A (ja) 電動パワーステアリング装置の制御装置
JP2010004696A (ja) 出力推定装置、それを用いたモータ制御装置およびモータ制御システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007146169

Country of ref document: US

Ref document number: 10578267

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004799525

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004799525

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10578267

Country of ref document: US