WO2005041487A1 - 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム - Google Patents

無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム Download PDF

Info

Publication number
WO2005041487A1
WO2005041487A1 PCT/JP2004/014921 JP2004014921W WO2005041487A1 WO 2005041487 A1 WO2005041487 A1 WO 2005041487A1 JP 2004014921 W JP2004014921 W JP 2004014921W WO 2005041487 A1 WO2005041487 A1 WO 2005041487A1
Authority
WO
WIPO (PCT)
Prior art keywords
beacon
station
transmission
signal
wireless communication
Prior art date
Application number
PCT/JP2004/014921
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Sakoda
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to CN200480027308XA priority Critical patent/CN1856963B/zh
Priority to EP20040792190 priority patent/EP1677456A4/en
Priority to US10/569,426 priority patent/US7995548B2/en
Priority to EP17205501.4A priority patent/EP3310006B1/en
Publication of WO2005041487A1 publication Critical patent/WO2005041487A1/ja
Priority to US13/079,519 priority patent/US8199737B2/en
Priority to US13/472,990 priority patent/US8400993B2/en
Priority to US13/756,639 priority patent/US9185698B2/en
Priority to US14/864,475 priority patent/US10660087B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present invention relates to a wireless communication system, a wireless communication apparatus, a wireless communication method, and a computer program.
  • the present invention relates to a wireless communication system such as a wireless LAN (Local Area Network) for mutually communicating between a plurality of wireless stations, a wireless communication apparatus and a wireless communication method, and a computer program.
  • the present invention relates to a wireless communication system, a wireless communication device, a wireless communication method, and a computer program in which a wireless network is constructed by operating each communication station autonomously in a distributed manner without having a relationship between a control station and a controlled station. .
  • the present invention relates to a wireless communication system and a wireless communication apparatus, in which each communication station broadcasts a beacon describing network information and the like at predetermined frame periods to form an autonomous distributed wireless network.
  • the present invention relates to a wireless communication system, a wireless communication apparatus, and a wireless communication method that form a decentralized autonomous wireless network while avoiding collision of beacons transmitted by each communication station with each other. , As well as computer 'programs.
  • the present invention relates to a radio communication system, a radio communication device, a radio communication method, and a computer program in which each communication station autonomously performs a communication operation at a predetermined time interval unit.
  • TECHNICAL FIELD The present invention relates to a wireless communication system, a wireless communication apparatus, a wireless communication method, and a computer program that perform periodic transmission and reception of signals at predetermined time intervals while avoiding collision with signals from other stations.
  • a wireless LAN has been attracting attention as a system for releasing users from a wired LAN wiring card.
  • the wireless LAN most of the wired cables can be omitted in a work space such as an office, so that a communication terminal such as a personal computer (PC) can be relatively easily moved.
  • PC personal computer
  • the demand for wireless LAN systems has increased remarkably along with the increase in speed and price.
  • a small-scale wireless network has been established between multiple electronic devices existing around people to perform information communication. Therefore, introduction of a personal 'area' network (PAN) is being considered.
  • PAN personal 'area' network
  • different wireless communication systems and wireless communication devices are specified using frequency bands that do not require a license from regulatory agencies, such as the 2.4 GHz band and the 5 GHz band.
  • One of the standard standards related to wireless networks is IEEE (The Institute of Elec trical and Electronics Engineers) 802.11 (for example, see Non-Patent Document 1) and HiperLANZ2 (for example, see Non-Patent Document 1). 2 or Non-Patent Document 3), IE EE 802.15.3, Bluetooth communication, and the like.
  • IEEE802.11 there are various wireless communication systems such as the IEEE802.11a standard, the IEEE802.11b standard, etc., depending on the wireless communication system and the frequency band used.
  • Ad-hoc communication in which terminals perform wireless communication directly and asynchronously with each other has been devised!
  • ad-hoc communication that allows arbitrary terminals to directly perform asynchronous wireless communication without using a specific access point Is considered appropriate.
  • An ad hoc wireless communication system does not have a central control station. It is suitable for constructing a home 'network where electrical equipment can be used. In an ad hoc network, the routing is automatically changed even if one unit fails or the power is turned off, so that the network is not easily broken.
  • the high data rate can be maintained by making packets hop multiple times between mobile stations. It is characterized by the fact that data can be transmitted to a relatively long distance while being left.
  • Various development examples of the ad hoc system are known (for example, see Non-Patent Document 4).
  • an ad-hoc mode is provided that operates in a peer-to-peer manner autonomously and without a control station.
  • each terminal counts a random period when the beacon transmission time comes, and if the terminal does not receive a beacon of another terminal before the end of the period, it transmits a beacon.
  • BSS Base Service Set
  • IBSS Independent BSS
  • IEEE 802.11 in the infrastructure mode will be described with reference to FIG.
  • an AP that performs coordination in the wireless communication system is essential.
  • An AP collects a range in which radio waves reach around its own station as a BSS, and forms a "cell" in a so-called cellular system.
  • the MT existing near the AP is accommodated in the AP and enters the network as a member of the BSS. That is, the AP transmits a control signal called a beacon at an appropriate time interval, and the MT capable of receiving the beacon recognizes that the AP exists in the vicinity, and establishes a connection with the AP.
  • communication station STA0 operates as an AP
  • other communication stations STA1 and ST A2 is operating as MT.
  • the communication station STAO as an AP transmits a beacon (Beacon) at fixed time intervals, as described in the right side of the figure.
  • the next beacon transmission time is reported in the beacon in the form of a parameter called Target Beacon Transmission Time (TBTT).
  • TBTT Target Beacon Transmission Time
  • the MT around the AP can recognize the next beacon transmission time by receiving the beacon and decoding the internal TBTT field. If there is no need for reception), the receiver may be turned off and put to sleep until the next or multiple TBTTs.
  • the AP transmits a beacon at a predetermined frame period.
  • the peripheral MT joins the network by receiving the beacon from the AP, and does not transmit the beacon itself. Note that the present invention focuses on operating the network without the intervention of a master control station such as an AP, and is not directly related to the infrastructure mode. Absent.
  • IEEE802.11 in the other ad hoc mode will be described with reference to FIG.
  • the MT autonomously defines the IBSS after performing negotiations among a plurality of MTs. Once the IBSS is defined, the MTs define a TBTT at regular intervals at the end of the negotiation. When each MT recognizes that the TBTT has arrived by referring to the clock in its own station, after a delay of random time, anyone still transmits a beacon, and if it recognizes that it is not, transmits a beacon. .
  • FIG. 24 shows an example in which two MTs constitute an IBBS.
  • a beacon is transmitted every time one of the MT forces TBTT belonging to the IBSS arrives. Also, there are cases where beacons transmitted from each MT collide.
  • the MT may enter a sleep state in which the power of the transceiver is turned off as necessary.
  • the sleep state is not directly related to the gist of the present invention, the description is omitted in this specification.
  • a hidden terminal problem generally occurs in a wireless LAN network in an ad hoc environment.
  • a hidden terminal is a communication station that, when communicating between certain communication stations, can hear the power of one communication station but cannot hear the power of the other communication station. Yes, hidden terminals cannot negotiate with each other, and transmission operations may collide.
  • CSMA Carrier Sense Multiple Access with Collision Avoidance
  • CA collision Avoidance
  • CD collision Detection
  • a data transmission source communication station transmits a transmission request packet RTS (Request To Send) and receives a data transmission destination communication station power confirmation notification packet CTS (C1 ear To Send). In response, the data transmission is started.
  • RTS Request To Send
  • CTS C1 ear To Send
  • the hidden terminal receives at least one of RTS and CTS
  • the hidden terminal sets its own transmission suspension period for a period in which data transmission based on the RTSZCTS procedure is expected to be performed. Can be avoided.
  • FIG. 25 shows an operation example of the RTSZCTS procedure.
  • the example shown in the figure shows an example in which some information (Data) is transmitted to the communication station STA0, which performs the communication operation autonomously and decentralized, to the communication station STA1.
  • Data some information
  • STA0 confirms that the medium is clear for a predetermined period, and then transmits an RTS packet to STA1, which is the destination of the information, in accordance with the CSMA procedure.
  • STA1 responds to the reception of the RTS packet, and Transmit a CTS packet that feeds back to STAO that it has been received.
  • the information transmission source transmits the RTS and another station happens to transmit some signal almost at the same time, the signals collide. Cannot be received.
  • STA1 does not return CTS.
  • STA 0 can recognize that the previous RTS has collided because the CTS has not been received for a while.
  • the STAO initiates a procedure for retransmitting the RTS while performing random 'backoff'. Basically, they compete for the transmission right while taking the risk of collision in this way.
  • IFS Inter Frame Space
  • SIFS Short IFS
  • PCF IFS PIFS
  • DIFS DIFS
  • IEEE 802.11 adopts CSMA as a basic media access procedure (described above), but before the transmitter sends something, it backs off over a random time while monitoring the media status. This timer is operated, and the transmission right is granted only when there is no transmission signal during this time.
  • DCF Distributed Coordination Function
  • IFS packet intervals
  • PCF Point Coordination Function
  • FIG. 27 shows how priority communication is provided by PCF operation.
  • ST AO operates as an AP
  • STA1 and STA2 have joined the BSS managed by the AP. Then, it is assumed that STA1 transmits information while guaranteeing a band.
  • STA0 as an AP performs polling by transmitting a CF-Poll message to STA1 at SIFS intervals, for example, after transmitting a beacon.
  • STA1 that has received CF-Poll is given the right to transmit data, and is allowed to transmit data at SIFS intervals.
  • STA1 sends data after SIFS.
  • STA0 returns an ACK to the transmission data and one transaction is completed, STA0 polls STA1 again.
  • EDCF Enhanced DCF
  • QoS extension in IEEE802.11 a method called Enhanced DCF (EDCF) will be adopted (QoS extension in IEEE802.11).
  • the EDCF sets the width of the random back-off value to be short for high-priority traffic that needs to guarantee bandwidth, and for other traffic, the packet interval IFS and back-off value shown in Figure 26
  • the width that can be taken is set longer.
  • FIG. 28 shows an example in which priority transmission is provided to traffic whose bandwidth is guaranteed by the EDCF operation.
  • STA1 attempts to transmit priority traffic to STA0
  • STA2 attempts to transmit non-priority traffic to STA0.
  • the reference IFS for both traffics has been applied for a time equivalent to DIFS.
  • both STA1 and STA2 wait for the elapse of DIFS. Since the TO force is still clear after the elapse of DIFS (time T1), both STA1 and STA2 begin to confirm that the media is clear for the time determined by random 'back-off'.
  • the backoff value of STA1 is short because of the priority traffic, and the knockoff value of STA2 is long because of the nonpriority traffic.
  • the back-off value from time T1 of each communication station is indicated by an arrow!
  • STA1 starts transmitting the RTS.
  • STA2 detects the RTS transmitted from STA1, updates the knock-off value, and prepares for the next transmission.
  • STAO returns CTS at time T3 when SIFS has elapsed after receiving RTS.
  • STA1 which received CTS receives data at time T4 when SIFS has elapsed since receiving CTS. Start sending. Then, the STAO receives the data from the STA1 and returns an ACK at a time T5 when the power SIFS has passed.
  • both STA1 and STA2 wait for the elapse of time by DIFS again. Then, since the media is still clear after the lapse of DIFS (time T7), both STA1 and STA2 start to confirm that the media is clear for the time determined by the random back-off. Also in this case, the backoff value of STA1 is again set short due to the priority traffic, and at time T8, the RTS is transmitted earlier than the backoff value of STA2.
  • Non-patent Document 1 international Standard ISO / IEC 8802—11: 1999 (E) ANSI / IEEE Std 802. 11, 1999 Edition, Parti 1: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
  • Non-Patent Document 2 ETSI Standard ETSI TS 101 761-1 VI.3.1 Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data Link Control (DLC) Layer; Parti: Basic Data Transport Functions
  • Non-Patent Document 3 ETSI TS 101 761-2 VI.3.1 Broadband Radio Access Net works (BRAN); HIPERLAN Type 2; Data Link Control (DLC) Layer; Part2: Radio Link Control (RLC) sublayer
  • BRAN Broadband Radio Access Net works
  • DLC Data Link Control
  • RLC Radio Link Control
  • Non-Patent Document 4 "Ad Hoc Mobile Wireless Network” by C. K. Tho (Prentice Hall PTR)
  • EDCF of IEEE802.11 With the mechanism of EDCF of IEEE802.11, basically, it is possible to preferentially pass through a high-priority link even without a point coordinator such as an AP. However, if a plurality of stations start transmission with high priority at the same time, the back-off is set short, causing frequent collisions and causing a problem that communication efficiency is reduced. Also, low priority, long traffic, and IFS may be set.In an environment where these low priority and traffic are dominant, all communication stations have the right to transmit after a long IFS has elapsed. Since the acquisition competition is performed, there is a problem that overhead is increased and communication efficiency is reduced.
  • beacon collision occurs when a plurality of stations transmit beacons in the same area and on the same channel in both the infrastructure 'mode' and the ad hoc 'mode.
  • the beacon transmitting station is defined by random "back-off" in the first place.
  • the infrastructure mode no problem occurs when only a single BSS exists, but multiple BSSs arrive due to events such as a network moving locally or a nearby radio wave blocking object moving.
  • the vehicle enters the reach range multiple beacons coexist.
  • the transmission times of the beacons overlap, there is a problem that the peripheral station cannot receive the beacon.
  • the present invention has been made in view of the technical problems as described above, and has a main object of the present invention in which each communication station operates autonomously and decentralized without disposing a device serving as a control station.
  • An object of the present invention is to provide an excellent wireless communication system, a wireless communication device, a wireless communication method, and a computer program, on which a network is constructed.
  • a further object of the present invention is to provide an excellent wireless communication system, wireless communication apparatus, and wireless communication method capable of constructing an autonomous decentralized network that guarantees communication quality without the intervention of a specific control station. As well as computer programs.
  • a further object of the present invention is to provide an excellent wireless communication system, wireless communication device, and wireless communication system capable of performing data transmission while avoiding collision in an autonomous decentralized network in which a specific control station does not intervene.
  • a wireless communication method and a computer program will be provided.
  • a further object of the present invention is to provide an excellent wireless communication system capable of appropriately avoiding beacon collision between a plurality of communication stations in a network constructed by a communication station broadcasting a beacon.
  • a wireless communication device, a wireless communication method, and a computer program are provided.
  • a further object of the present invention is to provide an excellent wireless communication system, wireless communication apparatus, and wireless communication apparatus capable of suitably forming a distributed autonomous wireless network that avoids collision of beacons transmitted by each communication station.
  • An object of the present invention is to provide a wireless communication method and a computer program.
  • a further object of the present invention is to provide an excellent wireless communication system, wireless communication device, wireless communication method, and computer that enable each communication station to appropriately and autonomously perform a communication operation at predetermined time intervals. To provide a program.
  • a further object of the present invention is to provide an excellent wireless communication system that enables a communication station to transmit and receive signals periodically at predetermined time intervals while avoiding collision with signals from other stations.
  • a communication device, a wireless communication method, and a computer. is there.
  • the present invention has been made in consideration of the above problems, and a first aspect of the present invention is that a specific control station is not arranged and each communication station describes information about a network at predetermined intervals.
  • An autonomous distributed wireless communication system that constructs a network by transmitting beacons, detects collisions of beacons transmitted from two or more communication stations in the network, and responds to the detection of the collision.
  • the radio communication system is characterized in that the collision is eliminated by changing the transmission timing of at least one beacon.
  • system refers to a logical collection of a plurality of devices (or function modules for realizing specific functions), and each device or function module is a single device. It does not matter whether or not a force is present in the housing.
  • each communication station notifies beacon information at predetermined time intervals, thereby notifying other communication stations nearby (that is, within a communication range) of its own presence, and Notify the network configuration.
  • the communication station performs a scanning operation on each channel, receives a beacon signal, detects that the communication station has entered the communication range of an adjacent station, and decodes information described in the beacon. You can know the network configuration.
  • each communication station transmits the beacon signal including the neighboring device information regarding the beacon transmission timing.
  • the communication station may not be able to receive the beacon but only the network information of the adjacent station that can directly receive the beacon, but the next adjacent station that the adjacent station can receive, that is, the hidden terminal. Beacon information can also be obtained.
  • a newly joining communication station first performs a scanning operation, that is, attempts to continuously receive a signal over a superframe length or more, and confirms the presence of a beacon transmitted by a peripheral station. In this process, if no beacon is received from a peripheral station, the communication station sets an appropriate beacon transmission timing. On the other hand, when a beacon transmitted from a peripheral station is received, the existing station with V and deviation also transmits a beacon by referring to the neighboring device information described in each received beacon! /, Na, Timing Set as the beacon transmission timing of the station.
  • the beacon of each station becomes Collide.
  • the present invention when a collision of beacons transmitted from two or more communication stations is detected within the communication range, at least one of the beacons is transmitted by changing the transmission timing.
  • the operation can avoid beacon collision.
  • the communication station that changes the transmission timing of the beacon notifies the peripheral station of a beacon describing a warning that the transmission timing of the beacon is to be changed, and performs a scan operation for at least a predetermined period.
  • the peripheral station uses the beacon transmission to find the timing and determines this as the new beacon transmission timing.
  • one of the communication stations voluntarily moves its own beacon transmission timing, thereby avoiding collision.
  • the communication station changes its own beacon transmission position in response to receiving another station's beacon at a time when there is a possibility of collision immediately before its own beacon transmission.
  • the communication station changes its own beacon transmission position in response to receiving a beacon of another station immediately after transmitting its own beacon, at a timing when there is a possibility of collision.
  • one communication station does not voluntarily change the beacon transmission timing.
  • a beacon of another station is received near the beacon transmission timing of the own station and a collision of the beacon is recognized, a request for changing the beacon transmission timing may be made to the other station.
  • the newly joining station may request a change in the beacon transmission timing to one or the other communication station when the beacon collides.
  • the change of the beacon transmission timing referred to here includes stopping the beacon transmission in addition to the movement of the beacon transmission timing.
  • each communication station acquires a priority use period of traffic in response to transmission of a beacon. Then, each communication station transmits a regular beacon only once at the predetermined time interval, and allows one or more auxiliary beacons having a signal strength similar to the regular beacon to be transmitted. A little.
  • the priority of traffic is set in the auxiliary beacon transmitted by each communication station, and information about the priority is described in the beacon and reported.
  • the beacon priority of each beacon may be changed by referring to the beacon priority of each beacon and changing the beacon transmission timing of the own station.
  • the change of the beacon transmission timing referred to here includes the stop of the beacon transmission in addition to the movement of the beacon transmission timing.
  • the beacon cannot be directly received, and therefore, it is not possible to compare the priority with the beacon of the own station.
  • the communication station transmits a beacon stop request specifying the number of beacons arranged within the predetermined time interval and the number of beacons and their priorities to peripheral stations.
  • the communication station that has received the beacon stop request detects the specified number of beacons with the specified priority or less within the predetermined time interval, and sends a beacon stop request to the communication station that transmitted each beacon.
  • the communication station can Like the neighboring stations that can receive a beacon from each other, a desired beacon transmission timing can be obtained from a hidden terminal.
  • a network is constructed by each communication station performing a periodic communication operation at predetermined time intervals without having a relationship between the control station and the controlled station.
  • the communication station when performing periodic signal transmission / reception at the predetermined time interval, performs at least one of prior to or after transmission / reception of the periodic signal transmission / reception.
  • a wireless communication system characterized by trying to receive a transmission signal from a station and detecting the presence or absence of collision between the periodic signal transmission and reception and the signal transmission of another station.
  • the communication station in a communication environment in which each communication station autonomously performs a periodic communication operation at predetermined time intervals, the communication station It is permitted to obtain a reserved band or a priority use period at an appropriate timing within a fixed time interval, and perform a periodic communication operation at a predetermined time interval.
  • the communication station transmits a signal from another station prior to the periodic signal transmission / reception or after performing signal transmission / reception. Attempts to receive a signal and detects whether there is a collision between the periodic signal transmission and reception and the signal transmission of another station. Specifically, by receiving a transmission signal of another station near the periodic signal transmission / reception timing of the own station, it is possible to detect a collision of the periodic signal transmission / reception timing. Further, by receiving a periodic transmission signal of another station near the signal transmission / reception timing of the own station, it is possible to detect a collision of the periodic signal transmission / reception timing.
  • the communication station in response to detecting the collision of the periodic signal transmission and reception, performs a scan process for at least a predetermined period, and tries to confirm the transmission status of the periodic signal of another station. Just like that.
  • the communication station attempts to receive a transmission signal from another station prior to the periodic signal transmission and reception, and responds to the detection of a collision between the periodic signal transmission and reception and the signal transmission of the other station.
  • the collision can be avoided by delaying the transmission timing of the signal of the own station so that collision with the signal of the other station can be avoided.
  • the communication station changes the transmission timing of the periodic signal to avoid collision.
  • a signal indicating the change may be transmitted.
  • the other station that caused the collision receives a signal indicating that the transmission timing of the periodic signal has been changed to avoid collision, and has collided with the periodic signal that the local station was trying to transmit after transmitting. Can be detected.
  • the communication stations may broadcast beacons describing a schedule of signals transmitted and received periodically.
  • each communication station can extract the signal transmission / reception time of each other at regular intervals. Then, when a collision in the periodic signal transmission / reception section is detected based on the information described in the beacon received also by the peripheral station, the collision signal transmission / reception timing may be changed!
  • the communication station may set a priority for a signal transmitted and received periodically, and may broadcast a beacon describing the priority together with a schedule of the signal transmitted and received periodically. Then, when a collision in the periodic signal transmission / reception section is detected based on the information described in the beacon received by the peripheral station, the collision is avoided by changing the timing of the periodic signal transmission / reception having a low priority. be able to.
  • the communication station may describe relative time information from the transmission time of the beacon of the communication station in a part of a signal for performing periodic signal transmission and reception.
  • the communication station when the communication station receives a periodically transmitted signal transmitted by another station, the communication station performs the relevant operation based on the relative time information from the beacon transmission time described in the periodically transmitted signal.
  • the collision can be detected by extracting the transmission time of the beacon at the signal transmitting station. Then, by stopping the transmission of other signals performed at the time, collision can be avoided.
  • the communication station may write information indicating that the signal is regularly scheduled and transmitted in a part of the signal to be transmitted periodically. Further, information indicating the priority of the signal may be described in a part of the signal to be transmitted periodically. In such a case, the communication station can change the timing of the periodic signal transmission / reception having a low priority in response to detecting the collision of the periodic signal transmission / reception.
  • the communication station may add a random offset to the transmission time of the periodic signal transmission and reception. Then, the communication station transmits a part of the signal transmitted and received periodically. Information relating to a random time offset may be posted.
  • the communication station before generating a new periodic signal transmission / reception, extracts a time zone that does not collide with the periodic signal transmission / reception of another station by performing a scan operation, and performs the new periodic signal transmission / reception. Set the transmission / reception timing of the station so that it does not collide with the periodic signal transmission / reception of other stations.
  • the communication station when acquiring information about the network, extracts a time zone in which information necessary for obtaining the information is transmitted, and attempts to receive a signal in the extracted time zone.
  • the scanning operation may be performed efficiently.
  • the communication station monitors the signal reception state in the periodic signal transmission / reception section. You may make it. Then, when the signal receiving condition is significantly deteriorated, it is presumed that the signal is colliding with another signal, so that such a periodical signal transmission / reception section is opened.
  • the communication station performs an access procedure according to the CSMA scheme involving detection of a signal on the transmission path for a predetermined time and waiting for a random back-off period. Based on this, you may send and receive signals.
  • a third aspect of the present invention is that each communication station transmits beacons describing information about a network at predetermined time intervals without having a relationship between a control station and a controlled station.
  • a beacon of the communication station is included in a part of the signal for performing periodic signal transmission and reception.
  • the relative time information from the transmission time of the peripheral station is described.
  • the beacon of the peripheral station and the signal transmitted and received by the other stations are determined based on the relative time information.
  • a network is constructed by each communication station periodically broadcasting a beacon signal.
  • the communication station is allowed to obtain a reserved band or a preferential use period at an appropriate timing within a predetermined time interval, and to perform a periodic communication operation at predetermined time intervals.
  • a communication station that performs a periodic communication operation at predetermined time intervals writes relative time information from the beacon transmission time of the communication station in a part of a signal that performs periodic signal transmission and reception. Thereby, collisions can be detected between the communication stations.
  • the communication station extracts the beacon transmission time of the peripheral station based on the relative time information described in the received signal, and transmits the signal at the same time. Then, a collision with the beacon of the peripheral station can be detected.
  • the communication station extracts the beacon transmission time of the peripheral station based on the relative time information described in the received signal of the peripheral station based on the relative time information. When it cannot receive the signal, it can detect the collision with the signal of the other station.
  • the communication station may avoid the collision in response to detecting the collision of the signal.
  • the communication station can avoid collision by stopping transmission of another signal that is being performed at the transmission time of the extracted beacon signal.
  • the fourth aspect of the present invention is an autonomous distributed network constructed by transmitting a beacon describing information about a network at predetermined time intervals without arranging a specific control station.
  • a collision avoiding step of avoiding collision of a beacon generated with another station is a collision avoiding step of avoiding collision of a beacon generated with another station.
  • processing for performing a communication operation at predetermined time intervals is performed on a computer system in a communication environment having no relationship between a control station and a controlled station.
  • a computer program described in a computer-readable format as described above wherein a signal transmission / reception step of transmitting / receiving a periodic signal at the predetermined time intervals, at least after performing the transmission / reception prior to the periodic signal transmission / reception
  • a fifth aspect of the present invention is that each communication station transmits a beacon describing information about a network at predetermined time intervals without having a relationship between a control station and a controlled station.
  • a computer 'program written in a computer-readable form so as to execute a process for performing a wireless communication operation in a communication environment constructed by the computer' system, and
  • a collision detecting step of detecting a collision between a beacon of the peripheral station and a signal transmitted and received by other stations;
  • the computer 'program according to each of the fourth to sixth aspects of the present invention defines a computer program described in a computer-readable format so as to realize predetermined processing on the computer' system. Things.
  • a cooperative action is exerted on the computer system, and the computer operates as a wireless communication device. You.
  • By activating a plurality of such wireless communication devices to construct a wireless network it is possible to obtain the same operation and effects as those of the wireless communication systems according to the first to third aspects of the present invention.
  • an excellent radio communication system, radio communication apparatus, and radio communication system capable of constructing an autonomous decentralized network that guarantees communication quality without the intervention of a specific control station
  • a wireless communication method and a computer program can be provided.
  • an excellent radio communication system, radio communication apparatus, A wireless communication method and a computer program can be provided.
  • an excellent radio which can preferably avoid collision of beacons between a plurality of communication stations.
  • a communication system, a wireless communication device, a wireless communication method, and a computer program can be provided.
  • an excellent wireless communication system and wireless communication apparatus capable of suitably forming an autonomous decentralized wireless network while avoiding collision of beacons transmitted by each communication station. And a wireless communication method, and a computer program.
  • an excellent wireless communication system a wireless communication apparatus, a wireless communication method, and a computer that enable each communication station to suitably and autonomously perform a communication operation at predetermined time intervals.
  • We can offer programs.
  • an excellent wireless communication system that enables a communication station to periodically transmit and receive signals at predetermined time intervals while avoiding collision with signals from other stations,
  • a line communication device, a wireless communication method, and a computer program can be provided.
  • each communication station can autonomously grasp the network load status, and if traffic exceeding the allowable load of the network is requested, the communication protocol According to the priority requested by the upper layer, it is possible to eliminate only the traffic with a low priority and only the traffic.
  • the communication propagation path is wireless, and a network is constructed between a plurality of communication stations.
  • the communication assumed in the present invention is store-and-forward type traffic, and information is transferred in packet units.
  • each communication station assumes a single channel.
  • the present invention can be extended to a case where a plurality of frequency channels, that is, a multi-channel transmission medium is used.
  • the wireless network system has an autonomous decentralized system configuration without a coordinator.
  • the channel (resource) can be effectively used by a transmission (MAC) frame having a gradual time-division multiple access structure.
  • the used transmission control is performed.
  • each communication station can perform ad hoc communication for transmitting information directly and asynchronously according to an access procedure based on CSMA.
  • each communication station broadcasts beacon information on a channel, thereby making it possible to communicate with other nearby communication stations (that is, within communication range). And inform the network configuration. Since the communication station transmits a beacon at the beginning of the transmission frame period, the transmission frame period is defined by the beacon interval. In addition, each communication station scans the channel only for a period corresponding to the transmission frame period, detects a beacon signal transmitted from a peripheral station, and decodes information described in the beacon. Know the network configuration (or join the network).
  • FIG. 1 shows an example of the arrangement of communication devices constituting a wireless communication system according to an embodiment of the present invention.
  • a specific control pole is not arranged, and each communication device operates autonomously and decentralized to form an ad hoc network.
  • communication devices # 0 to # 6 are distributed in the same space!
  • the communication range of each communication device is shown by a broken line, and not only can it communicate with other communication devices within that range, but also as a range in which its own transmitted signal interferes.
  • communication device # 0 is in a range that can communicate with nearby communication devices # 1, # 4, and communication device # 1 is within a range that can communicate with nearby communication devices # 0, # 2, # 4.
  • communication device # 2 is within range of communication with nearby communication devices # 1, # 3, and # 6, and communication device # 3 is within range of communication with nearby communication device # 2.
  • Communication device # 4 is within communication range with nearby communication device # 0, # 1, # 5, and communication device # 5 is within communication range with nearby communication device # 4, and Device # 6 is within range of communication with neighboring communication device # 2.
  • FIG. 2 schematically shows a functional configuration of a wireless communication device that operates as a communication station in a wireless network according to an embodiment of the present invention.
  • the illustrated wireless communication device can form a network while avoiding collisions by effectively performing channel access in the same wireless system in an autonomous distributed communication environment where no control station is located. it can.
  • the wireless communication device 100 includes an interface 101, a data buffer 102, a central control unit 103, a beacon generation unit 104, a wireless transmission unit 106, a timing control unit 107, and an antenna 109. , A wireless reception unit 110, a beacon analysis unit 112, and an information storage unit 113.
  • the interface 101 exchanges various information with an external device (for example, a personal computer (not shown) or the like) connected to the wireless communication device 100.
  • the data buffer 102 temporarily stores data transmitted from a device connected via the interface 101 and data received via a wireless transmission path before transmitting the data via the interface 101. Used for
  • Central control section 103 centrally manages a series of information transmission and reception processing in wireless communication apparatus 100, and controls access to a transmission path.
  • operation control such as collision avoidance processing at the time of a beacon collision is performed.
  • the procedures for collision avoidance include moving the own station's beacon transmission position, stopping own station's beacon transmission, and requesting another station to change the beacon transmission position (move or stop the beacon transmission position). Details of the processing procedure will be described later.
  • Beacon generation section 104 generates a beacon signal that is periodically exchanged with a nearby wireless communication apparatus.
  • the wireless communication device 100 In order for the wireless communication device 100 to operate a wireless network, its own beacon transmission position and the beacon reception position from peripheral stations are specified. These pieces of information are stored in the information storage unit 113 and are described in a beacon signal to notify surrounding wireless communication devices. The configuration of the beacon signal will be described later. Since the wireless communication device 100 transmits a beacon at the beginning of the transmission frame period, the transmission frame period in the channel used by the wireless communication device 100 is defined by the beacon interval.
  • Radio transmitting section 106 performs predetermined modulation processing in order to wirelessly transmit data and beacon signals temporarily stored in data buffer 102.
  • the wireless reception unit 110 receives and processes information and signals such as beacons transmitted from another wireless communication device at a predetermined time.
  • a wireless transmission / reception system in the wireless transmission unit 106 and the wireless reception unit 110 various communication systems applicable to, for example, a wireless LAN and suitable for relatively short-distance communication can be applied. Specifically, a UWB (Ultra Wide Band) system, an OFDM (Orthogonal Frequency Division Multiplexing) system, a CDMA (Code Division Multiple Access) system, or the like can be adopted.
  • a UWB Ultra Wide Band
  • OFDM Orthogonal Frequency Division Multiplexing
  • CDMA Code Division Multiple Access
  • Antenna 109 wirelessly transmits a signal to another wireless communication device on a predetermined frequency channel, or collects a signal to be transmitted to another wireless communication device.
  • a single antenna and cannot perform both transmission and reception in parallel.
  • Timing control section 107 controls timing for transmitting and receiving a radio signal. For example, it controls its own beacon transmission timing at the beginning of the transmission frame period, beacon reception timing from another communication device, data transmission / reception timing with another communication device, and scanning operation period.
  • the beacon analysis unit 112 analyzes a beacon signal that has been received by an adjacent station, and analyzes the presence of a nearby wireless communication device. For example, information such as the reception timing and neighboring beacon reception timing of neighboring stations beacon is stored in the information storage unit 11 3 as neighbor apparatus information.
  • the information storage unit 113 includes an execution procedure instruction (a program describing a collision avoidance processing procedure and the like) such as a series of access control operations executed in the central control unit 103, and a neighborhood obtained from an analysis result of the reception beacon. Device information and the like are stored.
  • execution procedure instruction a program describing a collision avoidance processing procedure and the like
  • each communication station broadcasts beacon information at a predetermined time interval on a predetermined channel to communicate with other nearby communication stations (that is, within a communication range). Notify the existence of self and notify the network configuration.
  • the beacon transmission cycle is defined as a super frame, for example, 80 milliseconds.
  • the newly joining communication station detects the entry into the communication range while listening to the beacon signal from the peripheral station by the scanning operation, and decodes the information described in the beacon to form the network configuration. You can know. Then, while gently synchronizing with the beacon reception timing, the beacon transmission timing of the own station is set to a timing at which the peripheral beacon is not transmitted.
  • Each communication station gently synchronizes while listening to beacons transmitted in the vicinity.
  • the new communication station sets its own beacon transmission timing so as not to conflict with the beacon transmission timing of the existing communication station.
  • communication station 01 If there is no communication station in the vicinity, communication station 01 starts transmitting a beacon at an appropriate timing. Can be The transmission interval of the beacon is 80 ms (described above). In the example shown at the top of FIG. 3, B01 indicates a beacon transmitted from the communication station 01.
  • the communication station newly entering the communication range sets its own beacon transmission timing so as not to collide with the existing beacon arrangement.
  • TPP preferential use area
  • the beacon transmission timing of each communication station is more uniform within the transmission frame cycle than when it is dense. Dispersion is more preferable in terms of transmission efficiency. Therefore, in the present embodiment, basically, the beacon transmission is started almost in the middle of the time zone where the beacon interval is the longest as far as the user can hear.
  • the communication station 03 receives at least one of the beacons transmitted from each of the communication station 01 and the communication station 02, and recognizes the existence of these existing communication stations. Then, as shown in the third row of FIG. 3, the transmission is started at substantially the middle of the beacon interval transmitted from the communication station 01 and the communication station 02.
  • the beacon interval narrows.
  • the next appearing communication station 04 sets the beacon transmission timing at a timing almost in the middle of the beacon interval set by each of the communication station 02 and the communication station 01, and then, The appearing communication station 05 sets the beacon transmission timing at substantially the middle of the beacon interval set by each of the communication stations 02 and 04.
  • beacon transmission timing of each communication station is centrally arranged, and the reception operation is stopped in the remaining superframe period to reduce the power consumption of the device.
  • processing such as concentrating the beacon transmission timing is performed between the communicating communication stations, and beacons are collected at one or a plurality of locations during the superframe period. Sent in.
  • the beacon transmission timing may be set in accordance with the transmission data capacity unique to the communication station.
  • the beacon transmission timing is set at a time such that the communication station with a large amount of transmission data has a long interval to the next beacon, and the communication station with a small amount of transmission data has a short time between the next beacon.
  • the beacon transmission timing is set.
  • a minimum beacon interval B is defined so that the band (transmission frame cycle) does not overflow with beacons, and it is permitted to arrange two or more beacon transmission timings in B.
  • FIG. 4 shows a configuration example of beacon transmission timing that can be arranged in a superframe.
  • the lapse of time in a superframe consisting of 80 milliseconds is represented as a clock in which the hour hand moves clockwise on the ring.
  • a time slot in which a total of 16 positions 0 to F from 0 to F can perform beacon transmission ie, a beacon transmission timing
  • a beacon transmission timing is configured as a "slot".
  • the beacon arrangement was performed according to the algorithm of sequentially setting the beacon transmission timing of new entrants at almost the middle of the beacon interval set by the existing communication station.
  • Shall be. B is 5 ms
  • beacons are placed per superframe. That is, no more than 16 stations can join the network.
  • each beacon is intentionally transmitted at a time with a slight time offset from TBTT (Target Beacon Transmission Time), which is the transmission time of each beacon. Have been. This is called “TBTT offset”.
  • TBTT offset is determined by a pseudo random number. This pseudorandom number is determined by a uniquely determined pseudorandom sequence TOIS (TBTT Offset Indication Sequence), which is updated every superframe cycle.
  • beacon transmission timing is arranged in the slot
  • the actual beacon transmission time can be shifted, and even if a beacon collides in one superframe period, each communication station in another superframe period. Can hear each other's beacons (or the neighboring stations hear both beacons), so it can recognize that their own beacon has collided.
  • the communication station reports the TOIS set for each superframe period to the neighboring stations by including it in the beacon information (described later).
  • each communication station transmits and receives data! / In the case of power saving mode in which the power of the transmitter / receiver is turned off in a time zone where transmission / reception is unnecessary.
  • reception must be performed for a certain period before and after the own station transmits a signal, that is, the communication operation for collision detection called "Listen Before Send” or ": Listen After Send” is mandatory.
  • Can be Signal transmission here includes both normal data 'frame transmission and beacon transmission.
  • the communication station performs a scanning operation by operating the receiver continuously for one superframe once every few seconds to change the presence of the peripheral beacon. It is also mandatory to check whether the TBTT of each peripheral station is shifted or not! Note that this scanning operation may be performed due to detection of an abnormal situation such as detection of collision between beacons or priority transmission periods, and communication interruption during a certain priority transmission period. Yes (see below).
  • the scan process basically performs a full scan in which the receiver operates continuously over one superframe, but is not necessarily limited to this.
  • a partial scan for operating the receiver may be performed only during the “time period when the beacon is transmitted” recognized by the communication station.
  • the time period during which a beacon is transmitted is defined as the beacon transmission timing as shown in FIG. 4, which corresponds to the time before, immediately after, or immediately after each TBTT.
  • the form is not limited to this.
  • the deviation of TBTT can be confirmed by receiving a beacon of another station or the like.
  • the ZTT within 2 ms is defined as TBTT, it is “advancing”, and if the ZTT within 2 ms is TBTT, it is “delayed”.
  • the communication station adjusts the time according to the latest TBTT. Fix it. However, if the same rules are defined in the system, the time may be adjusted in conjunction with the most advanced TBTT. As a result, all communication stations in the system correct the time in accordance with the TBTT that is the latest (or advanced), and the corrected time propagates to the network. As a result, direct communication is not possible. ⁇ ⁇ ⁇ Even communication stations can share the same reference time.
  • Each communication station transmits a beacon at regular intervals, but for a while after transmitting the beacon (for example, 480 microseconds), the station that transmitted the beacon is given a transmission priority.
  • FIG. 5 shows how beacon transmitting stations are given priority.
  • this priority section is defined as Transmission Prioritized Period (TPP).
  • TPP Transmission Prioritized Period
  • FAP Fairy Access Period
  • FIG. 6 shows the configuration of a superframe. As shown in the figure, following the transmission of a beacon from each communication station, the TPP of the communication station that transmitted the beacon is allocated. FAP ends with transmission of force beacon.
  • Each communication station is allowed to transmit beacons and packets within its own TPP at SIFS intervals, and transmit other packets with DIFS + backoff. Is acceptable. That is, each time a beacon is transmitted, an opportunity to transmit data with priority is obtained.
  • each communication station is basically allowed to transmit a plurality of beacons or a signal similar to a beacon, depending on the power of transmitting one beacon every superframe period. Each time you send these beacons, you can get TPP. In other words, the communication station can secure priority transmission resources according to the number of beacons transmitted for each superframe.
  • the beacon that the communication station always transmits at the beginning of the superframe period is referred to as the “regular beacon”, and the second and subsequent beacons transmitted at other times for TPP acquisition or other purposes are referred to as “auxiliary beacons”. I will call it.
  • FIG. 29 illustrates an operation for the communication station to start transmission in the TPP section and the FAP section, respectively.
  • the communication station can start transmitting after a shorter packet interval SIFS after transmitting its own beacon.
  • the beacon transmitting station transmits an RTS packet after SIFS. Thereafter, by transmitting the CTS, data, and ACK packets to be transmitted at the same SIFS frame interval, a series of communication procedures can be executed without disturbing the neighboring stations.
  • the beacon transmitting station waits for LIFS + random 'back-off and starts transmitting power in the same manner as other peripheral stations. In other words, the transmission right is equally given to all communication stations by random back-off.
  • the media state is first monitored only by DIFS, and if the media is not cleared, that is, if there is no transmission signal, a random 'back-off' is performed, and furthermore, during this time, When there is no transmission signal, the RTS packet is transmitted.
  • a series of packets such as CTS, data, and ACK transmitted due to the RTS signal are transmitted at SIFS frame intervals, so that a series of transactions can be executed without being disturbed by neighboring stations.
  • the transmission right can be preferentially acquired by setting a higher priority !, a shorter communication station! And a frame interval.
  • the priority transmission period TPP is fixed as a basic unit to a fixed period of time equal to or less than the minimum beacon interval, and thereafter, all communication stations called FAPs use a common IFS and random 'back-off' under equal conditions. It shifts to the period to obtain the communication right. For this reason, if the communication station needs a communication band exceeding the priority transmission period TPP obtained by one beacon transmission for each superframe due to a request from the upper layer, An auxiliary beacon can be transmitted and TPP can be obtained. If the purpose is to secure bandwidth, it is also acceptable to arrange the priority transmission period TPP continuously. In this case, the TPP can continue for a period longer than the minimum beacon interval.
  • FIG. 30 shows how the communication station transmits a plurality of virtual beacons called auxiliary beacons to increase the priority use period.
  • communication station # 1 is the upper layer
  • beacons in the superframe are vacant, vacant, and vacant in the superframe. I have.
  • the FAP existing between TPPs of communication station # 1 is excluded and used as a continuous TPP. In some cases.
  • NBOI information it is possible to search for an empty beacon slot taking into account the hidden terminal problem, so the bandwidth acquisition method using the auxiliary beacon is simple. is there.
  • FIG. 31 shows a state transition diagram of a wireless communication apparatus operating as a communication station in the present embodiment.
  • the "priority transmission mode” corresponds to the TPP period in which the own station has acquired the priority transmission right
  • the "normal transmission mode” corresponds to the FAP period in which all communication stations do not have the priority transmission right. Two states are defined.
  • the communication station starts transmission after waiting for PIFS + random 'backoff'.
  • the terminal transits to the priority transmission mode and acquires the priority transmission period TPP.
  • transmission right can be acquired without being disturbed by neighboring stations by transmitting at SIFS frame intervals.
  • the communication station continues the priority transmission mode for the priority transmission period TPP having a length corresponding to the bandwidth required for the upper layer power.
  • the mode returns from the priority transmission mode to the normal operation mode.
  • FIG. 32 shows another example of a state transition diagram of a wireless communication device operating as a communication station.
  • the "priority transmission mode” corresponds to the TPP period in which the own station has acquired the priority transmission right
  • the "normal transmission mode” corresponds to the FAP period in which all communication stations do not have the priority transmission right.
  • a “priority transmission mode” corresponding to the priority transmission period TPP of another station is defined.
  • the communication station uses random 'back-up' at the normal frame interval PIFS.
  • the power is also transmitted after waiting for the period when the power is added.
  • all stations in the system transmit with PIFS + backoff
  • the terminal transits to the priority transmission mode and acquires the priority transmission period TPP.
  • the transmission right can be acquired without being disturbed by the neighboring station by transmitting only with the standby time of the frame interval SIFS shorter than PIFS.
  • the communication station keeps the priority transmission mode for the priority transmission period TPP of the length corresponding to the required bandwidth amount in the upper layer. Then, when the TPP ends and the mode shifts to the FAP, the mode returns to the normal transmission mode.
  • the mode transits to the non-priority transmission mode.
  • the transmission starts after waiting for the random back-off period in the frame interval DIFS longer than the frame interval PIFS in the normal transmission mode.
  • the communication station exemplifies a case where transmission is continuously attempted at the frame interval of DIFS even during the TPP period of the peripheral station.
  • the power save mode is entered by turning off the power.
  • transmission is attempted after confirming the release of the TPP by another method rather than continuously attempting transmission at the DIFS frame interval.
  • the supplementary beacon While the regular beacon is transmitted for network construction, the supplementary beacon is transmitted for the purpose of acquiring the priority transmission period TPP, so that the supplementary beacon contains all the information included in the regular beacon ( (See below) is not required.
  • the auxiliary beacons may contain only information relevant to the acquisition of the TPP.
  • the auxiliary beacon can consist of one bit (or several bits) of information indicating that this signal is transmitted after acquiring the TPP.
  • a mechanism can be realized in which a communication station can acquire a priority transmission period TPP without using an auxiliary beacon.
  • the communication station obtains the priority transmission period TPP and transmits a part of the signal to be transmitted using the priority transmission period TPP.
  • the same network operation collision avoidance operation as in the case of notifying that the priority transmission period TPP has been acquired using a beacon can be realized. Details of this point will be described later.
  • Each communication station notifies each other of the transmission / reception timing in the super frame based on the notification of the beacon signal or the description of a part of the signal such as a data frame, and the media are autonomously distributed in accordance with the CSMA procedure. It is possible to realize slow time-division multiple access while performing random access to the network.
  • the example in which the beacon transmitting station starts the TPP immediately after the beacon is transmitted is not limited to this.
  • the TPP starts at a relative position (time) from the beacon transmission time.
  • the time may be set.
  • the priority transmission right is given only to the communication station in the TPP, but the priority transmission right TPP is also given to the communication station called by the communication station in the TPP.
  • transmission is prioritized, but there is nothing to transmit in its own communication station, but if it is known that another station has transmitted information to its own station and holds the information, May send a paging message or a polling message to the "other station".
  • the beacon transmission timing of each communication station is more uniformly distributed within the transmission frame period than denser Is more preferable in terms of transmission efficiency. Therefore, in the present embodiment, the transmission of the beacon is basically started almost in the middle of the time zone in which the beacon interval is the longest as long as the user can hear himself. Of course, the beacon transmission timing of each communication station is concentrated, and the reception operation is stopped in the remaining transmission frame period to reduce the power consumption of the device. There is also a usage method.
  • the collision avoidance operation of the beacon is substantially performed at the time of collision between regular beacons, between the regular beacon and auxiliary beacons, and at the time of collision between auxiliary beacons. Similar principles are applicable. More specifically, signals (such as data frames) that are transmitted periodically at every superframe due to the acquisition of the priority transmission period TPP are transmitted and received at superframe intervals. The operation can be treated in the same way as a beacon. For example, even in a process at the time of collision between priority transmission periods not accompanied by auxiliary beacon transmission, the same effect can be obtained by the same collision detection and collision avoidance procedure as in the case of a beacon. Therefore, in the following, for the sake of convenience, the supplementary beacon that uses only the regular beacon and the collision of the priority transmission period TPP are also described as beacon collisions.
  • FIG. 7 shows an example of a format of a beacon 'frame transmitted in the autonomous distributed wireless communication system according to the present embodiment.
  • the beacon includes a TA (Transmitter Address) field that is an address that uniquely indicates a source station, a Type field that indicates the type of the beacon, and a beacon that can also receive peripheral station power.
  • Neighboring Beacon Offset Information / Neighboring Beacon Activity Information (NBOIZNBAI) field which is time information
  • TOTT TBTT Offset Indication Sequence
  • Field an ALERT field storing TBTT changes and various other information to be transmitted, a TxNum field indicating the amount of resources reserved by the communication station with priority, and a plurality of fields within the superframe period.
  • the Serial field indicating the exclusive unique serial number assigned to the beacon, etc. It is rare.
  • the type of the beacon is described in an 8-bit bitmap format.
  • the beacon is transmitted by each communication station only once at the beginning of each superframe at a “regular beacon” or transmitted to obtain a priority transmission right.
  • This information is indicated by using a value from 0 to 255 indicating the priority as information to identify whether the “auxiliary beacon” is out of sync.
  • 255 indicating the highest priority is assigned, and the auxiliary beacon is assigned a traffic priority of 0 to 255. Up to! /, The value of the deviation is assigned.
  • a reservation use period or a preferential use period TPP is set to indicate the priority in reservation or preferential use of a signal (data frame, etc.) to be transmitted periodically (data frame).
  • the Type field can be described as part of the signal.
  • the NBOI field is information describing the position (reception time) of the beacons of peripheral stations that can be received by the own station in the superframe.
  • information on the arrangement of the received beacons is stored in a 16-bit length bitmap. Describe in format.
  • the position (reception time) of the beacon that can be received by the own station is calculated from the transmission time of the regular beacon of the own station.
  • an NBOI field such as “communication station 0 1100, 0000, 0100, 0000” is created.
  • a message that "beacons from communication station 1 and communication station 9 can be received" is transmitted. That is, regarding the bit corresponding to the relative position of the receivable beacon, 1 is marked when the beacon is receivable, and 0, that is, space is allocated when the beacon is not received.
  • the MSB is set to 1 because the own station is transmitting a beacon, and the location corresponding to the time at which the own station transmits the auxiliary beacon is also marked as 1.
  • the power NBOI field described above assuming that the NBOI field is transmitted and received in the bit map corresponding to the time in the superframe is not necessarily the bit map. It is not necessary to compose in the superframe format.It consists of a group of information that indicates which time zone in the superframe is used for communication purposes, and is consequently transmitted and received in a format that can perform the above processing. Thus, the object of the present invention can be achieved.
  • the relative position (time) of the transmission and reception beacons is marked.
  • the time of the priority transmission period can also be marked in the NBOI, whereby the collision between the beacons can be performed.
  • the NBAI field is set in the beacon frame format for the purpose of reducing hidden terminals in beacon reception. Information identifying the "beacon that is processing" is described.
  • the NBAI field has the same format as the NBOI field, in which bits are arranged based on the transmission time of the regular beacon of the own station, and information for identifying the TBTT for which the own station is actually performing reception processing is in a bitmap format. be written.
  • Each communication station does not receive a beacon of another station in the sleep ′ mode state. For this reason, in the sleep mode, a beacon is transmitted with all NBAI bits set to zero (excluding the time at which the own station transmits a beacon).
  • a beacon is transmitted with all NBAI bits set to zero (excluding the time at which the own station transmits a beacon).
  • the beacon is transmitted with the NBAI bit set to 1 in the bit corresponding to the reception time (TBTT) of the regular beacon of the peripheral station.
  • the reception time of the received auxiliary beacon (only when it is determined that the preferential transmission by the auxiliary beacon is directed to the own station is performed) Set 1 to the NABI bit corresponding to (TBTT). Whether the preferential transmission by the auxiliary beacon is addressed to its own station is determined based on the fact that it is in communication with the communication station transmitting the auxiliary beacon.
  • the destination of the data to be transmitted in the TPP accompanying the auxiliary beacon is specified for each auxiliary beacon by some means, it is determined that the destination of the data is the own station. Only for the auxiliary beacon, the reception time (TBTT) of the auxiliary beacon Set the corresponding NBAI bit to 1. That is, the communication station determines whether the auxiliary beacon transmitted during the time period and the signal transmitted by the other station using the TPP are transmitted to the own station (the power required for the own station to receive the signal). Whether or not it is a force to set the NBAI bit to 1 is determined based on whether or not it is not.
  • the station receiving the beacon ORs the NBAI bit in the received beacon while shifting according to the beacon reception time by the same procedure (described above) as when the Rx NBOI Table was created, It is determined whether or not to perform transmission disabling processing in each TBTT set in the superframe.
  • the communication station is defined by the maximum length of the TBTT offset + the beacon length from the time of the relevant TBTT or a time slightly earlier than the time.
  • the TBTT is the beacon transmission time of the own station, the transmission non-permission processing is not performed and the frame including the beacon information is transmitted.
  • a pseudo-random sequence for determining the above-mentioned TBTT offset is stored, and indicates with what TBTT offset the beacon is transmitted.
  • the actual beacon transmission time can be shifted even if two communication stations place the beacon transmission timing in the same slot on a superframe. Even if a beacon collides, each station can hear each other's beacons in another superframe period (or neighboring stations hear both beacons), that is, can recognize the collision.
  • FIG. 8 shows TBTT and actual beacon transmission time.
  • TBTT is set to one of TBTT, TBTT + 20 microsecond, TBTT + 40 microsecond, TBTT + 60 microsecond, TBTT + 80 microsecond, TBTT + 100 microsecond, TBTT + 120 microsecond If an offset is defined, determine at which TBTT offset to transmit at each superframe period and update TOIS.
  • the transmitting station cannot transmit at the intended time due to detection of a collision with a signal of another station or the like, all zeros or the like are stored in the TOIS and the neighboring stations that can receive beacons are transmitted to the TOIS.
  • the beacon transmission timing at this time indicates that power was not available at the intended time. The Specific usage of the TOIS field will be described later.
  • the ALERT field stores information to be transmitted to the peripheral station in an abnormal state. For example, if there is a plan to change the TBTT of the regular beacon of the own station in order to avoid collision of beacons, etc., or when requesting the nearby stations to stop transmitting the auxiliary beacon, the fact is indicated in the ALERT field. Describe. The specific usage of the ALERT field will be described later.
  • the TxNum field describes the number of auxiliary beacons transmitted by the station within the superframe period. Communication station follows beacon transmission! Since the TPP, that is, the priority transmission right is given, the number of auxiliary beacons within the superframe period corresponds to the time rate at which resources are transmitted with priority and transmission is performed.
  • the serial number assigned to the beacon when a plurality of beacons are transmitted in the superframe is written.
  • An exclusive and unique number is described as the beacon serial number for each beacon transmitted in the superframe.
  • relative time information indicating the number of the TBTT transmitted from the regular beacon of the own station as a reference is described as a serial number in the Serial field.
  • the auxiliary beacon Since the regular beacon is transmitted for network construction, the auxiliary beacon is transmitted for the purpose of acquiring the priority transmission period TPP, all information included in the regular beacon (described later) Need not be listed. Therefore, the auxiliary beacon may include only some information related to TPP acquisition.
  • the priority transmission period TPP is used to transmit a part of the signal to be transmitted using the priority transmission period.
  • the collision between the beacon and the signal that is periodically transmitted and received using the priority transmission period TPP and the beacon, and the collision between the periodically transmitted and received signals are the same as the collision between the beacons. Can handle.
  • a priority when a priority is set for the priority transmission period TPP, it is necessary to include a Type field also in a signal transmitted periodically using the auxiliary beacon or the priority transmission period.
  • the TOIS field When adopting, the TOIS field must be included in the signal transmitted periodically using the auxiliary beacon or the priority transmission period.
  • the transmission timing of a signal that is periodically transmitted using the priority transmission period ⁇ and the relative time position (offset of the normal beacon power) with the normal beacon are communicated. If stations want to notify each other, the Serial field must be included in the signal transmitted periodically using the auxiliary beacon or the priority transmission period.
  • the communication station After turning on the power, the communication station first performs a scanning operation, that is, continuously tries to receive a signal over the superframe length, and confirms the presence of a beacon transmitted by a peripheral station. In this process, if the peripheral station does not receive a beacon, the communication station sets an appropriate timing as TBTT. On the other hand, when a beacon that also transmits a peripheral station is received, the NBOI field of each beacon received by the peripheral station is referred to by ORing while shifting according to the reception time of the beacon. As a result, the beacon transmission timing is also extracted from the neutral force at the timing corresponding to the bit position that is not finally marked.
  • a communication station acquires a preferential use area (TPP) immediately after transmission of a beacon, so that the beacon transmission timing of each communication station is more uniformly distributed within a superframe period. More preferable in terms of efficiency. Therefore, the OR of the NBOI that also obtained the beacon power received from the peripheral stations is used, and the center of the section where the run length of the space is the longest is determined as the beacon transmission timing.
  • TPP preferential use area
  • the new communication station cannot join this system.
  • the beacon transmission time TBTT of the own station may be set to an adjacent time immediately after a beacon that has already been transmitted, depending on the attribute of the communication station. In this case, a process is added to take into account the beacon transmission time between communication stations that actually communicate.
  • Fig. 9 shows the beacon power obtained by newly entered communication stations and the beacon power received by peripheral stations. It shows how to set its own TBTT based on the NBOI of the local station.
  • the beacon reception time of the peripheral station is treated as a relative position with respect to the regular beacon of the own station, and the NBOI field describes this in a bitmap format (described above). Therefore, communication station A shifts the NBOI field of the three beacons received from the peripheral station according to the reception time of each beacon, aligns the corresponding positions of the bits on the time axis, and sets the NBOI field at each timing. NBOI is integrated and referenced by ORing the bits.
  • the obtained sequence is "1101, 0001, 0100, 1000" indicated by "OR of NBOIs" in FIG. 1 indicates the relative position of the timing when TBTT is already set in the superframe, and 0 indicates the relative position of the timing when TBTT is not set.
  • a place where the space (zero) has the longest run length is a candidate for newly allocating a beacon.
  • the longest run length is 3, and there are two candidates. Then, the communication station A sets the 15th bit in the TBTT of its own regular beacon.
  • Communication station A sets the time of the fifteenth bit as the TBTT of its own regular beacon (that is, the head of its own superframe), and starts transmitting beacons.
  • the NBOI field transmitted by the communication station A marks each reception time of the beacon of the communication station 0-2 capable of receiving the beacon with a bit position corresponding to the relative position from the transmission time of the normal beacon of the own station. It is described in the bitmap format, as shown by "NBOI for TX (1 Beacon TX)" in FIG.
  • the communication station A obtains the priority transmission right by transmitting an auxiliary beacon or the like, further, after that, the space of the sequence indicated by "OR of NBOIs" in which the NBOI fields of the peripheral stations are integrated Find the longest run length of (zero), and set the transmission time of the auxiliary beacon (priority transmission period) at the space where it was found.
  • the auxiliary beacon transmission timing (priority transmission period setting timing) is set at the time of the 6th and 11th bit spaces of "OR of NBOIs".
  • the NBOI field transmitted by communication station A includes the relative position of the regular beacon of the own station and the beacon received from the peripheral station, and the location where the own station transmits the auxiliary beacon (for the regular beacon). Relative position), as indicated by "NBOI for TX (3 Beacon TX) ,,".
  • each communication station sets its own beacon transmission timing ⁇ in accordance with the above-described processing procedure and transmits a beacon, the condition is that each communication station is stationary and the arrival range of radio waves does not change. Below, beacon collisions can be avoided.
  • a specific communication station can be set in a certain time zone. It is possible to allocate resources preferentially to communication between them and provide QoS communication. Also, by referring to the number of beacons received (NBOI field) as well as the peripheral force, each communication station can autonomously grasp the degree of system saturation.
  • each communication station refers to the NBOI field of the received beacon, the beacon transmission time is arranged so as not to collide, so even if multiple communication stations accommodate priority traffic, collisions occur frequently. Then, it is possible to avoid the situation.
  • Fig. 10 shows how a beacon collides due to a change in the arrival range of radio waves.
  • a network is constructed, and the systems approach each other.
  • communication stations STA0 and STA1 exist in a range where radio waves cannot reach communication stations STA2 and STA3, and STA0 and STA1 communicate. Also, STA2 and STA3 are communicating independently of this. In this case, the video of each station is independent for each system. As shown on the right side of the upper part of FIG. 10, it is assumed that the beacon transmission timings are set to overlap each other unfortunately.
  • each station (the range of arrival of radio waves) moves, and when each station becomes capable of transmitting and receiving as shown in the lower part of Fig. 10, a situation occurs in which the beacons of each station collide.
  • Fig. 11 shows an example of the collision detection and TBTT change procedure.
  • the beacon TBTT transmitted by STAO and the beacon transmitted by STA2 completely match at time TBTTO! / ⁇
  • both STA0 and STA2 become a beacon transmission TBTT, and transmit a beacon at times shifted from the time TO by TBTT offsets, respectively.
  • both beacons collide, and neither STA0 nor STA2 can detect that the beacons collide.
  • each communication station cannot start the transmission operation and the reception operation simultaneously.
  • beacon transmission processing is started again.
  • a relatively large value is selected for STA2 as the TBTT offset while STA2 has a TBTT offset of zero.
  • STAO recognizes that STA2 is transmitting a beacon near its own TBTT time in order to operate the receiver before and after transmitting the beacon.
  • STA2 recognizes that STAO is transmitting a beacon near its own TBTT time to operate the receiver before and after transmitting the beacon. It should be noted that whether or not a beacon has been received near the TBTT of the own station is determined by the beacon within the range of the TBTT BZ2 of the beacon.
  • STAO determines to change its own TBTT, that is, the beacon transmission position, because it has received a beacon of another station immediately before transmitting its own beacon.
  • STA2 although the beacon was received near the TBTT time of the own beacon, the TBTT is not changed because the beacon was received after transmitting the beacon of the own station.
  • STA0 When changing the beacon transmission position, STA0 notifies the peripheral station that the TBTT is to be changed in the ALERT field of the beacon to be transmitted (the ALERT field should be transmitted to the peripheral station in an abnormal state. Field for storing information). In addition, STA0 performs a scan for at least one superframe to collect information to determine a new TBTT.
  • STA0 recognizes a beacon collision near time T1, and immediately activates the TBTT change process. It may be executed only late.
  • STA0 finds a free TBTT by the above-described procedure described with reference to Fig. 9, it sets TBTT1 as a new TBTT, and does not transmit a beacon at time T2.
  • a beacon is transmitted at time T3, and thereafter, a beacon is transmitted periodically with a TBTT offset added at the timing of TBTT1.
  • STA2 transmits a beacon at time T2 as if nothing has been done, and thereafter continues to transmit beacons while adding a TBTT offset at the timing of TBTT0.
  • STA2 does not change the TBTT, but it also recognizes that the network has been crossed by receiving the STA0 beacon, and may perform scan processing to understand the network status. is there.
  • the communication station notifies the ALERT field that the TBTT will be changed, and transmits a beacon or a beacon that has been received so far in the vicinity of the beacon TBTT! If it is recognized, a scan is performed (not shown) to grasp where the new TBTT of the beacon has been determined.
  • FIG. 12 shows an example of a TBTT change procedure in which one station sends a beacon transmission time change request message to the other station at the time of a beacon collision.
  • STA2 transmits a message "I want TBTT to be changed" to STAO.
  • STAO can receive this message because it operates the receiver for a while before and after transmitting a signal such as a beacon even in the power save state (described above).
  • STAO in response to receiving the TBTT change request message, STAO notifies the peripheral station that the TBTT will be changed in the ALERT field of the beacon to be transmitted. In addition, STAO performs a scan for at least one souno frame to collect information to determine a new TBTT.
  • STAO finds a free TBTT according to the above-described procedure described with reference to Fig. 9, it sets TBTT1 as a new TBTT, and does not transmit a beacon at time T4.
  • a beacon is transmitted at time T5, and thereafter, a beacon is transmitted periodically while adding a TBTT offset at the timing of TBTT1.
  • STA2 transmits a beacon at time T2 as if nothing has been done, and thereafter continues to transmit the beacon while adding a TBTT offset at the timing of TBTTO.
  • STA2 does not change the TBTT, but receives the STAO beacon.
  • a scan process is performed to recognize that the network has been crossed by receiving the information, and to grasp the status of the network.
  • the rule is that a communication station that has received a beacon of another station immediately before its own beacon transmission time changes its beacon transmission time. Conversely, when a beacon of another station is received immediately after the beacon transmission time of the own station, the own beacon transmission time may be changed.
  • Figures 33 to 37 show several examples of collision detection procedures, taking as an example the case where a beacon of a communication station transmitting and receiving data has collided. After a collision is detected, the TBTT change procedure is started, if necessary, according to the procedure already described.
  • FIG. 33 shows an example in which a collision occurs between the beacon transmission times of STAO and STA2, and STAO continues to transmit data to STA A1.
  • STAO transmits a beacon as scheduled (BO in the figure).
  • STA2 recognizes that STAO is transmitting a beacon near its own TBTT time to operate the receiver before and after transmitting a signal such as a beacon.
  • STA2 sets the NAV and refrain from transmitting signals while other stations' signals are present, according to the CSMAZCA procedure. As a result, what was originally scheduled to be transmitted at time T1 will be delayed.
  • STAO continues to transmit data to STA1 (DO in the figure).
  • Duration field of the data the time length up to the time when the ACK is received for the purpose of virtual 'carrier' sense is written, and STA2 interprets this and refrain from transmitting the signal until time T2.
  • STA2 determines to change its own TBTT, that is, the beacon transmission position, because it has received another station's beacon immediately before its own station's beacon transmission. On the other hand, although STA0 received a beacon near the own beacon's TBTT time, it does not change the TBTT because it received a beacon after transmitting its own beacon.
  • STA2 When changing the beacon transmission position, STA2 performs a scan while notifying neighboring stations that the TBTT is to be changed in the ALERT field of the beacon to be transmitted, and performs a scan for a new free space in which no collision occurs. Find the TBTT and change your own TBTT to a free TBTT.
  • STA0 recognizes that the network has been crossed by receiving the beacon of STA2 as if nothing had happened, and scans for the purpose of grasping the status of the network. In some cases, processing is performed.
  • Fig. 34 shows an example of the case where the STAO signal transmission, the STA2 beacon transmission time, and the collision occur.
  • STA0 transmits RTS at time TO and data at time T1 toward STA1. Since STA2 is trying to transmit a beacon at time T2, it operates the receiver by Listen Before Send and can receive the STA0 signal. Then, in accordance with the procedure of CSMAZCA, STA2 refrain from transmitting signals while signals of other stations are present. Further, by analyzing the Duration field of the received signal, STA2 refrain from transmitting until time T3 until ACK is received. As a result, what was originally scheduled to transmit a beacon at time T2 will be delayed.
  • STA2 has already detected that periodically transmitted signals collide. After a lapse of PIFS (or SIFS) + a random delay (eg, TBTT offset) from time T3, STA2 transitions to a signal transmittable state and transmits a beacon at time T4. At this time, STA2 describes in the TOIS field that the beacon could not be transmitted at the time intended by itself.
  • PIFS or SIFS + a random delay (eg, TBTT offset)
  • STA0 operates the receiver before and after signal transmission.
  • Listen Aft er Send recognizes that the beacon is being transmitted immediately after the signal of the STA2 power station is completed, and can confirm the existence of STA2. Also, by referring to the TOIS field of the beacon received from STA2, it recognizes that the transmitting station has not been able to transmit at the intended time, and determines that its own transmission signal has interfered with the STA2 beacon transmission time. And detects signal collisions.
  • STA2 states that the signal of STAO is transmitted by TPP! For some reason (for example, it is described that the STAO signal is transmitted continuously to the auxiliary beacon, and that a part of the transmitted signal indicates that it is TPP). In some cases, it may change its own TBTT, that is, the beacon transmission position. On the other hand, if the STA2 does not change the TBTT, such as when the STAO signal is not transmitted in the TPP, the STAO recognizes that the STA2 beacon will be transmitted in the vicinity of this TBTT, and will not prevent STA2 from transmitting beacons in the future. ⁇ STAO disallows transmission during this time period.
  • STAO and STA2 can recognize that the networks are interlaced based on the detection of collision with each other.
  • each station may perform a scanning process in order to grasp the status of the network.
  • Fig. 35 shows an example of the case where a collision occurs between the STAO signal reception and the STA2 beacon transmission time.
  • STAO transmits a CTS at time T1 to STA1, which is a data transmission source.
  • ST A2 attempts to transmit a beacon at time T2, which is also delayed by TBTT offset, with time T1 as TBTT, and since the receiver operates by Listen Befor Send, it receives this CTS signal. can do.
  • STA2 refrain from transmitting signals while signals from other stations are present.
  • STA2 analyzes the Duration field of the received signal to refrain from transmitting until time T3 until data is received. As a result, what was originally scheduled to be transmitted at time T2 will be delayed.
  • STA2 has already detected that periodically transmitted signals collide.
  • STA2 transitions to a signal transmittable state after a lapse of PIFS (or SIFS) + a random delay amount (for example, TBTT offset) from time T3, and transmits a beacon at time T4.
  • PIFS or SIFS
  • a random delay amount for example, TBTT offset
  • the STAO operates the receiver before and after the signal transmission, recognizes that the STA2 transmits a beacon immediately after the reception of the signal of the own station by the Listen After Send, and recognizes the presence of the STA2. Can be confirmed. Also, by referring to the TOIS field of the beacon received from STA2, it recognizes that STA2 has not been able to transmit at the intended time, and determines that its own transmission signal has interfered with the STA2 beacon transmission time. And detects signal collisions.
  • the STA2 If STA2 recognizes that the STAO signal is being received by the TPP for some reason (such as being continuously transmitted to the auxiliary beacon), the STA2 transmits its own TBTT, that is, the beacon transmission position. May be changed. On the other hand, if the STA2 does not change the TBTT, such as when the STAO signal is not received by the TPP, the STAO recognizes that the STA2 beacon will be transmitted near this TBTT, and will transmit the STA2 beacon in the future. In order not to disturb it, a procedure for disabling transmission to STA1 is activated, and STAO does not perform reception during this time.
  • the STAO and the STA2 may perform a scan process for the purpose of recognizing that the networks are interlaced based on the detection of a collision with each other and grasping the status of the network.
  • FIG. 36 shows an example of the case where a collision occurs between the STA0 signal transmission and the STA2 beacon transmission time.
  • STAO transmits data
  • TBTT of STA2 (time T1 in the figure) arrives during the data transmission.
  • STA2 attempts to transmit a beacon at time T1, and receives a signal from STAO because the receiver operates by Listen Before Send.
  • STA2 refrain from transmitting signals while signals from other stations exist, and do not permit transmission until time T2.
  • the beacon was originally scheduled to be transmitted at time T1. Will be delayed.
  • STA2 has already detected that periodically transmitted signals collide. After a lapse of DIFS + a random delay (for example, TBTT offset) from time T2, STA2 transitions to a signal transmittable state, and transmits a beacon at time T3. At this time, STA2 describes in the TOIS field that the beacon could not be transmitted at the time intended by itself.
  • DIFS + a random delay for example, TBTT offset
  • STAO does not prevent ACK from STA1 if the power of receiving ACK from STA1 is longer than the time required for ACK reception. Since STAO operates the receiver before and after signal transmission, it can receive the beacon transmitted at STA2 power time T3 by Listen After Send and confirm the existence of STA2. In addition, STA 0 recognizes that it can transmit at the intended time by referring to the TOIS field of the beacon received from STA 2, and the transmission signal of its own station indicates the STA 2 beacon transmission time. Judgment is made as interference, and signal collision is detected.
  • STA2 transmits that the signal of STAO is transmitted by TPP! For some reason (for example, that the signal of STAO is transmitted continuously to the auxiliary beacon, or that the signal of STAO is transmitted by TPP as part of the transmission signal of STAO). May be changed), it may change its own TBTT, that is, the beacon transmission position. On the other hand, if STA2 does not change the TBTT, such as when the STAO signal is not transmitted on the TPP, the STAO recognizes that the STA2 beacon will be transmitted near this TBTT, and will not prevent STA2 from transmitting beacons in the future. STAO disallows transmission during this time period.
  • STAO and STA2 may recognize that the networks have been interlaced based on the detection of a collision with each other, and perform a scan process for the purpose of grasping the state of the network.
  • the rule is that when a beacon collides, a communication station that has received a beacon of another station immediately before its own beacon transmission time changes its beacon transmission time. Conversely, when a beacon of another station is received immediately after the beacon transmission time of the own station, the own beacon transmission time may be changed.
  • FIG. 37 shows an example in which a collision occurs between the reception of the signal of STA0 and the transmission time of the beacon of STA2.
  • STA0 is receiving data from STA1 that is the data transmission source. During this data reception, the TBTT of STA2 (time T1 in the figure) visits. Prior to signal transmission (beacon transmission), STA2 operates the receiver by Listen Before Send, but cannot directly receive the transmission data from STA1 which is a hidden terminal. The beacon has not been detected yet, and a beacon is transmitted at time T1 as scheduled.
  • STA0 receives interference from the received signal from STA1 due to the beacon transmission signal from STA2, and data is not correctly received. After receiving the data, STA0 returns to STA1 a NACK indicating that the data could not be received.
  • STA2 Since STA2 has been operating the receiver for a certain period of time by Listen After Send after signal transmission, it can receive STA0's NACK. Since STA2 has received a NACK from STA1 immediately after its own signal, it determines that STA1 has failed to receive data due to the previous signal transmission of its own station, and the beacon of its own station determines that other stations have received signals. Detects collision.
  • STA2 transmits a signal to STA0 to inform STA0 that "this time zone is used for transmitting STA2's beacon" (not shown), and receives a signal to STA0. It may prompt a change in timing. On the other hand, if STA2 does not do this, STA2 may autonomously change the TBTT.
  • STA2 (and STA0) recognizes that the networks have crossed based on the detection of collision with each other, and performs a scan process for the purpose of grasping the state of the network.
  • the station that transmits the low priority beacon starts the TBTT change processing. For example, if a legitimate beacon of one station collides with an auxiliary beacon of the other station, the TBTT of the auxiliary beacon should be moved. Also, when the auxiliary beacons collide with each other, the one with the higher traffic priority has priority, and the one with the lower priority should move (excluding some! /).
  • FIG. 13 shows that when a beacon collision occurs due to a change in the radio wave arrival range or the like, one of the colliding communication stations shifts the beacon transmission time (TBTT change) to prevent the beacon collision.
  • the device operation performed for each communication station is shown in the form of a flowchart. Such device operation is actually a central control within the wireless communication device 100. This is realized in a form in which a predetermined execution instruction program is executed in the control unit 103.
  • This operation is started in response to the communication station detecting a collision of its own transmission beacon. First, check whether the TBTT change has recently occurred in your own station (Step Sl).
  • step S2 If the TBTT has not changed recently, it is further checked whether or not the ALERT field of the received beacon indicates that the TBTT is to be changed (step S2).
  • steps S1 and S2 if a recent change in TBTT has not been confirmed in either the own station or the peripheral station, the priority of the transmission beacon of the own station and the Type field of the reception beacon are described. And compare the priorities (step S3)
  • the priority of the beacon received by the other station is not lower than the priority of the transmitted beacon of the own station, the priority of the beacon received by the other station is also lower than that of the own station. It is checked whether it is higher than the priority of the transmission beacon (step S4).
  • the communication station performs a scan for at least one superframe and collects information for determining a new TBTT, and changes the TBTT.
  • the peripheral station is notified of the beacon described in the ALERT field to that effect, and a free TBTT is detected by the above procedure described with reference to FIG. 9 to detect a destination of the beacon (step S6). Then, by transmitting a beacon using the new TBTT, the destination of the beacon transmission timing is notified to the peripheral station.
  • step S4 if the priority of the received beacon of the other station is not higher than the priority of the transmission beacon of the own station, that is, if the priority of both beacons matches, the reception beacon It is checked whether the reception time is earlier than its own beacon transmission time (step S5).
  • the timing of a beacon received from another station is earlier, It decides to change its own TBTT, that is, the beacon transmission position, because it received the beacon of the other station immediately before. That is, the communication station performs a scan for at least one superframe to collect information for determining a new TBTT, and notifies neighboring stations of a beacon described in the ALERT field to change the TBTT. Then, a free TBTT is found and the destination of the beacon is detected (step S6). Then, by transmitting a beacon with the new TBTT, the destination of the beacon transmission timing is notified to the neighboring stations.
  • the event of judging that the signal quality has been significantly degraded is that errors frequently occur in the received signal only in a specific time period and the communication disconnection state continues, and the ACK of the ACK signal only in the specific time period. There was no reply, the status continued, and a request for communication at a low data rate only during a specific time period.
  • a communication station that has released the TPP may hide and move while continuing to transmit and receive data using an access method based on CSMA ZCA with random back-off.
  • CSMA ZCA Access Method for Mobile Communications
  • Fig. 38 shows, in the form of a flowchart, a communication procedure including a collision avoidance operation in a case where the colliding signals completely match not only the TBTT but also this random value.
  • the communication station sets the beacon or the signal transmission timing TBTT of the priority transmission period TPP in the superframe (step S31), and transmits and receives these signals at the set transmission timing (step S32).
  • the communication station Since the communication station itself performs a transmission operation at the transmission timing TBTT, it cannot detect a collision by itself when not only the TBTT but also a random value, that is, a TBTT offset completely matches. . For this reason, the signal transmission operation is continued periodically over several superframes. As a result, a situation where the signal quality is significantly deteriorated is detected (step S33).
  • the degradation of signal quality referred to here is that the received signal frequently caused errors in the same specific time period and the communication was interrupted, and the ACK was not returned during the specific time period and the condition continued. This is detected as a symptom, such as a request for communication at a low data rate only during a specific time period.
  • the communication station Upon detecting such deterioration of the signal quality, the communication station searches for other available transmission / reception timings in the superframe (step S34), and if found, performs transmission with the deteriorated quality. The section is released (step S35), and a new transmission timing TBTT of the deteriorated periodic transmission signal is set.
  • the new transmission timing TBTT is described in a beacon to be notified to the peripheral station, and can be notified to the peripheral station by itself transmitting a periodic signal at the new transmission timing TBTT.
  • Auxiliary beacons and priority transmission period The signals transmitted and received periodically using the TPP do not contain all the information (see Figure 7) contained in the regular beacons In some cases. In this case, even if a collision between auxiliary beacons, a collision between a signal transmitted and received periodically using the priority transmission period TPP and a beacon, or a collision between periodic transmitted / received signals occurs, other collisions may occur. Unable to detect media occupancy information
  • the regular beacon cannot be received because the other station is transmitting during the regular beacon transmission time period of the communication station because the interval is bad and the TBTT offset completely matches. It is possible.
  • a Serial field is provided for a signal that is periodically transmitted using the auxiliary beacon or the priority transmission period TPTT, and the number of TBTTs transmitted based on the regular beacon of the own station.
  • Fig. 39 shows a communication operation example for avoiding signal collision based on the description content of the Serial field added to the auxiliary beacon or the periodic transmission signal.
  • STAO and STA1 are each communicating with another communication station (not shown), and operate as independent networks.However, the movement of the communication station and the removal of obstacles caused by blocking between networks are removed. It is assumed that STAO and STA1 enter the range of radio waves due to such factors. Also, in the figure, it is assumed that eight TBTTs from TO to T7 are set in the superframe.
  • the uppermost stage in Fig. 39 is the initial state.
  • both regular beacons collide with the other auxiliary beacon.
  • the mutual beacons cannot be continuously received because the TBTT offsets continue to match.
  • STA1 cannot receive the STAO regular beacon, and similarly, STAO cannot receive the STA1 regular beacon.
  • STA1 can receive the STAO auxiliary beacon transmitted at time T4 and time # 6 and the transmission signal using the priority transmission period TPP.
  • STA1 receives the auxiliary beacon transmitted from STAO at time T4 and time ⁇ 6, it analyzes the description in the Serial field and transmits the auxiliary beacon with a relative time difference from the transmission time of the regular beacon.
  • STAO's regular beacon by extracting information Recognizes that the call is being sent around time T2. Further, STA1 recognizes that it cannot transmit the STAO regular beacon because its own station transmits a signal near time # 2.
  • STA1 releases ⁇ used near time ⁇ 2 and relocates it to another ⁇ (time ⁇ 3 in the figure), You will be able to receive regular beacons. By receiving the regular beacon of STA2, STA1 can grasp the resource use status of STA2.
  • STAO can also receive the auxiliary beacon of STA1 transmitted at time # 5, it performs the same processing as STA1 above, and releases ⁇ of its own station at time TO. It becomes possible to receive a regular beacon.
  • a regular beacon and an auxiliary beacon (a priority transmission period or a periodic transmission signal using a TPP) as shown in the lower part of FIG. 39 are arranged.
  • the STAO does not autonomously release the TPP, for example, if the STAO does not notice the auxiliary beacon of the STA1 at the time T5, for example, as shown in the lower part of FIG. A message requesting that the file be released may be sent.
  • the STAO upon receiving this release request message, changes the transmission time of the auxiliary beacon transmitted at time TO, and finally changes the regular beacon and auxiliary beacon as shown in the lower part of Figure 39. Arrangement.
  • the STAO can receive the regular beacon of the STA1, and can grasp the resource use status of the STA1.
  • the procedure for changing the TPP section by the auxiliary beacon is performed according to the procedure already described. After detecting an empty slot by the scanning operation, the TPP is arranged at a time when no collision occurs.
  • the communication station performs signal detection Z reception processing (Listen Before Send) performed prior to signal transmission, and continues to perform signal transmission even if a collision is not detected.
  • Signal detection to be performed Z reception processing (Listen After Send) can detect a signal from a powerful communication station that has not been recognized as a nearby station.
  • the scanning process is started due to the signal detection Z reception process, and the beacon of the communication station is searched to obtain the media occupation information of the communication station.
  • the signal detector and the receiver are continuously operated during a time period during which no signal is transmitted. However, during the time period during which a signal is transmitted, transmission of the signal is prioritized and signal transmission is performed. The receiver may be stopped only during transmission.
  • FIG. 14 shows a state where a collision of a beacon transmitted from each communication station is exposed when a new communication station turns on the power.
  • systems that have already independently constructed a network are merged due to the appearance of a new communication station or the like.
  • a new communication station does not appear !
  • the network is already constructed independently and merged due to the movement of a third communication station between systems.
  • the same processing as described below can be performed.
  • the communication stations STAO and STA1 are in a range where radio waves cannot reach the communication stations STA2 and STA3, and STAO and STA1 are communicating. Also, STA2 and STA3 communicate independently of this! The beacon transmission timing of each station at this time, as shown on the right side of the upper part of FIG.
  • any station needs to change the beacon transmission time.
  • Fig. 15 shows an example of the TBTT change procedure when a beacon collision is exposed due to the entry of a new communication station.
  • the TBT T of the beacon transmitted by STA0 almost matches the TBTT of the beacon transmitted by STA2 at TBTT0, but it is assumed that the TBTT of STA0 is slightly delayed. are doing.
  • STA4 is the power of STA0 and STA2, which is communicable with the difference between STA0 and STA2. It is assumed that STA0 and STA2 cannot communicate directly with each other!
  • both STA0 and STA2 become a beacon transmission TBTT, and transmit a beacon at a time shifted from the time TO by their respective TBTT offsets.
  • the TBTT offset of STA0 and the TBTT offset of STA2 happen to be different values, STA2 is small V ⁇ TBTT offset value, STAO is large! /, And TBTT offset value is selected.
  • STA4 can receive beacons transmitted from both STAO and STA2.
  • STA4 is set within the interval of its own TBTT (that is, within the range of BZ2).
  • the beacons from these two stations have been received, it detects that the beacons collide. Then, it decides to transmit a message to change the TBTT of either communication station.
  • STA4 decided to have the STAO change the TBTT, and sent a message M requesting the STAO to change the TBTT.
  • Send even if STAO and STA2 are not transmitting or receiving data and are in a power save state, as described above, when transmitting a signal, they must perform reception for a certain period before and after transmitting their own signal. STAO can receive this message because it is obliged (Listen Before Send / Listen After Send).
  • STA4 refers to the TOIS field of the beacon, which is not a comparison of the beacon reception times, to determine whether the collision of the received beacon is delayed or not! By subtracting the pseudo random sequence, the TBTT itself of the beacon is calculated.
  • a TBTT change message should be sent to the beacon reception time or the earlier of the TBTT! / However, the following description will be continued, taking as an example the agreement that the above message is transmitted to the later one.
  • the STAO Upon receiving the TBTT change request message and recognizing that the TBTT must be changed! / ⁇ , the STAO starts the process of changing the TBTT from time T1. In this case, in this processing procedure, the STAO first notifies the peripheral station that the TBTT will be changed in the ALERT field of the transmitted beacon (the ALERT field indicates information to be transmitted to the peripheral station in an abnormal state). Field to store). In addition, STAO scans at least one superframe to gather information to determine a new TBTT. In the example shown in FIG. 15, the TBTT change process is started immediately from time T1, but this process may be executed with a delay of one or two superframes due to a processing delay inside the communication station.
  • STA2 transmits a beacon at time T2 as if nothing has been done, and thereafter continues to transmit beacons while adding a TBTT offset at the timing of TBTTO.
  • the communication station notifies the ALERT field that the TBTT will be changed, and a beacon or a beacon has been transmitted near the TBTT of a beacon that can be received so far! If it is recognized, a scan is performed to figure out where the new TBTT of the beacon has been determined (not shown).
  • STAO starts the TBTT change process by receiving the TBTT change request message from STA4.
  • STAO has just set a new TBTT
  • “soon” corresponds to a case where the new TBTT is set within 1 to 3 superframes. If a relatively large network collides, the collision may be avoided by changing the TBTT of another communication station, and it is necessary to wait until the abnormal state is settled. In addition, the network that becomes the collision partner may have passed away, and the abnormal state may be settled.
  • STA4 determines the reception time of the collision beacon or the force transmitting the TBTT change request message to the communication station that is late in the TBTT by using the ALERT field in the collision beacon. Is notified that the TBTT will change, the beacon is not counted as a collision beacon and the TBTT change request message transmission process is performed only when there is a collision beacon after excluding these beacons. to start. This is because the beacon collision is naturally resolved by the TBTT change processing.
  • the beacon having a priority value higher than the lowest priority value among these beacon is removed from the communication station to which the above message is transmitted. Starts the above message transmission process. For example, if the legitimate beacon of one station and the auxiliary beacon of the other station collide, the auxiliary beacon should move the TBTT. When the auxiliary beacons collide with each other, the traffic with the higher priority has priority, and the traffic with the lower priority should be moved (or eliminated).
  • Fig. 16 shows that when a beacon collision is revealed due to the emergence of a new entrant station, the beacon collision is requested by requesting one of the colliding communication stations to change the beacon transmission time (TBTT change).
  • the device operation executed in the communication station is shown in the form of a flowchart. Such a device operation is actually realized in the form of! / When a predetermined execution instruction program is executed in the central control unit 103 in the wireless communication device 100.
  • step S11 it is described that the TBTT is changed in the ALERT field !, and after the collision beacon force is also deleted, it is determined again whether or not the collision beacon exists (step S11). If it is determined that a collision beacon exists, the process from step S12 described below is performed. If no collision beacon exists, the processing routine ends.
  • step S10 Even after the processing in step S10, if there is still a collision beacon, the difference in traffic priority is compared with reference to the TYPE field of each received beacon (step S12).
  • a TBTT change request message is transmitted to the transmission source of the beacon A (step S14), and the processing routine ends. If the priority of Beacon B is lower, a TBTT change request message is transmitted to the source of Beacon B (step S15), and this processing routine ends.
  • step S13 If there is no difference between the priorities of the reception beacons, it is further determined which reception beacon arrives later (step S13). In order to determine which of the received beacons that collided is late, the TBTT of the beacon itself is subtracted by referring to the TOIS field of the beacon instead of simply comparing the beacon reception times and subtracting the pseudo random sequence used. calculate.
  • a TBTT change request message is transmitted to the source of the beacon A (step S14), and this processing routine ends. If the arrival of the beacon B is late, a TBTT change request message is transmitted to the transmission source of the beacon B (step S15), and the processing routine ends.
  • a supplementary beacon or a signal transmitted and received periodically using the priority transmission period TPP may not contain all the information (see Fig. 7) described in the regular beacon (see above). ).
  • media in other time zones may be used. Even occupancy information can be detected. I can't.
  • the normal beacon cannot be received due to reasons such as the presence of another signal in the transmission time zone of the normal beacon of the communication station due to bad time, the user is not considered.
  • a Serial field is provided for a signal that is transmitted periodically using the auxiliary beacon and the priority transmission period TPTT, and the number of TBTTs transmitted using the base station's regular beacon is determined.
  • the communication station that has received the auxiliary beacon or the periodic transmission signal can extract the transmission time of the regular beacon of the auxiliary beacon transmitting station.
  • Fig. 40 shows an example of communication operation for avoiding signal collision based on the description content of the Serial field added to the auxiliary beacon or the periodic transmission signal.
  • STAO is communicating with another communication station (not shown)
  • STA2 is also communicating with another communication station (not shown). It is assumed that the STAO and STA2 have entered the range of radio waves due to movement or removal of barriers between networks. In the figure, it is assumed that eight TBTTs from TO to T7 are set in the superframe!
  • the upper part of Fig. 40 is the initial state.
  • the STAO auxiliary beacon and the STA2 regular beacon collide.
  • STA1 cannot receive the regular beacon of time TO transmitted by STA2 due to the auxiliary beacon transmitted by STAO or the signal transmitted using the priority transmission period TPP.
  • the auxiliary beacon of STA2 transmitted at time T5 can be received.
  • STA1 receives the auxiliary beacon transmitted from STA2 at time T5
  • it analyzes its Serial field and determines how much relative time difference the auxiliary beacon has transmitted from the transmission time of the regular beacon.
  • it recognizes that the regular beacon of STA2 is transmitted near time TO.
  • STA1 recognizes that a regular beacon of STA2 cannot be received because STAO is transmitting a signal near time TO.
  • STA1 transmits a message to release the priority transmission period TPP acquired by STAO near time TO to STAO. Upon receiving this message, STAO releases the TPP secured at time TO.
  • TPP priority transmission period acquired by STAO near time TO to STAO.
  • STAO releases the TPP secured at time TO.
  • STA1 can receive the regular beacon of STA2.
  • STA1 can grasp the resource usage status of STA2.
  • STA1 may transmit a message requesting STA2 to change the regular beacon transmission time.
  • STA2 upon receiving this message, STA2 starts the transmission change procedure of the regular beacon transmitted at time TO, detects a vacant slot according to the procedure already described, and then detects a time when no collision occurs. Start transmission of regular beacon at.
  • STA1 can receive the regular beacon of STA2, and can grasp the resource usage status of STA2.
  • the scan operation has been described in terms of the scan performed periodically and the scan performed due to the detection of collision.
  • the communication station performs signal detection prior to signal transmission, Z reception processing (Listen Before Send), and signal detection performed subsequent to signal transmission.
  • the signal of a powerful communication station that has not been recognized as a nearby station can be detected by Z reception processing (Listen After Send).
  • the scanning process is started due to the signal detection Z reception process, and the beacon of the communication station is searched to obtain the media occupation information of the communication station.
  • the signal detector and the receiver are operated continuously during a time period during which no signal is transmitted.
  • the receiver may be stopped only during transmission.
  • the communication station When transmitting a beacon, the communication station scans, searches for an empty TBTT by referring to the NBOI of the received beacon, and sets its own new TBTT.
  • FIG. 17 shows, in the form of a flowchart, a processing procedure for a communication station to set a new TBTT within a superframe period.
  • a device operation is actually realized in a form in which the central control unit 103 in the wireless communication device 100 executes a predetermined execution instruction program.
  • This processing procedure is started when the TBTT of the regular beacon is set in the superframe at the time of new entry, or when the TBTT of the auxiliary beacon is set in the superframe to acquire traffic resources (step S21). ). At this point, it is assumed that the priority of the beacon for which the own station intends to set the TBTT has been set.
  • the communication station performs a scan operation for at least one superframe (step S22), and searches for an empty slot of a new TBTT in the superframe (step S23). If an empty slot can be found here, a new TBTT is set by the processing procedure described with reference to FIG. 9 (step S27), and the entire processing routine ends.
  • the beacon for which the own station sets the TBTT is selected from among the beacons in which the TBTT is arranged in the superframe.
  • the communication station sets the TBTT of its own regular beacon or auxiliary beacon to the position that has become an empty slot due to the stop of beacon transmission (step S26), and ends the entire processing routine. .
  • Fig. 18 shows a procedure for searching for a low priority of each beacon having a TBTT in a superframe and setting the TBTT of the beacon of the own station. Yes.
  • the TBTT of the beacon set by the peripheral station is recognized by referring to the N BOI field described in each beacon. Also, the priority of the beacon is described in the TYPE field of the beacon!
  • the NBOI field describes the beacon reception time of the peripheral station as a relative position to the normal beacon of the local station in a bitmap format (described above). Therefore, communication station A shifts the NBOI fields of the three beacons that were received by peripheral stations according to the reception time of each beacon, aligns the corresponding positions on the time axis, and then sets the NBOI bit at each timing. By referring to OR.
  • the obtained sequence is indicated by "OR of NBOIs" in Fig. 16, and 1 is the relative timing of the timing at which TBTT has already been set in the superframe. 0 indicates the relative position of the timing when TBTT is set.
  • the system Ui is marked as “1111, 1111, 1111, 1111”, that is, all timings in one Suno frame, and there are more free TBTTs. It is shown!
  • the communication station A refers to the TYPE field of each beacon received in the superframe, and acquires the priority of the traffic possessed by each. Focusing on beacons with a priority lower than the priority of the traffic that the local station is going to transmit from now on, the bit in “OR of NBOIs” corresponding to the reception time of such a low priority beacon is determined. clear.
  • the TYPE of Beacon-0 ′ is set to low priority.
  • an exclusive OR XOR with "Low Priority Beacon Rx" or “OR of NBOIs” in which 1 is set in the bit position corresponding to the beacon transmission timing of the remote priority is taken, and "OR of NBOIs "The 5th, 10th, and 12th bits corresponding to the time at which Beacon-0 'is received are cleared.
  • the" XOR of Each " The indicated sequence is considered as the NBOI aggregation result, and is set as a beacon transmission time candidate for communication station A.
  • the communication station A finds a free TBTT by the above procedure described with reference to FIG. 9 and sets the TBTT of the new beacon!
  • the beacon having a low priority is excluded from the NBOI and the TBTT of the new beacons of the own station is set, and thereby the same station and other stations set the same TBTT.
  • a beacon collision occurs temporarily.
  • the TBTT change procedure shown in Fig. 13 and Fig. 16 will be activated.
  • the process of changing the TBTT of the low-priority beacon is executed, and the low-priority beacon gradually disappears from the system.
  • FIG. 19 shows a state in which the communication station sets a new TBTT by excluding the beacon of another station having a low priority when the superframe is full of beacons for which the TBTT has already been set.
  • one superframe is represented from time TO to time TO ', and the time series transition of beacon transmission over three superframes from the top to the middle and to the bottom is shown.
  • STA0, STA1, and STA2 are located within the range of radio waves and can directly transmit and receive signals
  • the communication environment is assumed.
  • STAO wants to additionally transmit two auxiliary beacons, it first performs a scanning operation (not shown), and transmits an auxiliary beacon of priority 127 transmitted by STA2 to its own station. It is found as a beacon with lower priority than the beacon for which TBTT is to be set. Then, according to the procedure described with reference to FIG. 18, the exclusive OR XOR with "Low Priority Beacon Rx" and “OR of NBOIs" is taken, and the transmission timing of these STA2 auxiliary beacons on NBOI is invalidated. And treat it as an empty TBTT. The STAO determines to transmit the auxiliary beacon with the priority 254 at the time Tl and the time T6 corresponding to the invalidated TBTT timing.
  • FIG. 19 shows that STAO transmits an auxiliary beacon at time T1 and time # 6, so that the beacon of STAO and STA2 collide.
  • STAO and Pico STA2 perform processing according to the TBTT change procedure shown in FIG. 13 or FIG.
  • STA2 which straddles the low priority auxiliary beacon, starts the TBTT change process.
  • STA2 performs a scan operation to set the TBTT of two auxiliary beacons having priority 127, and searches for a free time in a superframe (not shown), but does not find a free time. Therefore, the transmission of the auxiliary beacon is abandoned. As a result, the state is settled as shown in the lower part of FIG.
  • a policy may be set to prioritize already serviced TPPs, regardless of their priority.
  • the process of depriving the TPP for low-priority traffic described above is not activated.However, if the already serviced traffic group is in a collision state due to the movement of the communication station, one of the existing In some cases, the service TPP must be eliminated. Even in such a case, by applying the same procedure as described above, it is possible to make the most of the high-priority traffic.
  • the communication station that wishes to set the TBTT of the new beacon transmits to the neighboring stations the low-priority traffic. It asks to find out if there is a communication station that sends, and performs “remote operation” on the hidden terminal by requesting that transmission be stopped.
  • Figs. 20 and 21 show how a communication station that wishes to set a new beacon's TBTT stops beacon transmission by remote control via a peripheral station and sets its own station's beacon TBTT.
  • one superframe is represented from time TO to time TO ', and the time series transition of beacon transmission over four superframes is shown.
  • STAO, STA1, STA2, and so on have three communication stations, and at least STAO and STA2 are located outside the range of radio waves, and cannot directly transmit and receive signals.
  • a communication environment is assumed.
  • the timing of TBTT in the superframe is all occupied.
  • STAO wants to transmit three auxiliary beacons to transmit traffic of priority 254, but all TBTTs in the superframe have already been timed. You know you are occupied. Furthermore, even if the STAO activates the processing procedure for eliminating low-priority traffic shown in FIG. 18, it cannot find the auxiliary beacon transmission timing. Therefore, STAO posts information indicating that it wants to transmit three beacons with a priority of 254 in the ALERT field of the regular beacon transmitted at time TO, and sends such information to the ALERT field that notifies the neighboring stations.
  • Bee with The “con” corresponds to a remote beacon stop request to the peripheral station. After notifying the beacon stop request with A LERT, STAO enters a scan state for a while to search for an empty slot by remote operation by a peripheral station.
  • the ALERT field is a field for storing information to be transmitted to a peripheral station in an abnormal state.
  • the ALERT field is used to describe information for notifying a neighboring station that the own station's TBTT will be changed.
  • the ALERT field is overloaded to notify a plurality of abnormal states.
  • FIG. 22 schematically shows the configuration of the ALERT field in this case. As shown in the figure, the ALERT field is divided into a type field indicating the type of definition and a main body field describing an abnormal state. If the type is the own TBTT change, information on the TBTT change is described in the body field. When the type is remote control, the priority of the beacon to be set by the own station and the number of beacons to be set are described in the main unit field.
  • STA1 stops beacon indicating to STA2 that "we want to temporarily stop transmission of three beacons with a priority lower than 254".
  • Send request message M M.
  • STAO stays in the scan state in order to search for an empty slot by remote control by the peripheral station.
  • STA2 In response to receiving the beacon stop request message M, STA2 transmits three auxiliary beacons whose priority 2 being currently transmitted is among the auxiliary beacons transmitted at time T3, time # 5, and time # 7. Stop sending.
  • STA1 detects that time # 3, time # 5, and time # 7 are vacant by performing a scan operation for at least one frame.
  • the time ⁇ ⁇ ⁇ ⁇ 3, time ⁇ 5, time ⁇ 7 Is reported to be vacant.
  • STAO stays in the scan state in order to search for an empty slot by remote control by the peripheral station.
  • STA2 searches for an empty cell in the superframe in order to try transmitting the auxiliary beacon of priority 2 again.
  • STAO since STAO has already occupied this time slot with a higher priority beacon, it cannot find a free time and gives up transmission of the auxiliary beacon.
  • a resource for a high priority is secured by performing a remote control for setting a TBTT of a beacon having a higher priority in a superframe by excluding a TBTT of a beacon having a lower priority. It is possible to do.
  • This specification mainly describes a case where the present invention is applied in a communication environment in which each communication station broadcasts a beacon every predetermined frame period in an autonomous distributed wireless network. Although described as an embodiment, the gist of the present invention is not limited to this.
  • beacons are transmitted from a plurality of communication stations within a communication range, or each communication station operates at predetermined time intervals, and periodically operates at every time interval
  • Other forms of signal transmission in which a reserved or preferentially used band is set can be similarly applied to a communication system.
  • FIG. 1 is a diagram showing an example of the arrangement of communication devices constituting a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a functional configuration of a wireless communication device that operates as a communication station in a wireless network according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a procedure for each communication station transmitting a beacon in the autonomous distributed network according to the present invention.
  • FIG. 4 is a diagram showing a configuration example of a beacon transmission timing that can be arranged within a superframe period.
  • FIG. 5 is a diagram showing a state where priority is given to a beacon transmitting station within a superframe period.
  • FIG. 6 is a diagram showing a configuration of a superframe period.
  • FIG. 7 is a diagram showing an example of a format of a beacon ′ frame transmitted in the autonomous distributed wireless communication system according to the present embodiment.
  • FIG. 8 is a diagram for explaining a TBTT offset.
  • FIG. 9 is a diagram for explaining a procedure in which a newly entered communication station sets its own TBTT based on the NBOI of each beacon obtained from the beacon power received from the peripheral station.
  • FIG. 10 is a diagram showing a state in which a beacon collides due to a change in the arrival range of radio waves.
  • FIG. 11 is a diagram showing an example of a TBTT change procedure.
  • FIG. 12 is a diagram showing a modification of the TBTT changing procedure shown in FIG.
  • Figure 13 shows that when a beacon collision occurs due to a change in the radio wave arrival range, etc., one of the colliding communication stations moves the beacon transmission time (TBTT change), and In order to avoid collisions, a flowchart showing the device operation performed for each communication station is shown. It is one chart.
  • FIG. 14 is a diagram showing a state in which a collision of a beacon transmitted from each communication station is exposed when a new communication station turns on the power.
  • FIG. 15 is a diagram showing an example of a TBTT change procedure when a beacon collision is revealed due to the entry of a new communication station.
  • Figure 16 shows that when a beacon collision is revealed due to the emergence of a new entrant station, a beacon collision is requested by requesting one of the communicating stations to change the beacon transmission time (TBTT change).
  • 4 is a flowchart showing an apparatus operation executed by a communication station in order to avoid the problem.
  • FIG. 17 is a flowchart showing a processing procedure for a communication station to set a new TBTT within a superframe period.
  • Figure 18 is a diagram for explaining the procedure for searching for a low priority one from among the beacons in which TBTTs are placed in a superframe and setting the TBTT of its own beacon. It is.
  • Fig.19 shows a situation where a superframe is full of beacons for which TBTT has already been set, and the communication station removes beacons of other stations with low priority and newly sets TBTT.
  • FIG. 20 is a diagram showing a state where a communication station desiring to set a new beacon TBTT stops beacon transmission by a remote operation via a peripheral station and sets the TBTT of its own beacon. .
  • FIG. 21 is a diagram showing a state in which a communication station desiring to set a new beacon TBTT stops beacon transmission by a remote operation via a peripheral station and sets a TBTT of its own beacon. .
  • FIG. 22 is a diagram schematically showing a configuration of an ALERT field.
  • FIG. 23 is a diagram for explaining an operation in an infrastructure mode in a wireless network based on IEEE802.11.
  • FIG. 24 is a diagram for explaining an operation in an ad hoc mode in a wireless network based on IEEE802.11.
  • FIG. 25 is a chart showing an example of an access operation according to the RTSZCTS procedure.
  • FIG. 26 is a diagram showing a packet interval IFS defined in IEEE802.11.
  • FIG. 27 is a diagram for explaining the operation of a PCF (Point Coordination Function).
  • FIG. 28 is a diagram showing a state in which priority transmission is provided to traffic whose bandwidth is guaranteed by EDCF operation.
  • FIG. 29 is a diagram for explaining an operation for a communication station to start transmission in a TPP section and a FAP section, respectively.
  • FIG. 30 is a diagram showing how a communication station transmits a plurality of virtual beacons called auxiliary beacons to increase the priority use period.
  • FIG. 31 is a diagram showing a state transition diagram of a wireless communication device operating as a communication station.
  • FIG. 32 is a state transition diagram of a wireless communication apparatus operating as a communication station.
  • FIG. 33 is a diagram for explaining a collision detection procedure when a beacon of a communication station transmitting and receiving data collides.
  • FIG. 34 is a diagram for explaining a collision detection procedure when a beacon of a communication station transmitting and receiving data collides.
  • FIG. 35 is a diagram for explaining a collision detection procedure when a beacon of a communication station transmitting and receiving data collides.
  • FIG. 36 is a diagram for explaining a collision detection procedure when a beacon of a communication station transmitting and receiving data collides.
  • FIG. 37 is a diagram for explaining a collision detection procedure when a beacon of a communication station transmitting and receiving data collides.
  • FIG. 38 is a flow chart showing a communication procedure including a collision avoidance operation in a case where colliding signals are matched to the TBTT and even the random values of the signals are completely identical. .
  • Figure 39 shows the Serial field added to the auxiliary beacon or periodic transmission signal
  • FIG. 7 is a diagram showing a communication operation example for performing signal collision avoidance based on the content described in FIG.
  • FIG. 40 is a diagram showing a communication operation example for avoiding signal collision based on the description content of a serial field added to an auxiliary beacon or a periodic transmission signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

 各通信局が互いに送信するビーコンの衝突を回避しながら自律分散型の無線ネットワークを好適に形成する。  電波の到来範囲が移動し受信可能な状態になりビーコンが衝突した場合、通信局は自局のビーコン送信の直前に衝突のおそれがあるタイミングで他局のビーコンを受信したことに応答して、自局のビーコン送信位置を変更する。また、電波の届かない範囲にある2つの系から受信可能な新規の通信局が出現しビーコンの衝突が露呈した場合、新規参入局は、ビーコンが衝突するいずれか一方の通信局に対しビーコン送信タイミングの変更を要求する。

Description

明 細 書
無線通信システム、無線通信装置及び無線通信方法、並びにコンビユー タ ·プログラム 技術分野
[0001] 本発明は、無線 LAN (Local Area Network)のように複数の無線局間で相互に 通信を行なう無線通信システム、無線通信装置及び無線通信方法、並びにコンビュ ータ 'プログラムに係り、特に、制御局と被制御局の関係を有しないで各通信局が自 律分散的に動作することにより無線ネットワークが構築される無線通信システム、無 線通信装置及び無線通信方法、並びにコンピュータ ·プログラムに関する。
[0002] さらに詳しくは、本発明は、各通信局がネットワーク情報などを記載したビーコンを 所定のフレーム周期毎に報知し合うことにより自律分散型の無線ネットワークを形成 する無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ 'プロ グラムに係り、特に、各通信局が互いに送信するビーコンの衝突を回避しながら自律 分散型の無線ネットワークを形成する無線通信システム、無線通信装置及び無線通 信方法、並びにコンピュータ 'プログラムに関する。
[0003] また、本発明は、各通信局が所定の時間間隔単位で自律的に通信動作を行なう無 線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ 'プログラム に係り、特に、通信局が他局の信号との衝突を回避しながら所定の時間間隔毎に定 期的な信号の送受信を行なう無線通信システム、無線通信装置及び無線通信方法 、並びにコンピュータ 'プログラムに関する。
背景技術
[0004] 有線方式による LAN配線カゝらユーザを解放するシステムとして、無線 LANが注目 されている。無線 LANによれば、オフィスなどの作業空間において、有線ケーブルの 大半を省略することができるので、パーソナル 'コンピュータ (PC)などの通信端末を 比較的容易に移動させることができる。近年では、無線 LANシステムの高速化、低 価格化に伴い、その需要が著しく増加してきている。特に最近では、人の身の回りに 存在する複数の電子機器間で小規模な無線ネットワークを構築して情報通信を行な うために、パーソナル'エリア'ネットワーク(PAN)の導入が検討されている。例えば、 2. 4GHz帯や、 5GHz帯など、監督官庁の免許が不要な周波数帯域を利用して、異 なった無線通信システム並びに無線通信装置が規定されている。
[0005] 無線ネットワークに関する標準的な規格の 1つに IEEE (The Institute of Elec trical and Electronics Engineers) 802. 11 (例えば、非特許文献 1を参照のこ と)や、 HiperLANZ2 (例えば、非特許文献 2又は非特許文献 3を参照のこと)や IE EE802. 15. 3、 Bluetooth通信などを挙げることができる。 IEEE802. 11規格に ついては、無線通信方式や使用する周波数帯域の違いなどにより、 IEEE802. 11a 規格、 IEEE802. l ib規格…などの各種無線通信方式が存在する。
[0006] 無線技術を用いてローカル 'エリア'ネットワークを構成するために、エリア内に「ァク セス 'ポイント」又は「コーディネータ」と呼ばれる制御局となる装置を 1台設けて、この 制御局の統括的な制御下でネットワークを形成する方法が一般的に用いられて 、る
[0007] アクセス ·ポイントを配置した無線ネットワークでは、ある通信装置から情報伝送を行 なう場合に、まずその情報伝送に必要な帯域をアクセス 'ポイントに予約して、他の通 信装置における情報伝送と衝突が生じないように伝送路の利用を行なうという、帯域 予約に基づくアクセス制御方法が広く採用されている。すなわち、アクセス 'ポイントを 配置することによって、無線ネットワーク内の通信装置が互いに同期をとると 、う同期 的な無線通信を行なう。
[0008] ところが、アクセス 'ポイントが存在する無線通信システムで、送信側と受信側の通 信装置間で非同期通信を行なう場合には、必ずアクセス 'ポイントを介した無線通信 が必要になるため、伝送路の利用効率が半減してしまうという問題がある。
[0009] これに対し、無線ネットワークを構成する他の方法として、端末同士が直接非同期 的に無線通信を行なう「アドホック (Ad— hoc)通信」が考案されて!、る。とりわけ近隣 に位置する比較的少数のクライアントで構成される小規模無線ネットワークにおいて は、特定のアクセス 'ポイントを利用せずに、任意の端末同士が直接非同期の無線通 信を行なうことができるアドホック通信が適当であると思料される。
[0010] アドホック型無線通信システムには中央制御局が存在しな 、ので、例えば家庭用 電気機器力もなるホーム'ネットワークを構成するのに適している。アドホック 'ネットヮ ークには、 1台が故障又は電源オフになってもルーティングを自動的に変更するので ネットワークが破綻しにくい、移動局間でパケットを複数回ホップさせることにより高速 データレートを保ったままで比較的遠くまでデータを伝送することができる、と 、つた 特徴がある。アドホック 'システムにはいろいろな開発事例が知られている(例えば、 非特許文献 4を参照のこと)。
[0011] 例えば、 IEEE802. 11系の無線 LANシステムでは、制御局を配さなくとも自律分 散的にピア ·ッゥ'ピア(Peer to Peer)で動作するアドホック 'モードが用意されて いる。この動作モード下では、ビーコン送信時間になると各端末がランダムな期間を カウントし、その期間が終わるまでに他の端末のビーコンを受信しな力つた場合に、 自分がビーコンを送信する。
[0012] ここで、 IEEE802. 11を例にとって、従来の無線ネットワーキングの詳細について 説明する。
[0013] IEEE802. 11におけるネットワーキングは、 BSS (Basic Service Set)の概念に 基づいている。 BSSは、 AP (Access Point:制御局)のようなマスタが存在するイン フラ 'モードで定義される BSSと、複数の MT(Mobile Terminal:移動局)のみによ り構成されるアドホック 'モードで定義される IBSS (Independent BSS)の 2種類で 構成される。
[0014] インフラ 'モード:
インフラ 'モード時の IEEE802. 11の動作について、図 23を参照しながら説明す る。インフラ 'モードの BSSにおいては、無線通信システム内にコーディネイシヨンを 行なう APが必須である。
[0015] APは、自局周辺で電波の到達する範囲を BSSとしてまとめ、いわゆるセルラ 'シス テムで言うところの「セル」を構成する。 AP近隣に存在する MTは、 APに収容され、 B SSのメンバとしてネットワークに参入する。すなわち、 APは適当な時間間隔でビーコ ンと呼ばれる制御信号を送信し、このビーコンを受信可能である MTは APが近隣に 存在することを認識し、さらに APとの間でコネクション確立を行なう。
[0016] 図 23に示す例では、通信局 STA0が APとして動作し、他の通信局 STA1並び ST A2が MTとして動作している。ここで、 APとしての通信局 STAOは、同図右側のチヤ ートに記したように、一定の時間間隔でビーコン (Beacon)を送信する。次回のビー コンの送信時刻は、ターゲット 'ビーコン送信時刻(TBTT:Target Beacon Trans mit Time)というパラメータの形式によりビーコン内で報知されている。そして、時刻 が TBTTに到来すると、 APはビーコン送信手順を動作させて ヽる。
[0017] これに対し、 AP周辺の MTは、ビーコンを受信することにより、内部の TBTTフィー ルドをデコードすることにより次回のビーコン送信時刻を認識することが可能であるか ら、場合によっては (受信の必要がない場合には)、次回あるいは複数回先の TBTT まで受信機の電源を落としスリープ状態に入ることもある。
[0018] インフラ 'モード時には、 APのみが所定フレーム周期でビーコンを送信する。他方 、周辺 MTは APからのビーコンを受信することでネットワークへの参入を果たし、自ら はビーコンを送信しない。なお、本発明は、 APのようなマスタ制御局の介在なしでネ ットワークを動作させることを主眼とし、インフラ ·モードとは直接関連しな 、ことから、 インフラ 'モードに関してはこれ以上説明を行なわない。
[0019] アドホック 'モード:
もう一方のアドホック 'モード時の IEEE802. 11の動作について、図 24を参照しな がら説明する。
[0020] アドホック 'モードの IBSSにおいては、 MTは複数の MT同士でネゴシエーションを 行なった後に自律的に IBSSを定義する。 IBSSが定義されると、 MT群は、ネゴシェ ーシヨンの末に、一定間隔毎に TBTTを定める。各 MTは自局内のクロックを参照す ることにより TBTTが到来したことを認識すると、ランダム時間の遅延の後、未だ誰も ビーコンを送信して 、な 、と認識した場合にはビーコンを送信する。
[0021] 図 24に示す例では、 2台の MTが IBBSを構成する様子を示している。この場合、 I BSSに属するいずれか一方の MT力 TBTTが到来する毎にビーコンを送信するこ とになる。また、各 MTから送出されるビーコンが衝突する場合も存在している。
[0022] また、 IBSSにおいても、 MTは必要に応じて送受信機の電源を落とすスリープ状態 に入ることがある。但し、スリープ状態は本発明の要旨とは直接関連しないので、本 明細書では説明を省略する。 [0023] IEEE802. 11における送受信手順:
続いて、 IEEE802. 11における送受信手順について説明する。
[0024] アドホック環境の無線 LANネットワークにおいては、一般的に隠れ端末問題が生じ ることが知られている。隠れ端末とは、ある特定の通信局間で通信を行なう場合、通 信相手となる一方の通信局力 は聞くことができるが他方の通信局力 は聞くことが できな 、通信局のことであり、隠れ端末同士ではネゴシエーションを行なうことができ ないため、送信動作が衝突する可能性がある。
[0025] 隠れ端末問題を解決する方法論として、 RTSZCTS手順による CSMAZCAが知 られている。 IEEE802. 11においてもこの方法論が採用されている。
[0026] ここで、 CSMA (Carrier Sense Multiple Access with Collision Avoidance: 搬送波感知多重アクセス)とは、キャリア検出に基づいて多重アクセスを行なう接続方 式である。無線通信では自ら情報送信した信号を受信することが困難であることから 、 CSMA/CD (Collision Detection)ではなく CSMA/CA (Collision Avoid ance)方式により、他の通信装置の情報送信がないことを確認してから、自らの情報 送信を開始することによって、衝突を回避する。 CSMA方式は、ファイル転送や電子 メールなどの非同期データ通信に適しているアクセス方式である。
[0027] また、 RTSZCTS方式では、データ送信元の通信局が送信要求パケット RTS (Re quest To Send)を送信し、データ送信先の通信局力 確認通知パケット CTS (C1 ear To Send)を受信したことに応答してデータ送信を開始する。そして、隠れ端 末は RTS又は CTSのうち少なくとも一方を受信すると、 RTSZCTS手続に基づくデ ータ伝送が行なわれると予想される期間だけ自局の送信停止期間を設定すること〖こ より、衝突を回避することができる。
[0028] 図 25には、 RTSZCTS手順の動作例を示している。同図に示す例では、互いに 自律分散的に通信動作を行なう通信局 STA0力 通信局 STA1宛に何らかの情報( Data)を送信する場合の例が示されて!/ヽる。
[0029] まず、 STA0は、実際の情報の送信に先立ち、所定期間だけメディアがクリアである ことを確認した後に、情報の宛て先である STA1に向けて RTSパケットを CSMAの 手順に従って送信する。 STA1は、 RTSパケットを受信したことに応答して、 RTSを 受信できた旨を STAOにフィードバックする CTSパケットを送信する。
[0030] 送信側である STAOでは、 CTSを無事に受信が行なわれれば、メディアがクリアで あるとみなし、すぐさま情報 (Data)パケットを送信する。また、 STA1では、情報を無 事に受信し終えると、 ACKを返送し、これによつて 1パケット分の RTSZCTS送受信 トランザクションが終了する。
[0031] なお、情報送信元である STAOが RTSを送信した際、他の局がたまたまほぼ同時 になんらかの信号を送信した場合には、信号が衝突するため、情報受信先である ST A1は RTSを受信できない。この場合、 STA1は CTSを返送しない。この結果、 STA 0は、しばらくの間 CTSが受信されないことを理由に、先の RTSが衝突したことを認 識することができる。そして、 STAOは、ランダム 'バックオフをかけつつ、 RTSを再送 する手順が起動される。基本的には、このように衝突のリスクを負いながら送信権利 の獲得を競合する。
[0032] IEEE802. 11におけるアクセス競合方法:
続いて、 IEEE802. 11において規定されているアクセス競合方法について説明す る。
[0033] IEEE802. 11では、 4種類のパケット間隔(IFS : Inter Frame Space)が定義さ れている。ここでは、そのうち 3つの IFSについて図 26を参照しながら説明する。 IFS としては、短 、ものから順に SIFS (Short IFS)、 PIFS (PCF IFS)、 DIFS (DCF IFS)が定義されている。
[0034] IEEE802. 11では、基本的なメディア ·アクセス手順として CSMAが採用されてい るが (前述)、送信機が何かを送信する前には、メディア状態を監視しながらランダム 時間にわたりバックオフのタイマーを動作させ、この間に送信信号が存在しない場合 に始めて送信権利が与えられる。
[0035] 通常のパケットを CSMAの手順に従って送信する際(DCF (Distributed Coordi nation Functionと呼ばれる)には、何らかのパケットの送信が終了してから、まず D IFSだけメディア状態を監視し、この間に送信信号が存在しなければ、ランダム'バッ クオフを行ない、さらにこの間にも送信信号が存在しない場合に、送信権利が与えら れること〖こなって ヽる。 [0036] これに対し、 ACKなどの例外的に緊急度の高いパケットを送信する際には、 SIFS のパケット間隔の後に送信することが許されている。これにより、緊急度の高いバケツ トは、通常の CSMAの手順に従って送信されるパケットよりも先に送信することが可 能となる。
[0037] 要するに、異なる種類のパケット間隔 IFSが定義されている理由は、 IFSが SIFS、 PIFS, DIFSのいずれである力、すなわちパケット間隔の長さに応じてパケットの送 信権争い優先付けが行なわれる、という点にある。 PIFSがどのような目的で用いられ て 、るかにつ 、ては後述に譲る。
[0038] IEEE802. 11における帯城保証(1)
CSMAによるアクセス競合を行なう場合、一定の帯域を保証して確保することが不 可能である。このため、 IEEE802. 11では、帯域を保証して確保するためのメカ-ズ ムとして、 PCF (Point Coordination Function)が存在する。し力し、 PCFの基本 はポーリングであり、アドホック 'モードでは動作せず、インフラ 'モードにおいてのみ、 APの管理下で行なわれる。
[0039] 図 27には、 PCF動作により優先通信を提供する様子を示している。同図では、 ST AOが APとして動作し、 STA1と STA2が APの管理する BSSに参入している。そして 、 STA1が帯域を保証して情報の送信を行なう場合を想定している。
[0040] APとしての STA0は、例えばビーコンを送信した後に、 SIFSの間隔で STA1宛て に CF— Pollメッセージを送ることでポーリングを行なう。 CF— Pollを受信した STA1に は、データの送信権利を与えられ、 SIFS間隔でデータを送信することが許される。こ れに応答して、 STA1は SIFSの後にデータを送信する。 STA0が該送信データに 対する ACKを返送し、 1トランザクションが終了すると、 STA0は再度 STA1に対して ポーリングを行なう。
[0041] 図 27に示す例では、今回のポーリングが何らかの理由により失敗した場合が記さ れている。このとき、 STA0は、再度 STA1に対してポーリングした後、 SIFS経過後も STA1から情報が送信されてこな ヽことを認識すると、ポーリングが失敗したとみなし 、 PIFS間隔の後に再度ポーリングを行なう。再度のポーリングが成功すると、 STA1 からデータが送信され、 STA0から ACKが返送される。 [0042] この一連の手順の最中に、例えば STA2が送信したパケットを保持していたとしても 、 DIFSの時間間隔が過ぎる以前に SIFSあるいは PIFSの間隔で STA0あるいは ST A1が送信を行なってしまうため、 STA2に送信権利が移ることはない。すなわち、 A Pとしての STAOからポーリングを受けている STA1が常に優先権利を得ていることに なる。
[0043] IEEE802. 11における帯城保証(2)
IEEE802. 11では、さらなる帯域保証手段が検討されており、 Enhanced DCF ( EDCF)と呼ばれる手法が採用される予定となっている(IEEE802. l ieにおける Qo S拡張)。 EDCFは、帯域を保証する必要のある優先度の高いトラヒックに関してはラ ンダム'バックオフ値のとりうる幅を短く設定し、それ以外のトラヒックに関しては図 26 に示したパケット間隔 IFSやバックオフ値のとりうる幅を長く設定するようにした。この 結果、 PCFほど確定的ではないものの、統計的に優先度の高いトラヒックを優先して 送信可能にするメカニズムが実現する。
[0044] 図 28には、 EDCF動作により帯域を保証するトラフィックに優先送信を提供する様 子を示している。同図に示す例では、 STA1が優先トラヒックを STA0に送信しようと し、 STA2が非優先トラヒックを STA0に送信しょうとしている場合を想定している。ま た、両トラヒックとも基準 IFSは DIFS相当の時間が適用されているものと仮定する。
[0045] 時刻 TOからメディアがクリアになると、 STA1及び STA2がともに DIFSだけ時間の 経過を待つ。 TO力も DIFS経過後(時刻 T1)でもまだメディアがクリアなため、 STA1 と STA2はともにランダム 'バックオフにて決定した時間だけメディアがクリアであること を確認し始める。
[0046] EDCF動作によれば、 STA1のバックオフ値は優先トラヒックのため短ぐ STA2の ノ ックオフ値は非優先トラヒックのため長い。図 28では、各通信局の時刻 T1からのバ ックオフ値を矢印にて示して!/、る。 STA1のバックオフ値だけ時間が経過した時刻 T2 において、 STA1は RTSを送信し始める。一方、 STA2は、 STA1から送信された R TSを検知し、ノックオフの値を更新して次回の送信に備える。
[0047] また、 STAOは、 RTSを受信してから SIFSが経過した時刻 T3にて CTSを返送する 。 CTSを受信した STA1は、 CTSを受信してから SIFSが経過した時刻 T4でデータ の送信を開始する。そして、 STAOは、 STA1からのデータを受信して力 SIFSが経 過した時刻 T5にて ACKを返送する。
[0048] STAOによる ACKの返送が終了した時刻 T6において、メディアが再びクリアになる 。ここで、 STA1及び STA2はともに再度 DIFSだけ時間の経過を待つ。そして、 DIF S経過後(時刻 T7)でもまだメディアがクリアであるから、 STA1及び STA2はともにラ ンダム'バックオフにて決定した時間だけメディアがクリアであることを確認し始める。 ここでも、 STA1のバックオフ値は優先トラヒックのため再び短く設定され、時刻 T8に ぉ 、て STA2のバックオフ値よりも早く RTSの送信が行なわれる。
[0049] 上述したような手順により、アクセス権を競合する STA1と STA2の間では、取り扱う トラヒックの優先度に応じてアクセス権獲得の優劣が提供されている。なお、図示して いないが、 STA2のバックオフ値も徐々に小さくなるため、アクセス権利が与えられな くなるということはない。
[0050] 非特許文献 1 international Standard ISO/IEC 8802— 11: 1999 (E) ANSI /IEEE Std 802. 11, 1999 Edition, Parti 1 : Wireless LAN Medium Acc ess Control (MAC) and Physical Layer (PHY) Specifications
非特許文献 2 :ETSI Standard ETSI TS 101 761-1 VI. 3. 1 Broadband Ra dio Access Networks (BRAN); HIPERLAN Type 2 ; Data Link Control ( DLC) Layer; Parti: Basic Data Transport Functions
非特許文献 3 :ETSI TS 101 761-2 VI. 3. 1 Broadband Radio Access Net works (BRAN); HIPERLAN Type 2 ; Data Link Control (DLC) Layer; Pa rt2: Radio Link Control (RLC) sublayer
非特許文献 4: C. K. Tho著" Ad Hoc Mobile Wireless Network" (Prentice H all PTR社刊)
発明の開示
発明が解決しょうとする課題
[0051] 上述したように IEEE802. 11における送受信手順によれば、アクセス競合並びに 帯域保証の問題を解決することができる一方、以下に示すような幾つ力の課題が残 されている。 [0052] (1) Point Coordinatorの存在
IEEE802. 11においては、上述したように、 PCFによる QoS通信のメカニズムが提 供されている。しかしながら、 PCFはメディア ·アクセスを統括する APの存在により動 作するものである。 APが存在するネットワークでは、 APに不具合が生じると全ての通 信が提供できなくなるなどの問題が生じる。また、 APと通信できない場所にいる MT はネットワークに参画できないなどの問題がある。
[0053] (2) EDCFの衝突確率増大の問題
IEEE802. 11の EDCFのメカニズムでは、基本的には APのような Point Coordi natorが存在しなくても優先度の高いリンクを優先的に通すことが可能となる。しかし ながら、優先度の高い送信を複数局が同時に開始すると、バックオフが短く設定され るために衝突が多発し、通信効率が低下するという問題を招来する。また、優先度の 低 、トラヒックは長 、IFSが設定される場合もあり、これら優先度の低!、トラヒックが支 配的となる環境では、すべての通信局が長い IFSが経過した後に送信権利獲得競 合を行なうため、オーバーヘッドが大きくなり通信効率が下がるという問題が発生する 。さらに、 APのような制御局が存在しない場合には、ネットワークの許容負荷を超え るトラヒックが要求された場合、これを抑える術がなぐすべてのリンクにおいて上位レ ィャの要求を満たせなくなるという問題が生じる。複数のビデオ'ストリームなどを提供 するなどという場合には、大きな問題として浮上する。
[0054] (3)ビーコン衝突の問題
ネットワークを構築する際、特定の制御局又は自律分散的に動作する各通信局は 、ネットワーク情報などを記述したビーコンを所定間隔で報知する。このようなシステ ムでは、ビーコン衝突の問題が存在する。例えば IEEE802. 11では、インフラ 'モー ド並びにアドホック 'モードのいずれにおいても、同じエリアで且つ同一チャネル上で 複数局がビーコンの送信を行なう際、この問題が生じる。
[0055] アドホック 'モードでは、そもそもビーコン送信局がランダム 'バックオフにて定義され ているため、初手力もビーコンの衝突発生は回避できない。また、インフラ 'モードで は、単一 BSSしか存在しない場合には問題は生じないものの、ネットワークが場所的 に移動したり、周辺の電波遮断物が移動するなどの事象により複数の BSSが電波到 達範囲に入ったりした場合には、複数ビーコンが共存する形となる。このとき、ビーコ ンの送信時刻が重なっていた場合には、周辺局はビーコンを受信することができなく なる、という問題が発生する。
[0056] 本発明は上述したような技術的課題を鑑みたものであり、その主な目的は、制御局 となる装置を特に配置せずに各通信局が自律分散的に動作することにより無線ネット ワークが構築される、優れた無線通信システム、無線通信装置及び無線通信方法、 並びにコンピュータ 'プログラムを提供することにある。
[0057] 本発明のさらなる目的は、特定の制御局の介在なしに、通信品質を保証した自律 分散型のネットワークを構築することができる、優れた無線通信システム、無線通信 装置及び無線通信方法、並びにコンピュータ 'プログラムを提供することにある。
[0058] 本発明のさらなる目的は、特定の制御局が介在しない自律分散型のネットワークに おいて、衝突を回避しながらデータ送信を行なうことができる、優れた無線通信シス テム、無線通信装置及び無線通信方法、並びにコンピュータ 'プログラムを提供する ことにめる。
[0059] 本発明のさらなる目的は、通信局がビーコンを報知することにより構築されるネット ワークにおいて、複数の通信局間でのビーコンの衝突を好適に回避することができる 、優れた無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ · プログラムを提供することにある。
[0060] 本発明のさらなる目的は、各通信局が互いに送信するビーコンの衝突を回避しな 力 自律分散型の無線ネットワークを好適に形成することができる、優れた無線通信 システム、無線通信装置及び無線通信方法、並びにコンピュータ 'プログラムを提供 することにある。
[0061] 本発明のさらなる目的は、各通信局が所定の時間間隔単位で自律的に通信動作 を好適に行なうことができる、優れた無線通信システム、無線通信装置及び無線通信 方法、並びにコンピュータ 'プログラムを提供することにある。
[0062] 本発明のさらなる目的は、通信局が他局の信号との衝突を回避しながら所定の時 間間隔毎に定期的な信号の送受信を行なうことができる、優れた無線通信システム、 無線通信装置及び無線通信方法、並びにコンピュータ 'プログラムを提供することに ある。
課題を解決するための手段
[0063] 本発明は、上記課題を参酌してなされたものであり、その第 1の側面は、特定の制 御局を配置せず、各通信局が所定の間隔でネットワークに関する情報を記述したビ 一コンを送信し合うことによってネットワークを構築する自律分散型の無線通信システ ムであって、ネットワーク内で 2以上の通信局から送信されるビーコンの衝突を検出し 、該衝突の検出に応答して、少なくとも一方のビーコンの送信タイミングを変更するこ とによって衝突を解消することを特徴とする無線通信システムである。
[0064] 但し、ここで言う「システム」とは、複数の装置 (又は特定の機能を実現する機能モジ ユール)が論理的に集合した物のことを言い、各装置や機能モジュールが単一の筐 体内にある力否かは特に問わない。
[0065] 自律分散型の通信環境下では、各通信局は、所定の時間間隔でビーコン情報を 報知することにより、近隣 (すなわち通信範囲内)の他の通信局に自己の存在を知ら しめるとともに、ネットワーク構成を通知する。また、通信局は、各チャネル上でスキヤ ン動作を行ない、ビーコン信号を受信することにより、隣接局の通信範囲に突入した ことを検知するとともに、ビーコンに記載されている情報を解読することによりネットヮ ーク構成を知ることがでさる。
[0066] また、各通信局は、ビーコン送信タイミングに関する近隣装置情報をビーコン信号 に含めて送信するようにする。このような場合、通信局は、ビーコンを直接受信するこ とができる隣接局のネットワーク情報だけでなぐ自局はビーコンを受信できないが隣 接局が受信することができる次隣接局すなわち隠れ端末についてのビーコン情報も 取得することができる。
[0067] このような自律分散型のネットワークでは、新規に参入する通信局は、まずスキャン 動作すなわちスーパーフレーム長以上にわたり連続して信号受信を試み、周辺局の 送信するビーコンの存在確認を行なう。この過程で、周辺局からビーコンが受信され なかった場合には、通信局は適当なビーコン送信タイミングを設定する。一方、周辺 局から送信されるビーコンを受信した場合には、各受信ビーコンに記載されている近 隣装置情報を参照して、 V、ずれの既存局もビーコンを送信して!/、な 、タイミングを自 局のビーコン送信タイミングとして設定する。
[0068] 各通信局が静止して電波の到来範囲が変動しないという条件下では、上述のような 手順によりビーコンの衝突を回避することができる。これに対し、通信局が移動するな どにより電波の到達範囲が変動する場合、各通信局が送信するビーコンが衝突する ケースが発生する。
[0069] 例えば、電波の届かない範囲にある 2つの系で通信局がそれぞれ全く独立して同 じ送信タイミングを設定した後、電波の到来範囲が移動し受信可能な状態になると、 各局のビーコンが衝突するという事態に陥る。
[0070] あるいは、電波の届かない範囲にある 2つの系で通信局がそれぞれ全く独立して同 じ送信タイミングを設定した後、双方の系から受信可能な新規の通信局が出現するこ とにより各通信局が送信するビーコンの衝突が露呈するというケースも考えられる。
[0071] 本発明によれば、通信範囲内で 2以上の通信局から送信されるビーコンの衝突を 検出すると、少なくとも一方のビーコンの送信タイミングを変更することによって、各通 信局の自律的な動作によりビーコンの衝突を回避することができる。
[0072] ここで、ビーコンの送信タイミングを変更する通信局は、ビーコンの送信タイミングを 変更する旨の警告を記載したビーコンを周辺局に報知し、少なくとも所定期間だけス キャン動作を行な 、、周辺局がビーコン送信に使用して ヽな 、タイミングを発見して これを新規のビーコン送信タイミングに決定する。
[0073] 電波の届かない範囲にある 2つの系で通信局がそれぞれ全く独立して同じ送信タ イミングを設定した後、電波の到来範囲が移動し受信可能な状態になった場合には 、通信局同士で互いのビーコンが衝突することを認識することができる。
[0074] このような場合、いずれか一方の通信局が自局のビーコン送信タイミングを自発的 に移動することで、衝突を回避することができる。例えば、通信局は自局のビーコン 送信の直前に衝突のおそれがあるタイミングで他局のビーコンを受信したことに応答 して、 自局のビーコン送信位置を変更する。または、通信局は自局のビーコン送信の 直後に衝突のおそれがあるタイミングで他局のビーコンを受信したことに応答して、 自局のビーコン送信位置を変更する。
[0075] あるいは、一方の通信局が自発的にビーコン送信タイミングを変更するのではなぐ 自局のビーコン送信タイミング付近で他局のビーコンを受信しビーコンの衝突を認識 したときに、該他局に対してビーコン送信タイミングの変更を要求するようにしてもよ い。
[0076] また、電波の届かない範囲にある 2つの系で通信局がそれぞれ全く独立して同じ送 信タイミングを設定した後、双方の系力 受信可能な新規の通信局が出現することに より各通信局が送信するビーコンの衝突が露呈するといつた場合、この新規参入局 は、ビーコンが衝突する 、ずれか一方の通信局に対してビーコン送信タイミングの変 更を要求するようにしてもよい。ここで言うビーコン送信タイミングの変更には、ビーコ ン送信タイミングの移動の他に、ビーコン送信の停止を含むものとする。
[0077] ここで、本発明に係る無線通信ネットワークにお 、て、各通信局は、ビーコンを送信 したことに伴い、トラフィックの優先利用期間を獲得するようになっている。そして、各 通信局は、前記所定の時間間隔で、正規のビーコンを 1回だけ送信するとともに、該 正規のビーコンに類似する信号力 なる 1以上の補助ビーコンを送信することを許容 するようにしてちょい。
[0078] 例えば、各通信局が送信する補助ビーコンにはトラフィックのプライオリティが設定 され、プライオリティに関する情報をビーコンに記載して報知する。このような場合、ビ 一コンの衝突が発生したときには、互いのビーコンのプライオリティを参照し、プライ オリティの低いビーコンの送信元が自局のビーコン送信タイミングを変更するようにし てもよい。ここで言うビーコン送信タイミングの変更には、ビーコン送信タイミングの移 動の他に、ビーコン送信の停止を含むものとする。
[0079] また、ビーコンが衝突し合う通信局が隠れ端末に相当する場合、ビーコンを直接に は受信できないから、自局のビーコンとのプライオリティの比較を行なうことはできな い。
[0080] このような場合、通信局は、前記所定の時間間隔内で配置した!/、ビーコンの個数並 びにそのプライオリティを指定したビーコン停止要求を周辺局へ向けて送信する。一 方、このビーコン停止要求を受信した通信局は、前記所定の時間間隔内で指定され たプライオリティ以下のビーコンを指定された個数だけ検出し、各ビーコンの送信元 の通信局に対しビーコン停止要求を送信する。このような遠隔操作により、通信局は 、互いにビーコンを受信可能な近隣局と同様に、隠れ端末からも所望のビーコン送 信タイミングを得ることができる。
[0081] また、本発明の第 2の側面は、制御局と被制御局の関係を有さずに、各通信局が 所定の時間間隔毎に定期的な通信動作を行なうことによってネットワークを構築する 無線通信システムであって、通信局は、前記所定の時間間隔毎に定期的な信号送 受信を行なう場合に、該定期的な信号送受信に先立ち又は送受信を行なった後の 少なくとも一方において、他局からの送信信号の受信を試み、該定期的な信号送受 信と他局の信号送信との衝突の有無を検出することを特徴とする無線通信システム である。
[0082] 本発明の第 2の側面に係る無線通信システムでは、例えば各通信局が所定の時間 間隔毎に定期的な通信動作を自律的に行なっている通信環境下で、通信局は、所 定時間間隔内の適当なタイミングで予約帯域又は優先利用期間を得て、所定の時 間間隔毎に定期的な通信動作を行なうことが許容されている。
[0083] そして、通信局は、前記所定の時間間隔毎に定期的な信号送受信を行なう場合に 、該定期的な信号送受信に先立ち、あるいは信号の送受信を行なった後に、他局か らの送信信号の受信を試み、該定期的な信号送受信と他局の信号送信との衝突の 有無を検出する。具体的には、自局の定期的な信号送受信タイミング付近で他局の 送信信号を受信することにより、定期的な信号送受信タイミングの衝突を検出するこ とができる。また、自局の信号送受信タイミング付近で他局の定期的な送信信号を受 信することにより、定期的な信号送受信タイミングの衝突を検出することができる。
[0084] また、通信局は、前記定期的な信号送受信の衝突を検出したことに応答して、少な くとも所定期間だけスキャン処理を行ない、他局の周期的信号の送信状況の確認を 試みるようにしてちょい。
[0085] ここで、通信局は、定期的な信号送受信に先立ち他局からの送信信号の受信を試 み、該定期的な信号送受信と他局の信号送信との衝突を検出したことに応答して、 該他局の信号との衝突を回避できるように自局の信号の送信タイミングを遅延させる ことで、衝突を回避することができる。
[0086] このような場合、通信局は、衝突回避のために定期的な信号の送信タイミングを変 更した旨を記載した信号を送信するようにしてもよい。衝突を起こした他局は、衝突 回避のために定期的な信号の送信タイミングを変更した旨を記載した信号を受信し て、自局が送信した後に送信しょうとしていた定期的な信号との衝突を検出すること ができる。
[0087] また、通信局は、定期的に送受信される信号のスケジュールを記載したビーコンを 報知しあうようにしてもよい。この場合、各通信局は、互いの定期的な信号送受信時 刻を抽出することができる。そして、周辺局力も受信したビーコンに記載された情報に 基づいて定期的信号送受信区間の衝突を検出したときには、衝突している信号送受 信タイミングを変更するようにすればよ!、。
[0088] また、通信局は、定期的に送受信される信号に優先度が設定し、定期的に送受信 される信号のスケジュールとともに優先度を記載したビーコンを報知するようにしても よい。そして、周辺局力も受信したビーコンに記載された情報に基づいて定期的信 号送受信区間の衝突を検出したときには、優先度の低い定期的信号送受信のタイミ ングを変更することで、衝突を回避することができる。
[0089] また、通信局は、定期的信号送受信を行なう信号の一部に当該通信局のビーコン の送信時刻からの相対時刻情報を記載するようにしてもよい。この場合、通信局は、 他局の送信する定期的に送信される信号を受信すると、前記定期的に送信される信 号に記載されているビーコンの送信時刻からの相対時刻情報を基に当該信号の送 信局におけるビーコンの送信時刻を抽出して衝突を検出することができる。そして、 当該時刻に行なわれている他の信号の送信を停止させることにより、衝突を回避する ことができる。
[0090] また、通信局は、定期的に送信を行なう信号の一部に、当該信号が定期的にスケ ジュールされて送信されている旨を示す情報を記載するようにしてもよい。さらに、定 期的に送信を行なう信号の一部に、当該信号の優先度を示す情報を記載するように してもよい。このような場合、通信局は、定期的信号送受信の衝突を検出したことに 応答して優先度の低い定期的信号送受信のタイミングを変更することができる。
[0091] また、通信局は、定期的な信号の送受信の送信時刻にランダムなオフセットを付カロ するようにしてもよい。そして、通信局は、定期的に送受信される信号の一部に送信 時刻のランダムなオフセットに関わる情報を掲載するようにしてもよい。
[0092] また、通信局は、定期的信号の送受信を新規に生成するに先立ち、スキャン動作 を行なうことにより他局の定期的信号送受信と衝突しない時間帯を抽出し、該新規の 定期的信号の送受信タイミングを他局の定期的信号送受信と衝突しない時間帯に設 定するようにしてちょい。
[0093] また、通信局は、ネットワークに関する情報を取得する際、当該情報を得るために 必要な情報が送信される時間帯を抽出し、該抽出された時間帯において信号受信 を試みるようにして、スキャン動作を効率的に行なうようにしてもょ 、。
[0094] また、通信局は、 1つ以上の定期的信号送受信区間を獲得して所望の通信局と信 号の送受信を行なっている際には、定期的信号送受信区間における信号受信状態 を監視するようにしてもよい。そして、信号受信状態が著しく劣化したときには、他の 信号と衝突していると推定されることから、このような定期的信号送受信区間を開放 するようにしてちょい。
[0095] また、通信局は、周辺局の定期的信号送受信区間以外の時間帯では、伝送路上 の所定時間の信号検出とランダムなバックオフ期間の待機を伴う CSMA方式に従つ たアクセス手順に基づ 、て信号の送受信を行なうようにしてもょ 、。
[0096] また、本発明の第 3の側面は、制御局と被制御局の関係を有さずに、各通信局が 所定の時間間隔でネットワークに関する情報を記述したビーコンを送信し合うことによ つてネットワークを構築する無線通信システムであって、通信局は、前記所定の時間 間隔毎に定期的な信号送受信を行なう場合に、定期的信号送受信を行なう信号の 一部に当該通信局のビーコンの送信時刻からの相対時刻情報を記載し、周辺局か ら受信した信号に記載されて!、る相対時刻情報に基づ 、て当該周辺局のビーコンと それ以外の局が送受信する信号との衝突を検出することを特徴とする無線通信シス テムである。
[0097] 本発明の第 3の側面に係る無線通信システムでは、各通信局がビーコン信号を定 期的に報知し合うことによってネットワークが構築される。そして、通信局は、所定時 間間隔内の適当なタイミングで予約帯域又は優先利用期間を得て、所定の時間間 隔毎に定期的な通信動作を行なうことが許容されている。 [0098] ここで、所定の時間間隔毎に定期的な通信動作を行なう通信局は定期的信号送受 信を行なう信号の一部に当該通信局のビーコンの送信時刻からの相対時刻情報を 記載することにより、通信局同士で衝突を検出し合うことができる。具体的には、通信 局は、周辺局力 受信した信号に記載されている相対時刻情報に基づいて当該周 辺局のビーコンの送信時刻を抽出し、同時刻に自局が信号を送信していたときに当 該周辺局のビーコンとの衝突を検出することができる。
[0099] また、通信局は、周辺局力 受信した信号に記載されて 、る相対時刻情報に基づ V、て当該周辺局のビーコンの送信時刻を抽出し、同時刻に当該周辺局のビーコンを 受信できな力つたときに他局の信号との衝突を検出することができる。
[0100] また、通信局は、信号の衝突を検出したことに応答して衝突を回避するようにしても よい。例えば、通信局は、抽出されたビーコン信号の送信時刻に行なわれている他 の信号の送信を停止させることにより衝突を回避することができる。
[0101] また、本発明の第 4の側面は、特定の制御局を配置せず、各通信局が所定の時間 間隔でネットワークに関する情報を記述したビーコンを送信し合うことによって構築さ れる自律分散型の通信環境下にお 、て無線通信動作を行なうための処理をコンビュ ータ ·システム上で実行するようにコンピュータ可読形式で記述されたコンピュータ · プログラムであって、
自局に関する情報を記載したビーコン信号を生成するビーコン信号生成ステップと 周辺局力 受信したビーコン信号を解析するビーコン信号解析ステップと、 ビーコン送信タイミングを制御するタイミング制御ステップと、
他局との間で発生したビーコンの衝突を回避する衝突回避ステップと、 を具備することを特徴とするコンピュータ ·プログラムである。
[0102] また、本発明の第 4の側面は、制御局と被制御局の関係を有しない通信環境下で 所定の時間間隔毎に通信動作を行なうための処理をコンピュータ ·システム上で実行 するようにコンピュータ可読形式で記述されたコンピュータ 'プログラムであって、 前記所定の時間間隔毎に定期的な信号の送受信する信号送受信ステップと、 定期的な信号送受信に先立ち又は送受信を行なった後の少なくとも一方において 、他局力 の送信信号の受信を試み、該定期的な信号送受信と他局の信号送信と の衝突の有無を検出する衝突検出ステップと、
を具備することを特徴とするコンピュータ ·プログラムである。
[0103] また、本発明の第 5の側面は、制御局と被制御局の関係を有さずに、各通信局が 所定の時間間隔でネットワークに関する情報を記述したビーコンを送信し合うことによ つて構築される通信環境下で無線通信動作を行なうための処理をコンピュータ 'シス テム上で実行するようにコンピュータ可読形式で記述されたコンピュータ 'プログラム であって、
自局に関する情報を記載したビーコン信号を生成するビーコン信号生成ステップと 周辺局力 受信したビーコン信号を解析するビーコン信号解析ステップと、 信号の一部にビーコンの送信時刻からの相対時刻情報を記載して前記所定の時 間間隔毎に定期的な信号送受信を行なう信号送受信ステップと、
周辺局力 受信した信号に記載されている相対時刻情報に基づいて当該周辺局 のビーコンとそれ以外の局が送受信する信号との衝突を検出する衝突検出ステップ と、
を具備することを特徴とするコンピュータ ·プログラムである。
[0104] 本発明の第 4乃至第 6の各側面に係るコンピュータ 'プログラムは、コンピュータ'シ ステム上で所定の処理を実現するようにコンピュータ可読形式で記述されたコンビュ 一タ.プログラムを定義したものである。換言すれば、本発明の第 4乃至第 6の各側面 に係るコンピュータ ·プログラムをコンピュータ ·システムにインストールすることによつ てコンピュータ ·システム上では協働的作用が発揮され、無線通信装置として動作す る。このような無線通信装置を複数起動して無線ネットワークを構築することによって 、本発明の第 1乃至第 3の各側面に係る無線通信システムと同様の作用効果を得る ことができる。
発明の効果
[0105] 本発明によれば、特定の制御局の介在なしに、通信品質を保証した自律分散型の ネットワークを構築することができる、優れた無線通信システム、無線通信装置及び 無線通信方法、並びにコンピュータ 'プログラムを提供することができる。
[0106] また、本発明によれば、特定の制御局が介在しない自律分散型のネットワークにお いて、衝突を回避しながらデータ送信を行なうことができる、優れた無線通信システム 、無線通信装置及び無線通信方法、並びにコンピュータ 'プログラムを提供すること ができる。
[0107] また、本発明によれば、通信局がビーコンを報知することにより構築されるネットヮー クにおいて、複数の通信局間でのビーコンの衝突を好適に回避することができる、優 れた無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ 'プロ グラムを提供することができる。
[0108] また、本発明によれば、各通信局が互いに送信するビーコンの衝突を回避しながら 自律分散型の無線ネットワークを好適に形成することができる、優れた無線通信シス テム、無線通信装置及び無線通信方法、並びにコンピュータ 'プログラムを提供する ことができる。
[0109] また、本発明によれば、各通信局が所定の時間間隔単位で自律的に通信動作を 好適に行なうことができる、優れた無線通信システム、無線通信装置及び無線通信 方法、並びにコンピュータ ·プログラムを提供することができる。
[0110] また、本発明によれば、通信局が他局の信号との衝突を回避しながら所定の時間 間隔毎に定期的な信号の送受信を行なうことができる、優れた無線通信システム、無 線通信装置及び無線通信方法、並びにコンピュータ 'プログラムを提供することがで きる。
[0111] 本発明によれば、制御局のような Point Coordinatorの存在しない分散制御環境 であっても、 QoS通信を提供することが可能である。また、分散制御環境であっても、 ネットワークの負荷状態を各通信局が自律的に把握することが可能であり、且つネッ トワークの許容負荷を超えるトラヒックを要求された場合には、通信プロトコルの上位 レイヤの要求する優先度に応じて、優先度の低 、トラヒックのみを排除することが可能 となる。
[0112] また、本発明によれば、ネットワークの交錯などによりビーコンが衝突した場合にお いても、定常的にビーコンの衝突が生じる事態を避けることができ、ネットワークに存 在する各ノードの存在を的確に把握することができるため、コネクション断などの発生 確率を飛躍的に抑えることが可能となる。
[0113] 本発明のさらに他の目的、特徴や利点は、後述する本発明の実施形態や添付する 図面に基づくより詳細な説明によって明らかになるであろう。
発明を実施するための最良の形態
[0114] 以下、図面を参照しながら本発明の実施形態について詳解する。
[0115] A.システム構成
本発明にお 、て想定して 、る通信の伝搬路は無線であり、複数の通信局間でネッ トワークを構築する。本発明で想定している通信は蓄積交換型のトラヒックであり、パ ケット単位で情報が転送される。また、以下の説明では、各通信局は単一のチャネル を想定して 、るが、複数の周波数チャネルすなわちマルチチャネル力 なる伝送媒 体を用いた場合に拡張することも可能である。
[0116] 本発明に係る無線ネットワーク 'システムは、コーディネータを配置しない自律分散 型のシステム構成であり、緩やかな時分割多重アクセス構造を持った伝送 (MAC)フ レームによりチャネル 'リソースを効果的に利用した伝送制御が行なわれる。また、各 通信局は、 CSMAに基づくアクセス手順に従い直接非同期的に情報を伝送するアド ホック通信を行なうこともできる。
[0117] このように制御局を特に配置しない自律分散型の無線通信システムでは、各通信 局はチャネル上でビーコン情報を報知することにより、近隣 (すなわち通信範囲内)の 他の通信局に自己の存在を知らしめるとともに、ネットワーク構成を通知する。通信局 は伝送フレーム周期の先頭でビーコンを送信するので、伝送フレーム周期はビーコ ン間隔によって定義される。また、各通信局は、伝送フレーム周期に相当する期間だ けチャネル上をスキャン動作することにより、周辺局力 送信されるビーコン信号を発 見し、ビーコンに記載されている情報を解読することによりネットワーク構成を知る(又 はネットワークに参入する)ことができる。各通信局は、ビーコン信号の交換により互 いの伝送フレーム周期内の送受信タイミングを通知し合うことで、自律分散的に CS MA手順によりメディアへのランダム ·アクセスを行な 、つつ、緩やかな時分割多重ァ クセスを実現することができる。 [0118] 図 1には、本発明の一実施形態に係る無線通信システムを構成する通信装置の配 置例を示している。この無線通信システムでは、特定の制御極を配置せず、各通信 装置が自律分散的に動作し、アドホック 'ネットワークが形成されている。同図では、 通信装置 # 0から通信装置 # 6までが、同一空間上に分布して!/、る様子を表わして いる。
[0119] また、同図において各通信装置の通信範囲を破線で示してあり、その範囲内にあ る他の通信装置と互いに通信ができるのみならず、自己の送信した信号が干渉する 範囲として定義される。すなわち、通信装置 # 0は近隣にある通信装置 # 1、 # 4、と 通信可能な範囲にあり、通信装置 # 1は近隣にある通信装置 # 0、 # 2、 # 4、と通信 可能な範囲にあり、通信装置 # 2は近隣にある通信装置 # 1、 # 3、 # 6、と通信可能 な範囲にあり、通信装置 # 3は近隣にある通信装置 # 2、と通信可能な範囲にあり、 通信装置 # 4は近隣にある通信装置 # 0、 # 1、 # 5、と通信可能な範囲にあり、通信 装置 # 5は近隣にある通信装置 # 4、と通信可能な範囲にあり、通信装置 # 6は近隣 にある通信装置 # 2、と通信可能な範囲にある。
[0120] ある特定の通信装置間で通信を行なう場合、通信相手となる一方の通信装置から は聞くことができるが他方の通信装置力 は聞くことができない通信装置、すなわち「 隠れ端末」が存在する。
[0121] 図 2には、本発明の一実施形態に係る無線ネットワークにおいて通信局として動作 する無線通信装置の機能構成を模式的に示している。図示の無線通信装置は、制 御局を配置しない自律分散型の通信環境下において、同じ無線システム内では効 果的にチャネル ·アクセスを行なうことにより、衝突を回避しながらネットワークを形成 することができる。
[0122] 図示の通り、無線通信装置 100は、インターフェース 101と、データ'バッファ 102と 、中央制御部 103と、ビーコン生成部 104と、無線送信部 106と、タイミング制御部 1 07と、アンテナ 109と、無線受信部 110と、ビーコン解析部 112と、情報記憶部 113 とで構成される。
[0123] インターフェース 101は、この無線通信装置 100に接続される外部機器 (例えば、 パーソナル 'コンピュータ(図示しない)など)との間で各種情報の交換を行なう。 [0124] データ'バッファ 102は、インターフェース 101経由で接続される機器力も送られて きたデータや、無線伝送路経由で受信したデータをインターフェース 101経由で送 出する前に一時的に格納しておくために使用される。
[0125] 中央制御部 103は、無線通信装置 100における一連の情報送信並びに受信処理 の管理と伝送路のアクセス制御を一元的に行なう。中央制御部 103では、例えば、ビ ーコン衝突時における衝突回避処理などの動作制御が行なわれる。衝突回避の処 理手順として、自局のビーコン送信位置の移動や、自局のビーコン送信停止、他局 へのビーコン送信位置変更 (ビーコン送信位置の移動又は停止)要求などが挙げら れる力 これらの処理手順の詳細については後述に譲る。
[0126] ビーコン生成部 104は、近隣にある無線通信装置との間で周期的に交換されるビ ーコン信号を生成する。無線通信装置 100が無線ネットワークを運用するためには、 自己のビーコン送信位置や周辺局からのビーコン受信位置などを規定する。これら の情報は、情報記憶部 113に格納されるとともに、ビーコン信号の中に記載して周囲 の無線通信装置に報知する。ビーコン信号の構成については後述する。無線通信 装置 100は、伝送フレーム周期の先頭でビーコンを送信するので、無線通信装置 10 0が利用するチャネルにおける伝送フレーム周期はビーコン間隔によって定義される ことになる。
[0127] 無線送信部 106は、データ'バッファ 102に一時格納されているデータやビーコン 信号を無線送信するために、所定の変調処理を行なう。また、無線受信部 110は、 所定の時間に他の無線通信装置から送られてきた情報やビーコンなどの信号を受 信処理する。
[0128] 無線送信部 106及び無線受信部 110における無線送受信方式は、例えば無線 L ANに適用可能な、比較的近距離の通信に適した各種の通信方式を適用することが できる。具体的には、 UWB (Ultra Wide Band)方式、 OFDM (Orthogonal Fre quency Division Multiplexing:直交周波数分割多重)方式、 CDMA (Code Di vision Multiple Access :符号分割多元接続)方式などを採用することができる。
[0129] アンテナ 109は、他の無線通信装置宛に信号を所定の周波数チャネル上で無線 送信し、あるいは他の無線通信装置力 送られる信号を収集する。本実施形態では 、単一のアンテナを備え、送受信をともに並行しては行なえないものとする。
[0130] タイミング制御部 107は、無線信号を送信並びに受信するためのタイミングの制御 を行なう。例えば、伝送フレーム周期の先頭における自己のビーコン送信タイミング や、他の通信装置からのビーコン受信タイミング、他の通信装置とのデータ送受信タ イミング、並びにスキャン動作周期などを制御する。
[0131] ビーコン解析部 112は、隣接局力 受信できたビーコン信号を解析し、近隣の無線 通信装置の存在などを解析する。例えば、隣接局のビーコンの受信タイミングや近隣 ビーコン受信タイミングなどの情報は近隣装置情報として情報記憶部 113に格納さ れる。
[0132] 情報記憶部 113は、中央制御部 103において実行される一連のアクセス制御動作 などの実行手順命令 (衝突回避処理手順などを記述したプログラム)や、受信ビーコ ンの解析結果から得られる近隣装置情報などを蓄えておく。
[0133] 本実施形態に係る自律分散型ネットワークでは、各通信局は、所定のチャネル上で 所定の時間間隔でビーコン情報を報知することにより、近隣 (すなわち通信範囲内) の他の通信局に自己の存在を知らしめるとともに、ネットワーク構成を通知する。ビー コン送信周期のことを、ここではスーパーフレーム(Super Frame)と定義し、例えば 80ミリ秒とする。
[0134] 新規に参入する通信局は、スキャン動作により周辺局からのビーコン信号を聞きな がら、通信範囲に突入したことを検知するとともに、ビーコンに記載されている情報を 解読することによりネットワーク構成を知ることができる。そして、ビーコンの受信タイミ ングと緩やかに同期しながら、周辺局力 ビーコンが送信されていないタイミングに自 局のビーコン送信タイミングを設定する。
[0135] ここで、本実施形態に係る各通信局のビーコン送信手順について、図 3を参照しな がら説明する。
[0136] 各通信局は、周辺で発信されるビーコンを聞きながら、ゆるやかに同期する。新規 に通信局が現われた場合、新規通信局は既存の通信局のビーコン送信タイミングと 衝突しな 、ように、自分のビーコン送信タイミングを設定する。
[0137] 周辺に通信局がいない場合、通信局 01は適当なタイミングでビーコンを送信し始 めることができる。ビーコンの送信間隔は 80ミリ秒である(前述)。図 3中の最上段に 示す例では、 B01が通信局 01から送信されるビーコンを示している。
[0138] 以降、通信範囲内に新規に参入する通信局は、既存のビーコン配置と衝突しない ように、自己のビーコン送信タイミングを設定する。このとき、各通信局はビーコン送 信の直後に優先利用領域 (TPP)を獲得することから (後述)、各通信局のビーコン送 信タイミングは密集しているよりも伝送フレーム周期内で均等に分散している方が伝 送効率上より好ましい。したがって、本実施形態では、基本的に自身が聞こえる範囲 でビーコン間隔が最も長い時間帯のほぼ真中でビーコンの送信を開始するようにし ている。
[0139] 例えば、図 3中の最上段に示すように、通信局 01のみが存在するチャネル上にお いて、新たな通信局 02が現われたとする。このとき、通信局 02は、通信局 01からの ビーコンを受信することによりその存在とビーコン位置を認識し、図 3の第 2段目に示 すように、通信局 01のビーコン間隔のほぼ真中に自己のビーコン送信タイミングを設 定して、ビーコンの送信を開始する。
[0140] さらに、新たな通信局 03が現われたとする。このとき、通信局 03は、通信局 01並び に通信局 02のそれぞれから送信されるビーコンの少なくとも一方を受信し、これら既 存の通信局の存在を認識する。そして、図 3の第 3段に示すように、通信局 01及び通 信局 02から送信されるビーコン間隔のほぼ真中のタイミングで送信を開始する。
[0141] 以下、同様のアルゴリズムに従って近隣で通信局が新規参入する度に、ビーコン間 隔が狭まっていく。例えば、図 3の最下段に示すように、次に現われる通信局 04は、 通信局 02及び通信局 01それぞれが設定したビーコン間隔のほぼ真中のタイミング でビーコン送信タイミングを設定し、さらにその次に現われる通信局 05は、通信局 02 及び通信局 04それぞれが設定したビーコン間隔のほぼ真中のタイミングでビーコン 送信タイミングを設定する。
[0142] なお、各通信局のビーコン送信タイミングを集中して配置し、残りのスーパーフレー ム周期では受信動作を停止して装置の消費電力を低減させるという利用方法もある 。この場合、通信を行う通信局間ではビーコン送信タイミングを集中させるなどという 処理が施され、スーパーフレーム周期中の 1箇所あるいは複数箇所にビーコンが集 中して送信される。
[0143] あるいは、通信局固有の送信データ容量に合わせて、ビーコン送信タイミングを設 定することもある。この場合、送信データ量が多い通信局は次ビーコンまでの間隔が 長くなるような時刻にビーコン送信タイミングを設定し、送信データ量が少ない通信局 は次ビーコンまでの間隔が短くなるような時刻にビーコン送信タイミングを設定するこ とちある。
[0144] 但し、帯域 (伝送フレーム周期)内がビーコンで溢れな 、ように、最小のビーコン間 隔 B を規定しておき、 B 内に 2以上のビーコン送信タイミングを配置することを許 min min
容しない。例えば、 80ミリ秒の伝送フレーム周期でミニマムのビーコン間隔 B を 5ミリ
min 秒に規定した場合、電波の届く範囲内では最大で 16台の通信局までしか収容でき ないことになる。
[0145] 図 4には、スーパーフレーム内で配置可能なビーコン送信タイミングの構成例を示 している。但し、同図に示す例では、 80ミリ秒からなるスーパーフレーム内における時 間の経過を、円環上で時針が右回りで運針する時計のように表して 、る。
[0146] 図 4に示す例では、 0から Fまでの合計 16個の位置 0— Fがビーコン送信を行なうこ とができる時刻すなわちビーコン送信タイミングを配置可能な「スロット」として構成さ れている。図 3を参照しながら説明したように、既存の通信局が設定したビーコン間隔 のほぼ真中のタイミングで新規参入局のビーコン送信タイミングを順次設定していくと いうアルゴリズムに従って、ビーコン配置が行なわれたものとする。 B を 5ミリ秒と規
min
定した場合には、 1スーパーフレームにっき最大 16個までしかビーコンを配置するこ とができない。すなわち、 16台以上の通信局はネットワークに参入できない。
[0147] なお、図 3並びに図 4では明示されていないが、各々のビーコンは、各ビーコン送 信時刻である TBTT (Target Beacon Transmission Time)から故意に若干の時 間オフセットを持った時刻で送信されている。これを「TBTTオフセット」と呼ぶ。本実 施形態では、 TBTTオフセット値は擬似乱数にて決定される。この擬似乱数は、一意 に定められる擬似ランダム系列 TOIS (TBTT Offset Indication Sequence)によ り決定され、 TOISはスーパーフレーム周期毎に更新される。
[0148] TBTTオフセットを設けることにより、 2台の通信局がスーパーフレーム上では同じ スロットにビーコン送信タイミングを配置している場合であっても、実際のビーコン送 信時刻がずらすことができ、あるスーパーフレーム周期にはビーコンが衝突しても、 別のスーパーフレーム周期では各通信局は互いのビーコンを聞き合う(あるいは、近 隣の通信局は双方のビーコンを聞く)ことができるので、自局のビーコンが衝突したこ とを認識できる。通信局は、スーパーフレーム周期毎に設定する TOISをビーコン情 報に含めて周辺局に報知する(後述)。
[0149] また、本実施形態では、各通信局は、データの送受信を行なって!/、な 、場合で、送 受信が不要な時間帯に送受信機の電源を切るパワーセーブ状態にあっても、信号 送信時には、自局が信号を送信する前後の一定期間は受信動作を行なうこと、すな わち" Listen Before Send"、": Listen After Send"という衝突検出のための通 信動作が義務付けられる。ここで言う信号送信には、通常のデータ'フレームの送信 とビーコン送信の双方を含む。
[0150] また、通信局は、データ送受信を行なわない場合であっても、数秒に一度は 1スー パーフレームにわたり連続して受信機を動作させてスキャン動作を行ない、周辺ビー コンのプレゼンスに変化がな 、か、あるいは各周辺局の TBTTがずれて!/ヽな ヽかを 確認することも義務付けられる。なお、このスキャン動作は、ビーコンや優先送信期間 が衝突していることを検出した場合、ある優先送信期間における通信が断絶した場 合,などの異常事態の検出に起因しても行なわれることもある (後述)。
[0151] スキャン処理は、基本的には 1スーパーフレームにわたり連続して受信機を動作さ せるフルスキャンを行なうが、必ずしもこれに限定されるものではない。例えば、通信 局が認識する「ビーコンが送信されてくる時間帯」に限り受信機を動作させる部分ス キャンを行なう場合もある。ビーコンが送信されてくる時間帯とは、図 4に示したような ビーコン送信タイミングの配置を行なう本実施形態にぉ 、ては、各 TBTTの前後又 は直後がこれに相当する力 他の実施形態においてはこれに限らない。
[0152] 他局のビーコンを受信するなどにより TBTTにずれを確認することができる。本実施 形態では、自局の認識する TBTT群を基準に B
min Z2ミリ秒以内を TBTTと規定し ているものを「進んでいる」、 +B Z2ミリ秒以内を TBTTと規定しているものを「遅れ
min
ている」ものと定義する。そして、通信局は、最も遅れている TBTTに合わせて時刻を 修正する。但し、系内で同じルールが規定されていれば最も進んでいる TBTTに併 せて時刻を修正するようにしても構わない。これにより、系内の全通信局が最も遅れ ている(あるいは進んでいる) TBTTに併せて時刻を修正することになり、この修正さ れた時刻がネットワークに伝播して 、くことになる。結果として直接通信ができな ヽ通 信局同士であっても同一の基準時刻を共有することができる。
[0153] B.送信傷先区間 TPP
各通信局はビーコンを一定間隔で送信して 、るが、ビーコンを送信した後しばらく の間(例えば 480マイクロ秒)は、該ビーコンを送信した局に送信の優先権を与えら れる。図 5には、ビーコン送信局に優先権が与えられる様子を示している。本明細書 では、この優先区間を Transmission Prioritized Period (TPP)と定義する。また、 ΤΡΡに続くスーパーフレームの残りの区間を Fairly Access Period (FAP)と定義さ れ、この期間では通信局間で通常の CSMAZCA方式により通信が行なわれる。
[0154] 図 6には、スーパーフレームの構成を示している。同図に示すように、各通信局から のビーコンの送信に続いて、そのビーコンを送信した通信局の TPPが割り当てられ、 TPPの長さ分だけ時間が経過すると FAPになり、次の通信局力 のビーコンの送信 で FAPが終わる。
[0155] 各通信局は、ビーコン並びに自局の TPP内でのパケットの送信に関しては、 SIFS での間隔での送信を許容し、それ以外のパケットについては DIFS +バックオフでの 送信を行なうことが許容される。すなわち、ビーコンを送信する度に、優先的にデータ を送信する機会が得られることになる。
[0156] また、各通信局は、基本的にはスーパーフレーム周期毎に 1回のビーコンを送信す る力 場合に応じて、複数個のビーコンあるいはビーコンに類する信号を送信するこ とが許容され、これらのビーコンを送信する度に TPPを獲得することができる。言い換 えれば、通信局は、スーパーフレーム毎に送信するビーコンの個数に応じて優先的 な送信用のリソースを確保できることになる。ここで、通信局がスーパーフレーム周期 の先頭で必ず送信するビーコンのことを「正規ビーコン」、それ以外のタイミングで TP P獲得又はその他の目的で送信する 2番目以降のビーコンのことを「補助ビーコン」と 呼ぶことにする。 [0157] 図 29には、通信局が TPP区間及び FAP区間においてそれぞれ送信を開始するた めの動作を図解している。
[0158] TPP区間内では、通信局は、自局のビーコンを送信した後、より短いパケット間隔 S IFSの後に送信を開始することができる。図示の例では、ビーコン送信局は SIFSの 後に RTSパケットを送信する。そして、その後も、送信される CTS、データ、 ACKの 各パケットも同様に SIFSのフレーム間隔で送信することにより、近隣局に邪魔されず 、一連の通信手順を実行することができる。
[0159] これに対し、 FAP区間では、ビーコン送信局は、他の周辺局と同様に LIFS +ラン ダム'バックオフだけ待機して力も送信開始する。言い換えれば、すべての通信局に ランダムなバックオフにより送信権が均等に与えられることになる。図示の例では、他 局のビーコンが送信された後、まず DIFSだけメディア状態を監視し、この間にメディ ァがクリアすなわち送信信号が存在しなければ、ランダム 'バックオフを行ない、さら にこの間にも送信信号が存在しない場合に、 RTSパケットを送信する。なお、 RTS信 号に起因して送信される CTS、データ、 ACKなどの一連のパケットは SIFSのフレー ム間隔で送信することにより、近隣局に邪魔されず、一連のトランザクションを実行す ることがでさる。
[0160] 上述した信号の往来管理方法によれば、優先度の高!、通信局がより短!、フレーム 間隔を設定することで優先的に送信権を獲得することができる。
[0161] 但し、優先送信期間 TPPは、基本単位としては最小ビーコン間隔以下の一定期間 に固定され、その後は FAPというすベての通信局が共通の IFSとランダム 'バックオフ で均等な条件で通信権を得る期間へと移行する。このため、通信局が、上位レイヤか らの要求により、スーパーフレーム毎に 1回のビーコン送信で得られる優先送信期間 TPPを超えた通信帯域が必要となった場合には、例えば正規ビーコン以外に補助ビ 一コンを送信し、さらに TPPの獲得を行なうことができるようになつている。なお、帯域 確保を目的とする場合には、優先送信期間 TPPを連続的に配置することも許容され る。この場合、最小ビーコン間隔を上回る期間にわたり TPPを継続することができる。
[0162] 図 30には、通信局が補助ビーコンという仮想的なビーコンを複数送信して、この優 先利用期間を増やす様子を示している。図示の例では、通信局 # 1は、上位レイヤ 力も要求された通信帯域を確保するために、スーパーフレーム内で空 、て 、るビー コン.スロットを発見し、自局の補助ビーコンを配置することにより、 1スーパーフレーム で複数の TPPを得ている。なお、上記の通り、通信局 # 1が連続して TPPを確保して いる区間に関しては、図 30においては通信局 # 1の TPP間に存在している FAPを 排除し、連続した TPPとして利用する場合もある。 NBOI情報の交換により自律分散 的にスーパーフレームを構築するシステムにおいては、隠れ端末問題も考慮して空 きビーコン 'スロットを探索することができるので、補助ビーコンを利用した帯域の獲得 方法は簡易である。
[0163] 図 31には、本実施形態において、通信局として動作する無線通信装置の状態遷 移図を示している。図示の例では、自局が優先送信権を獲得している TPP期間に相 当する「優先送信モード」と、すべての通信局が優先送信権を得ていない FAP期間 に相当する「通常送信モード」という 2つの状態が定義されている。
[0164] 通信局は、通常動作モード下では、 PIFS +ランダム 'バックオフだけ待機してから 送信開始する。
[0165] ここで、自局のビーコン送信タイミング TBTTが到来し、ビーコンを送信した後、優 先送信モードに遷移し、優先送信期間 TPPを獲得する。
[0166] 優先送信モード下では、 SIFSのフレーム間隔で送信することにより、近隣局に邪 魔されず、送信権を獲得することができる。
[0167] 通信局は、上位レイヤ力 要求される帯域量に相当する長さの優先送信期間 TPP だけ優先送信モードを継続する。
[0168] そして、 TPPが終了し、 FAPへ移行したとき、あるいは他局のビーコンを受信したと きには、優先送信モードから通常動作モードへ復帰する。
[0169] また、図 32には、通信局として動作する無線通信装置の状態遷移図についての他 の例を示している。図示の例では、自局が優先送信権を獲得している TPP期間に相 当する「優先送信モード」と、すべての通信局が優先送信権を得ていない FAP期間 に相当する「通常送信モード」に加え、他局の優先送信期間 TPPに相当する「優先 送信モード」 、う状態が定義されて 、る。
[0170] 通信局は、通常動作モード下では、通常のフレーム間隔 PIFSにランダム 'バックォ フを加えた期間だけ待機して力も送信開始する。 FAPの期間中はシステム内のすべ ての通信局は、 PIFS+バックオフにて送信する
[0171] ここで、自局のビーコン送信タイミング TBTTが到来し、ビーコンを送信した後、優 先送信モードに遷移し、優先送信期間 TPPを獲得する。
[0172] 優先送信モード下では、 PIFSよりも短 、フレーム間隔 SIFSの待機時間だけで送 信することにより、近隣局に邪魔されず、送信権を獲得することができる。通信局は、 上位レイヤ力 要求される帯域量に相当する長さの優先送信期間 TPPだけ優先送 信モードを継続する。そして、 TPPが終了し、 FAPへ移行したときには、通常送信モ ードへ復帰する。
[0173] また、他局からのビーコンを受信し、当該他局の優先送信期間に突入したときには 、非優先送信モードに遷移する。非優先送信モード下では、通常送信モード時のフ レーム間隔 PIFSよりもさらに長いフレーム間隔 DIFSにランダム 'バックオフをカ卩えた 期間だけ待機してカゝら送信開始する。
[0174] そして、他局の TPPが終了し、 FAPへ移行したときには、通常送信モードへ復帰す る。
[0175] なお,上記では、通信局は、周辺局の TPP期間においても DIFSのフレーム間隔 にて送信を継続的に試みる場合を例示した力 他局が TPPである期間においては 送信を試みずに電源を切るなどしてパワーセーブ状態に入る場合もある。また、 DIF Sのフレーム間隔にて送信を継続的に試みるのではなぐ他の手法により TPPの開 放を確認の後に送信を試みるような利用例もある。
[0176] 正規ビーコンはネットワーク構築のために送信されるのに対し、補助ビーコンは優 先送信期間 TPPを獲得する目的で送信されることから、補助ビーコンが正規ビーコ ンに含まれるすべての情報 (後述)が掲載されている必要はない。そのため、補助ビ 一コンには、 TPP獲得に関連する情報のみが含まれている場合もある。極端な例で は、補助ビーコンは、本信号が TPPを獲得した上で送信されている旨を記載した 1ビ ット (若しくは数ビット程度)の情報で構成することもできる。
[0177] また、自律分散的な通信システムにおいて、補助ビーコンを用いなくても、通信局 が優先送信期間 TPPを獲得することができる仕組みを実現することができる。補助ビ 一コンを使用しな 、システムでは、通信局が優先送信期間 TPPを得て送信する信号 の一部に優先送信期間 TPPを利用して送信して 、る旨を記載することによっても、補 助ビーコンを使用して優先送信期間 TPPを獲得したことを報知する場合と同様のネ ットワーク動作 (衝突回避動作)を実現することができる。この点の詳細は後述に譲る 。各通信局は、ビーコン信号の報知、若しくはデータ'フレームなどの信号の一部の 記載に基づ 、て互 、のスーパーフレーム内の送受信タイミングを通知し合 、、自律 分散的に CSMA手順によりメディアへのランダム 'アクセスを行ないつつ、緩やかな 時分割多重アクセスを実現することができる。
[0178] なお、ここではビーコン送信局がビーコン送信の直後から TPPが開始する例を示し た力 これには限定されるものではなぐ例えば、ビーコンの送信時刻から相対位置( 時刻)で TPPの開始時刻を設定するようにしてもよい。
[0179] また、上記の説明では、 TPP中の通信局にのみ優先送信権が与えられるという説 明を行なったが、 TPP中の通信局に呼び出された通信局にも優先送信権 TPPを与 える。基本的に TPPにおいては、送信を優先するが、 自通信局内に送信するものは な 、が、他局が自局宛てに送信した 、情報を保持して 、ることが判って 、る場合に は、その「他局」宛てにページング(Paging)メッセージあるいはポーリング(Polling) メッセージを投げたりしてもょ 、。
[0180] 逆に、ビーコンを送信したものの、 自局には何も送信するものがない場合でかつ他 局が自局宛てに送信した 、情報を保持して 、ることを知らな 、場合、このような通信 局は、通信動作を行なわず、 TPPで与えられた送信優先権を放棄し、何も送信しな い。すると、 DIFS +バックオフあるいは PIFS +バックオフ経過後に他局がこの TPP の時間帯でも送信を開始する。
[0181] 図 6に示したようにビーコン送信した直後に TPPが続くという構成を考慮すると、各 通信局のビーコン送信タイミングは密集しているよりも伝送フレーム周期内で均等に 分散している方が伝送効率上より好ましい。したがって、本実施形態では、基本的に 自身が聞こえる範囲でビーコン間隔が最も長い時間帯のほぼ真中でビーコンの送信 を開始するようにしている。勿論、各通信局のビーコン送信タイミングを集中して配置 し、残りの伝送フレーム周期では受信動作を停止して装置の消費電力を低減させる という利用方法もある。
[0182] 本実施形態に係る無線ネットワークにおける衝突時の挙動において、ビーコンの衝 突回避動作は、正規ビーコン同士の衝突時も、正規ビーコンと補助ビーコンの衝突、 並びに補助ビーコン同士の衝突時にもほぼ同様の原理が適応可能である。さらに言 えば、優先送信期間 TPPの獲得によりスーパーフレーム毎に定期的に送信される信 号 (データ'フレームなど)も、スーパーフレーム間隔で送受信されるという性質上、衝 突の検出並びに衝突の回避動作に関しビーコンと同様に扱うことができる。例えば、 補助ビーコン送信が伴われない優先送信期間同士の衝突時の処理においても、ビ 一コンの場合と同様の衝突検出並びに衝突回避の手順により同様の効果を得ること ができる。そこで、以下では、便宜上、正規ビーコンだけでなぐ補助ビーコン並びに 優先送信期間 TPPの衝突に関しても、併せてビーコンの衝突として説明を行なうこと にする。
[0183] C.ビーコンのフレーム 'フォーマット
図 7には、本実施形態に係る自律分散型の無線通信システムにおいて送信される ビーコン 'フレームのフォーマット一例を示している。
[0184] 図示の例では、ビーコンには、送信元局を一意に示すアドレスである TA(Transmi tter Address)フィールドと、当該ビーコンの種類を示す Typeフィールドと、周辺局 力も受信可能なビーコンの受信時刻情報である NBOIZNBAI (Neighboring Bea con Offset Information/ Neighboring Beacon Activity Information)フィ 一ルドと、当該ビーコンを送信したスーパーフレーム周期における TBTTオフセット 値(前述)を示す情報である TOIS (TBTT Offset Indication Sequence)フィール ドと、 TBTTの変更やその他各種の伝達すべき情報を格納する ALERTフィールドと 、当該通信局が優先的にリソースを確保している量を示す TxNumフィールドと、当 該スーパーフレーム周期内で複数のビーコンを送信する場合に当該ビーコンに割り 振られた排他的な一意のシリアル番号を示す Serialフィールドなどが含まれている。
[0185] Typeフィールドには、当該ビーコンの種類が 8ビット長のビットマップ形式で記述さ れる。本実施形態では、ビーコンが、各通信局が 1スーパーフレーム毎のその先頭で 1回だけ送信する「正規ビーコン」、あるいは優先的送信権を得るために送信されて 、る「補助ビーコン」の 、ずれであるかを識別するための情報として、プライオリティを 示す 0から 255までの値を用いて示される。具体的には、 1スーパーフレーム毎に 1回 送信することが必須である正規ビーコンの場合は最大のプライオリティを示す 255が 割り当てられ、補助ビーコンに対してはトラフィックのプライオリティに相当する 0から 2 54までの!/、ずれかの値が割り当てられる。
[0186] 補助ビーコンを使用しな 、システムにお 、ては、予約利用期間又は優先利用期間 TPPを設定して定期的に送信する信号 (データ'フレームなど)の予約又は優先利用 におけるプライオリティを示すために、 Typeフィールドを信号の一部に記載すること ができる。
[0187] NBOIフィールドは、スーパーフレーム内において自局が受信可能な周辺局のビ 一コンの位置 (受信時刻)を記述した情報である。本実施形態では、図 4に示したよう に 1スーパーフレーム内で最大 16個のビーコンを配置なスロットが用意されているこ とから、受信できたビーコンの配置に関する情報を 16ビット長のビットマップ形式で記 述する。すなわち、自局の正規ビーコンの送信時刻を基準として NBOIフィールドの 先頭ビット (MSB)にマッピングするとともに、自局が受信可能なビーコンの位置 (受 信時刻)を自局の正規ビーコンの送信時刻からの相対位置のビットにマッピングし、 自局の正規又は補助ビーコンの相対位置 (オフセット)並びに受信可能なビーコンの 相対位置 (オフセット)に対応するビットに 1を書き込み、それ以外の相対位置に対応 するビット位置は 0のままとする。
[0188] 例えば、図 4に示したように最大 16局の通信局 0— Fが収容されている通信環境下 で、通信局 0力 1100, 0000, 0100, 0000」のような NBOIフィールドを作った場合 には、「通信局 1並び通信局 9からのビーコンが受信可能である」旨を伝えることにな る。つまり、受信可能なビーコンの相対位置に対応するビットに関し、ビーコンが受信 可能である場合には 1がマークされ、受信されてない場合には 0すなわちスペースを 割り当てる。また、 MSBが 1になっているのは自局がビーコンを送信しているためで、 自局が補助ビーコンを送信して ヽる時刻に相当する場所も 1をマークする。
[0189] なお、上記では NBOIフィールドがスーパーフレーム中の時刻に対応するビットマツ プにて送受信されることを想定して説明した力 NBOIフィールドを必ずしもビットマツ プ形式で構成する必要はなぐスーパーフレーム中のどの時間帯が通信用途に利用 されているかを示す情報群で構成され、結果的に上記の処理が施すことが可能な形 式で送受信されていれば本発明の目的を達成することができる。
[0190] また、上記では送信並びに受信ビーコンの相対位置(時刻)をマークすると説明し た力 勿論優先送信期間の時刻を NBOI中にマークすることもでき、これによつて、ビ ーコン同士の衝突に加え、優先送信期間 TPPを利用して定期的に送受信されてい る信号とビーコンとの衝突、並びに定期的な送受信信号同士の衝突を検出すること ができる。
[0191] また、 NBAIフィールドは、ビーコン受信の隠れ端末を軽減する目的で、ビーコンの フレーム ·フォーマット中に NBAIフィールドが設定されており、 NBOIフィールドと同 様のフォーマットで「自局が実際に受信処理を行なっているビーコン」を特定する情 報が記載される。 NBAIフィールドは、 NBOIフィールドと同様のフォーマットで、自局 の正規ビーコンの送信時刻を基準にビットが配置され、自局が実際に受信処理を行 なっている TBTTを特定する情報がビットマップ形式で記載される。
[0192] 各通信局は、スリープ 'モード状態においては他局のビーコンを受信しない。このた め、スリープ 'モード状態においては、 NBAIビットには、オールゼロがセットされた状 態で (但し、自局がビーコン送信を行なう時刻を除く)、ビーコンが送信される。一方、 他局との通信状態に入ると、周辺局の正規ビーコンを受信する動作を行なう。この場 合、 NBAIビットには、周辺局の正規ビーコンの受信時刻(TBTT)に対応するビット に 1がセットされた状態でビーコンが送信される。
[0193] なお、周辺局が補助ビーコンを送信している場合、当該補助ビーコンによる優先的 な送信が自局に宛てて行なわれると判断される場合に限り、受信される補助ビーコン の受信時刻 (TBTT)に対応する NABIビットに 1をセットする。補助ビーコンによる優 先的な送信が自局に宛てて行なわれるかどうかは、当該補助ビーコンを送信してい る通信局との間で通信状態に入っていることを基に判断する。
[0194] また、さらに、補助ビーコン毎に当該補助ビーコンに付随する TPPにて送信するデ ータの宛先がなんらかの手段により指定されている場合、上記データの宛先が自局 であると判断される補助ビーコンに限り、当該補助ビーコンの受信時刻 (TBTT)に対 応する NBAIビットに 1をセットする。すなわち、通信局は、当該時間帯に送信される 補助ビーコン並びに他局が TPPを利用して送信した信号が自局に宛てて送信され ているか(自局が当該信号を受信する必要がある力 否かにより、 NBAIビットに 1を セットする力否かを判断する。
[0195] 一方、ビーコンを受信した局側では、受信ビーコン中の NBAIビットを、 Rx NBOI Tableを作成したときと同様の手順 (前述)により、ビーコン受信時刻に応じてシフトし ながら ORをとり、当該スーパーフレーム内に設定されている各 TBTTにおいて送信 不許可処理を行なうか否かを判断する。
[0196] 該当する時刻の NBAIビットの ORをとつた結果が 1であった場合、通信局は、当該 TBTTの時刻あるいはそれに若干先立つ時刻から TBTTオフセットの最大長 +ビー コン長にて規定される一定期間に渡り送信不許可状態にし、他局のビーコン受信を 妨げないよう考慮する。但し、当該 TBTTが自局のビーコン送信時刻であった場合に は、送信不許可処理を行なわず、ビーコン情報を含むフレームを送信する。
[0197] TOISフィールドでは、上述の TBTTオフセットを決定する擬似ランダム系列が格納 されており、当該ビーコンがどれだけの TBTTオフセットを以つて送信されているかを 示す。 TBTTオフセットを設けることにより、 2台の通信局がスーパーフレーム上では 同じスロットにビーコン送信タイミングを配置している場合であっても、実際のビーコン 送信時刻がずらすことができ、あるスーパーフレーム周期にはビーコンが衝突しても 、別のスーパーフレーム周期では各通信局は互いのビーコンを聞き合う(あるいは、 近隣の通信局は双方のビーコンを聞く)、すなわち衝突を認識することができる。
[0198] 図 8には、 TBTTと実際のビーコン送信時刻を示している。図示のように、 TBTT、 TBTT+ 20マイクロ秒、 TBTT+40マイクロ秒、 TBTT+60マイクロ秒、 TBTT+8 0マイクロ秒、 TBTT + 100マイクロ秒、 TBTT+ 120マイクロ秒のいずれかの時刻と なるよう TBTTオフセットを定義した場合、スーパーフレーム周期毎にどの TBTTオフ セットで送信するかを決定し、 TOISを更新する。
[0199] また、他局の信号との衝突の検出などに起因して、送信局が意図した時刻に送信 できない場合には、 TOISにオールゼロなどを格納し、ビーコンを受信可能な周辺局 に対し、今回のビーコン送信タイミングは意図した時刻に行なえな力つた旨を伝達す る。 TOISフィールドの具体的な使用形態については後述に譲る。
[0200] ALERTフィールドには、異常状態において、周辺局に対して伝達すべき情報を格 納する。例えば、ビーコンの衝突回避などのため自局の正規ビーコンの TBTTを変 更する予定がある場合や、また周辺局に対し補助ビーコンの送信の停止を要求する 場合には、その旨を ALERTフィールドに記載する。 ALERTフィールドの具体的な 使用形態については後述に譲る。
[0201] TxNumフィールドは、当該局がスーパーフレーム周期内で送信している補助ビー コンの個数が記載される。通信局はビーコン送信に続!ヽて TPPすなわち優先送信権 が与えられることから、スーパーフレーム周期内での補助ビーコン数は優先的にリソ ースを確保して送信を行なっている時間率に相当する。
[0202] Serialフィールドには、当該スーパーフレーム内で複数のビーコンを送信する場合 に当該ビーコンに割り振られたシリアル番号が書き込まれる。ビーコンのシリアル番号 として、スーパーフレーム内に送信する各々のビーコンに排他的で一意の番号が記 載される。本実施形態では、自局の正規ビーコンを基準に、何番目の TBTTで送信 している補助ビーコンであるかを示す相対時刻情報をシリアル番号として Serialフィ 一ルドに記載される。
[0203] なお、正規ビーコンはネットワーク構築のために送信されるのに対し、補助ビーコン は優先送信期間 TPPを獲得する目的で送信されることから、正規ビーコンに含まれ るすべての情報 (後述)が掲載されている必要はない。そのため、補助ビーコンには、 TPP獲得に関連する一部の情報のみが含まれている場合もある。
[0204] また、補助ビーコンを使用しな!/、システムでは、優先送信期間 TPPを得て送信する 信号の一部に優先送信期間を利用して送信している信号に正規ビーコンと同様の 情報を記載することにより、優先送信期間 TPPを利用して定期的に送受信されて!/ヽ る信号とビーコンとの衝突、並びに定期的な送受信信号同士の衝突を、ビーコン同 士の衝突と同様に扱うことができる。
[0205] 例えば、優先送信期間 TPPに対しプライオリティを設定する場合には、補助ビーコ ン又は優先送信期間を利用して定期的に送信される信号にも Typeフィールドを含め る必要がある。 [0206] また、優先送信期間 TPPを利用して定期的に送信される信号の送信タイミングにラ ンダムなオフセットを与える場合や、衝突回避のために定期的な送受信信号の送信 タイミングを変更するメカニズムを採用する場合には、補助ビーコン又は優先送信期 間を利用して定期的に送信される信号にも TOISフィールドを含める必要がある。
[0207] また、ビーコンとの衝突検出のために、優先送信期間 ΤΡΡを利用して定期的に送 信される信号の送信タイミングと正規ビーコンとの相対時刻位置 (正規ビーコン力 の オフセット)を通信局同士で通知し合いたい場合には、補助ビーコン又は優先送信 期間を利用して定期的に送信される信号にも Serialフィールドを含める必要がある。
[0208] D.正規ビーコンの TBTTの設定
通信局は電源投入後、まずスキャン動作すなわちスーパーフレーム長以上にわた り連続して信号受信を試み、周辺局の送信するビーコンの存在確認を行なう。この過 程で、周辺局力もビーコンが受信されな力つた場合には、通信局は適当なタイミング を TBTTとして設定する。一方、周辺局力も送信されるビーコンを受信した場合には 、周辺局力 受信した各ビーコンの NBOIフィールドを当該ビーコンの受信時刻に応 じてシフトしながら論理和(OR)をとつて参照することにより、最終的にマークされてい ないビット位置に相当するタイミングの中力もビーコン送信タイミングを抽出する。
[0209] 基本的には、通信局はビーコン送信の直後に優先利用領域 (TPP)を獲得すること から、各通信局のビーコン送信タイミングはスーパーフレーム周期内で均等に分散し ている方が伝送効率上より好ましい。したがって、周辺局から受信したビーコン力も得 た NBOIの ORをとつた結果、スペースのランレングスが最長となる区間の中心をビー コン送信タイミングとして定める。
[0210] なお、ランレングスが最長となる TBTT間隔が最小の TBTT間隔よりも小さ 、場合 ( すなわち B 以下の場合)には、新規通信局はこの系に参入することができない。
min
[0211] また、他の実施形態においては、通信局の属性などに応じて、既に送信されている ビーコンの直後など隣接する時刻に自局のビーコン送信時刻 TBTTを設定する場合 もある。この場合、実際に通信を行なう通信局の間でビーコン送信時刻をまとめるよう 配慮するなどの処理が付加されることになる。
[0212] 図 9には、新規に参入した通信局が周辺局力 受信したビーコン力 得た各ビーコ ンの NBOIに基づいて自局の TBTTを設定する様子を示している。同図に示す例で は、新規に登場した通信局 Aに着目し、通信局 Aの周辺には通信局 0、通信局 1、通 信局 2が存在しているという通信環境を想定している。そして、通信局 Aは、スキャン 動作によりスーパーフレーム内にこの 3つの局 0— 2からのビーコンが受信できたとす る。
[0213] 周辺局のビーコン受信時刻を自局の正規ビーコンに対する相対位置として扱い、 NBOIフィールドはこれをビットマップ形式で記述している(前述)。そこで、通信局 A では、周辺局から受信できた 3つのビーコンの NBOIフィールドを各ビーコンの受信 時刻に応じてシフトし、時間軸上でビットの対応位置を揃えた上で、各タイミングの N BOIビットの ORをとることで、 NBOIを統合して参照する。
[0214] 周辺局の NBOIフィールドを統合して参照した結果、得られている系列が図 9中" O R of NBOIs"で示されている「1101, 0001, 0100, 1000」である。 1はスーパーフ レーム内で既に TBTTが設定されて 、るタイミングの相対位置を、 0は TBTTが設定 されていないタイミングの相対位置を示している。この系列において、スペース(ゼロ) が最長ランレングスとなる場所が新規にビーコンを配置する候補となる。図 9に示す 例では、最長ランレングスが 3であり、候補が 2箇所存在していることになる。そして、 通信局 Aは、このうち 15ビット目を自局の正規ビーコンの TBTTに定めている。
[0215] 通信局 Aは、 15ビット目の時刻を自局の正規ビーコンの TBTT (すなわち自局のス 一パーフレームの先頭)として設定し、ビーコンの送信を開始する。このとき、通信局 Aが送信する NBOIフィールドは、ビーコン受信可能な通信局 0— 2のビーコンの各 受信時刻を、自局の正規ビーコンの送信時刻からの相対位置に相当するビット位置 をマークしたビットマップ形式で記載したものである、図 9中の" NBOI for TX (1 Beacon TX) "で示す通りとなる。
[0216] なお、通信局 Aが補助ビーコンを送信するなどにより優先送信権利を得る際には、 さらにこの後、周辺局の NBOIフィールドを統合した" OR of NBOIs"で示されている 系列のスペース (ゼロ)の最長ランレングスを探し、探し当てたスペースの箇所に補助 ビーコン (優先送信期間)の送信時刻を設定する。図 9に示す例では、 2つの補助ビ 一コンを送信する (すなわち、 2つの優先送信期間を獲得する)場合を想定しており, "OR of NBOIs"の 6ビット目と 11ビット目のスペースの時刻に補助ビーコンの送信タ イミング (優先送信期間の設定タイミング)を設定している。この場合、通信局 Aが送 信する NBOIフィールドは、自局の正規ビーコン並びに周辺局から受信するビーコン の相対位置に加え、さらに自局が補助ビーコンの送信を行なっている箇所 (正規ビー コンに対する相対位置)にもマークされ、 "NBOI for TX (3 Beacon TX),,で示さ れている通りとなる。
[0217] 各通信局が上述したような処理手順で自局のビーコン送信タイミング ΤΒΤΤを設定 してビーコンの送信を行なう場合、各通信局が静止して電波の到来範囲が変動しな いという条件下では、ビーコンの衝突を回避することができる。また、送信データの優 先度に応じて、補助ビーコン (又は複数のビーコンに類する信号)をスーパーフレー ム内で送信するなどにより優先送信期間を設定することにより、ある時間帯に特定通 信局間での通信に優先的にリソースを割り当て、 QoS通信を提供することが可能で ある。また、周辺力も受信したビーコン数 (NBOIフィールド)を参照することにより、各 通信局がシステムの飽和度を自律的に把握することができるので、分散制御システム でありながら、通信局毎に系の飽和度を加味しつつ優先トラヒックの収容を行なうこと が可能となる。さらに、各通信局が受信ビーコンの NBOIフィールドを参照することで 、ビーコン送信時刻は衝突しないように配置されるので、複数の通信局が優先トラヒッ クを収容した場合であっても、衝突が多発すると 、つた事態を避けることができる。
[0218] E.ビーコン衝突シナリオ 衝突回擗丰順
各通信局が静止して電波の到来範囲が変動しないという条件下では、ビーコンの 衝突を回避することができる(前述)。これに対し、通信局が移動するなどにより電波 の到達範囲が変動する場合、各通信局が送信するビーコンが衝突するケースが発 生する。
[0219] 図 10には、電波の到来範囲の変動によりビーコンが衝突する様子を示している。同 図では、ネットワークを構築して 、る系同士が接近してくる場合である。
[0220] 図 10上段では、通信局 STA0と STA1は、通信局 STA2と STA3とは電波の届力 ない範囲に存在しており、 STA0と STA1が通信を行なっている。また、これとは全く 独立して STA2と STA3が通信を行なっている。この場合、系毎に独立して各局のビ ーコン送信タイミングを設定することになるが、図 10上段の右側に記されている通り、 互いに認識して 、な 、局同士で運悪く重なってビーコン送信タイミングが設定されて いるとする。
[0221] その後、各局 (電波の到来範囲)が移動し、図 10下段に示すように各局が送受信 可能な状態になると、各局のビーコンが衝突するという事態に陥る。
[0222] このような場合、衝突を起こした少なくとも一方の局がビーコンの送信時刻を変更し て衝突を回避する必要がある。図 11には、衝突の検出並びに TBTT変更手順の一 例を示している。ここでは、 STAOの送信するビーコンの TBTTと STA2の送信する ビーコンの TBTTが時刻 TBTTOにて完全に一致してしまって!/、る場合を例示して!/ヽ る。
[0223] 時刻 TOでは、 STA0と STA2ともビーコン送信の TBTTとなり、時刻 TOから各々 T BTTオフセットだけずれた時刻にビーコンを送信する。時刻 TOでは、 STA0の TBT Tオフセットと STA2の TBTTオフセットがたまたま同じであったため、両ビーコンは衝 突し、 STA0と STA2はともにビーコンが衝突していることを検知することができない。 但し、各通信局は、送信動作と受信動作を同時に起動することができないものとする
[0224] 次のスーパーフレームが訪れ、時刻 T1で STAOと STA2がともに TBTTを迎えるた め、再度ビーコンの送信処理が起動される。ここで、 STA2は TBTTオフセットがゼロ である一方、 STAOは TBTTオフセットとして比較的大きな値が選択されたとする。 T BTTオフセットにより実際のビーコン送信時刻をずらすことで、あるスーパーフレーム 周期にはビーコンが衝突しても、別のスーパーフレーム周期では各通信局は互いの ビーコンを聞き合うことができる。
[0225] 図示の場合、 STAOは、ビーコン送信の前後では受信機を動作させるため、 STA2 が自局の TBTT時刻近辺にてビーコンを送信していることを認識する。同じく STA2 は、ビーコン送信の前後では受信機を動作させるため、 STAOが自局の TBTT時刻 近辺にてビーコンを送信していることを認識する。なお、自局の TBTTの近辺でビー コンが受信されたか否かの判断は、 自ビーコンの TBTT士 B Z2の範囲内でビーコ
min
ンが受信されたか否かにて判断する。 [0226] ここで、 STAOは、 自局のビーコン送信の直前に他局のビーコンを受信したことを理 由に、自局の TBTTすなわちビーコン送信位置を変更することを決定する。一方、 S TA2は、自ビーコンの TBTT時刻近辺にてビーコンが受信されたものの、自局のビ ーコン送信の後にビーコンを受信したことを理由に、 TBTTの変更は行なわない。
[0227] また、 STA0並びに STA2ともデータの送受信を行なっておらずパワーセーブ状態 であった場合であっても、信号送信時には、自局が信号を送信する前後の一定期間 は受信動作を行なうこと、すなわち Listen Before Send及び Listen After Sen dが義務付けられており、このような受信動作により、各通信局は互いのビーコンを認 識することが可能である。
[0228] STA0は、ビーコン送信位置を変更する場合、送信するビーコンの ALERTフィー ルドにて、 TBTTを変更する旨を周辺局に報知する (ALERTフィールドは、異常状 態において周辺局に伝達すべき情報を格納するフィールドである)。さらに、 STA0 は、新規の TBTTを決定するための情報を収集するため、少なくとも 1スーパーフレ ーム分だ'けスキャンを実行する。
[0229] 図 11に示す例では、 STA0は時刻 T1近辺においてビーコン衝突を認識し、直ち に TBTT変更処理を起動している力 通信局内部の処理遅延などにより、この処理 力 乃至 2スーパーフレームだけ遅れて実行される場合もある。
[0230] そして、 STA0は、図 9を参照しながら説明した上記の手順により空きの TBTTを見 つけると、 TBTT1を新規の TBTTとして設定し、時刻 T2ではビーコンの送信を行な わず、代わりに時刻 T3にてビーコンの送信を行ない、以降、 TBTT1のタイミングで T BTTオフセットを付加しながら定期的にビーコンの送信を行なう。
[0231] 一方、 STA2は、何事もな力つたかのように時刻 T2にてビーコンを送信し、以降も T BTT0のタイミングにて TBTTオフセットを付カロしながらビーコン送信を継続する。図 11で示した例では、 STA2は TBTTの変更は行なわないが、 STA0のビーコンを受 信したことによりネットワークが交錯したことを認識し、ネットワークの状況を把握する 目的でスキャン処理を行なう場合もある。
[0232] なお、通信局は、 ALERTフィールドにて TBTTを変更する旨を報知して 、るビー コンや、これまで受信できて 、たビーコンの TBTT近辺でビーコンが送信されて!、な 、ことを認識した場合には、当該ビーコンの新規 TBTTがどこに決定されたかを把握 するために、スキャンを実行する(図示しない)。
[0233] また、自局のビーコン送信時刻の直後に他局のビーコンを受信したときに、直後に 受信したビーコンの送信元に対してビーコン送信時刻を変更するように要求してもよ い。図 12には、ビーコン衝突時に一方の局が他方の局へビーコン送信時刻の変更 要求メッセージを送ることによる TBTT変更手順の一例を示している。
[0234] 時刻 T1で STAOと STA2がともに TBTTを迎えると、互いにビーコンの送信処理が 起動される。ここで、 STA2は TBTTオフセットがゼロである一方、 STAOは TBTTォ フセットとして比較的大きな値が選択されたとする。この場合、 STAOは、ビーコンな どの信号送信の前後では受信機を動作させるため、 STA2が自局の TBTT時刻近 辺にてビーコンを送信していることを認識する。同じく STA2は、ビーコン送信の前後 では受信機を動作させるため、 STAOが自局の TBTT時刻近辺にてビーコンを送信 して ヽることを認識する。
[0235] ここで、 STA2は、 STAOに対して「TBTTを変更して欲しい旨」のメッセージを送信 する。 STAOは、パワーセーブ状態であってもビーコンなどの信号送信の前後ではし ばらくの間にわたり受信機を動作させるため(前述)、このメッセージを受信することが できる。
[0236] これに対し、 STAOは、 TBTT変更要求メッセージを受信したことに応答して、送信 するビーコンの ALERTフィールドにて、 TBTTを変更する旨を周辺局に報知する。 さらに、 STAOは、新規の TBTTを決定するための情報を収集するため、少なくとも 1 スーノ 一フレーム分だ、けスキャンを実行する。
[0237] そして、 STAOは、図 9を参照しながら説明した上記の手順により空きの TBTTを見 つけると、 TBTT1を新規の TBTTとして設定し、時刻 T4ではビーコンの送信を行な わず、代わりに時刻 T5にてビーコンの送信を行ない、以降、 TBTT1のタイミングで T BTTオフセットを付加しながら定期的にビーコンの送信を行なう。
[0238] 一方、 STA2は、何事もな力つたかのように時刻 T2にてビーコンを送信し、以降も T BTTOのタイミングにて TBTTオフセットを付カロしながらビーコン送信を継続する。図 12で示した例では、 STA2は TBTTの変更は行なわないが、 STAOのビーコンを受 信したことでネットワークが交錯したことを認識し、ネットワークの状況を把握する目的 でスキャン処理を行なう場合もある。
[0239] なお、上述した処理手順では、ビーコンの衝突時には、自局のビーコン送信時刻の 直前で他局のビーコンを受信した通信局が、自らのビーコン送信時刻を変更すると いうルールになっている力 逆に、自局のビーコン送信時刻の直後に他局のビーコン を受信したときに自らのビーコン送信時刻を変更するようにしてもょ 、。
[0240] 以下では、本実施形態に係る自律分散型の無線ネットワークにおいて、通信局が 信号の衝突検出に関する動作についてさらに詳細に説明する。図 33—図 37には、 データを送受信している通信局のビーコンが衝突した場合を例にとり衝突の検出手 順の幾つかの例を示している。衝突が検出された後には,必要に応じて,すでに説 明した手順にて TBTT変更手順が起動される。
[0241] 図 33には、 STAOと STA2のビーコン送信時刻の衝突が発生し、且つ STAOが ST A1宛てにデータの送信を継続して 、る場合の一例を示して 、る。
[0242] 時刻 TOで STAOと STA2がともに TBTTを迎えると、互いにビーコンの送信処理が 起動される。ここで、 STA2の TBTTオフセットが STAOの TBTTオフセットよりも比較 的大きな値が選択されたとする。
[0243] STAOが予定通りにビーコンを送信する(図中 BO)。 STA2は、ビーコンなどの信号 送信の前後では受信機を動作させるため、 STAOが自局の TBTT時刻近辺にてビ 一コンを送信していることを認識する。さらに STA2は CSMAZCAの手順に則り、 他局の信号が存在する間は NAVを設定して信号の送信動作を控える。その結果、 本来時刻 T1にてビーコンを送信する予定であったものが遅延させられることになる。
[0244] STAOは引き続きデータを STA1に対して送信する(図中 DO)。当該データの Dur ationフィールドにはバーチャル'キャリア'センスの目的で ACKを受信する時刻まで の時間長が書き込まれており、 STA2はこれを解釈して時刻 T2までは信号の送信を 控える。
[0245] その後、 STA2は、時刻 T2から PIFS (あるいは SIFS) +ランダムな遅延量(例えば TBTTオフセット)が経過した後、信号送信可能状態へと遷移し、時刻 T3にてビーコ ンを送信する(図中 B2)。 [0246] STAOは、信号送信の前後では受信機を動作させるため、 STA2が自局の TBTT 時刻近辺にてビーコンを送信していることを認識する。
[0247] STA2は、自局のビーコン送信の直前に他局のビーコンを受信したことを理由に、 自局の TBTTすなわちビーコン送信位置を変更することを決定する。一方、 STA0は 、 自ビーコンの TBTT時刻近辺にてビーコンが受信されたものの、 自局のビーコン送 信の後にビーコンを受信したことを理由に、 TBTTの変更は行なわない。
[0248] STA2は、ビーコン送信位置を変更する場合、送信するビーコンの ALERTフィー ルドにて、 TBTTを変更する旨を周辺局に報知しつつ、スキャンを実行し、衝突が発 生しない新規の空き TBTTを見つけ出して、自局の TBTTを空き TBTTへと変更す る。
[0249] 一方、 STA0は、何事もなかつたかのようにビーコン送信を継続する力 STA2のビ 一コンを受信したことでネットワークが交錯したことを認識し、ネットワークの状況を把 握する目的で、スキャン処理を行なう場合もある。
[0250] 図 34には、 STAOの信号送信と STA2のビーコン送信時刻と衝突が発生した場合 の一例を示している。
[0251] STA0は、 STA1に向けて時刻 TOに RTSを、時刻 T1にデータを送信する。 STA2 は、時刻 T2にてビーコンを送信しようと試みているため、 Listen Before Sendによ り受信機を動作させており、 STA0の信号を受信することができる。そして、 STA2は 、 CSMAZCAの手順に則り、他局の信号が存在する間は信号の送信を控える。さ らに、 STA2は、受信した信号の Durationフィールドを解析することにより、 ACKを 受信するまでの時刻 T3までは送信を控える。その結果、本来時刻 T2にてビーコンを 送信する予定であったものが遅延させられることになる。
[0252] この時点で、 STA2は、定期的に送信される信号が衝突していることを既に検出し ている。 STA2は、時刻 T3から PIFS (あるいは SIFS) +ランダムな遅延量(例えば T BTTオフセット)が経過した後、信号送信可能状態へと遷移し、時刻 T4にてビーコン を送信する。このとき、 STA2は自局の意図した時刻にビーコンを送信できなかった 旨を TOISフィールドに記載する。
[0253] STA0は、信号送信の前後では受信機を動作させる。図示の例では、 Listen Aft er Sendにより STA2力 S自局の信号終了直後にビーコンを送信していることを認識し 、 STA2の存在を確認することができる。且つ、 STA2から受信したビーコンの TOIS フィールドを参照することにより、送信局が意図した時刻に送信できていないことを認 識し、自局の送信信号が STA2のビーコン送信時刻を妨害したものと判断し、信号 の衝突を検出する。
[0254] STA2は、 STAOの信号が TPPで送信されて!、ることを何らかの理由(例えば補助 ビーコンに引き続き送信されていることや、送信信号の一部に TPPであることが記載 されて ヽること)により認識した場合には、自局の TBTTすなわちビーコン送信位置を 変更する場合がある。一方、 STAOの信号が TPPで送信されていないなど STA2が TBTTを変更しない場合には、 STAOは、この TBTT近辺では STA2のビーコンが 送信されることを認識し、今後 STA2のビーコン送信を妨げな ヽよう STAOがこの時 間帯において送信を不許可とする。
[0255] STAO並び STA2は、互いに衝突を検出したことに基づいて、ネットワークが交錯し たことを認識することができる。このような場合、各局は、ネットワークの状況を把握す る目的で、スキャン処理を行なう場合もある。
[0256] 図 35には、 STAOの信号受信と STA2のビーコン送信時刻と衝突が発生した場合 の一例を示している。
[0257] STAOは、データの送信元である STA1に向けて時刻 T1に CTSを送信する。 ST A2は、時刻 T1を TBTTとして、この時刻力も TBTTオフセットだけ遅れた時刻 T2に てビーコンを送信しようと試みており、 Listen Befor Sendにより受信機を動作させ ていることから、この CTS信号を受信することができる。そして、 STA2は、 CSMAZ CAの手順に則り、他局の信号が存在する間は信号の送信を控える。さらに、 STA2 は、受信した信号の Durationフィールドを解析することにより、データを受信するま での時刻 T3までは送信を控える。その結果、本来時刻 T2にてビーコンを送信する 予定であったものが遅延させられることになる。
[0258] この時点で、 STA2は、定期的に送信される信号が衝突していることを既に検出し ている。 STA2は、時刻 T3から PIFS (あるいは SIFS) +ランダムな遅延量(例えば T BTTオフセット)だけ経過した後、信号送信可能状態へと遷移し、時刻 T4にてビーコ ンを送信する。このとき、 STA2は自局の意図した時刻にビーコンを送信できなかつ た旨を TOISフィールドに記載する。
[0259] STAOは、信号送信の前後では受信機を動作させ、 Listen After Sendにより S TA2が自局の信号の受信を終了した直後にビーコンを送信していることを認識し、 S TA2の存在を確認することができる。且つ、 STA2から受信したビーコンの TOISフィ 一ルドを参照することにより、 STA2が意図した時刻に送信できていないことを認識し 、自局の送信信号が STA2のビーコン送信時刻を妨害したものと判断し、信号の衝 突を検出する。
[0260] STA2は、 STAOの信号が TPPにて受信されていることを何らかの理由(補助ビー コンに引き続き送信されているなど)により認識した場合には、自局の TBTTすなわ ちビーコン送信位置を変更する場合がある。一方、 STAOの信号が TPPで受信され ていないなど STA2が TBTTを変更しない場合には、 STAOは、この TBTT近辺で は STA2のビーコンが送信されることを認識し、今後は STA2のビーコン送信を妨げ ないように、 STA1に対して送信を不許可とするための手順を起動し、 STAOがこの 時間帯にお 、て受信を行なわな 、ようにする。
[0261] STAO並びに STA2は、互いに衝突を検出したことを基づいてネットワークが交錯 したことを認識し、ネットワークの状況を把握する目的で、スキャン処理を行なう場合も める。
[0262] 図 34で説明した例では、各通信局が Durationフィールドを認識することを前提に 説明を行なう。 Durationフィールドの認識は好ましい処理ではある力 Durationフィ 一ルドの認識が行なわれない場合の衝突検出について説明する。図 36には、 STA 0の信号送信と STA2のビーコン送信時刻と衝突が発生した場合の一例を示してい る。
[0263] STAOは、データを送信するが、このデータ送信途中に STA2の TBTT (図中時刻 T1)が訪れる。 STA2は時刻 T1にてビーコンを送信しようと試み、 Listen Before Sendにより受信機を動作させているため、 STAOからの信号を受信する。 STA2は C SMAの手順に則り、他局の信号が存在する間は信号の送信を控え、時刻 T2までは 送信不許可とする。その結果、本来時刻 T1にてビーコンを送信する予定であったも のが遅延させられることになる。
[0264] この時点で、 STA2は、定期的に送信される信号が衝突していることを既に検出し ている。 STA2は、時刻 T2から DIFS +ランダムな遅延量(例えば TBTTオフセット) だけ経過した後、信号送信可能状態へと遷移し、時刻 T3にてビーコンを送信する。 このとき、 STA2は自局の意図した時刻にビーコンを送信できなかった旨を TOISフィ 一ルドに記載する。
[0265] STAOはこの間に STA1より ACKを受信している力 DIFSが ACK受信に要する 時間よりも長ければ、 STA2がこの ACK受信を妨げることはない。 STAOは、信号送 信の前後では受信機を動作させるため、 Listen After Sendにより STA2力時刻 T3で送信するビーコンを受信し、 STA2の存在を確認することができる。且つ、 STA 0は STA2から受信したビーコンの TOISフィールドを参照することにより、 STA2力 S 意図した時刻に送信できて ヽな 、ことを認識し、自局の送信信号が STA2のビーコ ン送信時刻を妨害したものと判断し、信号の衝突を検出する。
[0266] STA2は、 STAOの信号が TPPで送信されて!、ることを何らかの理由(補助ビーコ ンに引き続き送信されて ヽることや、こと STAOの送信信号の一部に TPPで送信され ている旨が記載されていることなど)により認識した場合には、自局の TBTTすなわち ビーコン送信位置を変更する場合がある。一方、 STAOの信号が TPPで送信されて いないなど STA2が TBTTを変更しない場合には、 STAO力 この TBTT近辺では S TA2のビーコンが送信されることを認識し、今後 STA2のビーコン送信を妨げな 、よ う STAOがこの時間帯において送信を不許可とする。
[0267] STAO並びに STA2は、互いに衝突を検出したことに基づいてネットワークが交錯 したことを認識し、ネットワークの状況を把握する目的でスキャン処理を行なう場合も める。
[0268] なお、上述した処理手順では、ビーコンの衝突時には、自局のビーコン送信時刻の 直前で他局のビーコンを受信した通信局が、自らのビーコン送信時刻を変更すると いうルールになっている力 逆に、自局のビーコン送信時刻の直後に他局のビーコン を受信したときに自らのビーコン送信時刻を変更するようにしてもょ 、。
[0269] 衝突回擗丰順の動作例: 続いて、図 36で示した動作例と同様、 Durationフィールドの認識が行なわれない 場合や RTSZCTS手順が併用されない場合の衝突検出について、もう一例を挙げ て説明する。図 37には、 STA0の信号受信と STA2のビーコン送信時刻と衝突が発 生した場合の一例を示して 、る。
[0270] STA0は、データの送信元である STA1からデータを受信している。このデータ受 信の最中に STA2の TBTT (図中時刻 T1)が訪れる。 STA2は信号送信(ビーコン 送信)に先立ち、 Listen Before Sendにより受信機を動作させてはいるものの、隠 れ端末である STA1からの送信データを直接受信することはできな 、ため、 STA0の 存在を未だ検出しておらず、予定通り時刻 T1にてビーコンを送信する。
[0271] STA0は、 STA2からのビーコンの送信信号により、 STA1からの受信信号は干渉 を受け、データは正確に受信されない。 STA0は、データ受信の後、データが受信で きなかった旨を NACKとして STA1に返送する。
[0272] STA2は、信号送信の後も Listen After Sendにより一定期間受信機を動作さ せているため、 STA0の NACKを受信することができる。 STA2は、自局の信号直後 に STA1から NACKを受信したことから、先の自局の信号送信により STA1がデータ の受信に失敗したものと判断し、自局のビーコンが他局の信号受信と衝突したことを 検出する。
[0273] STA2は、この直後に、 STA0に対して「この時間帯は STA2のビーコン送信に用 V、て 、る旨」を伝える信号を STA0に送信し(図示せず)、 STA0に信号受信タイミン グの変更を促す場合がある。一方、 STA2がこれを行なわない場合には、 STA2が 自律的に TBTTを変更することがある。
[0274] STA2 (並びに STA0)は、互いに衝突を検出したことに基づいてネットワークが交 錯したことを認識し、ネットワークの状況を把握する目的でスキャン処理を行なう場合 ¾ある。
[0275] 図 33—図 37では、他局の信号とビーコンが衝突する場合について例示した力 他 局の信号と定期的に行なわれる優先送受信の信号が衝突した場合においても、全く 同じ手順となる。
[0276] 電波到来範囲の変化などによりビーコンの衝突が発生した際、上述したように衝突 を起こした通信局の一方がビーコン送信時刻を移動する (TBTT変更)という上記の 手順を以つて衝突回避を行なう場合、さらに以下の付帯事項が加味される。
[0277] 上記の例では、 STA0は自ビーコン送信の直前で他局のビーコンを受信すると即 座に TBTT変更処理を起動して ヽるが、 STAOが新規 TBTTを設定して間もな 、場 合には TBTT変更処理を例外的に起動しな 、ようにする。ここで言う「間もな!/、」とは 、例えば新規 TBTTを設定してから 1乃至 3スーパーフレーム内に相当する。何故な らば、比較的規模の大きなネットワーク同士が衝突した場合、他の通信局の TBTT変 更により衝突が回避される可能性があり、異常状態が整定されるまで待機すべきだか らである。また、衝突相手となるネットワークが過ぎ去ってしまい、異常状態が整定さ れる可能性もあるからである。
[0278] さらに、自ビーコン送信の直前で他局のビーコンを受信したものの、受信ビーコンの ALERTフィールドにより当該ビーコンの TBTTが変更される旨が報知されて!、た場 合にも、例外的に TBTT変更処理を起動しない。 TBTT変更処理によりビーコン衝 突が自ずと解決されるからである。
[0279] これらの付帯条件を加味することにより、複数の通信局が同時に TBTTを変更する 場合に、 TBTT変更の発振を防ぐことに貢献できる。
[0280] また、自ビーコン送信の直前で他局のビーコンを受信したものの、受信ビーコンの T YPEフィールドで示されるプライオリティ値が、当該 TBTTで送信する自ビーコンの プライオリティ値よりも低い場合には、例外的に TBTT変更処理を起動しない。この 場合、逆にプライオリティ値の低 ヽビーコンを送信して ヽる方の局が TBTT変更処理 を起動することになる。例えば、一方の通信局の正規ビーコンと他方の通信局の補 助ビーコンが衝突した場合には、補助ビーコンの方の TBTTを移動すべきである。ま た、補助ビーコン同士が衝突した場合には、トラフィックのプライオリティが高い方が 優先され、プライオリティの低 、方を移動 (ある!/、は排除)すべきである。
[0281] 図 13には、電波到来範囲の変化などによりビーコンの衝突が発生した際に、衝突 を起こした通信局の一方がビーコン送信時刻を移動すること (TBTT変更)によりビー コンの衝突を回避するために、通信局毎に実行される装置動作をフローチャートの 形式で示している。このような装置動作は、実際には無線通信装置 100内の中央制 御部 103において所定の実行命令プログラムを実行するという形態で実現される。
[0282] 当該動作は、通信局が自局の送信ビーコンの衝突を検出したことに応答して起動 する。まず、自局において最近に TBTT変更が発生した力どうかをチェックする (ステ ップ Sl)。
[0283] 最近に TBTTが変更していない場合には、さらに、受信したビーコンの ALERTフィ 一ルドで TBTTを変更する旨が記載されて 、るかどうかをチェックする (ステップ S 2)
[0284] ステップ S1及び S2において、自局においても周辺局においても最近での TBTT の変更が確認されな力つた場合には、自局側の送信ビーコンのプライオリティと受信 ビーコンの Typeフィールドに記載されて 、るプライオリティを比較する(ステップ S3)
[0285] そして、他局力 受信したビーコンのプライオリティの方が自局側の送信ビーコンの プライオリティよりも低くない場合には、逆に、他局力も受信したビーコンのプライオリ ティの方が自局側の送信ビーコンのプライオリティよりも高いかどうかをチェックする( ステップ S4)。
[0286] 他局力 受信したビーコンのプライオリティの方が自局側の送信ビーコンのプライォ リティよりも高い場合には、自局の TBTTすなわちビーコン送信位置を変更することを 決定する。この場合、当該通信局は、図 11を参照しながら説明したように、新規の T BTTを決定するための情報を収集するため、少なくとも 1スーパーフレーム分だけス キャンを実行し、 TBTTを変更する旨を ALERTフィールドに記載したビーコンを周 辺局に報知し、さらに図 9を参照しながら説明した上記の手順により空きの TBTTを 発見してビーコンの移動先を検出する (ステップ S6)。そして、新規の TBTTにてビー コンを送信することにより、ビーコン送信タイミングの移動先を周辺局に報知する。
[0287] また、ステップ S4にお 、て、受信した他局のビーコンのプライオリティが自局側の送 信ビーコンのプライオリティよりも高くない、すなわち両ビーコンのプライオリティがー 致する場合には、受信ビーコンの受信時刻が自局のビーコン送信時刻よりも早いか どうかをチェックする(ステップ S5)。
[0288] 他局からの受信ビーコンのタイミングの方が早い場合には、自局のビーコン送信の 直前に他局のビーコンを受信したことを理由に、自局の TBTTすなわちビーコン送信 位置を変更することを決定する。すなわち、当該通信局は、新規の TBTTを決定する ための情報を収集するため少なくとも 1スーパーフレーム分だけスキャンを実行し、 T BTTを変更する旨を ALERTフィールドに記載したビーコンを周辺局に報知し、さら に空きの TBTTを発見してビーコンの移動先を検出する (ステップ S6)。そして、新規 の TBTTにてビーコンを送信することにより、ビーコン送信タイミングの移動先を周辺 局に報知する。
[0289] 信吾送信タイミングが 全に一致した場合の衝突回避丰順:
ここまでは、ビーコン送信並びに優先送受信区間 TPPは TBTTを基準とした時刻 力も若干のランダムな遅延を伴って開始されることを前提に説明してきた。このランダ ム遅延が存在することから、スーパーフレーム内での信号の送信タイミング TBTTが 重なっていたとしても衝突時には双方の信号を発見できる場合が典型的ではある。と ころが、場合によっては、衝突している信号同士力 TBTTにカロえこのランダム値さえ も全く一致してしまっていることが発生し得る。このような場合、衝突信号が常に同一 のタイミングで送信されてしま ヽ、衝突を起こした通信局はそれぞれ送信動作を行な つているため互いの信号を検出することができず、当該時間帯において信号が衝突 してしまって!/、ることを認識できな 、。
[0290] このような場合,衝突が発生している特定の時間帯に送受信される信号のクオリティ が大幅に劣化し、この時間帯のみ通信断絶が発生する。そこで、通信局は、特定の 時間帯において TPPにより送信している信号のクオリティが大幅に劣化したと判断し たときに、当該時間帯の TPPを開放することにより、信号の衝突を解消することができ る場合がある。
[0291] ここで、信号のクオリティが大幅に劣化したと判断する事象としては、特定の時間帯 のみ受信信号にエラーが多発し通信断絶状態が続 、たこと、特定の時間帯のみ AC Kの返信がな 、状態が続!、たこと、特定の時間帯のみ低データレートでの通信を要 求されたことなどが挙げられる。
[0292] このような理由により TPPを開放した通信局は、ランダム 'バックオフを伴う CSMA ZCAに基づくアクセス方法にてデータの送受信を継続しながら、隠れて 、る力もし れない他局のビーコン信号などの検出を試みるために、受信機を連続的に動作させ スキャン処理を起動する。この過程において、新規通信局のビーコンを発見すると、 上述した手順に従い、ビーコンに記載されている情報を解析し、近隣通信局のメディ ァ占有状態を抽出し、衝突回避に努める。
[0293] 図 38には、衝突している信号同士が TBTTに加えこのランダム値さえも完全に一 致してしまっている場合における衝突回避動作を含んだ通信手順をフローチャートの 形式で示している。
[0294] 通信局は、スーパーフレーム内でビーコン又は優先送信期間 TPPの信号送信タイ ミング TBTTを設定し (ステップ S31)、当該設定した送信タイミングによりこれらの信 号の送受信を行なう(ステップ S32)。
[0295] 通信局自体は、当該送信タイミング TBTTにお 、て送信動作を行なうため、 TBTT のみならずランダム値すなわち TBTTオフセットまでも完全に一致する場合には、自 ら衝突を検出することはできない。このため、数スーパーフレームにまたがって定期 的な当該信号送信動作を継続する。この結果、信号のクオリティが大幅に劣化すると いう事態が検出される (ステップ S33)。ここで言う信号のクオリティの劣化は、同じ特 定の時間帯のみ受信信号にエラーが多発し通信断絶状態が続いたこと、特定の時 間帯のみ ACKの返信がな 、状態が続 、たこと、特定の時間帯のみ低データレート での通信を要求されたことなどの症状として検出される。
[0296] 当該通信局は、このような信号のクオリティの劣化を検出すると、スーパーフレーム 内で他の使用可能な送受信タイミングを検索し (ステップ S34)、発見されれば、クオ リティが劣化した送信区間を開放し (ステップ S35)、劣化した当該定期的な送信信 号の新たな送信タイミング TBTTに設定する。
[0297] 新たな送信タイミング TBTTは、ビーコンに記載して周辺局に報知されるとともに、 新たな送信タイミング TBTTで定期的な信号を送信すること自体により周辺局に通知 することができる。
[0298] 正規ビーコンを 信できない場合の衝突回擗丰順:
補助ビーコンや優先送信期間 TPPを利用して定期的に送受信される信号には、正 規ビーコンに記載されているすべての情報(図 7を参照のこと)が記載されていない 場合もある。この場合、補助ビーコン同士の衝突、優先送信期間 TPPを利用して定 期的に送受信される信号とビーコンの衝突、又は定期的な送受信信号同士の衝突 が生じたとしても、その他の時間帯のメディア占有情報までは検出することができない
。また、スキャン処理を行なっても、間が悪く TBTTオフセットまでも完全に一致する などにより当該通信局の正規ビーコンの送信時間帯に他信号を送信しているなどの 理由により、正規ビーコンを受信できない場合も考えられる。
[0299] このような場合、補助ビーコンや優先送信期間 TPTTを利用して定期的に送信され る信号に Serialフィールドを設け、自局の正規ビーコンを基準に何番目の TBTTで 送信している信号であるかを示す相対時刻情報を記載することにより、補助ビーコン 又は定期的な送信信号を受信した通信局は、当該補助ビーコン送信局の正規ビー コンの送信時刻を抽出することができる。
[0300] 図 39には、補助ビーコン又は定期的な送信信号に付加された Serialフィールドの 記載内容に基づ 、て信号の衝突回避を行なうための通信動作例を示して 、る。同図 では、 STAOと STA1が各々図示しない他の通信局と通信中であり、それぞれ独立し たネットワークとして動作して 、たが、通信局の移動やネットワーク間を遮って ヽた障 壁の除去などにより STAOと STA1が電波の到達範囲に入ってきた場合を想定して いる。また、同図では、スーパーフレーム中に TOから T7までの 8つの TBTTが設定さ れているものとする。
[0301] 図 39最上段が初期状態である。時刻 TOと時刻 T2において、両者の正規ビーコン が他方の補助ビーコンと衝突している。ここで、 TBTTオフセットが一致し続けたなど の理由により、互いの正規ビーコンの受信が連続的に不可能である場合を想定する 。この場合、 STA1は、 STAOの正規ビーコンを受信できず、同様に STAOは STA1 の正規ビーコンを受信できな 、。
[0302] その後、 STA1は、時刻 T4、時刻 Τ6に送信される STAOの補助ビーコン並びに優 先送信期間 TPPを利用した送信信号を受信することができる。この場合、 STA1は、 時刻 T4、時刻 Τ6に STAOから送信された補助ビーコンを受信すると、 Serialフィー ルドの記載を解析し、補助ビーコンが正規ビーコンの送信時刻からどれだけの相対 時間差を以つて送信されているかの情報を抽出することにより、 STAOの正規ビーコ ンが時刻 T2近辺で送信されていることを認識する。さら〖こ、 STA1は、時刻 Τ2近辺 にて自局が信号を送信して 、るために STAOの正規ビーコンが受信できな 、と 、うこ とを認識する。
[0303] その後、同図の中上段に示すように、 STA1は、時刻 Τ2近辺で利用していた ΤΡΡ を開放して他の ΤΒΤΤ (同図中の時刻 Τ3)へと配置し直し、 STAOの正規ビーコンを 受信できるようになる。 STA1は、 STA2の正規ビーコンを受信することにより、 STA2 のリソース利用状況を把握することができるようになる。
[0304] STAOも、時刻 Τ5で送信される STA1の補助ビーコンは受信することが可能である ため、上記の STA1と同様の処理を行なうことにより、時刻 TOにおける自局の ΤΡΡを 開放すると STA1の正規ビーコンを受信することが可能となる。そして、最終的には、 図 39最下段に示すような正規ビーコン並びに補助ビーコン (優先送信期間又は TP Pを利用した定期的な送信信号)の配置となる。
[0305] 一方、 STAOが時刻 T5における STA1の補助ビーコンに気づかないなど、 STAO が自律的に TPPを開放しない場合には、例えば、図 39中下段に示すように、 STA1 は STAOに対して TPPを開放する旨を要請するメッセージを送信するようにしてもよ い。この場合、 STAOは、この開放要請メッセージを受信することにより、時刻 TOにて 送信していた補助ビーコンの送信時刻を変更し、最終的に図 39最下段に示すような 正規ビーコン並びに補助ビーコンの配置となる。これにより、 STAOは、 STA1の正 規ビーコンを受信することができ、 STA1のリソース利用状況を把握することができる ようになる。
[0306] なお、補助ビーコンによる TPP区間の変更手順は、既に説明した手順により行なわ れる。スキャン動作により空きスロットを検出した後、衝突が発生しない時刻にて TPP の配置が行なわれる。
[0307] その他のスキャン 'トリガ:
これまでの説明では、スキャン動作として、定期的に行なわれるスキャンと、衝突の 検出に起因して行なわれるスキャンに処理について説明してきた。本実施形態では 、通信局は、衝突が検出されな力つた場合であっても、信号送信に先んじて行なわ れる信号検出 Z受信処理 (Listen Before Send)、並びに信号送信に引き続き行 なわれる信号検出 Z受信処理 (Listen After Send)により、これまで近隣局として 認識していな力つた通信局の信号を検出することができる場合がある。このような信 号検出 Z受信処理に起因してスキャン処理を起動し、当該通信局のビーコンを探し て当該通信局のメディア占有情報の入手に努める場合もある。
[0308] なお、スキャン処理中、信号を送信しない時間帯においては信号検出器並びに受 信機は連続的に動作させるが、信号を送信する時間帯においては、信号の送信を 優先し、信号の送信中に限り受信機をストップさせる場合もある。
[0309] F .ビーコン衝突の他のシナリオと衝突回避手順
前項 Eでは、通信局が移動するなどにより電波の到達範囲が変動する場合につい てのビーコン衝突回避のための処理手順について説明した。これ以外にも、新規の 通信局が電源を投入することにより、各通信局が送信するビーコンの衝突が露呈す ると 、うケースも考えられる。
[0310] 図 14には、新規の通信局が電源を投入することにより、各通信局が送信するビーコ ンの衝突が露呈する様子を示している。同図に示す例では、既に独立してネットヮー クを構築している系同士が新規通信局の出現などによりマージされる。また、新規通 信局が出現しな!、場合であっても,既に独立してネットワークを構築して 、る系同士 の間に第 3の通信局が移動してくるなどによってマージされる場合もある。このような 場合も下記で説明する同様の処理を行なうことが可能である。
[0311] 図 14上段においては、通信局 STAOと STA1は、通信局 STA2と STA3とは電波 の届かない範囲に存在しており、 STAOと STA1が通信を行なっている。また、これと は全く独立して STA2と STA3が通信を行なって!/、る。このときの各局のビーコン送 信タイミングは、図 14上段の右側に記されている通り、互いに認識していない局同士 で運悪く重なって!/ヽる場合を想定する。
[0312] その後、これらの通信局の間に通信局 STA4が新たに登場し、図 14下段に示すよ うに、 STA4力ら ίま STAO、 STA1、 STA2、 STA3の各局力 S送受信可會な状態にな つたことを想定すると、 STA4にとつては各局のビーコンが衝突してしまう。この場合、 ビーコンが衝突する通信局の組み合わせのうち少なくとも一方の局にビーコン送信タ イミング TBTTを変更してもらわなければ、ビーコンを正常に聞き取ることができない 。言い換えれば、 STA4はネットワークに参入することができない。
[0313] このような場合にも、いずれかの局がビーコンの送信時刻を変更する必要がある。
図 15には、新規の通信局の参入によりビーコンの衝突が露呈した場合の TBTT変 更手順の一例を示している。同図に示す例では、 STA0の送信するビーコンの TBT Tと STA2の送信するビーコンの TBTTが TBTT0にてほぼ一致してしまっているが、 STA0の TBTTの方が微妙に遅れている場合を想定している。また、 STA4は STA 0及び STA2の!、ずれとも通信可能ではある力 STA0と STA2は直接通信できな!/ヽ 状況 (互 ヽに隠れ端末)であるとする。
[0314] 時刻 TOに、 STA0と STA2ともビーコン送信の TBTTとなり、時刻 TOからそれぞれ の TBTTオフセットだけずれた時刻にビーコンを送信する。時刻 TOでは、 STA0の T BTTオフセットと STA2の TBTTオフセットがたまたま異なる値となり、 STA2は小さ Vヽ TBTTオフセット値、 STAOは大き!/、TBTTオフセット値が選択されて!、る。
[0315] STA4は、 STAO及び STA2の両方から送信されるビーコンを受信することができ る。ここで、 STA4は、自局の TBTTの刻み内で(すなわち士 B Z2の範囲内で)こ
min
れら 2局からのビーコンが受信されたため、ビーコンが衝突していることを検知する。 そして、どちらかの通信局の TBTTを変更する旨のメッセージを送信することを決定 する。図示の例では、 STAOのビーコンの方が遅く受信されたことから、 STA4は、 S TAOに TBTTを変更してもらうことを決定し、 STAOに対して TBTTの変更を要求す る旨のメッセージ Mを送信する。ここで, STAO並びに STA2とも、データの送受信を 行なっておらずパワーセーブ状態であった場合でも、上記の通り、信号送信時には、 自局が信号を送信する前後の一定期間は受信動作を行なうことが義務付けられるの で(Listen Before Send/Listen After Send)、 STAOはこのメッセージを受 信することが可能である。
[0316] なお、 STA4は、衝突した受信ビーコンの 、ずれが遅!、かを決定するために、単な るビーコン受信時刻を比較するのではなぐビーコンの TOISフィールドを参照し、使 用された擬似ランダム系列を差し引くことにより、当該ビーコンの TBTTそのものを算 出する。勿論、各通信局間で同一の取り決めが行なわれていれば、ビーコン受信時 刻あるいは TBTTの早 、方に対して TBTT変更メッセージを送信すると!/、う取り決め であっても構わないが、ここでは遅い方に上記メッセージを送信するという取り決めで あることを例にとり、以降の説明を続ける。
[0317] STAOは、 TBTT変更要求メッセージを受信し、 TBTTを変更しなければならな!/ヽ ことを認識すると、時刻 T1から TBTT変更の処理を起動する。この場合、この処理手 順では、 STAOは、まず、送信するビーコンの ALERTフィールドにて、 TBTTを変更 する旨を周辺局に報知する(ALERTフィールドは、異常状態において周辺局に伝 達すべき情報を格納するフィールドである)。さら〖こ、 STAOは、新規の TBTTを決定 するための情報を収集するため、少なくとも 1スーパーフレーム分だけスキャンを実行 する。図 15に示した例では、時刻 T1から TBTT変更処理を直ちに開始しているが、 通信局内部の処理遅延などにより、この処理が 1乃至 2スーパーフレームだけ遅れて 実行される場合もある。
[0318] そして、 STAOは、図 9を参照しながら説明した上記の手順により空きの TBTTを見 つけると、 TBTT1を新規の TBTTとして設定し、時刻 T2ではビーコンの送信を行な わず、代わりに時刻 T3にてビーコンの送信を行ない、以降、 TBTT1のタイミングで T BTTオフセットを付加しながら定期的にビーコンの送信を行なう。
[0319] 一方、 STA2は、何事もな力つたかのように時刻 T2にてビーコンを送信し、以降も T BTTOのタイミングで TBTTオフセットを付カロしながらビーコン送信を継続する。
[0320] なお、通信局は、 ALERTフィールドにて TBTTを変更する旨を報知して 、るビー コンや、これまで受信できて 、たビーコンの TBTT近辺でビーコンが送信されて!、な V、ことを認識した場合には、当該ビーコンの新規 TBTTがどこに決定されたかを把握 するために、スキャンを実行する(図示しない)。
[0321] 新規通信局の参入などによりビーコンの衝突が露呈した際、上述したように新規参 入局が衝突を起こした通信局の一方に対しビーコン送信時刻の変更を要求するとい う上記の手順を以つて衝突回避を行なう場合、さらに以下の付帯事項が加味される。
[0322] 上記の例では、 STAOは、 STA4から TBTT変更要求のメッセージを受信すること により TBTT変更処理を起動して ヽるが、 STAOが新規 TBTTを設定して間もな 、場 合には、 TBTT変更処理を例外的に起動しないようにする。ここで言う「間もない」と は、新規 TBTTを設定してから 1乃至 3スーパーフレーム内である場合が該当する。 何故ならば、比較的規模の大きなネットワーク同士が衝突した場合、他の通信局の T BTT変更により衝突が回避される可能性があり、異常状態が整定されるまで待機す べきだ力もである。また、衝突相手となるネットワークが過ぎ去ってしまい、異常状態 が整定される可能性もあるからである。
[0323] また、上記の例では、 STA4は、衝突ビーコンの受信時刻あるいは TBTTの遅!ヽ方 の通信局に対して TBTT変更要求メッセージを送信している力 衝突ビーコンのうち ALERTフィールドにより当該ビーコンの TBTTが変更される旨が報知されて!、た場 合には、当該ビーコンを衝突ビーコンとしてカウントせず、これらを除外した上で衝突 ビーコンが存在する場合にのみ TBTT変更要求メッセージ送信処理を起動する。 T BTT変更処理によりビーコン衝突が自ずと解決されるからである。
[0324] これらの付帯条件を加味することにより、複数の通信局が同時に TBTTを変更する 場合に、 TBTT変更の発振を防ぐことに貢献できる。
[0325] また、衝突ビーコンのうち TYPEフィールドで示されるプライオリティ値が異なる場合 、これらの中で最低のプライオリティ値を上回るプライオリティ値を示しているビーコン は、上記メッセージの送信対象通信局から外した上で上記メッセージ送信処理を起 動する。例えば、一方の通信局の正規ビーコンと他方の通信局の補助ビーコンが衝 突した場合には、補助ビーコンの方の TBTTを移動すべきである。また、補助ビーコ ン同士が衝突した場合には、トラフィックのプライオリティが高い方が優先され、プライ オリティの低 、方を移動(あるいは排除)すべきである。
[0326] 図 16には、新規参入局の出現によりビーコンの衝突が露呈した際に、衝突を起こし た通信局の一方にビーコン送信時刻の変更 (TBTT変更)を要求することによりビー コンの衝突を回避するために、通信局において実行される装置動作をフローチャート の形式で示している。このような装置動作は、実際には無線通信装置 100内の中央 制御部 103にお 、て所定の実行命令プログラムを実行すると!/、う形態で実現される。
[0327] 当該動作は、自局の受信ビーコンの衝突を検出したことに応答して起動する。ここ では仮にビーコン Aとビーコン Bの受信が衝突したとする。
[0328] まず、受信したビーコン A又は Bのいずれか一方の ALERTフィールドで TBTTを 変更する旨が記載されて ヽるかどうかをチェックし,記載されて ヽるビーコンを衝突ビ ーコンから削除する (ステップ sio)。
[0329] ここで、 ALERTフィールドで TBTTを変更する旨が記載されて!、るビーコンを衝突 ビーコン力も削除した後に,再度,衝突ビーコンが存在する力否かを判断する (ステツ プ S11)。判断の結果,衝突ビーコンが存在する場合には,後述のステップ S12以降 の処理を行 ヽ,衝突ビーコンが存在しな ヽ場合には本処理ルーチンを終了する。
[0330] ステップ S10の処理の後であっても,なお衝突ビーコンが存在する場合には,各受 信ビーコンの TYPEフィールドを参照してトラフィックのプライオリティの差を比較する (ステップ S 12)。
[0331] ここで、ビーコン Aのプライオリティの方が低い場合には、ビーコン Aの送信元に対 して TBTT変更要求メッセージを送信して (ステップ S 14)、本処理ルーチンを終了 する。また、ビーコン Bのプライオリティの方が低い場合には、ビーコン Bの送信元に 対して TBTT変更要求メッセージを送信して (ステップ S 15)、本処理ルーチンを終 了する。
[0332] また、受信ビーコンのプライオリティに差がない場合には、さらにいずれの受信ビー コンの到来が遅いかを判別する (ステップ S13)。衝突した受信ビーコンのいずれが 遅いかを決定するために、単なるビーコン受信時刻を比較するのではなぐビーコン の TOISフィールドを参照し、使用された擬似ランダム系列を差し引くことにより、当該 ビーコンの TBTTそのものを算出する。
[0333] ここで、ビーコン Aの到来が遅い場合には、ビーコン Aの送信元に対して TBTT変 更要求メッセージを送信して (ステップ S 14)、本処理ルーチンを終了する。また、ビ ーコン Bの到来が遅い場合には、ビーコン Bの送信元に対して TBTT変更要求メッセ ージを送信して (ステップ S 15)、本処理ルーチンを終了する。
[0334] 正規ビーコンが 信できない場合の衝突回擗丰順:
補助ビーコンや優先送信期間 TPPを利用して定期的に送受信される信号には、正 規ビーコンに記載されているすべての情報(図 7を参照のこと)が記載されていない 場合もある(同上)。この場合、補助ビーコン同士の衝突、優先送信期間 TPPを利用 して定期的に送受信される信号とビーコンの衝突、又は定期的な送受信信号同士の 衝突が生じたとしても、その他の時間帯のメディア占有情報までは検出することがで きない。また、スキャン処理を行なっても、間が悪く当該通信局の正規ビーコンの送 信時間帯に他信号が存在するなどの理由により、正規ビーコンを受信できない場合 ち考免られる。
[0335] このような場合、補助ビーコンや優先送信期間 TPTTを利用して定期的に送信され る信号に Serialフィールドを設け、自局の正規ビーコンを基準に何番目の TBTTで 送信している補助ビーコンであるかを示す相対時刻情報を記載することにより、補助 ビーコン又は定期的な送信信号を受信した通信局は、当該補助ビーコン送信局の 正規ビーコンの送信時刻を抽出することができる。
[0336] 図 40には、補助ビーコン又は定期的な送信信号に付加された Serialフィールドの 記載内容に基づ 、て信号の衝突回避を行なうための通信動作例を示して 、る。同図 では、 STAOが図示しない他の通信局と通信中であり、 STA2が同様に図示しない 他の通信局と通信中であり、各々独立してネットワークを構成していた力 STAl^ 通信局の移動やネットワーク間の障壁の除去などの理由により STAOと STA2の電 波の到達範囲に入ってきた場合を想定している。また、同図では、スーパーフレーム 中に TOから T7までの 8つの TBTTが設定されて!、るものとする。
[0337] 図 40上段が初期状態である。時刻 TOにおいて、 STAOの補助ビーコンと STA2の 正規ビーコンが衝突している。このとき、 STA1は、 STAOが送信する補助ビーコンあ るいは優先送信期間 TPPを利用して送信される信号のために、 STA2が送信する時 刻 TOの正規ビーコンを受信することができない。し力し、時刻 T5に送信される STA2 の補助ビーコンは受信可能である。この場合、 STA1は、時刻 T5に STA2から送信 された補助ビーコンを受信すると、その Serialフィールドを解析し、補助ビーコンが正 規ビーコンの送信時刻からどれだけの相対時間差を以つて送信されているかの情報 を抽出することにより、 STA2の正規ビーコンが時刻 TO近辺で送信されていることを 認識する。さら〖こ、 STA1は、時刻 TO近辺にて STAOが信号を送信しているために S TA2の正規ビーコンが受信できないことを認識する。
[0338] その後、図 40中段に示すように、 STA1は、時刻 TO近辺で STAOが獲得している 優先送信期間 TPPを開放させる旨のメッセージを STAOに向けて送信する。 STAO は、このメッセージを受信すると、時刻 TOで確保している TPPを開放する。これにより 、時刻 TOでは定期的な送信信号としては STA2の正規ビーコンのみが送信されるこ ととなり、 STA1は STA2の正規ビーコンを受信することが可能となる。 STA1は、 ST A2の正規ビーコンを受信することにより、 STA2のリソース利用状況を把握すること ができるようになる。
[0339] 一方、図 40下段に示すように、 STA1は、 STA2に対して正規ビーコン送信時刻の 変更を要請するメッセージを送信することがある。この場合、 STA2は、このメッセ一 ジを受信すると、時刻 TOにて送信して ヽた正規ビーコンの送信変更手順を起動し、 既に述べた手順に従って空きスロットを検出した後、衝突が発生しない時刻にて正規 ビーコンの送信を開始する。これにより、 STA1は、 STA2の正規ビーコンを受信でき るようになり、 STA2のリソース利用状況を把握することができるようになる。
[0340] その他のスキャン 'トリガ:
これまでの説明では、スキャン動作として、定期的に行なわれるスキャンと、衝突の 検出に起因して行なわれるスキャンに処理について説明してきた。本実施形態では 、通信局は、衝突が検出されな力つた場合であっても、信号送信に先んじて行なわ れる信号検出 Z受信処理 (Listen Before Send)、並びに信号送信に引き続き行 なわれる信号検出 Z受信処理 (Listen After Send)により、これまで近隣局として 認識していな力つた通信局の信号を検出することができる場合がある。このような信 号検出 Z受信処理に起因してスキャン処理を起動し、当該通信局のビーコンを探し て当該通信局のメディア占有情報の入手に努める場合もある。
[0341] なお、スキャン処理中、信号を送信しない時間帯においては信号検出器並びに受 信機は連続的に動作させるが、信号を送信する時間帯においては、信号の送信を 優先し、信号の送信中に限り受信機をストップさせる場合もある。
[0342] G.プライオリティに某づく補助ビーコンの TBTTの設定
通信局は、ビーコンを送信する際、スキャンを行ない、受信ビーコンの NBOIを参照 することにより空き TBTTを探し出して、自局の新規 TBTTを設定する。
[0343] し力しながら、新規 TBTTを設定する過程で、スーパーフレーム内が既に他局の正 規ビーコン並びに補助ビーコンで飽和状態となっており、空き TBTTが存在しな!、と いう事態も想定される。この場合、通信局は、このシステムでトラヒックを流すことを断 念する方法や、低 ヽ優先度のトラヒック用に送信されて ヽるリソースを争奪して自局の より高い優先度のトラヒックを送信するという解決方法がある。本実施形態に係る無線 ネットワークでは、後者の方法のために、他の通信局に対し低い優先度の補助ビーコ ン送信の停止を要求することが許容されて ヽる。
[0344] 図 17には、通信局がスーパーフレーム周期内に新規 TBTTを設定するための処 理手順をフローチャートの形式で示している。このような装置動作は、実際には無線 通信装置 100内の中央制御部 103において所定の実行命令プログラムを実行する という形態で実現される。
[0345] この処理手順は、新規参入時に正規ビーコンの TBTTをスーパーフレーム内に設 定し、あるいはトラフィックのリソース獲得のために補助ビーコンの TBTTをスーパー フレーム内に設定する際に起動する (ステップ S21)。この時点で、自局が TBTTを 設定しょうとするビーコンのプライオリティは設定されているものとする。
[0346] 通信局は、少なくとも 1スーパーフレーム分だけスキャン動作を行ない (ステップ S 2 2)、スーパーフレーム内で新規 TBTTの空きスロットを探索する(ステップ S23)。ここ で、空きスロットを見つけ出すことができた場合には、図 9を参照しながら説明した処 理手順により新規 TBTTを設定し (ステップ S27)、本処理ルーチン全体を終了する
[0347] 一方、スーパーフレーム内で空きスロットを検出できない、すなわち満杯状態の場 合には、スーパーフレーム内に TBTTが配置されている各ビーコンの中から、自局が TBTTを設定しょうとするビーコンよりも優先度の低いものを探索する (ステップ S24)
[0348] そして、優先度の低!、ビーコンが所望の個数だけ検出されたならば、各ビーコンの 送信元に対して当該ビーコン送信の停止要求を行なう (ステップ S25)。
[0349] この後、通信局は、ビーコン送信の停止により空きスロットとなった位置に、自局の 正規ビーコン又は補助ビーコンの TBTTを設定して (ステップ S26)、本処理ルーチ ン全体を終了する。
[0350] 図 18には、スーパーフレーム内に TBTTが配置されている各ビーコンの中力 優 先度の低いものを探索し、自局のビーコンの TBTTを設定するための手順を示して いる。ここで、周辺局が設定するビーコンの TBTTは、各ビーコンに記載されている N BOIフィールドを参照することにより認識される。また、ビーコンのプライオリティはビ 一コン中の TYPEフィールドに記載されて!、る。
[0351] 図 18に示す例では、新規に高い優先度のトラヒックを送信したい通信局 Aに着目し 、通信局 Aの周辺に通信局 0、通信局 1、通信局 2が存在するという通信環境を想定 している。そして、通信局 Aは、スーパーフレーム内にこれら 3つの通信局からのビー コンが受信可能であるとする。
[0352] NBOIフィールドは、周辺局のビーコン受信時刻を自局の正規ビーコンに対する相 対位置としてビットマップ形式で記述している(前述)。そこで、通信局 Aでは、周辺局 力 受信できた 3つのビーコンの NBOIフィールドを各ビーコンの受信時刻に応じて シフトして時間軸上でビットの対応位置を揃えた上で、各タイミングの NBOIビットの O Rをとつて参照する。
[0353] 周辺局の NBOIフィールドを統合して参照した結果、得られている系列が図 16中" OR of NBOIs"で示され、 1はスーパーフレーム内で既に TBTTが設定されている タイミングの相対位置を、 0は TBTTが設定されて ヽな 、タイミングの相対位置を示す 。同図【こ示す f列で ίま、この系歹 Uiま「1111, 1111, 1111, 1111」、すなわちスーノ 一フレーム内のすべてのタイミングがマークされており、これ以上の空きの TBTTが 存在しな!ヽことが示されて!/、る。
[0354] このような場合、通信局 Aは、スーパーフレーム内で受信された各ビーコンの TYP Eフィールドを参照し、各々が持つトラフィックのプライオリティを取得する。そして、自 局がこれから送信しょうとするトラヒックの優先度を下回るプライオリティが設定されて いるビーコンに着目し、このようなプライオリティの低いビーコンの受信時刻に相当す る" OR of NBOIs"中のビットをクリアする。
[0355] 図 18に示す例では、 Beacon— 0'の TYPEが低優先度に設定されているとする。こ の場合、遁優先度のビーコン送信タイミングに相当するビット位置に 1が設定されて いる" Low Priority Beacon Rx"ど' OR of NBOIs"との排他的論理和 XORがとら れ、 "OR of NBOIs"中で Beacon— 0'が受信されている時刻に相当する 5ビット目、 10ビット目、並びに 12ビット目がクリアされる。この結果、同図の" XOR of Each"で 示されて!/、る系列を NBOIの集計結果とみなし、通信局 Aのビーコン送信時刻候補と する。以降は、通信局 Aは、図 9を参照しながら説明した上記の手順により空きの TB TTを見つけ、新規ビーコンの TBTTを設定すればよ!、。
[0356] 上述したような、優先度の低いビーコンを NBOIから排除するとともに自局の新規ビ 一コンの TBTTを設定するという処理手順を行なうことにより、自局並びに他局が同じ TBTTを設定し、ビーコンの衝突が一時的には発生する。しかし、系内ではビーコン の衝突に応答してこれを回避するために、図 13並びに図 16に示した TBTT変更手 順が起動することになる。この結果、低プライオリティのビーコンの TBTT変更処理が 実行されることになり、低プライオリティのビーコンが系内から徐々に消滅していくこと になる。
[0357] 図 19には、スーパーフレーム内が TBTTを既に設定したビーコンで満杯の状態で 、通信局が優先度の低い他局のビーコンを排除して、新規に TBTTを設定する様子 を示している。同図では、時刻 TOから時刻 TO'までで 1スーパーフレームを表してお り、上段から中段、下段へと 3スーパーフレームにわたるビーコン送信の時系列変遷 を示している。また、ここでは、 STA0、 STA1、 STA2という 3台の通信局が存在し、 少なくとも STA0と STA2は電波の到達範囲内に位置し、直接信号の送受信ができ ると 、う通信環境を想定して 、る。
[0358] 図 19上段に示した状態では、 STA2は、スーパーフレーム内で、正規ビーコン (T YPE = 255)と、優先度(TYPE=) 127の補助ビーコンを 2つ送信している。また、 S TA0は、スーパーフレーム内で、正規ビーコン (TYPE = 255)と、優先度(TYPE = ) 254の補助ビーコンを 3つ送信している。スーパーフレーム中の TBTTのタイミング はすべて占有されて 、る状態であり、空きの時間帯は存在して 、な 、。
[0359] このような状況下で、 STAOはさらに 2つの補助ビーコンを追加送信したい場合、ま ずスキャン動作を行ない(図示せず)、 STA2の送信する優先度 127の補助ビーコン を、自局が TBTTを設定しょうとするビーコンよりも優先度の低いビーコンとして見つ け出す。そして、図 18を参照しながら説明した手順に従い、 "Low Priority Beacon Rx"ど' OR of NBOIs"との排他的論理和 XORがとられ、 NBOI上でこれら STA2 力 の補助ビーコンの送信タイミングを無効化して空き TBTTとして取り扱う。さらに、 STAOは、無効化された TBTTタイミングに相当する時刻 Tl並びに時刻 T6におい て、優先度 254の補助ビーコンを送信することを決定する。
[0360] 図 19中段では、 STAOが時刻 T1並びに時刻 Τ6で補助ビーコンを送信することに より、 STAOと STA2のビーコンが衝突している様子を示している。このとき、 STAO並 び〖こ STA2は、図 13又は図 16に示された TBTT変更手順に従って処理を行なう。こ の結果、優先度の低 ヽ補助ビーコンを層雲して ヽる STA2が TBTT変更処理を開始 する。
[0361] STA2は、優先度 127を持つ 2個の補助ビーコンの TBTTを設定すベぐスキャン 動作を行ない、スーパーフレーム内で空き時間を探すが(図示せず)、空き時間が見 つからないため(あるいは優先度より低い補助ビーコンが見つからないため)、補助ビ 一コンの送信を断念する。この結果、図 19下段に示された状態で落ち着く。
[0362] 上述したような、スーパーフレーム内で優先度の低いビーコンの TBTTを排除して 優先度のより高 、ビーコンの TBTTを設定すると 、う操作を繰り返すことにより、高い プライオリティ用のリソースを確保することが可能となる。
[0363] なお、ここでは、新規に発生する高プライオリティ ·トラヒックを収容する場合を例示し て、高プライオリティ 'トラヒックが低プライオリティ 'トラヒックのリソースを奪うことを説明 した。場合によっては、プライオリティの高低に関わらず、既にサービスされている TP Pを優先するというポリシーが設定される場合もある。この場合には、上記の低プライ オリティ'トラヒック用の TPPを奪う処理は起動されないが、既にサービスされているト ラヒック群が通信局の移動により衝突状態に陥った場合には、いずれかの既存サー ビスの TPPを排除しなければならないときがある。このような場合においても、上記と 同様の手順を適応することにより、高プライオリティ 'トラヒックを優先的に生かすことが 可能となる。
[0364] H.プライオリティに某づく補助ビーコンの TBTTの設定 (遠隔換作)
前項 Gで説明した処理手順に従えば、新規にビーコンの TBTTを設定した 、通信 局 Aの周辺に低プライオリティのトラヒックを送信する通信局が存在する場合には、高 いプライオリティ用のリソースを確保するという効果を上げることができる。
[0365] 一方、通信局 Aの周辺には、低プライオリティのトラヒックを送信する通信局が存在 しな 、場合、低プライオリティのトラヒックを受信する通信局しか存在しな 、場合には、 これを消滅させることができない。何故ならば、隠れ端末との間では、互いのビーコン を受信し合うことができず、通信局 Aが低プライオリティのトラフィックを自局ビーコン の NBOI上で無効化しても、隠れ端末側には伝わらず、図 13又は図 16に示したよう な TBTT変更手順を直接起動させることができないからである。
[0366] そこで、図 18で述べた手段においても、なおかつビーコンの送信時刻が見当たら な力つた場合には、新規ビーコンの TBTTの設定を希望する通信局は周辺局に対し て、低プライオリティのトラヒックを送信して ヽる通信局が存在しな ヽかを探してもら ヽ 、送信を止めるように要求することで、隠れ端末に対する「遠隔操作」を行なう。
[0367] 図 20並びに図 21には、新規ビーコンの TBTTの設定を希望する通信局が周辺局 を介在した遠隔操作によりビーコンの送信を停止させ、自局ビーコンの TBTTを設定 する様子を示している。同図では、時刻 TOから時刻 TO'までで 1スーパーフレームを 表しており、 4スーパーフレームにわたるビーコン送信の時系列変遷を示している。ま た、ここでは、 STAO, STA1, STA2と! /、う 3台の通信局力存在し、少なくとも STAO と STA2は電波の到達範囲外に位置し、直接信号の送受信ができな 、と 、う通信環 境を想定している。
[0368] 図 20上段に示した状態では、 STA2は、スーパーフレーム内で、正規ビーコン (T YPE = 255)と、優先度(TYPE=) 2の補助ビーコンを 5つ送信している。また、 ST AOと STA1は、スーパーフレーム内で、それぞれ正規ビーコン (TYPE = 255)のみ を送信している。そして、スーパーフレーム中の TBTTのタイミングはすべて占有され ている。
[0369] ここで、 STAOは,時刻 TOで、優先度 254のトラヒックを送信するために 3つの補助 ビーコンの送信を希望して 、るが、スーパーフレーム内ですベての TBTTのタイミン グが既に占有されていることを認識している。さらに、 STAOは、図 18に示した低プラ ィオリティのトラフィックを排除するための処理手順を起動しても、補助ビーコン送信タ イミングを見つけることができない。そこで、 STAOは、時刻 TOで送信する正規ビーコ ンの ALERTフィールドに、「優先度 254のビーコンを 3つ送信したい」旨を示す情報 を掲載し、周辺局に報知す ALERTフィールドにこのような情報が記載されたビー コンは、周辺局に対する遠隔的なビーコン停止要求に相当する。また、 STAOは、 A LERTでビーコン停止要求を報知した後、周辺局による遠隔操作で空きスロットがで きないかを探すために、しばらくの間スキャン状態に入る。
[0370] なお、 ALERTフィールドは、異常状態にお!ヽて周辺局に伝達すべき情報を格納 するフィールドである。前述では、 ALERTフィールドは、自局の TBTTを変更する旨 を周辺局に報知するための情報を記載するために使用されている。ここでは、 ALER Tフィールドは、複数の異常状態を通知するために多重定義されている。図 22には、 この場合の ALERTフィールドの構成を模式的に示している。図示の通り、 ALERT フィールドは、定義の種別を示す種別フィールドと、異常状態を記述する本体フィー ルドに区別される。種別が自局の TBTT変更であれば、本体フィールドには TBTT 変更に関する情報が記載される。また、種別が遠隔操作である場合には、本体フィー ルドには自局が設定したいビーコンの優先度と設定したいビーコンの個数が記載さ れる。
[0371] STA1は、 ALERTフィールドに「優先度 254のビーコンを 3つ送信したい」旨の情 報が掲載されているビーコンを受信すると、優先度 254を下回るビーコンが近隣で送 信されて!ヽな ヽかを確認するため、少なくとも 1スーパーフレーム分のスキャン動作を 行なう。そして、 STA1は、スキャン終了と同時に、 STA2がスーパーフレーム内でよ り低 、優先度 2の補助ビーコンを 5つ送信して 、ることを認識する。
[0372] 次!、で、図 20下段に示すように、 STA1は、 STA2に対して「優先度 254を下回る 優先度の 3つのビーコン送信を一時的に止めてほしい」旨を記載したビーコン停止要 求メッセージ Mを送信する。なお、この間も STAOは、周辺局による遠隔操作で空き スロットができな 、かを探すために、スキャン状態のままで 、る。
[0373] STA2は、ビーコン停止要求メッセージ Mを受信したことに応答して、現在送信中 の優先度 2が補助ビーコンのうち時刻 T3、時刻 Τ5、時刻 Τ7で送信している 3つの補 助ビーコン送信をとりやめる。
[0374] 次いで、図 21上段では、 STA1は、少なくとも 1フレーム分のスキャン動作を行なう こと〖こより、時刻 Τ3、時刻 Τ5、時刻 Τ7が空いていることを検出する。あるいは、 STA 2やその他の周辺局が送信するビーコンの ΝΒΟΙにより、時刻 Τ3、時刻 Τ5、時刻 Τ7 が空いていることが報知される。なお、この間も STAOは、周辺局による遠隔操作で 空きスロットができな 、かを探すために、スキャン状態のままで 、る。
[0375] 次いで、図 21下段では、 STAOは、 STA1又はその他の周辺局から受信したビー コンの NBOIを参照して、時刻 T3、時刻 Τ5、時刻 Τ7が空いていることを認識すると、 これらのタイミングでそれぞれ優先度 254の補助ビーコンの ΤΒΤΤを設定し、ビーコ ンの送信を開始する。
[0376] 一方、 STA2は、一時的にビーコン送信を休止した後、再度、優先度 2の補助ビー コン送信を試みるため、スーパーフレーム内で空き ΤΒΤΤを探す。しかしながら、既 に STAOがこの時間帯をより高い優先度のビーコンで占有しているため、空き時刻を 見つけることができず、補助ビーコンの送信を断念する。
[0377] 上述したような、スーパーフレーム内で優先度の低いビーコンの TBTTを排除して 優先度のより高いビーコンの TBTTを設定するための遠隔操作を行なうことにより、 高いプライオリティ用のリソースを確保することが可能となる。
[0378] なお、 ALERTフィールド〖こ「優先度 XXのビーコンを送信した!/、」旨を示す情報が 掲載されて 、るビーコンを受信した通信局は、上記の遠隔操作によるビーコン停止 処理を行なうと同時に、提示された優先度 XXよりも低い自局の補助ビーコンの送信 処理を一時的に停止させる。
産業上の利用可能性
[0379] 以上、特定の実施形態を参照しながら、本発明について詳解してきた。しかしなが ら、本発明の要旨を逸脱しな ヽ範囲で当業者が該実施形態の修正や代用を成し得 ることは自明である。
[0380] 本明細書では、自律分散型の無線ネットワークにおいて、各通信局が所定のフレ ーム周期毎にビーコンを報知し合うような通信環境下において本発明を適用した場 合を主な実施形態として説明してきたが、本発明の要旨はこれに限定されるものでは ない。
[0381] 例えば、通信範囲内で複数の通信局からビーコンが送信されるような他の形態の 通信システムや、各通信局が所定の時間間隔単位で動作し、この時間間隔毎に定 期的に予約利用又は優先利用した帯域を設定して信号送信を行なう他の形態の通 信システムに対しても、本発明を同様に適用することができる。
[0382] 要するに、例示という形態で本発明を開示してきたのであり、本明細書の記載内容 を限定的に解釈するべきではない。本発明の要旨を判断するためには、特許請求の 範囲を参酌すべきである。
図面の簡単な説明
[0383] [図 1]図 1は、本発明の一実施形態に係る無線通信システムを構成する通信装置の 配置例を示した図である。
[図 2]図 2は、本発明の一実施形態に係る無線ネットワークにおいて通信局として動 作する無線通信装置の機能構成を模式的に示した図である。
[図 3]図 3は、本発明に係る自律分散型ネットワークにおいて、各通信局がビーコンを 送信するための手順を説明するための図である。
[図 4]図 4は、スーパーフレーム周期内で配置可能なビーコン送信タイミングの構成 例を示した図である。
[図 5]図 5は、スーパーフレーム周期内でビーコン送信局に優先権が与えられる様子 を示した図である。
[図 6]図 6は、スーパーフレーム周期の構成を示した図である。
[図 7]図 7は、本実施形態に係る自律分散型の無線通信システムにおいて送信される ビーコン 'フレームのフォーマット一例を示した図である。
[図 8]図 8は、 TBTTオフセットを説明するための図である。
[図 9]図 9は、新規に参入した通信局が周辺局から受信したビーコン力 得た各ビー コンの NBOIに基づいて自局の TBTTを設定する手順を説明するための図である。
[図 10]図 10は、電波の到来範囲の変動によりビーコンが衝突する様子を示した図で める。
[図 11]図 11は、 TBTT変更手順の一例を示した図である。
[図 12]図 12は、図 11に示した TBTT変更手順の変形例を示した図である。
[図 13]図 13は、電波到来範囲の変化などによりビーコンの衝突が発生した際に、衝 突を起こした通信局の一方がビーコン送信時刻を移動する (TBTT変更)することに よりビーコンの衝突を回避するために、通信局毎に実行される装置動作を示したフロ 一チャートである。
[図 14]図 14は、新規の通信局が電源を投入することにより、各通信局が送信するビ 一コンの衝突が露呈する様子を示した図である。
[図 15]図 15は、新規の通信局の参入によりビーコンの衝突が露呈した場合の TBTT 変更手順の一例を示した図である。
[図 16]図 16は、新規参入局の出現によりビーコンの衝突が露呈した際に、衝突を起 こした通信局の一方にビーコン送信時刻の変更 (TBTT変更)を要求することにより ビーコンの衝突を回避するために通信局にぉ 、て実行される装置動作を示したフロ 一チャートである。
[図 17]図 17は、通信局がスーパーフレーム周期内に新規 TBTTを設定するための 処理手順を示したフローチャートである。
[図 18]図 18は、スーパーフレーム内に TBTTが配置されている各ビーコンの中から 優先度の低いものを探索し、自局のビーコンの TBTTを設定するための手順を説明 するための図である。
[図 19]図 19は、スーパーフレーム内が TBTTを既に設定したビーコンで満杯の状態 で、通信局が優先度の低い他局のビーコンを排除して、新規に TBTTを設定する様 子を示した図である。
[図 20]図 20は、新規ビーコンの TBTTの設定を希望する通信局が周辺局を介在した 遠隔操作によりビーコンの送信を停止させ、自局ビーコンの TBTTを設定する様子を 示した図である。
[図 21]図 21は、新規ビーコンの TBTTの設定を希望する通信局が周辺局を介在した 遠隔操作によりビーコンの送信を停止させ、自局ビーコンの TBTTを設定する様子を 示した図である。
[図 22]図 22は、 ALERTフィールドの構成を模式的に示した図である。
[図 23]図 23は、 IEEE802. 11に基づく無線ネットワークにおけるインフラ 'モード時 の動作を説明するための図である。
[図 24]図 24は、 IEEE802. 11に基づく無線ネットワークにおけるアドホック 'モード 時の動作を説明するための図である。 [図 25]図 25は、 RTSZCTS手順によるアクセス動作例を示したチャートである。
[図 26]図 26は、 IEEE802. 11において定義されているパケット間隔 IFSを示した図 である。
[図 27]図 27は、 PCF (Point Coordination Function)の動作を説明するための図 である。
[図 28]図 28は、 EDCF動作により帯域を保証するトラフィックに優先送信を提供する 様子を示した図である。
[図 29]図 29は、通信局が TPP区間及び FAP区間においてそれぞれ送信を開始す るための動作を説明するための図である。
[図 30]図 30は、通信局が補助ビーコンという仮想的なビーコンを複数送信して、この 優先利用期間を増やす様子を示した図である。
[図 31]図 31は、通信局として動作する無線通信装置の状態遷移図を示した図である
[図 32]図 32は、通信局として動作する無線通信装置の状態遷移図である。
[図 33]図 33は、データを送受信している通信局のビーコンが衝突した場合における 衝突の検出手順を説明するための図である。
[図 34]図 34は、データを送受信している通信局のビーコンが衝突した場合における 衝突の検出手順を説明するための図である。
[図 35]図 35は、データを送受信している通信局のビーコンが衝突した場合における 衝突の検出手順を説明するための図である。
[図 36]図 36は、データを送受信している通信局のビーコンが衝突した場合における 衝突の検出手順を説明するための図である。
[図 37]図 37は、データを送受信している通信局のビーコンが衝突した場合における 衝突の検出手順を説明するための図である。
[図 38]図 38は、衝突している信号同士が TBTTにカ卩えこのランダム値さえも完全に 一致してしまっている場合における衝突回避動作を含んだ通信手順を示したフロー チャートである。
[図 39]図 39は、補助ビーコン又は定期的な送信信号に付加された Serialフィールド の記載内容に基づいて信号の衝突回避を行なうための通信動作例を示した図であ る。
[図 40]図 40は、補助ビーコン又は定期的な送信信号に付加された Serialフィールド の記載内容に基づいて信号の衝突回避を行なうための通信動作例を示した図であ る。
符号の説明
100…無線通信装置
101···インターフェース
102···データ'バッファ
103…中央制御部
104···ビーコン生成部
106…無線送信部
107···タイミング制御部
109···アンテナ
110…無線受信部
112…ビーコン解析部
113…情報記憶部

Claims

請求の範囲
[1] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによってネットワークを構築する無 線通信システムであって、
ネットワーク内で 2以上の通信局力 送信されるビーコンの衝突を検出し、 該衝突の検出に応答して、少なくとも一方のビーコンの送信タイミングを変更するこ とによって衝突を解消する、
ことを特徴とする無線通信システム。
[2] 該衝突の検出に応答してビーコンの送信タイミングを変更する通信局は、ビーコン の送信タイミングを変更する旨の警告を記載したビーコンを周辺局に報知し、少なく とも所定期間だけスキャン動作を行ない、周辺局がビーコン送信に使用していないタ イミングを発見してこれを新規のビーコン送信タイミングに決定する、
ことを特徴とする請求項 1に記載の無線通信システム。
[3] 通信局は、自局のビーコン送信の直前に他局のビーコンを受信したことに応答して
、 自局のビーコン送信タイミングの変更を決定する、
ことを特徴とする請求項 1に記載の無線通信システム。
[4] 通信局は、自局のビーコン送信の直後に他局のビーコンを受信したことに応答して
、 自局のビーコン送信タイミングの変更を決定する、
ことを特徴とする請求項 1に記載の無線通信システム。
[5] 通信局は、自局のビーコン送信タイミング付近で他局のビーコンを受信したことに 応答して、該他局に対してビーコン送信タイミングの変更を要求する、
ことを特徴とする請求項 1に記載の無線通信システム。
[6] 各通信局が送信するビーコンにはトラフィックのプライオリティが設定されるとともに
、プライオリティに関する情報をビーコンに記載して報知し、
ビーコンの衝突が発生したときには、各通信局は互いのビーコンのプライオリティを 参照し、プライオリティの低いビーコンの送信元が自局のビーコン送信タイミングを変 更する、
ことを特徴とする請求項 1に記載の無線通信システム。
[7] 通信局は、周辺局から受信するビーコン同士が衝突することを検出したことに応答 して、いずれか一方の通信局に対してビーコン送信タイミングの変更を要求する、 ことを特徴とする請求項 1に記載の無線通信システム。
[8] 通信局は、ビーコンの受信時刻がより遅い方の通信局に対してビーコン送信タイミ ングの変更を要求する、
ことを特徴とする請求項 7に記載の無線通信システム。
[9] 各通信局が送信するビーコンにはトラフィックのプライオリティが設定されるとともに 、プライオリティに関する情報をビーコンに記載して報知し、
一方の通信局が前記所定の時間間隔内で配置したいビーコンの個数並びにその プライオリティを指定したビーコン停止要求を周辺局へ向けて送信し、
該ビーコン停止要求を受信した他方の通信局は前記所定の時間間隔内で指定さ れたプライオリティ以下のビーコンを指定された個数だけ検出し、各ビーコンの送信 元の通信局に対しビーコン停止要求を送信する、
ことを特徴とする請求項 1に記載の無線通信システム。
[10] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによってネットワークを構築する無 線通信システムであって、
各通信局は、前記所定の時間間隔で自局に設定されたビーコン送信タイミングを 擬似ランダム系列により与えられる値に基づいて移動してビーコンの送信を行なうとと もに、該擬似ランダム系列に関する情報を当該ビーコンに記載して報知する、 ことを特徴とする無線通信システム。
[11] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによってネットワークを構築する無 線通信システムであって、
各通信局は、周辺局に対して伝達すべき異常状態に関する警告をビーコンに記載 して報知する、
ことを特徴とする無線通信システム。
[12] 各通信局は、異常状態の警告として、自局のビーコンの送信位置の変更、又は他 局が送信するビーコンの排除に関する要求を記載する、
ことを特徴とする請求項 11に記載の無線通信システム。
[13] 通信局は、異常状態の警告を意図する情報を掲載したビーコンを周辺局から受信 したことに応答してスキャン動作を行な 、、ネットワークの状態の情報を獲得する、 ことを特徴とする請求項 11に記載の無線通信システム。
[14] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによってネットワークを構築する無 線通信システムであって、
各通信局は、前記所定の時間間隔で、正規のビーコンを 1回だけ送信するとともに
、該正規のビーコンに類似する信号力 なる 1以上の補助ビーコンを送信することが でき、
各ビーコンにトラフィックのプライオリティが設定されるとともに、プライオリティに関す る情報を当該ビーコンに記載して報知する、
ことを特徴とする無線通信システム。
[15] 各通信局は、正規のビーコン及び補助ビーコンを送信したことに伴い、トラフィック の優先利用期間を獲得する、
ことを特徴とする請求項 14に記載の無線通信システム。
[16] 前記所定の時間間隔で送信する補助ビーコンの個数、並びに前記所定の時間間 隔内で各補助ビーコンを一意に識別する情報をビーコンに記載して報知する、 ことを特徴とする請求項 14に記載の無線通信システム。
[17] 各通信局は、
自局のビーコン送信タイミング並びに受信可能なビーコンの送信タイミングに関す る近隣装置情報をビーコンに記載して報知し、
新規にビーコンの送信タイミングを設定する際に、当該ビーコンに設定したプライォ リティよりも低い受信ビーコンを探し出して前記近隣装置情報力も排除する、 ことを特徴とする請求項 14に記載の無線通信システム。
[18] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによって構築される通信環境下で 動作する無線通信装置であって、
無線データを送受信する通信手段と、
自局に関する情報を記載したビーコン信号を生成するビーコン信号生成手段と、 前記通信手段により周辺局から受信したビーコン信号を解析するビーコン信号解 析手段と、
前記通信手段によるビーコン送信タイミングを制御するタイミング制御手段と、 他局との間で発生したビーコンの衝突を回避する衝突回避手段と、
を具備することを特徴とする無線通信装置。
[19] 前記衝突回避手段は、自局のビーコン送信の直前に他局のビーコンを受信したこ とに応答して、自局のビーコン送信タイミングの変更を決定する、
ことを特徴とする請求項 18に記載の無線通信装置。
[20] 前記衝突回避手段は、自局のビーコン送信の直後に他局のビーコンを受信したこ とに応答して、自局のビーコン送信タイミングの変更を決定する、
ことを特徴とする請求項 18に記載の無線通信装置。
[21] 自局のビーコン送信タイミングを変更する際、
前記ビーコン信号生成手段は、ビーコンの送信タイミングを変更する旨の警告をビ ーコン中に記載し、
前記タイミング制御手段は、少なくとも所定期間だけスキャン動作を行なうことで周 辺局がビーコン送信に使用して 、な 、タイミングを発見し、新規のビーコン送信タイミ ングに決定する、
ことを特徴とする請求項 18に記載の無線通信装置。
[22] 前記衝突回避手段は、ビーコンの送信タイミングを変更する旨の警告が記載された ビーコンを他局力 受信したこと、又は予定されたビーコン受信タイミングで他局から ビーコンを受信できな力つたことに応答して、前記所定の時間間隔にわたり当該他局 力 のビーコンを検出するためのスキャン動作を行ない、周辺局の送信するビーコン に記載されて ヽる情報を獲得する、
ことを特徴とする請求項 18に記載の無線通信装置。
[23] 前記衝突回避手段は、自局のビーコン送信タイミング付近で他局のビーコンを受信 したことに応答して、該他局に対してビーコン送信タイミングの変更を要求する、 ことを特徴とする請求項 18に記載の無線通信装置。
[24] 前記ビーコン信号生成手段は、ビーコンに設定されているトラフィックのプライオリテ ィを当該ビーコン中に記載し、
前記衝突回避手段は、衝突したビーコンとのプライオリティの比較結果に応じた衝 突回避動作を行なう、
ことを特徴とする請求項 18に記載の無線通信装置。
[25] 前記衝突回避手段は、自局のビーコンのプライオリティの方が低い場合に、自局の ビーコン送信タイミングの変更を決定する、
ことを特徴とする請求項 24に記載の無線通信装置。
[26] 前記衝突回避手段は、衝突した他局のビーコンのプライオリティの方が低い場合に
、該他局に対しビーコン送信タイミングの変更を要求する、
ことを特徴とする請求項 24に記載の無線通信装置。
[27] 前記衝突回避手段は、ビーコンの送信タイミングの変更する旨の警告が記載された ビーコンと衝突した場合、自局のビーコン送信タイミングを変更しない、
ことを特徴とする請求項 18に記載の無線通信装置。
[28] 前記衝突回避手段は、自局のビーコン送信タイミングを設定して力 所定期間が経 過する前に他局のビーコンと衝突した場合、自局のビーコン送信タイミングを変更し ない、
ことを特徴とする請求項 18に記載の無線通信装置。
[29] 前記衝突回避手段は、周辺局から受信するビーコン同士が衝突することを検出し たことに応答して、いずれか一方の通信局に対してビーコン送信タイミングの変更を 要求する、
ことを特徴とする請求項 18に記載の無線通信装置。
[30] 前記ビーコン信号生成手段は、ビーコンに設定されているトラフィックのプライオリテ ィを当該ビーコン中に記載し、
前記衝突回避手段は、前記所定の時間間隔内で配置した 、ビーコンの個数並び にそのプライオリティを指定したビーコン停止要求を周辺局へ向けて送信する、 ことを特徴とする請求項 18に記載の無線通信装置。
[31] 前記衝突回避手段は、他局からビーコン停止要求を受信したことに応答して、スキ ヤン動作を行なヽ、周辺局の送信するビーコンに記載されて 、る情報を獲得する、 ことを特徴とする請求項 30に記載の無線通信装置。
[32] 前記衝突回避手段は、他局からビーコン停止要求を受信したことに応答して、前記 所定の時間間隔内で指定されたプライオリティ以下のビーコンを指定された個数だけ 検出し、各ビーコンの送信元の通信局に対しビーコン停止要求を送信する、 ことを特徴とする請求項 30に記載の無線通信装置。
[33] 前記タイミング制御手段は、前記所定の時間間隔で自局に設定されたビーコン送 信タイミングを擬似ランダム系列により与えられる値に基づいて移動してビーコンの送 信を行ない、
前記ビーコン信号生成手段は、該擬似ランダム系列に関する情報を当該ビーコン に記載して報知する、
ことを特徴とする請求項 18に記載の無線通信装置。
[34] 前記ビーコン信号生成手段は、周辺局に対して伝達すべき異常状態に関する警 告をビーコンに記載して報知する、
ことを特徴とする請求項 18に記載の無線通信装置。
[35] 前記ビーコン信号生成手段は、異常状態の警告として、自局のビーコンの送信位 置の変更、又は他局が送信するビーコンの排除に関する要求を記載する、 ことを特徴とする請求項 34に記載の無線通信装置。
[36] 前記衝突回避手段は、異常状態の警告を意図する情報を掲載したビーコンを周辺 局から受信したことに応答してスキャン動作を行ない、ネットワークの状態の情報を獲 得する、
ことを特徴とする請求項 35に記載の無線通信装置。
[37] 前記所定の時間間隔で、正規のビーコンを 1回だけ送信するとともに、該正規のビ 一コンに類似する信号力もなる 1以上の補助ビーコンを送信することができ、 前記ビーコン信号生成手段は、各ビーコンにトラフィックのプライオリティが設定され るとともに、プライオリティに関する情報を当該ビーコンに記載して報知する、 ことを特徴とする請求項 18に記載の無線通信装置。
[38] 正規のビーコン及び補助ビーコンを送信したことに伴 、、トラフィックの優先利用期 間を獲得する優先通信手段を備える、
ことを特徴とする請求項 37に記載の無線通信装置。
[39] 前記ビーコン信号生成手段は、前記所定の時間間隔で送信する補助ビーコンの個 数、並びに前記所定の時間間隔内で各補助ビーコンを一意に識別する情報をビー コンに記載して報知する、
ことを特徴とする請求項 37に記載の無線通信装置。
[40] 前記ビーコン信号生成手段は、 自局のビーコン送信タイミング並びに受信可能なビ 一コンの送信タイミングに関する近隣装置情報をビーコンに記載して報知し、 前記タイミング制御手段は、新規にビーコンの送信タイミングを設定する際に、当該 ビーコンに設定したプライオリティよりも低い受信ビーコンを探し出して前記近隣装置 情報から排除する、
ことを特徴とする請求項 37に記載の無線通信装置。
[41] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによって構築される通信環境下に おいて無線通信動作を行なうための無線通信方法であって、
自局に関する情報を記載したビーコン信号を生成するビーコン信号生成ステップと 周辺局力 受信したビーコン信号を解析するビーコン信号解析ステップと、 ビーコン送信タイミングを制御するタイミング制御ステップと、
他局との間で発生したビーコンの衝突を回避する衝突回避ステップと、 を具備することを特徴とする無線通信方法。
[42] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによって構築される通信環境下に ぉ 、て無線通信動作を行なうための処理をコンピュータ ·システム上で実行するよう にコンピュータ可読形式で記述されたコンピュータ 'プログラムであって、
自局に関する情報を記載したビーコン信号を生成するビーコン信号生成ステップと 周辺局力 受信したビーコン信号を解析するビーコン信号解析ステップと、 ビーコン送信タイミングを制御するタイミング制御ステップと、
他局との間で発生したビーコンの衝突を回避する衝突回避ステップと、 を具備することを特徴とするコンピュータ ·プログラム。
[43] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔毎に定期的な 通信動作を行なうことによってネットワークを構築する無線通信システムであって、 通信局は、前記所定の時間間隔毎に定期的な信号送受信を行なう場合に、該定 期的な信号送受信に先立ち又は送受信を行なった後の少なくとも一方において、他 局からの送信信号の受信を試み、該定期的な信号送受信と他局の信号送信との衝 突の有無を検出する、
ことを特徴とする無線通信システム。
[44] 通信局は、自局の定期的な信号送受信タイミング付近で他局の送信信号を受信す ることにより、定期的な信号送受信タイミングの衝突を検出する、
ことを特徴とする請求項 43に記載の無線通信システム。
[45] 通信局は、自局の信号送受信タイミング付近で他局の定期的な送信信号を受信す ることにより、定期的な信号送受信タイミングの衝突を検出する、
ことを特徴とする請求項 43に記載の無線通信システム。
[46] 通信局は、前記定期的な信号送受信の衝突を検出したことに応答して、少なくとも 所定期間だけスキャン処理を行ない、他局の周期的信号の送信状況の確認を試み る、
ことを特徴とする請求項 43に記載の無線通信システム。
[47] 通信局は、定期的な信号送受信に先立ち他局からの送信信号の受信を試み、該 定期的な信号送受信と他局の信号送信との衝突を検出したことに応答して、該他局 の信号との衝突を回避できるように自局の信号の送信タイミングを遅延させる、 ことを特徴とする請求項 43に記載の無線通信システム。
[48] 通信局は、衝突回避のために定期的な信号の送信タイミングを変更した旨を記載 した信号を送信する、 ことを特徴とする請求項 47に記載の無線通信システム。
[49] 衝突を起こした他局は、衝突回避のために定期的な信号の送信タイミングを変更し た旨を記載した信号を受信して、自局が送信した後に送信しょうとしていた定期的な 信号との衝突を検出する、
ことを特徴とする請求項 46に記載の無線通信システム。
[50] 各通信局は、定期的に送受信される信号のスケジュールを記載したビーコンを報 知することにより、互いの定期的な信号送受信時刻を抽出する、
ことを特徴とする請求項 43に記載の無線通信システム。
[51] 通信局は、周辺局から受信したビーコンに記載された情報に基づいて定期的信号 送受信区間の衝突を検出し、衝突している信号送受信タイミングを変更する、 ことを特徴とする請求項 50に記載の無線通信システム。
[52] 通信局は、定期的に送受信される信号に優先度が設定されており、通信局は, 自 局が定期的に送受信する信号と他局が定期的に送受信する信号の衝突を検出した ときには、優先度の低い定期的信号送受信のタイミングを変更する、
ことを特徴とする請求項 50に記載の無線通信システム。
[53] 定期的信号送受信を行なう信号の一部に当該通信局のビーコンの送信時刻から の相対時刻情報を記載する、
ことを特徴とする請求項 50に記載の無線通信システム。
[54] 通信局は、他局の送信する定期的に送信される信号を受信すると、前記定期的に 送信される信号に記載されているビーコンの送信時刻からの相対時刻情報を基に当 該信号の送信局のビーコンの送信時刻を抽出し、当該時刻に行なわれて!/、る他の 信号の送信を停止させる、
ことを特徴とする請求項 53に記載の無線通信システム。
[55] 通信局は、定期的に送信を行なう信号の一部に、当該信号が定期的にスケジユー ルされて送信されて ヽる旨を示す情報を記載する、
ことを特徴とする請求項 43に記載の無線通信システム。
[56] 通信局は、定期的に送信を行なう信号の一部に、当該信号の優先度を示す情報を 記載する、 ことを特徴とする請求項 55に記載の無線通信システム。
[57] 通信局は、定期的信号送受信の衝突を検出したことに応答して優先度の低い定期 的信号送受信のタイミングを変更する、
ことを特徴とする請求項 56に記載の無線通信システム。
[58] 通信局は、定期的な信号の送受信の送信時刻にランダムなオフセットを付加する、 ことを特徴とする請求項 43に記載の無線通信システム。
[59] 通信局は、定期的に送受信される信号の一部に送信時刻のランダムなオフセットに 関わる情報を掲載する、
ことを特徴とする請求項 58に記載の無線通信システム。
[60] 通信局は、定期的信号の送受信を新規に生成するに先立ち、スキャン動作を行な うことにより他局の定期的信号送受信と衝突しない時間帯を抽出し、該新規の定期 的信号の送受信タイミングを他局の定期的信号送受信と衝突しない時間帯に設定す る、
ことを特徴とする請求項 43に記載の無線通信システム。
[61] 通信局は、ネットワークに関する情報を取得するためのスキャン動作を行なう際、当 該情報を得るために必要な情報が送信される時間帯を抽出し、該抽出された時間帯 にお!/、て信号受信を試みる、
ことを特徴とする請求項 43に記載の無線通信システム。
[62] 通信局は、 1つ以上の定期的信号送受信区間を獲得して所望の通信局と信号の 送受信を行なっている際に、定期的信号送受信区間における信号受信状態を監視 し、信号受信状態が著しく劣化したことが検出された定期的信号送受信区間を開放 する、
ことを特徴とする請求項 43に記載の無線通信システム。
[63] 通信局は、周辺局の定期的信号送受信区間以外の時間帯にて、伝送路上の所定 時間の信号検出とランダムなバックオフ期間の待機を伴うアクセス手順に基づいて信 号の送受信を行なう、
ことを特徴とする請求項 43に記載の無線通信システム。
[64] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによってネットワークを構築する無 線通信システムであって、
通信局は、前記所定の時間間隔毎に定期的な信号送受信を行なう場合に、定期 的信号送受信を行なう信号の一部に当該通信局のビーコンの送信時刻からの相対 時刻情報を記載し、周辺局から受信した信号に記載されて 、る相対時刻情報に基 づいて当該周辺局のビーコンとそれ以外の局が送受信する信号との衝突を検出する ことを特徴とする無線通信システム。
[65] 通信局は、周辺局から受信した信号に記載されて 、る相対時刻情報に基づ 、て当 該周辺局のビーコンの送信時刻を抽出し、同時刻に自局が信号を送信していたとき に当該周辺局のビーコンとの衝突を検出する、
ことを特徴とする請求項 64に記載の無線通信システム。
[66] 通信局は、周辺局から受信した信号に記載されて 、る相対時刻情報に基づ 、て当 該周辺局のビーコンの送信時刻を抽出し、同時刻に当該周辺局のビーコンを受信で きな力つたときに他局の信号との衝突を検出する、
ことを特徴とする請求項 64に記載の無線通信システム。
[67] 通信局は、信号の衝突を検出したことに応答して衝突を回避する、
ことを特徴とする請求項 64に記載の無線通信システム。
[68] 通信局は、抽出されたビーコン信号の送信時刻に行なわれて!/、る他の信号の送信 を停止させることにより衝突を回避する、
ことを特徴とする請求項 67に記載の無線通信システム。
[69] 制御局と被制御局の関係を有しない通信環境下で所定の時間間隔毎に通信動作 を行なう無線通信装置であって、
無線データを送受信する通信手段と、
前記通信手段による信号の送受信動作の制御と送受信信号の処理を行なうととも に、前記所定の時間間隔毎に定期的な信号の送受信動作を制御する通信制御手 段と、
定期的な信号送受信に先立ち又は送受信を行なった後の少なくとも一方において、 他局からの送信信号の受信を試み、該定期的な信号送受信と他局の信号送信との 衝突の有無を検出する衝突検出手段と、
を具備することを特徴とする無線通信装置。
[70] 前記衝突検出手段は、自局の定期的な信号送受信タイミング付近で他局の送信信 号を受信することにより、定期的な信号送受信タイミングの衝突を検出する、 ことを特徴とする請求項 69に記載の無線通信装置。
[71] 前記衝突検出手段は、自局の信号送受信タイミング付近で他局の定期的な送信信 号を受信することにより、定期的な信号送受信タイミングの衝突を検出する、 ことを特徴とする請求項 69に記載の無線通信装置。
[72] 前記定期的な信号送受信の衝突を検出したことに応答して、少なくとも所定期間だ けスキャン処理を行な!/ヽ、他局の周期的信号の送信状況の確認を試みるスキャン動 作手段をさらに備える、
ことを特徴とする請求項 69に記載の無線通信装置。
[73] 前記衝突検出手段が定期的な信号送受信に先立ち他局からの送信信号の受信を 試み、該定期的な信号送受信と他局の信号送信との衝突を検出したことに応答して
、該他局の信号との衝突を回避できるように自局の信号の送信タイミングを遅延させ る衝突回避手段をさらに備える、
ことを特徴とする請求項 69に記載の無線通信装置。
[74] 前記通信制御手段は、衝突回避のために定期的な信号の送信タイミングを変更し た旨を信号に記載する、
ことを特徴とする請求項 73に記載の無線通信装置。
[75] 前記衝突検出手段は、衝突回避のために定期的な信号の送信タイミングを変更し た旨を記載した信号を受信して、自局が送信した後に送信しょうとしていた定期的な 信号との衝突を検出する、
ことを特徴とする請求項 74に記載の無線通信装置。
[76] 定期的に送受信される信号のスケジュールを記載したビーコンを生成するビーコン 生成手段をさらに備え、
前記通信制御手段はビーコン信号を前記所定の時間間隔毎に送信する、 ことを特徴とする請求項 69に記載の無線通信装置。
[77] 前記衝突検出手段は、ビーコンの記載に基づいて他局の定期的な信号送受信時 刻を抽出して定期的信号送受信区間の衝突を検出し、
前記衝突回避手段は、衝突して 、る信号送受信タイミングを変更する、
ことを特徴とする請求項 76に記載の無線通信装置。
[78] 前記通信制御手段は、定期的に送受信される信号に優先度を設定し、
前記衝突検出手段は、自局の定期的に送受信する信号と周辺局が定期的に送受 信する信号の衝突の衝突を衝突した場合に、優先度の低!ヽ定期的信号送受信のタ イミングを変更する、
ことを特徴とする請求項 76に記載の無線通信装置。
[79] 前記通信制御手段は、定期的信号送受信を行なう信号の一部に当該通信局のビ 一コンの送信時刻からの相対時刻情報を記載する、
ことを特徴とする請求項 76に記載の無線通信装置。
[80] 前記衝突回避手段は、他局の送信する定期的に送信される信号を受信すると、前 記定期的に送信される信号に記載されているビーコンの送信時刻からの相対時刻情 報を基に当該信号の送信局のビーコンの送信時刻を抽出し、当該時刻に行なわれ ている他の信号の送信を停止させる、
ことを特徴とする請求項 79に記載の無線通信装置。
[81] 前記通信制御手段は、定期的に送信を行なう信号の一部に、当該信号が定期的 にスケジュールされて送信されて 、る旨を示す情報を記載する、
ことを特徴とする請求項 69に記載の無線通信装置。
[82] 前記通信制御手段は、定期的に送信を行なう信号の一部に、当該信号の優先度 を示す情報を記載する、
ことを特徴とする請求項 81に記載の無線通信装置。
[83] 前記衝突回避手段は、定期的信号送受信の衝突を検出したことに応答して優先度 の低い定期的信号送受信のタイミングを変更する、
ことを特徴とする請求項 82に記載の無線通信装置。
[84] 前記通信制御手段は、定期的な信号の送受信の送信時刻にランダムなオフセット を付加する、
ことを特徴とする請求項 69に記載の無線通信装置。
[85] 前記通信制御手段は、定期的に送受信される信号の一部に送信時刻のランダムな オフセットに関わる情報を掲載する、
ことを特徴とする請求項 84に記載の無線通信装置。
[86] 定期的信号の送受信を新規に生成するに先立ち、スキャン動作を行なうスキャン動 作手段をさらに備え、
前記通信制御手段は、スキャン動作により抽出された他局の定期的信号送受信と衝 突しない時間帯に該新規の定期的信号の送受信タイミングを設定する、
ことを特徴とする請求項 69に記載の無線通信装置。
[87] 当該情報を得るために必要な情報が送信される時間帯を抽出し、該抽出された時 間帯にお 、て信号受信を試みるスキャン動作手段をさらに備える、
ことを特徴とする請求項 69に記載の無線通信装置。
[88] 前記衝突検出手段は、 1つ以上の定期的信号送受信区間を獲得して所望の通信 局と信号の送受信を行なっている際に、定期的信号送受信区間における信号受信 状態を監視し、
前記衝突回避手段は、信号受信状態が著しく劣化したことが検出された定期的信号 送受信区間を開放する、
ことを特徴とする請求項 73に記載の無線通信装置。
[89] 前記通信制御手段は、周辺局の定期的信号送受信区間以外の時間帯にて、伝送 路上の所定時間の信号検出とランダムなバックオフ期間の待機を伴うアクセス手順に 基づ!/、て信号の送受信を行なう、
ことを特徴とする請求項 69に記載の無線通信装置。
[90] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによって構築される通信環境下で 動作する無線通信装置であって、
無線データを送受信する通信手段と、
自局に関する情報を記載したビーコン信号を生成するビーコン信号生成手段と、 前記通信手段により周辺局から受信したビーコン信号を解析するビーコン信号解 析手段と、
前記通信手段によるビーコン送信タイミングを制御するタイミング制御手段と、 他局との信号の衝突を検出する衝突検出手段とを備え、
前記所定の時間間隔毎に定期的な信号送受信を行なう場合に、定期的信号送受 信を行なう信号の一部にビーコンの送信時刻からの相対時刻情報を記載し、 前記衝突検出手段は、周辺局から受信した信号に記載されている相対時刻情報 に基づいて当該周辺局のビーコンとそれ以外の局が送受信する信号との衝突を検 出する、
ことを特徴とする無線通信装置。
[91] 前記衝突検出手段は、周辺局から受信した信号に記載されている相対時刻情報 に基づいて当該周辺局のビーコンの送信時刻を抽出し、同時刻に自局が信号を送 信していたときに当該周辺局のビーコンとの衝突を検出する、
ことを特徴とする請求項 90に記載の無線通信装置。
[92] 前記衝突検出手段は、周辺局から受信した信号に記載されている相対時刻情報 に基づいて当該周辺局のビーコンの送信時刻を抽出し、同時刻に当該周辺局のビ 一コンを受信できな力つたときに他局の信号との衝突を検出する、
ことを特徴とする請求項 90に記載の無線通信装置。
[93] 信号の衝突を検出したことに応答して衝突を回避する衝突回避手段をさらに備える ことを特徴とする請求項 90に記載の無線通信装置。
[94] 前記衝突回避手段は、抽出されたビーコン信号の送信時刻に行なわれて!/ヽる他の 信号の送信を停止させることにより衝突を回避する、
ことを特徴とする請求項 93に記載の無線通信装置。
[95] 制御局と被制御局の関係を有しない通信環境下で所定の時間間隔毎に通信動作 を行なう無線通信方法であつて、
前記所定の時間間隔毎に定期的な信号の送受信する信号送受信ステップと、 定期的な信号送受信に先立ち又は送受信を行なった後の少なくとも一方において、 他局からの送信信号の受信を試み、該定期的な信号送受信と他局の信号送信との 衝突の有無を検出する衝突検出ステップと、
を具備することを特徴とする無線通信方法。
[96] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによって構築される通信環境下で 動作する無線通信方法であって、
自局に関する情報を記載したビーコン信号を生成するビーコン信号生成ステップと 周辺局力 受信したビーコン信号を解析するビーコン信号解析ステップと、 信号の一部にビーコンの送信時刻からの相対時刻情報を記載して前記所定の時 間間隔毎に定期的な信号送受信を行なう信号送受信ステップと、
周辺局力 受信した信号に記載されている相対時刻情報に基づいて当該周辺局 のビーコンとそれ以外の局が送受信する信号との衝突を検出する衝突検出ステップ と、
を具備することを特徴とする無線通信方法。
[97] 制御局と被制御局の関係を有しない通信環境下で所定の時間間隔毎に通信動作 を行なうための処理をコンピュータ 'システム上で実行するようにコンピュータ可読形 式で記述されたコンピュータ ·プログラムであって、
前記所定の時間間隔毎に定期的な信号の送受信する信号送受信ステップと、 定期的な信号送受信に先立ち又は送受信を行なった後の少なくとも一方において、 他局からの送信信号の受信を試み、該定期的な信号送受信と他局の信号送信との 衝突の有無を検出する衝突検出ステップと、
を具備することを特徴とするコンピュータ ·プログラム。
[98] 制御局と被制御局の関係を有さずに、各通信局が所定の時間間隔でネットワーク に関する情報を記述したビーコンを送信し合うことによって構築される通信環境下で 無線通信動作を行なうための処理をコンピュータ 'システム上で実行するようにコンビ ユータ可読形式で記述されたコンピュータ 'プログラムであって、
自局に関する情報を記載したビーコン信号を生成するビーコン信号生成ステップと 周辺局力 受信したビーコン信号を解析するビーコン信号解析ステップと、 信号の一部にビーコンの送信時刻からの相対時刻情報を記載して前記所定の時 間間隔毎に定期的な信号送受信を行なう信号送受信ステップと、
周辺局力 受信した信号に記載されている相対時刻情報に基づいて当該周辺局 のビーコンとそれ以外の局が送受信する信号との衝突を検出する衝突検出ステップ と、
を具備することを特徴とするコンピュータ ·プログラム。
PCT/JP2004/014921 2003-10-24 2004-10-08 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム WO2005041487A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN200480027308XA CN1856963B (zh) 2003-10-24 2004-10-08 无线通信系统、无线通信设备和无线通信方法
EP20040792190 EP1677456A4 (en) 2003-10-24 2004-10-08 RADIO COMMUNICATION SYSTEM, RADIO COMMUNICATION APPARATUS, RADIO COMMUNICATION METHOD, AND COMPUTER PROGRAM
US10/569,426 US7995548B2 (en) 2003-10-24 2004-10-08 Radio communication system, radio communication apparatus, radio communication method, and computer program
EP17205501.4A EP3310006B1 (en) 2003-10-24 2004-10-08 Reducing beacon collision probability
US13/079,519 US8199737B2 (en) 2003-10-24 2011-04-04 Radio communication system, radio communication apparatus, radio communication method, and computer program
US13/472,990 US8400993B2 (en) 2003-10-24 2012-05-16 Radio communication system, radio communication apparatus, radio communication method, and computer program
US13/756,639 US9185698B2 (en) 2003-10-24 2013-02-01 Radio communication system, radio communication apparatus, radio communication method, and computer program
US14/864,475 US10660087B2 (en) 2003-10-24 2015-09-24 Radio communication system, radio communication apparatus, radio communication method, and computer program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003364230 2003-10-24
JP2003-364230 2003-10-24
JP2004-187106 2004-06-24
JP2004187106A JP4396416B2 (ja) 2003-10-24 2004-06-24 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/569,426 A-371-Of-International US7995548B2 (en) 2003-10-24 2004-10-08 Radio communication system, radio communication apparatus, radio communication method, and computer program
US13/079,519 Continuation US8199737B2 (en) 2003-10-24 2011-04-04 Radio communication system, radio communication apparatus, radio communication method, and computer program

Publications (1)

Publication Number Publication Date
WO2005041487A1 true WO2005041487A1 (ja) 2005-05-06

Family

ID=34525442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014921 WO2005041487A1 (ja) 2003-10-24 2004-10-08 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム

Country Status (5)

Country Link
US (5) US7995548B2 (ja)
EP (3) EP3310006B1 (ja)
JP (1) JP4396416B2 (ja)
KR (1) KR101031726B1 (ja)
WO (1) WO2005041487A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130906A1 (ja) * 2008-04-25 2009-10-29 パナソニック株式会社 通信装置及び通信方法

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1622313B1 (en) 2003-05-07 2013-06-05 Sony Corporation Radio communication system, radio communication device, radio communication method, and computer program
JP4396416B2 (ja) * 2003-10-24 2010-01-13 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4271089B2 (ja) 2004-06-17 2009-06-03 パナソニック株式会社 無線通信方法および無線通信装置
US20060088042A1 (en) * 2004-10-25 2006-04-27 Nimrod Borosh El Al. Method, system and devices for creating spontaneous electronic information propagation and retrieval
KR100729617B1 (ko) * 2004-11-12 2007-06-19 삼성전자주식회사 네트워크 시스템에서의 비컨 스케쥴링 방법 및 그 시스템
EP1762047B1 (en) * 2004-12-10 2012-12-26 Samsung Electronics Co., Ltd. Method for informing the availability of reception of traffic
US7751374B2 (en) * 2005-01-18 2010-07-06 Marvell World Trade Ltd. WLAN TDM protocol
US8483190B2 (en) 2005-01-18 2013-07-09 Marvell World Trade Ltd. Wireless local area network (WLAN) time division multiplexed (TDM) interframe space (IFS) time selection protocol
US7920530B2 (en) * 2005-01-18 2011-04-05 Marvell World Trade Ltd. WLAN TDM IFS time selection protocol
JP2006279253A (ja) * 2005-03-28 2006-10-12 Fujitsu Ltd 無線通信装置及び無線通信システム
JP4548234B2 (ja) * 2005-06-17 2010-09-22 沖電気工業株式会社 通信制御装置、通信制御方法、ノード及び通信システム
JP4947430B2 (ja) * 2005-08-18 2012-06-06 日本電気株式会社 無線マルチホップネットワークにおける通信経路制御方法および通信端末
US20070104144A1 (en) * 2005-11-07 2007-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Control of reverse link packet forwarding in a wireless communications system
US20070290924A1 (en) * 2005-12-14 2007-12-20 Innerwireless, Inc. Wireless resource monitoring system and method
US8811369B2 (en) 2006-01-11 2014-08-19 Qualcomm Incorporated Methods and apparatus for supporting multiple communications modes of operation
EP1985142B1 (en) 2006-01-11 2011-09-28 QUALCOMM Incorporated Communications method and apparatus for transmitting priority information via beacon signals
JP4318050B2 (ja) * 2006-01-24 2009-08-19 ソニー株式会社 ワイヤレスチャンネル決定選択方法およびアクセスポイント装置
JP4762007B2 (ja) 2006-03-03 2011-08-31 パナソニック株式会社 中継装置、通信端末、及び通信システム
US8248978B2 (en) * 2006-04-12 2012-08-21 Qualcomm Incorporated Detection of stations for wireless communication
CN101512973A (zh) * 2006-08-29 2009-08-19 高通股份有限公司 在多个无线局域网中同时操作
US8732315B2 (en) * 2006-10-16 2014-05-20 Marvell International Ltd. Automatic ad-hoc network creation and coalescing using WiFi protected setup
KR100908007B1 (ko) * 2006-12-01 2009-07-16 삼성전자주식회사 무선 네트워크 시스템 및 상기 무선 네트워크상에서데이터를 송수신하는 방법
US8630205B2 (en) * 2007-01-16 2014-01-14 Koninklijke Philips N.V. Apparatus and method for enabling discovery of wireless devices
CN101589583B (zh) * 2007-01-16 2016-01-13 皇家飞利浦电子股份有限公司 用于合并信标发射和信标接收的装置和方法
US7787485B2 (en) * 2007-02-08 2010-08-31 Lutron Electronics Co., Ltd. Method of transmitting a high-priority message in a lighting control system
KR100917888B1 (ko) * 2007-02-09 2009-09-16 삼성전자주식회사 무선 네트워크 시스템 및 상기 무선 네트워크상에서데이터를 송수신하는 방법
JP4238918B2 (ja) * 2007-04-02 2009-03-18 沖電気工業株式会社 通信制御装置、通信制御方法、通信制御プログラム、ノード及び通信システム
US20090003253A1 (en) * 2007-06-29 2009-01-01 Tropos Networks, Inc. Controlling wireless network beacon transmission
KR100923166B1 (ko) * 2007-07-09 2009-10-23 한국전자통신연구원 비컨 모드로 동작하는 무선 센서 네트워크에서의 비컨 간접충돌 방지 및 극복 방법
KR100953056B1 (ko) * 2007-07-13 2010-04-20 한국전자통신연구원 메쉬 네트워크에서 동작 슬롯을 선택하는 장치
KR101490245B1 (ko) * 2008-02-25 2015-02-05 엘지전자 주식회사 광대역 무선접속 시스템의 서브채널 할당을 고려한 공존지원 방법
KR101467782B1 (ko) * 2008-02-25 2014-12-03 엘지전자 주식회사 이동 단말에서 공존 지원 방법
KR101467783B1 (ko) * 2008-02-25 2014-12-03 엘지전자 주식회사 무선 개인영역 통신망과의 공존 지원 방법
US8391259B2 (en) * 2008-02-26 2013-03-05 Stmicroelectronics, Inc. Broadcast/multicast collision free frame transmission
JP4479813B2 (ja) 2008-03-18 2010-06-09 ソニー株式会社 通信装置及び通信方法、通信システム、並びにコンピュータ・プログラム
JP5290600B2 (ja) * 2008-03-24 2013-09-18 キヤノン株式会社 通信装置及び通信制御方法
US8675573B2 (en) 2008-05-05 2014-03-18 Qualcomm Incorporated Uplink resource management in a wireless communication system
US8595501B2 (en) 2008-05-09 2013-11-26 Qualcomm Incorporated Network helper for authentication between a token and verifiers
JP2009284029A (ja) * 2008-05-19 2009-12-03 Sony Corp 通信装置、通信システム、通信方法及びプログラム
JP5112229B2 (ja) * 2008-09-05 2013-01-09 株式会社エヌ・ティ・ティ・ドコモ 配信装置、端末装置及びシステム並びに方法
KR101594559B1 (ko) * 2008-09-25 2016-02-18 코닌클리케 필립스 엔.브이. 조정된 채널 선택을 갖는 방향성 탐색 프로토콜
US9031007B2 (en) 2008-10-08 2015-05-12 Electronics And Telecommunications Research Institute Super frame structure and beacon scheduling method for mesh networking
KR101255535B1 (ko) * 2008-10-08 2013-04-16 한국전자통신연구원 메쉬 네트워킹을 위한 슈퍼프레임구조 및 비컨 스케쥴링 방법
KR101001558B1 (ko) * 2008-11-10 2010-12-17 한국전자통신연구원 동기식 기반 센서 네트워크 구성 방법 및 장치
KR20100053076A (ko) * 2008-11-12 2010-05-20 삼성전자주식회사 데이터베이스화된 표준 광학적 임계치수를 이용한 불량 웨이퍼 감지방법 및 그를 이용한 반도체 생산 시스템
CN101754271B (zh) * 2008-12-09 2014-04-30 华为终端有限公司 主控节点的协商方法及装置
JP5332840B2 (ja) 2009-04-08 2013-11-06 ソニー株式会社 無線通信装置、無線通信システム、無線通信方法及びプログラム
WO2010119370A1 (en) * 2009-04-15 2010-10-21 Koninklijke Philips Electronics N.V. Energy efficient transmission in a network
WO2011007567A1 (ja) * 2009-07-15 2011-01-20 パナソニック株式会社 無線通信装置、無線通信システム、および無線通信方法、並びにこの無線通信方法を実行させるプログラム
US8798604B2 (en) * 2009-11-17 2014-08-05 At&T Mobility Ii Llc Distributed locater, alert, repeater, and/or call technologies for communication devices
JPWO2011093123A1 (ja) * 2010-02-01 2013-05-30 日本電気株式会社 無線基地局、送信方法、プログラム
EP2424304A1 (en) * 2010-08-25 2012-02-29 Nxp B.V. Method and network manager device for scheduling a transmission of messages within a wireless network
TW201424282A (zh) * 2011-02-22 2014-06-16 Panasonic Corp 無線通信系統及使用於該通信系統之無線子機及無線主機
US8787159B2 (en) * 2011-04-14 2014-07-22 Alcatel Lucent Mechanism for wireless access networks to throttle traffic during congestion
US8660111B2 (en) * 2011-06-22 2014-02-25 Motorola Solutions, Inc. Method and apparatus for tracking a channel timing channel message and supporting channel scanning in a digital mobile radio system
EP2805546A4 (en) * 2012-01-18 2015-11-11 Mediatek Singapore Pte Ltd METHOD FOR COORDINATION OF BEAM TRANSMISSION PERIODS IN A WIRELESS LOCAL NETWORK AND COMMUNICATION SYSTEM USING THE METHOD
US8923137B2 (en) 2012-02-06 2014-12-30 Qualcomm Incorporated System and method for information verification based on channel awareness
JP2013219507A (ja) * 2012-04-06 2013-10-24 Ntt Docomo Inc 無線通信方法、ローカルエリア基地局装置、移動端末装置及び無線通信システム
KR101935963B1 (ko) * 2012-05-18 2019-01-07 한국전자통신연구원 Harq 타이밍 조정 방법 및 장치
US9167622B2 (en) 2012-05-23 2015-10-20 Qualcomm Incorporated Methods and a system of multiplexing multiple concurrent operational modes on a single physical transceiver by opportunistic time stealing
US20140119277A1 (en) * 2012-10-26 2014-05-01 Cambridge Silicon Radio Limited Wireless device
US9426738B2 (en) 2012-11-14 2016-08-23 Qualcomm Incorporated Systems and methods for multi-channel concurrency
US10477376B2 (en) 2013-01-11 2019-11-12 Qualcomm Incorporated Systems and methods for formatting frames in neighborhood aware networks
US9807691B2 (en) * 2013-02-28 2017-10-31 Qualcomm Incorporated Polling beacon
US9451518B2 (en) 2013-03-08 2016-09-20 Qualcomm Incorporated Channel management in a Wi-Fi device in a multi-channel concurrent environment
US20140269633A1 (en) * 2013-03-14 2014-09-18 Qualcomm Incorporated Coexistence of a wireless wide area network device in time division duplex (tdd) mode with a wireless access point (ap)
KR101895032B1 (ko) * 2013-07-12 2018-09-05 콘비다 와이어리스, 엘엘씨 피어 대 피어 통신 향상
HUE046867T2 (hu) 2013-12-19 2020-04-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Hálózati hozzáférés egy második vezeték-nélküli hálózaton keresztül
JP5855154B2 (ja) * 2014-03-18 2016-02-09 株式会社東芝 無線通信装置、無線通信方法、無線端末、メモリーカードおよび集積回路
KR101601862B1 (ko) * 2014-08-12 2016-03-10 에스케이 텔레콤주식회사 복수의 비콘 아이디를 송출하기 위한 비콘장치의 제어방법
JP6515630B2 (ja) * 2015-03-27 2019-05-22 日本電気株式会社 無線通信装置
US10278054B2 (en) * 2015-04-21 2019-04-30 Electronics And Telecommunications Research Institute Method and apparatus for communicating in wireless personal area network communication system
WO2016175435A1 (ko) * 2015-04-29 2016-11-03 엘지전자 주식회사 파워 세이브 모드로 동작하는 sta의 ul mu 전송 방법 및 이러한 방법을 수행하는 장치
JP6240635B2 (ja) * 2015-04-30 2017-11-29 日本電信電話株式会社 無線通信方法及び無線通信システム
JP6424791B2 (ja) * 2015-10-08 2018-11-21 株式会社デンソー 無線通信装置、無線通信システム
JP6747004B2 (ja) * 2016-03-28 2020-08-26 大日本印刷株式会社 通信システム
JP6691888B2 (ja) * 2017-03-30 2020-05-13 日本電信電話株式会社 無線通信システムおよび無線通信制御方法
CN109672998B (zh) * 2017-10-13 2022-01-18 瑞昱半导体股份有限公司 蓝牙联机建立方法
JP7048327B2 (ja) * 2018-01-17 2022-04-05 矢崎総業株式会社 無線通信装置、および無線通信システム
US10567108B2 (en) * 2018-02-16 2020-02-18 At&T Intellectual Property I, L.P. Adaptive configuration of modulation and coding scheme tables for new radio
JP7105213B2 (ja) * 2019-04-09 2022-07-22 ソフトバンク株式会社 通信端末及びプログラム
US11039373B2 (en) 2019-08-21 2021-06-15 Hewlett Packard Enterprise Development Lp System and method to implement scan on wireless composite device
JPWO2021049353A1 (ja) * 2019-09-09 2021-03-18
US20210282119A1 (en) * 2020-03-04 2021-09-09 Qualcomm Incorporated Group data transmissions for multi-link wireless communication devices
CN113973338A (zh) * 2020-07-23 2022-01-25 瑞昱半导体股份有限公司 封包接收系统以及封包接收方法
USD1015300S1 (en) * 2022-01-20 2024-02-20 Jikui Zhang Game headset
FI20225303A1 (en) * 2022-04-07 2023-10-08 Wirepas Oy Scheduling system for wireless communication network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177558A (ja) * 1993-10-04 1995-07-14 At & T Corp パケット化セルラ通信方法
JPH09135254A (ja) * 1995-11-08 1997-05-20 Nec Corp ローカルエリアネットワークの省電力制御システム
JP2000517132A (ja) * 1996-08-30 2000-12-19 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 無線通信システムおよびジッタを有するビーコンの送信方法
EP1061694A2 (en) 1999-06-15 2000-12-20 Nec Corporation Inter-lan connection method access point apparatus and lan system
WO2002082751A2 (en) 2001-04-09 2002-10-17 Telefonaktiebolaget Lm Ericsson (Publ) Instantaneous joint transmit power control and link adaptation for rts/cts based channel access
JP2003249936A (ja) * 2002-02-22 2003-09-05 Ntt Comware Corp 無線装置およびその通信経路制御方法、コンピュータプログラム

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965825A (en) * 1981-11-03 1990-10-23 The Personalized Mass Media Corporation Signal processing apparatus and methods
US6443840B2 (en) * 1986-03-10 2002-09-03 Response Reward Systems, L.C. Evaluation of responses of participatory broadcast audience with prediction of winning contestants; monitoring, checking and controlling of wagering, and automatic crediting and couponing
US6374311B1 (en) * 1991-10-01 2002-04-16 Intermec Ip Corp. Communication network having a plurality of bridging nodes which transmit a beacon to terminal nodes in power saving state that it has messages awaiting delivery
JPH08307946A (ja) 1995-05-12 1996-11-22 Nec Corp Phs端末無効化方式
JP3382806B2 (ja) * 1997-02-13 2003-03-04 日本電気株式会社 子無線局
GB2339869B (en) * 1998-07-20 2002-05-15 Motorola Ltd Fault-tolerant electronic braking system
US6331973B1 (en) * 1999-04-30 2001-12-18 Rockwell Collins, Inc. Unifying slot assignment protocol multiple access system
US6549594B1 (en) * 1999-05-28 2003-04-15 Nortel Networks Timing phase recovery method and apparatus
US7327683B2 (en) * 2000-03-16 2008-02-05 Sri International Method and apparatus for disseminating topology information and for discovering new neighboring nodes
DE10017747A1 (de) * 2000-04-10 2001-10-18 Polytrax Inf Technology Ag Verfahren zur Regelung des Vielfachzugriffs in Netzwerken
US6665311B2 (en) * 2000-11-09 2003-12-16 Hrl Laboratories, Llc Method and apparatus for adaptive bandwidth reservation in wireless ad-hoc networks
US20040022219A1 (en) 2000-11-17 2004-02-05 Stefan Mangold Wireless system containing a first network and a second network
US7126937B2 (en) * 2000-12-26 2006-10-24 Bluesocket, Inc. Methods and systems for clock synchronization across wireless networks
US6865371B2 (en) 2000-12-29 2005-03-08 International Business Machines Corporation Method and apparatus for connecting devices via an ad hoc wireless communication network
EP1418779B1 (en) * 2001-02-14 2007-10-03 NTT DoCoMo, Inc. Communication control method and apparatus in mobile communication system
US20020176412A1 (en) 2001-04-24 2002-11-28 Andras Racz Signaling free, self learning scatternet scheduling using checkpoints
US7245604B2 (en) * 2001-11-02 2007-07-17 At&T Corp. Fixed deterministic post-backoff for cyclic prioritized multiple access (CPMA) contention-free sessions
US7003100B2 (en) * 2001-12-10 2006-02-21 Agere Systems Inc. Modem with enhanced echo canceler
US7027409B2 (en) * 2002-01-10 2006-04-11 Harris Corporation Method and device for establishing communication links and for estimating overall quality of a directional link and reporting to OLSR in a communication system
US6901064B2 (en) * 2002-01-10 2005-05-31 Harris Corporation Method and device for establishing communication links and detecting interference between mobile nodes in a communication system
US7689225B2 (en) * 2002-01-28 2010-03-30 Ntt Docomo, Inc. Method and apparatus for dormant mode support with paging
KR100940897B1 (ko) 2002-03-04 2010-02-09 소니 주식회사 무선통신시스템, 무선통신장치와 무선통신방법 및 컴퓨터 프로그램
JP2003348007A (ja) * 2002-03-20 2003-12-05 Nec Corp 無線移動通信方法及び無線基地局並びに無線リソース管理装置及び移動端末装置
US6795465B2 (en) 2002-04-11 2004-09-21 Kulite Semiconductor Products, Inc. Dual layer color-center patterned light source
US7339943B1 (en) * 2002-05-10 2008-03-04 Altera Corporation Apparatus and method for queuing flow management between input, intermediate and output queues
IL164264A0 (en) * 2003-02-03 2005-12-18 Sony Kabushiki Kaisha Wireles communication system, wireless communication device, wireless communication method, and computer program
JP4276009B2 (ja) * 2003-02-06 2009-06-10 株式会社エヌ・ティ・ティ・ドコモ 移動局、基地局、無線伝送プログラム、及び無線伝送方法
WO2004102887A1 (ja) * 2003-05-16 2004-11-25 Sony Corporation 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US20040264396A1 (en) * 2003-06-30 2004-12-30 Boris Ginzburg Method for power saving in a wireless LAN
JP4396416B2 (ja) * 2003-10-24 2010-01-13 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4442338B2 (ja) * 2004-02-06 2010-03-31 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US7664130B2 (en) * 2004-03-01 2010-02-16 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method and computer program
JP4333413B2 (ja) * 2004-03-04 2009-09-16 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
EP1762041B1 (en) * 2004-06-29 2011-07-27 Nokia Corporation Control of a short-range wireless terminal
US20060064725A1 (en) * 2004-09-22 2006-03-23 Rosum Corporation Pilot acquisition and local clock calibration with reduced MIPS
US7873111B2 (en) * 2005-12-13 2011-01-18 Motorola Mobility, Inc. Method and system for synchoronizing a receiver in an OFDM system
US7593738B2 (en) * 2005-12-29 2009-09-22 Trueposition, Inc. GPS synchronization for wireless communications stations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177558A (ja) * 1993-10-04 1995-07-14 At & T Corp パケット化セルラ通信方法
JPH09135254A (ja) * 1995-11-08 1997-05-20 Nec Corp ローカルエリアネットワークの省電力制御システム
JP2000517132A (ja) * 1996-08-30 2000-12-19 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 無線通信システムおよびジッタを有するビーコンの送信方法
EP1061694A2 (en) 1999-06-15 2000-12-20 Nec Corporation Inter-lan connection method access point apparatus and lan system
WO2002082751A2 (en) 2001-04-09 2002-10-17 Telefonaktiebolaget Lm Ericsson (Publ) Instantaneous joint transmit power control and link adaptation for rts/cts based channel access
JP2003249936A (ja) * 2002-02-22 2003-09-05 Ntt Comware Corp 無線装置およびその通信経路制御方法、コンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1677456A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130906A1 (ja) * 2008-04-25 2009-10-29 パナソニック株式会社 通信装置及び通信方法
CN101690018A (zh) * 2008-04-25 2010-03-31 松下电器产业株式会社 通信装置及通信方法
JP5298123B2 (ja) * 2008-04-25 2013-09-25 パナソニック株式会社 通信装置及び通信方法
US9008090B2 (en) 2008-04-25 2015-04-14 Panasonic Intellectual Property Management Co.,Ltd. Communication apparatus and communication method

Also Published As

Publication number Publication date
US8199737B2 (en) 2012-06-12
EP3310006A1 (en) 2018-04-18
EP1677456A4 (en) 2010-06-02
US20070165589A1 (en) 2007-07-19
EP1677456A1 (en) 2006-07-05
US10660087B2 (en) 2020-05-19
US20130208707A1 (en) 2013-08-15
JP2005151525A (ja) 2005-06-09
EP3310006B1 (en) 2020-01-29
JP4396416B2 (ja) 2010-01-13
US20110235559A1 (en) 2011-09-29
KR101031726B1 (ko) 2011-04-29
US8400993B2 (en) 2013-03-19
EP2197158A2 (en) 2010-06-16
US9185698B2 (en) 2015-11-10
US20160088619A1 (en) 2016-03-24
EP2197158B1 (en) 2017-12-06
US20120224565A1 (en) 2012-09-06
EP2197158A3 (en) 2010-10-06
KR20060103497A (ko) 2006-10-02
US7995548B2 (en) 2011-08-09

Similar Documents

Publication Publication Date Title
JP4396416B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP5136590B2 (ja) 無線通信システム、無線通信装置、無線通信方法及びコンピュータプログラム
JP4622503B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4449588B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4582098B2 (ja) 無線通信システム、通信装置、通信方法及びプログラム
WO2005011200A1 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2006014258A (ja) 無線通信装置及び無線通信方法
JP2005051523A (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4329500B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4692017B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4264645B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4333346B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4222143B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2005198008A (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4333347B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4748217B2 (ja) 無線通信装置及び無線通信方法、並びにコンピュータ・プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027308.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004792190

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004792190

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067005595

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792190

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067005595

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007165589

Country of ref document: US

Ref document number: 10569426

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10569426

Country of ref document: US