WO2005035798A1 - 鋼塊の製造方法 - Google Patents

鋼塊の製造方法 Download PDF

Info

Publication number
WO2005035798A1
WO2005035798A1 PCT/JP2004/006287 JP2004006287W WO2005035798A1 WO 2005035798 A1 WO2005035798 A1 WO 2005035798A1 JP 2004006287 W JP2004006287 W JP 2004006287W WO 2005035798 A1 WO2005035798 A1 WO 2005035798A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
steel ingot
oxide
inclusions
producing
Prior art date
Application number
PCT/JP2004/006287
Other languages
English (en)
French (fr)
Inventor
Ken-Ichiro Hara
Hidemi Takao
Setsuo Mishima
Etsuo Fujita
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34431009&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005035798(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to CN2004800297120A priority Critical patent/CN1867685B/zh
Priority to EP04730668A priority patent/EP1679384B1/en
Priority to AT04730668T priority patent/ATE492657T1/de
Priority to AU2004280023A priority patent/AU2004280023B2/en
Priority to DE602004030702T priority patent/DE602004030702D1/de
Priority to JP2005514523A priority patent/JP4692282B2/ja
Priority to US10/574,839 priority patent/US7597737B2/en
Priority to CA2541319A priority patent/CA2541319C/en
Publication of WO2005035798A1 publication Critical patent/WO2005035798A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/08Particular sequence of the process steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for producing a steel ingot, which is a metal material containing Fe as a basic component (a material containing the largest amount of Fe), and particularly relates to nonmetallic inclusions (hereinafter, referred to as inclusions).
  • the present invention relates to a method of manufacturing a steel ingot that can be controlled very finely.
  • Inclusions present in the steel affect various mechanical properties. For example, when a steel sheet is stamped or cut with a press, there is a technology that disperses fine inclusions and uses the inclusions as a starting point of blasting to improve the punching and cutting properties.
  • inclusions present in copper cause the composition, shape and size of the inclusions to degrade the mechanical properties of steel.
  • the size of the inclusions has a great effect, and the control of inclusions is a major problem.
  • AF arc furnace
  • VIM vacuum induction melting
  • ESR electrolysis slag remelting
  • VAR vacuum arc remelting
  • Double melted steel by applying VAR or ESR has the advantage of being homogeneous (less component segregation) and of reducing the amount of inclusions.
  • Maraging steel is a typical steel that requires strict requirements for the above-mentioned problem of fatigue fracture due to inclusions.
  • Maraging steel is tough and has high strength, so it is used for structural members subjected to repeated negative stress; However, it is well known that the presence of large non-metallic inclusions in a member causes fatigue rupture starting from this. Non-metallic inclusions need to be finely dispersed in order not to cause high cycle fatigue rupture.
  • An object of the present invention is to provide a method for producing a steel ingot that can significantly reduce the size of inclusions as compared with the related art.
  • the present inventors generated MgO-based oxides in the presence of Mg in molten steel, and then exposed to a higher degree of vacuum to dissociate MgO-based oxides on the molten steel surface. (Dissociation) can be promoted, and as a result, a steel ingot having fine inclusions can be obtained, and the present invention has been achieved.
  • the present invention provides a Mg oxide forming step of adjusting the composition of an oxide turbid in molten steel to a molten metal having a sufficient amount of Mg to mainly contain MgO;
  • the MgO-based oxidant means an oxide in which the largest component among the constituent components of the oxide is MgO.
  • the Mg content in the dissociation step of the present invention is preferably 20% or less, more preferably 10% or less, of the Mg content in the Mg oxide formation step.
  • a step of once solidifying in the Mg oxide forming step is employed, that is, the Mg oxide sulfide forming step is set as primary melting, and turbidity is present in the molten steel at the time of the primary melting.
  • the solidification is to be performed, and the dissociation process is re-dissolved at a vacuum degree lower than that of the primary melting, and the Mg oxide is dissolved.
  • the material be dissociated into Mg and oxygen to reduce the Mg content to 50% or less before re-dissolution.
  • the remelting be a vacuum arc remelting.
  • the degree of vacuum in the Mg oxide forming step is preferably from 6 kPa to 60 kPa, and the degree of vacuum in the dissociation step is preferably a pressure lower than 0.6 kPa.
  • the relationship between the Mg content in the Mg oxide forming step (Mg OX i) and A 1 weight (A 1 ox), A l OX i (ma ssppm) / M g 0 ⁇ i (ma ssp pm It is desirable to adjust so that) 5-100.
  • the oxide formation step is the primary dissolution and the dissociation step is the redissolution
  • the Mg content indicates the Mg content in the steel ingot solidified after primary melting.
  • Mg OX I indicates the Mg content in the steel ingot solidified after primary melting.
  • the present invention can be applied to, for example, tool steel such as maraging steel and mold steel.
  • the maraging steel is substantially as follows: mass (%), O (oxygen): less than 10 ppm, (nitrogen): less than 15 ppm, C: 0.01% or less, Ti: 0.3 2.0% or less, Ni: 8.0 to 22.0%, Co: 5.0 to 20.0%, Mo: 2.0 to 9.0%, A1: 0.01 to 1.7 %, And the balance of Fe and inevitable impurities are desirable.
  • the size of nonmetallic inclusions can be drastically reduced by adding Mg and controlling a specific decompression step, and coarse inclusions have a bad effect.
  • This is an extremely useful technology for improving mechanical properties such as the above, and for improving surface cleanliness such as the occurrence of defects due to inclusions in mirror finishing.
  • the present inventors have studied the effects of inclusions and Mg in steel, paying attention to the fact that Mg, which has a high ability to form an oxide, has a high vapor pressure in a vacuum. Then, if an oxide mainly composed of Mg ⁇ is formed and then exposed to a high vacuum, most of the oxide mainly composed of MgO can be dissociated and disappeared by evaporation of Mg from the surface of the molten steel. We have found that the size of the inclusions inside can be dramatically reduced.
  • Mg_ ⁇ The main oxide is present dispersed in the molten steel. After addition of Mg, when the left ⁇ , inclusions only changed to oxides of MgO mainly of an oxide of A 1 2 0 3 mainly refining effect dramatic inclusions can not be obtained.
  • a dissociation step in which the degree of vacuum in the atmosphere is reduced compared to the step of forming an oxide mainly composed of MgO is provided.
  • Exposure to high vacuum causes the Mg in the molten steel with a high vapor pressure to diffuse into the gas phase, disrupting the equilibrium state in the molten steel and dissociating MgO-based oxides.
  • This and can, dissociated oxygen combines with Mg and A 1, etc. in the molten steel, although to form an oxide or A 1 2 O 3 principal oxides of MgO mainly diffusion of oxygen dissociation reaction It is considered that the oxides did not grow rapidly because they depended on the progress, and could be solidified in the fine state of the oxide to form a steel ingot.
  • the aggregation prone inclusions such as A 1 2 ⁇ 3, Mg_ ⁇ entity with, by further dissociation step more Mg oxide forming process to prevent agglomeration 'growth by collision as oxides Mg_ ⁇ principal Oxides are dissociated into oxygen and Mg gas, and the oxides in the solidified steel ingot are refined.
  • the amount of the Mg alloy added for this purpose should be sufficient for the formation of MgO-based oxides in terms of chemical equilibrium from the amounts of active elements such as A 1 in the molten metal, the amount of oxygen, and the amount of sulfur (S). Can be calculated as
  • a sample may be taken after adding Mg by repeated experiments, and the solidified state may be determined by adjusting the amount of Mg added and the oxide composition in the sample.
  • the method of adding Mg is as follows: the alloy composition of the target steel and the form of the alloy of Mg, for example, Ni-Mg alloy form with Mg content of 20% or less (not including 0) in mass% It is preferable to prevent Mg loss during addition.
  • the Mg content is set to 50% or less of the Mg oxide forming step.
  • the level of the Mg content aimed at as a steel ingot has no effect on the steel. Even if it is about 3 to 5 ppm or less, by adding Mg more than twice the target value, it is possible to obtain a clear effect on the refinement of inclusions in the steel ingot solidified after the dissociation process. It is because was made.
  • the Mg content in the dissociation step remains in excess of 50% of the Mg oxide formation step, the dissociation of Mg is insufficient, and the effect of dissociation to obtain a finer oxide can be sufficiently obtained. Absent.
  • the Mg content is 20% or less, more preferably 10% or less of the Mg oxide forming step.
  • the Mg content in molten steel in the process of forming MgO-based oxidized steel is set to a maximum of about 300 ppm, and in practice, it is desirable to set it to about 100 to 200 ppm. .
  • the term “mainly Mg ⁇ ” means that when the oxide composition is analyzed by, for example, an X-ray analyzer, elements excluding oxygen are quantitatively analyzed, and those whose Mg is detected to be 30 mass% or more are determined. M g O is defined as a subject.
  • the analysis in this case can be confirmed, for example, by performing qualitative Z quantitative analysis with an energy dispersive X-ray analyzer.
  • inclusions present in a sample of a specific weight are extracted and, for example, qualitative / quantitative analysis is performed using an energy dispersive X-ray analyzer. And the ratio can be determined.
  • the method of the present invention can be applied without going through the steps of primary melting and re-melting. It is practical to combine with primary melting such as induction melting and solidification, and then with re-melting such as vacuum arc re-melting which is a dissociation step.
  • primary melting such as induction melting and solidification
  • re-melting such as vacuum arc re-melting which is a dissociation step.
  • VAR vacuum arc remelting
  • VAR is useful in high vacuum, with a small solidification unit, to suppress the growth of other inclusions during the dissociation process.
  • VAR is also effective in suppressing segregation and reducing gas components such as oxygen.
  • a steel ingot containing a nitride-forming element such as Ti in its component is used in addition to the oxide refining effect and the nitride coarseness. It is also possible to obtain the effect of preventing the formation of a carbon dioxide.
  • the present inventors have studied the size of nitrides in maraging steel.As a result, the size of nitrides is larger in re-melted steel ingots such as VAR than in ingots after primary melting. It was confirmed. The nitride grows during remelting. The cause of coarsening is that the nitride that was present in the primary melted ingot during remelting does not completely melt in the molten steel, so the nitride grows and solidifies during solidification. I figured out what to do.
  • the crystallization or precipitation of nitride occurs between the addition of the Mg alloy and the solidification, but the oxide mainly composed of MgO becomes the nucleus of crystallization or precipitation of the nitride-based compound.
  • the nitride in the first molten steel ingot takes the form of a nitride-MgO composite in which, for example, MgO is a precipitation nucleus and a nitride, for example, TiN is surrounded.
  • the MgO-based oxide which forms part of the nitride-MgO complex, dissociates into Mg and oxygen. For this reason, the nitride-Mg ⁇ composite is finely decomposed by the disappearance of the MgO portion, and thermal decomposition is promoted, and the nitride can be completely melted in the molten steel.
  • the present invention is an effective means for solving the problem.
  • the above-mentioned Ti has a certain force, and other elements include A1, Nb, V, Cr and the like.
  • the control of the molten metal atmosphere is important as described above. If the pressure in the dissociation step is lower than that in the oxide formation step, the dissociation proceeds.However, a preferable range for mass production technology is that the vacuum degree in the Mg oxide formation step is 6 kPa to 60 kPa, The degree of vacuum in the dissociation process should be reduced to less than 0.6 kPa.
  • the lower limit of the degree of vacuum in the Mg oxide forming step was set to 60 kPa because at a pressure higher than this, a basic degassing action could not be expected.
  • the upper limit was set to 6 kPa because in a reduced pressure atmosphere higher than this, before Mg was diffused into the molten metal, it was vaporized and it was difficult to form MgO-based oxides, and the effect of the present invention was clear. It is because it is not.
  • the degree of vacuum in the dissociation step is preferably as low as possible.However, if the pressure exceeds 0.6 kPa, the dissociation reaction progresses slowly and is not realistic. It is also preferable to reduce the pressure. More preferably, it is not more than 0.06 kPa.
  • a method of calculating chemical equilibrium and an experimental calculation while collecting samples are required. There is a way to
  • Mg alloy 10 to 100 ppm is added to the molten steel in an amount equivalent to Mg, and the ingot after remelting is added. It is preferable to reduce Mg to 5 ppm or less.
  • A1 As a component aimed at as a steel ingot, it is desirable to apply A1 not as an impurity of steel, but to a steel type that is positively added to generate inclusions and a steel type, for example, a steel type containing 0.1 to 6 mass%.
  • the reason why the upper limit is set to 6 niass% is based on the recognition that the upper limit is about 6% for general-purpose materials.
  • the present invention can be applied to steel grades containing Ti of 0.1 to 2 mass%.
  • the reason for setting the upper limit to 2mass% is that the upper limit of the amount of Ti contained in general-purpose steel is about 2%.
  • the effect of the present invention is exerted to some extent even when the value is below the lower limit or above the upper limit.
  • Examples of practical steel types to which the present invention is applied include maraging steel. Particularly recently, there has been an application in which maraging steel is used as a belt for vehicle power transmission as a ribbon having a thickness of about 0.2 mm or less. In this way, the thickness of the steel finally becomes less than 0.5 mm. In such applications, for example, oxides with a size of more than 15 / im have a high risk of starting high-cycle fatigue rupture, and the oxides in the material should be less than 15 ⁇ There is a need.
  • TiN exists in the steel ingot.
  • This TiN has a rectangular shape and is easily susceptible to stress concentration, and because it forms a hydrogen embrittlement region called a dark area, it is more sensitive to high cycle fatigue fatigue rupture than oxides. It is said that the TiN in the material needs to be approximately 10 / m or less. Therefore, it is a steel type suitable for the production method of the present invention.
  • maraging steel is an alloy that can obtain very high strength of around 200 OMpa and excellent ductility by aging (aging hardening) the martensite structure. It is an age-hardened super-strength steel containing 8 to 25 mass% in mass%.
  • the preferred chemical composition (mass s%) of this maraging steel is as follows.
  • O oxygen
  • the oxide-based inclusions can be controlled to be ultrafine, but it is more desirable to reduce the amount of oxygen that becomes the acid-based inclusions. Therefore, O should be limited to less than 10 ppm.
  • N nitrogen is an element that forms nitride and carbonitride inclusions.
  • nitride-based inclusions can be controlled to be ultra-fine, but it is more desirable to reduce the amount of nitrogen that becomes nitride-based inclusions. Therefore, N should be limited to less than 15 ppm.
  • C carbon
  • the upper limit of C is preferably set to 0.01% or less.
  • Ti is an indispensable element that forms a fine intermetallic compound by aging treatment and contributes to strengthening by precipitating, and desirably contains 0.3% or more. If the content exceeds 2.0%, ductility and toughness deteriorate, so the content of Ti is preferably set to 2.0% or less.
  • Ni is an essential element for forming a tough matrix structure. Only However, if it is less than 8.0%, toughness deteriorates. On the other hand, if it exceeds 22%, austenite is stabilized and it becomes difficult to form a martensite structure. Therefore, Ni should be set to 8.0 to 22.0%.
  • Co lowers the solid solubility of Mo without significantly affecting the stability of the martensite structure, which is the matrix, and promotes the formation and precipitation of Mo by forming fine intermetallic compounds. Therefore, it is an element that contributes to precipitation strengthening. However, if the content is less than 5.0%, a sufficient effect is not necessarily obtained, and if it exceeds 20.0%, a tendency for brittleness is observed, so that the Co content is 5.0 to 20%. 0%.
  • Mo is an element that forms fine intermetallic compounds by aging treatment and contributes to strengthening by precipitating in the matrix.
  • the amount should be between 2.0 and 9.0%.
  • A1 not only contributes to aging-precipitated strengthening but also has a deoxidizing effect, so it is better to contain 0.01% or more, but if it exceeds 1.7%, toughness deteriorates. Therefore, its content should be 1.7% or less.
  • Fe may be substantially Fe.
  • B is an element effective for refining crystal grains, so even if B is contained in a range of 0.01% or less that does not deteriorate toughness.
  • unavoidable impurity elements are included.
  • Si and Mn promote the precipitation of coarse intermetallic compounds that cause brittleness and reduce ductility and toughness, or form nonmetallic inclusions to reduce fatigue strength.
  • Mn should be 0.1% or less, desirably 0.05% or less.
  • Stince P and S also cause grain boundary embrittlement and form nonmetallic inclusions, which lower the fatigue strength. It should be less than 01%.
  • Another example of a practical copper type to which the present invention is applied is mold steel for plastics.
  • Plastic products molded by plastic molds have the appearance Is required to be free of flaws.
  • the presence of inclusions larger than approximately 10 m on the surface of the molded part may cause pinhole defects.
  • the oxides and nitrides present in the material must be less than 10 // in.
  • the application of the present invention is very effective also in the melting of tool steel such as mold steel.
  • the steel for plastic molds suitable for applying the present invention includes, for example, C: 0.005 to 0.5%, ⁇ : 0.2 to 3.0%, and S i: 0.1 to 2.0. %, Ni: 1.5 to 4%, A1: 0 .:! To 2.0% as essential components, and Cr: 3 to 8%, Cu: 0.3 as required.
  • ⁇ 3.5%, W or Mo is more than 0.1 ⁇ 3% by 1/2 W + Mo, S (sulfur): 0.3% or less, Co: 2% or less, Nb: 0.5% or less, V: Any one or more of 0.5% or less may be contained.
  • the balance is substantially Fe and inevitable impurities, but N (nitrogen) and O (oxygen), which form inclusions, are preferably 0.01% or less.
  • a machinability improving element may be included up to a range of about 1% in total.
  • an alloy having a composition within the above range for example, there is an alloy having an alloy composition described in Japanese Patent No. 3351766, Japanese Patent No. 2879930, and Japanese Patent Publication No. 59-37738.
  • FIG. 1a is a cross-sectional electron micrograph showing nitride-based inclusions found in the maraging steel “electrode” manufactured by the method of the present invention.
  • FIG. Lb is a cross-sectional electron micrograph showing another nitride-based inclusion found in a maraging steel “electrode” manufactured by the method of the present invention.
  • FIG. 1c is a cross-sectional electron micrograph showing another nitride-based inclusion found in a maraging steel “electrode” manufactured by the method of the present invention.
  • Figure 2 is a cross-sectional electron micrograph showing nitride-based inclusions found in a maraging steel “electrode” manufactured by the comparative method.
  • FIG. 3a is an electron micrograph of the MgO-type inclusions extracted from the maraging steel “electrode” manufactured by the method of the present invention.
  • FIG. 3b is an electron micrograph showing MgO-type inclusions extracted from the maraging steel “electrode” manufactured by the method of the present invention.
  • Figure 4a is extracted from the ⁇ electrode '' of maraging steel manufactured by the comparative method.
  • Figure 4b is extracted from the ⁇ electrode '' of a maraging steel manufactured by the comparative method.
  • Figure 5a shows the oxide inclusions found in a steel strip sample obtained by subjecting a maraging steel ⁇ steel ingot '' manufactured by the method of the present invention to hot rolling, solution treatment, cold rolling, and aging. It is an electron micrograph.
  • Figure 5b shows the oxide inclusions found in a steel strip sample obtained by subjecting a maraging steel ⁇ steel ingot '' produced by the method of the present invention to hot rolling, solution treatment, cold rolling, and aging treatment. It is an electron micrograph.
  • Fig. 5c shows the oxidized steels found in the steel strip samples obtained by hot rolling, solution treatment, cold rolling, and aging the maraging steel “steel ingot” produced by this method. It is an electron micrograph of an inclusion.
  • Fig. 6a shows acid inclusions in a steel strip sample obtained by hot rolling, solution treatment, cold rolling, and aging a maraging steel ⁇ steel ingot '' manufactured by the comparative method. It is an electron microscope photograph of.
  • Fig. 6b shows acid inclusions in a steel strip sample obtained by hot rolling, solution treatment, cold rolling, and aging a maraging steel ⁇ steel ingot '' manufactured by the comparative method. It is an electron microscope photograph of.
  • FIG. 7 is a graph showing nitride inclusions found in a steel strip sample obtained by subjecting a maraging steel ⁇ steel ingot '' produced by the method of the present invention to hot rolling, solution treatment, cold rolling, and aging treatment. It is an electron micrograph.
  • Figure 8 shows nitride inclusions in a steel strip sample obtained by hot rolling, solution treatment, cold rolling, and aging a maraging steel ⁇ steel ingot '' manufactured by the comparative method. It is an electron micrograph of this.
  • FIG. 9 shows the fatigue test results of the maraging steel obtained by the method of the present invention and the comparative method.
  • Example 1
  • One of the typical components of maraging steel is a 1 ton consumable electrode for VAR melting, with the Mg content in molten steel being about 200 ppm without additive and the Mg content changed in six ways.
  • a primary dissolution electrode to be subjected to VAR was manufactured.
  • a consumable electrode manufactured under the condition of adding or not adding a trace amount of Mg at VIM was also manufactured.
  • the electrodes manufactured with these VIMs were redissolved using VAR under the same conditions to produce steel ingots.
  • the same type of VAR type was used.
  • the degree of vacuum was 1.3 Pa, and the input current was melted at 6.5 kA in the stationary part of the steel ingot.
  • Table 1 shows the chemical composition of the consumable electrode manufactured by VIM and the steel ingot obtained by vacuum re-melting the electrode using VAR. No. 7 to No. 12 This shows the effect of SMg-added calories on nitrides and carbonitrides. '
  • the consumable electrodes are shown as “electrodes” and those after VAR are shown as “steel ingots”.
  • the value of “electrode” corresponds to the value of the Mg oxide forming step of the present invention, and the value of “steel ingot” corresponds to the value of the dissociation step of the present invention.
  • a block was cut out from the “electrode” of Comparative Sample No. 5, and the cross section was observed with an electron microscope.
  • Fig. 2 shows an electron micrograph of a typical nitride inclusion.
  • the method of investigating the ratio of inclusions mainly composed of MgO is as follows.
  • Electrode Beam Butt on Melting (EBBM) method is to collect 10 specimens of 1 g each from the electrode. Then, a method was used in which a metal piece of the sample was heated and melted to form a metal sphere, and the light-weight specific inclusions floating on the surface of the metal sphere were investigated.
  • EBBM Electro Beam Butt on Melting
  • FIGs. 3a, 33 ⁇ 4, 4a, and 4b Electron micrographs of inclusions extracted by the EB BM method are shown in Figs. 3a, 33 ⁇ 4, 4a, and 4b.
  • Figure 3 a, Fig. 3 b is inclusions M G_ ⁇ type in the present invention No. 2, 4 is the specific Comparative Examples, Fig. 4 a, 4 b is Inclusions A 1 2 0 3 are aggregated
  • FIG 4 b is an inclusion of the spinel "MgO- a 1 2 0 3" type.
  • the steel ingot after 1 was subjected to soaking at 1250 ° C for 20 hours, and then hot forged to obtain a hot forged product.
  • Table 2 shows that in the lots in which the value of ingot Mg is 50% or less of the equivalent amount of added Mg, there is no oxide-based nonmetallic inclusion exceeding 20 ⁇ m in the maraging steel strip, and the electrode Mg It can be seen that the size tends to decrease as the content increases.
  • the intended composition of the oxide-based nonmetallic inclusions of the steel ingot observed in this evaluation by the present invention a spinel (MgO- A 1 2 0 3) based oxides oxide and Mg O principal and, by way of comparative example was an oxide of a 1 2 O 3 principal.
  • the reason that the oxide-based inclusions of the “electrode” were changed to spinel-based inclusions after re-dissolution was that the MgO present in the electrode was evaporated, and some of the non-evaporated MgO was evaporated. This is a force that decomposes into Mg and O to become a spinel-type oxide-based non-metallic inclusion, slightly remaining as MgO.
  • the spinel-type inclusions (MgO—Al 2 ⁇ 3 ) newly formed during this vacuum remelting are accompanied by the effect of reducing the electrode oxygen concentration by adding Mg, and accompanying the Mg evaporation during vacuum melting.
  • MgO the decomposition of MgO, becomes less fine inclusions 20 im, newly considered that a A 1 2 0 3 is also intended to be generated as inclusions, the reduction of O amount [Koyori 20 Myuitaiota those less fine Can be
  • FIG. 5a, 5b and 5c show electron micrographs of typical oxide inclusions of the present invention.
  • Figure 5 a is MgO inclusions
  • Fig. 5 b is spinel inclusions (Mg O- Al 2 0 3)
  • FIG. 5 c is an aggregate of A 1 2 O 3 inclusions.
  • Figure 6 a to that shown in FIG. 6 b is an electron micrograph of a typical ladle of oxide inclusions in comparative examples
  • Fig. 6 a is A 1 2 O 3 inclusions
  • Fig 6 b is "Mg O- is a 1 2 0 3 spinel inclusion ", it has become a large and inclusions and the ratio of the present invention.
  • inclusions were investigated using the sample in the 0.5 mm steel strip, but there were no particular changes in the inclusion form, composition, and size compared to the ⁇ steel ingot '' stage. It is not possible.
  • nitrides and carbonitrides After collecting 10 g of the sample to be used for detailed evaluation of nitrides and carbonitrides, dissolve it in a mixed acid solution or a bromine-methanol solution, and then reduce the filter area to reduce the density of nitrides and carbonitrides. Then, 10,000 nitrides and carbonitrides were observed by SEM, and the maximum size was measured.
  • the value of the ingot Mg is 50% or less of the equivalent amount It can be seen that there is no oxide-based nonmetallic inclusion exceeding 20 ⁇ in the maraging steel strip. Also, regarding the maximum length of the nitride, etc., when the electrode nitrogen concentration is 5 ppm, the size of the nitride and the like becomes finer by 2 to 3 m by adding Mg, and when the electrode nitrogen concentration is 10 ppm, It is important that the size of nitride etc. is reduced to 3 to 4 ⁇ by the addition of Mg.
  • Fig. 7 shows an electron micrograph of the nitride-based inclusion of Sample No. 8 of this effort
  • Fig. 8 shows an electron micrograph of the nitride-based inclusion of Comparative Sample No. 11.
  • the sample was prepared by subjecting the test pieces of the present invention sample No. 7 and the comparative sample No. 11 to soaking at 1250 ° C. for 20 hours, and then performing hot forging to obtain a rod having a diameter of 15 mm. Material. Next, the bar was subjected to a solution treatment at 820 ° C for 0.5 hour and then an aging treatment for 3 hours at 480 ° C for 0.5 hour, and 10 bars each of sample No. 7 and comparative material No. 11 were prepared. Prepare ultrasonic fatigue test piece fc.
  • This ultrasonic fatigue test piece was subjected to a fatigue test with an ultrasonic fatigue tester at a stress amplitude of 40 OMPa.
  • the fatigue test was performed so that the operation period at a vibration speed of 20 kHz was 80 ms, and the stop for cooling was 190 ms, and was repeated until the test piece broke. Observation of the fracture starting point of the fractured test piece showed that the test piece had a fatigue crack propagated from the inclusion as a starting point, leading to fracture.
  • the maximum length of the inclusion was set to SE It was measured by M observation.
  • Figure 9 shows a plot of the maximum length of the inclusion, which is the starting point, and the number of repetitions of the fatigue test when fracture occurs.
  • the pinholes described above are used. It is possible to obtain a mold steel with no defects and excellent polishability.
  • the Mg content in the molten steel was added to the typical components of the plastic mold with no addition to about 200 p ⁇ , and the Mg content was adjusted. (Remainder: Fe and unavoidable impurities).
  • Mg was added to molten steel using a Ni-Mg alloy, and then solidified in a mold ⁇ to produce a primary melting electrode for VAR.
  • a consumable electrode manufactured with VIM with or without the addition of a small amount of Mg was also manufactured.
  • the haze poles produced by these VIMs were remelted using VAR under the same conditions to produce steel ingots.
  • the same type of VAR type was used, and the degree of vacuum was 1.3 Pa, and the input current was melted at 6.5 KA in the steady part of the steel ingot.
  • the obtained ingot is forged into a slab with a cross-sectional dimension of 40 OmmX 50 mm, heat-treated, and a test piece of 5 OmmX 50 mm is cut out from the central force in the slab width direction, and adjusted to a martensite alloy with a predetermined hardness Then, it was used as a test material.
  • the heat treatment is hardness Quenching is 100 to obtain 40 HRC ⁇ 5. After heating for 1 hour at the same temperature and air cooling, and then tempering at an appropriate temperature of 20 ° C from 520 ° C to 580 ° C for 1 hour, then air-cooling.
  • inclusion size and polishability were evaluated.
  • each TP sample was dissolved by the same acid extraction treatment as in the case of maraging steel, and the length of the inclusions obtained by filtration with a filter was observed by SEM.
  • polishability Specimen was subjected to a mirror finish to the # 3-00 level and the # 600 level using a grinder "Paper” diamond compound method. The number of fine pits generated was counted using a double magnifier and evaluated.
  • the ingot of the present invention is capable of finely dispersing nonmetallic inclusions present in the ingot, and is a maraging steel in which high cycle fatigue strength is a problem, a mold steel in which mirror polishing by inclusions is a problem, etc. In addition, it is effective as a method for producing steel in general, where the size of inclusions is a problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 本発明は、鋼塊中の介在物サイズの微細化を図るものであり、溶鋼中に混濁する酸化物の組成をMgO主体とするに十分な量のMgを有する溶湯に調整するMg酸化物形成工程と、該Mg酸化物形成工程よりも雰囲気の真空度を減圧として、溶湯中のMg酸化物をMgと酸素に解離させ、Mg含有量をMg酸化物形成工程の50%以下とする解離工程を経る鋼塊の製造方法である。Mg酸化物形成工程において、一旦凝固させる工程を採用することが好ましい。すなわち、Mg酸化物形成工程を一次溶解とし、該一次溶解時の溶鋼中に混濁する酸化物の組成をMgO主体とするに十分な量のMgを有する溶湯に調整した後、凝固させ、解離工程を一次溶解時よりも真空度を減圧として再溶解し、Mg酸化物をMgと酸素に解離させ、Mg含有量を再溶解前の50%以下とすることが好ましい。

Description

明 細 書 鋼塊の製造方法 技術分野
本発明は、 F eを基本成分とする金属材料 (F eを最も多く含有するもの) で ある鋼塊の製造方法に関するものであり、 特に非金属介在物 (以下、 介在物と記 す) を極めて微細に制御できる鋼塊の製造方法に関するものである。
背景技術
鋼中に存在する介在物は種々の機械的特性に影響を及ぼす。 例えば、 プレスで 鋼板を打抜いたり、 切削したりする場合、 微細に介在物を分散させて、 介在物を 破壌の起点として打抜き性や切削性を向上させる技術もある。
一方、 銅中に存在する介在物は、 その介在物の組成、 形状、 サイズが鋼材の機 械的特性を劣化させることも知ら.れて る。 例えば、 疲劳'強度が求められるよう な用途においては介在物を起点とビ'た材料破断の問題がある。 この疲労被壊にお いては、 介在物の大きさが大きく影響を及ぼし、 介在物制御が大きな ¾題となつ ている。
自動車部材、 工具鋼、 構造用鋼など、 特殊用途に用いられる高級部ネオにおいて は、 介在物を制御する方法として、 例えば、 アーク炉 (以下 A Fと記す) や真空 誘導溶解 (以下、 V I Mと記す) の後、 エレク トロスラグ再溶解 (以下、 E S R と記す) や真空アーク再溶解 (以下、 VA Rと記す) を適用して二重溶解を行う のが一般的に行われている。
VA Rや E S Rを適用して二重溶解された鋼は、 均質 (成分偏析が少ない) で しかも、 介在物の量が少なくなると言った利点を有するものである。
上述した介在物による疲労破壊の問題に対して、 厳しい要求が求められる代表 的な鋼にマルエージング鋼がある。
マルエージング鋼は強靭で、 かつ高強度を持っため繰返し応力が負; fTされる構 造部材ゃ疲労強度の必要な重要部材に使用されている。 しかし部材中に大型の非 金属介在物が存在すると、 これを起点とした疲労破壌を生じることが く知られ ており、 特に高サイクル疲労破壌を生じさせないためには非金属介在物を微細に 分散させる必要がある。
このような、 介在物を問題視して、 介在物の微細化については種々の提案がな されている。 例えば本願出願人による特開平 1 1一 293407号公報や、 特開 2003— 183765号公報がある。
発明の開示
従来の鋼塊中の介在物微細化方法としては、 酸素や窒素などの介在物形成元素 を低くしたり、 再溶解の溶解条件のパラメーターを調整したりすることで介在物 の微細化が図られてきた。
しかしながら、 酸素や窒素の低減に関しては、 成分規格上の制約、 すなわち c、
A 1などの脱酸元素の添加量が成分規格から制限されることや、 溶解速度の制御、 雰囲気の真空度など、 生産量に直結するパラメーターについては、 おのずとその 変更に量産性の面から限界があった。 そのため、 実際に量産工程に適する新しい 介在物微細化技術が切望されてきた。
本発明の目的は、 従来よりも飛躍的に介在物サイズを微細化させることができ る鋼塊の製造方法を提供することである。
本発明者らは、 溶鋼中に Mgを存在させることで、 一且 MgO主体の酸化物を 生成させた後、 より高い真空度に曝すことで、 溶鋼表面で M g O主体の酸化物の 解離 (d i s s o c i a t i o n) を促進させることができ、 結果として微細な 介在物を有する鋼塊を得ることができることを見いだし本発明に到達した。
すなわち、 本発明は、 溶鋼中に混濁する酸化物の組成を MgO主体とするに十 分な量の M gを有する溶湯に調整する M g酸ィヒ物形成工程と、 該 M g酸化物形成 工程よりも雰囲気の真空度を減圧として、 溶湯中の Mg酸化物を Mgと酸素に解 離させ、 Mg含有量を Mg酸化物形成工程の 50%以下とする解離工程を経る鋼 塊の製造方法である。
本発明において、 MgO主体の酸ィ匕物とは、 酸化物の構成成分のうち、 最も多 い成分が MgOであるような酸化物を意味する。
また、 本発明の解離工程における Mg含有量は、 好ましくは Mg酸化物形成ェ 程における Mg含有量の 20%以下、 更に好ましくは 10%以下である。 また、 本発明において、 好ましくは、 Mg酸化物形成工程において一旦凝固さ せる工程を採用すること、 すなわち、 Mg酸ィ匕物形成工程を一次溶解とし、 該ー 次溶解時の溶鋼中に混濁する酸化物の組成を M g〇主体とするに十分な量の M g を有する溶湯に調整した後、 凝固させるものとし、 解離工程を一次溶解時よりも 真空度を減圧として再溶解し、 Mg酸化物を Mgと酸素に解離させ、 Mg含有量 を再溶解前の 50%以下とするものとすることが望ましい。 また、 このとき、 再 溶解は真空アーク再溶解とすることが望ましい。
また、 特に再溶解を適用する場合は、 窒化物形成元素を鋼塊成分として含有す る鋼の製造に適用することが望ましい。
本発明において、 M g酸化物形成工程の真空度は 6 k P a〜60 kP aが好ま しく、 解離工程の真空度は 0. 6 kP aよりも減圧とすることが好ましい。
また、 本発明における、 Mg酸化物形成工程において Mg量 (MgOXi) と A 1量 (A 1 ox ) の関係が、 A l OX i (ma s s p p m) /M g 0χ i (ma s s p pm) = 5〜 100となるように調整することが望ましい。
ここで、 一次溶解と再溶解といった工程を経ることなく、 溶湯雰囲気を自在に 制御して、 再溶解を用いない方法の場合、 酸化物形成工程における Mg量
(MgOX I) 及び A 1量 (Α ΐ οχι) とは、 酸化物工程から解離工程に移行さ せるために、 真空度を減圧させる直前の時点で採取したサンプル中の M g含有量 及ぴ A 1含有量を示す。
また、 酸化物形成工程を 1次溶解とし、 解離工程を再溶解とする場合には、
Mg量 (MgOX I) とは、 1次溶解後凝固した鋼塊中の Mg含有量を示す。 本発明において、 上述の溶鋼中への Mgの添カ卩は、 Mg含有量が ma s s %で 20%以下 (0は含まず) を含有した N i— Mg合金として添加することが望ま しレ、。
また、 本発明においては、 目的とする鋼塊成分として、 A 1を 0. 01〜6 ma s s %含む鋼塊に適用することが望ましく、 また T iを 0. l〜2ma s s %含む鋼塊に適用することが望ましい。
具体的には例えばマルエージング鋼や金型用鋼等の工具鋼にも適用することも できる。 前記マルエージング鋼は、 実質的に、 ma s s%で、 O (酸素) : l O p pm 未満、 (窒素) : 1 5 p pm未満、 C : 0. 01 %以下、 T i : 0. 3〜2. 0%以下、 N i : 8. 0〜22. 0%、 Co : 5. 0〜20. 0%、 Mo : 2. 0〜9. 0%、 A1 : 0. 01〜1. 7%、 および残部としての F eおよび不可 避不純物から成るものが望ましい。
本発明の鋼塊の製造方法は、 M g添加と特定の減圧工程の制御により、 非金属 介在物の大きさを飛躍的に小さくすることができ、 粗大介在物が悪影響を及ぼす 靭性ゃ疲労強度といった機械的特性の改善や、 鏡面加工における介在物起因の欠 陥の発生といつた表面清浄の改善に極めて有用な技術となる。
本発明の特徴を以下に述べる。
本発明者らは、 酸ィ匕物形成能が高い Mgが、 真空中の蒸気圧が高いことに着目 して鋼中の介在物と Mgの影響を研究した。 そして、 ー且、 Mg〇主体の酸化物 を形成させてから、 高真空に曝せば、 溶鋼表面からの Mg蒸発により MgO主体 の酸化物の殆どを解離消失させることができ、 凝固後の鋼塊中の介在物の大きさ を飛躍的に小さくできることを見いだした。
その理由は、 以下のように考えられる。
MgO主体の酸化物は、 鋼中の典型的な介在物として知られる A 1 203主体 の酸化物よりも酸化物形成能が高く、 適量の Mg合金を溶鋼中に添加すれば、 Mg〇主体の酸化物が溶鋼中に分散して存在することになる。 Mgを添加した後、 このまま鎵造すると、 介在物が A 1203主体の酸化物から MgO主体の酸化物 に変わっただけで、 劇的な介在物の微細化効果は得られない。
そこで、 Mg O主体の酸化物形成工程よりも雰囲気の真空度を減圧とした解離 工程を付与する。 高真空に曝すことで、 蒸気圧の高い溶鋼中の Mgが気相中に拡 散し、 溶鋼中の平衡状態が崩れ、 MgO主体の酸化物の解離が進行する。 このと き、 解離した酸素は、 溶鋼中の Mgや A 1等と結びつき、 MgO主体の酸化物や A 1 2 O 3主体の酸化物などを形成するのであるが、 酸素の拡散は解離反応の進 行に依存するため、 急激な酸化物の成長とはならず、 酸ィ匕物の微細な状態で凝固 させ鋼塊とすることができたものと考えられる。
これに対して、 従来の製法では、 溶鋼中に A 1 203などの凝集しやすい介在 物がもともと存在し、 溶鋼中の流動によってこれら介在物はお互いに種?突し、 次 第に大型の介在物へと成長する。
本発明では、 A 1 2〇 3などの凝集しやすい介在物を、 Mg酸化物形成工程に より、 Mg〇主体の酸化物として衝突による凝集'成長を防止すると共に、 更に 解離工程により Mg〇主体の酸化物を酸素と Mgガスとに解離させ、 凝固後の鋼 塊中の酸化物を微細化させる。
本発明においては、 溶湯中に Mg〇主体の酸ィ匕物が主たる介在物となるのに十 分な量の Mgが存在する溶鋼に調整することが必要である。
そのために添加する Mg合金の量は、 溶湯中の A 1等の活性元素量、 酸素量、 硫黄 (S) 量から化学平衡論的に MgO主体の酸ィ匕物が形成するのに十分な量と して計算することができる。
簡易的には特定の鋼種に対して、 繰返し実験によって M g添加後にサンプルを 採取し、 凝固させた状態で M gの添加量とサンプル中の酸化物組成とを調查して 決めればよい。 Mgの添加方法としては、 目的とする鋼の合金成分と Mgの合金 の形、 例えば Mg含有量が ma s s%で 20%以下 (0は含まず) である N i— M g合金形態として添加することが、 添加時の M gの損失を防ぐ上で好ましレ、。 本発明においては、 Mg含有量を Mg酸化物形成工程の 50%以下とするとし ている。 これは、 経験値として決定したものであり、 Mgを添加後に溶鋼中の介 在物が Mg O主体の酸化物となっていれば、 鋼塊としてねらう Mg含有量が鋼に 対する影響の無いレベルである 3〜 5 p pm以下程度であっても、 ねらい値の倍 以上の M gの添加により、 解離工程後凝固させた鋼塊中の介在物の微細化に対し て明確な効果を得ることが出来たためである。
解離工程の M g含有量が M g酸化物形成工程の 50 %を超えて残留しているよ うでは、 M gの解離が不十分で、 解離による酸化物の微細化効果が十分に得られ ない。 好ましくは M g含有量を M g酸化物形成工程の 20 %以下、 更に好ましく は 10%以下とする。
なお、 Mgを過度に導入することは、 機械的強度など鋼の主要特性に影響する ため、 必要且つ最小限の量にすることが好ましい。 減圧又は再溶解での解離工程 においても、 雰囲気中に Mgガスが多量に存在する状態では、 解離反応が進行し ことになる。
そのため、 例えば M g O主体の酸ィ匕物形成工程における溶鋼中の M g含有量は 最大で 3 0 0 p p m程度とし、 現実的には 1 0〜2 0 0 p p m程度としておくこ とが望ましい。
本発明において M g〇を主体とは、 酸化物組成を例えばェックス線分析装置で 分析した時、 酸素を除いた元素を定量分析を行い、 M gが 3 0 m a s s %以上検 出されたものを M g Oを主体と定義する。
この場合の分析は、 例えばエネルギー分散型ェックス線分析装置で定性 Z定量 分析を行うことで確認することができる。
また、 M g Oが主体となっている介在物の比率の調查においては、 特定の重量 のサンプル内に存在する介在物を抽出し、 例えばエネルギー分散型ェックス線分 析装置で定性/定量分析を行い、 その比率を求めることができる。
本発明においては、 溶湯雰囲気を自在に制御できれば、 一次溶解と再溶解とい つた工程を経ることなく、 本発明の方法を適用することができるが、 雰囲気圧力 制御は容易ではなく、 低真空の真空誘導溶解等の一次溶解でー且凝固させ、 次い で解離工程となる真空アーク再溶解等の再溶解を組み合わせるのが実用的である。 特に真空アーク再溶解 (VA R) は、 高真空で、 凝固単位が小さく解離工程で 他の介在物が成長するのを抑制するのに都合がよい。 さらに、 V A Rは偏析の抑 制、 酸素等のガス成分の低減にも効果がある。
本発明において、 解離工程として VA Rなどの再溶解を適用する場合は、 成分 中に T iなどの窒化物形成元素を含む鋼塊に対し、 酸化物の微細化効果に加えて 窒化物の粗大化防止効果をも得ることができる。
本発明者らは、 マルエージング鋼の窒化物のサイズについて研究した結果、 窒 化物のサイズは 1次溶解後の鋼塊に比べて、 VA Rなどの再溶解後の鋼塊の方が 大きいことを確認した。 そして、 窒化物が再溶解時に成長 .粗大化する原因は、 再溶解時に 1次溶解の鋼塊中に存在した窒化物が溶鋼中に完全に溶融しないため、 凝固時に窒化物が成長 ·粗大化するためであることを突き止めた。
本発明では、 M g合金を添加後、 凝固までの間に、 窒化物の晶出または析出が 生じるが、 M g O主体の酸化物は、 窒化物系化合物の晶出または析出の核となる 傾向がある。 このことにより、 1次溶解の鋼塊中の窒化物は、 例えば MgOを析 出核として周囲に窒化物、 例えば T i Nが取り巻くといった窒化物一 MgO複合 体の形態となる。
再溶解時に溶^!表面から Mgの蒸発が盛んに生じると、 窒化物一 Mg O複合体 の一部を構成する MgO主体の酸ィ匕物が Mgと酸素に解離する。 そのため窒化物 一 M g〇複合体は M g O部分が消失することにより細かく分解し、 熱分解が促進 して窒化物を溶鋼中に完全に溶融させることができる。
これによつて、 確実に窒化物を溶鋼へ溶け込ませることができ、 窒化物が溶け きらずに、 さらに大きな窒化物に成長 ·粗大化してしまうのを防止でき、 結果と して粗大な窒化物が存在しない鋼塊を得ることができるようになる。
特に、 再溶解が凝固単位が小さい VAR等の場合、 再溶解で溶けきらない窒化 物系介在物の成長は大きな問題であり、 本発明はその課題を解決する有効な手段 となる。
窒化物系介在物を形成する元素としては、 典型的には、 上述した T iがある力 他の元素として A 1、 Nb、 V、 C r等がある。
本発明では上述したように溶湯雰囲気のコント口ールが重要である。 酸化物形 成工程よりも解離工程が減圧であれば解離は進行するが、 量産技術として好まし い範囲は、 M g酸化物形成工程の真空度は 6 kP a〜60 k P aであり、 解離ェ 程の真空度は 0. 6 k P aよりも減圧とすることである。
ここで、 M g酸化物形成工程の真空度の下限として 60 k P aとしたのは、 こ れを超える高い圧力では、 基本的な脱ガス作用が期待できなくなるためである。 また、 上限値を 6 kP aとしたのは、 これ以上の減圧雰囲気では、 溶湯中に Mg 拡散する前に、 気化してしまい、 MgO主体の酸化物が形成されにくく、 本発明 の効果が明確でなくなるためである。
また、 解離工程の真空度は可能な限り減圧雰囲気がよいが、 0. 6 k P aを超 えるような圧力では、 解離反応の進行が遅く現実ではないため、 0. 6 k P aよ りも減圧とすることが好ましい。 より好ましくは 0. 06 kP a以下とする。 上述したように、 溶鋼中の酸ィヒ物を Mg O主体の酸化物とする条件を決定する ためには、 化学平衡論的に計算する手法と、 サンプルを採取しながら実験的に求 める方法がある。
特に A 1が介在物として問題となる場合は、 Mg酸ィ匕物形成工程において Mg 量 (MgOX I) と、 A 1量 (Al OX I) の関係が A l OXi (ma s s p pm) /Mg οχ ! (ma s s p pm) =5〜: 100となるように調整する ことが好ましい。
Mgの酸化物形成能は A 1より高いため、 A 1 ox z (ma s s p p m) / Mg ox ! (ma s s p p m) = 1 00程度で M g〇主体の酸化物とすること 力 Sでき、 A l OX I (ma s s p p m) /M. g ox j (m a s s p p m) =5 以上の範囲内であれば溶鋼中の酸ィヒ物をより確実に Mg O主体の酸化物とするこ とができるためである。
このタカ果 ίま A 1 ox I (ma s s p p m; /M g ox j m a s s p p m) =200以下の範囲であれば少なからず得ることができるが、 Mgが過度になり
¾1さて A 1 οχ I m a s s p p m) /M g ox j (ma s s p p m) の値 5未満となると、 介在物を逆に増加する可能性があり、 好ましくない。
VARを適用するマルエージング鋼や、 金型鋼等の工具鋼においては、 1次溶 解で溶鋼に Mg合金を Mg相当量として 10〜; 100 p pmを添加しておき、 再 溶解後の鋼塊で 5 p p m以下まで M gを低減することが好ましい。
鋼塊としてねらう成分としては、 A 1を鋼の不純物としてではなく、 積極的に 添加され、 介在物が発生しゃすレ、鋼種たとえば、 0. 1〜 6 m a s s %含む鋼種 等への適用が望ましい。 ここで上限値を 6 ni a s s %としたのは、 汎用材料とし て 6 %程度が上限値との認識による。
また、 T iが 0. 1〜 2 m a s s %含む鋼種等への適用が可能である。
上述したように、 特に再溶解を適用する場合に有効である。 上限値を 2 ma s s%とした理由は、 汎用鋼に含まれる T i量の上限値が 2%程度だからで ある。 なお、 下限値を下回っても、 上限値を上回っても、 本発明の効果は少なか らず発揮される。
本発明を適用する実用的鋼種例として、 マルエージング鋼がある。 特に最近で は、 マルエージング鋼を約 0. 2 mm以下の薄帯として、 自動車の動力伝達用べ ルトとする用途がある。 このように鋼の厚さが最終的に 0. 5 mm以下となるよ うな用途においては、 例えば 1 5 /i mを超えるような大きさの酸化物は高サイク ル疲労破壌の起点となる危険性が高く、 素材中の酸化物は概ね 1 5 μ πι以下とす る必要がある。
また、 ごく一部を除くマルエージング鋼には成分として T iを含有するため、 鋼塊中には T i Nが存在する。 この T i Nは形状が矩形であり、 応力集中が生じ やすレ、ことや、 ダークエリアと呼ばれる水素脆化領域を形成することなどから、 酸化物よりも高サイクノレ疲労破壌に対する感受性が高く、 素材中の T i Nは概ね 1 0 / m以下とする必要があると言われている。 そのため、 本発明の製造方法に 適する鋼種である。
以下、 本発明に適用するマルエージング鋼の一例を説明する。
マルエージング鋼はその名が示す通り、 マルテンサイト組織にエージング (時 効硬化処理) を施すことで 2 0 0 O M p a前後の非常に高い強度と優れた延性が 得られる合金であり、 N iを質量%で 8〜 2 5 m a s s %含む、 時効硬化型の超 強力鋼である。
このマルエージング鋼の好ましい化学組成 (m a s s %) は以下の通りである。 O (酸素) は、 酸化物系介在物を形成する元素である。 本発明では酸化物系の 介在物を超微細化に制御できるが、 その酸ィヒ物系介在物となる酸素の量を低減し ておくのがより望ましい。 そのため、 Oは 1 0 p p m未満に制限するとよい。
N (窒素) は、 窒化物や炭窒化物介在物を形成する元素である。 本発明では窒 化物系の介在物を超微細化に制御できるが、 その窒化物系介在物となる窒素の量 を低減しておくのがより望ましい。 そのため、 Nは 1 5 p p m未満に制限すると よい。
C (炭素) は、 炭化物や炭窒化物を形成し、 金属間化合物の析出量を減少させ て疲労強度を低下させるため Cの上限を 0 . 0 1 %以下とするとよい。
T iは、 時効処理により微細な金属間化合物を形成し、 析出することによって 強化に寄与する必要不可欠な元素であり、 望ましくは 0 . 3 %以上を含有させる とよレ、。 し力 し、 その含有量が 2 . 0 %を越えて含有させると延性、 靱性が劣化 するため、 T iの含有量を 2 . 0 %以下とするとよい。
N iは、 靱性の高い母相組織を形成させるためには不可欠の元素である。 しか し、 8. 0%未満では靱性が劣化する。 一方、 22%を越えるとオーステナイト が安定化し、 マルテンサイト組織を形成し難くなることから、 N iは 8. 0〜2 2. 0%とするとよい。
Coは、 マトリックスであるマルテンサイト組織を安定性に大きく影響するこ となく、 Moの固溶度を低下させることによって Moが微細な金属間化合物を形 成して析出するのを促進することによつて析出強化に寄与する元素である。 しか し、 その含有量が 5. 0%未満では必ずしも十分効果が得られず、 また 20. 0 %を越えると脆ィ匕する傾向がみられることから、 Coの含有量は 5. 0〜20. 0%にするとよレ、。
Moは、 時効処理により、 微細な金属間化合物を形成し、 マトリックスに析出 することによって強化に寄与する元素である。 し力 し、 その含有量が 2. 0%未 満の場合その効果が少なく、 また 9. 0%を越えて含有すると延性、 靱性を劣化 させる粗大析出物を形成しやすくなるため、 Moの含有量を 2. 0〜9. 0%に するとよい。
A 1は、 時効析出した強化に寄与するだけでなく、 脱酸作用を持っているため、 0. 01%以上を含有させるとよいが、 1. 7%を越えて含有させると靱性が劣 化することから、 その含有量を 1. 7%以下とするとよい。
上記の元素以外は実質的に F eでよいが、 例えば Bは、 結晶粒を微細化するの に有効な元素でるため、 靱性が劣化させない程度の 0. 01%以下の範囲で含有 させてもよレ、。
また、 不可避的に含有する不純物元素は含有されるものである。
このうち、 S i、 Mnは脆ィ匕をもたらす粗大な金属間化合物の析出を促進して 延性、 靭性を低下させたり、 非金属介在物を形成して疲労強度を低下させるので、 S i、 Mn共に 0. 1%以下に、 望ましくは 0. 05%以下とすれば良く、 また、 P、 Sも粒界脆化させたり、 非金属介在物を形成して疲労強度を低下させるので、 0. 01%以下とするとよレ、。
また、 本発明を適用する別の実用的銅種例としてプラスチック用金型用鋼があ る。
プラスチック用金型によつて成形されたブラスチック製品は、 外観上その表面 に疵がないことが必要とされる。 また、 コンパクトディスクや DVD用、 あるい はプラスチックレンズ用の金型では、 金型成形部表面に概ね 10 mを超える介 在物が存在すれば、 ピンホール不具合の原因となる。
従って、 素材中に存在する酸化物や窒化物は 10 //in以下とする必要があると 言われている。 これら金型用鋼等の工具鋼の溶製にも本発明の適用が大変に効果 的である。
本発明を適用するに好適なプラスチック用金型用鋼としては、 例えば C: 0. 005〜 0. 5 %、 Μη : 0. 2〜 3. 0 %、 S i : 0. 1〜 2. 0 %、 N i : 1. 5〜4%、 A 1 : 0. :!〜 2. 0%を必須成分として含有し、 更に必要に応 じて C r : 3〜8%、 Cu : 0. 3〜3. 5 %、 W或いは更に M oを 1 / 2 W+ Moで 0. 1〜3%、 S (硫黄) : 0. 3%以下、 Co : 2%以下、 Nb : 0. 5%以下、 V : 0. 5%以下をの何れか一種以上を含有させてもよい。
なお、 残部は実質的に F e及ぴ不可避的不純物とするが、 介在物を形成する N (窒素) 及ぴ O (酸素) については、 0. 01%以下にするのが好ましく、 上記 の元素の他、 被削性改善元素を合計で約 1 %の範囲まで含んでもよい。
上記範囲内の組成を有する合金として、 一例を示すと例えば特許第 33517 66号、 特許第 2879930号、 特公昭 59— 37738号に記載された合金 組成を有するものがある。
図面の簡単な説明
図 l aは、 本発明方法で製造したマルエージング鋼 「電極」 中に見られた窒化 物系介在物を示す断面電子顕微鏡写真である。
図 l bは、 本発明方法で製造したマルエージング鋼 「電極」 中に見られた別の 窒化物系介在物を示す断面電子顕微鏡写真である。
図 1 cは、 本発明方法で製造したマルエージング鋼 「電極」 中に見られた別の 窒化物系介在物を示す断面電子顕微鏡写真である。
図 2は、 比較方法で製造したマルエージング鋼 「電極」 中に見られた窒化物系 介在物を示す断面電子顕微鏡写真である。
図 3 aは、 本発明方法で製造したマルエージング鋼 「電極」 中から抽出した M g O型介在物の電子顕微鏡写真である。 図 3 bは、 本発明方法で製造したマルエージング鋼 「電極」 中から抽出した M g O型介在物を示す電子顕微鏡写真である。
図 4 aは、 比較方法で製造したマルエージング鋼 「電極」 中から抽出した
A 1 2〇 3介在物を示す電子顕微鏡写真である。
図 4 bは、 比較方法で製造したマルエージング鋼 「電極」 中から抽出した
「M g O— A l 2 0 3」 型介在物を示す電子顕微鏡写真である。
図 5 aは、 本発明方法で製造したマルエージング鋼 「鋼塊」 を熱間圧延、 溶体 化処理、 冷間圧延、 時効処理を行った鋼帯サンプル中に見られた酸化物系介在物 の電子顕微鏡写真である。
図 5 bは、 本発明方法で製造したマルエージング鋼 「鋼塊」 を熱間圧延、 溶体 化処理、 冷間圧延、 時効処理を行った鋼帯サンプル中に見られた酸化物系介在物 の電子顕微鏡写真である。
図 5 cは、 本努明方法で製造したマルエージング鋼 「鋼塊」 を熱間圧延、 溶体 化処理、 冷間圧延、 時効処理を行った鋼帯サンプル中に見られた酸ィ匕物系介在物 の電子顕微鏡写真である。
図 6 aは、 比較方法で製造したマルエージング鋼 「鋼塊」 を熱間圧延、 溶体化 処理、 冷間圧延、 時効処理を行った鋼帯サンプル中に見られた酸ィヒ物系介在物の 電子顕微鏡写真である。
図 6 bは、 比較方法で製造したマルエージング鋼 「鋼塊」 を熱間圧延、 溶体化 処理、 冷間圧延、 時効処理を行った鋼帯サンプル中に見られた酸ィヒ物系介在物の 電子顕微鏡写真である。
図 7は、 本発明方法で製造したマルエージング鋼 「鋼塊」 を熱間圧延、 溶体ィ匕 処理、 冷間圧延、 時効処理を行った鋼帯サンプル中に見られた窒化物系介在物の 電子顕微鏡写真である。
図 8は、 比較方法で製造したマルエージング鋼 「鋼塊」 を熱間圧延、 溶体化処 理、 冷間圧延、 時効処理を行った鋼帯サンプル中に見られた窒ィヒ物系介在物の電 子顕微鏡写真である。
図 9は、 本発明方法と比較方法で得られたマルエージング鋼の疲労試験結果で ある。 実施例 1
以下、 実施例として、 先ず最初に本発明に適用するマルエージング鋼の一例に ついて説明する。
マルエージング鋼の代表成分に、 溶鋼中の Mg含有量を無添カ卩〜 200 p pm 程度とし、 Mg含有量を 6通りに変化させた V A R溶解用の 1 t o n消耗電極を
V I Mで製造した (表 1の N o . 1〜N o . 6参照) 。
V I Mでは真空度 1 3. 3 k P aにおいて、 溶鋼中に 95ma s s %N i - 5 ma s s %Mg合金による Mgの添カ卩を行ない、 その後、 铸型内で凝固させ、
V A Rに供する 1次溶解電極を製造した。 また比較材として V I Mで M g微量添 加もしくは無添加の条件で製造した消耗電極も製造した。
さらに、 Mg添加による窒化物や炭窒化物への影響を明確にするため、 窒素濃 度を 5 p pmと 10 p pmに調整した消耗電極を 6本 (表 1の No. 7〜No. 12参照) 製造し、 VARを行なった。
これら V IMで製造した電極を同一条件の下で VARを用いて再溶解し、 鋼塊 を製造した。 VARの铸型はそれぞれ同一のものを用レ、、 真空度は 1. 3 P a、 投入電流は鋼塊の定常部で 6. 5 k Aで溶解した。
以上、 表 1は、 V I Mで製造した消耗電極及びその電極を VARにて真空再溶 解して得られた鋼塊の化学組成を示している。 No. 7〜No. 12力 SMg添カロ による窒化物や炭窒化物への影響を見たものである。 '
なお、 消耗電極は 「電極」 として、 VAR後のものは 「鋼塊」 として示した。 また、 「電極」 の値が本発明の Mg酸化物形成工程の値に対応し、 「鋼塊」 の 値が本発明の解離工程の値に対応する。 表 1
(mass%)
Figure imgf000016_0001
先ず、 「電極」 力 ら介在物観察用の試験片を採取し、 介在物の調査を行った。 介在物の確認は 2通りの方法で行い、 介在物の断面形態の観察は 「電極」 から プロックを切出して、 断面を電子顕微鏡観察を行った。 一例として図 l a、 図 1 b、 図 l c (図中、 各写真の右下部分に概略四角形の複数の点が直線状に^んで いるが、 これは寸法を示すものである。 すなわち、 複数点のうち両端に位置する 点の間の距離が併記した数値 5 μ πιであることを示す。 その他の図も同様であ る。 ) に本発明例試料 N o . 2から採取した介在物のうち、 典型的な窒化物系介 在物の電子顕微鏡写真を幾つか示す。
一方、 比較例試料 No. 5の 「電極」 からプロックを切出して、 断面を電子顕 微鏡観察を行った。 一例として図 2に典型的な窒化物系介在物の電子顕微鏡写真 を示す。
図 1 a〜l c、 図 2から、 本発明方法を適用した介在物は、 比較的大きな MgOを核として、 その周囲を T 1 Nが取り囲んだような形態となっているよう な形態をとることが分かる。
なお、 本発明方法を適用した 「電極」 からは、 図 1 a〜図 1 cのように MgO が比較的大きな面積率で核として存在している窒化物系介在物を多く見ることが できた。 この傾向は本発明製造方法を適用した介在物特有のものと考えられる。
MgOが主体の介在物の比率を調査する方法は、 「電極」 から採取した試験片 の重量を 1 gずつ 10個を採取し、 EBBM (E l e c t r o n B e am Bu t t on Me l t i n g) 法を用いて、 サンプルの金属片を加熱 ·溶解し て金属球とし、 金属球表面に浮上した比重の軽い介在物を調査する方法を採用し た。
なお、 上述のサンプルの重量は、 その量が多ければ多いほど正確となる一方で、 確認の作業に多大な時間が必要になること力ゝら、 必要最低限の重量のサンプルで 調査するのが現実的であるため、 合計 10 gを採取した。
次に、 E B BM法で金属球表面に浮上させた酸化物系介在物のうち、 5 μ m以 上のものを 1個ずつエネルギー分散型ェックス線分析装置で定量分析を行い、 MgOが主体となっているものが、 全体の 80%であることを確認した。
E B BM法で抽出した介在物の電子顕微鏡写真を図 3 a、 図 3 ¾、 図 4 a、 図 4 bに示す。 図 3 a、 図 3 bは No. 2の本発明で M g〇型の介在物、 図 4は比 較例であり、 図 4 a、 図 4 bは A 1 203が凝集した介在物、 図 4 bはスピネル 「MgO— A 1 203」 型の介在物である。
次に、 1後の鋼塊を1 250°CX 20時間のソーキングを行なった後、 熱間鍛造を行なって熱間鍛造品とした。
次に、 これら材料に熱間圧延、 820°CX 1時間の溶体化処理、 冷間圧延、 820°CX 1時間の溶体化処理と 480°CX 5時間の時効処理を行ない、 厚み 0. 5 mmのマルエージング鋼帯を製造した。
No. 1〜N o . 6のマルエージング鋼帯の両端部から横断試料を 100 g採 取し、 混酸溶液で溶解後、 フィルターでろ過し、 フィルター上の酸化物からなる 残渣を S EMで観察を行ない、 酸ィ匕物系非金属介在物の組成及びサイズを測定し た。
これらの非金属介在物のサイズ測定にあたっては非金属介在物に外接する円の 直径を非金属介在物の最大長さとした。 この結果を表 2に示す。
表 2
Figure imgf000018_0001
(*注:ここで、 アルミナ系介在物とは、 スピネル (MgO— Α 1 203) 、
A 1 203を意味する。 )
表 2力 ら、 鋼塊 Mgの値が添加 Mg相当量の 50%以下となっているロットで はマルエージング鋼帯中には 20 μ mを越える酸化物系非金属介在物がなくなり、 電極 Mg含有量が多くなるに従いその大きさが小さくなる傾向が伺える。
また、 今回の評価で観察された鋼塊の酸化物系非金属介在物の組成は本発明に よるものではスピネル (MgO— A 1 203) 系酸化物と Mg O主体の酸化物と なっており、 比較例のものでは A 12 O 3主体の酸化物であった。
なお、 本発明において、 「電極」 の酸化物系介在物が、 再溶解後にスピネル系 介在物に変化した理由として、 電極中に存在した Mg Oは蒸発する力 蒸発しな い一部の MgOは、 Mgと Oとに分解してスピネル型の酸ィ匕物系非金属介在物と なる力、、 僅かに MgOとして残存したものである。
この真空再溶解時に新たに生成される (MgO— A l 23) のスピネル型介 在物は、 M g添加による電極酸素濃度の低減効果、 真空溶解時の M g蒸発に伴う MgOの分解によって、 20 im以下の微細な介在物となり、 新たに A 1 203 介在物として生成されるものでも、 O量の低減【こより 20 μηι以下の微細なもの となったものと考えられる。
図 5 a、 図 5 b、 図 5 cに本発明の典型的な酸化物系介在物の電子顕微鏡写真 を示す。 図 5 aは MgO介在物、 図 5 bは (Mg O— Al 203) のスピネル型 介在物、 図 5 cは A 1 2 O 3系介在物の凝集体である。
図 6 a、 図 6 bに示したのは、 比較例の典型勺な酸化物系介在物の電子顕微鏡 写真であり、 図 6 aは A 1 2 O 3系介在物、 図 6 bは 「Mg O— A 1 203」 の スピネル型介在物であり、 本発明の介在物と比 して大きなものとなっている。 なお、 本実施例では 0. 5 mm鋼帯中のサンプノレを用いて介在物を調査したが、 「鋼塊」 の段階と比較して、 介在物形態、 組成、 大きさには変化は特に見られな いものである。
次に、 試料 N o. 7〜N o . 12のマルエージング鋼帯の両端部から横断試料 を 100 g採取し、 混酸溶液または臭素メタノ一ノレ溶液等で溶解後、 フィルター でろ過し、 フィルター上の酸ィ匕物からなる残渣を S EMで観察を行ない、 酸ィ匕物 系非金属介在物のサイズを測定した。
さらに、 窒化物や炭窒化物を詳細に評価するだめ 10 g採取して、 混酸溶液ま たは臭素メタノール溶液等で溶解後、 フィルターのろ過面積を小さくして窒化物 や炭窒化物の密集度をあげ、 S EMで 10000個の窒化物や炭窒ィ匕物を観察し 最大のサイズを測定した。
窒化物等は矩形形状であるため、 長辺 aと短辺 bを測定し、 面積 a X bに相 当する円の直径をその最大長さとした。 なお、 酸ィ匕物系非金属介在物は、 上記同 様に非金属介在物に外接する円の直径を非金属介在物の最大長さとした。 測定結 果を表 3に示す。 表 3
Figure imgf000020_0001
表 3から、 酸化物に関しては、 表 2に示した No. l〜No. 6の調査結果同 様に鋼塊 Mgの値が添カ圆 g相当量の 50 %以下となっている口ットではマルエー ジング鋼帯中には 20 μπιを越える酸化物系非金属介在物がなくなつていること がわかる。 また、 窒ィ匕物等の最大長さについては、 電極窒素濃度 5 p pmのとき、 M g添加により窒化物等のサイズは 2〜 3 m微細になり、 電極窒素濃度 10 p pmのとき、 Mg添カ卩により窒化物等のサイズは 3〜4 μιη微細になっている ことカゎ力る。
図 7に本努明例試料 No. 8の窒化物系介在物の電子顕微鏡写真を、 図 8に比 較例試料 N o. 1 1の窒化物系介在物の電子顕微鏡写真を示す。
次に、 上記の 「鋼塊」 力 ら疲労試験用のサンプルを採取した。
サンプルは、 本発明例試料 N o . 7と比較例試料 N o. 1 1の試験片を 1 25 0°CX 20時間のソーキングを行なった後、 熱間鍛造を行なって、 直径 15 mmの棒材とした。 次に、 棒材を 820 °C X 0. 5時間の溶体化処理後、 48 0°CX 3時間の時効処理を行い、 試料 N o . 7と比較材 N o . 1 1の各々 1 0 本の超音波疲労試験片を作製し fc。
この超音波疲労試験片を、 超音波疲労試験機にて、 応力振幅 40 OMP aで疲 労試験を行った。 疲労試験は、 2 0 kHzの振動速度の運転期間が 80 m s、 冷 却のための停止が 1 90msとなるように行レ、、 試験片が破断するまで繰返した。 破断した試験片の破断起点部を観察した結果、 試験片は介在物を起点に疲労亀裂 が進展し、 破断に至ったことが 認された。
そこで、 介在物が破断の起点となった試片について、 介在物の最大長さを SE M観察により測定した。 起点となった介在物の最大長さと、 破断した時の疲労試 験の繰返し回数をプロットしたものを図 9に示す。
図 9から、 起点となった介在物の最大長さが酸ィ匕物については概ね 15 μιηを、 窒化物については概ね 10; m超える場合は、 破断寿命は 1 07回程度しかない 、 起点となった介在物の最大長さが酸ィ匕物については概ね 15 m以下、 窒化 物については概ね 1 O/zm以下の場合は、 介在物の最大長さが小さくなるに従い、 破断寿命が急激に長くなり、 108回以上となることが分かる。
そして、 本発明例試料 N o . 7では、 平均破断寿命は 108回以上と長寿命で あつたが、 比較例試料 N o . 1 1では、 平均破断寿命は 1 07回となり、 明らか に本発明による介在物微細化が疲労寿命延長に効果があることが確認された。 実施例 2
以下、 本発明に適用するプラスチック用金型用鋼の一例を説明する。
プラスチック金型用鋼で【ま糸且織中の介在物をスピネル (MgO— A l 203) 系酸化物もしくは Mg〇主体の酸化物へ改質しているので、 上述した通りのピン ホール欠陥の無い、 磨き性に優れた金型用鋼とすることができる。
まず、 V IMにてプラスチック金型の代表的成分に、 溶鋼中の Mg含有量を無 添加〜 200 p ρπι程度とし、 Mg含有量を調整した、 表 4の,祖成を有する 1 t o n消耗電極 (残部: F eおよび不可避的不純物) を溶製した。
V IMでは真空度 1 3. 3 k P aにおいて、 溶鋼中に N i— M g合金による Mgの添加を行ない、 その後錶型内で凝固させ、 VARに供する 1次溶解電極を 製造した。
また比較材として V I Mで Mg微量添加もしくは無添加の条件で製造した消耗 電極も製造した。
これら V IMで製造した霞極を同一条件の下で VARを用いて再溶解し、 鋼塊 を製造した。 VARの錄型 ίまそれぞれ同一のものを用い、 真空度は 1. 3 P a、 投入電流は鋼塊の定常部で 6. 5 K Aで溶解した。
得られた鋼塊を断面寸法 40 OmmX 50mmのスラブに鍛伸後、 熱処理を 施し、 スラブ幅方向中心部力 ら 5 OmmX 50mmの試験片を切りだし、 所定 の硬さのマルテンサイト組鎩に調整して、 供試材とした。 ここで熱処理は、 硬さ 4 0 H R C ± 5 を得るように、 焼入れは 1 0 0 0。じで 1時間加熱してから空冷 し、 その後焼戻しとして 5 2 0 °Cから 5 8 0 °Cの 2 0 °C刻みの適正温度で 1時間 加熱後空冷するものである。
表 4
(raass%)
Figure imgf000022_0001
そして、 これら供試材について、 介在物サイズおよび磨き性を評価した。 介在 物については上言己マルエージング鋼と同様の酸抽出処理により各 T Pの試料を溶 解し、 フィルターろ過して得られた介在物長さを S EMにて観察した。
磨き性の評価 ίま、 供試材をグラインダ一"ぺーパ一"ダイャモンドコンパゥン ド方式にて # 3 Ο 0 0レベル、 および # 6 0 0 0レベルに鏡面仕上げを行い、 1 0倍の拡大鏡を用いて微細なピット発生個数をカウントして評価した。
;平価基準は非検面積 2 5 0 0 mm 2において、 ピット数 4個未満のものを◎、 4〜7個未満のものを〇、 7〜 1 0個未満のものを△、 それ以上のものを Xと した。 以上の評価結果を表 5に示す。 表 5
Figure imgf000023_0001
表 5の結果より、 本発明材はプラスチック金型用鋼の優れた磨き性に対して明 らかな効果があることを確認できた。
産業上の利用可能性
本発明の鋼塊は鋼塊中に存在する非金属介在物を微細に分散させることができ、 高サイクル疲労強度が問題となるマルエージング鋼、 介在物による鏡面磨き性が 問題となる金型鋼などの他、 介在物のサイズが問題となる鋼全般の製造方法とし て有効である。

Claims

請求の範囲
1. 溶鋼中に混濁する酸化物の糸且成を Mg O主体とするに十分な量の Mgを有 する溶湯に調整する M g酸ィヒ物形成工程と、 該 M g酸化物形成工程よりも雰囲気 の真空度を減圧として、 溶湯中の Mg酸化物を Mgと酸素に解離させ、 Mg含有 量を M g酸化物形成工程の 50 %以下とする解離工程を経る鋼塊の製造方法。
2. Mg酸化物形成工程を一次溶解とし、 該一次溶解時の溶鋼中に混濁する酸 化物の組成を Mg O主体とするに十分な量の Mgを有する溶湯に調整した後、 凝 固させるものとし、 解離工程を一次溶解時よりも真空度を減圧として再溶解し、 Mg酸化物を Mgと酸素に解離させ、 Mg含有量を再溶解前の 50%以下とする ものとする請求項 1に記載の鋼塊の製造方法。
3. 再溶解は真空アーク再溶解である請求項 2に記載の鋼塊の製造方法。
4. 窒化物形成元素を鋼塊成分として含有する請求項 2または請求項 3に記載 の鋼塊の製造方法。
5. Mg酸化物形成工程の真空度は 6 k P a〜6 0 k P aであり、 解離工程の 真空度は 0. 6 k P aよりも減圧とする請求項 1から請求項 4までの何れか 1項 に記載された鋼塊の製造方法。
6. Mg酸ィ匕物形成工程において Mg量 (MgOX I) と A 1量 (Α 1 ΟΧ Ι) との関係力、 A 1 ox I (ma s s p p m) /M g ox x (ma s s p p m) = 5〜 1 00となるように調整する請求項 1から請求項 5までの何れか 1項に記 載された鋼塊の製造方法。
7. 溶鋼中への M gの添加は、 M g含有量が m a s s %で 20 %以下 ( 0は含 まず) を含有した N i — Mg合金としての添加である請求項 1から請求項 6まで の何れか 1項に記載された鋼塊の製造方法。
8. 鋼塊は A 1を 0. 0 1〜6ma s s %含む鋼塊である請求項 1から請求項 7までの何れか 1項に記載された鋼塊の製造方法。
9. 鋼塊は T iを 0. 1〜 2 m a s s %含む鋼塊である請求項 1から請求項 8 までの何れか 1項に記載された鋼塊の製造方法。
1 0. 鋼塊はマルエージング鋼である請求項 1から請求項 9までの何れか 1項 に記載された鋼塊の製造方法。
1 1. 鋼塊は工具鋼である請求項 1から請求項 9までの何れか 1項に記載され た鋼塊の製造方法。
12. 前記マルエージング鋼は、 実質的に、 ma s s %で、 O (酸素) : 10 p p m未満、 N (窒素) : 15 p p m未満、 C: 0. 01。/。以下、 T i : 0. 3
〜2. 0%以下、 N i : 8. 0〜22. 0%、 Co : 5. 0〜20. 0%、 Mo : 2. 0〜9. 0%、 A 1 : 0. 01〜1. 7 %、 および残部としての F e および不可避不純物から成る請求項 10に記載された鋼塊の製造方法。
PCT/JP2004/006287 2003-10-08 2004-04-30 鋼塊の製造方法 WO2005035798A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2004800297120A CN1867685B (zh) 2003-10-08 2004-04-30 制造钢锭的方法
EP04730668A EP1679384B1 (en) 2003-10-08 2004-04-30 Method for producing steel ingot
AT04730668T ATE492657T1 (de) 2003-10-08 2004-04-30 Verfahren zur herstellung eines stahlblocks
AU2004280023A AU2004280023B2 (en) 2003-10-08 2004-04-30 Method for producing steel ingot
DE602004030702T DE602004030702D1 (de) 2003-10-08 2004-04-30 Verfahren zur herstellung eines stahlblocks
JP2005514523A JP4692282B2 (ja) 2003-10-08 2004-04-30 鋼塊の製造方法
US10/574,839 US7597737B2 (en) 2003-10-08 2004-04-30 Method for producing steel ingot
CA2541319A CA2541319C (en) 2003-10-08 2004-04-30 Method of producing steel ingot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003349559 2003-10-08
JP2003-349559 2003-10-08

Publications (1)

Publication Number Publication Date
WO2005035798A1 true WO2005035798A1 (ja) 2005-04-21

Family

ID=34431009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006287 WO2005035798A1 (ja) 2003-10-08 2004-04-30 鋼塊の製造方法

Country Status (10)

Country Link
US (1) US7597737B2 (ja)
EP (1) EP1679384B1 (ja)
JP (1) JP4692282B2 (ja)
KR (3) KR20060083228A (ja)
CN (1) CN1867685B (ja)
AT (1) ATE492657T1 (ja)
AU (1) AU2004280023B2 (ja)
CA (1) CA2541319C (ja)
DE (1) DE602004030702D1 (ja)
WO (1) WO2005035798A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132138A1 (ja) * 2011-03-31 2012-10-04 日立金属株式会社 溶鋼への亜鉛添加方法および亜鉛添加鋼の製造方法
WO2013146689A1 (ja) * 2012-03-28 2013-10-03 日立金属株式会社 金型用鋼材の製造方法、金型用鋼材、金型用プリハードン素材の製造方法、および金型用プリハードン素材
US8894908B2 (en) 2006-08-10 2014-11-25 Basf Se Process for production of a die for the production of surface-structured coating (finish)
WO2016010071A1 (ja) * 2014-07-16 2016-01-21 日立金属株式会社 マルエージング鋼の製造方法およびマルエージング鋼の消耗電極の製造方法
JP2017043817A (ja) * 2015-08-28 2017-03-02 大同特殊鋼株式会社 Ti含有マルエージング鋼の製造方法及びそのプリフォームの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105931A (zh) * 2011-12-06 2014-10-15 特灵国际有限公司 无油液体冷却器的滚动轴承
EP2980233B8 (en) * 2013-03-28 2019-07-17 Hitachi Metals, Ltd. Method for refining ti-based inclusions in maraging steel by vacuum arc remelting
RU2656899C1 (ru) * 2014-06-10 2018-06-07 Хитачи Металз, Лтд. Способ изготовления мартенситно-стареющей стали
FR3021977B1 (fr) 2014-06-10 2017-10-06 Snecma Procede pour fabriquer un lingot d'acier faiblement allie
CN106756583A (zh) * 2015-11-25 2017-05-31 中国科学院金属研究所 一种超高强高韧马氏体时效钢及其制备方法和应用
RU2686706C1 (ru) * 2018-06-01 2019-04-30 Общество с ограниченной отвественностью "Лаборатория специальной металлургии" (ООО "Ласмет") Мартенситностареющая высокопрочная сталь 01Н18К9М5Т
CN112285140B (zh) * 2020-10-20 2022-01-28 北京航空航天大学 一种单晶超高周疲劳内部裂纹早期扩展速率定量表征方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591923A (en) * 1978-10-04 1980-07-11 Vasipari Kutato Intezet Method and apparatus for reducing impurities content of steel and finely dividing texture thereof
US4294611A (en) 1978-10-04 1981-10-13 Vasipari Kutato Intezet Process and apparatus for reducing the inclusion content of steels and for refining their structure
JPH05186813A (ja) * 1991-02-21 1993-07-27 Nisshin Steel Co Ltd 高清浄度極低炭素鋼の製造方法
JPH11293407A (ja) 1998-04-14 1999-10-26 Hitachi Metals Ltd マルエージング鋼帯
JP2002161309A (ja) * 2000-11-22 2002-06-04 Nkk Corp 清浄性に優れた鋼の製造方法
JP2003183765A (ja) 2001-12-19 2003-07-03 Hitachi Metals Ltd 高清浄マルエージング鋼の製造方法
EP1331278A1 (en) 2000-09-14 2003-07-30 Nkk Corporation Refining agent and refining method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235373A (en) * 1961-11-20 1966-02-15 Republic Steel Corp Process for production of ultra clean steel
US3687187A (en) * 1971-03-16 1972-08-29 Allegheny Ludlum Ind Inc Consumable electrode melting
US3764297A (en) * 1971-08-18 1973-10-09 Airco Inc Method and apparatus for purifying metal
JPS5937738B2 (ja) 1979-04-16 1984-09-11 大同特殊鋼株式会社 時効硬化性快削プラスチック金型用鋼
US4871511A (en) * 1988-02-01 1989-10-03 Inco Alloys International, Inc. Maraging steel
JP2879930B2 (ja) 1990-04-19 1999-04-05 日立金属株式会社 耐発錆性の優れた快削性ステンレス系金型用鋼
US5133812A (en) * 1991-01-29 1992-07-28 Minnesota Mining And Manufacturing Company Corrosion resistant cutting tool and method of manufacture
CN1165871A (zh) * 1996-05-22 1997-11-26 哈尔滨工业大学 马氏体时效钢高尔夫球头
JP3351766B2 (ja) 1999-02-12 2002-12-03 日立金属株式会社 被削性に優れた高強度金型用鋼材
EP2308617B1 (en) * 1999-04-08 2018-02-21 Nippon Steel & Sumitomo Metal Corporation Method for processing molten steel
US6358299B1 (en) * 1999-11-19 2002-03-19 Walsin Lihwa Corp. VOD refining method for fast-cut stainless steel containing sulphur
JP2001214212A (ja) * 2000-01-28 2001-08-07 Daido Steel Co Ltd TiN系介在物を微細にする含Ti鋼の製造方法
DE60331111D1 (de) * 2002-11-19 2010-03-11 Hitachi Metals Ltd Verfahren zur Herstellung von martensitaushärtendem Stahl

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591923A (en) * 1978-10-04 1980-07-11 Vasipari Kutato Intezet Method and apparatus for reducing impurities content of steel and finely dividing texture thereof
US4294611A (en) 1978-10-04 1981-10-13 Vasipari Kutato Intezet Process and apparatus for reducing the inclusion content of steels and for refining their structure
JPH05186813A (ja) * 1991-02-21 1993-07-27 Nisshin Steel Co Ltd 高清浄度極低炭素鋼の製造方法
JPH11293407A (ja) 1998-04-14 1999-10-26 Hitachi Metals Ltd マルエージング鋼帯
EP1331278A1 (en) 2000-09-14 2003-07-30 Nkk Corporation Refining agent and refining method
JP2002161309A (ja) * 2000-11-22 2002-06-04 Nkk Corp 清浄性に優れた鋼の製造方法
JP2003183765A (ja) 2001-12-19 2003-07-03 Hitachi Metals Ltd 高清浄マルエージング鋼の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894908B2 (en) 2006-08-10 2014-11-25 Basf Se Process for production of a die for the production of surface-structured coating (finish)
WO2012132138A1 (ja) * 2011-03-31 2012-10-04 日立金属株式会社 溶鋼への亜鉛添加方法および亜鉛添加鋼の製造方法
WO2013146689A1 (ja) * 2012-03-28 2013-10-03 日立金属株式会社 金型用鋼材の製造方法、金型用鋼材、金型用プリハードン素材の製造方法、および金型用プリハードン素材
JPWO2013146689A1 (ja) * 2012-03-28 2015-12-14 日立金属株式会社 金型用鋼材の製造方法、金型用鋼材、金型用プリハードン素材の製造方法、および金型用プリハードン素材
WO2016010071A1 (ja) * 2014-07-16 2016-01-21 日立金属株式会社 マルエージング鋼の製造方法およびマルエージング鋼の消耗電極の製造方法
WO2016010073A1 (ja) * 2014-07-16 2016-01-21 日立金属株式会社 マルエージング鋼の製造方法およびマルエージング鋼の消耗電極の製造方法
WO2016010072A1 (ja) * 2014-07-16 2016-01-21 日立金属株式会社 マルエージング鋼の製造方法およびマルエージング鋼の消耗電極の製造方法
JP5967324B2 (ja) * 2014-07-16 2016-08-10 日立金属株式会社 マルエージング鋼の製造方法およびマルエージング鋼の消耗電極の製造方法
JP5967459B2 (ja) * 2014-07-16 2016-08-10 日立金属株式会社 マルエージング鋼の製造方法およびマルエージング鋼の消耗電極の製造方法
JP5967460B2 (ja) * 2014-07-16 2016-08-10 日立金属株式会社 マルエージング鋼の製造方法およびマルエージング鋼の消耗電極の製造方法
US10316377B2 (en) 2014-07-16 2019-06-11 Hitachi Metals, Ltd. Production method for maraging steel and production method for maraging steel consumable electrode
JP2017043817A (ja) * 2015-08-28 2017-03-02 大同特殊鋼株式会社 Ti含有マルエージング鋼の製造方法及びそのプリフォームの製造方法

Also Published As

Publication number Publication date
AU2004280023A1 (en) 2005-04-21
CA2541319A1 (en) 2005-04-21
ATE492657T1 (de) 2011-01-15
JPWO2005035798A1 (ja) 2006-12-21
CN1867685B (zh) 2010-07-21
JP4692282B2 (ja) 2011-06-01
CN1867685A (zh) 2006-11-22
KR100835982B1 (ko) 2008-06-09
US7597737B2 (en) 2009-10-06
AU2004280023B2 (en) 2009-01-22
EP1679384A1 (en) 2006-07-12
KR20060083228A (ko) 2006-07-20
EP1679384B1 (en) 2010-12-22
US20070039418A1 (en) 2007-02-22
CA2541319C (en) 2010-04-20
KR20070108574A (ko) 2007-11-12
DE602004030702D1 (de) 2011-02-03
KR20080009170A (ko) 2008-01-24
EP1679384A4 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
EP2816131A1 (en) Rolled rod steel for hot forging, hot-forged roughly shaped material, and common rail and process for producing same
EP2110454B1 (en) Forging steel, and forged products obtainable therefrom
CN109563578B (zh) 高频淬火用钢
JP4692282B2 (ja) 鋼塊の製造方法
EP1422301B1 (en) Maraging steel and method of producing the same
JP5368830B2 (ja) 機械構造用鋼およびその製造方法ならびに機械構造用部品
JP6760056B2 (ja) 液体水素用Ni鋼
EP2980233B1 (en) Method for refining ti-based inclusions in maraging steel by vacuum arc remelting
JP5967324B2 (ja) マルエージング鋼の製造方法およびマルエージング鋼の消耗電極の製造方法
JP4374529B2 (ja) マルエージング鋼及び薄帯
JP3682881B2 (ja) マルエージング鋼の製造方法及びマルエージング鋼
JP2005248187A (ja) マルエージング鋼の製造方法及びマルエージング鋼
JP2014047356A (ja) 棒鋼または線材
JP2004090022A (ja) マルエージング鋼の製造方法
JP4085374B2 (ja) マルエージング鋼の製造方法
JP2003221614A (ja) マルエージング鋼の製造方法
JP5098486B2 (ja) 浸炭部品の製造方法
JP5454620B2 (ja) 粒径粗大化防止特性に優れた浸炭部品用鋼
CN116057187A (zh) 奥氏体系不锈钢铸钢以及奥氏体系不锈钢铸钢的制造方法
JP2004238718A (ja) マルエージング鋼およびその製造方法
JP2008138292A (ja) マルエージング鋼

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029712.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514523

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2541319

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004730668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004280023

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067008821

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004730668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007039418

Country of ref document: US

Ref document number: 10574839

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10574839

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077025158

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020087001071

Country of ref document: KR