WO2005033008A1 - フラーレンシェルチューブとその製造方法 - Google Patents

フラーレンシェルチューブとその製造方法 Download PDF

Info

Publication number
WO2005033008A1
WO2005033008A1 PCT/JP2004/014878 JP2004014878W WO2005033008A1 WO 2005033008 A1 WO2005033008 A1 WO 2005033008A1 JP 2004014878 W JP2004014878 W JP 2004014878W WO 2005033008 A1 WO2005033008 A1 WO 2005033008A1
Authority
WO
WIPO (PCT)
Prior art keywords
fullerene
tube
shell tube
shell
fullerene shell
Prior art date
Application number
PCT/JP2004/014878
Other languages
English (en)
French (fr)
Inventor
Kun'ichi Miyazawa
Toshiyuki Mori
Chikashi Nishimura
Tadatomo Suga
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to US10/574,506 priority Critical patent/US20070009420A1/en
Priority to EP04792172A priority patent/EP1681264A4/en
Publication of WO2005033008A1 publication Critical patent/WO2005033008A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment

Definitions

  • the invention of this application relates to a fullerene tube and a method for producing the same, which can be used for a wide range of applications such as electric field emission devices, gas filters, hydrogen storage materials, and catalyst carriers in various industries such as energy, chemical industry, and electronics and semiconductors. It is. Background art
  • fullerene was experimentally proved by foreign researchers in 1985, but its structural model was already known in Japan in 1970. Thus, Japan has always led the world in fullerene research.
  • Exemplary fullerenes are known C 6Q, C 70, C 76 in addition to C 60, teeth 78, C 82, teeth 84, C 240, C 540, hula one 3 ⁇ 4_ ⁇ of C 720, etc. Len is known. Technological progress in the field of fullerenes is extremely fast, and new fullerene compounds are being introduced one after another.
  • Non-Patent Document 1 a method of producing a shell structure made of amorphous carbon of fullerene by subjecting a typical fullerene, C 6Q crystal, to vacuum heat treatment (Non-Patent Document 1), a liquid-liquid interface
  • Patent Document 1 and Non-Patent Documents 2 and 3 a method of producing fullerene whiskers (carbon fine wires) by a precipitation method.
  • a carbon nanotube is known as a tube having a carbon wall structure.
  • This carbon nanotube has a structure in which a graphite sheet is rolled into a cylindrical shape.
  • fullerene whiskers (FW) and fullerene nanowhiskers (F NW) which have a three-dimensional periodic structure in which the symmetry of fullerene needle crystals and the like are defined by a space group.
  • FW fullerene whiskers
  • F NW fullerene nanowhiskers
  • fullerene crystals are produced by heat treatment of fullerene crystals.
  • tube-shaped fullerene shells hereinafter referred to as fullerene shell tubes
  • other methods for obtaining the fullerene shells are known. There is no known method.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2000-1600
  • Non-Patent Document 1 H. Sakuma, M. Tachibana, ⁇ Sugiura, K. Kojima, S. I to,
  • Non-Patent Document 2 K. Miyazawa, ⁇ .Kuwasaki, A. Ob ay as hi and
  • Non-Patent Document 3 Kun 'ichi Miyazawa "C70 Nanowhiskers
  • Fullerene shell tubes are expected to be used for applications such as hydrogen storage materials, catalyst carriers, new semiconductors, field emission materials, and fuel cell electrode materials in terms of structure, but as mentioned above, fullerene shell tubes are manufactured. In fact, it is not known how to perform this process or the various possibilities of the fullerene shell tube structure.
  • an object of the invention of the present application is to provide a fullerencel tube expected as a new functional material and a method for manufacturing the same. Disclosure of the invention
  • the invention of the present application firstly provides a method for producing a fullerene shell tube in which a fullerene whisker or a fiber is heat-treated in a temperature range of 500 to 100,000. I do.
  • fullerenes are C 6e fullerenes, higher order fullerenes of C 7D or higher, It is intended to provide a method for producing the above fullerene shell tube which is a metal-encapsulated fullerene or a fullerene derivative.
  • the invention of this application provides a fullerene tube having a diameter of 100 nm to 100 / xm and a length of 100 nm or more.
  • the present invention provides the fullerene tube described above, wherein the tube wall is made of crystalline carbon or amorphous carbon.
  • Figure 1 is a transmission electron microscope (TEM) photograph of a fullerene shell tube prepared by heating a fullerene nanowhisker at 600 in vacuum for 30 minutes.
  • TEM transmission electron microscope
  • Figure 2 is a transmission electron microscope (TEM) photograph of a fullerene shell tube produced by heating a fullerene nanowhisker in a vacuum at 700 for 30 minutes.
  • TEM transmission electron microscope
  • Figure 3 is a transmission electron microscope (TEM) photograph of a fullerene shell tube produced by heating a fullerene nanowhisker in vacuum at 60 for 30 minutes.
  • TEM transmission electron microscope
  • Fig. 4 is a transmission electron microscope (TEM) photograph of a fullerene shell tube having a filling structure formed by heating a fullerene nanowhisker in vacuum at 600 for 30 minutes.
  • TEM transmission electron microscope
  • fullerene whiskers are subjected to heat treatment in a temperature range of 500 to 100000 by heating the fullerene whiskers.
  • fullerenes are proposed as the above-mentioned Patent Document 1 and the like by the inventors of the present application.
  • the solution to the first than the solubility is low solvent, yet not immediately mixed pentanol together - le, butyl alcohol Lumpur, I isopropyl alcohol, n- propyl alcohol, methanol, ethanol, etc.
  • the alcohol-based second solvent is added, and while maintaining the temperature near room temperature (at 3 to 30), whiskers, which are needle-like crystals of fullerene at the liquid-liquid interface of the first solvent and the second solvent, are added. It can be prepared by a so-called liquid-liquid interfacial deposition method for precipitating fibers and the like.
  • Heating at a temperature of 500 * C to 100.000 is performed in a vacuum or in a gas atmosphere.
  • the degree of vacuum should be 1 Pa or less. It is considered that the oxygen partial pressure should be less than 10-a.
  • An inert gas such as argon may be present.
  • liquid one-liquid interfacial precipitation method first, gently adding isopropyl alcohol 3 O m 1 toluene 3 0 m 1 with more purity 99.5% fullerene (C 6 0) saturated. This solution is kept at room temperature (15 to 21) for about 50 hours to produce fullerene nanowhiskers. Then, the prepared fullerene nanowhiskers are heat-treated in vacuum at 60 (T) for about 30 minutes to produce fullerene shell tubes with amorphous carbon walls. Tube transmission electron microscope (TE M).
  • the fullerene shell tube made from fullerene nanowhiskers has a diameter of nanometer order, and reflects the crystal habit plane of the original fullerene nanowhiskers as indicated by the arrow. As a result, it is confirmed that some have a polygonal wall structure.
  • the habit here is a characteristic of crystal size and shape.
  • Figure 2 is a transmission electron microscope (TEM) photograph of the fullerene shell tube wall produced by heating the fullerene nanowhiskers at 700 in vacuum for 30 minutes.
  • the transmission electron micrograph confirms that the wall thickness of the fullerene shell tube is about 30 nm of amorphous carbon.
  • Fig. 3 is a transmission electron microscope (TEM) photograph of the fullerene shell tube wall.
  • fullerene tube may be closed at the end as shown in FIG.
  • the inside of the fullerene tube has a filling structure as shown in Fig. 4. It is presumed that amorphous carbon was filled in the middle of the shell tube structure.
  • the functional material is used as a functional material for a wide range of applications, such as energy, catalysts, field emission devices in the semiconductor industry, gas filters, hydrogen storages, and catalyst carriers. And a useful fullerene shell tube can be obtained.
  • a fullerene shell tube having a specific size Is provided.
  • the same effect as described above is obtained, and the form of the carbon wall forming the fullerene shell tube is specified.
  • the same effect as described above is obtained, and the structure of the end of the fullerene shell tube wall is specified.
  • the aspect inside the fullerene shell tube is specified.
  • the fullerene tube obtained by the invention of this application is used as a new functional material for a wide range of applications such as electric field emission devices, gas filters, hydrogen absorbers, and catalyst carriers in various industries such as energy, chemical industry, electronics and semiconductors. Will be useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)

Abstract

液-液界面析出法によって得られたフラーレンのウィスカーまたはファイバーを真空中またはガス雰囲気中で500~1000℃の温度範囲で熱処理し、エネルギー、触媒、半導体産業における電界放射デバイス、ガスフィルター水素吸蔵体、触媒担体など幅広い用途に使用可能なフラーレンシェルチューブとする。

Description

明 細 書 フラーレンシエルチューブとその製造方法 技術分野
この出願の発明は、 エネルギー、 化学工業、 電子 ·半導体等の各種産 業における電界放射デバイス、 ガスフィルター、 水素吸蔵体、 触媒担体 など幅広い用途に使用可能なフラーレンシエルチューブとその製造方 法に関するものである。 背景技術
フラーレンの存在は 1985 年に外国の研究者によって実験的に証明さ れたが、 その構造モデルは、 すでに、 1970年に日本において知られてい た。 このように、 これまでフラーレンの研究では日本は常に世界をリー ドしてきた。 代表的なフラーレンとしては C 6Qが知られているが、 C 60 以外にも C 70、 C 76、 し 78、 C 82、 し 84、 C 240、 C 540、 C 720等の ¾々のフラ 一レンが知られている。 このフラーレンの分野における技術の進歩は極 めて速く、 新しいフラーレン系の化合物が次々と紹介されている。 最近 では、 代表的なフラーレンである C 6Q結晶を真空熱処理することによつ てフラーレンの非晶質炭素からなる殻(シェル)構造を生成する方法(非 特許文献 1 ) や、 液一液界面析出法によってフラーレンウイスカー (炭 素細線) を作製する方法等もこの出願の発明者らによって提案されてい る (たとえば、 特許文献 1および非特許文献 2 , 3 )。
一方、 炭素の壁構造を持つチューブとしては、 カーボンナノチューブ が知られている。
このカーボンナノチューブはグラフアイ トシ一トを円筒状に丸めた 構造のものである。 このようなカーボンナノチューブの構造とは相違し て、 フラーレン針状結晶等の対称性が空間群によって規定される 3次元 的な周期構造を有するフラーレンウイスカー (FW) やフラーレンナノ ゥイスカー (F NW) から生成されるフラーレンシエルチューブの構造 が想定される。 しかしながら、 これまで、 フラーレンの結晶を熱処理す ることによってフラーレンシエルが生成されることは知られているが、 チューブ状のフラーレンシエル (以後、 フラーレンシエルチューブと称 す) やこのものを得るための方法はこれまで全く知られていない。
特許文献 1 : 特開 2 0 0 3— 1 6 0 0号
非特許文献 1: H. Sakuma, M. Tachibana, Η· Sugiura, K. Koj ima, S. I to,
T. Sekiguchi, Y. Achiba, J. Mater. Res., 12 (1997) 154 5.
非特許文献 2 : K. Miyazawa, Υ. Kuwasaki, A. Ob ay as hi and
M. Kuwabara, 〃 C 60 nanowhiskers formed by the l iduid - l iduid iiiterfac ial precipi tat ion method" , J. Mater. Res. , 17 [1] (2002) 83.
非特許文献 3: Kun ' ichi Miyazawa " C70 Nanowhiskers
Fabricated by Forming Liguid /Liquid
Interfaces in the Sys tems of Toluene Solut ion of C70 and Isopropyl Alcohol" , J. Am. Ceram. Soc. , 85 [5] (2002) 1297.
フラーレンシエルチューブは構造的に見ても水素吸蔵体、 触媒担体、 新規半導体、 電界放射材料、 燃料電池電極材料などの用途に使用できる ものとして期待されるが、 前記のとおり、 フラーレンシエルチューブを 製造するための方法やこのフラーレンシエルチューブ構造についての 様々な可能性については知られていないのが実情である。
そこで、 この出願の発明は新しい機能性材料として期待されるフラー レンシエルチューブとその製造方法を提供することを課題としている。 発明の開示
この出願の発明は、 上記の課題を解決するものとして、 第 1には、 フ ラーレンのゥイスカーまたはフアイパーを 5 0 0〜 1 0 0 0での温度 範囲で熱処理するフラーレンシエルチューブの製造方法を提供する。 第 2には、フラーレンが C 6eフラーレン、 C 7D以上の高次フラーレン、 金属内包フラーレン、 またはフラーレン誘導体である上記のフラーレン シェルチューブの製造方法を提供する。
また、 この出願の発明は、 第 3には、 直径が 1 0 n m〜 1 0 0 /x mで 長さが 1 0 0 n m以上であるフラーレンシエルチューブを提供する。 第 4には、 チューブ壁が結晶質炭素または非結晶質炭素である上記の フラーレンシエルチューブを提供する。
第 5には、 チューブの端部が閉鎖または開口している上記のフラーレ ンシェルチューブを提供する。
第 6には、 内部が中空であるか、 または内部が充填されている上記の フラーレンシエルチューブを提供する。 図面の簡単な説明
図 1は、 フラーレンナノウイスカ一を 6 0 0でで、 3 0分間、 真空中 で加熱することによって作製したフラーレンシエルチューブの透過電 子顕微鏡 (T E M) 写真である。
図 2は、 フラーレンナノウイスカーを 7 0 0 で、 3 0分間、 真空中 で加熱することによって作製したフラーレンシエルチューブの透過電 子顕微鏡 (T E M) 写真である。
図 3は、 フラーレンナノウイスカーを 6 0 で、 3 0分間、 真空中 で加熱することによって作製したフラーレンシエルチューブの透過電 子顕微鏡 (T E M) 写真である。
図 4は、 フラーレンナノウイスカーを 6 0 0でで、 3 0分間、 真空中 で加熱することによって作製した内部に充填組織を持つフラーレンシ エルチューブの透過電子顕微鏡 (T E M) 写真である。 発明を実施するための最良の形態
この出願の発明は上記のとおりの特徵をもつものであるが、 以下にそ の実施の形態について説明する。
この出願の発明では、 各種のフラーレンのゥイスカーゃフアイパーを 5 0 0〜 1 0 0 0での温度範囲で熱処理することによりフラーレンシ エルチューブを製造するが、 この場合のフラーレンとは、 代表的な C 60 のゥイスカーやファイバーだけでなく、 C 7D以上の高次フラーレン、 金 属内包フラーレンさらにはこれまでに知られているもの等の各種のフ ラーレン誘導体のゥイスカーやファイバーを含むものである。
熱処理の対象とするこれら各種フラーレンのゥイスカーやファイバ 一については、 前記の特許文献 1等としてこの出願の発明者らが提案し ているような、フラーレンをトルエン、キシレン、ベンゼン、へキサン、 ペンタン、 C S 2等の第 1溶媒に溶解し、 この溶液に第 1溶媒より溶解 度が低く、 しかも互いに直ちに混合しないペンタノ—ル、 ブチルアルコ ール、ィソプロピルアルコール、 n—プロピルアルコール、メタノール、 エタノール等のアルコール系の第 2溶媒を加え、 これを常温近辺の温度 ( 3 〜 3 0で) に保ちながら第 1溶媒と第 2溶媒の液一液界面にてフ ラーレンの針状結晶であるウイスカーやファイバ一等を析出させる、 い わゆる液一液界面析出法により調製することができる。
5 0 0 *C〜 1 0 0 0での温度での加熱は、 真空中またはガス雰囲気下 において行うが、 この場合の真空度は 1 P a以下の圧力とし、 また、 ガ ス雰囲気下としては 1 0— a以下の酸素分圧とすること等が考慮され る。 アルゴン等の不活性ガスが存在してもよい。
そこで以下に実施例を示し、 さらに詳しく説明する。 もちろん、 以下 の例によって発明が限定されることはない。 実施例
<実施例 1 >
液一液界面析出法に従って、 まず、 より純度 99. 5 %のフラーレン (C 60) を飽和させたトルエン 3 0 m 1にイソプロピルアルコール 3 O m 1 を静かに添加する。 この溶液を室温 (1 5 〜 2 1 ) で約 5 0時間保 持してフラーレンナノウイスカーを作製する。 次いで、 作製されたフラ 一レンナノウイスカーを真空中で 60(T に保持して 30 分間程度熱処理 すると非晶質炭素の壁を持つフラーレンシエルチューブが作製される。 図 1は作製されたフラーレンシエルチューブの透過電子顕微鏡 (T E M) の写真である。 写真に示されているようにフラーレンナノウイスカ 一から作製したフラーレンシエルチューブはナノメ一トルオーダーの 直径を持ち、 かつ、 矢印で示されているように、 元々のフラーレンナノ ゥイスカーの晶癖面を反映して多角形の壁構造を持つものが存在する ことが確認される。 なお、 ここでいぅ晶癖とは結晶の大きさと形状の特 徵のことである。
図 2はフラーレンナノウイスカーを 7 0 0でで、 3 0分間、 真空中で 加熱することによって作製したフラーレンシエルチューブ壁の透過電 子顕微鏡 (T E M) の写真である。 透過電子顕微鏡写真からフラーレン シェルチューブ壁の厚みは約 3 0 n mの非晶質炭素であることが確認 される。
また、図 3はフラーレンシエルチューブ壁の透過電子顕微鏡(T E M) の写真である。
フラーレンシエルチューブは図 3に示されているように端は閉じてい る場合があることも観察される。 また、 フラーレンシエルチューブの内 部が図 4に示されているように充填組織を持つものも観察される。 シェ ルチューブ構造ができる途中として非晶質炭素が充填された状態であ ると推察される。
もちろん、 この出願の発明は以上の実施形態および実施例に限定され るものではなく、 詳細については様々な態様が可能である。 産業上の利用可能性
この出願の第 1の発明のフラーレンシエルチューブの製造方法によ れば、 エネルギー、 触媒、 半導体産業における電界放射デバイス、 ガス フィルター、 水素吸蔵体、 触媒担体など広範囲な用途での機能性材料と して有用なフラーレンシエルチューブを得ることができる。
第 2の発明のフラーレンシエルチューブの製造方法によれば、 上記と 同様な効果が得られ、 さらに好適に使用できるフラーレンが選定できる, 第 3の発明によれば、 特有の大きさのフラーレンシエルチューブが提 供される。 第 4の発明によれば、 上記と同様な効果が得られ、 さらにフラーレン シェルチューブを構成する炭素の壁の形態が特定化されることになる。 第 5の発明によれば、 上記と同様な効果が得られ、 さらにフラーレン シェルチューブ壁の端部の構造が特定化されることになる。
第 6の発明によれば、 フラーレンシエルチューブ内部の態様が特定化 されることになる。
この出願の発明で得られるフラーレンシエルチューブは、 新しい機能 性材料として、 エネルギー、 化学工業、 電子 ·半導体等の各種産業にお ける電界放射デバイス、 ガスフィルター、 水素吸蔵体、 触媒担体など幅 広い用途に有用となる。

Claims

請求の範囲
1. フラーレンのゥイスカーまたはファイバーを 500〜1000 の温度範囲で熱処理することを特徴とするフラーレンシエルチューブ の製造方法。
2. フラーレンが C6Dフラーレン、 C7Q以上の高次フラーレン、 金属 内包フラーレン、 またはフラーレン誘導体であることを特徵とする請求 項 1のフラーレンシエルチューブの製造方法。
3. 直径が 10 nm〜 100 jLimの範囲で長さが 100 nm以上であ ることを特徵とするフラーレンシエルチューブ。
4. チューブ壁が結晶質炭素または非結晶質炭素であることを特徴と する請求項 3のフラーレンシエルチューブ。
5. チューブの端部が閉鎖または開口していることを特徴とする請求 項 3または 4のフラーレンシエルチューブ。
6. 内部が中空であるか、 または内部が充填されていることを特徴と する請求項 3ないし 5のいずれかのフラーレンシエルチューブ。 '
PCT/JP2004/014878 2003-10-03 2004-10-01 フラーレンシェルチューブとその製造方法 WO2005033008A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/574,506 US20070009420A1 (en) 2003-10-03 2004-10-01 Fullerene shell tube and process for producing the same
EP04792172A EP1681264A4 (en) 2003-10-03 2004-10-01 FULLERED MANTEL TUBE AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003346117A JP3845731B2 (ja) 2003-10-03 2003-10-03 フラーレンシェルチューブとその製造方法
JP2003-346117 2003-10-03

Publications (1)

Publication Number Publication Date
WO2005033008A1 true WO2005033008A1 (ja) 2005-04-14

Family

ID=34419493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014878 WO2005033008A1 (ja) 2003-10-03 2004-10-01 フラーレンシェルチューブとその製造方法

Country Status (4)

Country Link
US (1) US20070009420A1 (ja)
EP (1) EP1681264A4 (ja)
JP (1) JP3845731B2 (ja)
WO (1) WO2005033008A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063433A1 (ja) * 2003-01-10 2004-07-29 Nippon Sheet Glass Company, Limited フラーレン結晶およびその製造方法
JP5093436B2 (ja) * 2006-02-17 2012-12-12 独立行政法人物質・材料研究機構 物質担持フラーレンチューブとその製造方法
CN101784338B (zh) * 2007-07-06 2013-10-30 M技术株式会社 携载金属的碳的制造方法
JP5205672B2 (ja) * 2007-08-29 2013-06-05 独立行政法人物質・材料研究機構 フラーレン細線付き基盤とその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001600A (ja) * 2001-04-18 2003-01-08 Univ Tokyo 炭素細線及び炭素細線の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001600A (ja) * 2001-04-18 2003-01-08 Univ Tokyo 炭素細線及び炭素細線の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MASAHISA FUJINO ET AL.: "In situ observation of the behavior of C60 whiskers under heating by TEM", vol. 25, 23 July 2003 (2003-07-23), pages 42, XP002984461 *
MIYAZAWA K. ET AL.: "C60 nanowhiskers formed by the liquid-liquid interfacial precipitation method", J. MATTER. RES., vol. 17, no. 1, 2002, pages 83 - 88, XP002980507 *
MIYAZAWA K. ET AL.: "Fabrication and properties of fullerene nanowhiskers and nanofibers", TRANS. MATER. RES. SOC. JPN., vol. 29, no. 5, August 2004 (2004-08-01), pages 1965 - 1968, XP002984462 *
See also references of EP1681264A4 *

Also Published As

Publication number Publication date
EP1681264A1 (en) 2006-07-19
EP1681264A4 (en) 2009-09-09
JP2005112643A (ja) 2005-04-28
JP3845731B2 (ja) 2006-11-15
US20070009420A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
KR100912807B1 (ko) 이산화티탄이 균일하게 코팅된 탄소나노튜브의 제조 방법
US8119093B2 (en) C70fullerene tube and process for producing the same
JP2005521563A (ja) ナノ物体を集める方法
JP2007077016A (ja) 水素貯蔵材及びその製造方法、水素貯蔵方法
Cao et al. An effective way to lower catalyst content in well-aligned carbon nanotube films
JP2006516944A (ja) ナノ構造の形成
US10703632B2 (en) Method of purifying carbon nanotubes
JP2006176362A (ja) カーボンナノチューブ薄膜の製造方法
JP3913442B2 (ja) カーボンナノチューブ及びその作製方法、電子放出源
JP2002097010A (ja) ハイブリッド単層カーボンナノチューブの作製方法
JP4125638B2 (ja) V族遷移金属ダイカルコゲナイド結晶からなるナノファイバー又はナノチューブ並びにその製造方法
WO2005033008A1 (ja) フラーレンシェルチューブとその製造方法
Yin et al. Postgrowth processing of carbon nanotube arrays-enabling new functionalities and applications
JP2008195550A (ja) タングステン酸化物ファイバーおよびその製造方法
JP2007521664A (ja) 制御された直径を有するホウ素ナノ構造体の成長
JP4595110B2 (ja) フラーレン分子から成る中空構造を持つ針状結晶及びその製造方法
KR100827951B1 (ko) 니켈 포일에 직접 탄소나노튜브를 합성하는 방법
US20040076576A1 (en) Room temperature synthesis of multiwalled carbon nanostructures
JP4904033B2 (ja) フラーレンチューブの処理方法
Ismael Mechanical properties of nanotubes
JP2011168429A (ja) 金属内包ナノカーボン材料とその製造方法
JP2006511422A (ja) ナノ構造物
WO2007066780A1 (ja) 大径化された単層カーボンナノチューブを製造する方法
JP4654363B2 (ja) 黒鉛化細線の製造方法
JP4784109B2 (ja) 燃料電池用電極材料とその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004792172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007009420

Country of ref document: US

Ref document number: 10574506

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004792172

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10574506

Country of ref document: US