WO2005029569A1 - シリコンウエーハの再生方法及び再生ウエーハ - Google Patents

シリコンウエーハの再生方法及び再生ウエーハ Download PDF

Info

Publication number
WO2005029569A1
WO2005029569A1 PCT/JP2004/012081 JP2004012081W WO2005029569A1 WO 2005029569 A1 WO2005029569 A1 WO 2005029569A1 JP 2004012081 W JP2004012081 W JP 2004012081W WO 2005029569 A1 WO2005029569 A1 WO 2005029569A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
wafer
thin film
regenerating
silicon
Prior art date
Application number
PCT/JP2004/012081
Other languages
English (en)
French (fr)
Inventor
Takanobu Uchida
Kazuhide Iijima
Tetsuo Yamazaki
Shinichi Tomaru
Fumiaki Maruyama
Original Assignee
Mimasu Semiconductor Industry Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mimasu Semiconductor Industry Co. Ltd. filed Critical Mimasu Semiconductor Industry Co. Ltd.
Priority to KR1020067005177A priority Critical patent/KR100749147B1/ko
Priority to EP04772042A priority patent/EP1667219A4/en
Priority to US10/571,781 priority patent/US20070007245A1/en
Publication of WO2005029569A1 publication Critical patent/WO2005029569A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02079Cleaning for reclaiming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02032Preparing bulk and homogeneous wafers by reclaiming or re-processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Definitions

  • the present invention relates to a method for regenerating a silicon wafer used in a semiconductor device manufacturing process or the like to a state where it can be used again.
  • a metal such as copper is used as a metal thin film for wiring.
  • the present invention relates to a method for regenerating silicon wafers.
  • Silicon wafers used in semiconductor device manufacturing processes and the like are generally made of silicon or the like.
  • a metal film for wiring such as Al, W, and Ti are deposited.
  • various thin films deposited on the wafer by immersing the silicon wafer in a chemical solution such as hydrofluoric acid or sulfuric acid are conventionally used.
  • a regenerating method has been used in which the material is removed by dissolving and then at least one of the front and back surfaces of the wafer is mirror-polished.
  • metal ions dissolved at high concentrations in the chemical solution will adhere to the wafers again during the immersion of the wafer, causing recontamination. There was sex.
  • a method of regenerating a silicon single crystal wafer having a copper film adhered thereto is disclosed. Dissolving and removing the copper film with at least a sulfuric acid / hydrogen peroxide solution.
  • the present invention discloses a method of regenerating a silicon single crystal silicon wafer having a copper film thereon, which comprises a step of mirror polishing the surface of the wafer from which the copper film has been removed. By using such a method, the copper film can be easily and rapidly dissolved and removed, so that the silicon wafer to which the copper film has adhered can be regenerated.
  • an object of the present invention is to remove a thin film, for example, a metal thin film, formed on a silicon wafer and to remove the inside of the wafer. It is an object of the present invention to provide a method of regenerating a silicon wafer, which can reduce impurities diffused in the silicon wafer and can stably obtain a silicon wafer having almost no metal contamination.
  • a method for regenerating a silicon wafer having a thin film formed on its surface wherein at least the thin film formed on the silicon wafer is regenerated.
  • a method for regenerating a silicon wafer comprising: performing a gettering site formation process that causes a damage load to the surface of the silicon wafer; and performing a heat treatment on the silicon wafer to reduce impurities inside the silicon wafer.
  • the silicon wafer is regenerated.
  • the thin film formed on the wafer such as a metal thin film, can be easily removed, and impurities diffused into the inside of the wafer can be reliably reduced by using the gettering effect. Therefore, it is possible to easily regenerate contaminated silicon wafers, such as those used in the manufacturing process of semiconductor devices, where metal impurities are diffused inside the wafers, and there is almost no metal contamination. Clean silicon wafers can be obtained stably.
  • the gettering site forming process is performed by sandblasting or surface grinding.
  • gettering site formation process is performed by sand blasting or surface grinding in this way, the depth of the damage load on the silicon wafer can be easily controlled, and the gettering site can be easily and effectively formed on the wafer. can do.
  • the gettering site forming process is also performed at the same time in the thin film removing process.
  • the gettering site forming process is also performed at the same time. Can be.
  • the gettering site forming process can be performed simultaneously in the thin film removing process for removing the thin film formed on the silicon wafer as described above.
  • the gettering site forming process can be easily performed at the same time in the thin film removing step, the gettering site can be formed very efficiently.
  • the thin film removal process is performed by sand blasting, regardless of the material of the thin film formed on the wafer, the thin film can be removed by a single process without changing the abrasive, and the getter is located within the surface of the wafer where the thin film has been removed.
  • a ring site can be formed.
  • the sand blast is performed using a dry blast apparatus.
  • sand blasting can be performed without wetting the silicon wafer, so that abrasives and polishing debris do not remain as contaminants on the sand blasted wafer. Les ,. Therefore, re-contamination of the silicon wafer can be reliably prevented.Since the sand blasting process can be omitted, the cleaning process of the silicon wafer can be omitted to simplify the process. Production effect The rate can be greatly improved.
  • the heat treatment is performed at a temperature of 400 ° C. or more and 700 ° C. or less.
  • the cooling rate is set at 4 ° C./min. It is preferable to set the above.
  • the silicon wafer is subjected to an etching process.
  • the impurities deposited on the gettering sites can be dissolved and removed from the wafer.
  • the risk of reverse contamination in the process can be reduced, and a very high quality silicon wafer with almost no metal contamination can be stably obtained.
  • the silicon wafer to be regenerated may have a metal film formed thereon.
  • the silicon wafer to be regenerated is contaminated with metal impurities inside the wafer. It can be assumed that it is.
  • the method for regenerating a silicon wafer of the present invention is very suitable for regenerating a metal film currently used as a wiring material of a semiconductor device, for example, a silicon wafer on which a copper thin film is formed.
  • a metal film currently used as a wiring material of a semiconductor device for example, a silicon wafer on which a copper thin film is formed.
  • Even if the inside of the wafer is contaminated with metallic impurities such as copper, it is possible to obtain an extremely clean silicon wafer with almost no metal contamination by regenerating using the regenerating method of the present invention.
  • the silicon wafer before regenerating may have a copper film formed thereon, or may further have copper contamination inside the wafer. Even if it is used, it will be a silicon wafer with almost no copper contamination, especially an extremely clean silicon wafer whose surface copper concentration is less than 1 ⁇ OX10 1Q atoms / cm 2 . Therefore, the recycled wafer of the present invention is a very high quality silicon wafer which does not cause a problem such as a decrease in yield even when used in a semiconductor device manufacturing process or the like.
  • a method for regenerating a silicon wafer includes a mirror polishing step of mirror polishing at least one surface of the silicon wafer, and performing the mirror polishing step. Before performing a gettering site forming process of applying a damage load to at least one surface of the silicon wafer, the silicon wafer is subjected to a heat treatment to reduce impurities inside the silicon wafer. A method for regenerating silicon wafers is provided.
  • the regenerating method of the present invention it is possible to easily remove a thin film such as a metal thin film formed on the surface of an evaporator, and to surely reduce impurities diffused in the evaporator. Therefore, for example, even if the silicon wafer is used in the manufacturing process of semiconductor devices and has a metal thin film, and even if the silicon wafer has impurities diffused into the inside of the wafer, most of the metal contamination will occur. It can be regenerated stably to an extremely clean silicon wafer.
  • FIG. 1 is a flowchart showing one example of a method for regenerating a silicon wafer according to the present invention.
  • FIG. 2 is a schematic configuration diagram schematically showing a configuration of a blast device.
  • FIG. 3 is a schematic configuration diagram schematically showing a configuration of a surface grinding device.
  • FIG. 4 is a graph showing the results of measuring the copper concentration of the silicon wafer after the etching treatment and the copper concentration of the silicon wafer after the mirror polishing step in the example.
  • the present inventors have found that a silicon thin film formed of a metal thin film such as a copper film used in a manufacturing process of a semiconductor device or the like, particularly a silicon thin film which has been difficult to reproduce in the past.
  • a metal thin film such as a copper film used in a manufacturing process of a semiconductor device or the like
  • a silicon thin film which has been difficult to reproduce in the past.
  • Dedicated experiments and investigations were conducted on the method of regenerating silicon-a wafer and the like in which impurities are diffused.
  • the present inventors have found that it is possible to stably regenerate extremely clean silicon wafers with almost no metal contamination, and completed the present invention.
  • the method for regenerating a silicon wafer of the present invention is a method for regenerating a silicon wafer having a thin film formed on its surface, and at least removes the thin film formed on the silicon wafer.
  • the silicon wafer is subjected to a heat treatment to reduce impurities inside the silicon wafer.
  • FIG. 1 is a flowchart showing an example of the playback method of the present invention.
  • the silicon wafer to be regenerated in the present invention is, for example, a silicon wafer used in a semiconductor device manufacturing process or the like.
  • Insulating film, metal film for wiring such as Cu, Al, W, Ti, Au, etc., and copper diffusion nor film such as TaN for suppressing the diffusion of copper into silicon are deposited.
  • metal film for wiring such as Cu, Al, W, Ti, Au, etc.
  • copper diffusion nor film such as TaN for suppressing the diffusion of copper into silicon
  • the film 3 and the silicon 4 is diffused into the wafer and the silicon wafer 1 is regenerated will be described as an example.
  • the copper film 3 and the insulating film 2 formed on the silicon wafer 1 are removed in the thin film removing step (step A in FIG. 1).
  • a method for removing the copper film 3 and the insulating film 2 is not particularly limited.
  • the wafer 1 on which the copper film 3 and the insulating film 2 are formed is etched with a mixed solution of sulfuric acid and hydrogen peroxide.
  • the copper film 3 can be dissolved and removed, and then the insulating film 2 can be removed by etching using hydrofluoric acid or a mixed solution of hydrofluoric acid and hydrogen peroxide.
  • the copper film 3 and the insulating film 2 in this manner, it is possible to expose the surface of the silicon wafer 1.
  • a gettering site forming process of forming a gettering site on the silicon wafer 8 by applying a damage load to at least one surface of the silicon wafer 1 is performed (step B in FIG. 1).
  • the gettering site forming process can be performed by sandblasting the silicon wafer using, for example, a blasting device 11 as shown in FIG.
  • the blast device 11 holds a silicon wafer 12 on a wafer holder 13 and uses a high-pressure gas or fluid (water) from a spray nozzle 14 connected to an abrasive supply tank (not shown) to polish the abrasive.
  • the blast treatment is performed by injecting 15 to apply a damage load to the surface of the silicon wafer 12.
  • the abrasive 15 for example, alumina particles (A1 ⁇ ) or silicon carbide particles (SiC) having an average particle size of about 517 / im are used.
  • the strain layer 5 serving as a gettering site can be formed by applying a damage load to the surface of the silicon wafer 1.
  • the sandplast is performed by using a dry blasting device. If sand blasting is performed using a dry blasting apparatus in this way, sand blasting can be performed without wetting the silicon wafer, so that abrasives and polishing debris do not remain as contaminants on the wafer after sand blasting. ,. Therefore, recontamination of the silicon A8 can be reliably prevented, and for example, a process such as a cleaning treatment of the silicon A8 after the sandblasting process. Can be omitted, so that the process can be simplified.
  • the gettering site forming process can be performed, for example, by subjecting a silicon wafer to surface grinding using a surface grinding device 21 as shown in FIG.
  • the surface grinding device 21 rotates the grindstone 25 adhered to the grinding machine 24 at a high speed while holding and rotating the silicon wafer 22 on the wafer holding table 23, thereby obtaining the surface of the silicon wafer 22.
  • This device can grind the surface and introduce a damage load on the ground surface of the wafer.
  • the grindstone 25 for example, diamond particles having a particle diameter of about 46 to 16 ⁇ m or those obtained by solidifying diamond particles having a particle diameter of about 26 am with an adhesive can be used.
  • the gettering site forming process sand blasting is performed on the exposed surface of the silicon wafer 8 using the blasting device 11, or surface grinding is performed using the surface grinding device 21.
  • the depth of the damage load on the silicon wafer can be easily controlled, and a gettering site (strained layer) for trapping impurities can be easily and effectively formed on the surface of the wafer.
  • the obtained silicon wafer is subjected to a heat treatment (step C in FIG. 1).
  • the heat treatment By performing the heat treatment on the silicon wafer 1 in this manner, the copper 4 diffused as an impurity inside the silicon wafer can be precipitated at the gettering site 5 in a short time, and the copper present inside the wafer is reduced. The ability to do S.
  • the heat treatment conditions such as the heat treatment temperature, time, and atmosphere are not particularly limited.
  • the heat treatment temperature is too low during the heat treatment, impurities inside the wafer are precipitated on the gettering site. It takes time, and on the other hand, it is conceivable that even if the heat treatment temperature is too high, the impurities are not effectively deposited. Therefore, when heat treatment is performed on the silicon wafer, the heat treatment is preferably performed at a temperature of 400 ° C. or more and 700 ° C. or less.
  • the cooling rate in the cooling step of the heat treatment be 4 ° CZ or more.
  • the cooling rate By setting the cooling rate to 4 ° C / min or more, the effect of precipitating the impurities on the gettering site can be further enhanced and the capture of the impurities can be promoted. Can be reduced.
  • Step D in FIG. 1 by performing an etching process on the silicon wafer subjected to the heat treatment (Step D in FIG. 1), the strained layer 5 formed on the surface of the silicon wafer 1 is removed, and the silicon wafer is captured by a gettering site. Dissolved copper is removed together with silicon.
  • the etching solution used for the etching process is not particularly limited as long as it can etch silicon wafers.
  • an alkali etching solution such as K ⁇ H or Na ⁇ H, or HF and HNO
  • An acid etching solution such as a mixture of the above can be used.
  • etching is not necessarily performed, but if the etching is performed before mirror polishing as described above, the risk of reverse contamination and re-contamination in the subsequent post-regeneration process (eg, polishing) is ensured. Can be reduced.
  • a mirror polishing step (step E in FIG. 1), at least one surface of the silicon wafer 1 is mirror-polished, thereby completing a clean reclaimed wafer having an extremely low impurity concentration and almost no metal contamination. be able to.
  • the mirror polishing may be performed on at least one surface of the wafer. For example, when the above-described etching treatment is not performed, impurities trapped in the gettering site can be removed by polishing.
  • the mirror polishing step can be performed by a generally used method.
  • step B to step D in FIG. 1 in order to examine the effect of removing impurities diffused into the wafer when the etching process (step B to step D in FIG. 1) is performed from the gettering forming process of the present invention.
  • the following experiments were performed.
  • a silicon wafer intentionally contaminated with copper was subjected to a gettering formation process, a heat treatment, and an etching process in order.
  • the copper concentration of the wafer and the conventional method of dissolving and removing impurities only by etching were performed.
  • the copper concentration was measured and compared.
  • silicon wafers having a diameter of 300 mm were prepared, and these silicon wafers were immersed in a mixture of sulfuric acid and hydrogen peroxide having a copper concentration of 100 ppm, and then heated at 700 ° C for 1 hour.
  • a silicon wafer was intentionally contaminated with copper up to the inside of the wafer.
  • One of the silicon wafers intentionally contaminated with copper was first sandblasted using a blasting device 11 shown in FIG. As a result, gettering sites were formed on the wafer surface.
  • alumina particles having an average particle size of about 5 xm were used as the abrasive.
  • the silicon wafer that has been subjected to the gettering site formation treatment is heated and maintained at 650 ° C for 1 hour, and then cooled at a cooling rate of 4 ° C / min to perform a heat treatment on the silicon wafer.
  • the surface of the silicon wafer was removed by 10 ⁇ m etching with a 48% Na ⁇ H alkaline etchant and dried.
  • the surface layer of the obtained silicon wafer was dissolved in a mixed solution of hydrofluoric acid and nitric acid to about 0.1 lzm, and the dissolved solution was analyzed and measured with an atomic absorption spectrometer to measure the copper concentration of the silicon wafer. did.
  • the copper concentration of the wafer was found to be 6.73 ⁇ 10 9 atoms / cm 2 .
  • a thin film such as a metal thin film is formed, for example, in a manufacturing process of a semiconductor device, and a metal impurity such as copper diffuses inside the wafer.
  • a metal impurity such as copper diffuses inside the wafer.
  • the present invention is effective for regenerating silicon wafers contaminated with impurities having a high diffusion rate with respect to silicon.
  • copper adheres to the wafers, and even inside the wafers, It is extremely effective in regenerating silicon wafers with copper contamination.
  • the silicon wafer thus regenerated by the regenerating method of the present invention has a copper concentration of, for example, not more than 1 ⁇ SX lO ⁇ atoms / cm 2 , especially 1.0 X lC ⁇ atoms / cm 2.
  • An extremely clean silicon wafer can be obtained as follows. Therefore, conventionally, even if the silicon wafer contaminated with copper was regenerated, the regenerated wafer could not be used in the copper wiring process. For example, even when used in various processes such as a semiconductor device manufacturing process, it is a very high-quality silicon wafer without any risk of cross contamination and no trouble such as a decrease in yield. Significant cost reduction can be expected.
  • a thin film removing step for removing a thin film such as a metal thin film formed on the surface of the wafer is shown in FIG. 2, for example.
  • the thin film can be removed by sandblasting using the blast device 11, or can be removed by surface grinding using the surface grinding device 21 shown in FIG. If the thin film removal step is performed by sand blasting or surface grinding, gettering site formation processing can be performed at the same time in the thin film removal step, so that gettering sites can be formed very efficiently on silicon wafers. it can.
  • the thin film removing step is performed by sand blast, the gold formed on the wafer is removed.
  • the metal thin film can be removed by a single process without changing the abrasive, and gettering sites can be formed in the surface of the wafer from which the metal thin film has been removed. Production efficiency can be greatly improved.
  • the method for regenerating silicon wafers of the present invention can be applied to regenerate silicon wafers having no thin film formed on the surface.
  • the silicon wafer whose inside of the wafer is contaminated with metal impurities such as copper is regenerated by the present invention, so that the silicon wafer is not diffused inside the wafer. Pure substances can be reliably reduced, and extremely clean silicon wafers with almost no metal contamination can be obtained.
  • a 300 mm diameter silicon wafer with a TaN copper diffusion layer and a copper film deposited on the wafer surface used in the device manufacturing process was regenerated.
  • the silicon wafer is subjected to a thin film removing step by sandblasting using the blasting apparatus 11 shown in FIG. 2 to remove the copper diffusion barrier film and the copper film deposited on the surface of the silicon wafer. Then, a gettering site was formed by applying a damage load to the wafer surface. At this time, alumina particles having an average particle size of about 7 / m were used as the abrasive.
  • the silicon wafer is heated to 650 ° C at a heating rate of about 7 ° C / min in the atmosphere, maintained for 1 hour, and then cooled at a cooling rate of 4 ° C / min to form the silicon wafer. Heat treatment was performed, and then an etching process was performed to remove the surface of the silicon wafer by 10 ⁇ m using a 48% Na ⁇ H alkaline etchant.
  • the dried surface layer of silicon A8 was dissolved in a mixed solution of hydrofluoric acid and nitric acid to a concentration of about 0.1 lzm, and the dissolved solution was analyzed and measured with an atomic absorption spectrometer to measure the copper concentration. did. As a result, as shown in FIG. 4, it was found that the copper concentration of the wafer A after the etching treatment was 8.55 ⁇ 10 9 atoms Zcm 2 .
  • Both surfaces of the silicon wafer subjected to the alkali etching described above are mirror-polished. After that, the wafer was washed to remove abrasives and the like adhering to the wafer. Thereafter, the copper concentration of the wafer was measured in the same manner as above, and as shown in FIG. 4, the copper concentration of the wafer after the mirror polishing process was 5.47 ⁇ 10 9 atoms / cm 2 , which was extremely high. It was confirmed that the regenerated material was clean.
  • the present invention is not limited to the above embodiment.
  • the above embodiments are merely examples, and those having substantially the same configuration as the technical idea described in the claims of the present invention and having the same function and effect can be achieved. Even so, they are included in the technical scope of the present invention.
  • the present invention is not limited to this case, but also when regenerating silicon wafers on which various other metal thin films are formed, or when regenerating silicon wafers in which the inside of the wafer is contaminated with various other substances. It can be applied similarly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 本発明は、表面に薄膜が形成されているシリコンウエーハを再生する方法であって、少なくとも、前記シリコンウエーハに形成されている薄膜を除去する薄膜除去工程と、該薄膜が除去されたシリコンウエーハの少なくとも一方の面を鏡面研磨する鏡面研磨工程とを含み、前記鏡面研磨工程を行う前に、前記シリコンウエーハの少なくとも一方の面にダメージ負荷を与えるゲッタリングサイト形成処理を行ってから該シリコンウエーハに熱処理を施して、シリコンウエーハ内部の不純物を低減することを特徴とするシリコンウエーハの再生方法である。これによって、シリコンウエーハ上に形成されている薄膜、例えば金属薄膜等を除去するとともに、ウエーハの内部に拡散している不純物を低減して、金属汚染の殆ど無いシリコンウエーハを安定して得ることのできるシリコンウエーハの再生方法が提供される。

Description

明 細 書
シリコンゥエーハの再生方法及び再生ゥエーハ
技術分野
[0001] 本発明は、半導体デバイスの製造工程等において使用されたシリコンゥエーハを 再度使用可能な状態まで再生する方法に関するものであり、特に配線用金属薄膜と して銅等の金属を使用したシリコンゥエーハの再生方法に関する。
背景技術
[0002] 半導体デバイスの製造工程等で使用されたシリコンゥエーハは、一般に、 Si〇等
2 の絶縁膜や、 Al、 W、 Ti等の配線用金属膜等が堆積している。このようなデバイス製 造工程等で使用されたシリコンゥエーハを再生するために、従来では、シリコンゥェ ーハを例えばフッ酸や硫酸等の薬液に浸漬することによってゥエーハに堆積してい る各種薄膜を溶解除去し、その後、ゥエーハの表裏面の少なくとも一方の面に鏡面 研磨を施すというような再生方法が用いられていた。し力 ながら、このような方法を 用いてシリコンゥエーハを再生する場合、薬液中に高濃度に溶解した金属イオンがゥ エーハの浸漬中に再びゥエー八に付着し、再汚染を発生させるという危険性があつ た。
[0003] ところで、近年、デバイスの高速化に対応するために、低抵抗の配線材料として銅 配線が実用化されており、デバイス製造工程等で使用されたシリコンゥエー八には、 銅膜を付着したものが多くなつてきている。し力 ながら、銅は上記のような従来用い られている薬品では除去することができず、また、銅の付着しているゥエーハを再生 処理する場合、処理工程自体が銅で汚染され、他の製品も銅で汚染させる可能性が ある。そのため、銅膜が付着したシリコンゥエーハを再生加工することは困難とされて いた。
[0004] そこで、例えば特開 2002-158207号公報では、上記の問題を解決して銅膜の付 着したシリコンゥエーハを再生するために、銅膜の付着したシリコン単結晶ゥエーハ を再生する方法であって、少なくとも硫酸一過酸化水素液で銅膜を溶解除去するェ 程、銅膜を除去したゥエーハの表面を鏡面研磨する工程を含むことを特徴とする銅 膜付着シリコン単結晶ゥエーハの再生方法を開示している。このような方法を用いる ことにより、銅膜を容易にかつ急速に溶解除去できるため、銅膜の付着したシリコンゥ エーハを再生することが可能となった。
[0005] 一方、銅や金等は、シリコンに対し非常に速い拡散速度を有しているため、例えば 銅がシリコン上に付着している場合等では、短時間でシリコン内部へ拡散することが 知られている。し力 ながら、このようにゥエーハ内部に銅や金等が拡散したシリコン ゥエーハを再生する場合、上記特開 2002 - 158207号公報の再生方法を用いること によって、ゥエーハ表面に付着している銅を除去して清浄化することはできるものの、 銅(不純物)がゥエーハ内部に拡散していた場合には、完全に取り除くことができなか つた。そのため、例えば特開 2002—158207号公報の方法で再生したシリコンゥェ ーハを長時間放置した場合等では、ゥエーハの内部に拡散していた不純物が表面 へ析出することがあり、その後再生ゥエーハを半導体デバイス製造工程等で使用す ると歩留まりを低下させる等の支障を来たすという問題があった。
発明の開示
[0006] そこで、本発明は上記問題点に鑑みてなされたものであって、本発明の目的は、シ リコンゥエーハ上に形成されている薄膜、例えば金属薄膜等を除去するとともに、ゥ エーハの内部に拡散している不純物を低減して、金属汚染の殆ど無いシリコンゥェ ーハを安定して得ることのできるシリコンゥエーハの再生方法を提供することにある。
[0007] 上記目的を達成するために、本発明によれば、表面に薄膜が形成されているシリコ ンゥエーハを再生する方法であって、少なくとも、前記シリコンゥエーハに形成されて レ、る薄膜を除去する薄膜除去工程と、該薄膜が除去されたシリコンゥエー八の少なく とも一方の面を鏡面研磨する鏡面研磨工程とを含み、前記鏡面研磨工程を行う前に 、前記シリコンゥエーハの少なくとも一方の面にダメージ負荷を与えるゲッタリンダサ イト形成処理を行って力ら該シリコンゥエーハに熱処理を施して、シリコンゥエーハ内 部の不純物を低減することを特徴とするシリコンゥエーハの再生方法が提供される。
[0008] このような方法を用いてシリコンゥエーハを再生することによって、シリコンゥエーハ に形成されている薄膜、例えば金属薄膜等を容易に除去でき、またゥエーハの内部 に拡散している不純物もゲッタリング効果を利用して確実に低減することができる。し たがって、例えば半導体デバイスの製造工程等で使用されて、ゥエーハ内部に金属 不純物が拡散しているような汚染されたシリコンゥエーハでも容易に再生することが 可能となり、金属汚染の殆ど無い極めて清浄なシリコンゥエーハを安定して得ること ができる。
[0009] このとき、前記ゲッタリングサイト形成処理を、サンドブラストまたは平面研削により行 うことが好ましい。
このようにゲッタリングサイト形成処理をサンドブラストまたは平面研削によって行え ば、シリコンゥエーハに与えるダメージ負荷の深さを容易に制御することができ、ゲッ タリングサイトをゥエー八に容易にかつ効果的に形成することができる。
[0010] また、前記薄膜除去工程で前記ゲッタリングサイト形成処理も同時に行うことが好ま しぐ特に、前記薄膜除去工程をサンドブラストまたは平面研削により行うことによって 、前記ゲッタリングサイト形成処理も同時に行うことができる。
本発明では、このようにシリコンゥエーハに形成されている薄膜を除去する薄膜除 去工程でゲッタリングサイト形成処理も同時に行うことができ、例えば薄膜除去工程を サンドブラストまたは平面研削によって行うことにより、薄膜除去工程で容易にゲッタリ ングサイト形成処理も同時に行うことができるので、ゲッタリングサイトを非常に効率的 に形成することができる。特に、薄膜除去工程をサンドブラストで行えば、ゥエーハに 形成されている薄膜の材質によらず、研磨材を変更することなぐ単一処理で薄膜を 除去できるとともに薄膜が除去されたゥエーハ面内にゲッタリングサイトを形成するこ とが可能となる。
[0011] この場合、前記サンドブラストを、乾式ブラスト装置を用いて行うことが好ましい。
このように乾式ブラスト装置を用いてサンドブラストを行えば、シリコンゥエーハを濡 らさずにサンドブラストを施すことができるので、サンドブラスト後のゥエーハに研磨材 及び研磨屑が汚染物として残留することがなレ、。そのため、シリコンゥエーハの再汚 染を確実に防止することができ、またサンドブラスト処理後、シリコンゥエーハの洗浄 処理等を省略して工程の簡略化を図ることも可能となるため、再生ゥエーハの生産効 率を大幅に向上させることができる。
[0012] さらに、本発明の再生方法では、前記熱処理を、 400°C以上 700°C以下の温度で 行うことが好ましぐまた、前記熱処理の冷却過程において、冷却速度を 4°C/分以 上とすることが好ましい。
このように、ゲッタリングサイトを形成したゥエーハに 400°C以上 700°C以下の温度 で熱処理を行うことによって、ゥエーハ内部の不純物を短時間で効果的にゲッタリン グサイトに析出させて低減することができる。さらに、熱処理の冷却過程において、冷 却速度を 4°CZ分以上とすることにより、不純物のゲッタリングサイトへの析出効果を 一層高めることができ、ゥエーハ内部の不純物を著しく低減することができる。
[0013] また、前記熱処理を施した後、前記鏡面研磨工程を行う前にシリコンゥエーハにェ ツチング処理を行うことが好ましレ、。
このように、熱処理を施したシリコンゥエーハに、鏡面研磨工程を行う前にエツチン グ処理を行うことにより、ゲッタリングサイトに析出させた不純物をゥエーハから溶解除 去することができるので、鏡面研磨工程での逆汚染リスクを低減させることが可能とな り、金属汚染の殆ど無い非常に高品質のシリコンゥエーハを安定して得ることができ る。
[0014] さらに、本発明では、前記再生するシリコンゥエーハを、金属膜が形成されているも のとすることができ、特に、前記再生するシリコンゥエーハを、ゥエーハの内部が金属 不純物で汚染されているものとすることができる。
このように、本発明のシリコンゥエーハの再生方法は、現在半導体デバイスの配線 材料として用いられている金属膜、例えば銅の薄膜が形成されているシリコンゥエー ハを再生する際に非常に好適に用いることができる。特に、ゥエーハ内部が銅等の 金属不純物で汚染されているものであっても、本発明の再生方法で再生することによ つて、金属汚染の殆ど無レ、極めて清浄なシリコンゥエーハとすることができる。
[0015] そして、本発明によれば、上記本発明のシリコンゥエーハの再生方法で再生された 再生ゥエーハを提供することができる。
本発明の再生方法で再生されたシリコンゥエーハであれば、例えば再生前のシリコ ンゥエーハが銅膜の形成されているものであったり、さらにゥエーハ内部まで銅汚染 されているものであったとしても、銅汚染の殆ど無いシリコンゥエーノ、、特に表面にお ける銅濃度が 1 · O X 101Qatoms/cm2以下となる極めて清浄なシリコンゥエーハとな る。したがって、本発明の再生ゥエーハは、半導体デバイス製造工程等に使用しても 歩留まりの低下等の支障が生じない非常に高品質のシリコンゥエーハとなる。
[0016] また、本発明によれば、シリコンゥエーハを再生する方法であって、少なくとも、前記 シリコンゥエーハの少なくとも一方の面を鏡面研磨する鏡面研磨工程を含み、前記鏡 面研磨工程を行う前に、前記シリコンゥエーハの少なくとも一方の面にダメージ負荷 を与えるゲッタリングサイト形成処理を行ってから該シリコンゥエーハに熱処理を施し て、シリコンゥエーハ内部の不純物を低減することを特徴とするシリコンゥエーハの再 生方法が提供される。
[0017] このような方法を用いてシリコンゥエーハを再生することによって、ゥエーハの内部 に拡散している不純物をゲッタリング効果を利用して確実に低減することができるの で、例えば半導体デバイスの製造工程等で使用されて、ゥエーハ内部に金属不純物 が拡散しているような汚染されたシリコンゥエーハでも容易に再生することが可能とな り、金属汚染の殆ど無い極めて清浄なシリコンゥエーハを安定して得ることができる。
[0018] 以上説明したように、本発明の再生方法によれば、ゥエーハ表面に形成されている 金属薄膜等の薄膜を容易に除去できるとともにゥエーハ内部に拡散している不純物 を確実に低減することができるので、例えば半導体デバイスの製造工程等で使用さ れて金属薄膜が形成されているシリコンゥエーハゃ、さらにゥエーハ内部に不純物が 拡散しているシリコンゥエーハであっても、金属汚染の殆ど無い極めて清浄なシリコ ンゥエーハに安定して再生することができる。
図面の簡単な説明
[0019] [図 1]本発明のシリコンゥエーハの再生方法の一例を示すフロー図である。
[図 2]ブラスト装置の構成を概略的に示す概略構成図である。
[図 3]平面研削装置の構成を概略的に示す概略構成図である。
[図 4]実施例において、エッチング処理後のシリコンゥエーハの銅濃度及び鏡面研磨 工程後のシリコンゥエーハの銅濃度を測定した結果を示すグラフである。 発明を実施するための最良の形態
[0020] 以下、本発明について実施の形態を説明するが、本発明はこれらに限定されるも のではない。
本発明者等は、例えば半導体デバイスの製造工程等で使用された銅膜等の金属 薄膜が形成されてレ、るシリコンゥエーハゃ、特に従来では再生困難であったゥエー ハ内部に銅等の不純物が拡散しているシリコンゥエーハ等を再生する方法について 鋭意実験及び検討を重ねた。その結果、シリコンゥエーハに形成されている金属薄 膜を除去するとともに、シリコンゥエーハにゲッタリングサイトを形成して熱処理を施す ことによって、ゥエーハ内部まで金属汚染したシリコンゥエーハであっても、金属汚染 の殆ど無い極めて清浄なシリコンゥエーハに安定して再生できることを見出して、本 発明を完成させた。
[0021] すなわち、本発明のシリコンゥエーハの再生方法は、表面に薄膜が形成されている シリコンゥエーハを再生する方法であって、少なくとも、前記シリコンゥエーハに形成 されている薄膜を除去する薄膜除去工程と、該薄膜が除去されたシリコンゥエーハの 少なくとも一方の面を鏡面研磨する鏡面研磨工程とを含み、前記鏡面研磨工程を行 う前に、前記シリコンゥエー八の少なくとも一方の面にダメージ負荷を与えるゲッタリン グサイト形成処理を行ってから該シリコンゥエー八に熱処理を施して、シリコンゥエー ハ内部の不純物を低減することに特徴を有するものである。
[0022] 以下、本発明に係るシリコンゥエーハの再生方法について、図面を参照しながら説 明する力 本発明はこれに何ら限定されるものではなレ、。ここで、図 1は、本発明の再 生方法の一例を示すフロー図である。
[0023] 本発明で再生するシリコンゥエーハとしては、例えば半導体デバイス製造工程等で 使用されたシリコンゥエーハであり、このようなゥエーハには、例えば、 Si〇等の各種
2 絶縁膜や Cu、 Al、 W、 Ti、 Au等の配線用金属膜、さらにはシリコンへの銅の拡散を 抑制するための TaN等の銅拡散ノ^ァ膜等が堆積している。尚、以下に示す本発明 の説明では、図 1に示したように、薄膜としてゥエーハ表面に Si〇 の絶縁膜 2及び銅
2
膜 3が形成されており、さらにゥエーハ内部に銅 4が拡散してレ、るシリコンゥエーハ 1 を再生する場合を例に挙げて説明する。 [0024] 先ず、本発明のシリコンゥエーハの再生方法では、薄膜除去工程においてシリコン ゥエーハ 1に形成されてレ、る銅膜 3及び絶縁膜 2を除去する(図 1の工程 A)。このとき 、銅膜 3及び絶縁膜 2を除去する方法は特に限定されないが、例えば銅膜 3及び絶 縁膜 2が形成されているゥエーハ 1を、硫酸と過酸化水素水の混合液でエッチングす ることによって銅膜 3を溶解除去でき、次に、フッ酸またはフッ酸と過酸化水素水の混 合液を用いてエッチングすることによって絶縁膜 2を除去することができる。このように 銅膜 3及び絶縁膜 2を除去することによって、シリコンゥエーハ 1の表面を露出させる こと力 Sできる。
[0025] 次に、シリコンゥエーハ 1の少なくとも一方の面にダメージ負荷を与えてゥエー八に ゲッタリングサイトを形成するゲッタリングサイト形成処理を行う(図 1の工程 B)。このゲ ッタリングサイト形成処理は、例えば図 2に示すようなブラスト装置 11を用いてシリコン ゥエーハにサンドブラストを施すことによって行うことができる。このブラスト装置 11は 、シリコンゥエーハ 12をゥエーハ保持具 13に保持し、研磨材供給タンク(不図示)に 接続されている噴射ノズル 14から高圧の気体または流体 (水)を使用して研磨材 15 を噴射することによってブラスト処理をし、シリコンゥエーハ 12の表面にダメージ負荷 を与えることができるものである。このとき、研磨材 15としては、例えば平均粒径が 5 一 7 /i m程度のアルミナ粒子 (A1〇)やシリコンカーバイト粒子(SiC)等を用いること
2 3
ができる。
[0026] このようなブラスト装置 11を用いて、上記の薄膜除去工程で表面が露出したシリコ ンゥエーハ 1の少なくとも一方の面、例えばゥエーハ表面にサンドブラストを行うことに よって、図 1に示したように、シリコンゥエーハ 1の表面にダメージ負荷を与えてゲッタ リングサイトとなる歪層 5を形成することができる。
[0027] また、上記のようにゲッタリングサイト形成処理をサンドブラストにより行う場合、サン ドプラストを乾式ブラスト装置を用いて行うことが好ましい。このように乾式ブラスト装置 を用いてサンドブラストを行えば、シリコンゥエーハを濡らさずにサンドブラストを施す ことができるので、サンドブラスト後のゥエー八に研磨材及び研磨屑が汚染物として 残留することがなレ、。したがって、シリコンゥエー八の再汚染を確実に防止することが できるし、また、例えばサンドブラスト処理後にシリコンゥエー八の洗浄処理等の工程 を省略することが可能となるため、工程の簡略化を図ることができる。
[0028] さらに、本発明では、ゲッタリングサイト形成処理を、例えば図 3に示すような平面研 削装置 21を用いてシリコンゥエーハに平面研削を施すことによって行うこともできる。 この平面研削装置 21は、シリコンゥエーハ 22をゥエーハ保持テーブル 23に保持し て回転させながら、研削盤 24に接着されている砥石 25を高速で回転させることによ つて、シリコンゥエーハ 22の表面を研削するとともに研削されたゥエーハ表面にダメ ージ負荷を導入できる装置である。このとき、砥石 25としては、例えば粒子径が 4一 6 μ m程度のダイヤモンド粒子または粒子径が 2 6 a m程度のダイヤモンド粒子を接 着剤で固めたものを用いることができる。
[0029] このようにゲッタリングサイト形成処理において、シリコンゥエー八の露出している表 面に対してブラスト装置 1 1を用いてサンドブラストを行ったり、または平面研削装置 2 1を用いて平面研削を行うことによって、シリコンゥエーハに与えるダメージ負荷の深 さを容易に制御して、不純物を捕獲するゲッタリングサイト(歪層)をゥエーハの表面 に容易にかつ効果的に形成することができる。
[0030] 上記のようにしてシリコンゥエーハにゲッタリングサイト形成処理を行った後、得られ たシリコンゥエーハに熱処理を施す(図 1の工程 C)。このようにシリコンゥエーハ 1に 熱処理を行うことによって、シリコンゥエーハ内部に不純物として拡散していた銅 4を ゲッタリングサイト 5に短時間で析出させることができ、ゥエーハ内部に存在する銅を 低減すること力 Sできる。
[0031] このとき、熱処理の温度、時間、雰囲気等の熱処理条件は特に限定されないが、例 えば熱処理を行う際に熱処理温度が余りに低過ぎると、ゥエーハ内部の不純物をゲ ッタリングサイトに析出させるのに時間がかかり、また一方、熱処理温度が高過ぎても 不純物の析出が効果的に行われないことが考えられる。したがって、シリコンゥエー ハに熱処理を施すときには、 400°C以上 700°C以下の温度で行うことが好ましい。
[0032] さらにこの場合、熱処理の冷却過程における冷却速度を 4°CZ分以上とすることが 好ましレ、。このように冷却速度を 4°C/分以上とすることにより、不純物のゲッタリング サイトへの析出効果を一層高めて不純物の捕獲を促進させることができるため、ゥェ ーハ内部の不純物を著しく低減することができる。 [0033] 次に、熱処理を施したシリコンゥエーハにエッチング処理を行うことによって(図 1の 工程 D)、シリコンゥエーハ 1の表面に形成されている歪層 5を除去し、ゲッタリンダサ イトに捕獲されていた銅をシリコンとともに溶解除去する。このとき、エッチング処理に 用いるエッチング液は、シリコンゥエーハをエッチングすることが可能であれば特に限 定されるものではなぐ例えば K〇H、 Na〇H等のアルカリエッチング液や、また HFと HNOの混合液のような酸エッチング液等を用いることができる。尚、本発明におい
3
て、エッチング処理は必ずしも行われる必要はなレ、が、このように鏡面研磨を行う前 にエッチング処理を行えば、つづく再生後工程 (例えば研磨加工)での逆汚染、再汚 染リスクを確実に低減することができる。
[0034] その後、鏡面研磨工程(図 1の工程 E)で、シリコンゥエーハ 1の少なくとも一方の面 に鏡面研磨を行うことによって、不純物濃度が極めて低く金属汚染の殆ど無い清浄 な再生ゥエーハに仕上げることができる。このとき、鏡面研磨はゥエーハの少なくとも 一方の面に行えば良ぐ例えば上記のエッチング処理を行わない場合には、ゲッタリ ングサイトに捕獲した不純物を研磨することで取り除くことができる。
[0035] 尚、この鏡面研磨工程は、一般的に用いられている方法によって行うことができる。
例えば、シリコンゥエーハを加工面を下方に向けて保持した後、研磨布を貼り付けた 定盤にゥエーハを押圧し、研磨布上に研磨剤を供給しつつゥエーハと定盤とを回転 させてゥエーハを定盤上で摺動させることによって、ゥエーハの一面に鏡面研磨を施 すことができる。
[0036] ここで、上記本発明のゲッタリング形成処理からエッチング処理(図 1の工程 B—ェ 程 D)を行ったときのゥエーハ内部に拡散してレ、る不純物の除去効果を調べる為に、 以下に示すような実験を行った。この実験では、銅を故意汚染したシリコンゥエーハ に対して、ゲッタリング形成処理、熱処理、エッチング処理を順次行ったゥエーハの 銅濃度と、従来のようにエッチングのみによる不純物の溶解除去を行ったゥエー八の 銅濃度とを測定し、その比較を行った。
[0037] (実験 1)
先ず、直径 300mmのシリコンゥエーハを 4枚準備し、これらのシリコンゥエーハを銅 濃度が lOOOppmの硫酸と過酸化水素の混合液中に浸漬した後、 700°Cで 1時間加 熱することによって、ゥエーハ内部まで銅を故意汚染したシリコンゥエーハを作製した この銅を故意汚染したシリコンゥエーハのうちの 1枚に、先ず図 2に示したブラスト装 置 11を用いてサンドブラストを行って、ゥエーハ表面にゲッタリングサイトを形成した。 このとき、研磨材として平均粒径が 5 x m程度のアルミナ粒子を使用した。次に、ゲッ タリングサイト形成処理を行ったシリコンゥエーハを加熱して 650°Cで 1時間保持した 後、 4°C/分の冷却速度で冷却することによってゥエーハに熱処理を行レ、、その後、 48%の Na〇Hアルカリエッチング液によってシリコンゥエーハの表面を 10 β mエッチ ング除去し、乾燥させた。そして、得られたシリコンゥエー八の表層をフッ酸と硝酸の 混合液で 0. l z m程度溶解させ、この溶解液を原子吸光分析装置で分析測定する ことによって、シリコンゥエーハの銅濃度を測定した。その結果、ゥエーハの銅濃度は 、 6. 73 X 109atoms/cm2であることがわかった。
[0038] (実験 2)
次に、上記で銅を故意汚染した別のシリコンゥエーハに、図 3に示した平面研削装 置 21を用いて平面研削を行って、ゥエーハ表面にゲッタリングサイトを形成した。この とき、砥石として粒径が 2— 6 μ m程度のダイヤモンド粒子を樹脂で固めたものを使用 した。その後、上記実験 1と同様の熱処理及びエッチング処理をシリコンゥエーハに 施した後、得られたシリコンゥエーハの銅濃度を上記と同様の方法で測定した。その 結果、ゥエーハの銅濃度は、 1. SS X lO^atoms/cm2であることがわかった。
[0039] (実験 3)
また比較のために、上記で銅を故意汚染したさらに別のシリコンゥエーハを、 48% の Na〇Hで 10 μ mのエッチングのみを行い、得られたシリコンゥエーハの銅濃度を 上記と同様の方法で測定した。その結果、ゥエーハの銅濃度は、 2. 01 X 1012atom sZcm2であることがわかった。さらに、上記で作製した銅を故意汚染したシリコンゥェ 一八に、 650°Cで 1時間の熱処理後、 48%の NaOHで 10 x mのエッチングを行レ、、 得られたシリコンゥエーハの銅濃度を上記と同様の方法で測定した。その結果、ゥェ 一ハの銅濃度は、 1. 25 X 1012atoms/cm2であることがわかった。
上記の実験 1一実験 3の結果より、シリコンゥエーハにゲッタリングサイト形成処理及 び熱処理を行うことによって、ゥエーハ内部の不純物を大きく低減できることを確認す ること力 Sできる。
[0040] 以上のように、本発明の再生方法によって、例えば半導体デバイスの製造工程等 で使用されて金属薄膜等の薄膜が形成されており、またゥエーハ内部に銅等の金属 不純物が拡散しているシリコンゥエーハを再生することにより、ゥエーハ表面に形成さ れてレ、る薄膜を容易に除去できるとともにゥエーハ内部に拡散してレ、る金属不純物 を確実に低減できるので、金属汚染の殆ど無レ、極めて清浄なシリコンゥエーハを安 定して得ること力できる。
[0041] 特に、本発明は、シリコンに対して速い拡散速度をもつ不純物で汚染されているシ リコンゥエーハを再生する場合に有効であり、その中でも銅がゥエーハに付着してお り、ゥェーハ内部まで銅汚染が認められるシリコンゥエー八の再生に極めて有効であ る。
[0042] そして、このように本発明の再生方法で再生したシリコンゥエーハは、例えば、銅濃 度が 1 · S X lO^atoms/cm2以下、特には 1. 0 X lC^atoms/cm2以下となる極め て清浄なシリコンゥエーハとすることができる。したがって、従来では銅汚染されたシリ コンゥエーハを再生しても、その再生ゥエーハは銅配線工程でし力使用することがで きない等の不都合があつたが、本発明で再生した再生ゥエーハは、例えば半導体デ バイス製造工程等の種々の工程に使用してもクロスコンタミネーシヨンの危険性がな ぐまた歩留まりの低下等の支障が生じることもない非常に高品質のシリコンゥエーハ となるため、大幅なコストダウンが期待できる。
[0043] 尚、本発明のシリコンゥエーハの再生方法では、ゥエーハ表面に形成されている金 属薄膜等の薄膜を除去する薄膜除去工程(図 1の工程 A)を、例えば図 2に示したブ ラスト装置 11を用いてサンドブラストによって薄膜を除去したり、または図 3に示した 平面研削装置 21を用いて平面研削によって薄膜を除去することができる。このように 薄膜除去工程をサンドブラストまたは平面研削によって行えば、薄膜除去工程でゲッ タリングサイト形成処理も同時に行うことが可能となるので、ゲッタリングサイトをシリコ ンゥエーハに非常に効率的に形成することができる。
[0044] 特に、薄膜除去工程をサンドブラストによって行えば、ゥエーハに形成されている金 属薄膜の材質によらず、研磨材を変更することなぐ単一処理で金属薄膜を除去でき るとともに金属薄膜が除去されたゥエーハ面内にゲッタリングサイトを形成することが できるため、再生ゥエーハの生産効率を大きく向上させることができる。
[0045] さらに、本発明のシリコンゥエーハの再生方法は、表面に薄膜が形成されてないシ リコンゥエーハを再生する際にも適用できるものである。例えば、ゥエーハ表面に薄 膜は形成されてないものの、ゥエーハ内部が銅等の金属不純物で汚染しているよう なシリコンゥエーハを本発明で再生することにより、ゥエーハの内部に拡散している不 純物を確実に低減でき、金属汚染の殆ど無レ、極めて清浄なシリコンゥエーハとするこ とができる。
[0046] 以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定さ れるものではない。
(実施例)
デバイス製造工程で使用されてゥエーハ表面に TaNの銅拡散ノくリア膜と銅膜が堆 積している直径 300mmのシリコンゥエーハの再生を行った。
[0047] 先ず、シリコンゥエーハに、図 2に示したブラスト装置 11を用いてサンドブラストによ り薄膜除去工程を行って、ゥエーハ表面に堆積している銅拡散バリア膜及び銅膜を 除去すると同時に、ゥエーハ表面にダメージ負荷を与えてゲッタリングサイトを形成し た。このとき、研磨材として平均粒径が 7 / m程度のアルミナ粒子を使用した。次に、 シリコンゥエーハを大気中で約 7°C/分の昇温速度で 650°Cまで加熱して 1時間保 持した後、 4°C/分の冷却速度で冷却することによってゥエーハに熱処理を行い、そ の後、 48%の Na〇Hアルカリエッチング液によってシリコンゥエーハの表面を 10 μ m 除去するエッチング処理を行った。
[0048] エッチング処理後、乾燥させたシリコンゥエー八の表層をフッ酸と硝酸の混合液で 0 . l z m程度溶解させ、この溶解液を原子吸光分析装置で分析測定することによって 銅濃度を測定した。その結果、図 4に示したように、エッチング処理後のゥエー八の 銅濃度は、 8. 55 X 109atomsZcm2であることがわかった。
[0049] また、上記でアルカリエッチングを行ったシリコンゥエーハの両面に鏡面研磨を施し た後、ゥエーハを洗浄してゥエーハに付着している研磨剤等を除去した。その後、ゥ エーハの銅濃度を上記と同様にして測定した結果、図 4に示したように、鏡面研磨ェ 程後のゥエーハの銅濃度は 5. 47 X 109atoms/cm2であり、極めて清浄な再生ゥ エーハであることが確認できた。
[0050] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単な る例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一 な構成を有し、同様な作用効果を奏するものは、レ、かなるものであっても本発明の技 術的範囲に包含される。
[0051] 例えば、上記では、主にゥエーハ表面に銅膜が形成されており、ゥエーハ内部に 銅が拡散しているシリコンゥエーハを再生する場合を例に挙げて説明を行っているが 、本発明はこれに限定されるものではなぐその他種々の金属薄膜が形成されている シリコンゥエーハを再生する場合や、ゥエーハ内部がその他種々の物質で汚染され ているシリコンゥエーハを再生する場合にも同様に適用することができるものである。

Claims

請求の範囲
[1] 表面に薄膜が形成されているシリコンゥエーハを再生する方法であって、少なくとも
、前記シリコンゥエー八に形成されている薄膜を除去する薄膜除去工程と、該薄膜が 除去されたシリコンゥエー八の少なくとも一方の面を鏡面研磨する鏡面研磨工程とを 含み、前記鏡面研磨工程を行う前に、前記シリコンゥエー八の少なくとも一方の面に ダメージ負荷を与えるゲッタリングサイト形成処理を行ってから該シリコンゥエーハに 熱処理を施して、シリコンゥエーハ内部の不純物を低減することを特徴とするシリコン ゥエーハの再生方法。
[2] 前記ゲッタリングサイト形成処理を、サンドブラストまたは平面研削により行うことを特 徴とする請求項 1に記載のシリコンゥエーハの再生方法。
[3] 前記薄膜除去工程で前記ゲッタリングサイト形成処理も同時に行うことを特徴とする 請求項 1または請求項 2に記載のシリコンゥエーハの再生方法。
[4] 前記薄膜除去工程をサンドブラストまたは平面研削により行うことによって、前記ゲ ッタリングサイト形成処理も同時に行うことを特徴とする請求項 3に記載のシリコンゥェ ーハの再生方法。
[5] 前記サンドブラストを、乾式ブラスト装置を用いて行うことを特徴とする請求項 2ない し請求項 4の何れか一項に記載のシリコンゥエーハの再生方法。
[6] 前記熱処理を、 400°C以上 700°C以下の温度で行うことを特徴とする請求項 1ない し請求項 5の何れか一項に記載のシリコンゥエーハの再生方法。
[7] 前記熱処理の冷却過程において、冷却速度を 4°C/分以上とすることを特徴とする 請求項 1ないし請求項 6の何れか一項に記載のシリコンゥエーハの再生方法。
[8] 前記熱処理を施した後、前記鏡面研磨工程を行う前にシリコンゥエーハにエツチン グ処理を行うことを特徴とする請求項 1ないし請求項 7の何れか一項に記載のシリコ ンゥエーハの再生方法。
[9] 前記再生するシリコンゥエーハを、金属膜が形成されているものとすることを特徴と する請求項 1ないし請求項 8の何れか一項に記載のシリコンゥエーハの再生方法。
[10] 前記再生するシリコンゥエーハを、ゥエーハの内部が金属不純物で汚染されている ものとすることを特徴とする請求項 9に記載のシリコンゥエーハの再生方法。
[11] 請求項 1ないし請求項 10のいずれか一項に記載のシリコンゥエーハの再生方法で 再生されたことを特徴とする再生ゥエーハ。
[12] シリコンゥエーハを再生する方法であって、少なくとも、前記シリコンゥエーハの少な くとも一方の面を鏡面研磨する鏡面研磨工程を含み、前記鏡面研磨工程を行う前に 、前記シリコンゥエーハの少なくとも一方の面にダメージ負荷を与えるゲッタリンダサ イト形成処理を行って力ら該シリコンゥエーハに熱処理を施して、シリコンゥエーハ内 部の不純物を低減することを特徴とするシリコンゥエーハの再生方法。
PCT/JP2004/012081 2003-09-19 2004-08-24 シリコンウエーハの再生方法及び再生ウエーハ WO2005029569A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020067005177A KR100749147B1 (ko) 2003-09-19 2004-08-24 실리콘웨이퍼의 재생방법 및 재생 웨이퍼
EP04772042A EP1667219A4 (en) 2003-09-19 2004-08-24 SILICON WAFER RECLAMATION PROCEDURE AND RECLAMATED WAFER
US10/571,781 US20070007245A1 (en) 2003-09-19 2004-08-24 Silicon wafer reclamation method and reclaimed wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003327704A JP2005093869A (ja) 2003-09-19 2003-09-19 シリコンウエーハの再生方法及び再生ウエーハ
JP2003-327704 2003-09-19

Publications (1)

Publication Number Publication Date
WO2005029569A1 true WO2005029569A1 (ja) 2005-03-31

Family

ID=34372879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012081 WO2005029569A1 (ja) 2003-09-19 2004-08-24 シリコンウエーハの再生方法及び再生ウエーハ

Country Status (6)

Country Link
US (1) US20070007245A1 (ja)
EP (1) EP1667219A4 (ja)
JP (1) JP2005093869A (ja)
KR (1) KR100749147B1 (ja)
TW (1) TW200524031A (ja)
WO (1) WO2005029569A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715470B2 (ja) * 2005-11-28 2011-07-06 株式会社Sumco 剥離ウェーハの再生加工方法及びこの方法により再生加工された剥離ウェーハ
JP4992246B2 (ja) * 2006-02-22 2012-08-08 株式会社Sumco シリコンウェーハ中のCu評価方法
US7666689B2 (en) * 2006-12-12 2010-02-23 International Business Machines Corporation Method to remove circuit patterns from a wafer
KR100852884B1 (ko) * 2007-04-12 2008-08-19 주식회사 케이씨텍 반도체 웨이퍼 재생장치
KR100786722B1 (ko) * 2007-06-11 2007-12-21 (주)수훈복지 실리콘웨이퍼의 재활용 방법 및 시스템
US7851374B2 (en) 2007-10-31 2010-12-14 Taiwan Semiconductor Manufacturing Co., Ltd. Silicon wafer reclamation process
KR100924864B1 (ko) * 2007-12-26 2009-11-02 주식회사 동부하이텍 반도체 소자의 금속 배선 제조 방법
US20090233447A1 (en) * 2008-03-11 2009-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Control wafer reclamation process
US8210904B2 (en) * 2008-04-29 2012-07-03 International Business Machines Corporation Slurryless mechanical planarization for substrate reclamation
US20100022070A1 (en) * 2008-07-22 2010-01-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing soi substrate
JP5446160B2 (ja) * 2008-07-31 2014-03-19 株式会社Sumco 再生シリコンウェーハの製造方法
JP2012223863A (ja) * 2011-04-21 2012-11-15 Disco Corp 表面に金属膜が被覆された硬質基板の研削方法
TW201310692A (zh) * 2011-08-31 2013-03-01 Solution Chemicals Inc Led之基板重製方法
JP5799740B2 (ja) 2011-10-17 2015-10-28 信越半導体株式会社 剥離ウェーハの再生加工方法
KR101525614B1 (ko) * 2013-03-27 2015-06-04 한솔테크닉스(주) 기판 제조방법
JP6500705B2 (ja) * 2015-09-01 2019-04-17 三菱マテリアル株式会社 プラズマ処理装置用電極板及びその製造方法
JP6855124B2 (ja) * 2017-05-08 2021-04-07 株式会社ディスコ ゲッタリング層形成方法
TWI768329B (zh) * 2020-04-23 2022-06-21 煇特有限公司 半導體晶圓之物理乾式表面處理方法及其表面處理用組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923567A (en) * 1974-08-09 1975-12-02 Silicon Materials Inc Method of reclaiming a semiconductor wafer
JPS53142168A (en) * 1977-05-18 1978-12-11 Toshiba Corp Reproductive use of semiconductor substrate
JPH09237771A (ja) * 1996-02-28 1997-09-09 Kobe Steel Ltd ウエハーまたは基板材料の再生方法および再生設備

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144099A (en) * 1977-10-31 1979-03-13 International Business Machines Corporation High performance silicon wafer and fabrication process
JPS5613737A (en) * 1979-07-13 1981-02-10 Hitachi Ltd Manufacture of semiconductor device
JP2575545B2 (ja) * 1990-07-05 1997-01-29 株式会社東芝 半導体装置の製造方法
US5272373A (en) * 1991-02-14 1993-12-21 International Business Machines Corporation Internal gettering of oxygen in III-V compound semiconductors
US5131979A (en) * 1991-05-21 1992-07-21 Lawrence Technology Semiconductor EPI on recycled silicon wafers
JPH0786289A (ja) * 1993-07-22 1995-03-31 Toshiba Corp 半導体シリコンウェハおよびその製造方法
US5622875A (en) * 1994-05-06 1997-04-22 Kobe Precision, Inc. Method for reclaiming substrate from semiconductor wafers
JPH10209168A (ja) * 1997-01-24 1998-08-07 Nec Corp 半導体装置の製造方法
JP3668033B2 (ja) * 1999-02-23 2005-07-06 濱田重工株式会社 シリコンウエハーの処理方法
JP3606432B2 (ja) * 1999-05-27 2005-01-05 三菱住友シリコン株式会社 高平坦度ウェーハの製造方法
JP3943782B2 (ja) * 1999-11-29 2007-07-11 信越半導体株式会社 剥離ウエーハの再生処理方法及び再生処理された剥離ウエーハ
KR100323496B1 (ko) * 1999-12-31 2002-02-06 윤배원 반도체 웨이퍼의 재생 장치 및 방법
JP2001237201A (ja) * 2000-02-23 2001-08-31 Fuji Seisakusho:Kk シリコンウエハーの再生方法
US6620632B2 (en) * 2000-04-06 2003-09-16 Seh America, Inc. Method for evaluating impurity concentrations in semiconductor substrates
JP2002359247A (ja) * 2000-07-10 2002-12-13 Canon Inc 半導体部材、半導体装置およびそれらの製造方法
US6406923B1 (en) * 2000-07-31 2002-06-18 Kobe Precision Inc. Process for reclaiming wafer substrates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923567A (en) * 1974-08-09 1975-12-02 Silicon Materials Inc Method of reclaiming a semiconductor wafer
JPS53142168A (en) * 1977-05-18 1978-12-11 Toshiba Corp Reproductive use of semiconductor substrate
JPH09237771A (ja) * 1996-02-28 1997-09-09 Kobe Steel Ltd ウエハーまたは基板材料の再生方法および再生設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1667219A4 *

Also Published As

Publication number Publication date
KR100749147B1 (ko) 2007-08-14
EP1667219A4 (en) 2008-03-12
US20070007245A1 (en) 2007-01-11
TW200524031A (en) 2005-07-16
JP2005093869A (ja) 2005-04-07
KR20060057012A (ko) 2006-05-25
EP1667219A1 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
WO2005029569A1 (ja) シリコンウエーハの再生方法及び再生ウエーハ
US5320706A (en) Removing slurry residue from semiconductor wafer planarization
US6338805B1 (en) Process for fabricating semiconductor wafers with external gettering
US6376335B1 (en) Semiconductor wafer manufacturing process
CN111940394B (zh) 半导体高阶制程apc装置的石英部件再生清洗方法
US5964953A (en) Post-etching alkaline treatment process
JP4085356B2 (ja) 半導体ウェーハの洗浄乾燥方法
JP2001358107A (ja) 再生ウェーハから半導体ウェーハへの変換法
JP4579619B2 (ja) シリコンウエハの再生方法
JP4482844B2 (ja) ウェハの洗浄方法
JP2009200360A (ja) シリコン部材の表面処理方法
US20090203212A1 (en) Surface Grinding Method and Manufacturing Method for Semiconductor Wafer
CN113690128A (zh) 一种磷化铟晶片的清洗方法
JP4493062B2 (ja) 両面研磨ウェーハの製造方法
KR19990013408A (ko) 반도체 웨이퍼 평탄화 방법
US20040266191A1 (en) Process for the wet-chemical surface treatment of a semiconductor wafer
JP3606432B2 (ja) 高平坦度ウェーハの製造方法
JP3426208B2 (ja) 銅膜付着シリコン単結晶ウエーハの再生方法および再生ウエーハ
US6514423B1 (en) Method for wafer processing
KR20090121527A (ko) 실리콘 웨이퍼 재생방법 및 그 재생장치
JPH0517229A (ja) 炭化珪素質部材の製造方法
JPH11307485A (ja) 半導体ウエハ研磨方法、半導体ウエハ研磨装置、及び研磨ウエハ
KR100883511B1 (ko) 반도체 웨이퍼 연마 방법 및 장치
CN118335591A (zh) 一种晶圆再生方法
JP3558759B2 (ja) シリコンウエーハ内部の不純物除去方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007007245

Country of ref document: US

Ref document number: 10571781

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067005177

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004772042

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067005177

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004772042

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10571781

Country of ref document: US