WO2005029482A1 - 2層相変化型情報記録媒体及びその記録再生方法 - Google Patents

2層相変化型情報記録媒体及びその記録再生方法 Download PDF

Info

Publication number
WO2005029482A1
WO2005029482A1 PCT/JP2004/013558 JP2004013558W WO2005029482A1 WO 2005029482 A1 WO2005029482 A1 WO 2005029482A1 JP 2004013558 W JP2004013558 W JP 2004013558W WO 2005029482 A1 WO2005029482 A1 WO 2005029482A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
recording medium
phase change
information recording
thickness
Prior art date
Application number
PCT/JP2004/013558
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Iwasa
Michiaki Shinotsuka
Masaru Shinkai
Original Assignee
Ricoh Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Company, Ltd. filed Critical Ricoh Company, Ltd.
Priority to EP04773204A priority Critical patent/EP1667137A4/en
Publication of WO2005029482A1 publication Critical patent/WO2005029482A1/ja
Priority to US11/384,567 priority patent/US20060228531A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/259Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to a two-layer phase change information recording medium used for at least one of recording and reproduction of information using light such as a laser, and a recording / reproducing method for the two-layer phase change information recording medium.
  • two layers means that there are at least two information layers including a recording layer.
  • CDs compact discs
  • DVDs Digital Versatile Discs
  • phase change rewritable compact disc (CD-RW: CD-Rewritable) has been widely used as a recording medium compatible with CDs (compatibility).
  • Various phase-change rewritable DVDs have been proposed. Also, while the DVD capacity is 4.7 GB, the recording / reproducing wavelength is shortened to 350 nm-420 nm, and the numerical aperture NA (Numerical Aperture) is increased to increase the capacity to 20 GB or more. Is proposed!
  • phase-change type rewritable CDs and DVDs a recorded information signal is detected by utilizing a change in a reflectance and a change in a phase difference caused by a difference in a refractive index between an amorphous state and a crystalline state.
  • a typical phase-change recording medium has a structure in which at least a lower protective layer, a phase-change recording layer, an upper protective layer, and a reflective layer are provided in this order on a substrate, and the multiple interference of these constituent layers is used.
  • compatibility with CDs and DVDs can be provided.
  • CD RW within the range where the reflectivity is reduced to about 15 to 25%, compatibility between CD and recording signals and groove signals can be secured, and a CD drive with an amplification system that covers low reflectivity is added. Can be reproduced.
  • the phase-change recording medium can perform the erasing and re-recording processes only by intensity modulation of one focused light beam, and can perform recording and recording on a phase-change recording medium such as a CD-RW and a rewritable DVD.
  • a phase-change recording medium such as a CD-RW and a rewritable DVD.
  • a crystal, an amorphous state or a mixed state thereof can be used, and a plurality of crystal phases can be used.
  • a changeable recording medium has a crystalline state in at least one of an unrecorded state and an erased state, and forms an amorphous mark for recording.
  • a chalcogenide alloy containing V and a chalcogen element such as S, Se, and Te is often used.
  • a chalcogenide alloy containing V and a chalcogen element such as S, Se, and Te is often used.
  • the Sb-Te eutectic alloy-based recording material which is one of the materials generally used for phase-change recording media such as CD-RW, is particularly GeTe-SbTe.
  • the Sb-Te eutectic recording material has a high crystallization rate, it needs to be rapidly cooled in a single hour in order to form an amorphous material. This is a material that must be used, and there is a problem that it is difficult to form marks in a structure with a thin reflective layer, such as a two-sided recording layer type.
  • a layer that assists the heat diffusion function of the reflection layer by using nitride or carbide having relatively high thermal conductivity and low light absorption (hereinafter, may be referred to as a "heat diffusion layer").
  • a heat diffusion layer Is further provided on the reflective layer to approach the quenching structure, as in the single-layer phase change type information recording medium (see Patent Document 4) and the above-mentioned Patent Document 2 relating to the two-layer phase change type information recording medium. Proposed.
  • This method is considered to be an effective method for resolving the above-mentioned drawbacks that occur when the thickness of the reflective layer constituting the first information layer is reduced.
  • the thickness of the protective layer between the substrate and the recording layer is set to be large in terms of overwrite characteristics in view of light incidence.
  • the thickness of the protective layer is large, there is a problem that the film thickness varies greatly and the reflectance varies in the plane.
  • A1N is provided above and below the recording layer to form a three-layer structure such as ZnS-SiO / AlN / ZnS-SiO, which has a heat dissipation structure.
  • Patent Document 3 proposes that the number of protective layers be two, and that the thermal conductivity of the other protective layer material be larger than that of the protective layer material in contact with the recording layer.
  • the thickness of the protective layer in contact with the recording layer is 30 nm or more, it cannot be said that the quenching structure is sufficient for the Sb-Te eutectic recording material.
  • the next-generation optical disk using a blue-violet laser there is a problem that a sufficient effect cannot be obtained at 30 ⁇ m or more because the spot diameter is small.
  • Patent Document 1 Japanese Patent No. 2702905
  • Patent Document 2 JP-A-2000-222777
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-322770
  • Patent Document 4 JP-A-8-50739
  • Non-Patent Document 1 ODS2001, Technical Digest P28
  • the present invention has been made in view of the present situation, and it is an object of the present invention to solve the conventional problems and achieve the following objects. That is, the present invention provides a two-layer phase change type information recording medium having excellent overwrite characteristics, and particularly capable of rewriting at high density even when a blue-violet laser is used, and recording and reproduction using the two-layer phase change type information recording medium. It aims to provide a method. [0012] Means for solving the above problems are as follows. That is,
  • a two-layer phase-change type information recording medium for recording and / or reproducing information by irradiating a laser beam from a substrate side, wherein the first information layer has at least a first heat diffusion layer and a first protection layer.
  • the thickness of the first heat diffusion layer and the second heat diffusion layer is lOnm or more, and the thickness d (nm) of the first protective layer and the thickness d (nm) of the second protective layer are Satisfies the relationship of d ⁇ d + 5 nm
  • the film thickness of the first protective layer and the second protective layer is 35 nm or less
  • the first thermal diffusion layer and the second thermal diffusion layer Is not less than lOnm
  • the film thickness d (nm) of the first protective layer and the film thickness d (nm) of the second protective layer are represented by the following formula: d ⁇ d + 5 nm
  • thermo conductivity of the first thermal diffusion layer and the thermal conductivity of the second thermal diffusion layer are larger than the thermal conductivity of the first protective layer and the thermal conductivity of the second protective layer. It is a phase change type information recording medium.
  • the thermal conductivity of the first thermal diffusion layer is made larger than that of the first protective layer, thereby taking into account the thermal conduction delay effect of the protective layer. A super-quenched structure can be secured, the erasing ratio is improved, and the overwrite characteristics are improved. Further, by making the thermal conductivity of the second thermal diffusion layer larger than that of the second protective layer, the thermal diffusion effect of the thin first reflective layer can be compensated, and a super-quenched structure can be secured.
  • the first protective layer and the second protective layer are made of ZnS, ZnO, TaS, and rare earth, respectively.
  • the composite dielectric containing at least one selected from the sulphide and 50 mol% or more and 90 mol% or less, and having a melting point or a decomposition point of 1000 ° C or more.
  • ⁇ 4> Heat-resistant compound with melting point or decomposition point of 1000 ° C or more Mg, Ca, Sr, Y, La, Ce, Ho, Er, Yb, Ti, Zr, Hf, V, Nb, Ta, Zn, Al Si, Ge and Pb power selected
  • the two-layer phase change type information recording medium according to any one of ⁇ 1> to ⁇ 5>
  • At least one of the first heat diffusion layer and the second heat diffusion layer is made of IZO (ln O Zn
  • the thickness of the first protective layer, the second protective layer, the first thermal diffusion layer and the second thermal diffusion layer or By selecting a material, a preferable super-quenched structure can be realized.
  • the first recording layer contains Sb and Te, and further contains Ag, In, Ge, Sn, Al, Ta, V, Co, Zr, Ga, Si, Nb, Cr, Pt, Pb, S, N
  • the two-layer phase change type information recording medium according to any one of the above ⁇ 1> to ⁇ 10>, comprising at least one selected from O and O.
  • ⁇ 12> The two-layer phase change type information recording medium according to any one of ⁇ 1> to ⁇ 11>, wherein the thickness of the first recording layer is 3 to 15 nm.
  • the first reflective layer is at least one in which Au, Ag, Cu, W, Al, and Ta forces are also selected.
  • the two-layer phase change type information recording medium according to any one of the above ⁇ 1> to ⁇ 12>, containing a seed.
  • ⁇ 14> The two-layer phase change type information recording medium according to any one of ⁇ 1> to ⁇ 13>, wherein the first reflective layer has a thickness of 3 to 20 nm.
  • the reflectance, recording sensitivity, and transmittance of the first information layer of each layer are determined by recording and reproducing conditions. It is possible to provide a two-layer phase change type information recording medium having excellent recording / reproducing characteristics for the first information layer and the second information layer.
  • the two-layer phase change type information recording medium according to ⁇ 15> provides a two-layer phase change type information recording medium having excellent recording and reproduction characteristics, in which both the first information layer and the second information layer have high sensitivity. You can do it.
  • the dual-layer phase-change information recording medium according to any one of ⁇ 1> to ⁇ 16>, further including a first barrier layer between the second protective layer and the first reflective layer.
  • ⁇ 19> The two-layer phase change type information recording medium according to any one of ⁇ 1> to ⁇ 18>, wherein the thickness force of the first substrate is 10 to 600 / zm.
  • the two-layer phase change type information recording medium described in ⁇ 19> even when the numerical aperture NA of the objective lens changes, at least one of information recording and reproduction can be performed satisfactorily.
  • the two-layer phase change type information recording medium according to any one of ⁇ 1> to ⁇ 19>, Recording of information and / or reproduction of information by injecting a light beam having a wavelength of 350-700 nm into the first substrate on each information layer in (1). It is a reproduction method.
  • a large-capacity information may be obtained by using the multi-layer phase-change information recording medium according to any one of ⁇ 1> to ⁇ 14>. At least one of recording and reproduction is performed.
  • a two-layer phase change type information recording medium which can solve various problems in the related art, is excellent in overwrite characteristics, and can be rewritten with high density even when a blue-violet laser is used. be able to.
  • FIG. 1 is a schematic cross-sectional view of a two-layer phase change type information recording medium according to an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of a two-layer phase change type information recording medium according to another embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a two-layer phase change type information recording medium in which groups are provided on a first substrate and a second substrate.
  • FIG. 4 is a schematic cross-sectional view of a two-layer phase change type information recording medium in which a group is provided on a first substrate and an intermediate layer.
  • the two-layer phase change type information recording medium of the present invention has at least a first information layer, an intermediate layer, and a second information layer between a first substrate and a second substrate in this order, and further, if necessary. It has other layers.
  • the first information layer has at least a first heat diffusion layer, a first protection layer, a first recording layer, a second protection layer, a first reflection layer, and a second heat diffusion layer in this order. And, if necessary, other layers.
  • the film thickness in the first protective layer and the second protective layer is 35 nm or less
  • the film thickness in the first thermal diffusion layer and the second thermal diffusion layer is lOnm or more
  • the thickness d (nm) of the first protective layer and the thickness d (nm) of the second protective layer are represented by the following formula: d ⁇ d +
  • the thermal conductivity in the first thermal diffusion layer and the second thermal diffusion layer is larger than the thermal conductivity in the first protective layer and the second protective layer.
  • phase change type information recording medium of the present invention conventionally known techniques can be applied to the recording layer made of a phase change type material and the reflective layer, but the protective layer and the heat diffusion layer can be used. Is characterized by using a specific material and further defining the relationship between the thicknesses of the first protective layer and the second protective layer.
  • FIG. 1 shows a schematic cross-sectional view of a two-layer phase change type information recording medium according to an embodiment of the present invention
  • this information recording medium has a first substrate 1Z, a first heat diffusion layer 2Z 1st protective layer 3Z 1st recording layer 4Z 2nd protective layer 5Z 1st barrier layer 14Z 1st reflective layer 6Z 2nd thermal diffusion layer 7Z intermediate layer 8Z 3rd protective layer 9Z 2nd recording layer 10Z 4th protective layer 11Z
  • It has the structure of the two barrier layers 15Z, the second reflection layer 12Z, and the second substrate 13, and further has other layers as necessary. Note that the first barrier layer 14 and the second barrier layer 15 are provided as necessary.
  • FIG. 2 is a schematic cross-sectional view of a two-layer phase change type information recording medium according to another embodiment of the present invention.
  • the information recording medium has a first substrate 1Z transparent layer 16Z Diffusion layer 2Z 1st protective layer 3Z 1st recording layer 4Z 2nd protective layer 5Z 1st barrier layer 14Z 1st reflective layer 6Z 2nd heat spreading layer 7Z intermediate layer 8Z 3rd protective layer 9Z 2nd recording layer 10Z 4th It has the structure of the protective layer 11Z second barrier layer 15Z second reflective layer 12Z second substrate 13, and further has other layers as necessary. Note that the first barrier layer 14, the second barrier layer 15, and the transparent layer 16 are provided as necessary.
  • the transparent layer 16 is provided when a thin sheet is used for the first substrate 3 and the manufacturing method is different from that of the information recording medium of FIG.
  • each layer of the two-layer phase change type information recording medium in FIGS. 1 and 2 is such that the recording layer is irradiated with a focused light beam for recording and reproduction, for example, a laser beam via the first substrate 1. Suitable for the case.
  • the first substrate 1 needs to be capable of sufficiently transmitting light to be irradiated for recording and reproduction, and is appropriately selected from those conventionally known in the art. You can be there.
  • the material of the first substrate glass, ceramics, resin, or the like is usually used, but resin is preferable in terms of moldability and cost.
  • the resin examples include polycarbonate resin, acrylic resin, epoxy resin, polystyrene resin, acrylonitrile styrene copolymer resin, polyethylene resin, polypropylene resin, silicone resin, and fluorine resin. , ABS resin, urethane resin, etc.
  • polycarbonate resins such as polycarbonate resin and polymethyl methacrylate (PMMA), which are excellent in moldability, optical properties and cost, are preferred.
  • PMMA polymethyl methacrylate
  • Polycarbonate resin is the most widely used material in CDs and is the most preferred material because it has a proven track record and is inexpensive.
  • the surface of the first substrate 3 on which the information layer is formed is provided with a spiral or concentric groove for tracking laser light, if necessary, and is usually called a group portion or a land portion.
  • the uneven pattern to be formed may be formed usually by an injection molding method or a photopolymer method.
  • the pitch is preferably 0.8 m or less, and preferably 0.1-0.8 m.
  • the grooves need not necessarily be geometrically rectangular or trapezoidal grooves.Even if, for example, a waveguide having a different refractive index is formed by ion implantation or the like, optical grooves are formed.
  • the thickness of the first substrate 3 can be appropriately selected depending on the purpose of the present invention, and is preferably 10-600 / zm.
  • the substrate thickness is adjusted by the numerical aperture (NA) of the recording / reproducing system.
  • NA numerical aperture
  • the substrate thickness is more preferably 550-600 / zm.
  • the substrate thickness is more preferably 69-100 m.
  • the same material as the first substrate 1 may be used, but the first substrate 1, which may use a material opaque to recording / reproducing light, The material and groove shape may be different.
  • the thickness of the second substrate 13 can be appropriately selected depending on the purpose to which there is no particular limitation.
  • the total thickness of the first substrate 1 and the thickness of the first substrate 1 is preferably 1.1 to 1.3 mm, more preferably 1 to 1.3 mm. It is preferable to select the thickness of the second substrate 13 so as to be about 2 mm.
  • the intermediate layer 8, and the transparent layer 16, the wavelength of the light irradiated for recording and reproduction
  • resin is suitable in terms of moldability and cost, and UV curable resin, slow-acting resin, thermoplastic resin, and the like can be used.
  • double-sided tape for bonding optical disks for example, an adhesive sheet manufactured by Nitto Denko Corporation
  • DA-8320 can also be used.
  • the second substrate 13 and the intermediate layer 8 may be formed with a concavo-convex pattern such as a guide groove formed by an injection molding method or a photopolymer method, similar to the first substrate 1.
  • the intermediate layer 8 allows the pickup to identify the first information layer and the second information layer so as to be optically separable when performing recording and reproduction, and has a thickness of 10-70. m is preferred. If the thickness is less than 1 O / zm, interlayer crosstalk occurs. If the thickness is greater than 70 m, spherical aberration occurs when recording and reproducing the second information layer, and recording and reproduction tend to be difficult.
  • the thickness of the transparent layer 16 can be appropriately selected according to the purpose without particular limitation, and the two-layer phase-change optical information recording manufactured by the manufacturing method without the transparent layer 16 as shown in FIG.
  • the first recording layer 4 and the second recording layer 10 are phase-change recording layers, and the thickness of the first recording layer 4 and the second recording layer 10 is different from the preferable range.
  • the thickness of the first recording layer 4 is preferably 3 to 15 nm, more preferably 3 to lOnm. If the film thickness of the first recording layer 4 is less than 3 nm, it is difficult to form a film having a uniform thickness, and there is a tendency that the crystallization speed tends to be slow, so that erasing in a short time becomes difficult. If it exceeds 15 nm, the transmittance may decrease, and the sensitivity of the second information layer may decrease.
  • the thickness of the second recording layer 10 is preferably in the range of 3-100 nm. If the film thickness is less than 3 nm, the same problems as in the first recording layer 4 may occur.If the film thickness exceeds 100 nm, optical contrast is obtained, and cracks are easily generated. Sometimes.
  • the thickness of the second recording layer 10 is preferably 3 to 25 nm. If it is less than 3 nm, the reflectivity will be too low, and the effect of uneven composition and sparse film in the initial stage of film growth may easily appear.If it exceeds 25 nm, the heat capacity will increase and the recording sensitivity will deteriorate.
  • the crystal growth becomes three-dimensional, the edges of the amorphous marks tend to be disturbed and the jitter tends to increase. Furthermore, the volume change due to the phase change of the second recording layer 10 becomes remarkable, and the repeated overwrite (O / W) durability deteriorates. From the viewpoint of mark edge jitter and repetitive overwrite (OZW) durability, it is more preferable to set the thickness to 3 to 20 nm.
  • the density of the first recording layer 4 and the second recording layer 10 is preferably at least 80%, more preferably at least 90%, of the Balta density.
  • the pressure of a sputter gas (a rare gas such as Ar) at the time of deposition is reduced, or the pressure is reduced in front of the target. It is necessary to increase the amount of high-energy Ar irradiated to the recording layer, for example, by arranging substrates close to each other.
  • High-energy Ar is the Ar ion force that is applied to the target for sputtering and is partially bounced to reach the substrate side, or Ar ions in the plasma are accelerated by the sheath voltage over the entire substrate and reach the substrate.
  • Such high-energy rare gas irradiation effects are called "atomic peening effects"!
  • Ar is mixed into a sputtered film by an “atomic peening effect”.
  • the atomic peening effect can be estimated from the amount of Ar in the mixed film.
  • a small amount of Ar means that the high-energy Ar irradiation effect is small, and a film having a low density is easily formed.
  • the higher the amount of Ar the higher the energy
  • the higher the intensity of the Ar irradiation the higher the density, but the Ar incorporated in the film becomes voids during repeated overwriting (O / W) and precipitates, resulting in repeated durability. Deteriorates.
  • An appropriate amount of Ar in the recording layer (first recording layer 4, second recording layer 10) film is 0.1 to 1.5 atomic%. Further, it is preferable to use a high-frequency sputtering rather than a direct-current sputtering, since a high-density film can be obtained by reducing the amount of Ar in the film.
  • the material of the first recording layer 4 and the second recording layer 10 is a thin film mainly composed of an alloy containing Sb and Te as main constituent elements.
  • Each of the above records composed of such constituent elements Other elements may be added to the layer as needed, up to a total of about 10 atomic%.
  • Ge force is suitable for storage stability and strong contrast ratio.
  • the optical constant of the recording layer can be finely adjusted by further adding at least one element selected from 0, N or S force to each recording layer in the range of 0.1 to 5 atomic%. However, adding more than 5 atomic% is not preferable because it lowers the crystallization rate and deteriorates the erasing performance.
  • the amount of at least one type of additional force selected from V, Nb, Ta, Cr, Co, Pt and Zr is less force S preferably 8 atomic%, 0.5 1 5 atoms 0/0 is more preferable.
  • the total amount of the above-mentioned additional elements and Ge to SbTe is preferably 15 atomic% or less. If it is contained in excess of 15 atomic%, phase separation other than Sb will be induced. In particular, when the Ge content is 3 atomic% or more and 5 atomic% or less, the addition effect is large.
  • the addition amount of at least one of Si, Sn, and Pb is preferably 5 atomic% or less. Is more preferred.
  • the total addition amount of these additional elements and Ge is preferably 15 atomic% or less, more preferably 0.2 to 10 atomic%.
  • each element of Si, Sn, or Pb is an element having a four-coordinate network like Ge.
  • Adding Al, Ga, and In at 8 atomic% or less has the effect of increasing the crystallization temperature and at the same time reducing jitter and improving the recording sensitivity, but tends to cause segregation. Therefore, 0.1 to 6 atomic% is preferable.
  • the total amount of Al, Ga, and In added together with Ge is preferably 15 atomic% or less, more preferably 0.2 to 13 atomic%.
  • the addition of Ag in an amount of 8 atomic% or less is effective in improving the recording sensitivity, and is particularly remarkable when used when the Ge atomic weight exceeds 5 atomic%. However, if the amount of Ag exceeds 8 atomic%, it is not preferable because the jitter is increased and the stability of the amorphous mark is impaired. Further, when the total amount of addition with Ge exceeds 15 atomic%, segregation is likely to occur, which is not preferable.
  • the most preferred Ag content is 5 atomic% or less.
  • the first recording layer 4 and the second recording layer 10 are usually amorphous after being formed. Therefore, it is necessary to crystallize the entire surface of each recording layer after the film is formed to be in an initialized state (unrecorded state).
  • an initialization method it is also possible to perform an initial dani with anneal in a solid phase, Initialization by so-called melt recrystallization is desired, in which the recording layer is once melted and gradually cooled during resolidification to crystallize. It is difficult to crystallize each of the above recording layers in the solid phase immediately after film formation because there are few nuclei for crystal growth.However, according to melt recrystallization, a small number of crystal nuclei are formed and then melted. Thus, recrystallization proceeds at a high speed mainly by crystal growth.
  • the crystals of the first recording layer 4 and the second recording layer 10 formed by melting and recrystallization have different reflectances from the crystals formed by the solid-state arc, the mixed crystals cause noise. Then, in actual overwrite recording, since the erased portion becomes a crystal formed by melt recrystallization, it is preferable that the initial shading is also performed by melt recrystallization.
  • the recording layer is preferably melted locally and in a short time of about 1 ms or less.
  • the reason for this is that if the melting area is wide, or if the melting time or the cooling time is too long, each layer is destroyed by heat or the surface of the plastic substrate is deformed.
  • a high-power semiconductor laser beam with a wavelength of about 600 lOOOnm is focused on a long axis of 100 to 300 m and a short axis of 13 m to be irradiated, and runs in the short axis direction. It is desirable to scan at a linear velocity of 11 lOmZs as the axis. Even with the same focused light, if it is close to circular, the melted area is too wide and re-amorphization occurs immediately, and damage to the multilayer structure and the substrate is large, which is not desirable!
  • initialization has been performed by melt recrystallization as follows. That is, the medium after the initialization is irradiated with a recording light having a recording power Pw at a constant linear velocity in a DC manner to melt a recording layer focused to a spot diameter smaller than about 1.5 m in diameter. If there is a guide groove, the tracking is performed with the tracking servo and the focus servo applied to the groove or the track formed between the grooves. Thereafter, if the reflectivity in the erased state obtained by irradiating the same track with erasing light of the erasing power Pe ( ⁇ Pw) in a DC manner is almost the same as the reflectivity in the unrecorded initial state, this is the case.
  • the initialized state can be confirmed as a molten recrystallization state.
  • the reason for this is that the recording layer is once melted by the irradiation of the recording light, and is completely recrystallized by the irradiation of the erasing light. It is also the force that is in the crystallized state.
  • the reflectance (Rini) in the initialized state and the reflectance (Rcry) in the molten and recrystallized state are almost the same.
  • the same is defined as the difference between the two reflectances defined by (Rini-Rcry) / ⁇ (Rini + Rcry) Z2 ⁇ being 20% or less.
  • the difference in reflectance is larger than 20% only by solid phase crystallization such as annealing.
  • the first recording layer 4 and the second recording layer 10 each include a first recording layer 4 between the first protective layer 3 and the second protective layer 5,
  • the second recording layer 10 is sandwiched between the third protective layer 9 and the fourth protective layer 11, and is provided on the surface of the first substrate 1 (groove forming surface).
  • the first protective layer 3 is effective for preventing deterioration and deterioration of the first recording layer 4 due to a high temperature during recording, and has an optical role when adjusting the reflectance.
  • the second protective layer 5 prevents the mutual diffusion between the first recording layer 4 and the first reflective layer 6 and efficiently dissipates heat to the first reflective layer 6 while suppressing deformation of the first recording layer 4. It also has the function of.
  • the third protective layer 9 of the second information layer 200 has the same function as the first protective layer 3, is effective in preventing the second recording layer 10 from deteriorating due to high temperature during recording, and is also effective in reflecting light. Adjusting the rate also has an optical role.
  • the fourth protective layer 11 has a role similar to that of the second protective layer 5, and also has a function of efficiently dissipating heat to the second reflective layer 12 while suppressing deformation of the second recording layer 10.
  • the materials of the first protective layer 3, the second protective layer 5, the third protective layer 9, and the fourth protective layer 11 include refractive index, thermal conductivity, chemical stability, mechanical strength, and adhesion. Determined by taking into account gender and other factors. Generally, the ability to use oxides, sulfides, nitrides, carbides and fluorides such as Ca, Mg, and Li of metals and semiconductors with high transparency and high melting point As a result, a mixture of ZnS and SiO is most preferable in consideration of the above-mentioned viewpoint and the compatibility with the materials constituting the first recording layer 4 and the second recording layer 10. Not only this material but also the above oxide
  • the sulfide, nitride, carbide, and fluoride do not always need to have a stoichiometric composition. It is also effective to control the composition for controlling the refractive index and the like, or to use a mixture of them.
  • the layer configuration of the first information layer 100 of the present invention belongs to a type of layer configuration called a quenching structure.
  • the quenching structure adopts a layer structure that promotes heat radiation and increases the cooling rate when the recording layer is re-solidified, so that re-crystallization during amorphous mark formation is achieved.
  • a high erasing ratio is realized by high-speed crystallization while avoiding the problem described above.
  • the thickness of the first protective layer 3 and the second protective layer 5 is 35 nm or less, preferably 5-30 nm. If the film thickness is less than 5 nm, the recording layer may be destroyed due to deformation or the like when the recording layer is melted, or the heat radiation effect may be so large that the power required for recording may become unnecessarily large.
  • the thicknesses of the first protective layer 3 and the second protective layer 5 greatly affect the durability in repeated overwriting, and are particularly important in suppressing jitter.
  • the film thickness exceeds 35 nm, the temperature difference between the recording layer side of the protective layer and the first reflective layer 6 side or the first heat diffusion layer 2 side becomes large during recording in which the quenching structure cannot be obtained, and Due to the difference in thermal expansion between both sides of the protective layer, the protective layer itself tends to be asymmetrically deformed. This repetition is not preferable because it causes microscopic plastic deformation to accumulate inside the protective layer and causes an increase in noise.
  • the use of the recording layer material as described above enables high-density recording with a minimum mark length of 0.5 ⁇ m or less.
  • a short wavelength laser diode for example, a wavelength of 700 nm or less
  • further attention must be paid to the layer structure of the quenching structure.
  • flattening the temperature distribution in the mark width direction requires a high erase ratio. And the importance of widening the erase power margin.
  • This tendency is the same in DVD-compatible optical systems using an optical system with a wavelength of 630 to 680 nm and NA of about 0.6.
  • the erasing ratio and the erasing power margin can be improved by forming the first thermal diffusion layer 2 and the reflective layer 6 provided thereon on a material having a particularly high thermal conductivity.
  • the information recording medium can be used.
  • the width that can be recrystallized without melting and re-amorphization is expanded, and the erasing rate and erasing power margin are expanded. Tried.
  • heat dissipation from the first recording layer 4 to the first reflective layer 6 with extremely high thermal conductivity is promoted via the very thin second protective layer 5 with low thermal conductivity, and the thermal conductivity is extremely low.
  • the temperature distribution in the first recording layer 4 becomes flat. I understand. Even if the thermal conductivity of the first and second protective layers is increased, the heat radiation effect is promoted.However, if the heat radiation is promoted too much, the irradiation power required for recording is increased, that is, the recording sensitivity is significantly reduced. .
  • the thin first protective layer 3 and the second protective layer 5 having low thermal conductivity.
  • the first thermal diffusion layer 2, the first thermal diffusion layer 2, the first thermal diffusion layer 2, and the A time delay is given to the heat conduction to the reflection layer 6, and then the heat radiation to the first heat diffusion layer 2, the first reflection layer 6, and further to the second heat diffusion layer 7 can be promoted. It does not lower the recording sensitivity more than necessary.
  • the protective layer material mainly composed of Al O, A1N, SiN, etc. has too high its own thermal conductivity.
  • first protective layer 3 and the second protective layer 5 are not preferable as the first protective layer 3 and the second protective layer 5 in the two-layer phase change type information recording medium of the present invention.
  • the “ultra-quenching structure in consideration of the heat conduction delay effect in the first protective layer 3 and the second protective layer 5” of the present invention, when applied to the above-mentioned recording layer material, is used in a DVD-RAM or the like. It is more effective than the existing GeTe-SbTe recording layer.
  • the material of the first protective layer 3 and the second protective layer 5 has a low thermal conductivity. Force the rule of thumb is 1 X 10- 3 pj / (m'K'nsec ). However, it is difficult to directly measure the thermal conductivity of such a low thermal conductivity material in a thin film state, and a guide can be obtained from the thermal simulation and the measurement result of the actual recording sensitivity instead.
  • the first protective layer 3 and the second protective layer 5 having a low thermal conductivity that provides a preferable result at least one selected from ZnS, ZnO, TaS, and a rare earth element is also used at 50 mol%.
  • a composite dielectric containing at least 90 mol% or less and having a melting point or decomposition point of 1000 ° C or more and a heat-resistant conjugate is desired.
  • a composite dielectric containing 60 mol% or more and 90 mol% or less of rare earth sulfides such as La, Ce, Nd, and Y is preferable.
  • the range of the composition of ZnS, ZnO or the rare-earth sulphide is preferably 70 to 90 mol%.
  • Examples of the heat-resistant compound material having a melting point or decomposition point of 1000 ° C or higher mixed with these include, for example, Mg, Ca, Sr, Y, La, Ce, Ho, Er, Yb, Ti, Zr, and Hf. , V, Nb, Ta, Zn, Al, Si, Ge, Pb and other oxides, nitrides, or carbides, and fluorides such as Ca, Mg, and Li can be used.
  • SiO is particularly preferable as a material to be mixed with ZnS.
  • the thickness of the first protective layer 3 and the second protective layer 5 is more than 30 nm, a sufficient flattening effect of the temperature distribution in the mark width direction cannot be obtained, so that the thickness is preferably 30 nm or less. 25 nm or less is preferable.
  • the film thickness is less than 5 nm, the effect of delaying heat conduction in the protective layer portion is insufficient, and the recording sensitivity is significantly reduced, which is not preferable. Therefore, the thickness of the first protective layer 3 and the second protective layer 5 is preferably 15 nm to 25 nm when the wavelength of the recording laser beam is 600 to 700 nm. Further, when the wavelength of the recording laser beam is 350-600 nm, 5-20 nm is preferable, and 5-15 nm is more preferable.
  • both the first and second protective layers were formed by mixing ZnS and SiO.
  • the third protective layer 9 and the fourth protective layer 11 constituting the second information layer 200 will be described.
  • the second information layer 200 has a super-quenching structure.
  • the fourth protective layer 11 located between the second recording layer 10 and the second reflective layer 12 is made of a material having low thermal conductivity as described in the first protective layer 3 and the second protective layer 5. , And a film thickness.
  • the third protective layer 9 those conventionally known in the art are applied. However, when the same material as the fourth protective layer (for example, a mixture of ZnS and SiO) is used, upper
  • the thickness of the third protective layer 9 is preferably from 30 to 200 nm, and the film thickness is preferably designed so as to obtain an optimum reflectance in this range. If the thickness is less than 30 nm, the recording layer may be deformed by heat during recording, and if it exceeds 20 nm, there is a tendency that a problem occurs in mass productivity.
  • the first reflective layer 6 and the second reflective layer 12 have a function of efficiently using incident light, improving a cooling rate, and making the film amorphous, and are particularly features of the present invention.
  • a metal having a very high thermal conductivity is used, and for example, Au, Ag, Cu, W, Al, Ta, or the like, or an alloy thereof can be used.
  • Cr, Ti, Si, Pd, Ta, Nd, Zn, and the like are used as additive elements.
  • the Ag-based material has a small refractive index even in the blue wavelength region and can suppress light absorption. Therefore, the reflective layer of the first information layer in the two-layer phase change type information recording medium as in the present invention is used. It is preferable as a material used for the above.
  • the reflection layers 6, 12 can be formed by various vapor phase epitaxy methods, for example, a vacuum evaporation method, a sputtering method, a plasma CVD method, a photo CVD method, an ion plating method, an electron beam evaporation method, or the like. .
  • the sputtering method is excellent in mass productivity, film quality, and the like.
  • the first reflective layer 6 is made of Ag having a low refractive index and a high thermal conductivity or an alloy thereof.
  • the thickness of the first reflective layer 6 is preferably 3 to 20 nm. If it is less than 3 nm, it may be difficult to form a dense film having a uniform thickness, and if it is more than 20 nm, the transmittance may decrease and recording / reproducing of the second information layer 200 may become difficult. is there.
  • the thickness of the second reflective layer 12 constituting the second information layer 200 is preferably from 50 to 300 nm, more preferably from 80 to 150 nm.
  • the film thickness is less than 5 Onm, even if it is pure Ag, the heat dissipation effect may be insufficient for the ultra-quenching structure unless a heat diffusion layer is further provided thereon. Escapes in the vertical direction from the direction, does not contribute to the improvement of the heat distribution in the horizontal direction, and the cooling capacity of the second recording layer 10 may be slowed down rather than the heat capacity of the second reflective layer 12 itself, and The microscopic flatness of the film surface may also deteriorate.
  • the two-layer phase-change information recording medium of the present invention comprises a first noria layer 14, a fourth protective layer 11, and a second reflective layer 12 between the second protective layer 5 and the first reflective layer 6. At least one of the second barrier layers 15 may be provided therebetween.
  • the reflective layer is most preferably an Ag alloy
  • the protective layer is most preferably a mixture of ZnS and SiO.
  • Sulfur in the layer may corrode Ag in the reflective layer, which may reduce storage reliability.
  • the noria layer must not contain sulfur and have a melting point higher than that of the recording layer.
  • metal oxides such as SiO, ZnO, SnO, AlO, TiO, InO, MgO, and ZrO are used.
  • Nitrides such as SiN, A1N, TiN, ZrN, SiC, TaC, BC, WC, TiC, ZrC
  • barrier layers have a low absorption at the laser wavelength.
  • the barrier layers 14 and 15 can be formed by various vapor deposition methods, for example, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, an ion plating method, an electron beam deposition method, and the like. Among these, the sputtering method is excellent in mass productivity, film quality, and the like.
  • the thickness of the barrier layers 14 and 15 is preferably 2 to 10 nm. If the film thickness is less than 2 nm, the effect of preventing corrosion of Ag cannot be obtained, and storage reliability may decrease.If the film thickness exceeds 10 nm, a quenched structure cannot be obtained or the transmittance decreases. Sometimes.
  • the heat diffusion layers are provided for the purpose of assisting the heat diffusion of a thin reflective layer provided for improving the transmittance of the first information layer 100.
  • a super-quenched structure can be secured.
  • the thermal conductivity of the first thermal diffusion layer 2 As a property of the material of the thermal diffusion layers 2 and 7, it is desired that the thermal conductivity is higher than those of the first protective layer 3 and the second protective layer 5.
  • the thermal conductivity of the first thermal diffusion layer 2 By making the thermal conductivity of the first thermal diffusion layer 2 larger than that of the first protective layer 3, it is possible to secure a super-quenching structure in consideration of the thermal conduction delay effect in the protective layer, improve the erasing ratio, and improve overwriting. This leads to improved characteristics.
  • the thermal conductivity of the second thermal diffusion layer 7 larger than that of the second protective layer 5, the thermal diffusion effect of the thin first reflective layer 6 can be compensated, and a super-quenched structure can be secured. Can be.
  • the absorptance at the laser wavelength be small so that the second information layer 200 on the back side can record and reproduce.
  • the extinction coefficient is preferably 0.5 or less, more preferably 0.3 or less. If the extinction coefficient is larger than 0.5, the absorptivity in the first information layer increases, and it may be difficult to record and reproduce information on the second information layer 200.
  • an oxide having electrical conductivity can be given.
  • an oxide having electrical conductivity For example, use In O, SnO, ZnO, CdO, TiO, Cdln O, Cd SnO, Zn SnO, etc.
  • ITO lan O -SnO
  • IZO In O ZnO
  • heat diffusion layer material is preferred. These may be used alone or mixed.
  • the thickness of the first thermal diffusion layer 2 and the second thermal diffusion layer 7 is lOnm or more, and preferably 10-200 ⁇ m. If the film thickness is less than lOnm, the heat radiation effect may not be obtained. If the film thickness is more than 200 nm, the stress is increased, and the repetitive recording characteristics are deteriorated. is there.
  • the first information layer 100 of the two-layer phase change type information recording medium of the present invention has a light transmittance at a laser beam wavelength used for recording and reproduction of preferably 40 to 70%, more preferably 45 to 60%. Is more preferred. If the light transmittance is less than 40%, recording and reproduction of the second information layer may become difficult. If the light transmittance exceeds 70%, the recording sensitivity and the reflectance of the first information layer may decrease. .
  • the method for producing a two-layer phase change type information recording medium of the present invention comprises, in the first embodiment, a film forming step, It includes an initialization step and a contact step, and basically performs each step in this order.
  • FIG. 3 is a schematic cross-sectional view of a two-layer phase change type information recording medium manufactured by this method, and groups are formed on the first substrate 1 and the second substrate 13.
  • the first information layer 100 is formed on the surface on which the group of the first substrate 1 is provided, and the second information layer 200 is formed on the surface on which the group of the second substrate 13 is provided. The one with the is formed separately.
  • the layers constituting each of the first information layer 100 and the second information layer 200 are formed by various vapor deposition methods, for example, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, an ion plating method, and an electron plating method. It is formed by a beam evaporation method or the like.
  • the sputtering method is excellent in mass productivity, film quality, and the like.
  • film formation is generally performed while flowing an inert gas such as argon. At this time, reactive sputtering may be performed while mixing oxygen, nitrogen and the like.
  • the entire surface is initialized by emitting energy light such as laser light to the first information layer 100 and the second information layer 200, that is, the recording layer is crystallized. .
  • the film may float due to the energy of the laser beam during the initialization step, spin UV resin or the like on the first information layer and the second information layer before the initialization step.
  • the coating may be applied and cured by irradiating ultraviolet rays to form an overcoat. Further, after the next adhesion step is performed first, the first information layer and the second information layer may be initialized from the first substrate side.
  • the first information layer 100 formed on the surface of the first substrate 1 and the second information layer 200 formed on the surface of the second substrate 13 are initialized as described above.
  • the formed product is bonded via the intermediate layer 8 while the first information layer 100 and the second information layer 200 face each other.
  • one of the film surfaces is spin-coated with an ultraviolet-curable resin serving as an intermediate layer, the film surfaces are opposed to each other, and the substrates are pressed and adhered to each other. Can be cured.
  • FIG. 4 is a schematic cross-sectional view of a two-layer phase change type information recording medium manufactured by this method, in which groups are formed on the intermediate layer 8 and the second substrate 13.
  • the first film forming step is a step of forming the second information layer 200 on the surface of the second substrate 13 where the guide groove is provided.
  • the film forming method is as described above.
  • the intermediate layer forming step is a step of forming an intermediate layer 8 having a guide groove on the second information layer 200.
  • an ultraviolet-curing resin is applied to the entire surface of the second information layer 200, and while pressing a stamper made of a material that can transmit ultraviolet rays, the resin is irradiated with ultraviolet rays to be cured, so that the grooves are formed. Can be formed.
  • the second film forming step is a step of forming the first information layer 100 on the intermediate layer 8.
  • the film forming method is as described above.
  • the substrate bonding step is a step of bonding the first information layer 100 and the first substrate 1 via the transparent layer 16.
  • a UV curable resin as a material of the transparent layer 16 is spin-coated, and the first information layer 100 and the first substrate 1 are bonded.
  • the film can be formed by irradiating ultraviolet rays to cure the film.
  • the resin that is the material of the first substrate 1 is applied on the first information layer 100 and cured to form the first substrate 1. Good.
  • the entire surface is initialized by emitting energy light such as laser light from the first substrate 1 side to the first information layer 100 and the second information layer 200, that is, the recording layer is crystallized.
  • energy light such as laser light
  • the information layer in the two-layer phase-change type information recording medium of the present invention is applied with a light beam having a wavelength of 350-700 nm on the first information layer side to record and reproduce information. Do.
  • a semiconductor laser for example, an oscillation wavelength of 350 to 700 nm
  • Irradiation of light for recording such as. This irradiation light causes the recording layer to absorb the light.
  • the temperature rises locally and, for example, an amorphous mark is formed to record information.
  • the information recorded as described above can be reproduced by rotating the optical recording medium at a predetermined constant linear speed, irradiating the first substrate side force with laser light, and detecting the reflected light. .
  • the first thermal diffusion layer having an IZO (In O—10% by mass ZnO) force is formed on the first substrate to a thickness of 60 nm by magnetron sputtering using a single-wafer sputtering apparatus (manufactured by Balzers).
  • IZO In O—10% by mass ZnO
  • the film was formed as follows. On the first thermal diffusion layer, a first protective layer with ZnS—20 mol% SiO
  • the film was formed to have a thickness of 10 nm by a magnetron sputtering method.
  • a first recording layer made of Ge Ag In Sb Te is formed on the first protective layer so that the thickness is 6 nm.
  • the film was formed by the guntron sputtering method. ZnS—20 mol% SiO force on the first recording layer
  • a protective layer was formed by magnetron sputtering so as to have a thickness of lOnm.
  • a first reflective layer made of Ag-3% by mass Zn-2% by mass A1 was formed by magnetron sputtering so as to have a thickness of lOnm.
  • IZO In O—10% by mass ZnO
  • a strong second thermal diffusion layer was formed by magnetron sputtering so as to have a thickness of 70 nm. Thus, a first information layer was produced.
  • a second substrate made of polycarbonate resin and having a radius of 120 mm and a thickness of 0.58 mm, which has an irregular guide groove having a pitch of 0.43 ⁇ m and a groove depth of 38 nm was prepared.
  • a second reflective layer having an A1-3at% Ti force was formed to a thickness of 80 nm on a second substrate by magnetron sputtering.
  • a fourth protective layer with ZnS—20 mol% SiO force was applied by magnetron sputtering to a thickness of 20 nm.
  • the second recording layer which also has Ge Ag In Sb Te force on the fourth protective layer, has a thickness of 12n.
  • the film was formed by magnetron sputtering so that m was obtained.
  • a third protective layer made of ZnS-20 mol% SiO2 was formed by magnetron sputtering so as to have a thickness of 70 nm.
  • the prepared first information layer and second information layer were irradiated with laser light from the first substrate side and the second information layer film side, respectively, to perform an initialization process.
  • the light transmittance of the first information layer at a wavelength of 407 nm was measured from the first substrate side using a spectrophotometer (manufactured by SHIMADZU).
  • a coating solution containing an ultraviolet-curable resin (manufactured by Nippon Kayaku Co., Ltd., DVD003) is applied on the film surface of the first information layer by spin coating, and the second information layer surface side of the second substrate is coated. After bonding, the first substrate side was irradiated with ultraviolet light to cure the ultraviolet curing resin to form an intermediate layer having a thickness of 35 m.
  • an ultraviolet-curable resin manufactured by Nippon Kayaku Co., Ltd., DVD003
  • the obtained two-layer phase change type information recording medium was irradiated with a focused light beam using an optical system having a wavelength of 407 nm and a numerical aperture of the objective lens of 0.65, and the linear velocity was 6. OmZs, 0.180 / z mZb it.
  • the initial jitter, the jitter after 100 overwrites, and the recording sensitivity (the power to obtain the minimum jitter) were measured. The results are shown in Table 1.
  • the jitter was 9% or less, and the overwrite characteristics were good. Recording and evaluation were also performed on the second information layer under the same conditions. When the power was 13 mW or less, the jitter was 9% or less, and the overwrite characteristics were good.
  • the thermal conductivity of IZO (In O-10% by mass ZnO) used for the layer and the second thermal diffusion layer was measured.
  • the thermal conductivity was measured by a laser heating method in which a single film was formed on a 30-m-thick glass with a thickness of 100 Onm. 0.50 for ZnS—20 mol% SiO
  • the thickness of the first thermal diffusion layer in the first information layer was 50 nm
  • the thickness of the first protective layer was 20 nm
  • the thickness of the second protective layer was A two-layer phase change type information recording medium was produced in the same manner as in Example 1 except that the thickness was changed to 15 nm.
  • the thickness of the first thermal diffusion layer in the first information layer was 50 nm
  • the thickness of the first protective layer was 20 nm
  • the thickness of the second protective layer. was changed to 20 nm
  • the film thickness of the second thermal diffusion layer was changed to 75 nm, to produce a two-layer phase change type information recording medium in the same manner as in Example 1.
  • the thickness of the first thermal diffusion layer in the first information layer was 40 nm
  • the thickness of the first protective layer was 30 nm
  • the thickness of the second protective layer was Was changed to 25 nm
  • the film thickness of the second thermal diffusion layer was changed to 75 nm, to produce a two-layer phase change type information recording medium in the same manner as in Example 1.
  • the thickness of the first thermal diffusion layer in the first information layer was 40 nm
  • the thickness of the first protective layer was 30 nm
  • the thickness of the second protective layer was Was changed to 30 nm
  • the film thickness of the second thermal diffusion layer was changed to 80 nm, to produce a two-layer phase change type information recording medium in the same manner as in Example 1.
  • the thickness of the first thermal diffusion layer in the first information layer was 60 nm
  • the thickness of the second protective layer was 20 nm
  • the thickness of the second thermal diffusion layer was 20 nm.
  • a two-layer phase change type information recording medium was produced in the same manner as in Example 1 except that the film thickness was changed to 75 nm.
  • Example 2 the thickness of the second protective layer in the first information layer was set to 30 nm and the second thermal expansion was performed.
  • a two-layer phase change type information recording medium was produced in the same manner as in Example 1, except that the thickness of the spattered layer was changed to 80 nm.
  • Example 2 -Fabrication of a two-layer phase change type information recording medium-In Example 1, except that the thickness of the first thermal diffusion layer in the first information layer was changed to 50 nm, and the thickness of the first protective layer was changed to 20 nm. In the same manner as in Example 1, a two-layer phase change type information recording medium was produced.
  • Example 2 -Fabrication of a two-layer phase change type information recording medium-In Example 1, except that the thickness of the first thermal diffusion layer in the first information layer was changed to 40 nm and the thickness of the first protective layer was changed to 30 nm. In the same manner as in Example 1, a two-layer phase change type information recording medium was produced.
  • the thickness of the first thermal diffusion layer in the first information layer was 30 nm
  • the thickness of the first protective layer was 40 nm
  • the thickness of the second protective layer was Was changed to 40 nm
  • the thickness of the second thermal diffusion layer was changed to 80 nm, to produce a two-layer phase change type information recording medium in the same manner as in Example 1.
  • Example 1 Preparation of a two-layer phase change type information recording medium-In Example 1, except that the thickness of the second protective layer in the first information layer was changed to 40 nm and the thickness of the second heat diffusion layer was changed to 80 nm In the same manner as in Example 1, a two-layer phase change type information recording medium was produced.
  • Example 1 Example 1 was repeated except that the thickness of the first thermal diffusion layer in the first information layer was changed to 5 nm, the thickness of the first protective layer was changed to 20 nm, and the thickness of the second protective layer was changed to 15 nm. In the same manner as described above, a two-layer phase change type information recording medium was produced.
  • the thickness of the first protective layer and the second protective layer is preferably 30 nm or less from the viewpoint of recording sensitivity and overwrite characteristics. Further, when the thickness d of the first protective layer and the thickness d of the second protective layer have a relationship of d ⁇ d + 5 nm, the minimum jitter can be obtained.
  • the recording power was 13 mW or less, indicating that the recording sensitivity was good.
  • the thickness of the thermal diffusion layer is preferably lOnm or more. Still other services In a prototype experiment, when a thermal diffusion layer was provided with a thickness of 200 nm or more, the warpage of the disk increased, and it was impossible to perform stable tracking.
  • the thermal diffusion layer had higher thermal conductivity than the protective layer.
  • Example 2 -Fabrication of a two-layer phase change type information recording medium-In Example 1, the first protective layer and the second protective layer in the first information layer were each set to 15 nm, the thickness of the first thermal diffusion layer was set to 55 nm, (2) Two-layer phase change type information was obtained in the same manner as in Example 1, except that the thickness of the diffusion layer was 100 nm, and the thickness of the first recording layer was changed in the range of 2 to 14 nm as shown in Table 2. A recording medium was manufactured.
  • the thickness of the first recording layer is preferably 15 nm or less. If the transmittance of the first information layer was smaller than 40%, it was difficult to record and reproduce the second information layer satisfactorily.
  • the recording and erasing overwrite characteristics of the first information layer depend on the recording layer film of the first information layer. It can be seen that it depends strongly on the thickness.
  • the thickness of the first recording layer of the first information layer is preferably 3 nm or more.
  • Example 1 was repeated in the same manner as in Example 1 except that Ag was used for the first reflective layer, and a 3 nm-thick SiC was provided as a barrier layer between the second protective layer and the first reflective layer. A two-layer phase change type information recording medium was manufactured.
  • a two-layer phase change type information recording medium was manufactured in the same manner as in Example 1, except that Ag was used for the first reflective layer.
  • Example 9 in which the barrier layer was provided had good jitter after storage and was excellent as an optical disk. On the other hand, in Example 10, the jitter before storage was good, and the jitter after storage was not measurable. From the above, it is recognized that when a material containing sulfur is used for the upper protective layer and Ag is used for the reflective layer, it is preferable to provide a barrier layer in order to improve storage reliability. (Example 11)
  • a second substrate made of a polycarbonate resin having a radius of 120 mm and a thickness of 1.1 mm having a guide groove with a pitch of 0.35 ⁇ m and a groove depth of 38 nm on the surface was prepared.
  • the second reflective layer made of A1-3at% Ti was formed on the second substrate by magnetron sputtering using a single-wafer sputtering apparatus (manufactured by Balzers) so that the thickness of the second reflective layer was 80 nm.
  • a fourth protective layer made of ZnS-20mol% SiO was formed on the second reflective layer.
  • the film was formed by magnetron sputtering so as to have a thickness of 20 nm.
  • Ge on the fourth protective layer was formed by magnetron sputtering so as to have a thickness of 20 nm.
  • the film was formed by the method.
  • the film was formed to have a thickness of 70 nm by a magnetron sputtering method.
  • the second information layer was created.
  • a coating solution containing an ultraviolet curable resin (DVD003, manufactured by Nippon Kayaku Co., Ltd.) is applied on the third protective layer of the second information layer thus prepared, and the pitch is adjusted by a 2P (photo polymerization) method.
  • a second thermal diffusion layer made of IZO In O—10 mass% ZnO was formed on the intermediate layer.
  • the film was formed by magnetron sputtering using a single-wafer sputtering apparatus (manufactured by Balzers) so that the force became S70 nm.
  • a first reflective layer having a force of 3% by mass of Ag—2% by mass of A1 was formed by magnetron sputtering so as to have a thickness of 10 nm.
  • a second protective layer with a ZnS-20mol% SiO force is applied so that the thickness becomes 10 nm.
  • the film was formed by the tta method. Ge Ag In Sb Te on the second protective layer
  • the film was formed by magnetron sputtering so that only the thickness became 6 nm.
  • a first protective layer with a ZnS—20 mol% SiO force is magnetron sputtered to a thickness of 10 nm.
  • the first information layer was manufactured.
  • a first substrate also made of polycarbonate resin filmca having a diameter of 12 cm and a thickness of 50 m, and a transparent layer made of a 45- ⁇ m-thick double-sided adhesive sheet were placed. Then, a two-layer phase change type information recording medium was produced.
  • a first information layer, a transparent layer, and a first substrate were similarly provided on a 1.1 mm thick substrate, and the light transmittance from the first substrate side was measured. It was measured. In this example, the transmittance of the first information layer after initialization was 49%.
  • the fabricated two-layer phase change type information recording medium was irradiated with a focused light beam using an optical system with a wavelength of 407 nm and a numerical aperture of the objective lens of 0.85 at a linear velocity of 6.5 mZs and 0.160 / z mZbit.
  • the initial jitter, the jitter after overwriting 100 times, and the recording sensitivity (power to obtain the minimum jitter) were measured under the following conditions. Jitter occurred and the overwrite characteristics were good. Recording and evaluation were also performed on the second information layer under the same conditions. When the power was 10 mW or less, the jitter was 9% or less, and the overwrite characteristics were good.
  • the transmittance of the first information layer is required to be 40 in order to record and reproduce the second information layer well. It was confirmed that more than% was necessary.
  • the two-layer phase change type information recording medium of the present invention adjusts the thickness of the first substrate in the range of 10 to 600 m even when the numerical aperture NA of the objective lens for recording and reproduction changes. Thus, it was recognized that recording and reproduction could be performed well.
  • the thickness of the first information layer was 3 to 15 nm
  • the thickness of the reflective layer was 3 to 20 nm
  • the thickness of the heat diffusion layer was 10 to 200 nm. Both the layer and the second information layer could be recorded and reproduced well.
  • the first thermal diffusion layer having an IZO (In O—10% by mass ZnO) force is formed on the first substrate to a thickness of 40 nm by a magnetron sputtering method using a single-wafer sputtering apparatus (manufactured by Balzers).
  • IZO In O—10% by mass ZnO
  • the film was formed by the magnetron sputtering method as described above. ZnS—20 mol% SiO on the first thermal diffusion layer
  • the first protective layer which has two forces, was formed by magnetron sputtering so that the thickness became lOnm. .
  • the first recording layer which also has a Ge Ag In Sb Te force on the first protective layer, has a thickness of 6 nm.
  • the film was formed by magnetron sputtering. ZnS—20 mol% SiO force on the first recording layer
  • a protective layer was formed by magnetron sputtering so as to have a thickness of lOnm.
  • a first reflective layer made of Ag-3% by mass Zn-2% by mass A1 was formed by magnetron sputtering so as to have a thickness of lOnm.
  • IZO In O—10% by mass ZnO
  • a strong second thermal diffusion layer was formed by magnetron sputtering to a thickness of 100 nm. Thus, a first information layer was produced.
  • a second substrate made of a polycarbonate resin having a radius of 120 mm and a thickness of 0.58 mm having a guide groove with a pitch of 0. m and a groove depth of 33 nm was prepared.
  • a second reflective layer made of A1-3at% T was formed on the second substrate to a thickness of 80 nm by magnetron sputtering.
  • a fourth protective layer having a ZnS-20 mol% Si 2 O 4 force was formed by magnetron sputtering to a thickness of 20 nm.
  • a second recording layer made of Ge Ag In Sb Te is formed on the fourth protective layer to a thickness of 12 nm.
  • the film was formed by magnetron sputtering. ZnS—20mol% SiO on the second recording layer
  • the first information layer and the second information layer were also irradiated with laser light on the first substrate side and the second information layer film surface side, respectively, to perform an initialization process.
  • the light transmittance of the first information layer at a wavelength of 660 ⁇ m was measured from the first substrate side using a spectrophotometer (manufactured by SHIMADZU) and found to be 45%.
  • an epoxy-based UV-curable resin (intermediate layer) is applied with a thickness of 50 ⁇ m, and the first information layer and the second information layer face each other. And further subjected to ultraviolet irradiation, thereby producing a two-layer phase-change information recording medium in which a first substrate, a first information layer, an intermediate layer, a second information layer, and a second substrate were arranged in this order.
  • the fabricated two-layer phase change type information recording medium was irradiated with a focused light beam using an optical system with a wavelength of 660 nm and a numerical aperture of the objective lens of 0.65 at a linear velocity of 3.5 mZs and 0.267 / z mZbit.
  • the power for obtaining small jitter was measured, the jitter was 9% or less at a power of 28 mW or less with respect to the first information layer, and the overwrite characteristics were also good.
  • recording and evaluation were performed on the second information layer under the same conditions, and when the power was 28 mW or less, the jitter was 9% or less, and the overwrite characteristics were good.
  • the two-layer phase change type information recording medium of the present invention has excellent overwrite characteristics, and can be rewritten at a high density even when a blue-violet laser is used. It can be widely used for DVD-RAM, Blu-ray Disk system using blue-violet laser, and so on.

Abstract

 オーバーライト特性に優れ、特に青紫色レーザーを用いた場合でも高密度で書き換え可能な2層相変化型情報記録媒体の提供を目的とする。  第1基板と、第2基板と、該第1基板及び該第2基板の間に少なくとも第1情報層と、中間層と、第2情報層をこの順に有し、前記第1基板側からレーザー光を入射して情報の記録及び再生の少なくともいずれかを行う2層相変化型情報記録媒体であって、前記第1情報層は、少なくとも第1熱拡散層、第1保護層、第1記録層、第2保護層、第1反射層、及び第2熱拡散層をこの順に有してなり、前記第1保護層及び第2保護層における膜厚が35nm以下であり、前記第1熱拡散層及び第2熱拡散層における膜厚が10nm以上であり、かつ前記第1保護層の膜厚d1(nm)と前記第2保護層の膜厚d2(nm)とが、次式、d1≦d2+5nmの関係を満たす2層相変化型情報記録媒体である。    

Description

明 細 書
2層相変化型情報記録媒体及びその記録再生方法
技術分野
[0001] 本発明は、レーザーなどの光により情報の記録及び再生の少なくともいずれかを行 うのに用いられる 2層相変化型情報記録媒体及び該 2層相変化型情報記録媒体の 記録再生方法に関する。なお、本願明細書において、「2層」とは、少なくとも記録層 を含む情報層を 2層有することを意味する。
背景技術
[0002] 一般にコンパクトディスク(CD)や DVD (Digital Versatile Disc)は、凹ピットの 底部及び鏡面部からの光の干渉により生じる反射率変化を利用して 2値信号の記録 及びトラッキング信号を検出することにより情報の記録などが行われている。
[0003] 近年、 CDと再生互換性 (互換性)のある記録媒体として、相変化型の書換え可能 なコンパクトディスク(CD-RW: CD-Rewritable)が広く使用されつつあるほ力、 D VDについても相変化型の書換え可能な DVDが各種提案されている。また、 DVD の容量が 4. 7GBであるのに対して、記録再生波長を 350nm— 420nmと短波長化 し、開口数 NA (Numerical Aperture)を上げて 20GB以上の容量とする Blu— ray Diskシステムが提案されて!、る。
[0004] これら相変化型の書換え可能な CDや DVDは、非晶質と結晶状態の屈折率差によ つて生じる反射率差及び位相差変化を利用して記録情報信号の検出を行う。通常の 相変化型記録媒体は、基板上に少なくとも下部保護層、相変化型記録層、上部保護 層、及び反射層をこの順に設けた構造を有し、これら構成層の多重干渉を利用して 反射率差及び位相差を制御し、 CDや DVDとの互換性を持たせることができる。 CD RWにおいては、反射率を 15— 25%程度に落とした範囲内では CDと記録信号及 び溝信号の互換性が確保でき、反射率の低 ヽことをカバーする増幅系を付加した C Dドライブでは再生が可能である。
[0005] 最近では、書き換え可能な相変化型記録媒体の記録容量を増大する観点から片 面 2層構成の提案がなされている (例えば、特許文献 1一 3等参照)。 この場合、前記相変化型記録媒体は、消去と再記録過程を 1つの集束光ビームの 強度変調のみによって行うことができ、 CD— RWや書換え可能 DVD等の相変化型 記録媒体において、記録とは記録と消去を同時に行うオーバーライト (OZW)記録 を含む。
相変化を利用した情報の記録には、結晶、非晶質又はそれらの混合状態を用いるこ とができ、複数の結晶相を用いることもできるが、現在実用化されている書き換え可 能な相変化型記録媒体は、未記録及び消去状態の少なくともいずれかを結晶状態と し、非晶質のマークを形成して記録するのが一般的である。
[0006] 前記相変化型記録層の材料としては、 V、ずれもカルコゲン元素、例えば S、 Se、 Te を含有するカルコゲナイド系合金を用いることが多い。具体的には、 GeTe— Sb Te
2 3 疑似二元合金を主成分とする GeSbTe系、 InTe—Sb Te疑似二元合金を主成分と
2 3
する InSbTe系、 Sb Te 共晶合金を主成分とする AglnSbTe系、 GeSbTe系な
0. 7 0. 3
どが挙げられる。これらの中でも、特に CD— RWなどの相変化型記録媒体に一般的 に用いられている材料の 1つである Sb— Te共晶合金系記録材料は GeTe— Sb Te
2 3 疑似二元化合物系記録材料と比べて、消去比が優れている。また、高感度であるた めに記録マークのアモルファス部の輪郭が明確であると!/、う点で優れたものとして知 られている。
し力しながら、前記 Sb— Te共晶系記録材料は、材料の結晶化速度が速いので、非 晶質ィ匕するには、より単時間で急冷しなければならず、即ち、急冷構造をとることが 必要な材料であり、記録層片面 2層型のような反射層の薄い構造では、マーク形成 が困難になるという問題がある。
[0007] 比較的熱伝導率の大きく光吸収率の小さな窒化物又は炭化物等を用いて、反射 層が担っていた熱拡散機能を補助する層(以下、「熱拡散層」と称することがある)を 反射層の上に更に設けて急冷構造に近づけるやり方が、単層相変化型情報記録媒 体 (特許文献 4参照)、及び 2層相変化型情報記録媒体に関する前記特許文献 2な どに提案されている。この方法は、第 1情報層を構成する反射層を薄くした場合には 発生する前記のような欠点を解消するのに有効な方法であると考えられる。
[0008] し力しながら、これら窒化物又は炭化物等の材料は応力が大きいために、形成され た熱拡散層はクラックが生じやすぐその結果、熱拡散層を設けた光ディスク自体充 分なオーバーライト特性が得らないという問題がある。また、炭化物の材料はとりわけ 短波長側での吸収が大きぐ青紫色レーザーを用いる Blu— ray Diskシステムのよう な次世代光ディスクでは第 1情報層の光透過率を大きくすることができないという問 題が生じる。
[0009] また、従来の 2層相変化型記録媒体における第 1情報層は、光入射からみて基板と 記録層との間の保護層の膜厚は、オーバーライト特性の観点力も厚く設定されている 。しかし、保護層の膜厚が厚いと膜厚変動が大きくなり、反射率が面内でばらついて しまうという問題がある。このため、非特許文献 1では、記録層の上下に A1Nを設けて 、放熱構造としている力 ZnS - SiO /AlN/ZnS - SiOのように 3層構成となってい
2 2
るので、結局、トータルの層厚みは薄くすることができず、上記のような膜厚変動に起 因する課題は解消できない。また、前記特許文献 3では、保護層を 2層にし、記録層 に接する保護層材料よりももう一方の保護層材料の熱伝導率を大きくすることが提案 されている。しかし、この提案では、記録層に接する方の保護層の膜厚が 30nm以上 であるため、 Sb— Te共晶系記録材料にとっては、十分な急冷構造とはいえない。ま た、青紫色レーザーを用いる次世代光ディスクでは、スポット径が小さいために、 30η m以上では十分な効果が得られな 、と 、う問題がある。
[0010] 特許文献 1:特許第 2702905号公報
特許文献 2:特開 2000 - 222777号公報
特許文献 3:特開 2000 - 322770号公報
特許文献 4:特開平 8— 50739号公報
非特許文献 1 : ODS2001、 Technical Digest P28
発明の開示
[0011] 本発明は、力かる現状に鑑みてなされたものであり、従来における前記諸問題を解 決し、以下の目的を達成することを課題とする。即ち、本発明は、オーバーライト特性 に優れ、特に青紫色レーザーを用いた場合でも高密度で書き換え可能な 2層相変化 型情報記録媒体及び該 2層相変化型情報記録媒体を用いた記録再生方法を提供 することを目的とする。 [0012] 前記課題を解決するための手段としては、以下の通りである。即ち、
< 1 > 第 1基板と、第 2基板と、該第 1基板及び該第 2基板の間に少なくとも第 1情 報層と、中間層と、第 2情報層をこの順に有し、前記第 1基板側からレーザー光を入 射して情報の記録及び再生の少なくともいずれかを行う 2層相変化型情報記録媒体 であって、 前記第 1情報層は、少なくとも第 1熱拡散層、第 1保護層、第 1記録層、 第 2保護層、第 1反射層、及び第 2熱拡散層をこの順に有してなり、前記第 1保護層 及び第 2保護層における膜厚が 35nm以下であり、前記第 1熱拡散層及び第 2熱拡 散層における膜厚が lOnm以上であり、かつ前記第 1保護層の膜厚 d (nm)と前記 第 2保護層の膜厚 d (nm)とが、次式、 d≤d + 5nmの関係を満たすことを特徴とす
2 1 2
る 2層相変化型情報記録媒体である。該< 1 >に記載の 2層相変化型情報記録媒体 においては、前記第 1保護層及び第 2保護層における膜厚が 35nm以下であり、前 記第 1熱拡散層及び第 2熱拡散層における膜厚が lOnm以上であり、かつ前記第 1 保護層の膜厚 d (nm)と前記第 2保護層の膜厚 d (nm)とが、次式、 d≤d + 5nm
1 2 1 2 の関係を満たすことによって、オーバーライト特性に優れ、特に青紫色レーザーを用 いた場合でも高密度で書き換え可能な 2層相変化型情報記録媒体が提供できる。
[0013] < 2> 第 1熱拡散層及び第 2熱拡散層における熱伝導率が、第 1保護層及び前 記第 2保護層における熱伝導率よりも大きい前記 < 1 >に記載の 2層相変化型情報 記録媒体である。該 < 2>に記載の 2層相変化型情報記録媒体においては、第 1熱 拡散層の熱伝導率を第 1保護層よりも大きくすることで、保護層での熱伝導遅延効果 を考慮した超急冷構造を確保でき、消去比が改善され、オーバーライト特性向上に つながる。また、第 2熱拡散層の熱伝導率を第 2保護層よりも大きくすることで、薄い 第 1反射層の熱拡散効果を補うことができ、超急冷構造を確保することができる。
[0014] < 3 > 第 1保護層及び第 2保護層が、それぞれ、 ZnS、ZnO、TaS及び希土類
2
硫ィ匕物から選択される少なくとも 1種を 50mol%以上 90mol%以下含み、かつ、融点 又は分解点が 1000°C以上の耐熱性ィ匕合物を含む複合誘電体である前記く 1 >に 記載の 2層相変化型情報記録媒体である。
<4> 融点又は分解点が 1000°C以上の耐熱性化合物力 Mg、 Ca、 Sr、 Y、 La 、 Ce、 Ho, Er、 Yb、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Zn、 Al、 Si、 Geおよび Pb力ら選択さ れる元素の酸化物、窒化物、および炭化物、並びに、 Ca、 Mgおよび Uから選択され る元素のフッ化物の 、ずれかである前記 < 3 >に記載の 2層相変化型情報記録媒体 である。
< 5 > 第 1保護層及び第 2保護層が、 ZnSおよび SiOを含む前記 <4>に記載
2
の 2層相変化型情報記録媒体である。
< 6 > 第 1保護層及び第 2保護層の少なくともいずれかが ZnSを含有し、かつ第 1 熱拡散層及び第 2熱拡散層の少なくともいずれかが電気伝導性を示す酸化物を含 有する前記 < 1 >から < 5 >のいずれかに記載の 2層相変化型情報記録媒体である
< 7> 第 1熱拡散層及び第 2熱拡散層の少なくともいずれかが、 IZO (ln O Zn
2 3
O)及び ITO (In Ο SnO )のいずれかを含有する前記 < 1〉から < 6〉のいずれ
2 3 2
かに記載の 2層相変化型情報記録媒体である。
< 8 > 第 1保護層及び第 2保護層における膜厚が 5— 30nmである前記 < 7>か ら < 4 >の 、ずれかに記載の 2層相変化型情報記録媒体である。
< 9 > 第 1保護層及び第 2保護層における膜厚が 25nm以下である前記く 8 >に 記載の 2層相変化型情報記録媒体である。
< 10> 第 1熱拡散層及び第 2熱拡散層における膜厚が 10— 200nmである前記 < 1 >から < 9 >のいずれかに記載の 2層相変化型情報記録媒体である。
前記 < 3 >から < 10>のいずれかに記載の 2層相変化型情報記録媒体において は、第 1保護層、第 2保護層、第 1熱拡散層および第 2熱拡散層の膜厚又は材料を 選択することにより、好ましい超急冷構造を実現することができる。
く 11 > 第 1記録層が Sb及び Teを含有し、更に Ag、 In、 Ge、 Sn、 Al、 Ta、 V、 C o、 Zr、 Ga、 Si、 Nb、 Cr、 Pt、 Pb、 S、 N、及び Oから選択される少なくとも 1種を含有 する前記 < 1 >からく 10 >のいずれかに記載の 2層相変化型情報記録媒体である
< 12> 第 1記録層の膜厚が、 3— 15nmである前記 < 1 >からく 11 >のいずれ かに記載の 2層相変化型情報記録媒体である。
< 13 > 第 1反射層が、 Au、 Ag、 Cu、 W、 Al、及び Ta力も選択される少なくとも 1 種を含有する前記 < 1 >から < 12>のいずれかに記載の 2層相変化型情報記録媒 体である。
<14> 第 1反射層の膜厚が、 3— 20nmである前記 <1>からく 13>のいずれ かに記載の 2層相変化型情報記録媒体である。
前記 < 11>から < 14 >のいずれかに記載の 2層相変化型情報記録媒体におい ては、それぞれの層の反射率、記録感度、及び第 1情報層の透過率を、記録、再生 条件に合わせて最適化することができ、第 1情報層及び第 2情報層に対して記録再 生特性の優れた 2層相変化型情報記録媒体を提供することができる。
[0015] <15> 第 1情報層の光透過率力 波長 350— 700nmの光に対して 40— 70% である前記 < 1 >からく 14 >のいずれかに記載の 2層相変化型情報記録媒体であ る。該<15>に記載の 2層相変化型情報記録媒体においては、第 1情報層、第 2情 報層ともに感度がよぐ記録再生特性の優れた 2層相変化型情報記録媒体を提供す ることがでさる。
<16> 第 1基板と第 1熱拡散層との間に透明層を有する前記く 1 >からく 15> のいずれかに記載の 2層相変化型情報記録媒体である。該< 16 >に記載の 2層相 変化型情報記録媒体にぉ 、ては、第 1基板の厚さが薄!、場合でも容易に製造可能 な 2層相変化型情報記録媒体を提供することができる。
<17> 第 2保護層と第 1反射層との間に第 1バリア層を有する前記 < 1 >から < 1 6 >の 、ずれかに記載の 2層相変化型情報記録媒体である。
<18> 第 1反射層が Agを含有する前記く 17>に記載の 2層相変化型情報記録 媒体である。該< 17>および < 18 >に記載の 2層相変化型情報記録媒体において は、反射層の腐食を抑えた保存信頼性の優れた 2層相変化型情報記録媒体を提供 することができる。
<19> 第 1基板の厚さ力 10— 600/zmである前記 <1>からく 18>のいずれ かに記載の 2層相変化型情報記録媒体である。該< 19 >に記載の 2層相変化型情 報記録媒体においては、対物レンズの開口数 NAが変化した場合でも、良好に情報 の記録及び再生の少なくともいずれかを行うことができる。
[0016] <20> 前記く 1>からく 19>のいずれかに記載の 2層相変化型情報記録媒体 における各情報層に対し、第 1基板側力も波長 350— 700nmの光ビームを入射させ て情報の記録及び再生の少なくともいずれかを行うことを特徴とする 2層相変化型情 報記録媒体の記録再生方法である。該< 15 >に記載の 2層相変化型情報記録媒 体の記録再生方法においては、前記 < 1 >から < 14 >のいずれかに記載の多層相 変化型情報記録媒体を用いて大容量の記録及び再生の少なくともいずれかを行うこ とがでさる。
[0017] 本発明によると、従来における諸問題を解決でき、オーバーライト特性に優れ、特 に青紫色レーザーを用いた場合でも高密度で書き換え可能な 2層相変化型情報記 録媒体を提供することができる。
図面の簡単な説明
[0018] [図 1]図 1は、本発明の一実施形態に係る 2層相変化型情報記録媒体の概略断面図 である。
[図 2]図 2は、本発明の他の実施形態に係る 2層相変化型情報記録媒体の概略断面 図である。
[図 3]図 3は、第 1基板及び第 2基板にグループが設けられた 2層相変化型情報記録 媒体の概略断面図である。
[図 4]図 4は、第 1基板及び中間層にグループが設けられた 2層相変化型情報記録媒 体の概略断面図である。
発明を実施するための最良の形態
[0019] (2層相変化型情報記録媒体)
本発明の 2層相変化型情報記録媒体は、第 1基板と第 2基板の間に少なくとも第 1 情報層、中間層、及び第 2情報層がこの順に有してなり、更に必要に応じてその他の 層を有してなる。
[0020] 前記第 1情報層は、少なくとも第 1熱拡散層、第 1保護層、第 1記録層、第 2保護層 、第 1反射層、及び第 2熱拡散層をこの順に有してなり、更に必要に応じてその他の 層を有してなる。
本発明においては、前記第 1保護層及び第 2保護層における膜厚が 35nm以下で あり、前記第 1熱拡散層及び第 2熱拡散層における膜厚が lOnm以上であり、かつ前 記第 1保護層の膜厚 d (nm)と前記第 2保護層の膜厚 d (nm)とが、次式、 d≤d +
1 2 1 2
5nmの関係を満たすことが必要である。これらの詳細については後述する。
また、前記第 1熱拡散層及び第 2熱拡散層における熱伝導率が、第 1保護層及び 前記第 2保護層における熱伝導率よりも大き!/、ことが好ま 、。
[0021] 本発明の 2層相変化型情報記録媒体は、相変化型材料からなる記録層、及び反射 層については従来公知の技術が適用可能であるが、保護層、及び熱拡散層につい ては特定な材料を用い、更に第 1保護層と第 2保護層の膜厚の関係を規定したこと に特徴を有している。
[0022] ここで、図 1は、本発明の一実施形態に係る 2層相変化型情報記録媒体の概略断 面図を示し、この情報記録媒体は、第 1基板 1Z第 1熱拡散層 2Z第 1保護層 3Z第 1記録層 4Z第 2保護層 5Z第 1バリア層 14Z第 1反射層 6Z第 2熱拡散層 7Z中間 層 8Z第 3保護層 9Z第 2記録層 10Z第 4保護層 11Z第 2バリア層 15Z第 2反射層 12Z第 2基板 13の構成を有してなり、更に必要に応じてその他の層を有してなる。 なお、第 1バリア層 14、及び第 2バリア層 15は必要に応じて設けられる。
[0023] また、図 2に、本発明の他の実施形態に係る 2層相変化型情報記録媒体の概略断 面図を示し、この情報記録媒体は、第 1基板 1Z透明層 16Z第 1熱拡散層 2Z第 1 保護層 3Z第 1記録層 4Z第 2保護層 5Z第 1バリア層 14Z第 1反射層 6Z第 2熱拡 散層 7Z中間層 8Z第 3保護層 9Z第 2記録層 10Z第 4保護層 11Z第 2バリア層 15 Z第 2反射層 12Z第 2基板 13の構成を有してなり、更に必要に応じてその他の層を 有してなる。なお、第 1バリア層 14、第 2バリア層 15、及び透明層 16は必要に応じて 設けられる。前記透明層 16は、第 1基板 3に厚さの薄いシート状物が用いられ、製造 方法が図 1の情報記録媒体とは相違するときに設けられる。
[0024] なお、図 1及び図 2における 2層相変化型情報記録媒体の各層の順序は、第 1基板 1を介して記録再生用の集束光ビーム、例えば、レーザー光を記録層に照射する場 合に適している。
[0025] 一基板
前記第 1基板 1は、記録再生のために照射する光を十分透過するものであることが 必要であり、当該技術分野にぉ 、て従来知られて 、るものの中から適宜選択して用 いることがでさる。
前記第 1基板の材料としては、通常、ガラス、セラミックス、榭脂等が用いられるが、 成形性、コストの点で樹脂が好適である。
前記榭脂としては、例えば、ポリカーボネート榭脂、アクリル榭脂、エポキシ榭脂、ポ リスチレン榭脂、アクリロニトリル スチレン共重合体榭脂、ポリエチレン榭脂、ポリプロ ピレン樹脂、シリコーン系榭脂、フッ素系榭脂、 ABS榭脂、ウレタン榭脂、などが挙げ られる力 これらの中でも、成形性、光学特性、コストの点で優れるポリカーボネート 榭脂ゃポリメチルメタタリレート(PMMA)などのアクリル系榭脂が好ましぐポリカー ボネート榭脂は CDにお 、て最も広く用いられて 、ると!/、う実績もあり、また安価でも あるため最も好ま ヽ材料である。
[0026] 前記第 1基板 3の情報層を形成する面には、必要に応じて、レーザー光のトラツキン グ用のスパイラル状又は同心円状の溝などであって、通常グループ部及びランド部と 称される凹凸パターンが形成されていてもよぐこれは通常射出成形法又はフォトポリ マー法などによって成形される。ピッチは 0. 8 m以下力 S好ましく、 0. 1— 0. 8 m 力 り好ましい。前記溝は必ずしも幾何学的に矩形あるいは台形状の溝である必要 はなぐ例えばイオン注入などによって、屈折率の異なる導波路のようなものを形成し て光学的に溝が形成されて 、てもよ 、。
前記第 1基板 3の厚さは、特に制限はなぐ目的に応じて適宜選択することができ、 10— 600 /z mが好ましい。なお、前記基板厚さは、記録再生システムの開口数 (NA )によって調整することが好ましぐ例えば、 NA=0. 65では基板厚さは 550— 600 /z mがより好ましぐ NA=0. 85では基板厚さは 69— 100 mがより好ましい。
[0027] 前記第 2基板 13の材料としては、第 1基板 1と同様の材料を用いても良いが、記録 再生光に対して不透明な材料を用いても良ぐ第 1基板 1とは、材質、溝形状が異な つても良い。第 2基板 13の厚さは、特に制限はなぐ目的に応じて適宜選択すること ができ、第 1基板 1の厚さとの合計厚みは 1. 1-1. 3mmが好ましぐより好ましくは 1 . 2mm程度になるように第 2基板 13の厚さを選択することが好ま 、。
[0028] 中間層、及び透明層
前記中間層 8、及び透明層 16は、記録再生のために照射する光の波長における 光吸収が小さいことが好ましぐ材料としては、榭脂が成形性、コストの点で好適であ り、紫外線硬化性榭脂、遅効性榭脂、熱可塑性榭脂などを用いることができる。また 、光ディスク貼り合わせ用の両面テープ (例えば、 日東電工株式会社製の粘着シート
DA— 8320)なども用いることができる。
なお、前記第 2基板 13、中間層 8には、第 1基板 1と同様な、射出成形法又はフォト ポリマー法などによって成形される、案内溝などの凹凸パターンが形成されてもよい。
[0029] 前記中間層 8は、記録再生を行う際に、ピックアップが第 1情報層と第 2情報層とを 識別して光学的に分離可能とするものであり、その厚さは 10— 70 mが好ましい。 1 O /z mより薄いと、層間クロストークが生じ、また 70 mより厚いと、第 2情報層を記録 再生する際に、球面収差が発生し、記録再生が困難になる傾向がある。
また、前記透明層 16の膜厚は、特に制限はなぐ 目的に応じて適宜選択することが でき、図 1のような透明層 16を設けない製造方法により作製した 2層相変化型光情報 記録媒体の最適な第 1基板 1の厚さと、製造方法の異なる図 2のような光情報記録媒 体の第 1基板 1と透明層 16の厚さの合計が、同程度となるように、第 1基板 1と透明層 16との厚さを調整する必要がある。例えば、 NA=0. 85の場合であって、図 1に示 す情報記録媒体の第 1基板 1の厚さが 100 /z mで良好な記録及び消去性能が得ら れたとすると、図 2に示す情報記録媒体の第 1基板 1の厚さが 50 mならば、透明層 16の厚さを 50 μ mとすることが好まし!/ヽ。
[0030] —記録層—
前記第 1記録層 4及び第 2記録層 10は、相変化型の記録層であり、その厚さは第 1 記録層 4及び第 2記録層 10とでは、好ましい範囲が異なる。前記第 1記録層 4の膜厚 は、 3— 15nmが好ましぐ 3— lOnmがより好ましい。前記第 1記録層 4の膜厚が 3n m未満であると、均一な厚さの膜とするのが困難となり、また結晶化速度が遅くなる傾 向があり、短時間での消去が困難となりやすいことがあり、 15nmを超えると透過率が 減少し、第 2情報層の感度が低下することがある。
一方、前記第 2記録層 10の膜厚は、 3— lOOnmの範囲が好ましい。前記膜厚が 3 nm未満であると、第 1記録層 4と同様な不具合が生じてしまうことがあり、 lOOnmを超 えると、光学的なコントラストが得に《なり、またクラックが生じやすくなることがある。 なお、最短マーク長が 0. 5 m以下となるような高密度記録では、第 2記録層 10の 膜厚は 3— 25nmが好ましい。 3nm未満であると、反射率が低くなり過ぎ、また膜成 長初期の不均一な組成、疎な膜の影響が現れやすくなることがあり、 25nmを超える と熱容量が大きくなり記録感度が悪くなる他、結晶成長が 3次元的になるため、非晶 質マークのエッジが乱れジッタが高くなる傾向にある。更に、第 2記録層 10の相変化 による体積変化が顕著になり、繰返しオーバーライト (O/W)耐久性が悪くなるので 好ましくな 、。マーク端のジッタ及び繰返しオーバーライト (OZW)耐久性の観点か らは 3— 20nmとすることがより望まし 、。
[0031] 前記第 1記録層 4及び第 2記録層 10の密度は、バルタ密度の 80%以上が好ましく 、 90%以上がより好ましい。
前記第 1記録層 4及び第 2記録層 10の密度を高めるには、スパッタ成膜法におい ては、成膜時のスパッタガス (Ar等の希ガス)の圧力を低くする、あるいはターゲット 正面に近接して基板を配置するなどして記録層に照射される高エネルギー Ar量を 多くすることが必要である。高エネルギー Arは、スパッタのためにターゲットに照射さ れる Arイオン力 一部跳ね返されて基板側に到達するもの、あるいはプラズマ中の A rイオンが基板全面のシース電圧で加速されて基板に達するものかのいずれかであ る。このような高エネルギーの希ガスの照射効果を「atomic peening効果」と!、う。
[0032] 一般的に使用される Arガスでのスパッタでは、「atomic peening効果」によって A rがスパッタ膜に混入される。この混入された膜中の Ar量により、 atomic peening 効果を見積もることができる。即ち、 Ar量が少なければ高エネルギー Ar照射効果が 少ないことを意味し、密度の疎な膜が形成されやすい。一方、 Ar量が多ければ高工 ネルギー Arの照射が激しぐ密度は高くなるものの膜中に取り込まれた Arが繰返し オーバーライト (O/W)時に voidとなって析出し、繰返しの耐久性を劣化させる。
[0033] 前記記録層(第 1記録層 4、第 2記録層 10)膜中の適当な Ar量は、 0. 1-1. 5原子 %である。更に、直流スパッタリングよりも高周波スパッタリングを用いた方力 膜中 Ar 量を少なくして高密度膜が得られるので好ましい。
[0034] 前記第 1記録層 4及び第 2記録層 10の材料は、 Sb及び Teを主たる構成元素として 含有する合金を主成分とする薄膜からなる。このような構成元素からなる上記各記録 層には必要に応じて他の元素を、合計 10原子%程度まで添加してもよい。中でも Ge 力 保存安定性、強コントラスト比という点で適している。また、各記録層に更に 0、 N あるいは S力も選ばれる少なくとも一つの元素を 0. 1— 5原子%の範囲で添加するこ とにより、記録層の光学定数を微調整することができる。しかし、 5原子%を超えて添 加することは結晶化速度を低下させ、消去性能を悪ィヒさせるので好ましくな 、。
[0035] また、オーバーライト時の結晶化速度を低下させずに経時安定性を増すため、 V、 Nb、 Ta、 Cr、 Co、 Pt及び Zrから選択される少なくとも 1種の添力卩量は 8原子%以下 力 S好ましく、 0. 1— 5原子0 /0がより好ましい。
SbTeに対する、上記添加元素と Geの合計添加量は 15原子%以下が好ましい。 1 5原子%より過剰に含まれると Sb以外の相分離を誘起してしまう。特に、 Ge含有量が 3原子%以上、 5原子%以下の場合には添加効果が大きい。
[0036] また、経時安定性の向上と屈折率の微調整のために、 Si、 Sn、及びは Pbの少なく とも一種の添加量は 5原子%以下が好ましぐ 0. 1一 3原子%がより好ましい。これら 添加元素と Geの合計の添加量は 15原子%以下が好ましぐ 0. 2— 10原子%がより 好ましい。なお、 Si、 Sn、又は Pbの各元素は、 Geと同じく 4配位ネットワークを持った 元素である。
[0037] また、 Al、 Ga、 Inを 8原子%以下添加することにより、結晶化温度を上昇させると同 時にジッタを低減させたり、記録感度を改善する効果もあるが、偏析も生じやすいた め、 0. 1— 6原子%が好ましい。 Al、 Ga、 Inの各添加量は、 Geと合わせた合計添加 量は 15原子%以下が好ましぐ 0. 2— 13原子%がより好ましい。 Agを 8原子%以下 の量で添加することは、記録感度を改善する上で効果があり、特に Ge原子量が 5原 子%を超える場合に用いれば効果が顕著である。しかし、 Agの添加量が 8原子%を 超えるとジッタを増加させたり、非晶質マークの安定性を損ねるので好ましくない。ま た、 Geと合わせた合計添加量が 15原子%を超えると偏析を生じやすいので好ましく な 、。 Agの含有量として最も好ま ヽのは 5原子%以下である。
[0038] 前記第 1記録層 4及び第 2記録層 10は、成膜後の状態は通常、非晶質である。従 つて、成膜後に各記録層全面を結晶化して初期化された状態 (未記録状態)とする 必要がある。初期化方法としては、固相でのァニールによる初期ィ匕も可能であるが、 一旦記録層を溶融させ再凝固時に徐冷して結晶化させる、いわゆる溶融再結晶化 による初期化が望まし 、。上記各記録層は成膜直後には結晶成長の核がほとんどな ぐ固相での結晶化は困難であるが、溶融再結晶化によれば少数の結晶核が形成さ れてのち、溶融して結晶成長が主体となって高速で再結晶化が進む。
[0039] 第 1記録層 4及び第 2記録層 10における溶融再結晶化による結晶と固相でのァ- ールによる結晶とは反射率が異なるため、混在するとノイズの原因となる。そして、実 際のオーバーライト記録の際には、消去部は溶融再結晶化による結晶となるため、初 期ィ匕も溶融再結晶化により行うのが好ましい。
[0040] 溶融再結晶化による初期化の際、記録層を溶融するのは局所的かつ 1ミリ秒程度 以下の短時間で行うのがよい。この理由は、溶融領域が広かったり、溶融時間又は 冷却時間が長過ぎると熱によって各層が破壊されたり、プラスチックス基板表面が変 形したりするためである。
初期化に適した熱履歴を与えるには、波長 600— lOOOnm程度の高出力半導体 レーザー光を長軸 100— 300 m、短軸 1一 3 mに集束して照射し、短軸方向を走 查軸として 1一 lOmZsの線速度で走査することが望ましい。同じ集束光でも円形に 近いと溶融領域が広すぎて、再非晶質化が起きやすぐまた、多層構成や基板への ダメージが大きく好ましくな!/、。
[0041] ここで、初期化が溶融再結晶化によって行われたことは以下のようにして確認でき る。即ち、該初期化後の媒体に直径約 1. 5 mより小さいスポット径に集束された記 録層を溶融するにたる記録パワー Pwの記録光を、直流的に一定線速度で照射する 。案内溝がある場合は、その溝もしくは溝間からなるトラックにトラッキングサーボ及び フォーカスサーボをかけた状態で行う。その後、同じトラック上に消去パワー Pe (≤P w)の消去光を直流的に照射して得られる消去状態の反射率が全く未記録の初期状 態の反射率とほとんど同じであれば、該初期化状態は溶融再結晶状態と確認できる 。なぜなら、記録光照射により記録層は一旦溶融されており、それを消去光照射で完 全に再結晶化した状態は、記録光による溶融と消去光による再結晶化の過程を経て おり、溶融再結晶化された状態にある力もである。
[0042] なお、初期化状態の反射率 (Rini)と溶融再結晶化状態の反射率 (Rcry)がほぼ同 じであるとは、 (Rini-Rcry) /{ (Rini+Rcry) Z2}で定義される両者の反射率差が 20%以下であることをいう。通常、ァニール等の固相結晶化だけでは、その反射率 差は 20%より大き 、ことが好ま 、。
[0043] 前記第 1記録層 4及び第 2記録層 10は、それぞれ図 1に示すように、第 1記録層 4 は、第 1保護層 3と第 2保護層 5との間に、また第 2記録層 10は、第 3保護層 9と第 4保 護層 11との間に挟み込まれた構成となって、第 1基板 1表面 (溝形成面)上に設けら れている。
[0044] 一保護層—
前記第 1保護層 3は、記録時の高温による第 1記録層 4の劣化変質を防ぐのに有効 であり、また、反射率を調整するといつた光学的役割も持つ。
前記第 2保護層 5は、第 1記録層 4と第 1反射層 6の相互拡散を防止し、第 1記録層 4の変形を抑制しつつ、第 1反射層 6へ効率的に熱を逃すという機能を併せ持つ。 前記第 2情報層 200の第 3保護層 9は、第 1保護層 3と同様の機能を持ち、記録時 の高温による第 2記録層 10の劣化変質を防ぐのに有効であり、また、反射率を調整 するといつた光学的役割も持つ。
前記第 4保護層 11は、第 2保護層 5と同様の役割を持ち、第 2記録層 10の変形を 抑制しつつ、第 2反射層 12へ効率的に熱を逃すという機能を併せ持つ。
[0045] 前記第 1保護層 3、第 2保護層 5、第 3保護層 9、及び第 4保護層 11の材料としては 、屈折率、熱伝導率、化学的安定性、機械的強度、密着性等に留意して決定される 。一般的には、透明性が高く高融点である金属や半導体の酸化物、硫化物、窒化物 、炭化物や Ca、 Mg、 Li等のフッ化物を用いることができる力 種々の材料を検討し た結果、上記観点及び第 1記録層 4、第 2記録層 10を構成する材料との整合性を考 慮して、 ZnSと SiOの混合物が最も好ましい。なお、この材料に限らず、上記酸化物
2
、硫化物、窒化物、炭化物、フッ化物は必ずしも化学量論的組成をとる必要はなぐ 屈折率等の制御のために組成を制御したり、混合して用いることも有効である。
[0046] 前記保護層の機能等について説明する。本発明の第 1情報層 100の層構成は、急 冷構造と呼ばれる層構成の一種に属する。急冷構造は、放熱を促進し、記録層再凝 固時の冷却速度を高める層構成を採用することで、非晶質マーク形成時の再結晶化 の問題を回避しつつ、高速結晶化による高消去比を実現する。
[0047] 前記第 1保護層 3、及び第 2保護層 5の膜厚は、 35nm以下であり、 5— 30nmが好 ましい。前記膜厚が 5nm未満であると、記録層溶融時の変形等によって破壊されや すぐまた、放熱効果が大きすぎて記録に要するパワーが不必要に大きくなつてしま うことがある。
前記第 1保護層 3、第 2保護層 5の膜厚は、繰返しオーバーライトにおける耐久性に 大きく影響し、特にジッタの悪ィ匕を抑制する上でも重要である。膜厚が 35nmを超え ると、急冷構造がとれないだけでなぐ記録時に、保護層の記録層側と、第 1反射層 6 側又は第 1熱拡散層 2側とで温度差が大きくなり、保護層の両側における熱膨張差 から、保護層自体が非対称に変形しやすくなる。この繰返しは、保護層内部に微視 的塑性変形を蓄積させ、ノイズの増加を招くので好ましくない。
[0048] 上記のような記録層材料を用いると、最短マーク長 0. 5 μ m以下の高密度記録に お!、て低ジッタを実現できる力 高密度記録を実現するために短波長のレーザーダ ィオード (例えば、波長 700nm以下)を用いる場合には、前記急冷構造の層構成に ついても、一層の留意が必要になる。特に、波長が 500nm以下、開口数 NAが 0. 5 5以上の小さな集束光ビームを用いた 1ビームオーバーライト特性の検討において、 マーク幅方向の温度分布を平坦ィ匕することが、高消去比及び消去パワーマージンを 広く取るために重要であることが分力つている。
[0049] この傾向は、波長 630— 680nm、 NA=0. 6前後の光学系を用いた、 DVD対応 の光学系にお 、ても同様である。このような光学系を用いた高密度マーク長変調記 録においては、特に熱伝導特性の低いものを保護層として用い、その膜厚を 5nm以 上 25nm以下とすることが好ましい。いずれの場合にも、その上に設ける第 1熱拡散 層 2及び反射層 6を特に高熱伝導率の材料とすることにより、消去比及び消去パワー マージンを改善できる。広い消去パワー範囲において、上記の記録層が持つ良好な 消去特性を発揮させるには、単に膜厚方向の温度分布や時間変化のみならず、膜 面方向(記録ビーム走査方向の垂直方向)の温度分布をできるだけ平坦ィヒできるよう な層構成を用いるのが好まし 、。
[0050] 本発明においては、情報記録媒体の層構成を適切に設計することにより、情報記 録媒体中のトラック横断方向の温度分布を平坦にすることで、溶融して再非晶化され ることなく、再結晶化することのできる幅を広げ、消去率及び消去パワーマージンを 広げることを試みた。一方、熱伝導率が低くごく薄い第 2保護層 5を介して、第 1記録 層 4から、極めて高熱伝導率の第 1反射層 6への放熱を促進し、なおかつ、熱伝導率 が低くごく薄い第 1保護層 3を介して、第 1記録層 4から、より高熱伝導率の第 1熱拡 散層 2への放熱を促進することで、第 1記録層 4における温度分布が平坦になること がわかった。第 1、 2保護層の熱伝導率を高くしても放熱効果は促進されるが、あまり 放熱が促進されると、記録に要する照射パワーが高くなる、即ち、記録感度が著しく 低下してしまう。
[0051] 本発明においては、低熱伝導率の、薄い第 1保護層 3及び第 2保護層 5を用いるの が好ましい。低熱伝導率の、薄い第 1保護層 3及び第 2保護層 5を用いることにより、 記録パワー照射開始時点の数 nsec—数 lOnsecにおいて、第 1記録層 4から第 1熱 拡散層 2、第 1反射層 6への熱伝導に時間的な遅延を与え、その後、第 1熱拡散層 2 、第 1反射層 6、更に第 2熱拡散層 7への放熱を促進することができるため、放熱によ り必要以上に記録感度を低下させることがない。従来知られている、 SiO、 Ta O、
2 2 5
Al O、 A1N、 SiN等を主成分とする保護層材料は、それ自身の熱伝導率が高すぎ
2 3
て、単体では本発明の 2層相変化型情報記録媒体における第 1保護層 3及び第 2保 護層 5としては好ましくない。
[0052] 前記本発明の「第 1保護層 3、第 2保護層 5での熱伝導遅延効果を考慮した超急冷 構造」は、上記の記録層材料に適用すると、 DVD— RAMなどで使われている GeTe - Sb Te記録層に比べて一層効果がある。前記第 1記録層 4及び第 2記録層 10は
2 3
溶融温度 (Tm)近傍での再凝固時の結晶成長が再結晶化の律速になっているから である。溶融温度 (Tm)近傍での冷却速度を極限まで大きくして、非晶質マーク及び そのエッジの形成を確実かつ明確なものとするには、超急冷構造が有効であり、かつ 、膜面方向の温度分布の平坦化で、もともと溶融温度 (Tm)近傍で高速消去可能で あったものが、より高消去パワーまで確実に再結晶化による消去を確保できるからで ある。
[0053] 前記第 1保護層 3及び第 2保護層 5の材料としては熱伝導特性が低い方が望ましい 力 その目安は 1 X 10— 3pj/ ( m'K'nsec)である。しかし、このような低熱伝導率 材料の薄膜状態の熱伝導率を直接測定するのは困難であり、代わりに、熱シミュレ一 シヨンと実際の記録感度の測定結果から目安を得ることができる。
[0054] 好ましい結果をもたらす低熱伝導率の第 1保護層 3及び第 2保護層 5の材料として は、 ZnS、 ZnO、 TaS及び希土類硫ィ匕物力も選択される少なくとも 1種を 50mol%
2
以上 90mol%以下含み、かつ、融点又は分解点が 1000°C以上の耐熱性ィ匕合物と を含む複合誘電体が望まし ヽ。
具体的には、 La、 Ce、 Nd、 Y等の希土類の硫化物を 60mol%以上 90mol%以下 含む複合誘電体が好ましい。あるいは、 ZnS、 ZnO又は希土類硫ィ匕物の組成の範 囲を 70— 90mol%とすることが好ましい。
[0055] これらと混合される融点又は分解点が 1000°C以上の耐熱化合物材料としては、例 えば、 Mg、 Ca、 Sr、 Y、 La、 Ce、 Ho、 Er、 Yb、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Zn、 Al、 S i、 Ge、 Pb等の酸化物、窒化物、又は炭化物、 Ca、 Mg、 Li等のフッ化物を用いること ができる。これらの中でも、特に ZnSと混合されるべき材料としては SiOが好ましい。
2
[0056] 前記第 1保護層 3、及び第 2保護層 5の膜厚が 30nmより厚いとマーク幅方向の温 度分布の十分な平坦ィ匕効果が得られないため、 30nm以下が好ましぐ 25nm以下 力 り好ましい。一方、前記膜厚が 5nm未満であると、保護層部での熱伝導の遅延 効果が不十分で、記録感度低下が著しくなり好ましくない。従って、前記第 1保護層 3 、及び第 2保護層 5の厚さは、記録レーザー光の波長が 600— 700nmでは 15nm— 25nmが好ましい。また、記録レーザー光の波長が 350— 600nmでは 5— 20nmが 好ましぐ 5— 15nmがより好ましい。
[0057] また、本発明の第 1保護層 3の膜厚 d [nm]と第 2保護層 5の膜厚 d [nm]との関係
1 2
は d≤d + 5nmである。 d力これより厚くなると、記録時の熱は、反射層側へ速く放
1 2 1
熱されてしまうので、本発明の特徴である第 1保護層 3による超急冷効果が得られな くなる。
[0058] なお、本発明においては、上記のように第 1、第 2保護層とも ZnSと SiOを混合した
2 ものとしている力 このように同じ材料にすると、製造上のコスト低減の面力もも有利で ある。 [0059] 次に、第 2情報層 200を構成する第 3保護層 9及び第 4保護層 11につ ヽて説明す る。第 2情報層 200においても高密度記録を実現するためには、超急冷構造であるこ とが好ましい。このため、第 2記録層 10と第 2反射層 12との間に位置する第 4保護層 11は、第 1保護層 3、第 2保護層 5で述べたような、熱伝導率の低い材料、膜厚であ ることが好ましい。
[0060] 前記第 3保護層 9は、当該技術分野において従来知られているものが適用されるが 、第 4保護層と同様な材料 (例えば、 ZnSと SiOを混合したもの)にすると、製造上の
2
コスト低減の面力もも有利である。前記第 3保護層 9の厚さは、 30— 200nmが好まし ぐこの範囲で最適な反射率になるように、膜厚の設計を行うことが好ましい。前記厚 さが 30nm未満であると、記録時の熱によって、記録層が変形してしまうことがあり、 2 OOnmを超えると、量産性に問題が生じてくる傾向がある。
[0061] 一反射層
第 1反射層 6及び第 2反射層 12は、入射光を効率良く使い、冷却速度を向上させ て非晶質ィ匕しゃすくするなどの機能を有するものであり、とりわけ本発明の特徴であ る超急冷構造には、非常に熱伝導率の高い金属が用いられ、例えば、 Au、 Ag、 Cu 、 W、 Al、 Taなど、又はそれらの合金などを用いることができる。また、添加元素とし ては、 Cr、 Ti、 Si、 Pd、 Ta、 Nd、 Znなどが使用される。
これらの中でも、 Ag系材料は、青色波長領域でも屈折率が小さぐ光吸収を小さく 抑えることができるので、本発明のような 2層の相変化型情報記録媒体における第 1 情報層の反射層に用いる材料として好まし 、ものである。
[0062] 前記反射層 6、 12は、各種気相成長法、例えば、真空蒸着法、スパッタリング法、 プラズマ CVD法、光 CVD法、イオンプレーティング法、電子ビーム蒸着法などによつ て形成できる。これらの中でも、スパッタリング法が、量産性、膜質等に優れている。
[0063] 前記第 1情報層 100は高い透過率が必要とされるため、第 1反射層 6は、屈折率の 低ぐ熱伝導率の高い Ag又はその合金を用いることが好ましい。前記第 1反射層 6の 厚さは、 3— 20nmが好ましい。 3nm未満であると、厚さが均一で緻密な膜を作ること が困難になることがあり、 20nmを超えると、透過率が減少し、第 2情報層 200の記録 再生が困難になることがある。 [0064] また、第 2情報層 200を構成する第 2反射層 12の膜厚は、 50— 300nmが好ましく 、 80— 150nm力より好ましい。前記膜厚が 5 Onm未満であると、純 Agでも更にこの 上に熱拡散層を設けなければ、放熱効果は超急冷構造には不十分であることがあり 、 300nmを超えると、熱が水平方向より垂直方向に逃げて、水平方向の熱分布改善 に寄与しないし、第 2反射層 12そのものの熱容量が大きぐ却って第 2記録層 10の 冷却速度が遅くなつてしまうことがあり、また、膜表面の微視的な平坦性も悪くなること がある。
[0065] 本発明の 2層相変化型情報記録媒体は、第 2保護層 5と第 1反射層 6との間に第 1 ノリア層 14及び第 4保護層 11と第 2反射層 12との間に第 2バリア層 15の少なくとも いずれかを設けていても構わない。前記反射層としては、 Ag合金、保護層としては、 ZnSと SiOとの混合物が最も好ましいが、反射層とバリア層とが隣接した場合、保護
2
層中の硫黄が反射層の Agを腐食させる可能性があり、保存信頼性が低下するおそ れがある。
この不具合をなくすために、反射層に Ag系を用いた場合には、ノリア層を設けるの が好ましい。該ノリア層は、硫黄を含まず、かつ融点は記録層よりも高い必要があり、 具体的には、 SiO、 ZnO、 SnO、 Al O、 TiO、 In O、 MgO、 ZrOなどの金属酸
2 2 2 3 2 2 3 2
化物、 Si N、 A1N、 TiN、 ZrNなどの窒化物、 SiC、 TaC、 B C、 WC、 TiC、 ZrCな
3 4 4
どの炭化物、又はそれらの混合物が挙げられる。これらのバリア層は、レーザー波長 での吸収率が小さ 、ことが好まし 、。
[0066] 前記バリア層 14、 15は、各種気相成長法、例えば、真空蒸着法、スパッタリング法 、プラズマ CVD法、光 CVD法、イオンプレーティング法、電子ビーム蒸着法などによ つて形成できる。これらの中でも、スパッタリング法力 量産性、膜質等に優れている。 前記バリア層 14、 15の膜厚は、 2— 10nmが好ましい。前記膜厚が 2nm未満であ ると、 Agの腐食を防止する効果が得られなくなり、保存信頼性が低下することがあり、 10nmを超えると、急冷構造が得られなくなったり、透過率が低下することがある。
[0067] 熱拡散層
前記熱拡散層 (第 1熱拡散層 2、第 2熱拡散層 7)は、第 1情報層 100の透過率向上 のために薄く設けられた反射層の熱拡散を補助する目的で設けられる。とりわけ、第 1基板 1と第 1保護層 3の間及び第 1反射層 6と中間層 8の間に設けることによって、超 急冷構造を確保することができる。
[0068] 前記熱拡散層 2、 7の材料の特性として、第 1保護層 3、第 2保護層 5よりも熱伝導率 が大きいことが望まれる。第 1熱拡散層 2の熱伝導率を第 1保護層 3よりも大きくするこ とで、保護層での熱伝導遅延効果を考慮した超急冷構造を確保でき、消去比が改善 され、オーバーライト特性向上につながる。また、第 2熱拡散層 7の熱伝導率を第 2保 護層 5よりも大きくすることで、薄い第 1反射層 6の熱拡散効果を補うことができ、超急 冷構造を確保することができる。
また、奥側の第 2情報層 200が記録再生できるよう、レーザー波長での吸収率が小 さいことも望まれる。情報の記録再生に用いるレーザー光の波長において、消衰係 数は 0. 5以下が好ましぐ 0. 3以下がより好ましい。前記消衰係数が 0. 5より大きいと 第 1情報層での吸収率が増大し、第 2情報層 200の記録再生が困難になることがあ る。
[0069] これらの特性を満足する材料として、電気伝導性を示す酸化物が挙げられる。例え ば、 In O、 SnO、 ZnO、 CdO、 TiO、 Cdln O、 Cd SnO、 Zn SnOなどを用い
2 3 2 2 2 4 2 2 2 4 ることができる。これらの中でも、 ITO (ln O -SnO )、 IZO (In O ZnO)が高熱伝
2 3 2 2 3
導であり、熱拡散層材料として好ましい。これらは単体でもいいし、混合して用いるこ とちでさる。
[0070] 前記第 1熱拡散層 2及び第 2熱拡散層 7の膜厚は、 lOnm以上であり、 10— 200η mが好ましい。前記膜厚が lOnm未満であると、放熱効果が得られなくなることがあり 、 200nmを超えると、応力が大きくなり、繰り返し記録特性が低下するば力りでなぐ 量産性にも問題が生じることがある。
[0071] また、本発明の 2層相変化型情報記録媒体の第 1情報層 100は、記録及び再生に 用いるレーザー光波長での光透過率は 40— 70%が好ましぐ 45— 60%がより好ま しい。前記光透過率が 40%未満であると、第 2情報層の記録再生が困難となることが あり、 70%を超えると、第 1情報層の記録感度低下や反射率低下となることがある。
[0072] (2層相変化型情報記録媒体の製造方法)
本発明の 2層相変化型情報記録媒体の製造方法は、第 1の形態では、成膜工程、 初期化工程、密着工程を含み、基本的にはこの順に各工程を行う。図 3は、この方法 により製造した 2層相変化型情報記録媒体の概略断面図であり、第 1基板 1、第 2基 板 13にはグループが形成されている。
[0073] 前記成膜工程としては、第 1基板 1のグループが設けられた面に第 1情報層 100を 形成したものと、第 2基板 13のグループが設けられた面に第 2情報層 200を形成した ものを別途作製する。
前記第 1情報層 100、及び第 2情報層 200のそれぞれを構成する各層は、各種気 相成長法、例えば、真空蒸着法、スパッタリング法、プラズマ CVD法、光 CVD法、ィ オンプレーティング法、電子ビーム蒸着法などによって形成される。これらの中でも、 スパッタリング法が、量産性、膜質等に優れている。スパッタリング法は、一般にアル ゴンなどの不活性ガスを流しながら成膜を行うが、その際、酸素、窒素などを混入さ せながら、反応スパッタリングさせてもよい。
[0074] 前記初期化工程として、第 1情報層 100、及び第 2情報層 200に対して、レーザー 光などのエネルギー光を出射することにより全面を初期化、即ち、記録層を結晶化さ せる。
前記初期化工程の際にレーザー光エネルギーにより膜が浮いてしまうおそれがあ る場合には、初期化工程の前に、第 1情報層及び第 2情報層の上に、 UV榭脂など をスピンコートし紫外線を照射して硬化させ、オーバーコートを施しても良い。また、 次の密着工程を先に行った後に、第 1基板側から、第 1情報層、第 2情報層を初期化 させても構わない。
[0075] 次に、以上のようにして初期化された、第 1基板 1の面上に第 1情報層 100を形成し たものと、第 2基板 13の面上に第 2情報層 200を形成したものとを、第 1情報層 100と 第 2情報層 200とを向かい合わせながら、中間層 8を介して貼り合わせる。例えば、い ずれか一方の膜面に中間層となる紫外線硬化性榭脂をスピンコートし、膜面同士を 向かい合わせて両基板を加圧、密着させた上で、紫外線を照射して榭脂を硬化させ ることがでさる。
[0076] 本発明の 2層相変化型情報記録媒体の製造方法は、第 2の形態では、第 1成膜ェ 程、中間層形成工程、第 2成膜工程、基板貼り合わせ工程及び初期化工程を含み、 基本的にこの順に各工程を行う。図 4は、この方法により製造した 2層相変化型情報 記録媒体の概略断面図であり、中間層 8、第 2基板 13にグループが形成されている
[0077] 前記第 1成膜工程は、第 2基板 13上の案内溝の設けられた面に第 2情報層 200を 成膜する工程である。成膜方法は、前述の通りである。
前記中間層形成工程は、第 2情報層 200上に案内溝を有する中間層 8を形成する 工程である。例えば、第 2情報層 200上に紫外線硬化性榭脂を全面に塗布し、紫外 線を透過することのできる材料でつくられたスタンパを押し当てたまま紫外線を照射 して硬化させて、溝を形成することができる。
前記第 2成膜工程は、中間層 8上に第 1情報層 100を成膜する工程である。成膜方 法は、前述の通りである。
前記基板貼り合わせ工程は、第 1情報層 100と第 1基板 1を、透明層 16を介して貼 り合わせる工程である。例えば、第 1情報層 100上、又は第 1基板 1上に、透明層 16 の材料である紫外線硬化性榭脂をスピンコートし、第 1情報層 100と第 1基板 1とを貼 り合わせてから、紫外線を照射して硬化させて形成することができる。また、透明層 1 6を形成せずに、第 1基板 1の材料である榭脂を第 1情報層 100上に塗布し、硬化さ せること〖こよって、第 1基板 1を形成してもよい。
前記初期化工程は、第 1基板 1側から、第 1情報層 100、第 2情報層 200に対して、 レーザー光などのエネルギー光を出射することにより全面を初期ィ匕、即ち記録層を 結晶化させる。なお、第 2情報層 200に対しては、中間層形成工程直後に初期化を 行ってもなんら問題はな ヽ。
[0078] (記録再生方法)
本発明の記録再生方法は、前記本発明の 2層相変化型情報記録媒体における各 情報層に対し、第 1情報層側力も波長 350— 700nmの光ビームを入射させて情報 の記録及び再生を行う。
具体的には、光記録媒体を所定の線速度、又は、所定の定角速度にて回転させな がら、第 1基板側から対物レンズを介して半導体レーザ (例えば、波長 350— 700nm の発振波長)などの記録用の光を照射する。この照射光により、記録層がその光を吸 収して局所的に温度上昇し、例えば、非晶質のマークを形成して情報が記録される。 上記のように記録された情報の再生は、光記録媒体を所定の定線速度で回転させな 力 レーザ光を第 1基板側力も照射して、その反射光を検出することにより行うことが できる。
実施例
[0079] 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定される ものではない。
[0080] (実施例 1)
- 2層相変化型情報記録媒体の作製 - まず、表面にピッチ 0. 43 ^ m,溝深さ 38nmの凹凸の案内溝を有する半径 120m m、厚さ 0. 58mmのポリカーボネート榭脂製の第 1基板を用意した。
次に、枚葉スパッタ装置 (Balzers社製)を用いてマグネトロンスパッタ法により、第 1 基板上に IZO (In O— 10質量%ZnO)力もなる第 1熱拡散層を厚みが 60nmとなる
2 3
ように成膜した。第 1熱拡散層上に ZnS— 20mol%SiO力もなる第 1保護層を厚みが
2
10nmとなるようにマグネトロンスパッタ法により成膜した。
第 1保護層上に Ge Ag In Sb Te カゝらなる第 1記録層を厚みが 6nmとなるようにマ
5 1 2 70 22
グネトロンスパッタ法により成膜した。第 1記録層上に ZnS— 20mol%SiO力もなる第
2
2保護層を厚みが lOnmとなるようにマグネトロンスパッタ法により成膜した。第 2保護 層上に Ag— 3質量%Zn— 2質量%A1からなる第 1反射層を厚みが lOnmとなるように マグネトロンスパッタ法により成膜した。第 1反射層上に IZO (In O— 10質量%ZnO)
2 3
力もなる第 2熱拡散層を厚みが 70nmとなるようにマグネトロンスパッタ法により成膜し た。以上により、第 1情報層を作製した。
[0081] また、同様にピッチ 0. 43 μ m、溝深さ 38nmの凹凸の案内溝を有する半径 120m m、厚さ 0. 58mmのポリカーボネート榭脂製の第 2基板を用意した。枚葉スパッタ装 置(Balzers社製)を用いてマグネトロンスパッタ法により、第 2基板上に A1— 3at%Ti 力もなる第 2反射層を厚みが 80nmとなるように成膜した。第 2反射層上に ZnS— 20 mol%SiO力 なる第 4保護層を厚みが 20nmとなるようにマグネトロンスパッタ法に
2
より成膜した。第 4保護層上に Ge Ag In Sb Te 力もなる第 2記録層を厚みが 12n mとなるようにマグネトロンスパッタ法により成膜した。第 2記録層上に ZnS— 20mol% SiOカゝらなる第 3保護層を厚みが 70nmとなるようにマグネトロンスパッタ法で成膜し
2
た。以上により、第 2情報層を作製した。
[0082] 次に、作製した第 1情報層、及び第 2情報層に対し、それぞれ第 1基板側、第 2情 報層膜面側からレーザー光を照射させて、初期化処理を行った。ここで、第 1情報層 の波長 407nmでの光透過率を、分光光度計 (SHIMADZU社製)を用いて第 1基 板側から測定した。
[0083] 次に、第 1情報層の膜面上に紫外線硬化榭脂 (日本化薬株式会社製、 DVD003) を含む塗布液をスピンコートにより塗布し、第 2基板の第 2情報層面側を貼り合わせ て、第 1基板側から紫外線光を照射し紫外線硬化榭脂を硬化させて厚さ 35 mの中 間層を形成した。以上により、第 1基板、第 1情報層、中間層、第 2情報層、及び第 2 基板がこの順に積層された 2層相変化型情報記録媒体を作製した。
[0084] <性能評価 >
得られた 2層相変化型情報記録媒体について、波長 407nm、対物レンズの開口 数 0. 65の光学系を用いて集束光ビームを照射し、線速 6. OmZs、0. 180 /z mZb itでの条件で記録し、初期ジッタ、 100回オーバーライト後のジッタ及び記録感度 (最 小ジッタを得られるパワー)を測定した。結果を表 1に示す。
第 1情報層に対して 13mW以下のパワーで 9%以下のジッタとなりオーバーライト特 性も良好であった。第 2情報層に対しても同様の条件で記録し、評価したところ、 13 mW以下のパワーで 9%以下のジッタとなりオーバーライト特性も良好であった。
[0085] 続いて、第 1保護層、及び第 2保護層に用いた ZnS— 20mol%SiOと、第 1熱拡散
2
層、及び第 2熱拡散層に用いた IZO (In O—10質量%ZnO)の熱伝導率を測定し
2 3
た。
ここで、熱伝導率の測定方法は、厚さ 30 mのガラス上に、それぞれを単膜で 100 Onmの厚さで成膜し、レーザー加熱法により求めた。 ZnS— 20mol%SiOは 0. 50
2
W/m-K, IZO (In O—10質量%ZnO)は 4. 3WZm'Kであり、第 1保護層、及び
2 3
第 2保護層を構成する材料よりも第 1熱拡散層、及び第 2熱拡散層を構成する材料の 方が熱伝導率が高 、ことがわ力つた。 [0086] (実施例 2)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 1熱拡散層の膜厚を 50nm、第 1保護層 の膜厚を 20nm、及び第 2保護層の膜厚を 15nmに変えた以外は、実施例 1と同様 にして、 2層相変化型情報記録媒体を作製した。
[0087] (実施例 3)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 1熱拡散層の膜厚を 50nm、第 1保護層 の膜厚を 20nm、第 2保護層の膜厚を 20nm、及び第 2熱拡散層の膜厚を 75nmに 変えた以外は、実施例 1と同様にして、 2層相変化型情報記録媒体を作製した。
[0088] (実施例 4)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 1熱拡散層の膜厚を 40nm、第 1保護層 の膜厚を 30nm、第 2保護層の膜厚を 25nm、及び第 2熱拡散層の膜厚を 75nmに 変えた以外は、実施例 1と同様にして、 2層相変化型情報記録媒体を作製した。
[0089] (実施例 5)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 1熱拡散層の膜厚を 40nm、第 1保護層 の膜厚を 30nm、第 2保護層の膜厚を 30nm、及び第 2熱拡散層の膜厚を 80nmに 変えた以外は、実施例 1と同様にして、 2層相変化型情報記録媒体を作製した。
[0090] (実施例 6)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 1熱拡散層の膜厚を 60nm、第 2保護層 の膜厚を 20nm、及び第 2熱拡散層の膜厚を 75nmに変えた以外は、実施例 1と同 様にして、 2層相変化型情報記録媒体を作製した。
[0091] (実施例 7)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 2保護層の膜厚を 30nm、及び第 2熱拡 散層の膜厚を 80nmに変えた以外は、実施例 1と同様にして、 2層相変化型情報記 録媒体を作製した。
[0092] (比較例 1)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 1熱拡散層の膜厚を 50nm、及び第 1保 護層の膜厚を 20nmに変えた以外は、実施例 1と同様にして、 2層相変化型情報記 録媒体を作製した。
[0093] (比較例 2)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 1熱拡散層の膜厚を 40nm、及び第 1保 護層の膜厚を 30nmに変えた以外は、実施例 1と同様にして、 2層相変化型情報記 録媒体を作製した。
[0094] (比較例 3)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 1熱拡散層の膜厚を 30nm、第 1保護層 の膜厚を 40nm、第 2保護層の膜厚を 40nm、及び第 2熱拡散層の膜厚を 80nmに 変えた以外は、実施例 1と同様にして、 2層相変化型情報記録媒体を作製した。
[0095] (比較例 4)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 2保護層の膜厚を 40nm、及び第 2熱拡 散層の膜厚を 80nmに変えた以外は、実施例 1と同様にして、 2層相変化型情報記 録媒体を作製した。
[0096] (比較例 5)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 2熱拡散層の膜厚を 5nmに変えた以外 は、実施例 1と同様にして、 2層相変化型情報記録媒体を作製した。
[0097] (比較例 6)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 1熱拡散層の膜厚を 5nm、第 1保護層の 膜厚を 20nm、及び第 2保護層の膜厚を 15nmに変えた以外は、実施例 1と同様にし て、 2層相変化型情報記録媒体を作製した。
[0098] <性能評価 >
次に、得られた実施例 2— 7及び比較例 1一 6について、実施例 1と同様にして、第 1情報層の記録、消去、及び再生実験を行った。結果を表 1に示す。
[0099] [表 1]
Figure imgf000030_0001
表 1の結果から、記録感度、オーバーライト特性の点から、第 1保護層及び第 2保護 層の膜厚が 30nm以下であることが好ましいことが認められる。また、第 1保護層の膜 厚 dと第 2保護層の膜厚 dとが d≤d + 5nmの関係にあると最小ジッタを得られる記
1 2 1 2
録パワーが 13mW以下となり記録感度が良好であることが認められる。
また、熱拡散層の厚さが薄すぎると、オーバーライト後のジッタが急増した。このこと から、熱拡散層の厚さは lOnm以上であることが好ましいことがわ力つた。更に他のサ ンプル試作実験で、熱拡散層を 200nm以上設けたところ、ディスクの反りが増加し、 安定にトラッキングすることができな力つた。
[0101] 第 1情報層における第 1及び第 2保護層材料として、 ZnS-30mol%SiO、また、
2 第 1及び第 2熱拡散層材料として、 ITO (ln O 10質量%SnO )、及び SnOを用
2 3 2 2 いた光情報記録媒体についても記録感度、オーバーライト特性を調べてみたが、そ れぞれ、 ZnS— 20mol%SiO、 IZO (In O 10質量0 /0ZnO)の場合と同様の結果
2 2 3
が得られた。
また、それぞれの材料の厚さ lOOOnmでの熱伝導率を測定したところ、 ZnS— 30m ol%SiOは 0. 48W/m'K、 ITOは 3. 6W/m'K、 SnOは 3. 2WZm'Kであり、
2 2
保護層よりも熱拡散層の方が熱伝導率が高いことが確認できた。
[0102] (実施例 8)
- 2層相変化型情報記録媒体の作製 - 実施例 1において、第 1情報層における第 1保護層、及び第 2保護層をそれぞれ 15 nmとし、第 1熱拡散層の膜厚を 55nm、第 2拡散層の膜厚を lOOnmとし、第 1記録 層の膜厚を表 2に示すように 2— 14nmの範囲でそれぞれ変えた以外は、実施例 1と 同様にして、 2層相変化型情報記録媒体を作製した。
<性能評価 >
得られた各 2層相変化型情報記録媒体について、実施例 1と同様の条件で記録特 性を評価した。結果を表 2に示す。
[0103] [表 2]
Figure imgf000031_0001
第 1記録層の厚さが厚ければ厚いほど、第 1情報層の光透過率は低下する。第 1情 報層の光透過率を 40%にしようとすると、第 1情報層の第 1記録層の膜厚は 15nm以 下であることが好ましいことがわ力つた。第 1情報層の透過率が 40%よりも小さいと、 第 2情報層を良好に記録及び再生することは困難であった。
また、第 1情報層の記録及び消去のオーバーライト特性は、第 1情報層の記録層膜 厚に強く依存することが認められる。
表 2の結果から、第 1情報層の第 1記録層の膜厚は、 3nm以上とすることが好ましい ことが認められる。
[0105] 2層相変化型情報記録媒体の作製
(実施例 9)
実施例 1において、第 1反射層に Agを用い、第 2保護層と第 1反射層との間にバリ ァ層として膜厚 3nmの SiCを設けた以外は、実施例 1と同様にして、 2層相変化型情 報記録媒体を作製した。
[0106] 2層相変化型情報記録媒体の作製
(実施例 10)
実施例 1において、第 1反射層に Agを用いた以外は、実施例 1と同様にして、 2層 相変化型情報記録媒体を作製した。
[0107] <性能評価 >
次に、実施例 9及び 10の各層相変化型情報記録媒体について実施例 1と同条件 で記録を行い、第 1情報層の 3T再生信号のジッタを測定した。更に保存信頼性を調 ベるために、初期記録した各サンプルを 80°C— 85%RHで 300時間保存した後の初 期記録マークの 3T再生信号のジッタを測定した。結果を表 3に示す。
[0108] [表 3]
Figure imgf000032_0001
表 3の結果から、第 1反射層に Agを用いた場合、バリア層を設けた実施例 9は、保 存後のジッタも良好で、光ディスクとして優れていることがわ力つた。一方、実施例 10 は、保存前のジッタは良好である力 保存後のジッタは、測定不可能であった。 以上のことから、上部保護層に硫黄を含む材料、反射層に Agを用いた場合には、 保存信頼性を向上させるために、バリア層を設けることが好ましいことが認められる。 (実施例 11)
- 2層相変化型情報記録媒体の作製 - まず、表面にピッチ 0. 35 ^ m,溝深さ 38nmの凹凸の案内溝を有する半径 120m m、厚さ 1. 1mmのポリカーボネート榭脂からなる第 2基板を用意した。
次に、枚葉スパッタ装置 (Balzers社製)を用いてマグネトロンスパッタ法により、第 2 基板上に A1— 3at%Tiからなる第 2反射層を厚みが 80nmとなるようにマグネトロンス ノ ッタ法により成膜した。第 2反射層上に ZnS— 20mol%SiOからなる第 4保護層を
2
厚みが 20nmとなるようにマグネトロンスパッタ法により成膜した。第 4保護層上に Ge
5
Ag ln Sb Te 力 なる第 2記録層を厚みが 12nmとなるようにマグネトロンスパッタ
1 2 70 22
法により成膜した。第 2記録層上に ZnS— 20mol%SiO力もなる第 3保護層を厚みが
2
70nmとなるようにマグネトロンスパッタ法により成膜した。以上により第 2情報層を作 製した。
[0110] 作製した第 2情報層の第 3保護層上に、紫外線硬化樹脂(日本化薬株式会社製、 DVD003)を含む塗布液を塗布し、 2P (photo polymerization)法によって、ピッ チ 0. 32 m、溝深さ 38nmの連続溝によるトラッキングガイドの凹凸を持つ中間層を 厚みが 30 mとなるように形成した。
[0111] 次に、前記中間層上に IZO (In O—10質量%ZnO)からなる第 2熱拡散層を厚み
2 3
力 S70nmとなるように枚葉スパッタ装置(Balzers社製)を用いてマグネトロンスパッタ 法により成膜した。第 2熱拡散層上に Ag— 3質量%Zn— 2質量%A1力もなる第 1反射 層を厚みが 10nmとなるようにマグネトロンスパッタ法により成膜した。第 1反射層上に ZnS-20mol%SiO力もなる第 2保護層を厚みが 10nmとなるようにマグネトロンスパ
2
ッタ法により成膜した。第 2保護層上に Ge Ag In Sb Te 力もなる第 1記録層を厚
5 1 2 70 22
みが 6nmとなるようにマグネトロンスパッタ法により成膜した。第 1記録層上に ZnS— 2 0mol%SiO力もなる第 1保護層を厚みが 10nmとなるようにマグネトロンスパッタ法
2
により成膜した。第 1保護層上に IZO (In O— 10質量%ZnO)力もなる第 1熱拡散層
2 3
を厚みが 80nmとなるようにマグネトロンスパッタ法により成膜した。以上により、第 1情 報層を作製した。
[0112] 次に、第 1情報層膜面上に直径 12cm、厚さ 50 mのポリカーボネート榭脂製フィ ルムカもなる第 1基板を、 45 μ mの厚さの両面粘着シートからなる透明層を介して貼 り合わせて、 2層相変化型情報記録媒体を作製した。 [0113] また、これとは別に、透過率測定用として、厚さ 1. 1mmの基板に第 1情報層と透明 層、第 1基板を同様に設け、第 1基板側からの光透過率を測定した。本実施例にお ける第 1情報層の初期化後の透過率は 49%であった。
[0114] <性能評価 >
作製した 2層相変化型情報記録媒体について、波長 407nm、対物レンズの開口 数 0. 85の光学系を用いて集束光ビームを照射し、線速 6. 5mZs、0. 160 /z mZb itでの条件で記録し、初期ジッタ、 100回オーバーライト後のジッタ及び記録感度 (最 小ジッタを得られるパワー)を測定したところ、第 1情報層に対して 10mW以下のパヮ 一で 7%以下のジッタとなりオーバーライト特性も良好であった。第 2情報層に対して も同様の条件で記録し、評価したところ、 10mW以下のパワーで 9%以下のジッタと なりオーバーライト特性も良好であった。
[0115] また、その他の試作実験から、開口数 0. 85の光学系で記録再生を行う場合でも、 第 2情報層を良好に記録再生するためには、第 1情報層の透過率が 40%以上必要 であることが確認された。
以上のことから、本発明の 2層相変化型情報記録媒体は、記録再生を行う対物レン ズの開口数 NAが変化した場合でも、第 1基板の厚さを 10— 600 mの範囲で調整 することによって、良好に記録再生を行うことができることが認められた。
[0116] また、その他の試作実験の結果から、第 1情報層の記録層膜厚が 3— 15nm、反射 層が 3— 20nm、熱拡散層が 10— 200nmの範囲であると、第 1情報層、及び第 2情 報層ともに良好に記録再生ができた。
[0117] (実施例 12)
- 2層相変化型情報記録媒体の作製 - まず、表面にピッチ 0. 74 ^ m,溝深さ 33nmの凹凸の案内溝を有する半径 120m m、厚さ 0. 58mmのポリカーボネート榭脂製の第 1基板を用意した。
次に、枚葉スパッタ装置 (Balzers社製)を用いてマグネトロンスパッタ法により、第 1 基板上に IZO (In O— 10質量%ZnO)力もなる第 1熱拡散層を厚みが 40nmとなる
2 3
ようにマグネトロンスパッタ法により成膜した。第 1熱拡散層上に ZnS— 20mol%SiO
2 力もなる第 1保護層を厚みが lOnmとなるようにマグネトロンスパッタ法により成膜した 。第 1保護層上に Ge Ag In Sb Te 力もなる第 1記録層を厚みが 6nmとなるように
5 2 3 68 22
マグネトロンスパッタ法より成膜した。第 1記録層上に ZnS— 20mol%SiO力もなる第
2
2保護層を厚みが lOnmとなるようにマグネトロンスパッタ法により成膜した。第 2保護 層上に Ag— 3質量%Zn— 2質量%A1からなる第 1反射層を厚みが lOnmとなるように マグネトロンスパッタ法により成膜した。第 1反射層上に IZO (In O— 10質量%ZnO)
2 3
力もなる第 2熱拡散層を厚みが lOOnmとなるようにマグネトロンスパッタ法により成膜 した。以上により、第 1情報層を作製した。
[0118] 次に、ピッチ 0. m、溝深さ 33nmの凹凸の案内溝を有する半径 120mm、厚さ 0. 58mmのポリカーボネート榭脂製の第 2基板を用意した。枚葉スパッタ装置 (Balz ers社製)を用いてマグネトロンスパッタ法により、第 2基板上に A1— 3at%T らなる 第 2反射層を厚みが 80nmとなるように成膜した。第 2反射層上に ZnS— 20mol%Si O力もなる第 4保護層を厚みが 20nmとなるようにマグネトロンスパッタ法により成膜し
2
た。第 4保護層上に Ge Ag In Sb Te カゝらなる第 2記録層を厚みが 12nmとなるよ
5 2 3 68 22
うにマグネトロンスパッタ法により成膜した。第 2記録層上に ZnS— 20mol%SiOから
2 なる第 3保護層を厚みが 80nmとなるようにマグネトロンスパッタ法により成膜した。以 上により、第 2情報層を作製した。
[0119] 次に、第 1情報層、第 2情報層に対して、それぞれ第 1基板側、第 2情報層膜面側 力もレーザー光を照射させ、初期化処理を行った。ここで、第 1情報層の波長 660η mでの光透過率を、分光光度計 (SHIMADZU社製)を用いて第 1基板側から測定 したところ、 45%であった。
[0120] 第 1情報層の上に、エポキシ系の紫外線硬化榭脂(中間層)を 50 μ mの厚さで塗 布し、その上に第 1情報層と第 2情報層とが向かい合うように載せて、更に紫外線照 射を行うことで、第 1基板、第 1情報層、中間層、第 2情報層、第 2基板の順に並ぶ、 2 層相変化型情報記録媒体を作製した。
[0121] <性能評価 >
作製した 2層相変化型情報記録媒体について、波長 660nm、対物レンズの開口 数 0. 65の光学系を用いて集束光ビームを照射し、線速 3. 5mZs、0. 267 /z mZb itでの条件で記録し、初期ジッタ、 100回オーバーライト後のジッタ及び記録感度 (最 小ジッタを得られるパワー)を測定したところ、第 1情報層に対して 28mW以下のパヮ 一で 9%以下のジッタとなりオーバーライト特性も良好であった。また、第 2情報層に 対しても同様の条件で記録し、評価したところ、 28mW以下のパワーで 9%以下のジ ッタとなりオーバーライト特性も良好であった。
産業上の利用可能性
本発明の 2層相変化型情報記録媒体は、オーバーライト特性に優れ、特に青紫色 レーザーを用いた場合でも高密度で書き換え可能であり、例えば、 CD-RW, DVD +RW、 DVD— RW、 DVD-RAM,青紫色レーザーを用いる Blu— ray Diskシステ ムなどに幅広く用いることができる。

Claims

請求の範囲
[1] 第 1基板と、第 2基板と、該第 1基板及び該第 2基板の間に少なくとも第 1情報層と、 中間層と、第 2情報層をこの順に有し、前記第 1基板側からレーザー光を入射して情 報の記録及び再生の少なくともいずれかを行う 2層相変化型情報記録媒体であって 、 前記第 1情報層は、少なくとも第 1熱拡散層、第 1保護層、第 1記録層、第 2保護 層、第 1反射層、及び第 2熱拡散層をこの順に有してなり、前記第 1保護層及び第 2 保護層における膜厚が 35nm以下であり、前記第 1熱拡散層及び第 2熱拡散層にお ける膜厚が lOnm以上であり、かつ前記第 1保護層の膜厚 d (nm)と前記第 2保護層 の膜厚 d (nm)と力 次式、 d≤d + 5nmの関係を満たすことを特徴とする 2層相変
2 1 2
化型情報記録媒体。
[2] 第 1熱拡散層及び第 2熱拡散層における熱伝導率が、第 1保護層及び前記第 2保 護層における熱伝導率よりも大きい請求の範囲第 1項に記載の 2層相変化型情報記 録媒体。
[3] 第 1保護層及び第 2保護層が、それぞれ、 ZnS、 ZnO、 TaS及び希土類硫化物か
2
ら選択される少なくとも 1種を 50mol%以上 90mol%以下含み、かつ、融点又は分 解点が 1000°C以上の耐熱性ィ匕合物を含む複合誘電体である請求の範囲第 1項に 記載の 2層相変化型情報記録媒体。
[4] 融点又は分解点が 1000°C以上の耐熱性化合物力 Mg、 Ca、 Sr、 Y、 La、 Ce、 H o、 Er、 Yb、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Zn、 Al、 Si、 Geおよび Pbから選択される元素 の酸化物、窒化物、および炭化物、並びに、 Ca、 Mgおよび Uから選択される元素の フッ化物のいずれかである請求の範囲第 3項に記載の 2層相変化型情報記録媒体。
[5] 第 1保護層及び第 2保護層が、 ZnSおよび SiOを含む請求の範囲第 4項に記載の
2
2層相変化型情報記録媒体。
[6] 第 1保護層及び第 2保護層の少なくともいずれかが ZnSを含有し、かつ第 1熱拡散 層及び第 2熱拡散層の少なくともいずれかが電気伝導性を示す酸化物を含有する請 求の範囲第 1項から第 5項のいずれかに記載の 2層相変化型情報記録媒体。
[7] 第 1熱拡散層及び第 2熱拡散層の少なくともいずれかが、 IZO (ln O ZnO)及び I
2 3
TO (In O SnO )のいずれかを含有する請求の範囲第 1項から第 6項のいずれか に記載の 2層相変化型情報記録媒体。
[8] 第 1保護層及び第 2保護層における膜厚が 5— 30nmである請求の範囲第 1項から 第 7項のいずれかに記載の 2層相変化型情報記録媒体。
[9] 第 1保護層及び第 2保護層における膜厚が 25nm以下である請求の範囲第 8項に 記載の 2層相変化型情報記録媒体。
[10] 第 1熱拡散層及び第 2熱拡散層における膜厚が 10— 200nmである請求の範囲第
1項から第 9項のいずれかに記載の 2層相変化型情報記録媒体。
[11] 第 1記録層が Sb及び Teを含有し、更に Ag、 In、 Ge、 Sn、 Al、 Ta、 V、 Co、 Zr、 Ga
、 Si、 Nb、 Cr、 Pt、 Pb、 S、 N、及び Oから選択される少なくとも 1種を含有する請求 の範囲第 1項力も第 10項のいずれかに記載の 2層相変化型情報記録媒体。
[12] 第 1記録層の膜厚が、 3— 15nmである請求の範囲第 1項力 第 11項のいずれか に記載の 2層相変化型情報記録媒体。
[13] 第 1反射層が、 Au、 Ag、 Cu、 W、 Al、及び Taカゝら選択される少なくとも 1種を含有 する請求の範囲第 1項力 第 12項のいずれかに記載の 2層相変化型情報記録媒体
[14] 第 1反射層の膜厚が、 3— 20nmである請求の範囲第 1項力も第 13項のいずれか に記載の 2層相変化型情報記録媒体。
[15] 第 1情報層の光透過率が、波長 350— 700nmの光に対して 40— 70%である請求 の範囲第 1項力も第 14項のいずれかに記載の 2層相変化型情報記録媒体。
[16] 第 1基板と第 1熱拡散層との間に透明層を有する請求の範囲第 1項力も第 15項の
V、ずれかに記載の 2層相変化型情報記録媒体。
[17] 第 2保護層と第 1反射層との間に第 1バリア層を有する請求の範囲第 1項から第 16 項のいずれかに記載の 2層相変化型情報記録媒体。
[18] 第 1反射層が Agを含有する請求の範囲第 17項に記載の 2層相変化型情報記録媒 体。
[19] 第 1基板の厚さ力 10— 600 /z mである請求の範囲第 1項力も第 18項のいずれか に記載の 2層相変化型情報記録媒体。
[20] 2層相変化型情報記録媒体における各情報層に対し、第 1基板側から波長 350— 700nmの光ビームを入射させて情報の記録及び再生の少なくとも ヽずれかを行 、、 該 2層相変化型情報記録媒体が、第 1基板と、第 2基板と、該第 1基板及び該第 2 基板の間に少なくとも第 1情報層と、中間層と、第 2情報層をこの順に有し、前記第 1 基板側からレーザー光を入射して情報の記録及び再生の少なくとも 、ずれかを行う 2 層相変化型情報記録媒体であって、 前記第 1情報層は、少なくとも第 1熱拡散層、 第 1保護層、第 1記録層、第 2保護層、第 1反射層、及び第 2熱拡散層をこの順に有 してなり、前記第 1保護層及び第 2保護層における膜厚が 35nm以下であり、前記第 1熱拡散層及び第 2熱拡散層における膜厚が lOnm以上であり、かつ前記第 1保護 層の膜厚 d (nm)と前記第 2保護層の膜厚 d (nm)とが、次式、 d≤d + 5nmの関
1 2 1 2
係を満たすことを特徴とする 2層相変化型情報記録媒体の記録再生方法。
PCT/JP2004/013558 2003-09-22 2004-09-16 2層相変化型情報記録媒体及びその記録再生方法 WO2005029482A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04773204A EP1667137A4 (en) 2003-09-22 2004-09-16 TWO-LAYER PHASE CHANGE INFORMATION RECORDING MEDIUM AND METHOD OF RECORDING / REPLAYING THEREOF
US11/384,567 US20060228531A1 (en) 2003-09-22 2006-03-21 Dual-layer phase-change information recording medium and recording and reading method using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-330490 2003-09-22
JP2003330490 2003-09-22
JP2004-176429 2004-06-15
JP2004176429A JP2005122872A (ja) 2003-09-22 2004-06-15 2層相変化型情報記録媒体及びその記録再生方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/384,567 Continuation US20060228531A1 (en) 2003-09-22 2006-03-21 Dual-layer phase-change information recording medium and recording and reading method using the same

Publications (1)

Publication Number Publication Date
WO2005029482A1 true WO2005029482A1 (ja) 2005-03-31

Family

ID=34380350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013558 WO2005029482A1 (ja) 2003-09-22 2004-09-16 2層相変化型情報記録媒体及びその記録再生方法

Country Status (5)

Country Link
US (1) US20060228531A1 (ja)
EP (1) EP1667137A4 (ja)
JP (1) JP2005122872A (ja)
TW (1) TWI273589B (ja)
WO (1) WO2005029482A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439007B2 (en) * 2002-12-20 2008-10-21 Ricoh Company, Ltd. Phase change information recording medium having multiple layers and recording and playback method for the medium
US7947353B2 (en) 2005-07-29 2011-05-24 Panasonic Corporation Information recording medium and its production process
DE602006019886D1 (de) 2005-09-05 2011-03-10 Ricoh Co Ltd Mehrschichtiges optisches aufzeichnungsmedium und optisches aufzeichnungsverfahren
US8815149B2 (en) 2005-12-29 2014-08-26 Mitsubishi Materials Corporation Semi-reflective film and reflective film for optical recording medium, and Ag alloy sputtering target for forming semi-reflective film or reflective film for optical recording medium
JP2007323774A (ja) 2006-06-02 2007-12-13 Toshiba Corp 光記録媒体、情報記録方法、情報再生方法
JP2008097791A (ja) * 2006-09-11 2008-04-24 Ricoh Co Ltd 多層相変化型光記録媒体
JP5225372B2 (ja) * 2008-04-01 2013-07-03 株式会社東芝 情報記録再生装置
JP5300839B2 (ja) * 2008-04-15 2013-09-25 株式会社東芝 情報記録再生装置
MX2010010979A (es) * 2008-12-10 2010-10-26 Panasonic Corp Medio de grabacion de informacion, dispositivo de reproduccion y metodo de reproduccion.
WO2010067556A1 (ja) * 2008-12-11 2010-06-17 パナソニック株式会社 情報記録媒体、再生装置および再生方法
KR20110015907A (ko) * 2009-08-10 2011-02-17 삼성전자주식회사 저항체를 이용한 멀티 레벨 메모리 장치
US9672854B2 (en) * 2013-09-30 2017-06-06 Seagate Technology Llc Magnetic stack including MgO-Ti(ON) interlayer
WO2021028035A1 (en) * 2019-08-14 2021-02-18 Ceramic Data Solution GmbH Method for long-term storage of information and storage medium therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850739A (ja) * 1994-08-08 1996-02-20 Matsushita Electric Ind Co Ltd 光学的情報記録媒体
JP2702905B2 (ja) * 1994-12-28 1998-01-26 松下電器産業株式会社 光ディスク
JP2000222777A (ja) * 1998-11-25 2000-08-11 Matsushita Electric Ind Co Ltd 光学情報記録媒体
JP2000322770A (ja) * 1999-05-12 2000-11-24 Matsushita Electric Ind Co Ltd 光学情報記録媒体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449239B1 (en) * 1998-11-25 2002-09-10 Matsushita Electric Industrial Co., Ltd. Optical information recording medium with thermal diffusion layer
WO2002099796A1 (en) * 2001-06-01 2002-12-12 Koninklijke Philips Electronics N.V. Multi-stack optical data storage medium and use of such a medium
EP1397801B1 (en) * 2001-06-01 2008-01-02 Koninklijke Philips Electronics N.V. Rewritable optical data storage medium and use of such a medium
JP3777111B2 (ja) * 2001-07-12 2006-05-24 日立マクセル株式会社 情報記録媒体および製造方法
CN1290106C (zh) * 2002-03-07 2006-12-13 株式会社理光 光记录媒体及其制造方法
US7012878B2 (en) * 2002-03-22 2006-03-14 Ricoh Company, Ltd. Optical recording medium and optical recording process using the same
US7439007B2 (en) * 2002-12-20 2008-10-21 Ricoh Company, Ltd. Phase change information recording medium having multiple layers and recording and playback method for the medium
JP4181490B2 (ja) * 2003-03-25 2008-11-12 松下電器産業株式会社 情報記録媒体とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850739A (ja) * 1994-08-08 1996-02-20 Matsushita Electric Ind Co Ltd 光学的情報記録媒体
JP2702905B2 (ja) * 1994-12-28 1998-01-26 松下電器産業株式会社 光ディスク
JP2000222777A (ja) * 1998-11-25 2000-08-11 Matsushita Electric Ind Co Ltd 光学情報記録媒体
JP2000322770A (ja) * 1999-05-12 2000-11-24 Matsushita Electric Ind Co Ltd 光学情報記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1667137A4 *

Also Published As

Publication number Publication date
TWI273589B (en) 2007-02-11
EP1667137A1 (en) 2006-06-07
TW200518084A (en) 2005-06-01
EP1667137A4 (en) 2008-08-13
US20060228531A1 (en) 2006-10-12
JP2005122872A (ja) 2005-05-12

Similar Documents

Publication Publication Date Title
US7260053B2 (en) Optical recording medium, process for manufacturing the same, sputtering target for manufacturing the same, and optical recording process using the same
US20060228531A1 (en) Dual-layer phase-change information recording medium and recording and reading method using the same
KR100381852B1 (ko) 광학정보 기록매체
JP4136980B2 (ja) 多層相変化型情報記録媒体及びその記録再生方法
JP3679107B2 (ja) 2層相変化型情報記録媒体とその記録方法
EP1131819A1 (en) Rewritable optical information recording medium
JP4125566B2 (ja) 多層相変化型光情報記録媒体及びその記録再生方法
JP4331657B2 (ja) 多層相変化型情報記録媒体及びその記録再生方法
WO2005015555A1 (ja) 光学情報記録媒体及びその製造方法
JP4071060B2 (ja) 多層相変化型情報記録媒体とそれを用いた情報の記録再生方法
JP4216178B2 (ja) 多層相変化型情報記録媒体及びその記録再生方法
JP3918994B2 (ja) 2層相変化型情報記録媒体およびその光記録方法
JP4086689B2 (ja) 光学的情報記録媒体とその製造方法
JP2006247855A (ja) 多層相変化型光記録媒体
JP2003335064A (ja) 相変化型光情報記録媒体
KR20050026477A (ko) 다층 광 데이터 저장매체와 이 매체의 용도
KR20080033528A (ko) 다층 광 기록 매체 및 광 기록 방법
JP2004025801A (ja) 相変化型情報記録媒体
JP4322719B2 (ja) 光情報記録媒体及びその製造方法とスパッタリングターゲット
US20080145587A1 (en) Optical recording medium
JP4080515B2 (ja) 2層相変化型情報記録媒体の光記録方法
JP4533276B2 (ja) 2層相変化型情報記録媒体
JP2007118557A (ja) 多層相変化型光記録媒体
JP2004259382A (ja) 多層相変化型情報記録媒体およびその記録再生方法
JP2006256196A (ja) 光情報記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027363.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11384567

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004773204

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004773204

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11384567

Country of ref document: US