WO2005028839A1 - 過渡エンジン性能適合化方法およびシステム - Google Patents

過渡エンジン性能適合化方法およびシステム Download PDF

Info

Publication number
WO2005028839A1
WO2005028839A1 PCT/JP2004/013524 JP2004013524W WO2005028839A1 WO 2005028839 A1 WO2005028839 A1 WO 2005028839A1 JP 2004013524 W JP2004013524 W JP 2004013524W WO 2005028839 A1 WO2005028839 A1 WO 2005028839A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
transient
control
test
model
Prior art date
Application number
PCT/JP2004/013524
Other languages
English (en)
French (fr)
Inventor
Yasunori Urano
Hitoshi Takada
Original Assignee
Hino Motors, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors, Ltd. filed Critical Hino Motors, Ltd.
Priority to EP04773182A priority Critical patent/EP1669581A4/en
Priority to US10/571,920 priority patent/US7349795B2/en
Publication of WO2005028839A1 publication Critical patent/WO2005028839A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/05Testing internal-combustion engines by combined monitoring of two or more different engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • G01M15/046Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12 by monitoring revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1423Identification of model or controller parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration

Definitions

  • the present invention is used for a transient test of an engine (internal combustion engine).
  • the present invention relates to a transient test method and a system for adapting the transient characteristic performance of a diesel engine to a required performance target.
  • An object of the present invention is to enable an engine control system that satisfies an engine transient performance target to be constructed in a short time.
  • the transient characteristics of an engine refer to the characteristics in the case where the rotational speed and the torque change with time in a steady state such as a constant state. For example, when the vehicle is accelerating or decelerating, the power and rotational speed change, and the characteristics of the engine under the condition , U.
  • a control value of a control factor of a certain engine for example, a fuel injection amount, a fuel injection timing, etc.
  • a predetermined time for example, (3 minutes) Wait for the passage of time, measure the output of that state, change the control value of one control factor, measure it after a predetermined time after it has reached the steady state, and then control the control factor again It was time-consuming to change the values and take measurements.
  • a virtual vehicle model including an engine is created for each vehicle type in a simulator, and various control inputs to the vehicle model, for example, control of force, crank angle, and the like when a slot opening is performed.
  • a control value of a factor is input, and an engine speed, a vehicle speed, and a value of an exhaust gas temperature sensor are to be estimated as an output of a virtual vehicle model based on the input control value.
  • Patent Document 1 JP-A-11-326135
  • a method of deploying a vehicle model including a virtual engine model in a simulator and observing the behavior of the engine using the model is useful in that the time required for engine development can be reduced.
  • the above-mentioned known documents aim at creating a simulation model of a vehicle model. It did not evaluate the performance required for more engine transients.
  • changing the control value of each control factor of the engine corresponding to the transient state and estimating the result has a problem of poor operability.
  • a test is performed on an actual engine in a transient state in which the engine rotational speed, the torque, and the like fluctuate in time series.
  • the output data obtained as a result of the test is taken in, and a transient engine model (simulator) that describes the relationship between the engine input and the output is created by associating the control factor with the control value given to the engine.
  • the engine is operated transiently by changing the control value of one or a combination of two or more control factors of the engine, and the necessary data is acquired.
  • a simulation is performed to determine how to change the control value of a certain control factor to satisfy the target performance, and obtain a control value that satisfies the performance target.
  • a transient test is further performed using the actual equipment, and a test is performed to confirm whether the target performance is satisfied.
  • the control logic of the engine control circuit ECU is created using the control values used in the simulation of the transient engine model.
  • a step of changing a control value of a control factor given to the engine to perform a transient test in which the engine is operated in a transient state and its output is captured, and Creating a transient model of the engine that has been tested based on the relationship between the output data of the engine and the output data and the data of the given control factors; and requesting the engine using the created transient model.
  • a step of confirming whether or not the transient performance target required by the confirming step is satisfied.
  • Transient engine performance adaptation I ⁇ method includes a step of creating a control software of the circuit [0014]
  • an actual machine transient test executing means for executing a transient test by changing a control value of a control factor of an engine, fetching output data of the engine by the transient test, and outputting the output data
  • a transient model generating means for generating a transient model describing a relationship between control input and output data of the engine based on the control value given by the actual machine transient test executing means; and a transient model generating means for generating the transient model.
  • transient model simulating means for obtaining a control value of a control factor such that the transient model satisfies a performance target required for a transient test of the engine, and a simulation using the simulating means.
  • Transient engine performance adaptation I spoon system is provided.
  • a transient test can be performed in a transient state without replacing test data in a steady state, and a control value of an engine satisfying a performance target can be acquired in a short time. Also, the man-hours required to create control software for the engine that satisfies the performance target can be reduced, and control software for the engine control circuit can be easily created. According to the present invention, the time for engine development can be shortened, and the time for product development can be shortened.
  • FIG. 1 is a diagram showing a system configuration of the present embodiment.
  • FIG. 2 is a flowchart showing the operation of the present embodiment.
  • FIG. 3 is a view showing actual measured values of a transient test of an actual machine of the present embodiment.
  • FIG. 4 is a diagram showing a virtual actually measured value and a target value according to the present embodiment.
  • FIG. 5 is a diagram showing a current control value and a target control value of the present embodiment.
  • FIG. 1 shows a system configuration according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the entire steps of the transient engine performance adaptation process.
  • reference numeral 10 denotes an actual machine transient test device
  • 11 denotes an ECU (actual machine)
  • 12 denotes an engine (actual machine) controlled by the ECU 11
  • 13 denotes a rotation detector that detects the number of revolutions of the crankshaft of the engine 12
  • Reference numeral 1 denotes a virtual engine test apparatus which is a feature of the present invention
  • 2 denotes a model creation unit
  • 3 denotes a virtual ECU
  • 4 denotes a control value correction unit
  • 5 denotes a transient engine model
  • Reference numeral 6 denotes an operator terminal used by an operator who performs the transient test.
  • the embodiment of the present invention includes a real machine transient test apparatus 10 that changes a control value of an engine control factor and executes a transient test, and an engine output data obtained by the transient test.
  • a model creation unit 2 for creating a transient model that describes the relationship between the control input and output data of the engine based on the output data and the control value given by the actual machine transient test device 10;
  • a transient model simulation means (portion surrounded by a broken line) for using the transient model generated by the part 2 to obtain a control value of a control factor so that the transient model satisfies a performance target required for a transient test of the engine.
  • All the virtual ECUs 3, the transient engine model 5, the control value correction unit 4 and the operator terminal 6 are provided in the virtual engine test apparatus 1, and the control value correction unit 4 uses the virtual ECU 3 It is a transient engine performance adaptation I spoon system, characterized in that the control value of the engine to meet the performance targets obtained by executing with a means for providing the actual transient test device 10 Yureshiyon.
  • the control value correction unit 4 operates the control values given to the transient model as time-series data. And means for correcting the control value as it is displayed in the time series and giving it to the transient model.
  • the embodiment of the present invention includes a step (S1) of performing a transient test in which the control value of a control factor given to the engine is changed, the engine is operated in a transient state, and the output is taken in. Fetching the output data of the engine by the transient test and creating a transient model of the engine that has been tested based on the relationship between the output data and the data of the given control factor (S2, S4); Obtaining a control value of a control factor that satisfies the required transient performance target using the transient model (S5, S6, S7); and transmitting the control value obtained by the transient model to the actual engine of the engine.
  • S1 of performing a transient test in which the control value of a control factor given to the engine is changed, the engine is operated in a transient state, and the output is taken in.
  • step (S3) to determine whether the required transient performance target is satisfied by performing the transient test by applying the transient test, and if the required transient performance target is satisfied by the checking step.
  • step (S8) of creating control software for a control circuit for controlling the engine
  • FIG. 3 shows the measurement results of the transient characteristics using an actual engine.
  • the number of grams of NOx per hour (g / h) and the number of grams of smoke per second (g / s) are plotted on the vertical axis, and the horizontal axis is time.
  • the EGR control value and VGT control value in this state are plotted on the vertical axis, and the horizontal axis is time.
  • these measurements are performed by the measuring unit 14 of the actual machine transient test apparatus 10.
  • the flowchart shown in FIG. 2 corresponds to the actual machine transient test (Step S1) and the data processing (Step S2).
  • a model is created.
  • the configuration shown in FIG. 1 is performed by the model creating unit 2 of the virtual engine test apparatus 1.
  • this corresponds to model creation (step S4).
  • the actual measurement results of the actual machine are replaced with the models as they are, so a model is created based on the measurement results of the transient characteristics shown in Fig. 3.
  • This model is created as a transient engine model 5 and a virtual ECU 3.
  • control values for the model are created.
  • virtual This is performed by the control value correction unit 4 of the engine test apparatus 1.
  • the flowchart shown in FIG. 2 corresponds to obtaining a virtual ECU control value by simulation (step S5), giving the control value to the virtual ECU (step S6), and evaluating (step S7).
  • Figure 4 shows the target values (dashed lines) for the virtual measured values of NOx and smoke (solid lines).
  • the result of the evaluation is NG.
  • control value is corrected so that the virtual measured value approaches the target value.
  • the control is performed by the control value correction unit 4 of the virtual engine test apparatus 1.
  • the flowchart shown in FIG. 2 corresponds to obtaining a virtual ECU control value by simulation (step S5).
  • Figure 5 shows the control values before (solid line) and after (dashed line). This correction is made by the operator.
  • the control value is corrected using two methods.
  • the first is a method in which the control value itself is changed by the operator terminal 6.
  • the second is a method in which the control values given to the transient model as shown in Fig. 5 are displayed as time-series data on the operator terminal 6, and the displayed control values in the time series are corrected and given to the transient model. It is. That is, the operator directly instructs the increase or decrease of the control value using a mouse or the like with respect to the graph shown by the solid line in FIG. 5 displayed on the display device of the operator terminal 6. Thereby, the operator can change the control value while visually confirming the change in the graph shape (for example, the broken line in FIG. 5).
  • the control value changed in this way is provided to the virtual ECU 3 again (S6), and is evaluated (S7).
  • the corrected control value is input to the ECU 11 of the real machine transient test apparatus 10.
  • the actual engine is controlled by the corrected control value.
  • steps Sl, S2, and S3 of the flowchart shown in FIG. 2 are executed again.
  • steps S1 to S7 are repeatedly executed until the actual measurement value and the target value fall within the allowable range.
  • actual machine ECU control software is created.
  • the control is performed by the control value correction unit 4 of the virtual engine test apparatus 1.
  • the flowchart shown in FIG. 2 corresponds to the creation of ECU control software for the actual machine (step S8). As a result, a control value in which the measured value and the target value fall within the allowable range can be created in a short time.
  • a transient test can be performed in a transient state without replacing test data in a steady state, and a control value of an engine that satisfies a performance target can be acquired in a short time. Also, the man-hours for creating engine control software that satisfies the performance target can be reduced, and the creation of engine control circuit control software can be facilitated. According to the present invention, the time for engine development can be shortened, and the time for product development can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 エンジンの過渡試験の時間を短縮する。エンジンの制御ソフトウェアを作成する工数を短縮する。  エンジンの実機でエンジン回転速度やトルクなどが時系列的に変動する過渡状態のまま試験を行う。その試験の結果である出力データを取り込み、エンジンに与えた制御因子の制御値との対応関係をとって、エンジンの入力に対する出力の関係を記述した過渡エンジンモデルを生成する。作成された過渡エンジンモデルを用いて、ある制御因子の制御値をどのように変更したら、目標とする性能を満足するかのシミュレーションを行い、性能目標を満足する制御データを取得する。この制御データによりエンジン制御回路の制御ロジックを作成する。

Description

明 細 書
過渡エンジン性能適合化方法およびシステム
技術分野
[0001] 本発明は、エンジン(内燃機関)の過渡試験に用いる。本発明は、特にディーゼル エンジンの過渡特性性能を、要求される性能目標に適合ィ匕させるための過渡試験方 法およびそのためのシステムに関する。本発明は、エンジン過渡性能目標を満足す るエンジン制御システムを短時間に構築できるようにするためのものである。 背景技術
[0002] エンジンの過渡特性は、回転数やトルクが一定状態であるような定常状態でなぐ 時間によって変化する場合の特性をいう。例えば、加速中であるとか減速中であると 力 回転数などが変化して 、る状態でのエンジンの特性を!、う。
[0003] 従来のエンジンの過渡状態でのエンジンのトルク出力や排気ガスなどの出力特性 測定は、実機を定常状態にしてそのエンジンの出力状態を測定し、その定常状態の 出力データに何らかの重み付けをして過渡状態の特性に置き換えてエンジンの出力 を推定すると ヽぅ手法で行われて 、た。
[0004] しかし、定常状態でのエンジン特性の測定は、あるエンジンの制御因子 (例えば燃 料噴射量、燃料噴射タイミングなど)の制御値を変更したときは、定常状態なるまで所 定時間(例えば 3分)経過するのを待ってその状態の出力を測定するというように、一 つの制御因子の制御値を変更して定常状態になって所定時間経過後に測定し、次 にまた制御因子の制御値を変更して、測定を行うというように時間の力かるものであつ た。
[0005] ところで、実際の車両の走行では、エンジンは加速状態あるいは減速状態である時 間の方が多ぐ定速状態で走行できることの方が少ない。このため、エンジンの過渡 状態での特性を測定することが重要である。また、近年排気ガス規制の仕方が、いま までのエンジンの定常状態での排気ガスの値で規制するのではなぐエンジンの過 渡状態での排気ガスの規制値で規制しょうとする方向にある。したがって、エンジン について、どの制御因子をどのように変更したらどのような過渡状態の排気ガスが得 られるかという過渡特性の測定が重要になった。
[0006] ところで、上述したように、定常状態のエンジンの制御因子の変更に対してどのよう な出力が得られるかという定常特性の測定でも、制御因子が多くなり、特に ECUによ る電子制御によってエンジン制御に多数の制御因子が現れるようになつたので、試 験時間が長時間力かるようになった。例えば、 EGR (Exhaust Gas Recirculation)バル ブ制御であるとか、 VGT (Variable Geometry Turbo)制御などエンジン制御に関する 種々の電子制御の要素が加わってくるようになった。過渡特性測定では、エンジンの 回転数(回転速度)やトルク自体が時系列的に変化する状態で、その出力データも 当然時系列的に変動するデータとして現れるので、制御因子の数が多くなり、それら の制御因子一つ一つについてその制御値を変更しながら定常状態で測定しょうとす れば、その試験時間は指数関数的に増大する。
[0007] そこで、仮想的にエンジンや車両の特性を模擬したシミュレーションを用いてェンジ ン制御等の評価を行うとする技術が提案されている (特許文献 1参照)。
[0008] この技術は、シミュレータ内にエンジンを含む仮想的な車両モデルを車種ごとに作 成しておき、車両モデルに種々の制御入力、例えばスロット開度であると力、クランク 角度などの制御因子の制御値を入力し、その入力された制御値に基づいて仮想的 な車両モデルの出力として、エンジン回転数とか車速とか排気ガス温度センサの値と かを推定しょうとするものである。
特許文献 1 :特開平 11— 326135号公報
発明の開示
発明が解決しょうとする課題
[0009] 上述のように、実機で定常状態や過渡状態の特性を測定しょうとすると近年はェン ジンの制御因子の数が多数になったため、試験データを得るにはどうしても長時間か かり、エンジン開発のネックとなっていた。
[0010] また、仮想のエンジンモデルを含む車両モデルをシミュレータに展開して、それを 用いてエンジンの挙動を観察する手法はエンジン開発の時間を短縮できる点で有用 である。しかし、上述の公知文献では車両モデルの模擬モデルを作成することを目 的とするもので、エンジンの過渡状態の現象について模擬モデルを生成してそれに よりエンジンの過渡状態に要求される性能を評価するものではな力つた。また、ェン ジンのそれぞれの制御因子の制御値を過渡状態に対応して変更してその結果を推 定するには、操作性が悪い問題があった。
課題を解決するための手段
[0011] 本発明は、エンジンの実機でエンジン回転速度やトルクなどが時系列的に変動す る過渡状態のまま試験を行う。その試験の結果である出力データを取り込み、ェンジ ンに与えた制御因子の制御値との対応関係をとつて、エンジンの入力に対する出力 の関係を記述した過渡エンジンモデル (シミュレータ)を生成する。過渡試験では、ェ ンジンの制御因子の一つあるいは二つの組み合わせ、あるいはそれ以上の複数の 制御因子の組み合わせの制御値を変更してエンジンの過渡運転を行 、、必要なデ ータを取り込む。
[0012] 作成された過渡エンジンモデルを用いて、ある制御因子の制御値をどのように変更 したら、目標とする性能を満足するかのシミュレーションを行い、性能目標を満足する 制御値を取得する。この取得した制御値を用いてさらに実機を用いて過渡試験を行 い、目標とする性能を満足するかを確認する試験を行う。目標を満足する出力データ が得られたら、過渡エンジンモデルのシミュレーションで使った制御値によりエンジン 制御回路 (ECU)の制御ロジックを作成する。
[0013] すなわち、本発明の第一の観点によると、エンジンに与える制御因子の制御値を変 更してエンジンを過渡状態で運転しその出力を取り込む過渡試験を行うステップと、 この過渡試験によるエンジンの出力データを取り込みその出力データと前記与えた 制御因子のデータとの関係に基づいて試験を行ったエンジンの過渡モデルを作成 するステップと、前記作成された過渡モデルを用いて当該エンジンに要求される過渡 性能目標を満足する制御因子の制御値を求めるステップと、前記過渡モデルによつ て得られた制御値を前記エンジンの実機に与えて過渡試験を行って要求される過渡 性能目標が満足されるかを確認するステップと、前記確認するステップにより要求さ れる過渡性能目標が満足された場合に、前記エンジンを制御する制御回路の制御ソ フトウェアを作成するステップとを備えた過渡エンジン性能適合ィ匕方法が提供される [0014] 本発明の第二の観点によると、エンジンの制御因子の制御値を変更して過渡試験 を実行する実機過渡試験実行手段と、前記過渡試験によるエンジンの出力データを 取り込み、当該出力データと前記実機過渡試験実行手段が与えた制御値とに基づ いて前記エンジンの制御入力と出力データとの関係を記述した過渡モデルを生成す る過渡モデル生成手段と、前記過渡モデル生成手段が生成した過渡モデルを用い 、前記過渡モデルが前記エンジンの過渡試験に要求される性能目標を満足するよう な制御因子の制御値を求める過渡モデルシミュレーション手段と、このシミュレーショ ン手段を用いたシミュレーションを実行して得られた性能目標を満足するエンジンの 制御値を前記実機過渡試験実行手段に与える手段とを備えたことを特徴とする過渡 エンジン性能適合ィ匕システムが提供される。
発明の効果
[0015] 本発明では、定常状態の試験データを置き換えることなぐ過渡状態のまま過渡試 験を行うことができ、短時間で性能目標を満足するエンジンの制御値を取得できる。 また、性能目標を満足するエンジンの制御ソフトフェアの作成工数を少なくでき、ェン ジン制御回路の制御ソフトウェアの作成を容易にできる。本発明によりエンジン開発 の時間を短くでき、製品開発の時間を短くできる。
図面の簡単な説明
[0016] [図 1]本実施例のシステム構成を示す図。
[図 2]本実施例の動作を示すフローチャート。
[図 3]本実施例の実機過渡試験の実測値を示す図。
[図 4]本実施例の仮想実測値と目標値とを示す図。
[図 5]本実施例の現在の制御値と目標となる制御値とを示す図。
符号の説明
[0017] 1 仮想エンジン試験装置
2 モデル作成部
3 仮想 ECU
4 制御値修正部
5 過渡エンジンモデル 6 オペレータ端末
10 実機過渡試験装置
11 ECU
12 エンジン
13 回転検出器
14 計測部
発明を実施するための最良の形態
[0018] 図 1は、本発明の実施の形態のシステム構成を示す。図 2は、過渡エンジン性能適 合ィ匕のステップの全体を説明する図である。図 1の 10は実機過渡試験装置であり、 1 1は ECU (実機)、 12は ECU11によって制御されるエンジン(実機)、 13はエンジン 12のクランクシャフトの回転数を検出する回転検出器、 14は回転検出器 13から出力 される回転数およびエンジン 12の排ガス、煙、その他 (燃費等)を計測する計測部で ある。また、 1は本発明の特徴である仮想エンジン試験装置であり、 2はモデル作成 部、 3は仮想 ECU、 4は制御値修正部、 5は過渡エンジンモデルである。また、 6は当 該過渡試験を実施するオペレータが利用するオペレータ端末である。
[0019] すなわち、本発明実施例は、図 1に示すように、エンジンの制御因子の制御値を変 更して過渡試験を実行する実機過渡試験装置 10と、前記過渡試験によるエンジン の出力データを取り込み、当該出力データと実機過渡試験装置 10が与えた制御値 とに基づ 、て前記エンジンの制御入力と出力データとの関係を記述した過渡モデル を生成するモデル作成部 2と、モデル作成部 2が生成した過渡モデルを用い、前記 過渡モデルが前記エンジンの過渡試験に要求される性能目標を満足するような制御 因子の制御値を求める過渡モデルシミュレーション手段 (破線で囲まれた部分)とし ての仮想 ECU3、過渡エンジンモデル 5、制御値修正部 4およびオペレータ端末 6と を仮想エンジン試験装置 1に備え、制御値修正部 4は、この仮想 ECU3を用いたシミ ユレーシヨンを実行して得られた性能目標を満足するエンジンの制御値を実機過渡 試験装置 10に与える手段を備えたことを特徴とする過渡エンジン性能適合ィ匕システ ムである。
[0020] 制御値修正部 4は、前記過渡モデルに与える制御値を時系列のデータとしてオペ レータ端末 6に表示してその表示した時系列のままの制御値を修正して過渡モデル に与える手段を含む。
[0021] また、図 2に示すように、本発明実施例は、エンジンに与える制御因子の制御値を 変更してエンジンを過渡状態で運転しその出力を取り込む過渡試験を行うステップ( S1)と、この過渡試験によるエンジンの出力データを取り込みその出力データと前記 与えた制御因子のデータとの関係に基づいて試験を行ったエンジンの過渡モデルを 作成するステップ (S2、 S4)と、前記作成された過渡モデルを用いて当該エンジン〖こ 要求される過渡性能目標を満足する制御因子の制御値を求めるステップ (S5、 S6、 S7)と、前記過渡モデルによって得られた制御値を前記エンジンの実機に与えて過 渡試験を行って要求される過渡性能目標が満足されるかを確認するステップ (S3)と 、前記確認するステップにより要求される過渡性能目標が満足された場合に、前記ェ ンジンを制御する制御回路の制御ソフトウェアを作成するステップ (S8)とを備えた過 渡エンジン性能適合化方法である。
[0022] 次に、図 3ないし図 5を参照して本実施例の動作を説明する。図 1に示す実機過渡 試験装置 10では、実際のエンジンを用いて過渡特性の測定が行われる。実際のェ ンジンを用いての過渡特性の測定結果を図 3に示す。本実施例では、一時間当たり の NOxのグラム数 (g/h)および一秒当たりの煙のグラム数 (g/s)をそれぞれ縦軸 にとり、横軸には時間をとつた。併せて、この状態における EGR制御値および VGT 制御値をそれぞれ縦軸にとり、横軸には時間をとつた。これらの測定は、図 1に示す 構成では、実機過渡試験装置 10の計測部 14により行われる。また、図 2に示すフロ 一チャートでは、実機過渡試験 (ステップ S1)およびデータ処理 (ステップ S2)に相当 する。
[0023] 続ヽて、モデル作成を行う。図 1に示す構成では、仮想エンジン試験装置 1のモデ ル作成部 2により行われる。また、図 2に示すフローチャートでは、モデル作成 (ステツ プ S4)に相当する。モデル作成の初期段階では、実機の実測結果をそのままモデル に置き換えることになるので、図 3に示す過渡特性の測定結果に基づきモデルが作 成される。このモデルは、過渡エンジンモデル 5および仮想 ECU3として作成される。
[0024] 続 ヽて、モデルに対する制御値の作成が行われる。図 1に示す構成では、仮想ェ ンジン試験装置 1の制御値修正部 4により行われる。また、図 2に示すフローチャート では、シミュレーションで仮想 ECU制御値を求める(ステップ S5)、仮想 ECUに与え る(ステップ S6)、評価 (ステップ S7)に相当する。図 4に、 NOxおよび煙の仮想実測 値 (実線)に対する目標値 (破線)をそれぞれ示す。図 4では、仮想実測値と目標値と の差が許容範囲内ではな 、ので、評価 (ステップ S 7)の結果は NGとなる。
[0025] 続いて、仮想実測値が目標値に近づくように、制御値の修正が行われる。図 1に示 す構成では、仮想エンジン試験装置 1の制御値修正部 4により行われる。また、図 2 に示すフローチャートでは、シミュレーションで仮想 ECU制御値を求める(ステップ S 5)、に相当する。図 5に制御値の修正前(実線)と修正後 (破線)とを示す。この修正 は、オペレータにより行われる。
[0026] 本実施例では、制御値の修正は二通りの方法を用いる。一つ目は、オペレータ端 末 6により制御値自体を変更する方法である。二つ目は、図 5に示すような過渡モデ ルに与える制御値を時系列のデータとしてオペレータ端末 6に表示してその表示した 時系列のままの制御値を修正して過渡モデルに与える方法である。すなわち、オペ レータ端末 6の表示装置に表示された図 5の実線に示すようなグラフに対し、ォペレ ータは、マウス等を使って直接制御値の増減を指示する。これにより、オペレータは、 視覚的にグラフ形状の変化 (例えば、図 5の破線)を確認しながら制御値を変更する ことができる。
[0027] このようにして変更された制御値は、再び、仮想 ECU3に与えられ (S6)、評価(S7 )が行われる。その結果、仮想実測値と目標値との差が許容範囲内に納まったときに は、修正された制御値が実機過渡試験装置 10の ECU11に入力される。これにより、 実機エンジンは修正された制御値により制御される。
[0028] そして、図 2に示すフローチャートのステップ Sl、 S2、 S3が再度実行される。その 結果、実測値と目標値とが許容範囲内に納まるまで、ステップ S1— S7は、繰り返し 実行される。ステップ S3における評価により実測値と目標値とが許容範囲内に納まつ た時点で、実機 ECU制御ソフトウェアが作成される。図 1に示す構成では、仮想ェン ジン試験装置 1の制御値修正部 4により行われる。また、図 2に示すフローチャートで は、実機 ECU制御ソフトウェア作成 (ステップ S8)に相当する。 [0029] これにより、実測値と目標値とが許容範囲内に納まる制御値を短時間に作成するこ とがでさる。
産業上の利用可能性
[0030] 本発明では、定常状態の試験データを置き換えることなぐ過渡状態のまま過渡試 験を行うことができ、短時間で性能目標を満足するエンジンの制御値を取得できる。 また、性能目標を満足するエンジンの制御ソフトフェアの作成工数を少なくでき、ェン ジン制御回路の制御ソフトウェアの作成を容易にできる。本発明によりエンジン開発 の時間を短くでき、製品開発の時間を短くできる。

Claims

請求の範囲
[1] エンジンに与える制御因子の制御値を変更してエンジンを過渡状態で運転しその 出力を取り込む過渡試験を行うステップと、
この過渡試験によるエンジンの出力データを取り込みその出力データと前記与えた 制御因子のデータとの関係に基づいて試験を行ったエンジンの過渡モデルを作成 するステップと、
前記作成された過渡モデルを用いて当該エンジンに要求される過渡性能目標を満 足する制御因子の制御値を求めるステップと、
前記過渡モデルによって得られた制御値を前記エンジンの実機に与えて過渡試験 を行って要求される過渡性能目標が満足されるかを確認するステップと、
前記確認するステップにより要求される過渡性能目標が満足された場合に、前記ェ ンジンを制御する制御回路の制御ソフトウェアを作成するステップと
を備えた過渡エンジン性能適合化方法。
[2] エンジンの制御因子の制御値を変更して過渡試験を実行する実機過渡試験実行 手段と、
前記過渡試験によるエンジンの出力データを取り込み、当該出力データと前記実 機過渡試験実行手段が与えた制御値とに基づいて前記エンジンの制御入力と出力 データとの関係を記述した過渡モデルを生成する過渡モデル生成手段と、
前記過渡モデル生成手段が生成した過渡モデルを用い、前記過渡モデルが前記 エンジンの過渡試験に要求される性能目標を満足するような制御因子の制御値を求 める過渡モデルシミュレーション手段と、
このシミュレーション手段を用いたシミュレーションを実行して得られた性能目標を 満足するエンジンの制御値を前記実機過渡試験実行手段に与える手段と
を備えたことを特徴とする過渡エンジン性能適合ィ匕システム。
PCT/JP2004/013524 2003-09-17 2004-09-16 過渡エンジン性能適合化方法およびシステム WO2005028839A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04773182A EP1669581A4 (en) 2003-09-17 2004-09-16 METHOD AND SYSTEM FOR ADAPTING INSTALLED MOTOR POWER
US10/571,920 US7349795B2 (en) 2003-09-17 2004-09-16 Method and system for adaptation of transient engine performance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-324878 2003-09-17
JP2003324878A JP2005090353A (ja) 2003-09-17 2003-09-17 過渡エンジン性能適合化方法およびシステム

Publications (1)

Publication Number Publication Date
WO2005028839A1 true WO2005028839A1 (ja) 2005-03-31

Family

ID=34372759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013524 WO2005028839A1 (ja) 2003-09-17 2004-09-16 過渡エンジン性能適合化方法およびシステム

Country Status (6)

Country Link
US (1) US7349795B2 (ja)
EP (1) EP1669581A4 (ja)
JP (1) JP2005090353A (ja)
KR (1) KR20060073959A (ja)
CN (1) CN1853038A (ja)
WO (1) WO2005028839A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677636A (zh) * 2015-01-29 2015-06-03 四川诚邦测控技术有限公司 一种基于发动机瞬态特性的综合性能测试系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547239B2 (ja) 2004-11-16 2010-09-22 株式会社エー・アンド・デイ エンジン計測装置
JP4437742B2 (ja) * 2004-12-03 2010-03-24 日野自動車株式会社 過渡エンジン性能適合化方法およびシステム
JP2009192418A (ja) * 2008-02-15 2009-08-27 Showa Kiki Kogyo Co Ltd 送液管の漏洩検知システム
US20120082967A1 (en) * 2010-09-30 2012-04-05 Roy Lee Stone Method and system for training a gas turbine engine test cell operator
CN103364196B (zh) * 2012-03-30 2016-08-10 广西玉柴机器股份有限公司 发动机瞬态性能定扭矩转速提升测试方法
CN103234760B (zh) * 2013-03-30 2015-10-28 长城汽车股份有限公司 一种判定发动机原始排放性能一致性的测试方法
CN103698132B (zh) * 2013-08-02 2016-08-17 道依茨一汽(大连)柴油机有限公司 一种柴油机试验方法
DE102014213185A1 (de) * 2014-07-08 2016-01-14 Ford Global Technologies, Llc Vorrichtung und Verfahren zum Einstellen von Motorsteuerparametern eines Verbrennungsmotors
KR102644366B1 (ko) * 2018-08-27 2024-03-07 현대자동차주식회사 엔진 가상시험환경 시스템 및 ems 매핑 방법
FR3095270B1 (fr) * 2019-04-18 2021-04-16 Psa Automobiles Sa Procédé de calibration des compensations de richesse en phase de transitoire de charge dans un groupe motopropulseur à moteur thermique
US11790126B2 (en) * 2019-12-19 2023-10-17 Caterpillar Inc. Method and system for internal combustion engine simulation
CN113588270B (zh) * 2021-06-18 2024-04-16 东风汽车集团股份有限公司 一种检测涡轮增压电控执行器的方法及装置
US11313302B1 (en) * 2021-07-06 2022-04-26 Hyundai Motor Company Engine idle speed optimization
KR102586820B1 (ko) * 2023-06-27 2023-10-11 주식회사 드림에이스 가상 ecu 검증 시스템 및 이의 오차 보정 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288115A (ja) * 1992-04-03 1993-11-02 Nissan Motor Co Ltd 疑似信号発生装置
JPH11326135A (ja) * 1998-05-14 1999-11-26 Fujitsu Ten Ltd 車両用エンジン制御装置の評価装置
JP2000257499A (ja) * 1999-03-04 2000-09-19 Nissan Diesel Motor Co Ltd コンピュータによる車両走行シミュレーション演算方法
JP2002245092A (ja) * 2001-02-20 2002-08-30 Toyota Central Res & Dev Lab Inc コンピュータ支援設計方法、コンピュータ支援設計プログラムおよび記録媒体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719786B2 (ja) * 1988-02-15 1998-02-25 マツダ株式会社 トルクコンバータのスリップ制御装置
JP3370783B2 (ja) * 1994-06-27 2003-01-27 マツダ株式会社 機器の制御装置および制御方法
DE19745682B4 (de) * 1997-10-16 2010-03-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung von Kenngrößen
JP4020513B2 (ja) * 1998-09-30 2007-12-12 トヨタ自動車株式会社 原動機の試験装置
DE19908077A1 (de) * 1999-02-25 2000-08-31 Bosch Gmbh Robert Verfahren und Vorrichtung zum Ermitteln von Kenngrößen einer Brennkraftmaschine
DE10020448B4 (de) * 2000-04-26 2005-05-04 Daimlerchrysler Ag Verfahren und Vorrichtung zur Optimierung des Betriebs eines Verbrennungsmotors
JP2002206456A (ja) * 2001-01-12 2002-07-26 Toyota Motor Corp エンジン制御パラメータの適合方法及び適合システム
JP2003013794A (ja) * 2001-04-24 2003-01-15 Denso Corp 車両用制御パラメータの適合方法及び適合装置
JP2002365169A (ja) * 2001-06-11 2002-12-18 Toyota Motor Corp 仮想車両状態におけるエンジンの出力状態評価方法
ITTO20010752A1 (it) * 2001-07-27 2003-01-27 Fiat Ricerche Dispositivo e metodo di controllo della velocita' angolare di un motore.
US6701246B2 (en) * 2001-11-02 2004-03-02 Ford Global Technologies, Llc Engine torque determination for powertrain with torque converter
US7054738B1 (en) * 2005-10-17 2006-05-30 Ford Global Technologies, Llc Method for estimating engine friction torque

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288115A (ja) * 1992-04-03 1993-11-02 Nissan Motor Co Ltd 疑似信号発生装置
JPH11326135A (ja) * 1998-05-14 1999-11-26 Fujitsu Ten Ltd 車両用エンジン制御装置の評価装置
JP2000257499A (ja) * 1999-03-04 2000-09-19 Nissan Diesel Motor Co Ltd コンピュータによる車両走行シミュレーション演算方法
JP2002245092A (ja) * 2001-02-20 2002-08-30 Toyota Central Res & Dev Lab Inc コンピュータ支援設計方法、コンピュータ支援設計プログラムおよび記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1669581A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677636A (zh) * 2015-01-29 2015-06-03 四川诚邦测控技术有限公司 一种基于发动机瞬态特性的综合性能测试系统

Also Published As

Publication number Publication date
KR20060073959A (ko) 2006-06-29
US7349795B2 (en) 2008-03-25
EP1669581A1 (en) 2006-06-14
JP2005090353A (ja) 2005-04-07
EP1669581A4 (en) 2011-09-07
CN1853038A (zh) 2006-10-25
US20070156323A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
KR101199871B1 (ko) 과도 엔진 성능 적합화 방법 및 시스템
EP3617915B1 (en) Engine virtual test environment system and engine management system mapping method
WO2005028839A1 (ja) 過渡エンジン性能適合化方法およびシステム
US7177758B2 (en) Method for optimizing characteristics map
JP2009014406A (ja) 電子制御ユニットの自動検査装置
JP2011021518A (ja) エンジンの仮想適合システム
JP4235116B2 (ja) 内燃機関の過渡特性試験装置および方法
JP2008255932A (ja) 内燃機関の筒内圧推定方法および筒内圧推定装置
WO2005066603A1 (ja) エンジンの過渡試験装置および方法
Caraceni et al. Benefits of using a real-time engine model during engine ECU development
JP2010513784A (ja) 内燃機関の運転のためのシミュレーション方法及び装置
WO2005066602A1 (ja) エンジンの過渡試験装置および方法
US20190153969A1 (en) System and method for emissions determination and correction
JP4213049B2 (ja) エンジンの過渡試験装置および方法
JP4145806B2 (ja) 過渡エンジン試験装置および方法
CN114729608A (zh) 用于校准机器控制器的方法和系统
Mamala et al. Hardware-in-the-loop type simulator of spark ignition engine control unit
Kämmer et al. Real-time engine models
Wunderlin et al. Implementing a real time exhaust gas temperature model for a Diesel engine with ASC@ ECU
JP2007239524A (ja) Wiebe関数パラメータの決定方法および決定装置
Thomas et al. Implementing System Simulation to Drive a more Efficient Controls Development Process
WO2021204355A1 (en) System and method for predicting high frequency emission information of an engine
Shah et al. Challenges Faced for Parameterization & Validation of a Small Gasoline Engine Plant Model for Application of EMS Development
CN115685782A (zh) 车速控制方法、装置、设备及存储介质
Wu et al. Application of hardware-in-the-loop for developing the engine management system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480026724.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004773182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067005233

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004773182

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067005233

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10571920

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10571920

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP