WO2005028703A1 - 成膜装置および成膜方法 - Google Patents

成膜装置および成膜方法 Download PDF

Info

Publication number
WO2005028703A1
WO2005028703A1 PCT/JP2004/013357 JP2004013357W WO2005028703A1 WO 2005028703 A1 WO2005028703 A1 WO 2005028703A1 JP 2004013357 W JP2004013357 W JP 2004013357W WO 2005028703 A1 WO2005028703 A1 WO 2005028703A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
film forming
chamber
gas
plasma generation
Prior art date
Application number
PCT/JP2004/013357
Other languages
English (en)
French (fr)
Inventor
Seiji Samukawa
Toshihisa Nozawa
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to EP04773039.5A priority Critical patent/EP1672093B1/en
Publication of WO2005028703A1 publication Critical patent/WO2005028703A1/ja
Priority to US11/377,291 priority patent/US20060213444A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3145Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers formed by deposition from a gas or vapour

Definitions

  • the present invention relates to a film forming apparatus and a film forming method, and more particularly, to a film forming apparatus and a film forming method capable of forming a film in a short time.
  • Patent Document 1 discloses a film forming apparatus in which a reaction chamber in which a substrate is installed and a plasma formation chamber are separated by an electrode unit in a vacuum vessel capable of evacuating and a film is formed in the reaction chamber.
  • the structure of the electrode portion is a mesh or comb shape, whereby the plasma formed in the plasma formation chamber is confined and radicals are transmitted.
  • Patent Document 2 discloses a method of depositing a metal on a substrate surface in a deposition chamber.
  • the method comprises the steps of: (a) depositing a metal monolayer on a substrate surface by flowing a metal-containing molecular precursor gas or vapor over the substrate surface, which deposits the metal and produces a reaction product.
  • the precursor is saturated by the first reactive species with which the precursor reacts, leaving the metal surface coated with the ligand of the metal precursor force, thereby further reducing (B) stopping the flow of the precursor gas or vapor, (c) purging the precursor with an inert gas, and (d) at least one of: Two radical species are poured onto the surface of the substrate in the room, the radical species have high reactivity with the surface ligand of the metal precursor layer, remove the ligand as a reaction product, further saturate the surface, First reaction (E) repeating the above steps in order until a metal film of a desired thickness is obtained.
  • a metal monolayer is deposited on a substrate surface by flowing a molecular precursor gas or vapor containing a metal on the substrate surface, and the surface deposits the metal.
  • the precursor gas or vapor is stopped from flowing after the precursor is saturated by the first reactive species to react, and the precursor is inerted by the inert gas.
  • radicals are flowed over the substrate surface to remove ligands.
  • the present invention has been made in view of the above-described conventional problems, and provides a film forming apparatus and a film forming method capable of forming a film in a short time without adhering the film to the plasma generation chamber side. It is intended to provide.
  • a film forming apparatus accommodates a plasma generation chamber in which a predetermined processing gas is introduced and generates plasma at a predetermined pressure, a substrate, and a predetermined pressure using a film forming gas.
  • a separation plate having a plurality of holes configured to separate the plasma generation chamber and the film formation chamber.
  • the plasma generation chamber and the film formation chamber are separated by a separation plate, and are connected by a plurality of holes configured so that the pressure of the plasma generation chamber is more positive than the pressure of the film formation chamber. . Therefore, the deposition gas does not flow into the plasma generation chamber. As a result, no film is formed in the plasma generation chamber.
  • radicals can be constantly supplied to the film formation chamber, the substrate is not saturated with the film formation gas as in the related art, and the conventional purge is unnecessary, so that the film formation time can be reduced.
  • a means for applying a predetermined bias voltage between the plasma generation chamber and the film formation chamber is included.
  • a predetermined bias voltage is applied between the plasma generation chamber and the film formation chamber, ions generated in the plasma generation chamber are selectively generated based on the processing gas in accordance with the polarity of the bias voltage. Is drawn to the film forming chamber.
  • the diameter of the hole is such that the pressure difference between the plasma generation chamber and the film formation chamber becomes 1.5 times or more.
  • the diameter of the hole is such that the pressure difference between the plasma generation chamber and the film formation chamber becomes 2.0 times or more.
  • the pressure difference exceeds 2.0 times, the velocity of the gas passing through the hole becomes the speed of sound.
  • the deposition gas in the deposition chamber should not flow into the plasma generation chamber!
  • the film formation chamber is provided with a film formation gas supply means for supplying a film formation gas for forming a desired film on the substrate, and the film formation gas supply means is provided substantially in the film formation chamber. It has gas outlets to distribute the whole area.
  • the film forming gas supply means may be formed integrally with the separation plate.
  • the separation plate has an upper surface on the plasma generation chamber side and a lower surface on the film formation chamber side, and the diameter of the upper surface of the hole is larger than the diameter of the lower surface.
  • the separator is preferably formed of carbon, silicon or aluminum.
  • the plasma is generated by a microwave or an inductive coupling method.
  • a film forming apparatus in a reaction vessel, means for generating radicals in a plasma generation region in the reaction vessel, and a substrate mounted thereon.
  • a film forming control means for controlling the film forming components in the film forming gas to be continuously polymerized via radicals is included.
  • the film forming method includes confining a film forming gas in a film forming region around a substrate with respect to a substrate, and forming a film forming component in the film forming gas through a radical. Continuous polymerization produces the desired film on the substrate.
  • the film forming gas is confined in the film forming region around the substrate, and the film forming components in the film forming gas are continuously polymerized on the substrate via radicals, so that the conventional purging becomes unnecessary.
  • a film formation method capable of forming a film in a short time can be provided.
  • a hydrogen radical is used when forming a metal film
  • an oxygen radical is used when forming an oxide film
  • a nitrogen radical is used when forming a nitride film. use.
  • the step of continuously polymerizing a film-forming component via a radical includes the step of continuously generating a radical and the step of supplying a film-forming gas corresponding to a desired film to a film-forming region.
  • the step of continuously generating radicals is performed at a first pressure
  • the step of supplying a film formation gas according to a desired film to the film formation region is performed at a second pressure. Is at least 1.5 times higher than the second pressure.
  • the method includes a step of neutralizing the radical, and the step of continuously polymerizing the radical includes a step of supplying the neutralized radical to the substrate.
  • a film forming apparatus includes a plasma generation chamber pressurized with a processing gas to generate plasma, a substrate housed therein, and a film forming gas introduced into the substrate. And a separation plate having a plurality of holes and separating the plasma generation chamber and the film formation chamber, wherein the holes in the separation plate Is a dimension that flows from the plasma generation chamber to the film formation chamber in one way.
  • FIG. 1 is a schematic sectional view of a film forming apparatus according to an embodiment of the present invention.
  • FIG. 2A is a view showing a separation plate.
  • FIG. 2B is a view showing a separation plate.
  • FIG. 3 is a view showing a state when gas passes through a hole in a separation plate.
  • FIG. 4 is a view showing another example of a hole in a separation plate.
  • FIG. 5A is a diagram illustrating a step-by-step method of forming a film according to an embodiment of the present invention.
  • FIG. 5B is a view showing a step-by-step method of forming a film according to an embodiment of the present invention.
  • FIG. 5C is a diagram showing a step-by-step method of forming a film according to an embodiment of the present invention.
  • FIG. 5D is a diagram showing a step-by-step method of forming a film according to an embodiment of the present invention.
  • FIG. 6A is a diagram showing a conventional film forming method for each step.
  • FIG. 6B is a diagram showing a conventional film forming method for each step.
  • FIG. 6C is a diagram showing a conventional film forming method for each step.
  • FIG. 7 is a schematic sectional view of a film forming apparatus according to another embodiment of the present invention.
  • FIG. 1 is a schematic sectional view showing a configuration of a film forming apparatus 10 according to one embodiment of the present invention.
  • a film forming apparatus 10 includes a plasma processing apparatus.
  • the film forming apparatus 10 has a processing container 15 whose side wall and bottom are made of a conductor such as aluminum, for example, and which is entirely formed into a cylindrical shape.
  • a plasma generation chamber 14 and a film formation chamber 20 for forming a film on a substrate using a film formation gas are provided, and are separated by a separation plate 16 therebetween.
  • the separation plate 16 is provided with a large number of fine holes. The details will be described later.
  • the ceiling portion of the processing container 15 is opened, and a ceramic such as A1N, Al 2 O, SiO, etc.
  • a slot plate 33 functioning as a disk-shaped planar antenna is provided above the dielectric plate 31 .
  • a cooling plate 34 through which the refrigerant flows via the dielectric plate 30.
  • the dielectric plate 30 also has power such as quartz, alumina, and aluminum nitride.
  • a dielectric plate 30 is provided.
  • This dielectric plate 30 is sometimes called a slow wave plate or a wavelength shortening plate. By reducing the propagation speed of the microwave, the wavelength is shortened to improve the propagation efficiency of the microwave radiated from the slot plate 33. Let it.
  • the center of the upper end of the processing container 15 is connected to the coaxial waveguide 29.
  • the coaxial waveguide 29 is connected to a microwave generator (not shown) so as to propagate the microwave to the slot plate 30.
  • a microwave generator not shown
  • a mounting table 35 on which, for example, a semiconductor substrate W is mounted as an object to be processed is accommodated on the upper surface.
  • the mounting table 35 is formed in a substantially columnar shape flattened by, for example, anodized aluminum. This lower part is also made of aluminum etc.
  • a support base 36 having a columnar shape is provided, and thereby the mounting base 35 is supported.
  • the support base 36 is installed at the bottom of the processing container 15 via an insulating material.
  • an electrostatic chuck or a clamping mechanism (not shown) force S for holding the semiconductor substrate W may be provided on the upper surface of the mounting table 35.
  • the support base 36 supporting the mounting base 35 is provided with a jacket (not shown) for flowing cooling water or hot water for controlling the temperature of the substrate during the plasma processing. Since the temperature of the mounting table 35 is configured to be lower than the wall surface of the processing container 15, the deposition gas or the like does not adhere to the wall surface of the processing container 15.
  • a processing gas supply nozzle 17 for introducing a predetermined processing gas into the plasma generation chamber 14 is provided at a predetermined position on a side surface of the processing container 15 in the plasma generation chamber 14.
  • Processing gases include inert gases.
  • Ar gas is used as an inert gas, and H + Ar gas for a metal, O + Ar gas for an oxide film, and nitriding according to the film to be formed.
  • This processing gas supply nozzle is, for example, a quartz
  • a film forming gas supply nozzle 18 for introducing a film forming gas for deposition onto a substrate is provided on a side surface of the processing container 15 in the film forming chamber 20.
  • the film forming gas supply nozzle 18 is made of, for example, a quartz pipe or an aluminum structure.
  • deposition gas supply nozzle 18 may be formed on the separation plate 16.
  • Zinc salt Zinc salt, tetrachloride hafnium, niobium pentachloride, copper chloride and the like.
  • a gate valve (not shown) that opens and closes when a substrate is loaded into and unloaded from the inside of the processing container 15 is provided on the side wall of the processing container 15, and a jacket that controls the temperature of the side wall is provided.
  • An exhaust port connected to a vacuum pump (vacuum evacuation means) 26 is provided at the bottom of the processing container 15 so that the inside of the processing container 32 can be evacuated to a predetermined pressure as necessary. ing.
  • variable DC bias or a predetermined DC bias is applied between the separation plate 16 and the plasma generation chamber 14.
  • This bias voltage is 10eV-50e, depending on the processing conditions. Set to V or higher.
  • FIG. 2A is a plan view of the separation plate 16
  • FIG. 2B is a cross-sectional view of a part indicated by an arrow BB in FIG. 2A.
  • the pressure in the plasma generation chamber 14 is higher than the pressure in the film formation chamber 20 by a predetermined pressure difference.
  • a plurality of holes are provided to provide pressure. That is, the diameters of the plurality of holes are selected so that a pressure difference of at least 1.5 times or more occurs between the two, and more preferably, a pressure difference of 2 times or more. Specifically, it is preferable that the hole diameter is lmm and the depth is 5mm or more, but this varies depending on the flow rate of the processing gas.
  • separation plate 16 shown in this embodiment incorporates a film formation gas passage 40 for supplying a film formation gas.
  • the film forming gas passage 40 is connected to a film forming gas supply nozzle 18 (see FIG. 1) provided at a predetermined position on the circumference of the processing container 15, and supplies the film forming gas to the film forming chamber 20.
  • the separation plate 16 has a disk shape, and has a large number of holes 41 having a small diameter, and gas passages arranged in a matrix around the holes 41 in order to supply a film forming gas around the holes 41. And a gas outlet 43 provided at the intersection of the gas passages.
  • the gas passage 42 and the gas discharge port 43 are not limited to those shown in the drawings, and the gas passage 42 may be connected to the wall surface of the hole 41 to discharge the film forming gas toward the hole 41.
  • the plasma generation chamber 14 and the film formation chamber 20 are separated by the separation plate 16, and by appropriately selecting the diameter of the hole 41 provided in the separation plate 16, the pressure difference between the mutual chambers is at least 1.5 times. It was to become. If the pressure difference between the two chambers is doubled, the velocity of the gas passing through the hole 41 connecting between the chambers becomes sonic. Therefore, the film forming gas in the film forming chamber 20 does not flow to the plasma generating chamber 14 side. As a result, no deposition is generated on the plasma generation chamber 14 side by the film forming gas. Regarding the diameter of the hole 41, the same effect can be obtained even if the flow velocity of the gas passing therethrough does not always become the sonic velocity, but the velocity is close to it. Therefore, as described above, the pressure in the plasma generation chamber 14 may be about 1.5 times the pressure in the film formation chamber 20.
  • the pressure in the plasma generation chamber 14 is 20 mTorr to 500 mTorr, and the pressure in the film formation chamber is 10 OmTorr to 50 mTorr.
  • the distribution of the holes 41 of the separation plate 14 is set such that the peripheral portion is distributed about 10% more than the central portion. For example, holes are provided in the center at a pitch of 10 mm, while holes in the periphery are provided at a pitch of 9 mm. This is to compensate for the fact that the plasma density is high at the center and low at the periphery.
  • the material of the separation plate 16 is preferably carbon, but may be silicon or aluminum.
  • a bias voltage is applied between the separation plate 16 and the plasma generation chamber 14
  • radicals generated in the plasma generation chamber 14 and, among charged inert gases, radicals having desired polarity and Z or inert gas are generated. It can be selectively pulled out through the hole 41 or neutralized.
  • a positively charged argon Ar + or hydrogen H + radical can be extracted into the film formation chamber 20 or neutralized to cause a desired reaction.
  • FIG. 3 is a diagram showing a state where, for example, a positively charged argon Ar + gas passes through the separation plate 16.
  • the film forming gas passage 40 is omitted.
  • the neutralization is not limited to the inert gas, and the same applies to radicals such as hydrogen, oxygen, and nitrogen generated in the plasma generation chamber.
  • FIG. 4 is a diagram showing an embodiment in which FIG. 3 is modified.
  • the diameter of hole 47 provided in separation plate 16 is such that the upper surface is large and the lower surface is small. Therefore, when the ionized inert gas or the like from the plasma generation chamber 14 passes through the hole 47, the probability of collision with the wall surface 48 increases, and as a result, many neutralized inert gases and radicals are removed. Obtainable.
  • FIG. 5A and FIG. 5D are diagrams showing a conventional film forming method in Document 2
  • FIG. 6A and FIG. 6C are diagrams showing a film forming method in this embodiment for each step.
  • O-SiCl adheres to the substrate and HC1 is desorbed, but the deposition gas is continuously supplied.
  • the substrate surface is gradually covered with C1 atoms (Fig. 5B), and the substrate surface is saturated with C1 atoms. Therefore, purging with an inert gas is performed to remove excess deposition gas (Fig. 5C). Then, the original hydroxyl-saturated surface is formed using hydrogen radicals and oxygen radicals ( Figure 5D).
  • FIG. 6A to 6C are diagrams showing a film forming method according to an embodiment of the present invention for each step.
  • OH hydroxyl group
  • tetrachlorosilane SiCl is flowed as a film forming gas (FIG. 6A), and Is O—
  • the purging at the time of film forming as shown in FIG. 5C is not required, so that the processing capacity for forming a metal film on a semiconductor substrate is eliminated. Can be increased.
  • the film forming gas may be intermittently supplied without being constantly supplied to the substrate.
  • the flow rate of the argon gas as the processing gas is 100 sccm, and the flow rate of the film forming gas is 0.1 to 100 sccm.
  • FIG. 7 is a schematic sectional view of a film forming apparatus for another embodiment of the present invention.
  • the film forming apparatus uses an inductively coupled plasma (Inductive Coupled Plasma) method instead of using microwaves to generate plasma as in the previous embodiment.
  • Use generator that is, this type of film forming apparatus 60 includes a coil 61 for generating plasma in the plasma generation chamber 14 and an AC power supply 62 for applying a high frequency to the coil 61.
  • the other components are the same as those of the previous embodiment, and a description thereof will not be repeated.
  • the present invention is not limited to this, and various oxide films can be formed by selecting a processing gas and a film forming gas.
  • a nitride film and a metal film can be formed. That is, if an oxygen-based gas is formed when forming an oxide film, a nitrogen-based gas is formed when a nitride film is formed, and a hydrogen gas is formed when a metal film is to be formed, the processing gas is supplied to the plasma generation chamber 14 as a processing gas.
  • the film forming apparatus and the film forming method according to the present invention do not form a film in a plasma generation chamber and do not require a substrate to be saturated with a film forming gas and do not require purging as in the related art. Film time can be reduced. Therefore, it is advantageously used in film formation.

Abstract

 成膜装置10は、処理ガスで加圧され、プラズマを発生させるプラズマ発生室14と、基板を収納し、基板に対して膜を形成するための成膜室20と、複数の穴を有し、プラズマ発生室14と成膜室20とを分離する分離板17とを含む。分離板17の穴の径は、プラズマ発生室14の圧力が成膜室20の圧力よりも2.0倍以上高くなる寸法である。成膜装置10は、プラズマ発生室14と成膜室20との間に所定のバイアス電圧を印加する手段をさらに含む。

Description

明 細 書
成膜装置および成膜方法
技術分野
[0001] この発明は、成膜装置および成膜方法に関し、特に、短時間で成膜が可能な成膜 装置および成膜方法に関する。
背景技術
[0002] 従来の CVDを利用した成膜装置および方法がたとえば、特開 2001— 185546号 公報 (特許文献 1)および特表 2002 - 539326号 (特許文献 2)に開示されている。特 許文献 1は、真空排気可能な真空容器内に、基板を設置する反応室とプラズマ形成 室とを、電極部によって分離して反応室内で成膜を行う成膜装置を開示している。電 極部の構造は網目状あるいは櫛状であり、それによつて、プラズマ形成室で形成した プラズマを閉じこめ、ラジカルは透過する構造を採用している。上記プラズマ形成室 で形成されたラジカルを反応室に輸送すると共に、反応室へ第 2のガスを導入するこ とにより、上記ラジカルとの気相反応あるいは上記基板上での表面反応が進み基板 上に膜が形成される。
[0003] 特許文献 2は、堆積室内の基板表面上に金属を堆積させる方法を開示している。
その方法は、 (a)金属を含有する分子前駆体ガスまたは蒸気を基板表面上に流すこ とによって、基板表面上に金属のモノレイヤを堆積させ、該表面が、金属を堆積させ て反応生成物を形成することによって、前駆体が反応する第 1の反応性のある種によ つて飽和され、金属表面を金属前駆体力 のリガンドで被覆された状態のままにして おき、それによつて、さらには前駆体と反応することができないステップと、(b)前駆体 ガスまたは蒸気を流すのを停止するステップと、(c)不活性ガスによって前駆体をパ ージするステップと、(d)少なくとも 1つのラジカル種を室内の基板表面上に流し込み 、ラジカル種が、金属前駆体層の表面リガンドとの高い反応性を有し、反応生成物と してリガンドを除去し、さらに、表面を飽和させ、第 1の反応性のある種を提供するス テツプと、(e)所望の厚さの金属膜が得られるまで、前記ステップを順序正しく反復す るステップと、を備える。 [0004] 従来の CVDを利用した成膜装置および方法は上記のようなものであった。特許文 献 1の装置においては、基板を設置する反応室とプラズマ形成室とを、電極部によつ てのみ分離しているため、成膜ガスがプラズマ形成室に流入し、それがラジカルと反 応して、プラズマ形成室側にも成膜されると ヽぅ問題があった。
[0005] 特許文献 2の方法にお ヽては、金属を含有する分子前駆体ガスまたは蒸気を基板 表面上に流すことによって、基板表面上に金属のモノレイヤを堆積させ、該表面が、 金属を堆積させて反応生成物を形成することによって、前駆体が反応する第 1の反 応性のある種によって飽和された後、前駆体ガスまたは蒸気を流すのを停止し、不 活性ガスによって前駆体をパージし、その後、ラジカル種を基板表面に流してリガン ドを除去している。このように成膜中にパージ処理が必須であるため、成膜に時間が 力かるという問題点があった。
発明の開示
[0006] この発明は、上記のような従来の問題点に鑑みてなされたもので、プラズマ発生室 側に膜の付着がなぐかつ短時間で成膜が可能な成膜装置および成膜方法を提供 することを目的とする。
[0007] この発明に力かる成膜装置は、所定の処理ガスを導入され、所定の圧力でプラズ マを発生させるプラズマ発生室と、基板を収納し、成膜ガスを用いて、所定の圧力で 前記基板に所望の膜を形成するための成膜室と、成膜室に接続され、成膜室を排気 する真空排気手段と、プラズマ発生室の圧力を成膜室の圧力より陽圧となるよう構成 された複数の穴を有する、プラズマ発生室と成膜室とを分離する分離板とを含む。
[0008] プラズマ発生室と成膜室とが、分離板によって分離され、その間は、プラズマ発生 室の圧力を成膜室の圧力より陽圧となるよう構成された複数の穴で接続されている。 したがって、成膜ガスがプラズマ発生室に流れることはない。その結果、プラズマ発 生室に成膜されることはない。また、ラジカルを常時成膜室へ供給できるため、従来 のように基板が成膜ガスで飽和することは無ぐ従来のようなパージが不要になるた め、成膜時間を短縮できる。
[0009] 好ましくは、プラズマ発生室と成膜室との間に所定のバイアス電圧を印加する手段 とを含む。 [0010] プラズマ発生室と成膜室との間に所定のバイアス電圧が印加されているため、処理 ガスに基づ 、てプラズマ発生室で発生したイオンは、バイアス電圧の極性に応じて 選択的に成膜室へ引かれる。
[0011] さらに好ましくは、穴の径は、プラズマ発生室と成膜室との圧力差が 1. 5倍以上とな る寸法である。
[0012] さらに好ましくは、穴の径は、プラズマ発生室と成膜室との圧力差が 2. 0倍以上とな る寸法である。圧力差が 2. 0倍以上となると穴を通過するガスの速度は音速となる。 その結果、成膜室の成膜ガスはプラズマ発生室に流入しな!、。
[0013] さらに好ましくは、成膜室には基板に所望の膜を形成するための成膜ガスを供給す る成膜ガス供給手段が設けられ、成膜ガス供給手段は、成膜室のほぼ全体領域分 布するガス噴出口を有する。
[0014] 成膜ガス供給手段は、分離板と一体的に構成されてもよい。
[0015] さらに好ましくは、分離板はプラズマ発生室側の上面と、成膜室側の下面とを有し、 穴の上面の径は、下面の径よりも大きい。
[0016] 分離板は、カーボン、シリコンまたはアルミニウムで形成するのが好ま U、。
[0017] また、プラズマはマイクロ波または、誘導結合方式で発生させるのが好ま U、。
[0018] この発明の他の局面においては、成膜装置は、反応容器と、反応容器内のプラズ マ発生領域でラジカルを発生させる手段と、反応容器内に設けられ、基板を載置す る載置手段と、載置手段に載置された基板上の成膜領域に所定の成膜ガスを供給 する成膜ガス供給手段と、成膜ガスを成膜領域内に閉じこめる手段と、基板に対して 、成膜ガス中の成膜成分を、ラジカルを介して連続的に重合させるよう制御する成膜 制御手段とを含む。
[0019] この発明の他の局面においては、成膜方法は、基板に対して、成膜ガスを基板周 囲の成膜領域に閉じこめ、成膜ガス中の成膜成分を、ラジカルを介して連続的に重 合させること〖こよって、基板上に所望の膜を生成する。
[0020] 成膜ガスを基板周囲の成膜領域に閉じこめ、成膜ガス中の成膜成分をラジカルを 介して連続的に基板上に重合させるため、従来のようなパージは不要になる。その結 果、短時間で膜の形成が可能な成膜方法を提供できる。 [0021] この成膜方法においては、金属膜を形成するときは、水素ラジカルを使用し、酸ィ匕 膜を形成するときは酸素ラジカルを使用し、窒化膜を形成するときは、窒素ラジカル を使用する。
[0022] 好ましくは、ラジカルを介して連続的に成膜成分を重合させるステップは、ラジカル を連続的に発生させるステップと、成膜領域に、所望の膜に応じた成膜ガスを供給す るステップとを含み、ラジカルを連続的に発生させるステップは第 1の圧力で行われ、 成膜領域に、所望の膜に応じた成膜ガスを供給するステップは第 2圧力で行われ、 第 1の圧力は第 2の圧力より少なくとも 1. 5倍以上高い。
[0023] さらに好ましくは、ラジカルを中性ィ匕するステップを含み、ラジカルを連続的に重合 させるステップは、中性ィ匕されたラジカルを基板に供給するステップを含む。
[0024] この発明の他の局面によれば、成膜装置は、処理ガスで加圧され、プラズマを発生 させるプラズマ発生室と、基板を収納し、基板に対して成膜ガスを導入することによつ て、所望の膜を形成するための成膜室と、複数の穴を有し、プラズマ発生室と成膜室 とを分離する分離板とを含み、分離板の穴は、処理ガスがプラズマ発生室から成膜 室^ ^一方通行で流れる寸法である。
図面の簡単な説明
[0025] [図 1]この発明の一実施の形態にかかる、成膜装置の概略断面図である。
[図 2A]分離板を示す図である。
[図 2B]分離板を示す図である。
[図 3]分離板の穴をガスが通過するときの様子を示す図である。
[図 4]分離板の穴の他の例を示す図である。
[図 5A]この発明の一実施の形態に力かる成膜方法をステップごとに示す図である。
[図 5B]この発明の一実施の形態に力かる成膜方法をステップごとに示す図である。
[図 5C]この発明の一実施の形態に力かる成膜方法をステップごとに示す図である。
[図 5D]この発明の一実施の形態に力かる成膜方法をステップごとに示す図である。
[図 6A]従来の成膜方法をステップごとに示す図である。
[図 6B]従来の成膜方法をステップごとに示す図である。
[図 6C]従来の成膜方法をステップごとに示す図である。 圆 7]この発明の他の実施の形態に力かる成膜装置の概略断面図である。
発明を実施するための最良の形態
[0026] 以下、この発明の一実施の形態を図面を参照して説明する。図 1はこの発明の一 実施の形態にかかる成膜装置 10の構成を示す概略断面図である。図 1を参照して、 成膜装置 10は、プラズマ処理装置で構成される。成膜装置 10は、例えば側壁や底 部がアルミニウム等の導体により構成されて、全体が筒体状に成形された処理容器 1 5を有している。
[0027] この処理容器 15内には、プラズマ発生室 14と、成膜ガスを用いて基板への成膜を 行う成膜室 20とが設けられ、その間は分離板 16で分離されている。分離板 16には、 微細な径の穴が多数設けられて 、る。この詳細にっ 、ては後述する。
[0028] 処理容器 15の天井部は開口されて、ここに例えば A1N、 Al O、 SiOなどのセラミ
2 3 2
ック材よりなるマイクロ波に対しては透過性を有する厚さが 20mm程度の誘電体板 3 1が、支持フレーム部材 32により支持された状態で Oリング等のシール部材を介して 設けられる。
[0029] この誘電体板 31の上部には、円板状の平面アンテナとして機能する、スロット板 33 が設けられる。スロット板 33の上部には、誘電体板 30を介して内部に冷媒が流れる 冷却プレート 34が設けられる。
[0030] 誘電体板 30は、石英、アルミナ、窒化アルミニウムなど力もなる。誘電体板 30が配 置されている。この誘電体板 30は、遅波板または波長短縮板と呼ばれることがあり、 マイクロ波の伝播速度を低下させることにより、波長を短くしてスロット板 33から放射さ れるマイクロ波の伝播効率を向上させる。
[0031] 処理容器 15の上端中央は、同軸導波管 29に接続される。同軸導波管 29は、図示 のない、マイクロ波発生器に接続されており、スロット板 30へマイクロ波を伝播するよ うになつている。この導波管 29としては、断面円形或いは矩形の導波管や同軸導波 管を用いることができる。
[0032] 成膜室 20には、上面に被処理体としての、例えば半導体基板 Wを載置する載置台 35が収容される。この載置台 35は、例えばアルマイト処理したアルミニウム等により 平坦にされた略円柱状に形成されている。この下部は同じくアルミニウム等により円 柱状になされた支持台 36が設けられ、これにより載置台 35が支持される。この支持 台 36は処理容器 15内の底部に絶縁材を介して設置されている。載置台 35の上面 には、ここに半導体基板 Wを保持するための静電チャック或 ヽはクランプ機構(図示 せず)力 S設けられる場合もある。
[0033] 載置台 35を支持する支持台 36には、プラズマ処理時の基板の温度を制御するた めの、図示のない冷却水または温水を流すジャケットが設けられる。載置台 35の温 度は、処理容器 15の壁面よりも低くなるように構成されているため、処理容器 15の壁 面に成膜ガス等が付着しな 、。
[0034] プラズマ発生室 14の処理容器 15の側面の所定の位置には、プラズマ発生室 14に 所定の処理ガスを導入するための処理ガス供給ノズル 17が設けられる。処理ガスは 不活性ガスを含む。不活性ガスとしてはアルゴン Arが使用され、処理ガスとしては、 形成する膜に応じて、金属であれば H +Arガス、酸化膜であれば O +Arガス、窒化
2 2
膜であれば N +Arガスが用いられる。この処理ガス供給ノズルは、たとえば、石英パ
2
イブ、アルミの構造体で形成されている。
[0035] 成膜室 20の処理容器 15の側面には、基板へのデポジション用の成膜ガスを導入 するための、成膜ガス供給ノズル 18が設けられる。成膜ガス供給ノズル 18は、たとえ ば石英パイプ、またはアルミの構造体製である。
[0036] なお、成膜ガス供給ノズル 18は分離板 16に形成されてもよい。
[0037] 成膜ガスとしては、四塩化珪素、六フッ化タングステン、五塩ィ匕タンタル、トリメチル アルミニウム、三塩化アルミニウム、四塩化チタン、四沃化チタン、六フッ化モリブデン
、二塩ィ匕亜鉛、四塩ィ匕ハフニウム、五塩化ニオブ、塩化銅等が使用される。
[0038] また、処理容器 15の側壁には、この内部に対して基板を搬入'搬出する時に開閉 する、図示のないゲートバルブが設けられると共に、この側壁を温調するジャケットが 設けられる。また、処理容器 15の底部には、真空ポンプ (真空排気手段) 26に接続さ れた排気口が設けられており、必要に応じて処理容器 32内を所定の圧力まで真空 引きできるようになつている。
[0039] また、分離板 16とプラズマ発生室 14との間には、可変の DCバイアスまたは所定の
ACバイアスが印加される。このバイアス電圧は、処理条件にもよるが、 10eV— 50e V以上に設定される。
[0040] 次に、図 2Aおよび図 2Bを参照して、分離板 16について説明する。図 2Aは分離板 16の平面図であり、図 2Bは図 2Aにおいて、矢印 B-Bで示す部分の断面図である。
[0041] 上記したように、分離板 16には、プラズマ発生室 14と、成膜室 20と間で、プラズマ 発生室 14の圧力が、成膜室 20の圧力より、所定の圧力差で陽圧となるように、複数 の穴が設けられている。すなわち、複数の穴の径は、両者の間に少なくとも 1. 5倍以 上の圧力差が生じるように、より好ましくは、 2倍以上の圧力差となるように選ばれる。 具体的には、穴径 lmmで深さが 5mm以上が好ましいが、これは処理ガスの流量に よっても変化する。
[0042] 図 2Aおよび図 2Bを参照して、この実施の形態に示す分離板 16は、成膜ガスを供 給する成膜ガス通路 40を組み込んである。成膜ガス通路 40は、処理容器 15の円周 上の所定の位置に設けられた成膜ガス供給ノズル 18 (図 1参照)に接続され、成膜ガ スを成膜室 20に供給する。
[0043] 分離板 16は、円板状であり、径の小さい多数の穴 41と、穴 41の周囲に成膜ガスを 供給するために、穴 41の周囲に行列方向に配列されたガス通路 42と、ガス通路 42 の交点に設けられたガス排出口 43とを含む。ガス通路 42やガス排出口 43は、図示 に限らず、穴 41の壁面にガス通路 42を接続し、穴 41に向けて成膜ガスを排出する ようにしてもよい。
[0044] プラズマ発生室 14と成膜室 20とが分離板 16で分離され、分離板 16に設けた穴 41 の径を適宜選択することにより、相互の室の圧力差を少なくとも 1. 5倍になるようにし た。相互の室の圧力差を 2倍にすると、その間を接続する穴 41を通過するガスの流 速は音速となる。したがって、成膜室 20側の成膜ガスがプラズマ発生室 14側に流れ ることは無い。その結果、プラズマ発生室 14側に成膜ガスによるデポジションが発生 することは無い。この穴 41の径は、必ずしもそこを通過するガスの流速が音速となら なくても、それに近い速度であっても同様の効果が得られる。したがって、上記したよ うに、プラズマ発生室 14の圧力が、成膜室 20の圧力の 1. 5倍程度であってもよい。
[0045] なお、具体的な各室の圧力としては、プラズマ発生室 14の圧力は 20mTorr— 500 mTorrであり、成膜室の圧力は lOmTorr— 50mTorrである。 [0046] また、分離板 14の穴 41の分布としては、中央部に対して、周辺部は約 10%多く分 布するようにする。たとえば、中央部には穴は 10mmピッチで設けられるのに対して、 周辺部は、 9mmピッチで設けられる。これは、プラズマの密度が中央部が高ぐ周辺 部が低いため、これを補うためである。
[0047] また、分離板 16の材質としては、カーボンが好ましいが、シリコンやアルミニウムで あってもよい。
[0048] 次に、分離板 16とプラズマ発生室 14の処理容器 15側面との間に直流または交流 のバイアス電圧を印加した場合について説明する。分離板 16とプラズマ発生室 14と の間にバイアス電圧を印加すると、プラズマ発生室 14で発生したラジカルや、荷電し た不活性ガスのうち、所望の極性を有するラジカルおよび Zまたは不活性ガスを選 択的に穴 41を通して引き出したり、中性ィ匕したりすることができる。たとえば、正に荷 電したアルゴン Ar+や水素 H+ラジカルを成膜室 20に引き出したり、中性化して、所望 の反応を起こさせることができる。
[0049] 図 3は、分離板 16を、たとえば正に帯電したアルゴン Ar+ガスが通過する状態を示 す図である。なお、ここでは、成膜ガス通路 40は省略している。図 3を参照して、アル ゴン Ar+ガスが穴 41を通過するときに、穴 41の壁面 44に衝突する。そのとき、分 離板 14に負のバイアスが印加されていると、アルゴン Ar+ガスが中和されて、中和さ れたアルゴン Arガスとして成膜室 20に供給される。このようにすると、運動エネルギ 一を保持したままでアルゴン Arガスを成膜室へ供給できる。その結果、処理速度を 上げることができる。なお、この中性ィ匕は不活性ガスに限らず、プラズマ発生室で発 生した水素、酸素、窒素等のラジカルについても同様である。
[0050] 図 4は、図 3を変形した実施の形態を示す図である。図 4を参照して、この実施の形 態では、分離板 16に設けられた穴 47の径は上面が大きぐ下面が小さくなつている。 そのため、プラズマ発生室 14からのイオン化された不活性ガス等が穴 47を通過する ときに、壁面 48に衝突する確率が増え、その結果、多くの中性ィ匕された不活性ガス やラジカルを得ることができる。
[0051] なお、不活性ガス等が壁面 48に衝突する確率を増やすためには、分離板 16の板 厚を上げてもよい。 [0052] 次に、この実施の形態における成膜方法について、従来の文献 2における成膜方 法と比較しながら説明する。図 5A 図 5Dは従来の文献 2における成膜方法を示す 図であり、図 6A 図 6Cはこの実施の形態における成膜方法をステップ毎に示す図 である。
[0053] まず、図 5A 図 5Dを参照して、従来の方法について説明する。ここでは、成膜ガス として、四塩ィ匕珪素 SiClを用いた例について説明する。従来は、まず、基板表面が
4
OH (水酸基)で終端している状態で、四塩ィ匕珪素 SiClを成膜ガスとして流す(図 5
4
A)。
[0054] 基板には O— SiClが付着し、 HC1が脱離するが、成膜ガスが連続して供給されるた
3
め、基板表面は徐々に C1原子によって覆われ(図 5B)、基板表面が C1原子で飽和す る。そこで余分な成膜ガスを除去するために不活性ガスでパージを行う(図 5C)。そ の後、水素ラジカルおよび酸素ラジカルを用いて元の水酸基飽和表面を形成する( 図 5D)。
[0055] 次に、この発明の一実施の形態における成膜方法について説明する。図 6A-図 6 Cは、この発明の一実施の形態にしたがう成膜方法をステップ毎に示す図である。図 6A 図 6Cを参照して、この実施の形態においては、基板表面が OH (水酸基)で 終端している状態で、四塩ィ匕珪素 SiClを成膜ガスとして流し(図 6A)、基板には O—
4
SiClが付着し、 HC1が脱離する反応が生じるという点は、従来と同じである。
3
[0056] し力しながら、この実施の形態においては、成膜ガスが連続して供給されても、同 時に水素ガス Hのラジカルが常時供給されるため(図 6B)、 C1原子は水素ラジカルと 反応し、基板が C1によって覆われるという現象は生じず、次々と所望の原子の層が形 成される(図 6C)。
[0057] 以上のように、この実施の形態による成膜方法によれば、図 5Cに示したような、成 膜時のパージが不要になるため、半導体基板に金属膜を成膜する処理能力を増大 できる。
[0058] また、反応をアシストするラジカルが常時供給されて 、るため、未反応の成膜ガスを 低減できる。したがって、従来のように、未反応の成膜ガスが膜中に取り込まれること はない。その結果、良質な膜が形成できる。 [0059] なお、成膜ガスは常時基板に供給されることなぐ間欠的に供給されてもよい。
[0060] この場合に、バイアス電圧の印加により、ラジカルを中性ィ匕して処理すれば、上記し たように、より大きなエネルギーを用いて処理ができるため好ま 、。
[0061] なお、具体的な成膜条件の一例としては、処理ガスとしてのアルゴンガスの流量は lOOsccmであり、成膜ガスの流量は 0. 1— lOOsccmである。
[0062] 次にこの発明の他の実施の形態について説明する。図 7はこの発明の他の実施に 力かる成膜装置の概略断面図である。図 7を参照して、この実施の形態においては、 成膜装置はプラズマを発生するのに先の実施の形態のようにマイクロ波を使用する のではなぐ誘導結合(Inductive Coupled Plasma)方式のプラズマ発生装置を使用 する。すなわち、この形式の成膜装置 60は、プラズマ発生室 14にプラズマを発生さ せるために、コイル 61とコイル 61に高周波を印加するための、交流電源 62とを含む 。これ以外の構成要件については、先の実施の形態と同様であるので、その説明は 省略する。
[0063] 上記実施の形態においては、基板上に珪素の金属膜を成膜する場合について説 明したが、これに限らず、処理ガスおよび成膜ガスを選択することによって、種々の酸 化膜、窒化膜および金属膜が形成できる。すなわち、酸化膜を形成するときは酸素 系ガスを、窒化膜を形成するときは窒素系ガスを、金属膜を形成したいときは水素ガ スを、それぞれ処理ガスとしてプラズマ発生室 14に供給すればょ ヽ。
[0064] また、上記実施の形態にお!、ては、ラジカルとして水素ラジカルを用いた例につ!ヽ て説明したが、これに限らず、上記したように、処理に応じて酸素や窒素等の他のラ ジカルを用いてもよい。
[0065] また、上記実施の形態においては、分離板にデポジション用ガスを供給する通路を 組み込んだ例について説明したが、これに限らず、分離板と成膜ガスを供給する通 路とを另 IJにしてちょい。
[0066] 図面を参照してこの発明の一実施形態を説明したが、本発明は、図示した実施形 態に限定されるものではない。本発明と同一の範囲内において、または均等の範囲 内において、図示した実施形態に対して種々の変更をカ卩えることが可能である。 産業上の利用可能性 この発明に係る成膜装置および成膜方法は、プラズマ発生室に成膜されることはな ぐ従来のように基板が成膜ガスで飽和することは無ぐまたパージが不要になるため 、成膜時間を短縮できる。したがって、成膜において有利に利用される。

Claims

請求の範囲
[1] 所定の処理ガスを導入され、所定の圧力でプラズマを発生させるプラズマ発生室と、 基板を収納し、成膜ガスを用いて、所定の圧力で前記基板に所望の膜を形成する ための成膜室と、
前記成膜室に接続され、前記成膜室を排気する真空排気手段と、
前記プラズマ発生室の圧力を前記成膜室の圧力より陽圧となるよう構成された複数 の穴を有する、前記プラズマ発生室と前記成膜室とを分離する分離板とを含む成膜
[2] 前記プラズマ発生室と前記成膜室との間に所定のバイアス電圧を印加する手段とを 含む、請求項 1に記載の成膜装置。
[3] 前記穴の径は、前記プラズマ発生室と前記成膜室との圧力差が 1. 5倍以上となる寸 法である、請求項 1または 2に記載の成膜装置。
[4] 前記穴の径は、前記プラズマ発生室と前記成膜室との圧力差が 2. 0倍以上となる寸 法である、請求項 1または 2に記載の成膜装置。
[5] 前記成膜室には前記成膜ガスを供給する成膜ガス供給手段が設けられ、前記成膜 ガス供給手段は、前記成膜室のほぼ全体領域に分布するガス噴出口を有する、請 求項 1から 4のいずれかに記載の成膜装置。
[6] 前記成膜ガス供給手段は、前記分離板と一体的に構成されている、請求項 5に記載 の成膜装置。
[7] 前記分離板は前記プラズマ発生室側の上面と、前記成膜室側の下面とを有し、前記 穴の前記上面の径は、前記下面の径よりも大きい、請求項 1から 6のいずれかに記載 の成膜装置。
[8] 前記分離板は、カーボン、シリコンまたはアルミニウムで形成される、請求項 1から 7の いずれかに記載の成膜装置。
[9] 前記プラズマ発生室で発生させるプラズマは、マイクロ波または誘導結合方式を用い て発生させる、請求項 1から 8のいずれかに記載の成膜装置。
[10] 反応容器と、
前記反応容器内のプラズマ発生領域でラジカルを発生させる手段と、 前記反応容器内に設けられ、基板を載置する載置手段と、
前記載置手段に載置された基板上の成膜領域に所定の成膜ガスを供給する成膜 ガス供給手段と、
前記成膜ガスを前記成膜領域内に閉じこめる手段と、
前記基板に対して、前記成膜ガス中の成膜成分を、前記ラジカルを介して連続的 に重合させるように制御する成膜制御手段とを含む、成膜装置。
[11] 基板に対して、成膜ガスを基板周囲の成膜領域に閉じこめ、成膜ガス中の成膜成分 を、ラジカルを介して連続的に重合させることによって、基板上に所望の膜を生成す る成膜方法。
[12] 前記所望の膜は金属膜であり、前記ラジカルは水素ラジカルである、請求項 11に記 載の成膜方法。
[13] 前記所望の膜は酸化膜であり、前記ラジカルは酸素ラジカルである、請求項 11に記 載の成膜方法。
[14] 前記所望の膜は窒化膜であり、前記ラジカルは窒素ラジカルである、請求項 11に記 載の成膜方法。
[15] 前記ラジカルを介して連続的に成膜成分を重合させるステップは、前記ラジカルを連 続的に発生させるステップと、前記成膜領域に、前記所望の膜に応じた成膜ガスを 供給するステップとを含み、
ラジカルを連続的に発生させるステップは第 1の圧力で行われ、
前記成膜領域に、所望の膜に応じた成膜ガスを供給するステップは、第 2圧力で行 われ、
前記第 1の圧力は前記第 2圧力より少なくとも 1. 5倍以上高い、請求項 11から 14の V、ずれかに記載の成膜方法。
[16] 前記ラジカルを中性ィ匕するステップを含み、
前記ラジカルを連続的に重合させるステップは、前記中性ィ匕されたラジカルを前記 基板に供給するステップを含む、請求項 11から 15のいずれかに記載の成膜方法。
[17] 所定の処理ガスを導入され、プラズマを発生させるプラズマ発生室と、
基板を収納し、前記基板に対して成膜ガスを導入することにより、所望の膜を形成 するための成膜室と、
複数の穴を有し、前記プラズマ発生室と前記成膜室とを分離する分離板とを含み、 前記分離板の穴は、前記処理ガスが前記プラズマ発生室から前記成膜室へ一方通 行で流れる寸法である、成膜装置。
PCT/JP2004/013357 2003-09-17 2004-09-14 成膜装置および成膜方法 WO2005028703A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04773039.5A EP1672093B1 (en) 2003-09-17 2004-09-14 Film-forming apparatus and film-forming method
US11/377,291 US20060213444A1 (en) 2003-09-17 2006-03-17 Deposition apparatus and deposition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-325004 2003-09-17
JP2003325004A JP2005089823A (ja) 2003-09-17 2003-09-17 成膜装置および成膜方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/377,291 Continuation-In-Part US20060213444A1 (en) 2003-09-17 2006-03-17 Deposition apparatus and deposition method

Publications (1)

Publication Number Publication Date
WO2005028703A1 true WO2005028703A1 (ja) 2005-03-31

Family

ID=34372767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013357 WO2005028703A1 (ja) 2003-09-17 2004-09-14 成膜装置および成膜方法

Country Status (6)

Country Link
US (1) US20060213444A1 (ja)
EP (1) EP1672093B1 (ja)
JP (1) JP2005089823A (ja)
KR (1) KR100878910B1 (ja)
CN (1) CN100494487C (ja)
WO (1) WO2005028703A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676396B1 (ko) 2005-06-09 2007-02-01 주식회사 케이씨텍 중성화빔을 이용한 표면처리장치
JP5121698B2 (ja) * 2006-03-06 2013-01-16 東京エレクトロン株式会社 プラズマ処理装置
US20070277735A1 (en) * 2006-06-02 2007-12-06 Nima Mokhlesi Systems for Atomic Layer Deposition of Oxides Using Krypton as an Ion Generating Feeding Gas
US20100024732A1 (en) * 2006-06-02 2010-02-04 Nima Mokhlesi Systems for Flash Heating in Atomic Layer Deposition
US20070281105A1 (en) * 2006-06-02 2007-12-06 Nima Mokhlesi Atomic Layer Deposition of Oxides Using Krypton as an Ion Generating Feeding Gas
US20070281082A1 (en) * 2006-06-02 2007-12-06 Nima Mokhlesi Flash Heating in Atomic Layer Deposition
JP4963923B2 (ja) * 2006-10-06 2012-06-27 日本碍子株式会社 表面改質装置
JP2008198739A (ja) 2007-02-09 2008-08-28 Tokyo Electron Ltd 載置台構造、これを用いた処理装置及びこの装置の使用方法
CN101403108B (zh) * 2008-08-04 2012-05-02 李刚 化学气相淀积反应器和化学气相淀积方法
WO2010094002A2 (en) * 2009-02-13 2010-08-19 Applied Materials, Inc. Rf bus and rf return bus for plasma chamber electrode
JP5454575B2 (ja) * 2009-09-17 2014-03-26 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理装置用ガス供給機構
JP5707174B2 (ja) * 2010-04-16 2015-04-22 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
JP5660804B2 (ja) * 2010-04-30 2015-01-28 東京エレクトロン株式会社 カーボンナノチューブの形成方法及びカーボンナノチューブ成膜装置
DE102011009347B4 (de) * 2010-11-29 2016-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines kohlenstoffhaltigen Schichtsystems sowie Vorrichtung zur Durchführung des Verfahrens
TW201239130A (en) * 2011-03-16 2012-10-01 I-Nan Lin Microwave plasma system
JP5984536B2 (ja) * 2011-09-16 2016-09-06 国立大学法人名古屋大学 プラズマcvd装置及びカーボンナノチューブの製造方法
TWI568319B (zh) * 2011-10-05 2017-01-21 應用材料股份有限公司 電漿處理設備及其蓋組件(二)
JP5803706B2 (ja) * 2012-02-02 2015-11-04 東京エレクトロン株式会社 成膜装置
JP5803714B2 (ja) * 2012-02-09 2015-11-04 東京エレクトロン株式会社 成膜装置
US20130284093A1 (en) * 2012-04-30 2013-10-31 Semes Co., Ltd. Substrate treating apparatus
JP6172660B2 (ja) * 2012-08-23 2017-08-02 東京エレクトロン株式会社 成膜装置、及び、低誘電率膜を形成する方法
JP2014167142A (ja) * 2013-02-28 2014-09-11 Tokyo Electron Ltd カーボン膜形成方法及びカーボン膜
JP2015018686A (ja) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 マイクロ波プラズマ処理装置、スロットアンテナ及び半導体装置
JP2015018687A (ja) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 マイクロ波プラズマ処理装置、スロットアンテナ及び半導体装置
CN103774120B (zh) * 2013-12-31 2016-06-22 刘键 一种用于pecvd系统的匀气装置
US20160336190A1 (en) * 2014-01-15 2016-11-17 Tokyo Electron Limited Film forming method and heat treatment apparatus
JP5908001B2 (ja) * 2014-01-16 2016-04-26 東京エレクトロン株式会社 基板処理装置
KR20150116600A (ko) * 2014-04-08 2015-10-16 삼성전자주식회사 에피텍시얼막 형성 방법 및 이를 수행하는데 사용되는 기판 처리 장치
KR20160002543A (ko) * 2014-06-30 2016-01-08 세메스 주식회사 기판 처리 장치
KR20160021958A (ko) * 2014-08-18 2016-02-29 삼성전자주식회사 플라즈마 처리 장치 및 기판 처리 방법
JP2017059579A (ja) * 2015-09-14 2017-03-23 東京エレクトロン株式会社 プラズマ処理装置
US11393661B2 (en) * 2018-04-20 2022-07-19 Applied Materials, Inc. Remote modular high-frequency source
JP7278123B2 (ja) * 2019-03-22 2023-05-19 東京エレクトロン株式会社 処理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236850A (ja) * 1993-02-10 1994-08-23 Sony Corp プラズマ処理装置
JPH06260434A (ja) * 1993-03-04 1994-09-16 Nissin Electric Co Ltd プラズマcvd装置
JP2000144421A (ja) * 1998-11-09 2000-05-26 Tokyo Electron Ltd 成膜装置および成膜方法
JP2000345349A (ja) * 1999-06-04 2000-12-12 Anelva Corp Cvd装置
US20010042512A1 (en) 1998-02-26 2001-11-22 Ge Xu CVD apparatus
JP2002016056A (ja) * 2000-06-29 2002-01-18 Nec Corp リモートプラズマcvd装置及び膜形成方法
US20020068458A1 (en) 2000-12-06 2002-06-06 Chiang Tony P. Method for integrated in-situ cleaning and susequent atomic layer deposition within a single processing chamber
JP2002539326A (ja) 1999-03-11 2002-11-19 ジエヌス・インコーポレイテツド ラジカルを利用した連続cvd

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563367A (en) * 1984-05-29 1986-01-07 Applied Materials, Inc. Apparatus and method for high rate deposition and etching
KR100276093B1 (ko) * 1992-10-19 2000-12-15 히가시 데쓰로 플라스마 에칭방법
JP3317209B2 (ja) * 1997-08-12 2002-08-26 東京エレクトロンエイ・ティー株式会社 プラズマ処理装置及びプラズマ処理方法
JP4151862B2 (ja) * 1998-02-26 2008-09-17 キヤノンアネルバ株式会社 Cvd装置
JP4382265B2 (ja) * 2000-07-12 2009-12-09 日本電気株式会社 酸化シリコン膜の形成方法及びその形成装置
JP2002299331A (ja) * 2001-03-28 2002-10-11 Tadahiro Omi プラズマ処理装置
JP4402860B2 (ja) * 2001-03-28 2010-01-20 忠弘 大見 プラズマ処理装置
JP3891267B2 (ja) * 2001-12-25 2007-03-14 キヤノンアネルバ株式会社 シリコン酸化膜作製方法
JP3721168B2 (ja) 2003-02-25 2005-11-30 Necアクセステクニカ株式会社 小型無線機用アンテナ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236850A (ja) * 1993-02-10 1994-08-23 Sony Corp プラズマ処理装置
JPH06260434A (ja) * 1993-03-04 1994-09-16 Nissin Electric Co Ltd プラズマcvd装置
US20010042512A1 (en) 1998-02-26 2001-11-22 Ge Xu CVD apparatus
JP2000144421A (ja) * 1998-11-09 2000-05-26 Tokyo Electron Ltd 成膜装置および成膜方法
JP2002539326A (ja) 1999-03-11 2002-11-19 ジエヌス・インコーポレイテツド ラジカルを利用した連続cvd
JP2000345349A (ja) * 1999-06-04 2000-12-12 Anelva Corp Cvd装置
JP2002016056A (ja) * 2000-06-29 2002-01-18 Nec Corp リモートプラズマcvd装置及び膜形成方法
US20020068458A1 (en) 2000-12-06 2002-06-06 Chiang Tony P. Method for integrated in-situ cleaning and susequent atomic layer deposition within a single processing chamber

Also Published As

Publication number Publication date
CN1777695A (zh) 2006-05-24
KR100878910B1 (ko) 2009-01-15
EP1672093A4 (en) 2007-04-18
EP1672093A1 (en) 2006-06-21
CN100494487C (zh) 2009-06-03
JP2005089823A (ja) 2005-04-07
EP1672093B1 (en) 2013-07-10
KR20060085334A (ko) 2006-07-26
US20060213444A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
WO2005028703A1 (ja) 成膜装置および成膜方法
US20210343510A1 (en) Quartz component with protective coating
US9659791B2 (en) Metal removal with reduced surface roughness
US10465294B2 (en) Oxide and metal removal
JP5318562B2 (ja) プラズマ加速原子層成膜のシステムおよび方法
CN108735596B (zh) 处理被处理体的方法
US10763123B2 (en) Method for processing workpiece
KR20230041047A (ko) 유동성 막 형성 및 처리들
JP2018182104A (ja) 成膜方法
US10916420B2 (en) Processing method and plasma processing apparatus
JP2019119918A (ja) 成膜方法
US10707100B2 (en) Processing method and plasma processing apparatus
WO2021065497A1 (ja) 基板処理装置及び基板処理方法
WO2000017917A1 (fr) Procede de formation de film au plasma
CN110581050A (zh) 处理方法和等离子体处理装置
CN116601743A (zh) 使用电容耦合等离子体的氧化硅间隙填充
WO2023230065A1 (en) Low temperature silicon oxide gap fill
TW202412066A (zh) 低溫氧化矽間隙填充
JPH0547713A (ja) プラズマ処理装置
WO2023038837A1 (en) Directional selective deposition
CN117256041A (zh) 用于改善的碳粘附性的系统和方法
JP2023501588A (ja) 低減された水素堆積方法
TW200828418A (en) System and method for containment shielding during PECVD deposition processes
CN113767453A (zh) 等离子处理装置以及等离子处理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048105722

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004773039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067005339

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11377291

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004773039

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067005339

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11377291

Country of ref document: US