WO2005026340A1 - 基質特異性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体 - Google Patents

基質特異性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体 Download PDF

Info

Publication number
WO2005026340A1
WO2005026340A1 PCT/JP2004/012508 JP2004012508W WO2005026340A1 WO 2005026340 A1 WO2005026340 A1 WO 2005026340A1 JP 2004012508 W JP2004012508 W JP 2004012508W WO 2005026340 A1 WO2005026340 A1 WO 2005026340A1
Authority
WO
WIPO (PCT)
Prior art keywords
pqqgdh
amino acid
modified
activity
wild
Prior art date
Application number
PCT/JP2004/012508
Other languages
English (en)
French (fr)
Inventor
Seiji Takeshima
Tadanobu Matsumura
Takahide Kishimoto
Masanori Oka
Noriaki Hirayama
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003315797A external-priority patent/JP4029346B2/ja
Priority claimed from JP2004060283A external-priority patent/JP4332794B2/ja
Priority claimed from JP2004060282A external-priority patent/JP4452988B2/ja
Priority claimed from JP2004151905A external-priority patent/JP2005328793A/ja
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to DE602004023736T priority Critical patent/DE602004023736D1/de
Priority to EP04772464A priority patent/EP1666586B1/en
Priority to US10/570,904 priority patent/US7479383B2/en
Publication of WO2005026340A1 publication Critical patent/WO2005026340A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose

Definitions

  • the present invention relates to a modified glucose dehydrogenase having improved substrate specificity (in the present application, glucose dehydrogenase is also referred to as GDH). More specifically, pyrroloquinoline quinone (in the present application, pyromouth quinoline quinone is referred to as PQQ).
  • PQQ pyrroloquinoline quinone
  • PQQGDH modified PQQ-dependent glucose dehydrogenase
  • PQQGDH a modified PQQ-dependent glucose dehydrogenase
  • a production method thereof in the present application, PQQ-dependent glucose dehydrogenase is also abbreviated as PQQGDH
  • the present invention relates to a method for improving the specific activity of wild-type pyro-mouth quinoline quinone-dependent glucose dehydrogenase in a measurement system using ferricyanide ion as a mediator.
  • the present invention provides a modified pyrroloquinoline quinone-dependent dulose dehydrogenase having improved specific activity, a method for producing the same, a glucose assay kit and a glucose assay kit using the same, in a measurement system using a ferricyanide ion as a mediator.
  • the modified PQQGDH of the present invention is useful for quantifying glucose in clinical tests, food analysis, and the like.
  • PQQGDH is a glucose dehydrogenase that uses quinoline quinone as a coenzyme. Since it catalyzes the reaction of producing darconolatatone by oxidizing glucose, it can be used for measuring blood sugar. Blood glucose concentration is an important marker for clinical diagnosis as an important marker for diabetes. Currently, blood glucose levels are measured using a biosensor that uses dalcos oxidase, which is the mainstream method. The force response is affected by the dissolved oxygen level, so errors may occur in the measured values. . As a new enzyme replacing glucose oxidase, PQQ-dependent glucose dehydrogenase has attracted attention. [0003] Our group consists of Acinetobacter baumann- (Acinetobacter baumannii)
  • the NCIMB strain 11517 strain was found to produce a PQQ-dependent dulcose dehydrogenase and constructed a gene cloning and high expression system (see Patent Document 1).
  • PQQ-dependent glucose dehydrogenase has a problem with substrate specificity compared to glucose oxidase.
  • Patent Document 1 JP-A-11 243949
  • FIG. 1 shows the results of measuring the optimal pH of Q76N, Q76E, Q168I, Q168V, Q76T, Q76M, Q168A, wild-type, Q76G, and Q76K.
  • the horizontal axis indicates pH, and the vertical axis indicates relative activity.
  • closed circles are the results of measurement of enzyme activity using 50 mM acetate buffer (pH 3.0-6.0) containing 0.22% Triton-X100.
  • the black square (PIPES) is 0.22% Trit PIPES- NaOH buffer ( ⁇ 6.0-7.0), black triangle (1 ⁇ -?
  • Triton- 50mM phosphate buffer pH 5.0-8.0
  • the diamonds indicate the results of enzyme activity measurements in 50 mM Tris-HCl buffer (pH 7.0-9.0) containing 0.22% Triton-X100. The measured value is shown as a relative value with the maximum activity as 100%.
  • FIG. 2 shows the results of confirming glucose quantification of Q76K.
  • the horizontal axis shows the one-level dilution series, and the vertical axis shows the measured glucose concentration (mg / dl).
  • FIG. 3 shows the results of confirming the maltose action of Q76K.
  • the horizontal axis, plus the maltose concentration (mgZdl), the vertical axis represents the relative 0/0 when maltose added concentration of 100% value measured at 0.
  • the black triangles show the case where maltose was added as a sample based on lOOmgZdl glucose
  • the black diamond shows the case where maltose was added as a sample based on 300mgZdl glucose.
  • FIG. 4 shows the results of confirming the maltose action of Q76E.
  • the black triangles show the case where maltose was added as a sample based on lOOmgZdl glucose
  • the black diamond shows the case where maltose was added as a sample based on 300mgZdl glucose.
  • FIG. 5 shows the results of confirming the maltose action of Q168V.
  • the horizontal axis, plus the maltose concentration (mgZdl), the vertical axis represents the relative 0/0 when the value measured at a maltose concentration of added 0 to 100%.
  • the black triangles indicate the case where maltose was added based on glucose of 100 mgZdl as a sample, and the black diamond indicates the case where maltose was added based on 300 mgZdl of glucose as a sample.
  • FIG. 6 shows the results of confirming the maltose action of Q168A.
  • the horizontal axis, plus the maltose concentration (mgZdl), the vertical axis represents the relative 0/0 when the value measured at a maltose concentration of added 0 to 100%.
  • the black triangles indicate the case where maltose was added based on glucose of 100 mgZdl as a sample, and the black diamond indicates the case where maltose was added based on 300 mgZdl of glucose as a sample.
  • FIG. 7 shows the results of confirming the maltose action of the wild-type enzyme.
  • the black triangles indicate the case where maltose was added as a sample and 100 mg Zdl of glucose, and the black diamond indicates the case where maltose was added as a sample and 300 mg Zdl of Darcos as a base.
  • the present invention has been made against the background of the problems of the prior art, and has been made to improve the substrate specificity of PQQGDH.
  • the issue is related to its improvement.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have made it possible to improve the substrate specificity by introducing an amino acid mutation in a specific region of PQQGDH.
  • the present inventors have found that by deleting, substituting or adding one or several amino acids in the amino acid sequence of a wild-type pyro-mouth quinoline quinone-dependent glucose dehydrogenase, the ferricyanide ion can be removed.
  • the present invention has made it possible to improve the specific activity of pyromouth quinoline quinone-dependent glucose dehydrogenase in a measurement system as a mediator as compared with the wild-type, and has completed the present invention. That is, the present invention
  • PQQGDH Modified PQQGDH having a lower activity on disaccharides than wild-type pyro-mouth quinoline quinone-dependent glucose dehydrogenase (PQQGDH).
  • Item 2 The modified PQQGDH according to Item 1, which has improved stability over wild-type pyro-mouth quinoline quinone-dependent glucose dehydrogenase (PQQGDH).
  • Item 3 A modified pyro-mouth quinoline quinone-dependent darkose dehydrogenase (PQQGDH) having improved specific activity in a measurement system using ferricyanide ion as a mediator as compared with the wild-type by the method according to Item 3.
  • Item 4. A gene encoding the modified PQQGDH according to item 1 or 3.
  • Item 6 A vector containing the gene according to Item 5.
  • Item 7 A transformant transformed with the vector according to Item 6.
  • a method for producing a modified PQQGDH which comprises culturing the transformant according to Item 7 [Item 9]
  • a glucose assay kit comprising the modified PQQGDH according to item 1 or 3.
  • a glucose sensor comprising the modified PQQGDH according to item 1 or 3.
  • Item 4 A method for measuring glucose containing the modified PQQGDH according to item 1 or 3.
  • the modified PQQGDH according to the present invention is an enzyme having a lower activity on disaccharides than wild-type PQQGDH.
  • a more accurate analysis can be performed than that using wild-type PQQGDH, or a more stable glucose assay kit and A glucose sensor can be provided.
  • the modified pyromouth quinoline quinone-dependent glucose dehydrogenase according to the present invention can reduce the amount of enzyme added to a glucose assay kit or a glucose sensor using the same by improving specific activity, and is inexpensive. Production is possible.
  • the modified PQQGDH of the present invention has a greater effect on disaccharides than wild-type PQQGDH. It is a reduced enzyme.
  • the action on a disaccharide means an action of dehydrogenating a disaccharide.
  • the disaccharide include maltose, sucrose, ratatose, cellobiose and the like, and particularly maltose.
  • a decrease in disaccharide activity is also referred to as an increase in substrate specificity.
  • the PQQGDH activity value (a) when wild-type PQQGDH was used as the substrate solution and D-glucose was used as the substrate solution, and the disaccharide was used as the substrate solution instead of D-glucose Then, the PQQGDH activity value (b) is measured, and the relative value ((b) / (a) ⁇ 100) with respect to the case where the measured value is 100 when glucose is used as the substrate is determined. Next, the same operation is performed using the modified PQQGDH, and the values are compared for judgment.
  • the modified PQQGDH of the present invention has the modified PQQGDH of the present invention regardless of whether its activity on glucose is increased, unchanged, or decreased, as long as its activity on disaccharides is lower than that of wild-type PQQGDH. Included.
  • the modified PQQGDH of the present invention includes those in which the action on disaccharides in glucose concentration measurement is reduced as compared with the case where wild-type PQQGDH is used. Preferably, it has reduced action on maltose.
  • the activity on maltose is preferably 90% or less of wild-type PQQGDH, more preferably 75% or less, further preferably 70% or less, further preferably 60% or less, particularly 40% or less, and particularly preferably 20% or less. .
  • the modified PQQGDH of the present invention includes those having an activity on maltose of 90% or less of an activity on glucose.
  • the modified PQQGDH of the present invention is more effective against disaccharides than wild-type PQQGDH.
  • the Km value for maltose is large.
  • the Km value for maltose is preferably 8 mM or more, more preferably 12 mM or more.
  • the modified PQQGDH of the present invention includes those in which the Km value for disaccharides is larger than the Km value for glucose.
  • the Km value for maltose is greater than the Km value for glucose.
  • the Km value for maltose is 1.5 times or more, more preferably 3 times or more, the Km value for glucose.
  • the modified PQQGDH of the present invention is an enzyme having a lower activity on disaccharides than wild-type PQQGDH, and is preferably an enzyme having improved stability over wild-type PQQGDH.
  • the stability (also referred to as thermal stability in the present application) in the present invention is evaluated by the residual activity ratio after heat treatment at 58 ° C. for 30 minutes.
  • the modified PQQGDH of the present invention includes those having a higher residual activity ratio after heat treatment at 58 ° C. for 30 minutes than wild-type PQQGDH.
  • the residual activity ratio is preferably at least 48%, more preferably at least 55%, particularly preferably at least 70%.
  • modified PQQ GDH of the present invention which has a lower activity on disaccharides than wild-type PQQGDH, include, for example, amino acids 170, 245, 249, 349, and 349 in the amino acid sequence of Acinetobacter-derived PQQGDH; An amino acid at at least one position selected from the group consisting of position 429 is substituted !, and modified PQQGDH is exemplified.
  • the amino acid sequence of PQQGDH derived from the genus Acinetobacter is preferably the amino acid sequence of PQQDH derived from Acinetob actor calcoaceticus or Acinetobacter baumannii.
  • SEQ ID NO: 1 is preferable.
  • the wild-type PQ QGDH protein represented by SEQ ID NO: 1 and its nucleotide sequence represented by SEQ ID NO: 2 are derived from Acinetobacter baumannii (Acinetobacter baumannii) NCIMB11517 strain, and are disclosed in JP-A-11-243949. Is disclosed.
  • amino acid designations are numbered with 1 aspartic acid from which the signal sequence has been removed.
  • the modified PQQGDH of the present invention preferably has a substantial adverse effect on disaccharide activity and Z or stability as long as it has glucose dehydrogenase activity. Unless this affects, some of the other amino acid residues may be deleted or substituted. Other amino acid residues may be added! You can! / ,.
  • Examples of the modified PQQ GDH of the present invention which has a lower activity on disaccharides than wild-type PQQGDH, include, for example, positions 67, 68, 69, 76, and 89 in the amino acid sequence of Acinetobacter-derived PQQGDH. , 167, 168, 169, 170, 341, 342, 343, 351, 49, 174, 188, 189, 207, 215, 245, 249, 300 Has an amino acid substitution at at least one of positions 349, 129, 130, 131 and 429, and Z or an amino acid inserted between positions 428 and 429
  • the type PQQGDH is exemplified.
  • modified PQQGDH of the present invention having improved substrate specificity
  • amino acid sequence of PQQGDH derived from the genus Acinetobacter! GDH in which an amino acid is inserted is exemplified.
  • Q76N means that Q (Gin) at position 76 is replaced with N (Asn).
  • any substitution and insertion of Z or L, A or K between positions 428 and 429 contribute to the improvement of the substrate specificity of PQQGDH.
  • PQQGDH of the present invention having improved thermal stability over wild-type PQQGDH includes, for example, amino acid sequences of PQQGDH derived from the genus Acinetobacter, positions 20, 76, 89, 168, 169, 245, Modified PQQGDH having an amino acid substitution at at least one of positions 246 and 300 is exemplified.
  • K20E, Q76M, Q76G, K89E, Q168A, Q168D, Q168 E, Q168F, Q168G, Q168H, Q168M, Q168P, Q168W, Q168Y, Q168S, L169D, L169E, L169P, L169S, Q246H, K300R, Q 76N, Q76T, Q76K, L169A, L169C, L169E, L169F, L169H, L169N, L169N , L169Q, L169R, L169T, L169Y and L169G also have selected amino acid substitutions.
  • the substitutions at positions 20, 76, 89, 168, 169, 246, and 300 may be at one site or at multiple sites.
  • K20E means that K (Lys) at position 20 is replaced with E (Glu).
  • the modified PQQGDH of the present invention which has a lower activity on disaccharides than wild-type PQQGDH, for example, in the amino acid sequence of PQQGDH derived from the genus Acinetobacter, positions 74, 146, 168, and 169 Modified PQQGDH having an amino acid substitution at at least one of positions 170, 245 and 342 is exemplified.
  • a modified PQQGDH having an amino acid substitution at at least one of positions 74 and 146 is more preferred. By introducing mutations at these positions, it is expected that, in addition to a decrease in the action on disaccharides, an improvement in the specific activity in reactivity to glucose as compared with the wild-type enzyme can be expected. It is also possible that the response in systems containing mediators may be improved.
  • a modified PQQGDH having an amino acid substitution at at least one position of D74V and S146A is more preferred.
  • M342A means that M (Met) at position 342 is replaced with A (Ala).
  • a modified PQQGDH having an amino acid substitution at at least one position of D74V and S146A is more preferred.
  • the amino acid substitution is
  • the method of the present invention for improving the specific activity in the assay system using Felician gaido ion as a mediator is based on a wild-type pyro-mouth quinoline quinone-dependent glucose dehydrogenase (also referred to as PQQGDH in the present specification).
  • PQQGDH wild-type pyro-mouth quinoline quinone-dependent glucose dehydrogenase
  • Typical sources of wild-type PQQGDH to be modified include the microorganisms exemplified below. Specifically, for example, acinetopactors 'Calcoaceticus, Acinetobacter baumannii', Pseudomonas enoreginosa, Pseudomonas putia a, Pseudomonas putia a, Pseudomonas putia a a Intestinal oxidizing bacteria such as reolec sense (Pseudomonas fluorescens) and guanolecono bacterium oxydans, etc., Agrobacterium umradiobacter, Escherichia coli, Klebsiella and Klebsiella aer ogenes.
  • Bacteria can be mentioned. However, it is difficult to modify a membrane-type enzyme present in Escherichia coli and the like into a soluble form, and it is preferable to select a source derived from a microorganism belonging to the genus Acinetobacter. More preferably, it is preferable to select a soluble PQQ GDH, such as Acinetobacter b. Calcoaceticus or Acinetobacter baumann.
  • the amino acid sequence of PQQGDH derived from the genus Acinetobacter is preferably the amino acid sequence of PQQDH derived from Acinetob actor calcoaceticus or Acinetobacter baumannii.
  • SEQ ID NO: 1 is preferable.
  • the wild-type PQ QGDH protein represented by SEQ ID NO: 1 and its nucleotide sequence represented by SEQ ID NO: 2 are derived from Acinetobacter baumannii (Acinetobacter baumannii) NCIMB11517 strain, and are disclosed in JP-A-11-243949. Is disclosed.
  • amino acid designations are numbered with 1 aspartic acid from which the signal sequence has been removed.
  • Acinetobacter baumannii (Acinetobacter baumannii) NCIMB11517 strain was previously classified as Acinetobacter calcoaceticus.
  • the specific activity in the present invention is an activity per unit weight of an enzyme molecule in an activity measurement system using a ferricyanide ion as a mediator, and more specifically, a unit of enzyme activity per 1 mg of a purified enzyme. It is.
  • the active center in the present invention refers to a site where D-glucose as a substrate is bound and catalyzed in a pyro-mouth quinoline quinone-dependent glucose dehydrogenase, and a substrate binding site to which D-glucose is bound. And the quinoline quinone quinone binding site force at the pyro-opening where the oxidation reaction is carried out.
  • the wild-type pyro-mouth quinoline quinone-dependent glucose dehydrogenase in the present invention is a pyro-mouth quinoline quinone-dependent glucose dehydrogenase that exists in nature.
  • the modified pyroquinoline quinoline quinone-dependent glucose dehydrogenase has one or several amino acids deleted in its amino acid sequence compared to the wild-type pyromouth quinoline quinone-dependent glucose dehydrogenase. , Substitutions and insertions.
  • the improvement in the specific activity in the present invention generally includes an improvement in the specific activity of 10% or more of the wild type. Preferably it is 50% or more with respect to the wild type.
  • the PQQGDH of the present invention having a higher specific activity than wild-type PQQGDH includes, for example, amino acid in the vicinity of the active center in which at least one other amino acid is substituted.
  • the PQQGDH of the present invention having a higher specific activity than wild-type PQQGDH, more specifically, at least one amino acid present within a radius of 10 angstroms from the active center.
  • Amino acid sequence of PQQGDH derived from the genus Acinetobacter [Here, positions 76, 143, 144, 163, 168, 169, 228 , 229, 247, 248, 343, 346, 348, 377, 406, 408, 424.
  • the amino acid is selected from the group consisting of amino acids.
  • the PQQGDH of the present invention includes an amino acid sequence of PQQGDH derived from the genus Acinetobacter.
  • a modified pyro-mouth quinoline quinone-dependent glucose dehydrogenase having an amino acid substitution at at least one of positions 168 and 169 is exemplified.
  • Q168A means that Q (Gin) at position 168 is replaced with A (Ala).
  • the PQQGDH of the present invention preferably has a glucose dehydrogenase activity, and preferably has a specific activity in a measurement system using ferricyanide ion as a mediator.
  • the PQQGDH of the present invention can be used in a measurement system in which a ferricyanide ion is used as a mediator, as compared with the wild type, even when an amino acid substitution near the active center is added to the amino acid substitution.
  • a ferricyanide ion is used as a mediator, as compared with the wild type, even when an amino acid substitution near the active center is added to the amino acid substitution.
  • it is also a modified type pyroquinoline quinoline quinone-dependent glucose dehydrogenase in which the improvement in specific activity is maintained.
  • quinoline quinone-dependent darkose dehydrogenase in which the amino acid substitution at position 245 is combined, and more specifically, the amino acid substitution is (Q168A + L169G + E245D), (Q168A + L169P + E245D) is a quinoline quinoline quinoline-dependent glucose dehydrogenase having an amino acid substitution selected from the group consisting of:
  • the method of the present invention for improving the specific activity of pyrroloquinoline quinone-dependent glucose dehydrogenase in the assay system using ferricyanide ion as a mediator, compared to the wild-type, comprises one or several amino acid sequences of the enzyme. This can be achieved by deleting, substituting or adding two amino acids.
  • amino acid to be deleted, substituted or added is not particularly limited, but is preferably an amino acid near the active center.
  • amino acids that are deleted, substituted or added are amino acids within a radius of 10 angstroms from the active center. Desirably it is an acid.
  • the pyromouth quinoline quinone-dependent glucose dehydrogenase is, at the positions 76, 143, 144, 163, 168, 169, At least one amino acid selected from the group consisting of positions 228, 229, 247, 248, 343, 346, 348, 377, 406, 408, and 424 is substituted with another amino acid It has been desired.
  • amino acid sequence of PQQGDH derived from the genus Acinetobacter it is preferable that at least one amino acid selected from the group consisting of the 168th position and the 169th position is substituted with another amino acid.
  • amino acid substitution in the vicinity of the active center may not be reduced in the amino acid substitution, and the amino acid substitution at the position 245 in the amino acid sequence of PQQGDH derived from Acinetobacter sp. (Q168A + L169G + E245D), (Q168A + L169P + E245D) It is hoped that a group force as well as a force will be selected!
  • Patent Document 1 J. Mol. Biol., 289, 319-333 (1999)
  • Non-Patent Document 2 PNAS, 96 (21), 11787-11791 (1999)
  • Non-Patent Document 3 The EMBO Journal, 18 (19), 5187-5194 (1999)
  • Non-Patent Document 4 Protein Science, 9, 1265-1273 (2000)
  • Patent Document 2 JP 2001-197888
  • alteration of the effect on disaccharides includes amino acids involved in PQQ binding and Z or amino acids in the vicinity thereof. It is conceivable that at least one or more of the amino acids involved in the binding of glucose and the amino acids at or around Z and the amino acids involved in the binding of calcium ions and the amino acids at and around Z are involved.
  • the modified PQQGDH of the present invention comprises, in a PQQ-dependent glucose dehydrogenase derived from the genus Acinetobacter, such as the PQQ-dependent glucose dehydrogenase described in SEQ ID NO: 1, Includes those in which Z or its surrounding amino acids and Z or amino acids involved in glucose binding and Z or its surrounding amino acids are substituted.
  • Non-Patent Documents 3 and 4 disclose, as amino acids that bind to PQQ, Y344, W346, R228, N229, K377, R406, R408, D424, and amino acids that bind to darcose, Q76, D143, H144, D163, Q168, L169, etc. are described.
  • the modified PQQGDH of the present invention is involved in binding of calcium ions in PQQ-dependent darcos dehydrogenase derived from the genus Acinetobacter, for example, PQQ-dependent glucose dehydrogenase described in SEQ ID NO: 1.
  • PQQ-dependent darcos dehydrogenase derived from the genus Acinetobacter
  • SEQ ID NO: 1 includes amino acids and those in which Z or its surrounding amino acids are substituted.
  • Non-Patent Document 1 describes P248, G247, Q246, D252, T348 and the like as amino acids that bind to calcium ions at the active center.
  • modified PQQGDH of the present invention has an active center in the active conformation of the wild-type enzyme.
  • the force also includes those obtained by mutating amino acids located within a radius of 15 A, preferably within a radius of 10 A.
  • the modified PQQGDH of the present invention also includes those obtained by mutating amino acids located within a radius of 10A from the substrate in the active conformation of the wild-type enzyme.
  • the substrate is glucose
  • those obtained by mutating amino acids located within a radius of 10 A from the substrate in the active conformation of the wild-type enzyme are preferable.
  • the modified PQQGDH of the present invention differs in amino acids located within a radius of 10 A from the OH group bonded to the carbon at position 1 in the active conformation of the wild-type enzyme. Including those obtained by In particular, when the substrate is glucose, it is preferably obtained by mutating amino acids located within a radius of 10 A from the substrate in the active conformation of the wild-type enzyme.
  • the modified PQQGDH of the present invention is obtained by mutating amino acids located within a radius of 10A from the OH group bonded to the carbon at position 2 in the active conformation of the wild-type enzyme. Including those obtained.
  • the substrate is glucose, it is preferably obtained by mutating amino acids located within a radius of 10 A from the substrate in the active conformation of the wild-type enzyme.
  • SEQ ID NO: 1 derived from NCIMB 11517 strain
  • SEQ ID NO: 2 its base represented by SEQ ID NO: 2
  • other sources with high homology preferably at least 80%, more preferably at least 90%
  • the modified PQQGDH derived from any of these species has a lower effect on disaccharides than wild-type PQQGDH without excessive trial and error by substituting amino acid residues in the relevant region.
  • the modified PQQGDH can be obtained.
  • the modified PQQGDH of the present invention also includes those obtained by mutating amino acids located within a radius of 10A from the active center in the active conformation of the wild-type enzyme.
  • the modified PQQGDH of the present invention substantially includes those obtained by mutating amino acids located within a radius of 10A from the substrate in the active conformation of the wild-type enzyme.
  • the substrate is glucose
  • it is preferably obtained by mutating amino acids located within a radius of 10 A from the substrate in the active conformation of the wild-type enzyme.
  • amino acids located within a radius of 10 A from the OH group bonded to the carbon at position 1 in the active conformation of the wild-type enzyme are substantially mutated. Including those obtained by performing In particular, when the substrate is glucose, it is preferably obtained by mutating amino acids located within a radius of 10 A from the substrate in the active conformation of the wild-type enzyme.
  • the modified PQQGDH of the present invention substantially mutates an amino acid located within a radius of 10 A from the OH group bonded to the carbon at position 2 in the active conformation of the wild-type enzyme. Including those obtained by performing In particular, when the substrate is glucose, it is preferably obtained by mutating amino acids located within a radius of 10 A from the substrate in the active conformation of the wild-type enzyme.
  • amino acid residues are deleted, substituted, or inserted at one or more of such positions at one or more positions, so that they are two times more than wild-type PQQGDH. Modified PQQGDH with reduced saccharide activity can be obtained. These modified PQQGDH glucose dehydrogenases are also included within the scope of the present invention.
  • the present invention is a gene encoding the above-mentioned modified pyro-mouth quinoline quinone-dependent glucose dehydrogenase.
  • the present invention is a gene encoding a modified PQQGDH having a lower activity on disaccharides than wild-type pyro-mouth quinoline quinone-dependent glucose dehydrogenase (PQQGDH). Further, it is a vector containing the gene. Further, it is a transformant transformed with the vector. Furthermore, there is provided a method for producing a modified PQQGDH, which comprises culturing the transformant.
  • the gene encoding the modified PQQGDH of the present invention may be obtained by modifying a DNA fragment containing a gene encoding wild-type PQQGDH obtained from various sources such as microorganisms. Specifically, for example, acinetopactors 'Calcoaceticus, Acinetobacter baumannii', Pseudomonas enoreginosa, Pseudomonas putia a, Pseudomonas putia a, Pseudomonas putia a Intestinal oxidizing bacteria such as reolec sense (Pseudomonas fluorescens), gnoreco bacterium oxydans, etc., Agrobacterium umradiobacter, Escherichia coli, Klebsiella, Klebsiella aer ogenes, etc.
  • Bacteria can be mentioned. However, it is difficult to modify the membrane-type enzyme present in Escherichia coli or the like into a soluble form, and the origin is the genus Acinetobacter, more preferably the homologous high-Acinetobacter P. calcoaceticus or A. It is preferable to select any of the soluble PQQGDHs of S. cerevisiae 1'baumann-.
  • a method for modifying the gene encoding wild-type PQQGDH a commonly used technique for modifying genetic information is used. That is, a DNA having the genetic information of the modified protein is prepared by converting a specific base of DNA having the genetic information of the protein or by inserting or deleting a specific base.
  • a specific method for converting bases in DNA for example, use of a commercially available kit (Transformer Mutagenesis Kit; manufactured by Clonetech, EXOIIl / Mung Bean Deletion Kit; manufactured by Stratagene, QuickChange Site Directed Mutagenesis Kit; manufactured by Stratagene, etc.) Or the use of the polymerase chain reaction (PCR).
  • a commercially available kit Transformer Mutagenesis Kit; manufactured by Clonetech, EXOIIl / Mung Bean Deletion Kit; manufactured by Stratagene, QuickChange Site Directed Mutagenesis Kit; manufactured by Stratagene, etc.
  • PCR polymerase chain reaction
  • the prepared DNA having the genetic information of the modified protein is transferred into a host microorganism in a state of being linked to a plasmid, and becomes a transformant that produces the modified protein.
  • a host microorganism for example, Escherichia coli
  • Is used as a host microorganism Is used as a host microorganism, pBluescript, pUC18 and the like can be used.
  • the host microorganism for example, Escherichia coli C3110, Escherichia coli C600, Escherichia coli JM109, Escherichia coli DH5a and the like can be used.
  • a method for transferring the recombinant vector to the host microorganism for example, when the host microorganism is a microorganism belonging to the genus Escherichia, a method for transferring the recombinant DNA in the presence of calcium ions can be employed. The elect opening method may be used. Further, a commercially available cell (for example, Competent High JM109; manufactured by Toyobo Co., Ltd.) may be used.
  • Such a gene can be extracted from these strains or can be chemically synthesized. Furthermore, it is also possible to obtain a DNA fragment containing the PQQGDH gene by using the PCR method.
  • a method for obtaining a gene encoding PQQGDH includes the following method.
  • the chromosome of Acinetobacter b. Calcoaceticus NCIB11517 is separated and purified, then the DNA is cut by sonication, restriction enzyme treatment, etc. The cohesive ends are ligated and closed with DNA ligase or the like to construct a recombinant vector.
  • expression of the marker and the enzyme activity of the vector is determined.
  • a microorganism carrying a recombinant vector containing a gene encoding GDH having PQQ as a prosthetic group is obtained.
  • the microorganism carrying the recombinant vector is cultured, the recombinant vector is separated and purified from the cells of the cultured microorganism, and the gene encoding GDH is collected from the expression vector.
  • the chromosomal DNA of the gene donor, Acinetobacter 'Calcoaceticus NCIB11517 is specifically collected as follows.
  • the culture solution obtained by stirring and culturing the gene-donating microorganism for, for example, 13 days is collected by centrifugation, and then lysed to obtain a GDH gene having PQQ as a prosthetic group.
  • a lysate containing can be prepared.
  • treatment is performed with a lytic enzyme such as lysozyme, and protease and other enzymes and a surfactant such as sodium lauryl sulfate (SDS) are used as needed. It may be combined with a physical disruption method such as freezing, thawing or French pressing.
  • a method such as protein removal treatment by phenol treatment or protease treatment, ribonuclease treatment, or alcohol precipitation treatment is appropriately performed according to a conventional method. It can be performed by combining them.
  • the method of cutting DNA isolated and purified from a microorganism can be performed by, for example, ultrasonic treatment, restriction enzyme treatment, or the like.
  • a type II restriction enzyme acting on a specific nucleotide sequence is suitable.
  • a vector constructed for gene recombination from a phage or a plasmid capable of autonomous propagation in a host microorganism is suitable as a vector for closing.
  • the phage include Lambda gtlO and Lambda gtll when Escherichia coli is used as a host microorganism.
  • plasmids include pBR322, pUC19, and pBluescript when Escherichia coli is used as a host microorganism.
  • the vector as described above was supplied with the gene encoding GDH described above.
  • the vector fragment can be obtained by digestion with the restriction enzyme used for digestion of the microorganism DNA, which is the same as the restriction enzyme used for digestion of the microorganism DNA. There is no need to use.
  • the method for binding the microorganism DNA fragment to the vector DNA fragment may be a method using a known DNA ligase.For example, after annealing the adhesion end of the microorganism DNA fragment and the adhesion end of the vector fragment, a suitable DNA ligase is used. To prepare a recombinant vector of a microorganism DNA fragment and a vector DNA fragment. If necessary, after annealing, the vector can be transferred to a host microorganism and a recombinant vector can be prepared using in-vivo DNA ligase.
  • the host microorganism to be used for clawing is not particularly limited as long as the recombinant vector is stable, capable of autonomous propagation, and capable of expressing a foreign gene.
  • Escherichia coli W3110, Escherichia coli C600, Escherichia coli HB101, Escherichia coli JM109, Escherichia coli DH5 ⁇ , and the like can be used.
  • a combi- gent cell method by calcium treatment or an elect-mouth boration method can be used as a method for transferring the recombinant vector to the host microorganism.
  • the microorganism which is a transformant obtained as described above, can stably produce a large amount of GDH by being cultured in a nutrient medium.
  • Selection of the presence or absence of the transfer of the target recombinant vector into the host microorganism may be performed by searching for a microorganism that simultaneously expresses GDH activity by using a drug resistance marker of the vector holding the target DNA and a PQQ-added enzyme. For example, a microorganism which grows on a selective medium based on a drug resistance marker and produces GDH may be selected.
  • the transfer of the once selected recombinant vector having the GDH gene having PQQ as a prosthetic group into a recombinant vector capable of replicating in a microorganism capable of producing PQQ requires It can be easily carried out by recovering the DNA that is the GDH gene by a restriction enzyme or PCR method that holds the GDH gene and linking it to another vector fragment. Transformation of microorganisms capable of producing PQQ by these vectors For the replacement, it is better to use a combi-tent cell method by electrification or an electoral poration method.
  • Microorganisms having the ability to produce PQQ include methanol-utilizing bacteria such as Methylobacterium, acetic acid bacteria belonging to the genus Acetobacter and Gluconobacter, and flavobacterium (Flavobacterium). ), Bacteria of the genus Pseudomonas, the genus Acinetobacter, and the like. Above all, a host vector system that can be used by Pseudomonas spp. And Acinetobacter spp. Has been established.
  • bacteria belonging to the genus Pseudomonas Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas petitida, and the like can be used.
  • bacteria belonging to the genus Acinetobacter it is possible to use Acinetobacter-1'force nocoaceticus, Acinetobacter-1'baumann-, and the like.
  • a vector derived from RSF1010 or a vector having a similar replicon can be used for Pseudomonas bacteria.
  • ⁇ 240, ⁇ 24, etc. M. M. Bagdasarian et al., Gene, 26, 273 (1983)
  • pCN40, pCN60 etc. C. C. Nieto et al., Gene, 87, 145 (1990)
  • PTS1137 and the like can be mentioned.
  • pME290 and the like Y. Itoh et al., Gene, 36, 27 (1985)
  • pNIll, pNI20C N. Itoh et al., J. Biochem., 110, 614 (1991)
  • the microorganism which is a transformant thus obtained, can stably produce a large amount of the modified protein by being cultured in a nutrient medium.
  • the culture form of the host microorganism, which is a transformant is usually liquid culture, as long as culture conditions are selected in consideration of the nutritional and physiological properties of the host. Industrially, it is advantageous to carry out aeration and stirring culture.
  • the nutrient source of the medium those commonly used for culturing microorganisms can be widely used.
  • the carbon source may be any assimilable carbon compound. Loin, ratatose, maltose, ratatose, molasses, pyruvic acid and the like are used.
  • a nitrogen source any available nitrogen compound may be used, such as peptone, meat extract, yeast extract, casein hydrolyzate, and soybean meal alkaline extract.
  • salts such as phosphate, carbonate, sulfate, magnesium, calcium, potassium, iron, manganese, and zinc, specific amino acids, and specific vitamins are used as necessary.
  • the culture temperature can be appropriately changed within the range in which the bacteria grow and produce the modified PQQGDH.
  • the temperature is preferably about 20 to 42 ° C.
  • the cultivation time varies slightly depending on the conditions, and it is usually about 6 to 48 hours if the cultivation can be completed at an appropriate time in anticipation of the time when the power-modified PQQGDH reaches the maximum yield.
  • the pH of the medium can be appropriately changed within a range in which the bacteria grow and produce the modified PQQGDH, but is preferably in the range of about pH 6.0 to 9.0.
  • the culture solution containing the cells producing the modified PQQGDH in the culture can be directly collected and used, but in general, the modified PQQGDH is present in the culture according to a conventional method.
  • the solution is used after separating the modified PQQGDH-containing solution from the microbial cells by filtration, centrifugation, or the like.
  • the modified PQQGDH is present in the cells, the cells are collected from the obtained culture by means such as filtration or centrifugation, and then the cells are subjected to a mechanical method or an enzymatic method such as lysozyme.
  • the GDH is destroyed, and if necessary, a chelating agent such as EDTA and a surfactant are added to solubilize GDH, and separated and collected as an aqueous solution.
  • the GDH-containing solution obtained as described above is concentrated under reduced pressure, membrane concentration, salting-out treatment with ammonium sulfate, sodium sulfate, or the like, or a hydrophilic organic solvent such as methanol or ethanol. It may be precipitated by a fractional precipitation method using acetone or the like. Heat treatment and isoelectric point treatment are also effective purification means. Thereafter, purified GDH can be obtained by performing gel filtration using an adsorbent or a gel filtration agent, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
  • [Oil 1] For example, gel filtration using Sephadex gel (Pharmacia Biotech), columns such as DEAE Sepharose CL-6B (Pharmacia Biotech), octyl Sepharose CL-6B (Pharmacia Biotech), etc. Chromatography And a purified enzyme preparation can be obtained.
  • the purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
  • the purified enzyme obtained as described above can be distributed by powdering, for example, by freeze-drying, vacuum drying, spray drying, or the like. At this time, the purified enzyme dissolved in a phosphate buffer, a Tris-HCl buffer, or a GOOD buffer can be used. Preferred are GOOD buffers, with PIPES, MES or MOPS buffers being particularly preferred. GDH can be further stabilized by adding calcium ions or salts thereof, amino acids such as glutamic acid, dartamine, and lysine, and serum albumin and the like.
  • the method for producing the modified protein of the present invention is not particularly limited, but it can be produced by the following procedure.
  • a method for modifying an amino acid sequence constituting a protein a commonly used method for modifying genetic information is used. That is, a DNA having the genetic information of the modified protein is prepared by converting a specific base of the DNA having the genetic information of the protein, or by inserting or deleting a specific base.
  • a specific method for converting a base in DNA for example, a commercially available kit (Tmnsformer Mutagenesis Kit; manufactured by Clonetech, EXOIII / Mung Bean)
  • an amino acid substitution product thereof was prepared by focusing on positions 20, 76, 89, 168, 169, 245, 246, and 300 of PQQGDH shown in SEQ ID NO: 1.
  • a PQQGDH variant with improved stability was obtained.
  • thermal stability is concerned, K 20E, (K89E + K300R), Q168A, (Q168A + L
  • the modified protein can take various forms such as liquid (aqueous solution, suspension and the like), powder, and lyophilized.
  • the freeze-drying method is not particularly limited, and may be performed according to a conventional method.
  • the composition containing the enzyme of the present invention is not limited to a lyophilized product, and may be a solution in which the lyophilized product is redissolved.
  • various forms such as a glucose assay kit and a glucose sensor can be used.
  • the purified modified protein thus obtained can be stabilized by the following method.
  • Calcium salts such as calcium chloride, calcium acetate and calcium citrate, or! Are amino acids such as glutamic acid, glutamine, aspartic acid and lysine, or organic acids such as ⁇ -ketoglutaric acid, ⁇ -ketogluconic acid and malic acid
  • amino acids such as glutamic acid, glutamine, aspartic acid and lysine
  • organic acids such as ⁇ -ketoglutaric acid, ⁇ -ketogluconic acid and malic acid
  • the purified modified protein includes (1) aspartic acid, glutamic acid, ⁇ -ketoglutaric acid, malic acid, ⁇ -ketogluconic acid, ⁇ -cyclodextrin, and a salt thereof.
  • the modified protein can be further stabilized.
  • the PQQGDH content is preferably used in the range of about 5 to 50% (weight ratio), although it varies depending on the origin of the enzyme. In terms of enzyme activity, it is suitably used in the range of 100 to 2000 UZmg.
  • Examples of the salts of aspartic acid, glutamic acid, a-ketoglutaric acid, malic acid, and ⁇ -ketogluconic acid include, but are not limited to, salts such as sodium, potassium, ammonium, calcium, and magnesium. Not something. Compounds and salts thereof and ⁇ - It is preferable that the amount of cyclodextrin added is in the range of 1 to 90% (weight ratio). These substances may be used alone or in combination.
  • the buffer contained is not particularly limited, and examples thereof include a Tris buffer, a phosphate buffer, a borate buffer, and a GOOD buffer.
  • the pH of the buffer is adjusted in the range of about 5.0-9.0 depending on the purpose of use.
  • the content of the buffer in the lyophilized product is not particularly limited, but is preferably at least 0.1% (weight ratio), particularly preferably 0.1 to 30% (weight ratio). Used in range.
  • albumin examples include bovine serum albumin (BSA) and ovalbumin (OVA). BSA is particularly preferred.
  • the albumin content is preferably used in the range of 180-80% (weight ratio), more preferably 5-70% (weight ratio).
  • Other stabilizers and the like may be added to the composition in a range that does not particularly adversely affect the reaction of PQQGDH.
  • the method of compounding the stabilizer of the present invention is not particularly limited. For example, a method of mixing a stabilizer with a buffer solution containing PQQGDH, a method of mixing PQQGDH with a buffer solution containing a stabilizer, and a method of simultaneously mixing PQQGDH and a stabilizer with a buffer solution are exemplified.
  • the modified protein can be stabilized by containing calcium ions or calcium salts.
  • the calcium salt include calcium salts of inorganic or organic acids such as calcium chloride, calcium acetate or calcium citrate.
  • the content of calcium ions is preferably 1 ⁇ 10 ⁇ 4 ⁇ I ⁇ 10 ⁇ 2M.
  • the stabilizing effect of the inclusion of calcium ions or calcium salts is further improved by the inclusion of glutamic acid, glutamine and lysine as well as the selected amino acids.
  • the glutamic acid, glutamine, and lysine as well as the amino acid whose group strength is selected may be one or more.
  • the content of the selected amino acids such as glutamic acid, glutamine and lysine is preferably 0.01 to 0.2% by weight.
  • serum albumin may be contained. When serum albumin is added to the aqueous composition, its content is preferably 0.05-0.5% by weight.
  • the buffer a usual buffer is used, and usually, one having a pH of the composition of 5 to 10 is preferable. Specifically, Tris-HCl, boric acid, and Good buffer are used. Any buffer that does not form an insoluble salt with calcium can be used.
  • ком ⁇ онент such as a surfactant, a stabilizer, and an excipient may be added to the aqueous composition as necessary.
  • the present invention is a glucose assay kit containing a modified PQQGDH, which has a lower activity on disaccharides than wild-type pyro-mouth quinoline quinone-dependent glucose dehydrogenase (PQQGDH).
  • PQQGDH wild-type pyro-mouth quinoline quinone-dependent glucose dehydrogenase
  • it is a glucose sensor containing the modified PQQGDH.
  • glucose can be measured by the following various methods.
  • the present invention also features a glucose assay kit comprising the modified PQQGDH according to the present invention.
  • the glucose assay kit of the present invention contains the modified PQQGDH according to the present invention in an amount sufficient for at least one assay.
  • the kit contains, in addition to the modified PQQGDH of the present invention, the necessary buffers for the assay, mediators, a glucose standard solution for preparing a calibration curve, and guidelines for use.
  • the modified PQQGDH according to the invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • the modified PQQGDH of the present invention is provided in a holomorphized form, but is provided in the form of an apoenzyme and is less likely to be hollowed out during use.
  • the present invention also features a glucose sensor using the modified PQQGDH according to the present invention.
  • the electrode a carbon electrode, a gold electrode, a platinum electrode, or the like is used, and the enzyme of the present invention is immobilized on the electrode.
  • the immobilization method include a method using a cross-linking reagent, a method of encapsulating the polymer in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, and a reducing polymer.
  • Sen or its derivatives It may be immobilized in a polymer together with a representative electron mediator or adsorbed and immobilized on an electrode, or may be used in combination.
  • the modified PQ QGDH of the present invention can be immobilized on an electrode in a holomorphized form, immobilized in the form of an apoenzyme, and the PQQ can be provided as a separate layer or in solution.
  • the modified PQQGDH of the present invention is immobilized on a carbon electrode using dartartaldehyde, and then treated with a reagent having an amine group to block dartartaldehyde.
  • the glucose concentration can be measured as follows. Add buffer solution to the thermostat cell, add PQQ and CaC12, and mediator to maintain constant temperature. As a mediator, potassium ferricyanide, phenazine methosulfate and the like can be used. As the working electrode, an electrode having the modified PQQGDH of the present invention immobilized thereon is used, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an AgZAgCl electrode) are used. After applying a constant voltage to the carbon electrode and the current becomes steady, add a sample containing glucose and measure the increase in current. The glucose concentration in the sample can be calculated according to a calibration curve prepared from a standard concentration glucose solution.
  • an enzyme having a specific activity of 1 or more of the pyroquinoline quinoline quinone-dependent glucose dehydrogenase of the present invention is obtained.
  • Preferably 1.1 or more, more preferably 1.5 or more are obtained.
  • the specific activity is high, the amount of protein to be added is small, and therefore, the upper limit of the amount of the stabilizer and the like described above can be reduced, and the stability of the above-mentioned dalcose sensor of the present invention can be further increased. You can enhance the nature.
  • Expression plasmid PNPG5 for wild-type PQQ-dependent glucose dehydrogenase A structural gene encoding PQQ-dependent glucose dehydrogenase derived from Acinetobacter baumannii NCIMB11517 strain was inserted into the multicloning site of Bluescript SK (1).
  • the nucleotide sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of PQQ-dependent glucose dehydrogenase deduced from the nucleotide sequence is shown in SEQ ID NO: 1 in the sequence listing.
  • PNPG5M4 Based on PNPG5 and the synthetic oligonucleotide described in SEQ ID NO: 6 and the synthetic oligonucleotide complementary thereto, a mutant PQQ substituted with the glutamine methionine at position 76 of the amino acid sequence described in SEQ ID NO: 1 in the same manner as described above A recombinant plasmid (PNPG5M4) encoding dependent glucose dehydrogenase was obtained.
  • PNPG5M5 Based on PNPG5 and the synthetic oligonucleotide described in SEQ ID NO: 7 and the synthetic oligonucleotide complementary thereto, the 76th amino acid sequence in SEQ ID NO: 1 was obtained in the same manner as described above.
  • a recombinant plasmid (PNPG5M5) encoding a mutant PQQ-dependent glucose dehydrogenase in which glutamine was replaced with glycine was obtained.
  • PNPG5 Based on PNPG5 and the synthetic oligonucleotide represented by SEQ ID NO: 8 and the synthetic oligonucleotide complementary thereto, a mutant PQQ in which glutamine at position 76 of the amino acid sequence represented by SEQ ID NO: 1 has been substituted with lysine in the same manner as above.
  • a recombinant plasmid encoding type PQQ-dependent glucose dehydrogenase was obtained. Further, based on this plasmid and the synthetic oligonucleotide described in SEQ ID NO: 24 and the synthetic oligonucleotide complementary thereto, the lysine at position 89 in the amino acid sequence shown in SEQ ID NO: 1 was replaced with glutamic acid in the same manner as described above.
  • a recombinant plasmid (pNPG5Ml1) encoding a mutant PQQ-dependent glucose dehydrogenase in which lysine in the eye was substituted with arginine was obtained.
  • Example 3 Construction of expression vector capable of replicating in Pseudomonas bacteria
  • PNPG5M1 5 ⁇ g of the DNA of the recombinant plasmid PNPG5M1 obtained in Example 2 was digested with restriction enzymes BamHI and XHoI (manufactured by Toyobo) to isolate the structural gene portion of the mutant PQQ-dependent glucose dehydrogenase. .
  • the isolated DNA and pTM33 (1 g) cut with BamHI and XHoI were reacted with one unit of T4 DNA ligase at 16 ° C. for 16 hours to ligate the DNA.
  • the ligated DNA was transformed using a competent cell of Escherichia coli DH5a.
  • the resulting expression plasmid was named PNPG6M1.
  • the resulting expression plasmids were pNPG6, pNPG6M2, pNPG6M3, pNPG6M4, pNP G6M5, pNPG6M6, pNPG6M7, pNPG6M8, pNPG6M9, pNPG6M10, pNPG6M11, pNPG6M12, pNPG6M6, pNPG6M6, NPG6N6
  • Pseudomonas putida TE3493 (Pierce No. 12298) is cultured in LBG medium (LB medium + 0.3% glycerol) at 30 ° C for 16 hours, and cells are collected by centrifugation (12,000 rpm, 10 minutes) Then, 8 ml of 5 mM K-phosphate buffer (pH 7.0) containing 300 mM sucrose ice-cooled was added to the cells, and the cells were suspended. Centrifuge again (12,000 rpm, 10 minutes ) To collect the cells, and add ice-cooled 300 mM
  • Example 3 0.4 ml of 5 mM K-phosphate buffer (pH 7.0) containing euucrose was added, and 0.5 g of the expression plasmid pNPG6Ml obtained in Example 3 was added to the suspension in which the cells were suspended. Transformation was performed by the volatilization method. The desired transformant was obtained from a colony grown on LB agar medium containing 100 ⁇ g / ml streptomycin.
  • GDH activity measurement method use other than specific activity measurement
  • Presence of diformazan formed by reduction of trotetrazolid blue (NTB) with phenazine methosulfate (PMS) (red) is defined by spectrophotometry at 570 nm.
  • One unit is the amount of PQQGDH enzyme that forms 0.5 mmol of diformazan per minute under the conditions described below.
  • D-glucose solution 0.5M (0.9g D-glucose (molecular weight 180.16) / 10ml H20)
  • PIPES NaOH buffer, pH 6.5: 50 mM (1.51 g suspended in 60 mL of water) Of PIPES (molecular weight 302.36) in 5N NaOH and add 2.2 ml of 10% Triton X-100. The pH was adjusted to 6.5 ⁇ 0.05 at 25 ° C. using 5N NaOH, and water was added to make 100 ml. )
  • E. Enzyme diluent ImM CaC12, 0.1% Triton X—100 mM, 50 mM PIPES containing 0.1% BSA—NaOH buffer (pH 6.5)
  • Vt Total volume (3. lml)
  • Vs Sample volume (1. Oml)
  • the cells were collected by centrifugation, suspended in 20 mM phosphate buffer (pH 7.0), disrupted by sonication, and further centrifuged to obtain a supernatant as a crude enzyme solution. .
  • the obtained crude enzyme solution was separated and purified by HiTrap-SP (Amersham Moorumacia) ion exchange column chromatography. Then, after dialyzing against 10 mM PIPES-NaOH buffer solution (pH 6.5), calcium salt was added so that the final concentration became ImM. Finally HiTra p-DEAE (Amersham Fanolemasia) ion-exchange column chromatography
  • PQQGDH activity was measured according to the above activity measurement method.
  • the measurement of the Km value for glucose was carried out by changing the substrate concentration in the above activity measurement method.
  • the Km value for maltose was measured by replacing the glucose solution in the above activity measurement method with a maltose solution and changing the substrate concentration as in the measurement of the Km value for glucose. The results are shown in Table 2A, Table 2B, Table 6, Table 9, and Table 14.
  • PQQGDH activity was measured according to the above activity measurement method.
  • the dehydrogenase activity value when glucose was used as the substrate solution and the dehydrogenase activity value when maltose was used as the substrate solution were measured, and the relative value when the measured value when glucose was used as the substrate was set to 100. I asked.
  • For dehydrogenase activity when maltose was used as a substrate solution a 0.5 M maltose solution was prepared and used for activity measurement. The results are shown in Table 2A, Table 2B, Table 4, Table 5, Table 6, Table 8, Table 9, Table 11, Table 13, and Table 14.
  • Enzyme activity was measured in Tris-HCl buffer (pH 7.0-9.0). The results are shown in Figure 1.
  • the pH showing the highest activity is shown in Table 2A.
  • the specific activity is represented by the enzyme activity (UZmL) and the absorbance at 280 nm (ABS) (ABS).
  • Km (Mai) indicates the Km value (mM) for maltose
  • Km (Glc) indicates the Km value (mM) for glucose.
  • a sample prepared by adding 0, 120, 240, and 360 mg Zdl of maltose based on 100 mg / dl or 300 mg / dl of glucose was prepared. The measurement was performed according to the above-described method for measuring the amount of glucose.
  • the activity was evaluated using the wild-type enzyme in the same manner as the confirmation of the maltose activity of Q76K.
  • the enzyme was added at a concentration of 0.1 LUZml.
  • Fig. 7 shows the results.
  • FIG. 4 From FIG. 3, FIG. 4, FIG. 5, FIG. 6, and FIG. 7, it was confirmed that Q76K, Q76E, Q168V, and Q168A had lower activity on maltose than the wild-type enzyme.
  • PCR reaction was performed in a solution having the composition shown in Table 3 at 98 ° C for 2 minutes, and then at 98 ° C for 20 seconds, 60 ° C for 30 seconds, and 72 ° C for 4 minutes under 30 cycles.
  • the resulting mutant library was transformed into E. coli DH5a, and each formed colony was dispensed into 180 ⁇ l / well LB medium (containing 100 ⁇ g / ml ampicillin and 26 ⁇ l PQQ). And inoculated into a microtiter plate at 37 ° C for 24 hours. Transfer 50 1 of each culture to another microtiter plate, and break the cells by repeated freeze-thawing. After crushing, centrifugation (2000 rpm, 10 minutes) was performed, and the supernatant was recovered. The collected supernatant was poured into two microtiter plates for 10 1 each.
  • One microtiter plate was measured for activity using an activity measurement reagent using glucose as a substrate, and the other was measured for activity using an activity measurement reagent using maltose as a substrate, and the reactivity was compared. Many clones with altered reactivity to maltose were obtained.
  • the clones with altered reactivity to maltose were cultured in 5 ml dispensed tubes of LB medium (containing 100 ⁇ g Zml of ampicillin and 26 ⁇ l of PQQ), and a confirmation experiment was performed. A large number of clones were obtained.
  • regions 67-69 forward primer: described in SEQ ID NO: 14, reverse primer: used in SEQ ID NO: 15
  • regions 129-131 forward primer: described in SEQ ID NO: 16, reverse primer: SEQ ID NO: 17
  • regions 67-69 forward primer: described in SEQ ID NO: 14, reverse primer: used in SEQ ID NO: 15
  • regions 129-131 forward primer: described in SEQ ID NO: 16, reverse primer: SEQ ID NO: 17
  • regions 67-69 described in SEQ ID NO: 14, reverse primer: used in SEQ ID NO: 15
  • regions 129-131 forward primer: described in SEQ ID NO: 16, reverse primer: SEQ ID NO: 17
  • 341 341—343 region
  • Table 5 shows the results of insertion between 428 and 429 (forward primer: described in SEQ ID NO: 20 and reverse primer: used in SEQ ID NO: 21). [0162] [Table 5]
  • mutants having significantly reduced activity on maltose were selected (Q168S + E245D, Q168A + L169D, Q168S + L169S, Q168S + L169E, Q168A + L169G, Q168S + L169P), and Plasmids were extracted from the mutant, and Pseudomonas was transformed according to the methods described in Examples 3 and 4 to express holo-type enzymes, and purified enzymes were obtained and their properties were evaluated.
  • Table 6 shows the results. In Table 6, specific activity is indicated by absorbance at 280 nm of enzyme activity (UZml) ZA.
  • Example 7 Effect of mutation at L169 site on substrate specificity According to the method described in Example 2, each mutant of L169A, L169V, L169H, L169Y, L169K, L169D, L169S, L169N, L169G, and L169C was prepared.
  • Table 10 shows the primers used for preparing each mutant.
  • Table 11 shows the results of a comparison of the reactivity of maltose with the lysate prepared by test tube culture using each of the prepared mutants.
  • Example 8 Effect of combination of mutations at the L169 site on the Q168A mutant on substrate specificity
  • Table 13 shows the results of a comparison of the reactivity of maltose with the lysate prepared by test tube culture using each of the prepared mutants. Furthermore, plasmids of each mutant were extracted, transformed into Pseudomonas according to the method described in Example 3 and Example 4, expressed in holo-type enzyme, and purified enzyme was obtained and its properties were evaluated. Table 14 shows the results. In Table 14, the specific activity is indicated by the absorbance at 280 nm of the enzyme activity (UZml) ZA.
  • OT ⁇ A170W ⁇ A170Y, A170V, A170I, A170Q mutants were prepared.
  • a synthetic oligonucleotide described in SEQ ID NO: 69 was used as a forward primer
  • a synthetic oligonucleotide complementary to SEQ ID NO: 69 was used as a reverse primer.
  • the prepared mutant library was screened to obtain the target mutant. Table 15 shows the results of a comparison of the reactivity with maltose using the crushed liquid prepared in test tube culture.
  • Example 10 Influence on substrate specificity by mutation at ⁇ 245 site
  • a synthetic oligonucleotide described in SEQ ID NO: 70 was used as a forward primer
  • a synthetic oligonucleotide complementary to SEQ ID NO: 70 was used as a reverse primer.
  • the prepared mutant library was screened to obtain the desired mutant. Table 16 shows the results of comparison of the reactivity to maltose using the crushed liquid prepared in the test tube culture.
  • Example 12 Effect of combination of E245D mutation on substrate specificity
  • (Q168A + L169G + E245D) and (Q168A + L169P + E245D) mutants were prepared.
  • a synthetic oligonucleotide described in SEQ ID NO: 72 was used as a forward primer, and a synthetic oligonucleotide complementary to SEQ ID NO: 72 was used as a reverse primer.
  • the plasmid (Q168A + L169G) or (Q168A + L169P) obtained in Example 8 was used as type I DNA.
  • Table 18 shows the results of a comparison of the reactivity of the prepared mutants with maltose in a crushed liquid prepared in a test tube culture.
  • Example 13 Effect of mutation at T349 site on substrate specificity According to the method described in Example 2, each mutant of T349S, T349P and ⁇ 349 ⁇ was prepared.
  • a synthetic oligonucleotide described in SEQ ID NO: 73 was used as a forward primer, and a synthetic oligonucleotide complementary to SEQ ID NO: 73 was used as a reverse primer.
  • the prepared mutant library was screened to obtain the target mutant.
  • Table 19 shows the results of comparing the reactivity to maltose using the crushed liquid prepared in test tube culture.
  • Example 14 Influence on substrate specificity by mutation at the ⁇ 429 site
  • N429F, N429P, N429L, and N429Y mutants were prepared.
  • a synthetic oligonucleotide described in SEQ ID NO: 74 was used as a forward primer, and a synthetic oligonucleotide complementary to SEQ ID NO: 74 was used as a reverse primer.
  • the prepared mutant library was screened to obtain the target mutant.
  • Table 20 shows the results of a comparison of the reactivity to maltose using the crushed liquid prepared by test tube culture.
  • Example 101 Construction of Expression Plasmid for PQQ-Dependent Glucose Dehydrogenase Gene Same as the method described in Example 1.
  • Recombinant plasmid PNPG5 containing wild-type PQQ-dependent glucose dehydrogenase gene Based on the synthetic oligonucleotide described in SEQ ID NO: 75 and the synthetic oligonucleotide complementary thereto, using a QuickChangeTM Site-Directed Mutagenesis Kit (manufactured by STRATA GENE), perform a mutation treatment operation according to the protocol, and further perform base sequencing. The sequence was determined, and a recombinant plasmid (PNPG5-74V) encoding a mutant PQQ-dependent glucose dehydrogenase in which the aspartic acid at position 74 in the amino acid sequence of SEQ ID NO: 1 was substituted with palin was obtained.
  • PNPG5-74V recombinant plasmid
  • Recombinant plasmid encoding mutant PQQ-dependent glucose dehydrogenase (pNPG5-342V), recombinant plasmid encoding mutant PQQ-dependent glucose dehydrogenase substituted with proline (PNPG5-342P), alanine A recombinant plasmid (PNPG5-342A) encoding the substituted mutant PQQ-dependent glucose dehydrogenase was obtained.
  • PNPG5-146A a recombinant plasmid encoding a mutant PQQ-dependent glucose dehydrogenase in which the serine at position 146 has been replaced with alanine, and a mutant PQQ-dependent glucose dehydrogenase in which the alanine at position 170 has been replaced with leucine.
  • Recombinant plasmid encoding the enzyme (PNPG5-170L), 170th alanine force Recombinant plasmid encoding a mutant PQQ-dependent glucose dehydrogenase substituted for S-methionine (pNPG5-170M), 170th alanine (PNP G5-170I), a mutant PQQ-dependent glucose dehydrogenase encoding a mutant PQQ-dependent glucose dehydrogenase substituted with isoleucine, and a mutant PQQ-dependent glucose dehydrogenase in which the 170th alanine is substituted with phenylalanine. to obtain a recombinant plasmid (P NPG5-170F) encoding.
  • Each synthetic oligonucleotide is set forth in SEQ ID NOs: 77-84.
  • pNPG5 pNPG5—74V, pNPG5—3421, pNPG5—342V, pNPG5—342P, pNPG5—342A, pNPG5—146A, pNPG5—170L ⁇ pNPG5—170M ⁇ pNPG5—17 01
  • E. coli competent cells Escherichia coli JM109; manufactured by Toyobo Co., Ltd.
  • Example 103 Construction of expression vector capable of replicating in Pseudomonas bacteria
  • Example 104 Preparation of Transformant of Pseudomonas sp.
  • Pseudomonas putida TE3493 (Pierce No. 12298) is cultured in LBG medium (LB medium + 0.3% glycerol) at 30 ° C for 16 hours, and cells are collected by centrifugation (12,000 rpm, 10 minutes) Then, 8 ml of 5 mM K-phosphate buffer (pH 7.0) containing 300 mM sucrose ice-cooled was added to the cells, and the cells were suspended. The cells were collected again by centrifugation (12,000 rpm, 10 minutes), and 0.4 ml of 5 mM K-phosphate buffer (PH 7.0) containing 300 mM sucrose ice-cold was added to the cells. The body was suspended.
  • LBG medium LB medium + 0.3% glycerol
  • Example 103 0.5 g of the expression plasmid pNPG6-74V obtained in Example 103 was added to the suspension, and the suspension was transformed by an electroporation method.
  • the desired transformant was obtained from a colony grown on an LB agar medium containing 100 ⁇ g Zml of streptomycin.
  • Example 105 Preparation of holo-type expression purified enzyme (this section applies only to Examples 101-106)
  • the cells were collected by centrifugation, suspended in 20 mM phosphate buffer (pH 7.0), disrupted by sonication, and further centrifuged to obtain a supernatant as a crude enzyme solution. .
  • the obtained crude enzyme solution was separated and purified by HiTrap-SP (Amersham Moorumacia) ion exchange column chromatography. Then 10 mM PIPES-NaOH buffer (p
  • a purified enzyme preparation was obtained in the same manner as described above.
  • PQQGDH activity was measured according to the above activity measurement method.
  • the dehydrogenase activity value when glucose was used as the substrate solution and the dehydrogenase activity value when maltose was used as the substrate solution were measured, and the relative value when the measured value when glucose was used as the substrate was set to 100. I asked.
  • For dehydrogenase activity when maltose was used as the substrate solution 0.5 M A maltose solution was prepared and used for activity measurement. The results are shown in Table 102.
  • Example 106 Generation of multiple mutants and substrate specificity
  • pNPG5 pNPG5—74V, pNPG5—3421, pNPG5—342V, pNPG5—342P, p NPG5—342A, pNPG5—146A, pNPG5—170L ⁇ pNPG5—170M ⁇ pNPG5—1701, pNPG5—170F
  • a complementary synthetic oligonucleotide was designed to replace glutamic acid at position 245 with aspartic acid.
  • Recombinant plasmid encoding mutant PQQGDH in which alanine is replaced by leucine (pNPG5-146A + 170L), as defined below, pNPG5-168A + 169P + 170L, pNPG5-1146A + 170M ⁇ pNPG5—168A + 169P + 170M ⁇ pNPG5 — 146A + 168A + 169 P + 170L, pNPG5-146A + 168A + 169P + 170M, pNPG5-Q168A + L169 P + A170L + E245D, pNPG5— 168A + 169P + 170M + 245D, pNPG5— 146 A + 342I, pNPG5-168A + 169P + 170L + 342I, pNPG5— 168A + 169P + 170 M + 342I, pNPG5— 146A + 5 V
  • each modified Q168A, (Q168A + L169G), (Q168A + L169C), (Q168A + L169P), (Q168S + L169E), (Q168S + L169P) used in this example A purified enzyme preparation of quinoline quinone-dependent glucose dehydrogenase was obtained by the procedure described below.
  • Plasmid PNPG5 an expression plasmid for wild-type PQQ-dependent glucose dehydrogenase, is a PQQ-dependent glucose dehydrogenase derived from NCIMB11517 NCIMB11517, which is located at the multicloning site of the vector pBluescript SK (—). Into which a structural gene encoding is inserted.
  • the nucleotide sequence is shown in SEQ ID NO: 2 in the sequence listing, and the amino acid sequence of PQQ-dependent glucose dehydrogenase deduced from the nucleotide sequence is shown in SEQ ID NO: 1 in the sequence listing.
  • PNPG5 Based on PNPG5 and the synthetic oligonucleotide described in SEQ ID NO: 90 and the synthetic oligonucleotide complementary thereto, glutamine at position 168 of the amino acid sequence described in SEQ ID NO: 1 is replaced with alanine and leucine at position 169 in the same manner as described above.
  • PNPG5 and a synthetic oligonucleotide represented by SEQ ID NO: 91 and a synthetic oligonucleotide complementary thereto.
  • a mutant PQQ-dependent glucose dehydrogenase in which the 168th glutamine in the amino acid sequence described in SEQ ID NO: 1 is substituted with alanine and the 169th leucine is substituted with proline, based on a gonucleotide, is used.
  • PNPG5M168A + 169P a mutant PQQ-dependent glucose dehydrogenase in which the 168th glutamine in the amino acid sequence described in SEQ ID NO: 1 is substituted with alanine and the 169th leucine is substituted with proline, based on a gonucleotide.
  • a recombinant plasmid (PNPG5M168S + 169E) encoding a Q-dependent glucose dehydrogenase was obtained.
  • pNPG5M168A pNPG5M168A + 169G ⁇ pNPG5M168A + 169C
  • pNPG5M168A + 169P pNPG5M168S + 169E
  • pNPG5M168S + 169P pNPG5M168S + 169P
  • recombinant plasmids of Escherichia coli Escherichia coli transformed with Escherichia coli transformant
  • PNPG5M168A DNA 5 ⁇ g of the recombinant plasmid PNPG5M168A DNA was cleaved with restriction enzymes BamHI and ⁇ (manufactured by Toyobo) to isolate the structural gene portion of mutant PQQ-dependent glucose dehydrogenase.
  • the isolated DNA and ⁇ 33 (1 g) cut with BamHI and XHoI were reacted with 1 unit of T4 DNA ligase at 16 ° C. for 16 hours to ligate the DNA.
  • the ligated DNA was transformed using a competent cell of Escherichia coli DH5a.
  • the obtained expression plasmid was named PNPG6M168A.
  • pNPG5M168A + 169G, pNPG5M168A + 169C, pNPG5M168A + 169P, pNPG5M168S + 169E, pNPG5M168S + 169P The expression plasmid was obtained in the same manner as described above.
  • the resulting expression plasmids were named pNPG6M168A + 169G, pNPG6M168A + 169C, pNPG6M168A + 169P, pNPG6M168S + 169E, and pNPG6M168S + 169P, respectively.
  • Pseudomonas putida TE3493 (No. 12298, manufactured by MIC) is cultured in LBG medium (LB medium + 0.3% glycerol) at 30 ° C for 16 hours, and cells are collected by centrifugation (12, OOOrpm, 10 minutes) Then, 8 ml of 5 mM K-phosphate buffer (pH 7.0) containing 300 mM sucrose cooled with ice was added to the cells, and the cells were suspended. The cells were collected again by centrifugation (12, OOO rpm, 10 minutes), and 0.4 ml of 5 mM K-phosphate buffer (PH 7.0) containing 300 mM sucrose cooled in ice was added to the cells. The body was suspended.
  • LBG medium LB medium + 0.3% glycerol
  • PNPG6M168A 0.5 g of the expression plasmid PNPG6M168A was added to the suspension, and the suspension was transformed by electoporation.
  • the desired transformant was obtained from a colony grown on an LB agar medium containing 100 g / ml streptomycin.
  • pNPG6M168A + 169G, pNPG6M168A + 169C, pNPG6M168A + 169P, pNPG6M168S + 169E, and pNPG6M168S + 169P were similarly carried out to obtain target transformants.
  • the cells were collected by centrifugation, suspended in 20 mM phosphate buffer (pH 7.0), disrupted by sonication, and further centrifuged to obtain a supernatant as a crude enzyme solution. .
  • the obtained crude enzyme solution is subjected to HiTmp-SP (Amersham Fanoremasia) ion exchange column chromatography.
  • Purified enzyme preparations were also obtained for Pseudomonas' putida TE3493 transformants by pNPG6M168A + 169G, pNPG6M168A + 169C, pNPG6M168A + 169P, pNPG6M168S + 169E, pNPG6M168S + 169P in the same manner as described above. The performance was evaluated using the purified enzyme thus obtained.
  • the presence of the ferrocyanide compound ions generated by the reduction of the ferricyanide compound ions was confirmed by measuring the decrease in absorbance at a wavelength of 420 nm by a spectrophotometric method.
  • One unit refers to the amount of a quinoline quinoline quinone-dependent glucose dehydrogenase having a pyro opening which can oxidize 1 mmol of D-glucose per minute under the conditions described below.
  • D-glucose solution 1M (1.8g D-glucose (molecular weight 180.16) / 10mlH2 O)
  • PIPES NaOH buffer, pH 6.5: 50 mM (1.51 g of PIPES (molecular weight 302.36) suspended in 60 mL of water) is dissolved in 5N NaOH, and 2.2 ml of 10% Triton X—100 The pH was adjusted to 6.5 ⁇ 0.05 at 25 ° C. using 5N NaOH, and water was added to make 100 ml.
  • Potassium ferricyanide solution 50 mM (0.165 g potassium ferricyanide (molecular weight 3 29.25) / 10 ml H20)
  • the concentration in the reaction mixture is shown in Table 201.
  • the enzyme solution was diluted to about OUZml with an ice-cold enzyme diluent (E) just before Atsushi. (Plastic tubes are preferred for the adhesion of the enzyme.)
  • Vt Total volume (3. lml)
  • Vs Sample volume (0. lml)
  • the protein content per unit liquid volume was measured by a protein assay based on the Bradford method. Actually, a protein assay kit manufactured by Biorad was used and the protocol was followed. 0.1 ml of the enzyme solution was added to 5 ml of a commercially available staining solution diluted 5-fold, mixed, allowed to stand at room temperature for 30 minutes, and the absorbance was measured at a wavelength of 595 nm. At this time, a calibration curve was prepared by similarly measuring serum albumin having a known concentration, and the protein content per unit solution of each enzyme solution was measured therefrom.
  • the activity value per unit liquid volume is measured by the above-mentioned activity measurement method, and the activity value per unit liquid volume is divided by the protein content per unit liquid volume, whereby the pyromouth quinoline quinone-dependent glucose dehydrogenase is obtained. Specific activity was determined.
  • the detailed reaction mechanism of the pyro-mouth quinoline quinone-dependent glucose dehydrogenase is that the substrate, D-glucose, is oxidized and the electrons are transferred to the pyro-mouth quinoline quinone, which coordinates the enzyme, Further, it is transmitted to the mediator, Felician Dani Ion.
  • the point that determines the rate of the enzymatic reaction is considered to be in the process in which electrons are transferred to the ferricyanide ion, which is a mediator, because the reactivity with the ferrocyanide ion is low.
  • positions 76, 143, 144, 163, 168, 169, 228, 229, 247, 248, 343, 346, 348, 377 Specific examples include the amino acids located at positions 406, 408, and 424 (for example, see Non-Patent Document 5).
  • Non-Patent Document 5 Protein Science (2000), 9: 1265-1273
  • Example 201 the specific activity improving effect confirmed in Example 201 was maintained even when the amino acid substitution near the active center was not changed (Q168A + L169G + E245D), (Q168A + L169P + E245D).
  • Q168A + L169G + E245D the modified pyroquinoline quinone quinone-dependent glucose dehydrogenase described in (1). It goes without saying that the invention is not limited to the examples. Yes.
  • the purified enzyme samples (Q168A + L169G + E245D) and (Q168A + L169P + E245D) used in the present Example were obtained and the performance evaluation was performed in Example 201.
  • Example 201 was carried out in the same manner as described above.
  • the glutamine at position 168 of the amino acid sequence set forth in SEQ ID NO: 1 corresponds to alanine
  • the leucine at position 169 corresponds to glycine
  • the recombinant plasmid (PNPG5M168A + 169G + E245D) encoding the mutant PQQ-dependent glucose dehydrogenase in which glutamic acid at position 245 has been replaced with aspartic acid was similarly converted from pNPG5M168A + 169P at position 168 of the amino acid sequence of SEQ ID NO: 1 from
  • a recombinant plasmid (PNPG5M168A + 169P + E245D) encoding a mutant PQQ-dependent glucose dehydrogenase in which glutamine was replaced by alanine, 169th leucine by proline, and 245th glutamic acid by aspartic acid was prepared.
  • PNPG5M168A + 169P + E245D a mutant PQQ-dependent glucose dehydrogenase in which glutamine was replaced by alanine, 169th leucine by proline, and 245th glutamic acid by aspartic acid was prepared.
  • an expression vector was constructed, a transformant of a genus Pseudomonas was prepared, a holo-type expression purified enzyme was prepared, and further performance evaluation was performed. The results are shown in Table 203.
  • PQQGDH with improved substrate specificity preferably PQQGDH with improved thermal stability
  • This modified PQQGDH can be used for a glucose assay kit and a glucose sensor.
  • the modified pyrolipoquinoline quinone-dependent glucose dehydrogenase of the present invention can reduce the amount of enzyme added to a measurement system by improving specific activity. It makes it possible to manufacture glucose assay kits and glucose sensors at low cost, using substance ions as mediators. It can be used in a wide range of applications, such as clinical testing and food analysis, and greatly contributes to the industry.

Abstract

【課題】  基質特異性、あるいは、フェリシアン化物イオンをメディエーターとする測定系における比活性が改善されたPQQGDHを提供する。 【解決手段】   PQQGDHの特定の領域においてアミノ酸変異を導入することにより基質特異性を向上させた改変型PQQGDH、および、野生型ピロロキノリンキノン依存性グルコース脱水素酵素のアミノ酸配列において、1もしくは数個のアミノ酸を欠失、置換もしくは付加することにより、野生型と比較して、フェリシアン化物イオンをメディエーターとする測定系において、比活性を向上させる方法  

Description

明 細 書
基質特異性に優れたピロ口キノリンキノン (PQQ)依存性グルコースデヒド ロゲナーゼ改変体
技術分野
[0001] 本発明は基質特異性が改良された改変型グルコースデヒドロゲナーゼ (本出願で は、グルコースデヒドロゲナーゼを GDHとも表記する。 )に関し、詳しくはピロロキノリ ンキノン (本出願では、ピロ口キノリンキノンを PQQとも表記する。)を補酵素とする改 変型 PQQ依存性グルコースデヒドロゲナーゼ (本出願では、 PQQ依存性グルコース デヒドロゲナーゼを PQQGDHとも略記する。)、その製造法及びグルコースセンサー に関する。
また本発明は、フェリシアン化物イオンをメディエーターとする測定系における、野 生型ピロ口キノリンキノン依存性グルコース脱水素酵素の比活性を向上させる方法に 関する。
さらに本発明は、フェリシアンィ匕物イオンをメディエーターとする測定系において、 比活性が向上した改変型ピロロキノリンキノン依存性ダルコース脱水素酵素、その製 造法、およびそれを用いたグルコースアツセィキットやグルコースセンサーに関する。 本発明の改変型 PQQGDHは、臨床検査や食品分析などにおけるグルコースの定 量に有用である。
背景技術
[0002] PQQGDHは、ピロ口キノリンキノンを補酵素とするグルコースデヒドロゲナーゼであ る。グルコースを酸ィ匕してダルコノラタトンを生成する反応を触媒するから、血糖の測 定に用いることができる。血中グルコース濃度は、糖尿病の重要なマーカーとして臨 床診断上きわめて重要な指標である。現在、血中グルコース濃度の測定は、ダルコ ースォキシダーゼを使用したバイオセンサーを用いる方法が主流となっている力 反 応が溶存酸素濃度に影響されるから、測定値に誤差が生じる可能性があった。この グルコースォキシダーゼにかわる新たな酵素として PQQ依存性グルコース脱水素酵 素が注目されている。 [0003] 我々のグループは、ァシネトパクター 'バウマン- (Acinetobacter baumannii)
NCIMB 11517株力 PQQ依存性ダルコース脱水素酵素を産生することを見出し, 遺伝子のクローユングならびに高発現系を構築した (特許文献 1参照)。 PQQ依存性 グルコース脱水素酵素はグルコースォキシダーゼに比べて基質特異性に問題点が めつに。
特許文献 1:特開平 11 243949号公報
[0004] また、ピロ口キノリンキノン依存性グルコース脱水素酵素をバイオセンサーに用いる 場合、一般的な血糖モニターでは、フェリシアンィ匕物イオンカ ディエーターとして用 いられている力 そのストリップ上では、酵素は検体の血液により溶解されることにな るが、血液は、水や他の一般的な試薬に用いられる溶媒と比較して、粘度が高ぐ溶 解性が低いので、ストリップ上に添加する酵素量は、タンパク量として少ない方がより 望ましい。そのため、単位タンパク質あたりの酵素活性、すなわち比活性、が向上し たピロ口キノリンキノン依存性グルコース脱水素酵素の取得が望まれていた。
なお、これまでフェリシアンィ匕物イオンをメディエーターとする測定系において、比 活性が向上した改変型ピロロキノリンキノン依存性ダルコース脱水素酵素に関する報 告はない。
図面の簡単な説明
[0005] [図 1]Q76N、 Q76E、 Q168I、 Q168V、 Q76T、 Q76M、 Q168A、野生型、 Q76G 、 Q76Kの至適 pHの測定結果を示す。横軸は pH、縦軸は相対活性を示す。図中、 黒丸(Acetate)が 0. 22% Triton— X100を含む 50mM 酢酸緩衝液(pH3. 0— 6. 0)で酵素活性を測定した結果である。同様に、黒四角(PIPES)が 0. 22% Trit
Figure imgf000004_0001
PIPES— NaOH緩衝液(ρΗ6. 0—7. 0)、黒三角(1^ー? Β)が 0. 22% Triton— Χ100を含む 50mMリン酸緩衝液(pH5. 0—8. 0)、黒菱 形 (Tris—HCl)が 0. 22% Triton— X100を含む 50mM トリス塩酸緩衝液(pH7. 0-9. 0)中でそれぞれ酵素活性を測定した結果である。なお測定値は最大活性を 示したものを 100%とした相対値で示して!/、る。
[図 2]Q76Kのグルコース定量性の確認結果を示す。横軸は 1水準の希釈系列、縦 軸はグルコース濃度の測定値 (mg/dl)を示す。 [図 3]Q76Kのマルトース作用性の確認結果を示す。横軸は、上乗せしたマルトース 濃度 (mgZdl)、縦軸はマルトース添加濃度が 0のときの測定値を 100%としたときの 相対0 /0を示す。図中、黒三角はサンプルとして lOOmgZdlのグルコースをベースに マルトースを上乗せした場合、黒菱形はサンプルとして 300mgZdlのグルコースを ベースにマルトースを上乗せした場合をそれぞれ示す。
[図 4]Q76Eのマルトース作用性の確認結果を示す。横軸は、上乗せしたマルトース 濃度 (mgZdl)、縦軸はマルトース添加濃度が 0のときの測定値を 100%としたときの 相対0 /0を示す。図中、黒三角はサンプルとして lOOmgZdlのグルコースをベースに マルトースを上乗せした場合、黒菱形はサンプルとして 300mgZdlのグルコースを ベースにマルトースを上乗せした場合をそれぞれ示す。
[図 5]Q168Vのマルトース作用性の確認結果を示す。横軸は、上乗せしたマルトー ス濃度 (mgZdl)、縦軸はマルトース添加濃度が 0のときの測定値を 100%としたとき の相対0 /0を示す。図中、黒三角はサンプルとして lOOmgZdlのグルコースをベース にマルトースを上乗せした場合、黒菱形はサンプルとして 300mgZdlのグルコース をベースにマルトースを上乗せした場合をそれぞれ示す。
[図 6]Q168Aのマルトース作用性の確認結果を示す。横軸は、上乗せしたマルトー ス濃度 (mgZdl)、縦軸はマルトース添加濃度が 0のときの測定値を 100%としたとき の相対0 /0を示す。図中、黒三角はサンプルとして lOOmgZdlのグルコースをベース にマルトースを上乗せした場合、黒菱形はサンプルとして 300mgZdlのグルコース をベースにマルトースを上乗せした場合をそれぞれ示す。
[図 7]野生型酵素のマルトース作用性の確認結果を示す。横軸は、上乗せしたマルト ース濃度 (mgZdl)、縦軸はマルトース添加濃度が 0のときの測定値を 100%としたと きの相対0 /0を示す。図中、黒三角はサンプルとして lOOmgZdlのグルコースをべ一 スにマルトースを上乗せした場合、黒菱形はサンプルとして 300mgZdlのダルコ一 スをベースにマルトースを上乗せした場合をそれぞれ示す。
発明の開示
発明が解決しょうとする課題
本発明は、従来技術の課題を背景になされたもので、 PQQGDHの基質特異性を 課題としてその改良に関するものである。
また、フェリシアンィ匕物イオンをメディエーターとする測定系において、ピロ口キノリン キノン依存性グルコース脱水素酵素の比活性を野生型と比較して向上させることを 課題とするものである。
課題を解決するための手段
本発明者らは上記課題を解決するため、鋭意研究した結果、 PQQGDHの特定の 領域においてアミノ酸変異を導入することにより基質特異性を向上させることを可能 にした。
さらに本発明者らは、野生型ピロ口キノリンキノン依存性グルコース脱水素酵素のァ ミノ酸配列において、 1もしくは数個のアミノ酸を欠失、置換もしくは付加することによ り、フェリシアンィ匕物イオンをメディエーターとする測定系において、ピロ口キノリンキノ ン依存性グルコース脱水素酵素の比活性を野生型と比較して向上させることを可能 にし、本発明を完成するに到った。即ち本発明は、
[項 1]
野生型のピロ口キノリンキノン依存性グルコースデヒドロゲナーゼ(PQQGDH)より も二糖類に対する作用性が低下した改変型 PQQGDH。
[項 2]
野生型のピロ口キノリンキノン依存性グルコースデヒドロゲナーゼ(PQQGDH)より も安定性が向上した項 1に記載の改変型 PQQGDH。
[項 3]
野生型ピロ口キノリンキノン依存性グルコースデヒドロゲナーゼ(PQQGDH)のアミ ノ酸配列において、 1もしくは数個のアミノ酸を欠失、置換もしくは付加することにより 、野生型と比較して、フェリシアンィ匕物イオンをメディエーターとする測定系において 、比活性を向上させる方法
[114]
項 3に記載の方法により、野生型と比較して、フェリシアン化物イオンをメディエータ 一とする測定系において比活性が向上した、改変型ピロ口キノリンキノン依存性ダル コースデヒドロゲナーゼ(PQQGDH) 項 1または 3に記載の改変型 PQQGDHをコードする遺伝子。
[項 6]
項 5に記載の遺伝子を含むベクター。
[項 7]
項 6に記載のベクターで形質転換された形質転換体。
[項 8]
項 7に記載の形質転換体を培養することを特徴とする改変型 PQQGDHの製造法 [項 9]
項 1または 3に記載の改変型 PQQGDHを含むグルコースアツセィキット。
[項 10]
項 1または 3に記載の改変型 PQQGDHを含むグルコースセンサー。
[項 11]
項 1または 3に記載の改変型 PQQGDHを含むグルコース測定方法。
に関するものである。
発明の効果
[0008] 本発明による改変型 PQQGDHは野生型 PQQGDHよりも二糖類に対する作用性 が低下した酵素である。本発明による改変型 PQQGDHをグルコースアツセィキット 及びグルコースセンサに使用することにより、野生型 PQQGDHを使用したものよりも より高精度な分析が可能となったり、より安定性の高いグルコースアツセィキット及び グルコースセンサを提供することができる。
[0009] あるいは、本発明による改変型ピロ口キノリンキノン依存性グルコース脱水素酵素は 、比活性向上により、それを用いたグルコースアツセィキットやグルコースセンサーへ の酵素添加量の減量を可能にし、安価な製造を可能にする。
発明を実施するための最良の形態
[0010] 以下、本発明を詳細に説明する。
[0011] 本発明の改変型 PQQGDHは、野生型 PQQGDHよりも二糖類に対する作用性が 低下した酵素である。
[0012] 二糖類に対する作用性とは、二糖類を脱水素する作用を意味する。二糖類として は、マルトース、シュクロース、ラタトース、セロビオースなどが例示され、特にマルトー スが例示される。本願発明では、二糖類に対する作用性が低下したことを、基質特異 性の向上とも表現する。
[0013] 二糖類に対する作用性が低下して 、るかどうかの判断は、次のように行う。
後述の試験例 1に記載の活性測定法において、野生型 PQQGDHを用いて、 D— グルコースを基質溶液とした場合の PQQGDH活性値 (a)と、 D—グルコースのかわり に当該二糖類を基質溶液とした場合の PQQGDH活性値 (b)を測定し、グルコース を基質とした場合の測定値を 100とした場合に対する相対値 ( (b) / (a) X 100)を求 める。次いで、改変型 PQQGDHを用いて同様の操作を行い、その値を比較して判 断する。
[0014] 本発明の改変型 PQQGDHは、二糖類に対する作用性が野生型 PQQGDHより 低下していれば、グルコースに対する作用性は上昇、不変、低下のいずれであって も本発明の改変型 PQQGDHに包含される。
[0015] 本発明の改変型 PQQGDHは、グルコース濃度の測定において二糖類に対する 作用性が野生型 PQQGDHを用いた場合と比較して低下したものを含む。好ましく は、マルトースに対する作用性が低下したものである。マルトースに対する作用性は 、好ましくは野生型 PQQGDHの 90%以下、より好ましくは 75%以下、さらに好ましく は 70%以下、さらに好ましくは 60%以下、特に 40%以下、さらに特に 20%以下であ る。
[0016] 本発明の改変型 PQQGDHは、マルトースに対する作用性がグルコースに対する 作用性の 90%以下であるものを含む。
[0017] 本発明の改変型 PQQGDHは、野生型 PQQGDHよりも二糖類に対するに対する
Km値が大きいものを含む。好ましくは、マルトースに対する Km値が大きいものであ る。マルトースに対する Km値は、好ましくは 8mM以上、より好ましくは 12mM以上、 特
に 20mM以上である。 [0018] 本発明の改変型 PQQGDHは、二糖類に対する Km値がグルコースに対する Km 値よりも大きいものを含む。好ましくは、マルトースに対する Km値がグルコースに対 する Km値よりも大きいものである。あるいは、好ましくは、マルトースに対する Km値 がグルコースに対する Km値の 1. 5倍以上、より好ましくは 3倍以上である。
[0019] 本発明の改変型 PQQGDHは、野生型 PQQGDHよりも二糖類に対する作用性が 低下した酵素であり、さらに、野生型 PQQGDHよりも安定性が向上した酵素であるこ とが望ましい。
[0020] 本発明における安定性 (本願では、熱安定性とも表記する。 )は、 58°C、 30分間の 熱処理後の活性残存率によって評価される。本発明の改変型 PQQGDHは、 58°C、 30分間の熱処理後の活性残存率が野生型 PQQGDHよりも高 、ものを含む。活性 残存率は、好ましくは 48%以上、より好ましくは 55%以上、特に好ましくは 70%以上 である。
[0021] 野生型 PQQGDHよりも二糖類に対する作用性が低下した本発明の改変型 PQQ GDHとしては、例えば Acinetobacter属由来 PQQGDHのアミノ酸配列において、 170位、 245位、 249位、 349位、及び、 429位からなる群から選ばれる少なくとも 1 つの位置のアミノ酸が置換されて!、る、改変型 PQQGDHが例示される。
[0022] 上記の Acinetobacter属由来 PQQGDHのアミノ酸配列は、好ましくは Acinetob acter calcoaceticusまたは Acinetobacter baumannii由来 PQQ DHのァ ノ 酸配列である。中でも好ましくは配列番号 1である。配列番号 1で示される野生型 PQ QGDHタンパク質及び配列番号 2で示されるその塩基配列は、ァシネトバクタ一-バ ウマン- (Acinetobacter baumannii) NCIMB11517株を起源とするものであり、 特開平 11— 243949号公報に開示されている。なお、上記および配列番号 1におい て、アミノ酸の表記は、シグナル配列が除かれたァスパラギン酸を 1として番号付けさ れている。
[0023] ァシネトパクタ^ ~·バウマン- (Acinetobacter baumannii) NCIMB11517株は
、以目 ij、 Acinetobacter calcoaceticus【こ分類 れ飞 ヽた。
[0024] なお、本発明の改変型 PQQGDHは、グルコースデヒドロゲナーゼ活性を有する限 り、好ましくは二糖類に対する作用性及び Z又は安定性に対して実質的な悪影響を 及ぼさない限り、さらに他のアミノ酸残基の一部が欠失または置換されていてもよぐ また他のアミノ酸残基が付加されて!、てもよ!/、。
[0025] 野生型 PQQGDHよりも二糖類に対する作用性が低下した本発明の改変型 PQQ GDHとしては、例えば Acinetobacter属由来 PQQGDHのアミノ酸配列において、 67位、 68位、 69位、 76位、 89位、 167位、 168位、 169位、 170位、 341位、 342 位、 343位、 351位、 49位、 174位、 188位、 189位、 207位、 215位、 245位、 249 位、 300位、 349位、 129位、 130位、 131位及び 429位の少なくとも 1つの位置に おいてアミノ酸置換を有する、及び Zまたは、 428位と 429位の間にアミノ酸が挿入さ れている、改変型 PQQGDHが例示される。
[0026] 基質特異性の改良された本発明の改変型 PQQGDHとしては、例えば Acinetoba cter属由来 PQQGDHのアミノ酸配列にお!/、て、アミノ酸置換を有する GDH及び 42 8位と 429位の間にアミノ酸が挿入されている GDHが例示される。
[0027] 好ましくは、 Q76N, Q76E, Q76T, Q76M, Q76G, Q76K, N167E,
N167L, N167G, N167T, N167S, N167A, N167M, Q168I, Q 168V, Q168A, Q168C, Q
168D, Q168E, Q168F, Q168G, Q168H, Q168K, Q168L, Q16 8M, Q168N, Q168R, Q168S, Q168W, L169D, L169S, L169 W, L169Y, L169A, L169N,
L169M, L169V, L169C, L169Q, L169H, L169F, L169R, L16 9K, L169I, L169T, L169P, L169G, L169E, A170L, A170I, A170K, A170F, A170W, A170P, A170M, K89E, K300R, S20 7C, N188I, T349S, K300T, L174F, K49N, S189G, F215Y, S189G, E245D, E245F, E245H, E245M, E245N, E245Q, E24 5V, E245C, N249G, N249A, N249E, N249Q, A351T, P67K, E68K, P67D, E68T, I69C, P67R, E68R, E129R, K130G, P 131G, E129N, P131T, E129Q, K130T, P131R, E129A, K130 R, P131K, E341L, M342P, A343R, A343I, E341P, M342V, E341S, M342I, A343C, M342R, A343N, T349S, T349P, T34 9Y, N429F, N429P, N429L, N429Y, A343N, L169P, L169G 及び L169E力もなる群力も選ばれるアミノ酸置換のうち少なくとも 1つを有する、及び Ζまたは、 428位と 429位の間に L、 Aまたは Kが挿入されている、改変型 PQQGD Hである。
[0028] 67位、 68位、 69位、 76位、 89位、 167位、 168位、 169位、 341位
、 342位、 343位、 351位、 49位、 174位、 188位、 189位、 207位、 215位、 245位 、 300位、 349位、 129位、 130位、 131位及び 429位の置換は、 1ケ所であってもよ ぐまた複数箇所であってもよい。
[0029] ここで、 「Q76N」は、 76位の Q (Gin)を N (Asn)に置換することを意味する。
[0030] 次の段落に示す 、ずれかの置換、及び Zまたは、 428位と 429位の間への L、 Aま たは Kの挿入は、 PQQGDHの基質特異性の向上に寄与する。
[0031] Q76N, Q76E, Q76T, Q76M, Q76G, Q76K, Q168I, Q168V,
Q168A, Q168C, Q168D, Q168E, Q168F, Q168G, Q168H, Q168K, Q168L, Q168M,
Q168N, Q168R, Q168S, Q168W, L169A, L169V, L169H, L 169K, L169D, L169S, L169N, L169G, L169C, A170L, A170I , A170K, A170F, A170W, A170P, E245F, E245H, E245M, E245N, E245Q, E245V, E245C, N249G, N249A, N249E, N2 49Q, (Q168A+L169G+E245D) , (Q168A+L169P+E245D) , (K89 E+K300R) , (Q168A+L169D) , (Q168S +L169S) , (N167E + Q168 G+L169T) , (N167S + Q168N+L169R) , (Q168G+L169T) , (N167 G + Q168S +L169Y) , (N167L + Q168S +L169G) , (N167G + Q168S +L169S +L174F+K49N) , (Q168N+L168N + S189R) , (N167E + Q 168G+L169A+S189G) , (N167G + Q168R+L169A) , (N167S + Q16 8G+L169A) , (N167G + Q168V+L169S) , (N167S + Q168V+L169S ) , (N167T+Q168I+L169G) , (N167G + Q168W+L169N) , (N167G + Q168S +L169N) , (N167G + Q168S +L169V) , (Q168R+L169C) , (N167S + Q168L+L168G) , (Q168C+L169S) , (N167T+Q168N + L169K), (N167G + Q168T+L169A+S207C) , (N167A+Q168A+L1 69P), (N167G + Q168S+L169G), (N167G + Q168G) , (N167G + Q 168D+L169K), (Q168P+L169G) , (N167G + Q168N+L169S) , (Q 168S+L169G), (N188I+T349S) , (N167G + Q168G+L169A+F215 Υ), (N167G + Q168T+L169G) , (Q168G+L169V) , (N167G + Q16 8V+L169T), (N167E + Q168N+L169A) , (Q168R+L169A) , (N16 7G + Q168R), (N167G + Q168T), (N167G + Q168T+L169Q) , (Q1 68I+L169G+K300T), (N167G + Q168A) , (N167T+Q168L+L169 Κ), (N167M + Q168Y+L169G) , (N167E + Q168S) , (N167G + Q16 8T+L169V+S189G), (N167G + Q168G+L169C) , (N167G + Q168K +L169D), (Q168A+L169D), (Q168S+E245D) , (Q168S+L169S ), (A351T), (N167S + Q168S+L169S), (Q168I+L169Q) , (N167 A+Q168S+L169S), (Q168S+L169E) , (Q168A+L169G) , (Q168 S+L169P), (Ρ67Κ+Ε68Κ), (P67R+E68R+I69C) , (P67D+E68T +I69C), (E129R+K130G + P131G) , (E129Q+K130T+P131R) , ( E129N+P131T), (E129A+K130R+P131K) , (E341L + M342P+A3 43R), (E341S + M342I), Α343Ι, (E341P + M342V+A343C) , (Ε3 41P + M342V+A343R) , (E341L + M342R+A343N) , (Q168A+L16 9Α), (Q168A+L169C), (Q168A+L169E) , (Q168A+L169F) , (Q 168A+L169H), (Q168A+L169I) , (Q168A+L169K) , (Q168A+L 169M), (Q168A+L169N), (Q168A+L169P) , (Q168A+L169Q) ,
(Q168A+L169R), (Q168A+L169S) , (Q168A+L169T) , (Q168A +L169V), (Q168A+L169W)及び(Q168A+L169Y)
[0032] 野生型 PQQGDHよりも熱安定性の向上した本発明の PQQGDHとしては、例え ば Acinetobacter属由来 PQQGDHのアミノ酸配列において、 20位、 76位、 89位、 168位、 169位、 245位、 246位及び 300位の少なくとも 1つの位置においてアミノ酸 置換を有する、改変型 PQQGDHが例示される。
[0033] 好ましくは、 K20E, Q76M, Q76G, K89E, Q168A, Q168D, Q168 E, Q168F, Q168G, Q168H, Q168M, Q168P, Q168W, Q168Y , Q168S, L169D, L169E, L169P, L169S, Q246H, K300R, Q 76N, Q76T, Q76K, L169A, L169C, L169E, L169F, L169H, L169K, L169N, L169Q, L169R, L169T, L169Y及び L169Gからな る群力も選ばれるアミノ酸置換を有する。 20位、 76位、 89位、 168位、 169位、 246 位及び 300位の置換は、 1ケ所であってもよぐ複数ケ所であってもよい。
[0034] ここで、 「K20E」は、 20位の K (Lys)を E (Glu)に置換することを意味する。
[0035] 次に示すいずれかのアミノ酸置換は、 PQQGDHの熱安定性の向上に寄与する。
特に、 K20E, Q76M, Q76G, (K89E + K300R) , Q168A, (Q168 A + L169D) , (Q168S + L169S) , Q246H, Q168D, Q168E, Q 168F, Q168G, Q168H,
Q168M, Q168P, Q168W, Q168Y, Q168S, (Q168S + L169E) , (Q168S + L169P) , (Q168A+L169A) , (Q168A+L169C) , (Q16 8A+L169E) , (Q168A+L169F) , (Q168A+L169H) , (Q168A+L16 9K) , (Q168A+L169N) , (Q168A+L169P) , (Q168A+L169Q) , ( Q168A+L169R) , (Q168A+L169T)、 (Q168A+L169Y)ゝ (Q168A + L169G)ゝ (Q168A+L169P+E245D)ゝ (Q168A+L169G+E245D)
[0036] あるいは、野生型 PQQGDHよりも二糖類に対する作用性が低下した本発明の改 変型 PQQGDHとしては、例えば Acinetobacter属由来 PQQGDHのアミノ酸配列 にお ヽて、 74位、 146位、 168位、 169位、 170位、 245位及び 342位の少なくとも 1 つの位置においてアミノ酸置換を有する改変型 PQQGDHが例示される。
上記のうち、 74位、 146位の少なくとも 1つの位置においてアミノ酸置換を有する改 変型 PQQGDHがさらに好ましい。これらの位置に変異を導入することにより、二糖 類に対する作用性が低下することに加え、野生型酵素と比較してグルコースに対す る反応性における比活性の向上が期待できる。また、メディエーターを含む系での反 応性が向上する可能性も考えられる。
[0037] 好ましくは、 D74V、 S146A、 Q168A、 L169P、 A170L、 A170M、 A170I、 Al 70F、 E245D、 M342I、 M342V、 M342P、 M342A、力らなる群から選ばれるアミ ノ酸置換のうち少なくとも 1つを有する改変型 PQQGDHである。
上記のうち、 D74V、 S146Aの少なくとも 1つの位置においてアミノ酸置換を有する 改変型 PQQGDHがさらに好ましい。
[0038] ここで、「M342A」は、 342位の M (Met)を A (Ala)に置換することを意味する。
[0039] 次の段落に示すいずれかの置換は、 PQQGDHの基質特異性の向上に寄与する
[0040] D74V、 M342I、 M342V、 M342P、 M342A、 S146A、 Q168A、 L169P、 A170 Lゝ A170M、 A170I、 A170Fゝ(S146A+A170L)ゝ (Q168A+L169P+A170 L)ゝ(S146A+A170M)、(Q168A+L169P+A170M)ゝ (S146A+Q168A+ L169P+A170L)ゝ(S146A+Q168A+L169P+A170M)ゝ (Q168A+L169 P+A170L+E245D)ゝ(Q168A+L169P+A170M+E245D)ゝ(S146A+M 3421)、 (Q168A+L169P+A170L + M342I) , (Q168A+L169P+A170M + M342I)、(S146A+M342V)ゝ (Q168A+L169P+A170L + M342V) , (Q 168A+L169P+A170M + M342V) , (S146A+M342P)、 (Q168A+L169 P+A170L + M342P) , (Q168A+L169P+A170M + M342P)、 (S146A+ M342A)ゝ (Q168A+L169P+A170L + M342A) , (Q168A+L169P+A17 0M + M342A)、(D74V+S146A)ゝ(D74V+Q168A+L169P+A170L)、 ( D74V+Q168A+L169P+A170M)、 (Q168A+L169P+A170L+E245D + M342I)、 (Q168A+L169P+A170M+E245D + M342I) , (Q168A+L1 69P+A170L+E245D+M342V)、 (Q168A+L169P+A170M+E245D+ M342V)ゝ (Q168A+L169P+A170L+E245D+M342A) , (Q168A+L16 9P+A170M+E245D + M342A)
上記のうち、 D74V、 S146Aの少なくとも 1つの位置においてアミノ酸置換を有する 改変型 PQQGDHがさらに好ましい。
[0041] 上記のうち、本発明の改変型 PQQGDHの別の態様として、さらに好ましくは、アミ ノ酸置換が、
A170V, A170L, A170I, A170T, A170K, A170C, A170M, A170F, A17 OY, A170W, A170P, /vD/ O 80sisさ oifcId ossososAV ε_·
6 ε6 ε 6 Λd i -
Figure imgf000015_0001
[0043] 本発明の、フェリシアンィ匕物イオンをメディエーターとする測定系にお 、て比活性を 向上させる方法は、野生型ピロ口キノリンキノン依存性グルコース脱水素酵素 (本願 明細書においては PQQGDHとも呼称する。)のアミノ酸配列において、 1もしくは数 個のアミノ酸を欠失、置換もしくは付加することにより達成されうる。改変のもとになる 野生型の PQQGDHとは、ピロ口キノリンキノンを補酵素として配位し、 D—グルコース を酸ィ匕して D—ダルコノー 1, 5—ラタトンを生成するという反応を触媒する酵素であり、 由来や構造に関しては特に限定するものではない。
[0044] 改変のもとになる野生型の PQQGDHの起源として代表的なもの力 以下に例示さ れる微生物などである。具体的には、例えばァシネトパクター 'カルコァセティカス、ァ シネトノ クタ一 ·ノ ウマン- (Acinetobacter baumannii)、シユードモナス ·エノレギ ノサ (Pseudomonasaerugmosa)、ソュ' ~~トモナス ·プチタ (Pseudomonas putia a)、シユードモナス ·フノレオレツセンス (Pseudomonas fluorescens)、グノレコノバク タ一'ォキシダンス等の酸化細菌ゃァグロバタテリゥム 'ラジオパクター(Agrobacteri umradiobacter)、ェシエリヒア'コリ、クレブシーラ 'エー口ジーンズ (Klebsiella aer ogenes)等の腸内細菌を挙げることができる。ただし、ェシエリヒア'コリなどに存在す る膜型酵素を改変して可溶型にすることは困難であり、起源としてはァシネトパクター 属に属する微生物に由来するものを選択することが好ま 、。より好ましくはァシネト バクタ一'カルコァセティカスもしくはァシネトバクタ一'バウマン-などの可溶性 PQQ GDHを選択することが好まし 、。
[0045] 上記の Acinetobacter属由来 PQQGDHのアミノ酸配列は、好ましくは Acinetob acter calcoaceticusまたは Acinetobacter baumannii由来 PQQ DHのァ ノ 酸配列である。中でも好ましくは配列番号 1である。配列番号 1で示される野生型 PQ QGDHタンパク質及び配列番号 2で示されるその塩基配列は、ァシネトバクタ一-バ ウマン- (Acinetobacter baumannii) NCIMB11517株を起源とするものであり、 特開平 11— 243949号公報に開示されている。なお、上記および配列番号 1におい て、アミノ酸の表記は、シグナル配列が除かれたァスパラギン酸を 1として番号付けさ れている。
[0046] ァシネトパクター ·バウマン- (Acinetobacter baumannii) NCIMB11517株は、以前、 Acinetobacter calcoaceticusに分類されていた。
[0047] 本発明における比活性とは、フェリシアンィ匕物イオンをメディエーターとする活性測 定系における、単位重量の酵素分子あたりの活性であり、より詳しくは精製酵素 lmg あたりの酵素活'性の単位である。
[0048] 本発明における活性中心とは、ピロ口キノリンキノン依存性グルコース脱水素酵素 において、基質である D—グルコースが結合して触媒作用を受ける部位を言い、 D— グルコースが結合する基質結合部位及び酸ィ匕触媒反応が行われるピロ口キノリンキノ ン結合部位力 なる。
[0049] さらに本発明における野生型ピロ口キノリンキノン依存性グルコース脱水素酵素とは 、 自然界に存在するピロ口キノリンキノン依存性グルコース脱水素酵素いっぱんのこと である。一方、改変型ピロ口キノリンキノン依存性グルコース脱水素酵素とは、野生型 ピロ口キノリンキノン依存性グルコース脱水素酵素と比較して、そのアミノ酸配列にお いて、 1もしくは数個のアミノ酸に欠失、置換、挿入が見られるもののことである。
[0050] 本発明における比活性の向上は、一般に、野生型に対して比活性の向上が 10% 以上のものを含む。好ましくは野生型に対して 50%以上である。
[0051] フェリシアン化物イオンをメディエーターとする測定系において、野生型 PQQGDH よりも比活性が向上した本発明の PQQGDHとしては、例えば、活性中心近傍のアミ ノ酸を少なくとも 1つ他のアミノ酸に置換することにより、野生型と比較して、フェリシア ン化物イオンをメディエーターとする測定系にお 、て比活性が向上した改変型ピロ口 キノリンキノン依存性グルコース脱水素酵素がある。
[0052] フェリシアン化物イオンをメディエーターとする測定系において、野生型 PQQGDH よりも比活性が向上した本発明の PQQGDHとして、さらに詳しくは活性中心から半 径 10オングストローム以内に存在するアミノ酸を、少なくとも 1つ他のアミノ酸に置換し たものであり、またそのアミノ酸が、 Acinetobacter属由来 PQQGDHのアミノ酸配列 【こお ヽて、 76位、 143位、 144位、 163位、 168位、 169位、 228位、 229位、 247位 、 248位、 343位、 346位、 348位、 377位、 406位、 408位、 424位力もなる群より 選ばれる ミノ酸からなるちのである。
[0053] また、本発明の PQQGDHとして、 Acinetobacter属由来 PQQGDHのアミノ酸配 列において、 168位、 169位の少なくとも 1つの位置においてアミノ酸置換を有する 改変型ピロ口キノリンキノン依存性グルコース脱水素酵素が例示される。
[0054] 本発明の PQQGDHをさらに詳細に例示するならば、 Acinetobacter属由来 PQQ GDHのアミノ酸配列において、 Q168A、 (Q168A+L169G)ゝ (Q168A+L169 C)、 (Q168A+L169P)、 (Q168S+L169E)、 (Q168S+L169P)、力、らなる群 力 選択されるアミノ酸置換を有するピロ口キノリンキノン依存性グルコース脱水素酵 素である。
[0055] ここで、 Q168Aとは、 168位の Q (Gin)を A (Ala)に置換することを意味する。
[0056] なお、本発明の PQQGDHは、グルコースデヒドロゲナーゼ活性を有する限り、好ま しくは、フェリシアンィ匕物イオンをメディエーターとする測定系における比活性に対し て
実質的な悪影響を及ぼさない限り、さらに他のアミノ酸残基の一部が欠失または置換 されて 、てもよく、また他のアミノ酸残基が付加されて 、てもよ!/、。
[0057] また、本発明の PQQGDHは、上記アミノ酸置換に、活性中心非近傍のアミノ酸置 換を加えても、野生型と比較して、フェリシアンィ匕物イオンをメディエーターとする測 定系にお 、て比活性向上が維持されて 、る改変型ピロ口キノリンキノン依存性ダルコ ース脱水素酵素でもある。
[0058] 詳しくは、 245位のアミノ酸置換を組合せた改変型ピロ口キノリンキノン依存性ダル コース脱水素酵素であり、さらに詳しくはアミノ酸置換が、(Q168A+L169G+E24 5D)、 (Q168A+L169P+E245D)からなる群から選択されるアミノ酸置換を有す るピロ口キノリンキノン依存性グルコース脱水素酵素である。
[0059] 本発明の、フェリシアン化物イオンをメディエーターとする測定系において、ピロロキ ノリンキノン依存性グルコース脱水素酵素の比活性を、野生型より向上させる方法は 、当該酵素のアミノ酸配列において、 1もしくは数個のアミノ酸を欠失、置換もしくは付 加することにより、達成されうる。
[0060] 本発明の方法において、欠失、置換もしくは付加されるアミノ酸は、特に限定されな いが、活性中心近傍のアミノ酸であることが望ましい。あるいは、欠失、置換もしくは 付加されるアミノ酸は、活性中心から半径 10オングストローム以内に存在するァミノ 酸であることが望ましい。
[0061] また、本発明の方法において、ピロ口キノリンキノン依存性グルコース脱水素酵素が 、 Acinetobacter属由来 PQQGDHのアミノ酸配列において、 76位、 143位、 144 位、 163位、 168位、 169位、 228位、 229位、 247位、 248位、 343位、 346位、 34 8位、 377位、 406位、 408位、 424位からなる群より選ばれる少なくとも 1つのアミノ 酸が他のアミノ酸に置換されて 、ることが望ま 、。
[0062] また、 Acinetobacter属由来 PQQGDHのアミノ酸配列において、 168位及び 16 9位力 なる群力 選ばれる少なくとも 1つのアミノ酸が他のアミノ酸に置換されている ことが望ましい。
[0063] さらに、 Acinetobacter属由来 PQQGDHのアミノ酸配列において、アミノ酸置換 力 Q168A、(Q168A+L169G)ゝ(Q168A+L169C)、(Q168A+L169P)、 ( Q168S +L169E)、(Q168S +L169P)、力もなる群から選択されることが望ましい
[0064] また、上記アミノ酸置換に、活性中心非近傍のアミノ酸置換をカ卩えても力まわず、そ の際 Acinetobacter属由来 PQQGDHのアミノ酸配列において、 245位のアミノ酸 であることが望ましぐさらに(Q168A+L169G+E245D)、 (Q168A+L169P + E245D)力もなる群力も選択されることが望まし!/、。
[0065] ところで、本願出願時において、ァシネトバクタ一'カルコァセティカス(Acinetoba cter calcoaceticus) LMD79. 41株由来の酵素の X線結晶構造解析の結果が報 告され、活性中心をはじめとした該酵素の高次構造が明らかとなっている(非特許文 献 1, 2, 3, 4を参照。)。
特許文献 1 :J. Mol. Biol. , 289, 319— 333 (1999)
非特許文献 2 : PNAS, 96 (21) , 11787—11791 (1999)
非特許文献 3 : The EMBO Journal, 18 (19) , 5187—5194 (1999)
非特許文献 4: Protein Science, 9, 1265-1273 (2000)
[0066] その高次構造に関する知見を基に、該酵素の構造と機能の相関に関する研究が 進められている力 まだ完全に明らかになつたとは言えない。例えば、水溶性ダルコ ース脱水素酵素の第 6番目の W—モチーフ、の Bストランドと Cストランドを結ぶループ 領域 (W6BC)中のアミノ酸残基の構造遺伝子の特定の部位に変異を導入すること によりグルコースに対する選択性を改良しうることが考察されている(例えば、特許文 献 2を参照。)しかしながら、効果が実証されているのは実施例に開示されているもの だけである。
特許文献 2 :特開 2001— 197888
[0067] ここで、本願発明の成果をもとにこれらの高次構造に関する知見を見直すと、二糖 類に対する作用性の改変には、 PQQの結合に関与するアミノ酸及び Zまたはその 周辺のアミノ酸、グルコースの結合に関与するアミノ酸及び Zまたはその周辺のァミノ 酸、カルシウムイオンの結合に関与するアミノ酸及び Zまたはその周辺のアミノ酸 の 少なくとも 1つ以上が関わっている可能性が考えられる。
[0068] 本発明の改変型 PQQGDHは、 Acinetobacter属由来 PQQ依存性グルコースデ ヒドロゲナーゼ、例えば配列番号 1に記載される PQQ依存性グルコースデヒドロゲナ ーゼにお 、て、 PQQの結合に関与するアミノ酸及び Zまたはその周辺のアミノ酸、 および Zまたは、グルコースの結合に関与するアミノ酸及び Zまたはその周辺のアミ ノ酸が置換されているものを含む。非特許文献 3および 4には、 PQQに結合するアミ ノ酸として、 Y344、 W346, R228、 N229, K377、 R406、 R408、 D424、ダルコ ースに結合するアミノ酸としては、 Q76, D143、 H144, D163、 Q168、 L169、など の記載がある。
[0069] また、本発明の改変型 PQQGDHは、 Acinetobacter属由来 PQQ依存性ダルコ 一スデヒドロゲナーゼ、例えば配列番号 1に記載される PQQ依存性グルコースデヒド ロゲナーゼにお 、て、カルシウムイオンの結合に関与するアミノ酸及び Zまたはその 周辺のアミノ酸が置換されているものを含む。非特許文献 1には、活性中心のカルシ ゥムイオンに結合するアミノ酸としては、 P248、 G247、 Q246、 D252、 T348などの 記載がある。
[0070] また、本発明の改変型 PQQGDHは、野生型酵素の活性型立体構造における活 性中心
力も半径 15 A以内、好ましくは半径 10 A以内の範囲に位置するアミノ酸を変異する ことにより得られるものを含む。 [0071] また、本発明の改変型 PQQGDHは、野生型酵素の活性型立体構造において基 質から半径 10A以内の範囲に位置するアミノ酸を変異することにより得られるものを 含む。特に、基質がグルコースであるとき、野生型酵素の活性型立体構造において 基質から半径 10A以内の範囲に位置するアミノ酸を変異することにより得られるもの が好ましい。
[0072] また、本発明の改変型 PQQGDHは、野生型酵素の活性型立体構造において基 質の 1位の炭素に結合する OH基から半径 10 A以内の範囲に位置するアミノ酸を変 異することにより得られるものを含む。特に、基質がグルコースであるとき、野生型酵 素の活性型立体構造において基質から半径 10 A以内の範囲に位置するアミノ酸を 変異することにより得られるものが好ましい。
[0073] また、本発明の改変型 PQQGDHは、野生型酵素の活性型立体構造において基 質の 2位の炭素に結合する OH基から半径 10A以内の範囲に位置するアミノ酸を変 異することにより得られるものを含む。特に、基質がグルコースであるとき、野生型酵 素の活性型立体構造において基質から半径 10 A以内の範囲に位置するアミノ酸を 変異することにより得られるものが好ましい。
[0074] 以上の教示にしたがって、当業者は、ァシネトバクタ一'バウマン- (Acinetobacte r baumannii) NCIMB 11517株を起源とする配列番号 1で示される野生型 PQQG DHタンパク質および配列番号 2で示されるその塩基配列を参照し、これらとの相同 性が高い (好ましくは 80%以上、さらに好ましくは 90%以上の相同性を有する)他の 起源 (天然のもの、改変されたもの、人工的に合成されたものを問わない)に由来す る改変型 PQQGDHについても、当該領域でアミノ酸残基を置換することにより、過 度に試行錯誤を行うことなぐ野生型の PQQGDHよりも二糖類に対する作用性が低 下した改変型 PQQGDHを得ることができる。
[0075] あるいは、本願発明の成果をもとにこれらの高次構造に関する知見を別の観点から 見直してみると、フェリシアンィ匕物イオンをメディエーターとする測定系における比活 性の向上には、 1つ以上の、活性中心近傍のアミノ酸残基の置換が関わっていると 考えられる。 [0076] 本願発明にお 、て活性中心近傍とは、 PQQ、グルコース及び Zまたは PQQに配 位するカルシウムイオンとの結合に関与するアミノ酸をさし、それ以外の領域を活性 中心非近傍と呼称する。
[0077] また、本発明の改変型 PQQGDHは、野生型酵素の活性型立体構造における活 性中心から半径 10A以内の範囲に位置するアミノ酸を変異することにより得られるも のを含む。
[0078] また、本発明の改変型 PQQGDHには実質的に、野生型酵素の活性型立体構造 において基質から半径 10A以内の範囲に位置するアミノ酸を変異することにより得ら れるものを含む。特に、基質がグルコースであるとき、野生型酵素の活性型立体構造 において基質から半径 10A以内の範囲に位置するアミノ酸を変異することにより得ら れるものが好ましい。
[0079] また、本発明の改変型 PQQGDHには実質的に、野生型酵素の活性型立体構造 において基質の 1位の炭素に結合する OH基から半径 10 A以内の範囲に位置する アミノ酸を変異することにより得られるものを含む。特に、基質がグルコースであるとき 、野生型酵素の活性型立体構造において基質から半径 10 A以内の範囲に位置す るアミノ酸を変異することにより得られるものが好ましい。
[0080] また、本発明の改変型 PQQGDHには実質的に、野生型酵素の活性型立体構造 において基質の 2位の炭素に結合する OH基から半径 10 A以内の範囲に位置する アミノ酸を変異することにより得られるものを含む。特に、基質がグルコースであるとき 、野生型酵素の活性型立体構造において基質から半径 10 A以内の範囲に位置す るアミノ酸を変異することにより得られるものが好ましい。
[0081] なお、改変箇所が複数ある場合、トータルとしての改変型を野生型と比較して、フエ リシアンィ匕物イオンをメディエーターとする測定系にお 、て比活性が向上して ヽれば 、すべての改変箇所が活性中心近傍にある必要はない。
[0082] 以上の教示にしたがって、当業者は、他の起源に由来する改変型 PQQGDHにつ いても、当該領域でアミノ酸残基を置換することにより、フェリシアン化物イオンをメデ イエ一ターとする測定系において野生型の PQQGDHよりも比活性が向上した PQQ GDHを得ることができる。 [0083] 例えば、配列番号 1のアミノ酸配列と、ァシネトバクタ一 ·カルコァセティカス(Acine tobacter calcoaceticus) LMD79. 41株由来酵素のアミノ酸配列を比較すると、 相違箇所はわずかで、相同性は 92. 3% (シグナル配列含む)となり、非常に類似し ているので、配列番号 1におけるある残基力 他起源の酵素のどのアミノ酸残基に該 当するかを容易に認識することができる。そして、本発明にしたがって、そのような 1ま たはそれ以上の箇所にぉ ヽてアミノ酸残基を他のアミノ酸残基で欠失、置換あるいは 挿入等することにより、野生型の PQQGDHよりも二糖類に対する作用性が低下した 改変型 PQQGDHを得ることができる。これらの改変型 PQQGDHグルコース脱水素 酵素も本発明の範囲内に含まれる。
[0084] 本発明は、上記の改変型ピロ口キノリンキノン依存性グルコース脱水素酵素をコー ドする遺伝子である。
[0085] 本発明は、野生型のピロ口キノリンキノン依存性グルコースデヒドロゲナーゼ(PQQ GDH)よりも二糖類に対する作用性が低下した改変型 PQQGDHをコードする遺伝 子である。さらには該遺伝子を含むベクターである。さらには該ベクターで形質転換 された形質転換体である。さらには、該形質転換体を培養することを特徴とする改変 型 PQQGDHの製造法である。
[0086] 本発明の改変型 PQQGDHをコードする遺伝子は、微生物など種々の起源より得 られる野生型 PQQGDHをコードする遺伝子を含む DNA断片を改変することにより 得られる可能性がある。具体的には、例えばァシネトパクター 'カルコァセティカス、ァ シネトノ クタ一 ·ノ ウマン- (Acinetobacter baumannii)、シユードモナス ·エノレギ ノサ (Pseudomonasaerugmosa)、ソュ' ~~トモナス ·プチタ (Pseudomonas putia a)、シユードモナス ·フノレオレツセンス (Pseudomonas fluorescens)、グノレコノバク タ一'ォキシダンス等の酸化細菌ゃァグロバタテリゥム 'ラジオパクター(Agrobacteri umradiobacter)、ェシエリヒア'コリ、クレブシーラ 'エー口ジーンズ (Klebsiella aer ogenes)等の腸内細菌を挙げることができる。ただし、ェシエリヒア'コリなどに存在す る膜型酵素を改変して可溶型にすることは困難であり、起源としてはァシネトパクター 属、さらに好ましくは相同性の高 ヽァシネトパクター 'カルコァセティカスもしくはァシ ネトバクタ一'バウマン-のいずれかの可溶性 PQQGDHを選択することが好ましい。 [0087] 野生型 PQQGDHをコードする遺伝子を改変する方法としては、通常行われる遺 伝情報を改変する手法が用いられる。すなわち、タンパク質の遺伝情報を有する DN Aの特定の塩基を変換することにより、或いは特定の塩基を挿入または欠失させるこ とにより、改変蛋白質の遺伝情報を有する DNAが作成される。 DNA中の塩基を変 換する具体的な方法としては、例えば市販のキット(TransformerMutagenesis K it;Clonetech製, EXOIIl/Mung Bean Deletion Kit ; Stratagene製, Quic kChange Site Directed Mutagenesis Kit; Stratagene製など)の使用、或 いはポリメラーゼ連鎖反応法 (PCR)の利用が挙げられる。
[0088] 作製された改変タンパク質の遺伝情報を有する DNAは、プラスミドと連結された状 態にて宿主微生物中に移入され、改変タンパク質を生産する形質転換体となる。こ の際のプラスミドとしては、例えば、ェシエリヒア'コリー(Escherichia coli
)を宿主微生物とする場合には pBluescript, pUC18などが使用できる。宿主微生 物としては、例えば、ェシエリヒア'コリー W3110、ェシエリヒア'コリー C600、ェシェ リヒア'コリー JM109、ェシエリヒア'コリー DH5 aなどが利用できる。宿主微生物に組 換えベクターを移入する方法としては、例えば宿主微生物がェシエリヒア属に属する 微生物の場合には、カルシウムイオンの存在下で組換え DNAの移入を行なう方法 などを採用することができ、更にエレクト口ポレーシヨン法を用いても良い。更には、巿 販のコンビテントセル (例えば、コンピテントハイ JM 109;東洋紡績製)を用 、ても良 い。
[0089] このような遺伝子はこれらの菌株より抽出してもよぐまた化学的に合成することもで きる。さら〖こ、 PCR法の利用により、 PQQGDH遺伝子を含む DNA断片を得ることも 可能である。
[0090] 本発明にお 、て、 PQQGDHをコードする遺伝子を得る方法としては、次のような 方法が挙げられる。例えばァシネトバクタ一 ·カルコァセティカス NCIB11517 の染 色体を分離、精製した後、超音波処理、制限酵素処理等を用いて DNAを切断した ものと、リニア一な発現ベクターと両 DNAの平滑末端または付着末端において DN Aリガーゼなどにより結合閉鎖させて組換えベクターを構築する。該組換えベクター を複製可能な宿主微生物に移入した後、ベクターのマーカーと酵素活性の発現を指 標としてスクリーニングして、 PQQを補欠分子族とする GDHをコードする遺伝子を含 有する組換えベクターを保持する微生物を得る。
[0091] 次 、で、上記組換えベクターを保持する微生物を培養して、該培養微生物の菌体 から該組換えベクターを分離、精製し、該発現べクタ一から GDHをコードする遺伝子 を採取することができる。例えば、遺伝子供与体であるァシネトパクター 'カルコァセ ティカス NCIB11517 の染色体 DNAは、具体的には以下のようにして採取される。
[0092] 該遺伝子供与微生物を例えば 1一 3日間攪拌培養して得られた培養液を遠心分離 により集菌し、次いで、これを溶菌させることにより PQQを補欠分子族とする GDH遺 伝子の含有溶菌物を調製することができる。溶菌の方法としては、例えばリゾチーム 等の溶菌酵素により処理が施され、必要に応じてプロテアーゼゃ他の酵素やラウリル 硫酸ナトリウム (SDS)等の界面活性剤が併用される。さら〖こ、凍結融解やフレンチプ レス処理のような物理的破砕方法と組み合わせてもよい。
[0093] 上記のようにして得られた溶菌物から DNAを分離精製するには、常法に従って、 例えばフエノール処理やプロテアーゼ処理による除蛋白処理や、リボヌクレアーゼ処 理、アルコール沈殿処理などの方法を適宜組み合わせることにより行うことができる。
[0094] 微生物から分離、精製された DNAを切断する方法は、例えば超音波処理、制限 酵素処理などにより行うことができる。好ましくは特定のヌクレオチド配列に作用する II 型制限酵素が適している。
[0095] クローユングする際のベクターとしては、宿主微生物内で自律的に増殖し得るファ ージまたはプラスミドから遺伝子組換え用として構築されたものが適している。ファー ジとしては、例えばェシエリヒア'コリを宿主微生物とする場合には Lambda gtlO 、 Lambda gtl l などが例示される。また、プラスミドとしては、例えば、ェシエリヒア- コリを宿主微生物とする場合には、 pBR322、 pUC19 、 pBluescript などが例示 される。
[0096] クロー-ングの際、上記のようなベクターを、上述した GDHをコードする遺伝子供 与
体である微生物 DNAの切断に使用した制限酵素で切断してベクター断片を得ること ができるが、必ずしも該微生物 DNAの切断に使用した制限酵素と同一の制限酵素 を用いる必要はな 、。微生物 DNA断片とベクター DNA断片とを結合させる方法は、 公知の DNAリガーゼを用いる方法であればよぐ例えば微生物 DNA断片の付着末 端とベクター断片の付着末端とのアニーリングの後、適当な DNAリガーゼの使用に より微生物 DNA断片とベクター DNA断片との組換えベクターを作成する。必要に応 じて、アニーリングの後、宿主微生物に移入して生体内の DNAリガーゼを利用し組 換えベクターを作製することもできる。
[0097] クローユングに使用する宿主微生物としては、糸且換えベクターが安定であり、かつ 自律増殖可能で外来性遺伝子の形質発現できるものであれば特に制限されない。 一般的には、ェシエリヒア'コリ W3110 、ェシエリヒア'コリ C600、ェシエリヒア'コリ H B101 、ェシエリヒア'コリ JM109 、ェシエリヒア'コリ DH5 αなどを用いることがで きる。
[0098] 宿主微生物に組換えベクターを移入する方法としては、例えば宿主微生物がェシ エリヒア'コリの場合には、カルシウム処理によるコンビテントセル法やエレクト口ボーレ ーシヨン法などを用いることができる。
[0099] 上記のように得られた形質転換体である微生物は、栄養培地で培養されることによ り、多量の GDHを安定に生産し得る。宿主微生物への目的組換えベクターの移入 の有無についての選択は、目的とする DNAを保持するベクターの薬剤耐性マーカ 一と PQQの添カ卩により GDH活性を同時に発現する微生物を検索すればよい。例え ば、薬剤耐性マーカーに基づく選択培地で生育し、かつ GDHを生成する微生物を 選択すればよい。
[0100] 上記の方法により得られた PQQを補欠分子族とする GDH遺伝子の塩基配列は、 Science ,第 214卷, 1205 (1981)に記載されたジデォキシ法により解読した。ま た、 GDHのアミノ酸配列は上記のように決定された塩基配列より推定した。
[0101] 上記のようにして、一度選択された PQQを補欠分子族とする GDH遺伝子を保有 する組換えベクターより、 PQQ生産能を有する微生物にて複製できる組換えべクタ 一への移入は、 GDH遺伝子を保持する組換えベクター力 制限酵素や PCR法によ り GDH遺伝子である DNAを回収し、他のベクター断片と結合させることにより容易 に実施できる。また、これらのベクターによる PQQ生産能を有する微生物の形質転 換は、カルシウム処理によるコンビテントセル法やエレクト口ポーレーシヨン法などを用 いることがでさる。
[0102] PQQ生産能を有する微生物としては、メチロバクテリウム(Methylobacterium)属 等のメタノール資化性細菌、ァセトパクター(Acetobacter )属やダルコノバクタ一( Gluconobacter )属の酢酸菌、フラボバタテリゥム(Flavobacterium)属、シユード モナス属、ァシネトパクター属等の細菌を挙げることができる。なかでも、シユードモナ ス属細菌とァシネトパクター属細菌が利用できる宿主 ベクター系が確立されており 利用しゃす!、ので好まし 、。
[0103] シユードモナス属細菌では、シユードモナス'エルギノサ、シユードモナス 'フルォレ ッセンス、シユードモナス'プチダなどを用いることができる。また、ァシネトパクター属 細菌ではァシネトバクタ一'力ノレコアセティカス、ァシネトバクタ一'バウマン-等を用 いることがでさる。
[0104] 上記微生物にて複製できる組換えベクターとしては、 RSF1010 由来のベクター もしくはとその類似のレブリコンを有するベクターがシユードモナス属細菌に利用可能 である。例えば、 ρΚΤ240、 ρΜΜΒ24等(M. M. Bagdasarian ら, Gene, 26, 2 73 (1983) )、 pCN40 、 pCN60 等(C. C. Nieto ら, Gene, 87, 145 (1990) ) や PTS1137 等を挙げることができる。また、 pME290等(Y. Itohら、 Gene, 36, 2 7 (1985) )、 pNIl l l、 pNI20C (N. Itohら, J. Biochem. , 110, 614 (1991) )も 利用できる。
[0105] ァシネトパクター属細菌では、 pWM43 等(W. Minas ら, Appl. Environ. Mic robiol. , 59, 2807 (1993) )、 pKT230、 pWH1266 等(Μ. Hungerら, Gene , 87, 45 (1990) )がベクターとして利用可能である。
[0106] こうして得られた形質転換体である微生物は、栄養培地で培養されることにより、多 量の改変タンパク質を安定して生産し得る。形質転換体である宿主微生物の培養形 態は、宿主の栄養生理的性質を考慮して培養条件を選択すればよぐ多くの場合は 液体培養で行う。工業的には通気攪拌培養を行うのが有利である。
[0107] 培地の栄養源としては,微生物の培養に通常用いられるものが広く使用され得る。
炭素源としては資化可能な炭素化合物であればよぐ例えば、グルコース、シユーク ロース、ラタトース、マルトース、ラタトース、糖蜜、ピルビン酸などが使用される。また、 窒素源としては利用可能な窒素化合物であればよぐ例えば、ペプトン、肉エキス、 酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物などが使用される。その他 、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガン、亜鉛 などの塩類、特定のアミノ酸、特定のビタミンなどが必要に応じて使用される。
[0108] 培養温度は菌が成育し、改変型 PQQGDHを生産する範囲で適宜変更し得るが、 上記のような PQQ生産能を有する微生物の場合、好ましくは 20— 42°C程度である。 培養時間は条件によって多少異なる力 改変型 PQQGDHが最高収量に達する時 期を見計らって適当時期に培養を完了すればよぐ通常は 6— 48時間程度である。 培地の pHは菌が発育し、改変型 PQQGDHを生産する範囲で適宜変更し得るが、 好ましくは pH6. 0-9. 0程度の範囲である。
[0109] 培養物中の改変型 PQQGDHを生産する菌体を含む培養液をそのまま採取し、利 用することもできるが、一般には、常法に従って、改変型 PQQGDHが培養液中に存 在する場合はろ過、遠心分離などにより、改変型 PQQGDH含有溶液と微生物菌体 とを分離した後に利用される。改変型 PQQGDHが菌体内に存在する場合には、得 られた培養物からろ過または遠心分離などの手段により菌体を採取し、次いで、この 菌体を機械的方法またはリゾチームなどの酵素的方法で破壊し、また、必要に応じて 、 EDTA等のキレート剤及び界面活性剤を添加して GDHを可溶ィ匕し、水溶液として 分離採取する。
[0110] 上記のようにして得られた GDH含有溶液を、例えば減圧濃縮、膜濃縮、さらに硫 酸アンモ-ゥム、硫酸ナトリウムなどの塩析処理、あるいは親水性有機溶媒、例えばメ タノール、エタノール、アセトンなどによる分別沈殿法により沈殿せしめればよい。また 、加熱処理や等電点処理も有効な精製手段である。その後、吸着剤あるいはゲルろ 過剤などによるゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、ァフ ィ-ティクロマトグラフィーを行うことにより、精製された GDHを得ることができる。
[Oil 1] 例えば、セフアデックス(Sephadex)ゲル(フアルマシアバイオテク)などによるゲル ろ過、 DEAEセファロース CL— 6B (フアルマシアバイオテク)、ォクチルセファロース CL-6B (フアルマシアバイオテク)等のカラムクロマトグラフィー により分離、精製し、精製酵素標品を得ることができる。該精製酵素標品は、電気泳 動(SDS— PAGE)的に単一のバンドを示す程度に純化されていることが好ましい。
[0112] 上記のようにして得られた精製酵素を、例えば凍結乾燥、真空乾燥やスプレードラ ィなどにより粉末ィ匕して流通させることが可能である。その際、精製酵素はリン酸緩衝 液、トリス塩酸緩衝液や GOODの緩衝液に溶解して 、るものを用いることができる。 好適なものは GOODの緩衝液であり、なかでも、 PIPES, MESもしくは MOPS緩衝 液が特に好ましい。また、カルシウムイオンまたはその塩、およびグルタミン酸、ダル タミン、リジン等のアミノ酸類、さらに血清アルブミン等を添加することにより GDHをよ り安定ィ匕することができる。
[0113] 本発明の改変タンパク質の製造方法は、特に限定されないが、以下に示すような 手順で製造することが可能である。タンパク質を構成するアミノ酸配列を改変する方 法としては、通常行われる遺伝情報を改変する手法が用いられる。すなわち、タンパ ク質の遺伝情報を有する DNAの特定の塩基を変換することにより、或いは特定の塩 基を挿入または欠失させることにより、改変蛋白質の遺伝情報を有する DNAが作成 される。 DNA中の塩基を変換する具体的な方法としては、例えば市販のキット (Tm nsformerMutagenesis Kit; Clonetech製, EXOIII/ Mung Bean
Deletion Kit ; Stratagene製, QuickChange Site Directed Mutagenesis Kit; Stratagene製など)の使用、或いはポリメラーゼ連鎖反応法 (PCR)の利用が 挙げられる。
[0114] 本発明では、配列番号 1に示される PQQGDHの 76位、 167位、 168位、 169位、 170位および 245位に着目し、そのアミノ酸置換体を作成したところ、基質特異性が 改善された PQQGDH改変体を得ることができた。基質特異性に関しては、 Q76K, Q168A, A170P, E245D, (Q168A+L169G+E2 45D) , (Q168A +L169P+E245D) , (Q168S + L169S) , (Q168A + L169D) , ( Q168S + E245D) , (Q168S + L169E) , (Q168A + L169G) , ( Q168S + L169P) , (Q168A + L169A) , (Q168A + L169C) , ( Q168A + L169E) , (Q168A + L169K) , (Q168A + L169M) , ( Q168A + L169N) , (Q168A + L169P) , (Q168A + L169S) およ び (Q168A + LI 69T)が特に好ましい。
[0115] 本発明では、配列番号 1に示される PQQGDHの 20位、 76位、 89位、 168位、 16 9位、 245位、 246位及び 300位に着目し、そのアミノ酸置換体を作成したところ、安 定性が改善された PQQGDH改変体を得ることができた。熱安定性に関する限り、 K 20E, (K89E + K300R) , Q168A, (Q168A + L
169D) , (Q168S + L169S) , (Q168S + L169E) , (Q168S + L1 69P) , (Q168A + L169G) , Q168D, Q168E, Q168F, Q168G, Q168H, Q168M, Q168P, Q168S, Q168W, Q168Y, (Q168A + L169A) , (Q168A + L169C) , (Q168A + L169E) , (Q168A + L169F) , (Q168A + L169H) , (Q168A + L169K) , (Q 168A + L169N) , (Q168A + L169P) , (Q168A + L169Q) , (Q 168A + L169R) , (Q168A + L169T) , (Q168A + L169Y) , (Q1 68A+L169G+E245D) , (Q168A+L169P+E245D) 及び Q246Hの置換 が特に望ましい。
[0116] あるいは、本発明では、配列番号 1に示される PQQGDHの 74位、 146位、 168位 、 169位、 170位、 245位及び 342位に着目し、そのアミノ酸置換体を作成したところ 、基質特異性が改善された PQQGDH改変体を得ることができた。基質特異性に関 しては、
D74V、 M342I、 M342V、 M342P、 M342A、 S146A、 Q168A、 L169P、 A170 Lゝ A170M、 A170I、 A170Fゝ(S146A+A170L)ゝ (Q168A+L169P+A170 L)ゝ(S146A+A170M)、(Q168A+L169P+A170M)ゝ (S146A+Q168A+ L169P+A170L)ゝ(S146A+Q168A+L169P+A170M)ゝ (Q168A+L169 P+A170L+E245D)ゝ(Q168A+L169P+A170M+E245D)ゝ(S146A+M 3421)、 (Q168A+L169P+A170L + M342I) , (Q168A+L169P+A170M + M342I)、(S146A+M342V)ゝ (Q168A+L169P+A170L + M342V) , (Q 168A+L169P+A170M + M342V) , (S146A+M342P)、 (Q168A+L169 P+A170L + M342P) , (Q168A+L169P+A170M + M342P)、 (S146A+ M342A)ゝ (Q168A+L169P+A170L + M342A) , (Q168A+L169P+A17 0M + M342A)、(D74V+ S 146A)ゝ(D74V+Q168A+L169P+A170L)、 ( D74V+Q168A+L169P+A170M)、 (Q168A+L169P+A170L+E245D + M342I)、 (Q168A+L169P+A170M+E245D + M342I) , (Q168A+L1 69P+A170L+E245D+M342V)、 (Q168A+L169P+A170M+E245D+ M342V)ゝ (Q168A+L169P+A170L+E245D+M342A) , (Q168A+L16 9P+A170M+E245D + M342A)が特に好ましい。
[0117] 改変タンパク質は、液状 (水溶液、懸濁液等)、粉末、凍結乾燥など種々の形態をと ることができる。凍結乾燥法としては、特に制限されるものではなく常法に従って行え ばよい。本発明の酵素を含む組成物は凍結乾燥物に限られず、凍結乾燥物を再溶 解した溶液状態であってもよい。また、グルコース測定を行なう際には、グルコースァ ッセィキット、グルコースセンサーなどの種々の形態をとることができる。この様にして 得られた精製された改変タンパク質は、以下のような方法により安定ィ匕することができ る。
[0118] 塩化カルシウム、酢酸カルシウム、クェン酸カルシウムなどのカルシウム塩、或!、は グルタミン酸、グルタミン、ァスパラギン酸、リジンなどのアミノ酸、或いは α—ケトグル タル酸、 α—ケトグルコン酸、リンゴ酸などの有機酸、或いは血清アルブミンを単独で 、または組み合わせて含有させることにより、改変タンパク質をさらに安定ィ匕すること ができる。
[0119] 精製された改変タンパク質に(1)ァスパラギン酸、グルタミン酸、 α—ケトグルタル酸 、リンゴ酸、 α—ケトグルコン酸、 α—サイクロデキストリンおよびそれらの塩力 なる群 力 選ばれた 1種または 2種以上の化合物および(2)アルブミンを共存せしめること により、改変タンパク質をさらに安定ィ匕することができる。
[0120] 凍結乾燥組成物中においては、 PQQGDH含有量は、酵素の起源によっても異な るが、通常は約 5— 50% (重量比)の範囲で好適に用いられる。酵素活性に換算す ると、 100— 2000UZmgの範囲で好適に用いられる。
[0121] ァスパラギン酸、グルタミン酸、 aーケトグルタル酸、リンゴ酸、及び α—ケトグルコ ン酸の塩としては、ナトリウム、カリウム、アンモ-ゥム、カルシウム、及びマグネシウム 等の塩が挙げられるが特に限定されるものではない。上記化合物とその塩及び α— シクロデキストリンの添カ卩量は、 1一 90% (重量比)の範囲で添加することが好ましい。 これらの物質は単独で用いてもょ 、し、複数組み合わせてもよ 、。
[0122] 含有される緩衝液としては特に限定されるものではないが、トリス緩衝液、リン酸緩 衝液、ホウ酸緩衝液、 GOOD緩衝液などが挙げられる。該緩衝液の pHは 5. 0-9. 0程度の範囲で使用目的に応じて調整される。凍結乾燥物中においては緩衝剤の 含有量は、特に限定されるものではないが、好ましくは 0. 1% (重量比)以上、特に好 ましくは 0. 1— 30% (重量比)の範囲で使用される。
[0123] 使用できるアルブミンとしては、牛血清アルブミン(BSA)、卵白アルブミン(OVA) などが挙げられる。特に BSAが好ましい。該アルブミンの含有量は、好ましくは 1一 8 0% (重量比)、より好ましくは 5— 70% (重量比)の範囲で使用される。
[0124] 組成物には、さらに他の安定化剤などを PQQGDHの反応に特に悪い影響を及ぼ さないような範囲で添加してもよい。本発明の安定化剤の配合法は特に制限されるも のではない。例えば PQQGDHを含む緩衝液に安定化剤を配合する方法、安定ィ匕 剤を含む緩衝液に PQQGDHを配合する方法、あるいは PQQGDHと安定化剤を緩 衝液に同時に配合する方法などが挙げられる。
[0125] また、カルシウムイオンを添カ卩しても安定ィ匕効果が得られる。すなわち、カルシウム イオンまたはカルシウム塩を含有させることにより、改変タンパク質を安定ィ匕させること ができる。カルシウム塩としては、塩化カルシウムまたは酢酸カルシウムもしくはクェン 酸カルシウム等の無機酸または有機酸のカルシウム塩などが例示される。また、水性 組成物において、カルシウムイオンの含有量は、 1 X 10-4— I X 10— 2Mであること が好ましい。
[0126] カルシウムイオンまたはカルシウム塩を含有させることによる安定ィ匕効果は、グルタ ミン酸、グルタミンおよびリジン力 なる群力も選択されたアミノ酸を含有させることによ り、さらに向上する。
[0127] グルタミン酸、グルタミンおよびリジン力もなる群力も選択されるアミノ酸は、 1種また は 2種以上であってもよい。前記の水性組成物において、グルタミン酸、グルタミンお よびリジン力 なる群力 選択されたアミノ酸の含有量は、 0. 01-0. 2重量%である ことが好ましい。 [0128] さらに血清アルブミンを含有させてもよい。前記の水性組成物に血清アルブミンを 添加する場合、その含有量は 0. 05-0. 5重量%であることが好ましい。
[0129] 緩衝剤としては、通常のものが使用され、通常、組成物の pHを 5— 10とするものが 好ましい。具体的にはトリス塩酸、ホウ酸、グッド緩衝液が用いられる力 カルシウムと 不溶性の塩を形成しない緩衝液はすべて使用できる。
[0130] 前記の水性組成物には、必要により他の成分、例えば界面活性剤、安定化剤、賦 形剤などを添加しても良 、。
[0131] 本発明は、野生型のピロ口キノリンキノン依存性グルコースデヒドロゲナーゼ(PQQ GDH)よりも二糖類に対する作用性が低下した改変型 PQQGDHを含むグルコース アツセィキットである。あるいは、該改変型 PQQGDHを含むグルコースセンサーであ る。そして、該改変型 PQQGDHを含むグルコース測定方法である。
[0132] 本発明においては以下の種々の方法によりグルコースを測定することができる。
グノレコースアツセィキット
本発明はまた、本発明に従う改変型 PQQGDHを含むグルコースアツセィキットを 特徴とする。本発明のグルコースアツセィキットは、本発明に従う改変型 PQQGDH を少なくとも 1回のアツセィに十分な量で含む。典型的には、キットは、本発明の改変 型 PQQGDHに加えて、アツセィに必要な緩衝液、メディエーター、キヤリブレーショ ンカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。本発明に 従う改変型 PQQGDHは種々の形態で、例えば、凍結乾燥された試薬として、または 適切な保存溶液中の溶液として提供することができる。好ましくは本発明の改変型 P QQGDHはホロ化した形態で提供されるが、アポ酵素の形態で提供し、使用時にホ ロイ匕することちでさる。
[0133] グノレコースセンサー
本発明はまた、本発明に従う改変型 PQQGDHを用いるグルコースセンサーを特 徴とする。電極としては、カーボン電極、金電極、白金電極などを用い、この電極上 に本発明の酵素を固定ィ匕する。固定化方法としては、架橋試薬を用いる方法、高分 子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電 性ポリマー、酸ィ匕還元ポリマーなどがあり、あるいはフエ口センあるいはその誘導体に 代表される電子メディエーターとともにポリマー中に固定あるいは電極上に吸着固定 してもよく、またこれらを組み合わせて用いてもよい。好ましくは本発明の改変型 PQ QGDHはホロ化した形態で電極上に固定ィ匕する力 アポ酵素の形態で固定ィ匕し、 P QQを別の層としてまたは溶液中で提供することもできる。典型的には、ダルタルアル デヒドを用いて本発明の改変型 PQQGDHをカーボン電極上に固定ィ匕した後、アミ ン基を有する試薬で処理してダルタルアルデヒドをブロッキングする。
[0134] グルコース濃度の測定は、以下のようにして行うことができる。恒温セルに緩衝液を 入れ、 PQQおよび CaC12、およびメディエーターを加えて一定温度に維持する。メ ディエーターとしては、フェリシアン化カリウム、フエナジンメトサルフェートなどを用い ることができる。作用電極として本発明の改変型 PQQGDHを固定ィ匕した電極を用い 、対極 (例えば白金電極)および参照電極 (例えば AgZAgCl電極)を用いる。カー ボン電極に一定の電圧を印加して、電流が定常になった後、グルコースを含む試料 を加えて電流の増加を測定する。標準濃度のグルコース溶液により作製したキヤリブ レーシヨンカーブに従い、試料中のグルコース濃度を計算することができる。
[0135] ピロ口キノリンキノン依存性グルコース脱水素酵素をバイオセンサーに用いる場合、 そのストリップ上では、酵素は検体の血液により溶解されることになる力 血液は、水 や他の一般的な試薬に用いられる溶媒と比較して、粘度が高ぐ溶解性が低いので 、ストリップ上に添加する酵素量は、タンパク量として少ない方がより望ましい。
本願発明の方法によれば、本願発明のピロ口キノリンキノン依存性グルコース脱水 素酵素の比活性は 1より大きい酵素が得られる。好ましくは 1. 1以上、より好ましくは 1 . 5以上のものが得られる。
比活性が高いと、タンパク質としての添加量が少なくて済むため、本願発明のダル コースセンサーは、既述の安定化剤等の添加量の上限制約が低減され、より高い安 定性を確保できる可能性を高められる。
実施例
[0136] 以下、本発明を実施例に基づきより詳細に説明する。
[0137] 実施例 1 : PQQ依存性グルコース脱水素酵素遺伝子の発現プラスミドの構築
野生型 PQQ依存性グルコース脱水素酵素の発現プラスミド PNPG5は、ベクター p Bluescript SK (一)のマルチクロー-ング部位にァシネトパクタ^ ~ ·バウマン- (Aci netobacter baumannii) NCIMB11517株由来の PQQ依存性グルコース脱水 素酵素をコードする構造遺伝子を挿入したものである。その塩基配列を配列表の配 列番号 2に、また該塩基配列から推定される PQQ依存性グルコース脱水素酵素のァ ミノ酸配列を配列表の配列番号 1に示す。
実施例 2:変異型 PQQ依存性グルコース脱水素酵素の作製
野生型 PQQ依存性グルコース脱水素酵素遺伝子を含む組換えプラスミド PNPG5 と配列番号 3記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴヌクレオチ ドを基に、 QuickChangeTM Site-Directed Mutagenesis Kit (STRATAG ENE製)を用いて、そのプロトコールに従って変異処理操作を行い、更に塩基配列 を決定して、配列番号 1記載のアミノ酸配列の 76番目のグルタミンがァスパラギンに 置換された変異型 PQQ依存性グルコース脱水素酵素をコードする組換えプラスミド ( PNPG5M1)を取得した。
PNPG5と配列番号 4記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴ ヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 76番目 のグルタミンがグルタミン酸に置換された変異型 PQQ依存性グルコース脱水素酵素 をコー
ドする組換えプラスミド (PNPG5M2)を取得した。
PNPG5と配列番号 5記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴ ヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 76番目 のグルタミンがスレオニンに置換された変異型 PQQ依存性グルコース脱水素酵素を コードする組換えプラスミド (PNPG5M3)を取得した。
PNPG5と配列番号 6記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴ ヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 76番目 のグルタミン力メチォニンに置換された変異型 PQQ依存性グルコース脱水素酵素を コードする組換えプラスミド (PNPG5M4)を取得した。
PNPG5と配列番号 7記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴ ヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 76番目 のグルタミンがグリシンに置換された変異型 PQQ依存性グルコース脱水素酵素をコ ードする組換えプラスミド(PNPG5M5)を取得した。
PNPG5と配列番号 8記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴ ヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 76番目 のグルタミンがリジンに置換された変異型 PQQ依存性グルコース脱水素酵素をコー ドする組換えプラスミド (PNPG5M6)取得した。
PNPG5と配列番号 9記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴ ヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168番 目のグルタミン力 Sイソロイシンに置換された変異型 PQQ依存性グルコース脱水素酵 素をコードする組換えプラスミド (PNPG5M7)を取得した。
PNPG5と配列番号 10記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミン力パリンに置換された変異型 PQQ依存性グルコース脱水素酵素を コードする組換えプラスミド (PNPG5M8)を取得した。
PNPG5と配列番号 11記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがァラニンに置換された変異型 PQQ依存性グルコース脱水素酵素 をコードする組換えプラスミド (PNPG5M9)を取得した。
PNPG5と配列番号 22記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 20番 目のリジンがグルタミン酸に置換された変異型 PQQ依存性グルコース脱水素酵素を コードする組換えプラスミド (PNPG5M10)を取得した。
PNPG5と配列番号 23記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 89番 目のリジンがグルタミン酸に置換された変異型 PQQ依存性グルコース脱水素酵素を コードする組換えプラスミドを取得した。更にこのプラスミドと配列番号 24記載の合成 オリゴヌクレオチド及びこれと相補的な合成オリゴヌクレオチドを基に、上記方法と同 様にして配列番号 1記載のアミノ酸配列の 89番目のリジンがグルタミン酸に、 300番 目のリジンがアルギニンに置換された変異型 PQQ依存性グルコース脱水素酵素をコ ードする組換えプラスミド(pNPG5Ml 1)を取得した。
PNPG5と配列番号 25記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 246 番目のグルタミンがヒスチジンに置換された変異型 PQQ依存性グルコース脱水素酵 素をコードする組換えプラスミド (PNPG5M12)を取得した。
PNPG5と配列番号 26記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがセリンに、 169番目のロイシンがセリンに置換された変異型 PQQ 依存性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5M13)を取得し た。
PNPG5と配列番号 27記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがァラニンに、 169番目のロイシンがァスパラギン酸に置換された変 異型 PQQ依存性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5M14 )を取得した。
PNPG5と配列番号 66記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがセリンに、 169番目のロイシンがグルタミン酸に置換された変異型 PQQ依存性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5M15)を 取得した。
PNPG5と配列番号 67記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがセリンに、 169番目のロイシンがプロリンに置換された変異型 PQ Q依存性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5M16)を取得 した。
PNPG5と配列番号 68記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがァラニンに、 169番目のロイシンがグリシンに置換された変異型 P QQ依存性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5M17)を取 得した。
pNPG5、 pNPG5Ml、 pNPG5M2、 pNPG5M3、 pNPG5M4、 pNPG5M5、 p NPG5M6、 pNPG5M7、 pNPG5M8、 pNPG5M9、 pNPG5M10、 pNPG5Ml l 、 pNPG5M12、 pNPG5M13、 pNPG5M14、 pNPG5M15、 pNPG5M16, pNP G5M17の各組換えプラスミドで大腸菌コンビテントセル(ェシエリヒア'コリー JM109 ;東洋紡績製)を形質転換し、該形質転換体をそれぞれ取得した。
[0139] 実施例 3:シユードモナス属細菌で複製できる発現ベクターの構築
実施例 2で得た組換えプラスミド PNPG5M1の DNA5 μ gを制限酵素 BamHIおよ び XHoI (東洋紡績製)で切断して、変異型 PQQ依存性グルコース脱水素酵素の構 造遺伝子部分を単離した。単離した DNAと BamHIおよび XHoIで切断した pTM33 ( 1 g)とを T4DNAリガーゼ 1単位で 16°C、 16時間反応させ、 DNAを連結した。連 結した DNAはェシエリヒア'コリ DH5 aのコンビテントセルを用いて形質転換を行つ た。得られた発現プラスミドを PNPG6M1と命名した。
pNPG5、 pNPG5M2、 pNPG5M3、 pNPG5M4、 pNPG5M5、 pNPG5M6、 p NPG5M7、 pNPG5M8、 pNPG5M9、 pNPG5M10、 pNPG5Ml l、 pNPG5Ml 2、 pNPG5M13、 pNPG5M14、 pNPG5M15、 pNPG5M16, pNPG5M17の各 組換えプラスミドにつ 、ても上記方法と同様にして発現プラスミドを取得した。得られ た発現プラスミドそれぞれ pNPG6、 pNPG6M2、 pNPG6M3、 pNPG6M4、 pNP G6M5、 pNPG6M6、 pNPG6M7、 pNPG6M8、 pNPG6M9、 pNPG6M10、 pN PG6M11、 pNPG6M12、 pNPG6M13、 pNPG6M14、 pNPG6M15、 pNPG6 M16, pNPG6M17と命名した。
[0140] 実施例 4:シユードモナス属細菌の形質転換体の作製
シユードモナス ·プチダ TE3493 (微工研寄 12298号)を LBG培地(LB培地 + 0. 3%グリセロール)で 30°C、 16時間培養し、遠心分離(12, 000rpm、 10分間)により 菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK—リン酸緩 衝液 (pH7. 0) 8mlをカ卩え、菌体を懸濁した。再度遠心分離(12, 000rpm、 10分間 )により菌体を回収し、この菌体に氷冷した 300mMシ
ユークロースを含む 5mMK—リン酸緩衝液 (pH7. 0) 0. 4mlを加え、菌体を懸濁した 該懸濁液に実施例 3で得た発現プラスミド pNPG6Mlを 0. 5 gカロえ、エレクトロボ レーシヨン法により形質転換した。 100 μ g/mlのストレプトマイシンを含む LB寒天培 地に生育したコロニーより、 目的とする形質転換体を得た。
pNPG6、 pNPG6M2、 pNPG6M3、 pNPG6M4、 pNPG6M5、 pNPG6M6、 pN PG6M7、 pNPG6M8、 pNPG6M9、 pNPG6M10、 pNPG6Ml l、 pNPG6M12 、 pNPG6M13、 pNPG6M14、 pNPG6M15、 pNPG6M16, pNPG6M17の各 発現プラスミドにつ!/ヽても上記方法と同様にして、該形質転換体をそれぞれ取得した 試験例 1
GDH活性の測定方法 (比活性測定以外に使用)
測定原理
D—グルコース + PMS + PQQGDH → D—ダルコノ一 1, 5—ラタトン + PMS (re d)
2PMS (red) + NTB→ 2PMS + ジホルマザン
フエナジンメトサルフェート(PMS) (red)による-トロテトラゾリゥムブルー(NTB)の 還元により形成されたジホルマザンの存在は、 570nmで分光光度法により測定した 単位の定義
1単位は、以下に記載の条件下で 1分当たりジホルマザンを 0. 5ミリモル形成させる PQQGDHの酵素量を!、う。
(3)方法
試薬
A. D—グルコース溶液: 0. 5M (0. 9g D—グルコース(分子量 180. 16) /10ml H20)
B. PIPES— NaOH緩衝液, pH6. 5 : 50mM (60mLの水中に懸濁した 1. 51g の PIPES (分子量 302. 36)を、 5N NaOHに溶解し、 2. 2mlの 10% Triton X— 100を加える。 5N NaOHを用いて 25°Cで pHを 6. 5±0. 05に調整し、水を加えて 100mlとした。 )
C. PMS溶液: 3. 0mM (9. 19mgのフエナジンメトサルフェート(分子量 817. 65) /10mlH2O)
D. NTB溶液: 6. 6mM (53. 96mgの-卜ロテ卜ラゾジゥムブルー(分子量 817. 65) /10mlH2O)
E.酵素希釈液: ImM CaC12, 0. 1% Triton X— 100, 0. 1% BSAを含む 50mM PIPES— NaOH緩衝液(pH6. 5)
手順
遮光ビンに以下の反応混合物を調製し、氷上で貯蔵した (用時調製)
1. 8ml D -グルコース溶液 (A)
24. 6ml PIPES— NaOH緩衝液(pH6. 5) (B)
2. 0ml PMS溶液 (C)
1. 0ml NTB溶液 (D)
[表 1]
Figure imgf000040_0001
3. 0mlの反応混合液を試験管 (プラスチック製)に入れ、 37°Cで 5分間予備加温し た。
0. 1mlの酵素溶液を加え、穏やかに反転して混合した。
570nmでの水に対する吸光度の増加を 37°Cに維持しながら分光光度計で 4一 5分 間記録し、曲線の初期直線部分からの 1分当たりの A ODを計算した (ODテスト)。 同時に、酵素溶液に代えて酵素希釈液 (E)加えることを除いては同一の方法を繰 り返し、ブランク( Δ ODブランク)を測定した。
アツセィの直前に氷冷した酵素希釈液 (E)で酵素粉末を溶解し、同一の緩衝液で 0. 1-0. 8UZmlに希釈した (該酵素の接着性のためにプラスチックチューブの使 用が好ましい)。
十异
活性を以下の式を用いて計算する:
UZml= { A ODZmin ( A ODテスト 厶00ブランク) (1^7 (20. 1 X 1. 0 X Vs)
Figure imgf000041_0001
Vt :総体積(3. lml)
Vs :サンプル体積(1. Oml)
20. 1 :ジホルマザンの 1Z2ミリモル分子吸光係数
1. 0 :光路長(cm)
df :希釈係数
C :溶液中の酵素濃度(c mg/ml)
ホロ型発現精製酵素の調製方法 (本項は実施例 1一 14にのみ適用)
500mlの Terrific brothを 2L容坂ロフラスコに分注し、 121°C、 20分間オートク レーブを行い、放冷後別途無菌濾過したストレプトマイシンを 100 gZmlになるよう に添加した。この培地に 100 μ g/mlのストレプトマイシンを含む ΡΥ培地で予め 30 。C、 24時間培養したシユードモナス ·プチダ TE3493 (pNPG6Ml)の培養液を 5ml 接種し、 30°Cで 40時間通気攪拌培養した。培養終了時の PQQ依存性グルコース 脱水素酵素活性は、前記活性測定において、培養液 lml当たり約 120UZmlであ つた o
上記菌体を遠心分離により集菌し、 20mMリン酸緩衝液 (pH7. 0)に懸濁した後、 超音波処理により破砕し、更に遠心分離を行い、上清液を粗酵素液として得た。得ら れた粗酵素液を HiTrap— SP (アマシャムーフアルマシア)イオン交換カラムクロマトグ ラフィ一により分離'精製した。次いで 10mM PIPES— NaOH緩衝液 (pH6. 5)で 透析した後に終濃度が ImMになるように塩ィ匕カルシウムを添加した。最後に HiTra p-DEAE (アマシャム ファノレマシア)イオン交換カラムクロマトグラ
フィ一により分離'精製し、精製酵素標品を得た。本方法により得られた標品は、 SD
S— PAGE的にほぼ単一なバンドを示した。
pNPG6、 pNPG6M2、 pNPG6M3、 pNPG6M4、 pNPG6M5、 pNPG6M6、 p NPG6M7、 pNPG6M8、 pNPG6M9、 pNPG6M10、 pNPG6Ml l、 pNPG6Ml 2、 pNPG6M13、 pNPG6M14、 pNPG6M15、 pNPG6M16, pNPG6M17によ るシユードモナス'プチダ TE3493形質転換体についても上記方法と同様にして精 製酵素標品を取得した。
このようにして取得した精製酵素を用いて性能を評価した。
[0145] Km値の測定
上記の活性測定方法に従い、 PQQGDHの活性を測定した。グルコースに対する Km値の測定は、上記活性測定方法の基質濃度を変化させて実施した。また、マルト ースに対する Km値の測定は、上記活性測定方法のグルコース溶液をマルトース溶 液に置き換え、グルコースに対する Km値の測定同様基質濃度を変化させて実施し た。結果を表 2A表 2B、表 6,表 9及び表 14に示す。
[0146] 基質特異性 (本項は実施例 1一 14にのみ適用)
上記の活性測定方法に従い、 PQQGDHの活性を測定した。グルコースを基質溶 液とした場合の脱水素酵素活性値とマルトースを基質溶液とした場合の脱水素酵素 活性値を測定し、グルコースを基質とした場合の測定値を 100とした場合の相対値を 求めた。マルトースを基質溶液とした場合の脱水素酵素活性に際しては、 0. 5Mの マルトース溶液を調製して活性測定に用いた。結果を表 2A、表 2B、表 4、表 5、表 6 、表 8、表 9、表 11、表 13及び表 14に示す。
[0147] 熱安定性の測定
各種 PQQGDHを酵素濃度 5UZml、緩衝液(ImM CaC12、 1 M PQQを含 む 10mM PIPES— NaOH (pH6. 5)中で保存し、 58°Cで熱処理後の活性残存率 を求めた。結果を表 2A、表 2B、表 6、表 9及び表 14に示す。なお、熱処理を行なつ た時間は、表 2Bの試験のみ 30分間、その他の試験は 20分間である。
[0148] 至適 pHの測定 0. 22% Triton— X100を含む 50mMジン酸緩衝液(pH5. 0—8. 0)、 0. 22% Triton— X100を含む 50mM 酢酸緩衝液(pH3. 0— 6. 0)、 0. 22% Triton— X100を含む 50mM PIPES— NaOH緩衝液(pH6. 0—7. 0)、 0. 22% Triton— X100を含む 50mM
トリス塩酸緩衝液 (pH7. 0-9. 0)中で酵素活性を測定した。結果を図 1に示す。 また、最も高い活性を示した pHを表 2Aに示す。本表において、比活性は、酵素活 性(UZmL) ZA280nmの吸光度(ABS) で示される。また、 Km (Mai)は、マルト ースに対する Km値(mM)を、 Km(Glc)は、グルコースに対する Km値(mM)をそ れぞれ示す。
[表 2]
Figure imgf000043_0001
Q76Kのグルコース定量性の確認
0. 45UZmlの Q76Kを含んだ下記反応試薬を調整した。
50mM PIPES— NaOH緩衝液(pH6. 5)
ImM CaC12
0. 22% Triton— X100 0. 4mM PMS
0. 26mM WST— 1 (水溶性テトラゾリゥム塩、同仁化学研究所製)
下記に示すグルコース量の測定方法に従い、試料として精製水、 lOOmgZdl標準 液及びグルコース水溶液(600mgZdl)の 10水準の希釈系列を測定し、直線性を確 した 0
結果を図 2に示した。
[0151] グルコース量の測定方法
試料量 3 1に試薬 300 1を加え、試薬添加後 2分後からの 1分間における吸光度 変化を求め、精製水及びダルコース 1 OOmgZdl標準液での 2点検量線に基づき試 料中のグルコース量を求めた。尚、測定装置は日立 7150形自動分析装置を使用し 、測定波長は、主波長 480nmのみ、測定温度は 37°Cで実施した。
図 2より、 0— 600mgZdlの範囲で良好な直線性が確認された。
[0152] Q76Kのマルトース作用性の確認
0. 45UZmlの Q76Kを含んだ下記反応試薬を調整した。
50mM PIPES— NaOH緩衝液(pH6. 5)
ImM CaC12
0. 22% Triton— X100
0. 4mM PMS
0. 26mM WST - 1 (同仁化学研究所製)
サンプルとしては 100mg/dlまたは 300mg/dlのグルコースをベースに 0, 120, 240, 360mgZdlのマルトースを上乗せした物を準備した。 上記、グルコース量の 測定方法に従い、測定を実施した。
マルトースを含まな 、 100mg/dlダルコース溶液と 100とし、ベースに 1 OOmgZdl のグルコースを含むサンプルの測定値をそれぞれ相対評価した。同様にマルトース を含まない 300mg/dlグルコース溶液と 100とし、ベースに 300mg/dlのダルコ一 スを含むサンプルの測定値をそれぞれ相対評価した。結果を図 3に示す。
[0153] Q76Eのマルトース作用性の確認
Q76Kのマルトース作用性の確認同様に Q168Eを用いて作用性を評価した。酵 素は、 0. 24UZmlの濃度で添加した。結果を図 4に示す。
[0154] Q 168Vのマルトース作用性の確認
Q76Kのマルトース作用性の確認同様に Q 168Vを用いて作用性を評価した。酵 素は、 0. 35UZmlの濃度で添カ卩した。結果を図 5に示す。
[0155] Q 168Aのマルトース作用性の確認
Q76Kのマルトース作用性の確認同様に Q 168Aを用いて作用性を評価した。酵 素は、 0. 6UZmlの濃度で添加した。結果を図 6に示す。
[0156] 野生型酵素のマルトース作用性の確認
Q76Kのマルトース作用性の確認同様に野生型酵素を用いて作用性を評価した。 酵素は、 0. lUZmlの濃度で添加した。結果を図 7に示す。
図 3、図 4、図 5、図 6、図 7より、 Q76K、 Q76E、 Q 168V及び Q 168Aは野生型酵素 に比べ、マルトースに対する作用性が低下して 、ることが確認された。
[0157] 実施例 5 :変異ライブラリーの構築とスクリーニング
発現プラスミド PNPG5をテンプレートとして、 PCR法により構造遺伝子中の 167— 1 69領域にランダム変異を導入した。 PCR反応は表 3に示す組成の溶液中で、 98°C2 分間、次に、 98°C20秒間、 60°C30秒間、及び 72°C4分間を 30サイクルの条件で行 つた o
[0158] [表 3]
Figure imgf000045_0001
得られた変異ライブラリーを大腸菌 DH5 aに形質転換し、形成された各コロニーを 180 μ 1/wellの LB培地(100 μ g/mlのアンピシリンと 26 μ Μの PQQを含む)の分 注されたマイクロタイタープレートに植菌し、 37°C、 24時間培養した。培養液各 50 1を別のマイクロタイタープレートに移し、凍結融解の繰り返しによって培養菌体を破 砕した後、遠心分離 (2000rpm、 10分間)を行い、上清を回収した。回収した上清を 2枚のマイクロタイタープレートに各 10 1分注した。 1枚のマイクロタイタープレートは グルコースを基質とした活性測定試薬を用いて活性測定し、もう一枚はマルトースを 基質とした活性測定試薬を用いて活性測定し、反応性を比較した。マルトースに対 する反応性の変化したクローンが多数得られた。
マルトースに対する反応性の変化したクローンを LB培地(100 μ gZmlのアンピシリ ンと 26 μ Μの PQQを含む) 5mlの分注された試験管で培養し、確認実験を行ったと ころ、マルトースに対する反応性の変化したクローンが多数得られた。
結果を表 4に示す。
[表 4]
変異箇所 マルトース乍 変異箇所 マル卜-ス作
用性 用性
N167E+Q168G+L169T 64% N167S+Q168N+L169R 80%
Q168G+L169T 42% N167G+Q168S+L169Y 55%
N167L+Q168S+L169G 45% N167G+Q168S+L169S+L174F+K49N 39%
Q168N+L169N+S189R 5 1 % N167E+Q168G+L169A+S189G 58%
N167G+Q168R+L169A 66% N167S+Q168G+L169A 48%
N167G+Q168V+L169S 42% N167S+Q168V+L169S 7 1 %
N167T+Q168I+L169G 42% N167G+Q168W+L169N 7 2%
N167G+Q168S+L169N 50% N167G+Q168S+L169V 36%
Q168R+L169C 29% N167S+Q168L+L169G 4 1 %
Q168C+L169S 33% N167T+Q168N+L169K 68%
N167G+Q168T+L169A+S207C 24% N167A+Q168A+L169P 63%
N167G+Q168S+L169G 34% N167G+Q168G 46%
N167G+Q168D+L169K 35% Q168P+L169G 23%
N167G+Q168N+L169S 59% Q168S+L169G 22%
N188I+T349S 64% N167G+Q168G+L169A+F215Y 3 2%
N167G+Q168T+L169G 28% Q168G+L169V 43%
N167G+Q168V+L169T 43% N167E+Q168N+L169A 52%
Q168R+L謹 72% N167G+Q謹 23%
N167G+Q168T 69% N167G+Q168T+L169Q 7 2%
Q168I+L169G+K300T 24% N167G+Q168A 33%
N167T+Q168L+L169K 63% N167M+Q168Y+L169G 60%
N167E+Q168S 32% N167G+Q168T+L169V+S189G 42%
N167G+Q168G+L169C 37% N167G+Q168K+L169D 4 1 %
Q168A+L169D 1 6% Q168S+E245D 29%
Q168S+L169S 26% A351T 74%
N167S+Q168S+L169S 5 1 % Q168I+L169Q 5 1 %
N167A+Q168S+L169S 40% Q168A 35%
Q168S+L169P 20% Q168A+L169G 1 6%
Q168S+L169E 1 5%
同様にして 67— 69領域 (フォワードプライマー:配列番号 14に記載、リバースプライ マー:配列番号 15に記載を使用)、 129—131領域 (フォワードプライマー:配列番号 16に記載、リバースプライマー:配列番号 17に記載を使用)、 341— 343領域 (フォヮ 一ドプライマ一:配列番号 18に記載、リバースプライマー:配列番号 1
9に記載を使用)にも変異導入した。また、 428と 429 (フォワードプライマー:配列番 号 20に記載、リバースプライマー:配列番号 21に記載を使用)の間に挿入を試みた 結果を表 5に示す, [0162] [表 5]
Figure imgf000048_0001
[0163] これらのうち、マルトースに対する作用性が大きく低下している変異体を選抜 (Q16 8S +E245D, Q168A+L169D, Q168S +L169S, Q168S+L169E, Q168A +L169G、 Q168S +L169P)し、これらの変異体からプラスミドを抽出し、実施例 3 並びに実施例 4記載の方法に準じてシユードモナスを形質転換してホロ型酵素を発 現し、精製酵素を取得して特性を評価した。結果を表 6に示す。表 6において、比活 性は、酵素活性 (UZml)ZA280nmの吸光度 で示される。
[0164] [表 6]
Figure imgf000048_0002
実施例 6: Q 168部位の変異による基質特異性への影響
実施 ί列 5【こ記載の方法【こ準じて、 Q168C, Q168D, Q168E, Q168F, Q168G , Q168H, Q168K, Q168L, Q168M, Q168N, Q168P、 Q168R, Q168S, Q 168T、 Q168W、 Q168Yの各変異体を調製した。各変異体の調製に使用したブラ イマ一を表 7に示す。また、調製した各変異体を用い、試験管培養にて調製した破砕 液でマルトースに対する反応性を比較した結果を表 8に示す。更に、各変異体からプ ラスミドを抽出し、実施例 3並びに実施例 4記載の方法に準じてシユードモナスを形質 転換してホロ型酵素を発現し、精製酵素を取得して特性を評価した。結果を表 9に示 す。表 9において、比活性は、酵素活性 (UZml)ZA280nmの吸光度 で示される
[0166] [表 7]
Figure imgf000049_0001
[0167] [表 8] 変異箇所 マ ノレ ト 一 ス 変異箇所 マ ル ト 一 ス 作用性 作用性
Q 1 6 8 C 5 4 % Q 1 6 9 M 6 4 %
Q 1 6 8 D 2 9 % Q 1 6 8 N 8 2 %
Q 1 6 8 E 3 6 % Q 1 6 8 P 1 0 3 %
Q 1 6 8 F 4 3 % Q 1 6 8 R 3 6 %
Q 1 6 8 G 4 6 % Q 1 6 8 S 6 0 %
Q 1 6 8 H 5 5 % Q 1 6 8 T 9 4 %
Q 1 6 8 K 8 3 % Q 1 6 8 W 8 7 %
Q 1 6 8 L 9 2 % Q 1 6 8 Y 9 3 % 里 1 0 4 %
[0168] [表 9]
Figure imgf000050_0001
[0169] 実施例 7 : L169部位の変異による基質特異性への影響 実施例 2に記載の方法に準じて、 L169A, L169V, L169H、 L169Y、 L169K, L169D, L169S, L169N, L169G, L169Cの各変異体を調製した。各変異体の 調製に使用したプライマーを表 10に示す。また、調製した各変異体を用い、試験管 培養にて調製した破砕液でマルトースに対する反応性を比較した結果を表 11に示 す。
[0170] [表 10]
Figure imgf000051_0001
[0171] [表 11]
Figure imgf000051_0002
実施例 8 : Q168A変異体に対する L169部位の変異の組み合わせによる基質特異 性への影響
実施例 5に記載の方法に準じて、 Q168A+L169A、 Q168A+L169C、 Q168A +L169Eゝ Q168A+L169F, Q168A+L169H, Q168A+L169I, Q168A+ L169K、 Q168A+L169M, Q168A+L169N, Q168A+L169P, Q168A+L 169Q、 Q168A+L169R, Q168A+L169S、 Q168A+L169Tゝ Q168A+L1 69V、 Q168A+L169W、 Q168A+L169Yの各変異体を調製した。各変異体の 調製に使用したプライマーを表 12に示す。また、調製した各変異体を用い、試験管 培養にて調製した破砕液でマルトースに対する反応性を比較した結果を表 13に示 す。更に、各変異体カゝらプラスミドを抽出し、実施例 3並びに実施例 4記載の方法に 準じてシユードモナスを形質転換してホロ型酵素を発現し、精製酵素を取得して特性 を評価した。結果を表 14に示す。表 14において、比活性は、酵素活性 (UZml)Z A280nmの吸光度 で示される。
[0173] [表 12]
Figure imgf000052_0001
[0174] [表 13] 変異箇所 マル ト一ス 変異箇所 マル ト一ス作
作用性 用性
Q168A+L169A 1 9% Q168A+L169P 24%
Q168A+L169C 7 % Q168A+L169Q 42%
Q168A+L169E 1 7 % Q168A+L169R 42%
Q168A+L169F 22% Q168A+L169S 1 4%
Q168A+L169H 2 1 % Q168A+L169T 24%
Q168A+L169I 43% Q168A+L169V 34%
Q168A+L169K 2 1 % Q168A+L169W 33 %
Q168A+L169M 22% Q168A+L169Y 37 %
Q168A+L169N 1 9% 野生型 1 04%
[0175] [表 14]
Figure imgf000053_0001
[0176] 実施例 9 :A170部位の変異による基質特異性への影響
実施例 2に記載の方法に準じて、 A170C、 A170Dゝ A170E, A170F, A170G, A170H, A170K, A170L, A170M, A170N, A170Pゝ A170R, A170S, A17 OTゝ A170Wゝ A170Y, A170V, A170I, A170Qの各変異体を調製した。各変異 体の調製にはフォワードプライマーとして配列番号 69記載の合成オリゴヌクレオチド を、リバースプライマーとして配列番号 69と相補的な合成オリゴヌクレオチド使用した 。調製した変異ライブラリーをスクリーニングして目的の変異体を取得した。試験管培 養にて調製した破砕液を用 、てマルトースに対する反応性を比較した結果を表 15に 示す。
[0177] [表 15]
Figure imgf000054_0001
[0178] 実施例 10 :Ε245部位の変異による基質特異性への影響
実施例 2に記載の方法に準じて、 E245C、 E245D、 E245A, E245F, E245G, E245H, E245K, E245L, E245M, E245N, E245P、 E245R, E245S, E245 T、 E245W、 Ε245Υ, E245V, Ε245Ι, E245Qの各変異体を調製した。各変異体 の調製にはフォワードプライマーとして配列番号 70記載の合成オリゴヌクレオチドを、 リバースプライマーとして配列番号 70と相補的な合成オリゴヌクレオチド使用した。調 製した変異ライブラリーをスクリーニングして目的の変異体を取得した。試験管培養 にて調製した破砕液を用 、てマルトースに対する反応性を比較した結果を表 16に示 す。
[0179] [表 16] 変異箇所 マル ト一ス 変異箇所 マ ノレ ト 一 ス
作用性 作用性
E245A 9 9 % E245Q 7 2 %
E245D 4 9 % E245 S 9 8 %
E245F 6 4 % E245 T 8 9 %
E245H 5 4 % E245V 8 5 %
E245 I 1 1 4 % E245W 9 2 %
E245K 活性消失 E245Y 活性消失
E245L 活性消失 E245 R 9 4 %
E245M 6 9 % E245 G 9 2 %
E245N 5 9 % E245 C 7 5 %
E245P 活性消失 野生型 9 9 %
[0180] 実施例 11 :N249部位の変異による基質特異性への影響
実施例 2に記載の方法に準じて、 N249C、 N249D、 N249A, N249F, N249G , Ν249Η, Ν249Κ, N249L, Ν249Μ, Ν249Ε, N249P、 N249R, N249S, Ν 249Τ、 N249W, N249V, Ν249Ι, N249Qの各変異体を調製した。各変異体の 調製にはフォワードプライマーとして配列番号 71記載の合成オリゴヌクレオチドを、リ バースプライマーとして配列番号 71と相補的な合成オリゴヌクレオチド使用した。調 製した変異ライブラリーをスクリーニングして目的の変異体を取得した。試験管培養 にて調製した破砕液を用 ヽてマルトースに対する反応性を比較した結果を表 17に示 す。
[0181] [表 17] 変異箇所 マル ト一ス 変異箇所 マ ノレ ト 一 ス
作用性 作用性
N249G 8 2 % N249 K 1 8 4 %
N249A 7 7 % N249 R 1 9 1 %
N249V 1 5 7 % N249 C 1 0 7 %
N249L 9 4 % N249 M 1 7 0 %
N249 I 1 3 7 % N249 F 活性消失
N249S 活性消失 N249W 活性消失
N249T 活性消失 N249 H 3 4 3 %
N249D 活性消失 N249 P 活性消失
N249E 8 6 % 野生型 1 0 6 %
N249Q 7 9 %
[0182] 実施例 12 :E245D変異の組み合わせによる基質特異性への影響
実施例 2に記載の方法に準じて、(Q168A+L169G+E245D)、 (Q168A+L1 69P+E245D)の各変異体を調製した。各変異体の調製にはフォワードプライマー として配列番号 72記載の合成オリゴヌクレオチドを、リバースプライマーとして配列番 号 72と相補的な合成オリゴヌクレオチド使用した。また、铸型 DNAとしては実施例 8 で取得した(Q 168 A + L 169G)または(Q 168 A + L 169P)の plasmidを使用した。 調製した変異体を、試験管培養にて調製した破砕液でマルトースに対する反応性を 比較した結果を表 18に示す。
[0183] [表 18]
Figure imgf000056_0001
[0184] 実施例 13 :T349部位の変異による基質特異性への影響 実施例 2に記載の方法に準じて、 T349S、 T349P、 Τ349Υの各変異体を調製し た。各変異体の調製にはフォワードプライマーとして配列番号 73記載の合成オリゴヌ クレオチドを、リバースプライマーとして配列番号 73と相補的な合成オリゴヌクレオチ ド使用した。調製した変異ライブラリーをスクリーニングして目的の変異体を取得した 。試験管培養にて調製した破砕液を用いてマルトースに対する反応性を比較した結 果を表 19に示す。
[0185] [表 19]
Figure imgf000057_0001
[0186] 実施例 14 :Ν429部位の変異による基質特異性への影響
実施例 2に記載の方法に準じて、 N429F、 N429P、 N429L、 N429Yの各変異 体を調製した。各変異体の調製にはフォワードプライマーとして配列番号 74記載の 合成オリゴヌクレオチドを、リバースプライマーとして配列番号 74と相補的な合成オリ ゴヌクレオチド使用した。調製した変異ライブラリーをスクリーニングして目的の変異 体を取得した。試験管培養にて調製した破砕液を用いてマルトースに対する反応性 を比較した結果を表 20に示す。
[0187] [表 20]
Figure imgf000057_0002
[0188] 実施例 101 : PQQ依存性グルコース脱水素酵素遺伝子の発現プラスミドの構築 実施例 1に記載の方法に同じ。
[0189] 実施例 102:変異型 PQQ依存性グルコース脱水素酵素の作製
野生型 PQQ依存性グルコース脱水素酵素遺伝子を含む組換えプラスミド PNPG5 と配列番号 75記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴヌクレオ チドを基に、 QuickChangeTM Site-Directed Mutagenesis Kit (STRATA GENE製)を用いて、そのプロトコールに従って変異処理操作を行い、更に塩基配 列を決定して、配列番号 1記載のアミノ酸配列の 74番目のァスパラギン酸がパリンに 置換された変異型 PQQ依存性グルコース脱水素酵素をコードする組換えプラスミド( PNPG5-74V)を取得した。
PNPG5と配列番号 76記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 342 番目のメチォニン力イソロイシンに置換された変異型 PQQ依存性グルコース脱水素 酵素をコードする組換えプラスミド (PNPG5— 3421)を取得した。
その他上記と同様に、 目的のアミノ酸部位を置換するよう設計した合成オリゴヌタレ ォチド及びこれと相補的な合成オリゴヌクレオチドを用いて、配列番号 1記載のァミノ 酸配列の 342番目のメチォニン力パリンに置換された変異型 PQQ依存性グルコース 脱水素酵素をコードする組換えプラスミド (pNPG5— 342V)、プロリンに置換された 変異型 PQQ依存性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5— 342P)、ァラニンに置換された変異型 PQQ依存性グルコース脱水素酵素をコードす る組換えプラスミド (PNPG5— 342A)を取得した。また 146番目のセリンがァラニンに 置換された変異型 PQQ依存性グルコース脱水素酵素をコードする組換えプラスミド( PNPG5-146A)、 170番目のァラニンがロイシンに置換された変異型 PQQ依存性 グルコース脱水素酵素をコードする組換えプラスミド(PNPG5—170L)、 170番目の ァラニン力 Sメチォニンに置換された変異型 PQQ依存性グルコース脱水素酵素をコー ドする組換えプラスミド(pNPG5— 170M)、 170番目のァラニンがイソロイシンに置換 された変異型 PQQ依存性グルコース脱水素酵素をコードする組換えプラスミド (pNP G5-170I)、 170番目のァラニンがフエ-ルァラニンに置換された変異型 PQQ依存 性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5—170F)を取得した 。それぞれの合成オリゴヌクレオチドを配列番号 77— 84に記載する。
pNPG5、 pNPG5— 74V、 pNPG5— 3421、 pNPG5— 342V、 pNPG5— 342P、 p NPG5— 342A、 pNPG5— 146A、 pNPG5— 170Lゝ pNPG5— 170Mゝ pNPG5— 17 01、 pNPG5— 170Fの各組換えプラスミドで大腸菌コンビテントセル(ェシエリヒア'コ リー JM109;東洋紡績製)を形質転換し、該形質転換体をそれぞれ取得した。
[0190] 実施例 103 :シユードモナス属細菌で複製できる発現ベクターの構築
実施例 102で得た組換えプラスミド pNPG5—74Vの DNA5 μ gを制限酵素 BamH Iおよび XHoI (東洋紡績製)で切断して、変異型 PQQ依存性グルコース脱水素酵素 の構造遺伝子部分を単離した。単離した DNAと BamHIおよび XHoIで切断した pT Μ33 ( 1 g)とを T4DNAリガーゼ 1単位で 16°C、 16時間反応させ、 DNAを連結し た。連結した DNAはェシエリヒア'コリ DH5 aのコンビテントセルを用いて形質転換を 行った。得られた発現プラスミドを PNPG6— 74Vと命名した。
pNPG5、 pNPG5— 3421、 pNPG5—342V、 pNPG5— 342P、 pNPG5—342A、 p NPG5— 146A、 pNPG5— 170L、 pNPG5— 170M、 pNPG5— 1701、 pNPG5— 17 OFの各組換えプラスミドについても上記方法と同様にして発現プラスミドを取得した。 得られた発現プラスミドそれぞれ pN
PG6、 pNPG6— 3421、 pNPG6— 342V、 pNPG6— 342P、 pNPG6— 342A、 pNP G6— 146A、 pNPG6— 170L、 pNPG6— 170M、 pNPG6— 1701、 pNPG6— 170F と命名した。
[0191] 実施例 104:シユードモナス属細菌の形質転換体の作製
シユードモナス ·プチダ TE3493 (微工研寄 12298号)を LBG培地(LB培地 + 0. 3%グリセロール)で 30°C、 16時間培養し、遠心分離(12, 000rpm、 10分間)により 菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK—リン酸緩 衝液 (pH7. 0) 8mlをカ卩え、菌体を懸濁した。再度遠心分離(12, 000rpm、 10分間 )により菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK—リ ン酸緩衝液 (PH7. 0) 0. 4mlをカ卩え、菌体を懸濁した。
該懸濁液に実施例 103で得た発現プラスミド pNPG6— 74Vを 0. 5 gカロえ、エレク トロポレーシヨン法により形質転換した。 100 μ gZmlのストレプトマイシンを含む LB 寒天培地に生育したコロニーより、目的とする形質転換体を得た。
pNPG6、 pNPG6— 3421、 pNPG6— 342V、 pNPG6— 342P、 pNPG6— 342A、 p NPG6— 146A、 pNPG6— 170L、 pNPG6— 170M、 pNPG6— 1701、 pNPG6— 17 OFの各発現プラスミドについても上記方法と同様にして、該形質転換体をそれぞれ 取得した。
[0192] 実施例 105 :ホロ型発現精製酵素の調製 (本項は実施例 101— 106にのみ適用)
500mlの Terrific brothを 2L容坂ロフラスコに分注し、 121°C、 20分間オートク レーブを行い、放冷後別途無菌濾過したストレプトマイシンを 100 gZmlになるよう に添加した。この培地に 100 μ g/mlのストレプトマイシンを含む ΡΥ培地で予め 30 。C、 24時間培養したシユードモナス ·プチダ TE3493 (pNPG6— 74V)の培養液を 5 ml接種し、 30°Cで 40時間通気攪拌培養した。培養終了時の PQQ依存性ダルコ一 ス脱水素酵素活性は、前記活性測定において、培養液 lml当たり約 30UZmlであ つた o
上記菌体を遠心分離により集菌し、 20mMリン酸緩衝液 (pH7. 0)に懸濁した後、 超音波処理により破砕し、更に遠心分離を行い、上清液を粗酵素液として得た。得ら れた粗酵素液を HiTrap— SP (アマシャムーフアルマシア)イオン交換カラムクロマトグ ラフィ一により分離'精製した。次いで 10mM PIPES— NaOH緩衝液 (p
H6. 5)で透析した後に終濃度が ImMになるように塩ィ匕カルシウムを添加した。最後 に HiTrap— DEAE (アマシャム ファノレマシア)イオン交換カラムクロマトグラフィーに より分離 '精製し、精製酵素標品を得た。本方法により得られた標品は、 SDS-PAG E的にほぼ単一なバンドを示した。
pNPG6、 pNPG6— 3421、 pNPG6— 342V、 pNPG6— 342P、 pNPG6— 342A、 p NPG6— 146A、 pNPG6— 170L、 pNPG6— 170M、 pNPG6— 1701、 pNPG6— 17 OFによるシユードモナス 'プチダ TE3493形質転換体についても上記方法と同様に して精製酵素標品を取得した。
このようにして取得した精製酵素を用いて性能を評価した。
[0193] 基質特異性 (本項は実施例 101— 106にのみ適用)
上記の活性測定方法に従い、 PQQGDHの活性を測定した。グルコースを基質溶 液とした場合の脱水素酵素活性値とマルトースを基質溶液とした場合の脱水素酵素 活性値を測定し、グルコースを基質とした場合の測定値を 100とした場合の相対値を 求めた。マルトースを基質溶液とした場合の脱水素酵素活性に際しては、 0. 5Mの マルトース溶液を調製して活性測定に用いた。結果を表 102に示す。
野生型 PQQGDHでは、グルコースとマルトースの反応性がほぼ等しくなつて!/、る のに対し、本願発明の改変型 PQQGDHではマルトースの反応性が低下している。
[表 102]
Figure imgf000061_0001
実施例 106 :多重変異体の作成と基質特異性
pNPG5、 pNPG5— 74V、 pNPG5— 3421、 pNPG5— 342V、 pNPG5— 342P、 p NPG5— 342A、 pNPG5— 146A、 pNPG5— 170Lゝ pNPG5— 170Mゝ pNPG5— 17 01、 pNPG5— 170Fの各プラスミドを铸型とし、配列番号 80記載の合成オリゴヌタレ ォチド及びこれと相補的な合成オリゴヌクレオチド、 168番目のグルタミンをァラニン に 169番目のロイシンをプロリンに 170番目のァラニンをロイシンに置換するよう設計 した配列番号 85記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴヌタレ ォチド、 168番目のグルタミンをァラニンに 169番目のロイシンをプロリンに 170番目 のァラニンをメチォニンに置換するよう設計した配列番号 86記載の合成オリゴヌタレ ォチド及びこれと相補的な合成オリゴヌクレオチド及び 245番目のグルタミン酸をァス ノ ラギン酸に置換するよう設計した配列番号 87記載の合成オリゴヌクレオチド及びこ れと相補的な合成オリゴヌクレオチドをそれぞれ用い、実施例 102記載の方法に準じ て、配列番号 1記載のアミノ酸配列の 146番目のセリンがァラニンに 170番目のァラ ニンがロイシンに置換された変異型 PQQGDHをコードする組換えプラスミド (pNPG 5— 146A+ 170L)、以下同義にて、 pNPG5—168A+ 169P+ 170L、 pNPG5— 1 46A+ 170Mゝ pNPG5— 168A+ 169P+ 170Mゝ pNPG5— 146A+ 168A+ 169 P+ 170L、 pNPG5-146A+ 168A+ 169P+ 170M, pNPG5-Q168A+L169 P+A170L+E245D, pNPG5— 168A+ 169P+ 170M + 245D、 pNPG5— 146 A+ 342I、 pNPG5-168A+ 169P+ 170L+ 342I, pNPG5— 168A+ 169P+ 1 70M + 342I, pNPG5— 146A+ 342V、 pNPG5— 168A+ 169P+ 170L + 342V 、 pNPG5-168A+ 169P+ 170M + 342V, pNPG5— 146A+ 342Pゝ pNPG5— 168A+ 169P+ 170L + 342P, pNPG5— 168A+ 169P+ 170M + 342Pゝ pNP G5— 146A+ 342A、 pNPG5— 168A+ 169P+ 170L+ 342A、 pNPG5— 168A + 169P+ 170M + 342A、 pNPG5— 74V+ 146A、 pNPG5— 74V+ 168A+ 16 9P+ 170L、 pNPG5-74V+ 168A+ 169P+ 170M, pNPG5— 168A+ 169P + 170L+ 245D+ 342I, pNPG5— 168A+ 169P+ 170M + 245D + 342I、 pNPG 5-168A+ 169P+ 170L+ 245D+ 342V、 pNPG5—168A+ 169P+ 170M + 2 45D+ 342V、 pNPG5— 168A+ 169P+ 170L + 245D+ 342A、 pNPG5— 168 A+ 169P+ 170M + 245D + 342Aを取得、さらに該形質転換体を取得した。なお 、 1度の変異導入により該変異プラスミドが取得できないものに関しては、異なる合成 オリゴヌクレオチドを用いて、同方法を 2度繰り返すことにより該変異プラスミドを取得 した。
さらに実施例 103— 105記載の方法に準じて、各形質転換体より、 (S146A+A1 70L)、 (Q168A+L169P+A170L) , (S146A+A170M)、 (Q168A+L169P +A170M)、 (S146A+Q168A+L169P+A170L) , (S146A+Q168A+L1 69P+A170M)、 (Q168A+L169P+A170L+E245D) , (Q168A+L169P +A170M+E245D)ゝ(S146A+M342I)、 (Q168A+L169P+A170L + M3 421)、 (Q168A+L169P+A170M + M342I) , (S146A+M342V)ゝ (Q168A +L169P+A170L + M342V)ゝ (Q168A+L169P+A170M + M342V) , (SI 46Α+Μ342Ρ)、(Q168A+L169P+A170L + M342P)、 (Q168A+L169P +A170M + M342P)ゝ(S146A+M342A)ゝ (Q168A+L169P+A170L + M 342Α)ゝ (Q168A+L169P+A170M + M342A) , (D74V+S146A)ゝ (D74V + Q168A+L169P+A170L) , (D74V+Q168A+L169P+A170M) , (Q16 8A+L169P+A170L+E245D + M342I)、 (Q168A+L169P+A170M+E 245D+M342I) , (Q168A+L169P+A170L+E245D+M342V) , (Q168A +L169P+A170M+E245D + M342V)、 (Q168A+L169P+A170L+E24 5D + M342A)、 (Q168A+L169P+A170M+E245D + M342A)の精製酵素 標品を取得し、基質特異性を評価した。結果を表 103に示す。
[表 103]
Figure imgf000063_0001
[実施例 201]
以下、配列番号 1に記載されるピロ口キノリンキノン依存性グルコース脱水素酵素に おいて、 Q168A、 (Q168A+L169G)ゝ (Q168A+L169C)、 (Q168A+L169P )、 (Q168S +L169E)、 (Q168S+L169P)の各改変型ピロ口キノリンキノン依存性 グルコース脱水素酵素を用いて、本発明を具体的に説明する。言うまでもなぐ本発 明は以下の実施例に限定されるものではない。
なお、本実施例で使用した Q168A、 (Q168A+L169G)、 (Q168A+L169C) 、 (Q168A+L169P)、 (Q168S+L169E)、 (Q168S+L169P)各改変型ピロ口 キノリンキノン依存性グルコース脱水素酵素の精製酵素標品は、以下に記載の手順 で取得した。
[0198] PQQ依存性グルコース脱水素酵素遺伝子の発現プラスミドの構築
野生型 PQQ依存性グルコース脱水素酵素の発現プラスミド PNPG5は、ベクター pBluescript SK (—)のマルチクロー-ング部位にァシネトパクタ^ ~ ·バウマン- (Ac inetobacter baumannii) NCIMB11517株由来の PQQ依存性グルコース脱水 素酵素をコードする構造遺伝子を挿入したものである。その塩基配列を配列表の配 列番号 2に、また該塩基配列から推定される PQQ依存性グルコース脱水素酵素のァ ミノ酸配列を配列表の配列番号 1に示す。
[0199] 変異型 PQQ依存性グルコース脱水素酵素の作製
野生型 PQQ依存性グルコース脱水素酵素遺伝子を含む組換えプラスミド PNPG5 と配列番号 88記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴヌクレオ チドを基に、 QuickChange (TM) Site— Directed Mutagenesis Kit (STRATA GENE製)を用いて、そのプロトコールに従って変異処理操作を行い、更に塩基配 列を決定して、配列番号 1記載のアミノ酸配列の 168番目のグルタミンがァラニンに 置換された変異型 PQQ依存性グルコース脱水素酵素をコードする組換えプラスミド( PNPG5M168A)を取得した。
PNPG5と配列番号 89記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがァラニンに、 169番目のロイシンがグリシンに置換された変異型 P QQ依存性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5M168A+ 169G)を取得した。
PNPG5と配列番号 90記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがァラニンに、 169番目のロイシンがシスティンに置換された変異 型 PQQ依存性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5M168 A+ 169C)を取得した。
PNPG5と配列番号 91記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがァラニンに、 169番目のロイシンがプロリンに置換された変異型 P QQ依存性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5M168A+ 169P)を取得した。
PNPG5と配列番号 92記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがセリンに、 169番目のロイシンがグルタミン酸に置換された変異型 PQ
Q依存性グルコース脱水素酵素をコードする組換えプラスミド(PNPG5M168S + 1 69E)を取得した。
PNPG5と配列番号 93記載の合成オリゴヌクレオチド及びこれと相補的な合成オリ ゴヌクレオチドを基に、上記方法と同様にして配列番号 1記載のアミノ酸配列の 168 番目のグルタミンがセリンに、 169番目のロイシンがプロリンに置換された変異型 PQ Q依存性グルコース脱水素酵素をコードする組換えプラスミド(PNPG5M168S + 1 69P)を取得した。
pNPG5M168A、 pNPG5M168A+ 169Gゝ pNPG5M168A+ 169C、 pNPG 5M168A+ 169P, pNPG5M168S + 169E、 pNPG5M168S + 169Pの各組換 えプラスミドで大腸菌コンビテントセル (ェシエリヒア'コリー JM109 ;東洋紡績製)を形 質転換し、該形質転換体をそれぞれ取得した。
シユードモナス属細菌で複製できる発現ベクターの構築
組換えプラスミド PNPG5M168Aの DNA5 μ gを制限酵素 BamHIおよび ΧΗοΙ ( 東洋紡績製)で切断して、変異型 PQQ依存性グルコース脱水素酵素の構造遺伝子 部分を単離した。単離した DNAと BamHIおよび XHoIで切断した ρΤΜ33 ( 1 g)と を T4DNAリガーゼ 1単位で 16°C、 16時間反応させ、 DNAを連結した。連結した D NAはェシエリヒア'コリ DH5 aのコンビテントセルを用いて形質転換を行った。得ら れた発現プラスミドを PNPG6M168Aと命名した。
pNPG5M168A+ 169G、 pNPG5M168A+ 169C、 pNPG5M168A+ 169P 、 pNPG5M168S + 169E, pNPG5M168S + 169Pの各糸且換えプラスミド【こつ!ヽ ても上記方法と同様にして発現プラスミドを取得した。得られた発現プラスミドそれぞ れ pNPG6M168A+ 169G、 pNPG6M168A+ 169C、 pNPG6M168A+ 169P 、 pNPG6M168S + 169E、 pNPG6M168S + 169Pと命名した。
[0201] シユードモナス属細菌の形質転換体の作製
シユードモナス ·プチダ TE3493 (微工研寄 12298号)を LBG培地(LB培地 + 0. 3%グリセロール)で 30°C、 16時間培養し、遠心分離(12, OOOrpm、 10分間)により 菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK リン酸緩 衝液 (pH7. 0) 8mlをカ卩え、菌体を懸濁した。再度遠心分離(12, OOOrpm、 10分間 )により菌体を回収し、この菌体に氷冷した 300mMシユークロースを含む 5mMK—リ ン酸緩衝液 (PH7. 0) 0. 4mlをカ卩え、菌体を懸濁した。
該懸濁液に発現プラスミド PNPG6M168Aを 0. 5 g加え、エレクト口ポレーシヨン 法により形質転換した。 100 g/mlのストレプトマイシンを含む LB寒天培地に生育 したコロニーより、目的とする形質転換体を得た。
pNPG6M168A+ 169G、 pNPG6M168A+ 169C、 pNPG6M168A+ 169P、 p NPG6M168S + 169E、 pNPG6M168S + 169Pについても、それぞれ同様に実 施し、目的とする形質転換体を得た。
[0202] ホロ型発現精製酵素の調製方法
500mlの Terrific brothを 2L容坂ロフラスコに分注し、 121°C、 20分間オートク レーブを行い、放冷後別途無菌濾過したストレプトマイシンを 100 gZmlになるよう に添加した。この培地に 100 μ g/mlのストレプトマイシンを含む ΡΥ培地で予め 30 。C、 24時間培養したシユードモナス'プチダ TE3493 (pNPG6M168A)の培養液を 5ml接種し、 30°Cで 40時間通気攪拌培養した。菌体を遠心分離により集菌し、 20m Mリン酸緩衝液 (pH7. 0)に懸濁した後、超音波処理により破砕し、更に遠心分離を 行い、上清液を粗酵素液として得た。得られた粗酵素液を HiTmp— SP (アマシャム ファノレマシア)イオン交換カラムクロマトグラフ
ィ一により分離'精製した。次いで 10mM PIPES-NaOH緩衝液 (pH6. 5)で透析 した後に終濃度が ImMになるように塩ィ匕カルシウムを添加した。最後に HiTmp— D EAE (アマシャム-フアルマシア)イオン交換カラムクロマトグラフィーにより分離'精製 し、精製酵素標品を得た。本方法により得られた標品は、 SDS— PAGE的にほぼ単 一なバンドを示した。
pNPG6M168A+ 169G、 pNPG6M168A+ 169C、 pNPG6M168A+ 169P 、 pNPG6M168S + 169E、 pNPG6M168S + 169Pによるシユードモナス'プチダ TE3493形質転換体についても上記方法と同様にして精製酵素標品を取得した。 このようにして取得した精製酵素を用いて性能を評価した。
フェリシアン化物イオンをメディエーターとするピロ口キノリンキノン依存性グルコース 脱水素酵素活性の測定方法
• 測定原理
D—ダルコース +フェリシアン化物イオン + PQQGDH→
D—ダルコノー 1, 5—ラタトン + フエロシアン化物イオン
フェリシアンィ匕物イオンの還元により生じたフエロシアンィ匕物イオンの存在は、分光光 度法により波長 420nmでの吸光度の減少を測定することで確認した。
• 単位の定義
1単位は、以下に記載の条件下で 1分当たり 1ミリモルの D—グルコースを酸ィ匕させ るピロ口キノリンキノン依存性グルコース脱水素酵素の酵素量をいう。
(3)方法
試薬
A. D—グルコース溶液: 1M (1. 8g D—グルコース(分子量 180. 16) /10mlH2 O)
B. PIPES— NaOH緩衝液, pH6. 5 : 50mM (60mLの水中に懸濁した 1. 51g の PIPES (分子量 302. 36)を、 5N NaOHに溶解し、 2. 2mlの 10% Triton X— 100を加える。 5N NaOHを用いて 25°Cで pHを 6. 5±0. 05に調整し、水を加えて 100mlとした。 )
C.フェリシアン化カリウム溶液: 50mM (0. 165g フェリシアン化カリウム(分子量 3 29. 25) / 10ml H20)
D.蒸留水
E.酵素希釈液: ImM CaC12, 0. 1% Triton X—100, 0. 1% BSAを含 む 50mM PIPES— NaOH緩衝液(pH6. 5) 手順
1.遮光ビンに以下の反応混合物を調製し、氷上で貯蔵した (用事調製)
0. 9ml D -グルコース溶液 (A)
25. 5ml PIPES— NaOH緩衝液(pH6. 5) (B)
2. Oml フェリシアンィ匕カリウム溶液 (C)
1. Oml 蒸留水 (D)
反応混合物中の濃度を表 201に示す。
[0204] [表 201] 反応混合物中の濃度
P I PES緩衝液 42 mM
D-グルコース 30 mM
フェリシアン化力リゥム 3. 4 mM
[0205] 2. 3. Omlの反応混合液を試験管 (プラスチック製)に入れ、 37°Cで 5分間予備加温 した。
3. 0. 1mlの酵素溶液を加え、穏やかに混合した。
4. 420nmでの水に対する吸光度の減少を 37°Cに維持しながら分光光度計で 4一 5 分間記録し、曲線の初期直線部分からの 1分間当たりの A ODを計算した (ODテスト )
同時に、酵素溶液に代えて酵素希釈液 (E)加えることを除いては同一の方法を繰 り返し、ブランク( Δ ODブランク)を測定した。
酵素溶液は、アツセィの直前に氷冷した酵素希釈液 (E)で 1. OUZml程度に希釈 した (該酵素の接着性のためにプラスチックチューブの使用が好まし 、)
[0206] 計算
活性を以下の式を用いて計算する: 体積活性 (U/ml) = { Δ OD/min ( Δ ODテスト一 Δ ODブランク) X Vt X df } Z ( 1. 04 X 1. O XVs)
重量活性 (UZmg) = (U/ml) X 1/C
Vt:総体積(3. lml)
Vs :サンプル体積(0. lml)
1. 04 :フェリシアン化カリウムのミリモル分子吸光係数
1. 0 :光路長(cm)
df :希釈係数
C :溶液中の酵素濃度(c mg/ml)
[0207] 比活性の測定
単位液量あたりのタンパク含量を Bradford法を原理とするプロテインアツセィにより 測定した。実際には Biorad社製のプロテインアツセィキットを用い、そのプロトコール に従った。 5倍希釈した市販の染色液 5mlに 0. lmlの酵素溶液を添加し、混和後、 室温にて 30分放置した後、 595nmの波長にて吸光度を測定した。この際、濃度既 知のゥシ血清アルブミンを同様に測定することで検量線を作成し、それより各酵素溶 液の単位液量あたりのタンパク含量を測定した。
一方、上記活性測定法により単位液量あたりの活性値を測定し、単位液量あたりの 活性値を単位液量あたりのタンパク含量で割ることで、ピロ口キノリンキノン依存性グ ルコース脱水素酵素の比活性を求めた。
結果を表 202に示す。
[0208] [表 202]
Figure imgf000069_0001
比活性測定の結果、フェリシアンィ匕物イオンをメディエーターとして酵素活性を測定 した場合、 V、ずれの改変型ピロ口キノリンキノン依存性グルコース脱水素酵素にぉ ヽ ても、野生型と比較して、比活性の増大を確認することが出来た。 [0210] 野生型ピロ口キノリンキノン依存性グルコース脱水素酵素のアミノ酸配列において、 1もしくは数個のアミノ酸を欠失、置換もしくは付加することにより、比活性が増大する 理由としては、次のような推論が可能である。
[0211] ピロ口キノリンキノン依存性グルコース脱水素酵素の詳細な反応メカニズムは、基質 である D—グルコースが酸ィ匕されて、電子が酵素に配位しているピロ口キノリンキノン に伝達し、さらにメディエーターであるフェリシアンィ匕物イオンに伝達する t 、うもので ある。そして、酵素反応の律速となるポイントは、ピロ口キノリンキノン力 フェリシアン 化物イオンへの反応性が低 、ことから、メディエーターであるフェリシアンィ匕物イオン に電子が伝達される過程にあると考えられる。
[0212] 例えば、活性中心近傍のアミノ酸を変異した場合を考えると、活性中心を含む活性 中心近傍の酵素の立体構造が変化し、フェリシアン化物イオンが進入しやすくなるた め、酵素反応の律速となっていたフェリシアン化物イオンへの電子伝達がスムーズに なり、その結果、比活性が向上したと考えられる。
[0213] すなわち、活性中心近傍のアミノ酸を 1つあるいはそれ以上置換変異させることによ り、同様にフェリシアンィ匕物イオンをメディエーターとする酵素活性測定において比 活性の向上が望めると推察する。あるいは別の見方では、本発明において、変異は 活性中心から半径 10オングストローム以内に存在するアミノ酸に対して行なわれるこ とが望ましい。
活性中心近傍のアミノ酸としては、 76位、 143位、 144位、 163位、 168位、 169位 、 228位、 229位、 247位、 248位、 343位、 346位、 348位、 377位、 406位、 408 位、 424位に位置するアミノ酸が具体的に挙げられる(たとえば、非特許文献 5を参 照)。
非特許文献 5 : Protein Science (2000) , 9 : 1265—1273
[0214] [実施例 202]
また、実施例 201で確認された比活性向上効果は、活性中心非近傍のアミノ酸置 換をカ卩えても維持されていることを、(Q168A+L169G+E245D)、 (Q168A+L1 69P+E245D)の各改変型ピロ口キノリンキノン依存性グルコース脱水素酵素を用 いて、具体的に説明する。言うまでもなぐ本発明は実施例に限定されるものではな い。
なお、本実施例で使用した(Q168A+L169G+E245D)、 (Q168A+L169P +E245D)各改変型ピロ口キノリンキノン依存性グルコース脱水素酵素の精製酵素 標品取得及び性能評価は、実施例 201と同様に実施した。 pNPG5M168A+ 169 Gと配列番号 94記載の合成オリゴヌクレオチド及びこれと相補的な合成オリゴヌタレ ォチドを基に、配列番号 1記載のアミノ酸配列の 168番目のグルタミンがァラニンに、 169番目のロイシンがグリシンに、さらに 245番目のグルタミン酸がァスパラギン酸に 置換された変異型 PQQ依存性グルコース脱水素酵素をコードする組換えプラスミド ( PNPG5M168A+ 169G+E245D)を、同様に pNPG5M168A+ 169Pより配列 番号 1記載のアミノ酸配列の 168番目のグルタミンがァラニンに、 169番目のロイシン がプロリンに、さらに 245番目のグルタミン酸がァスパラギン酸に置換された変異型 P QQ依存性グルコース脱水素酵素をコードする組換えプラスミド (PNPG5M168A+ 169P+E245D)を作成した。これら組換えプラスミドを実施例 201と同様に処理す ることにより、発現ベクターの構築、シユードモナス属細菌の形質転換体の作製、ホロ 型発現精製酵素の調製、さらに性能評価を実施した。結果を表 203に示す。
[0215] [表 203]
Figure imgf000071_0001
[0216] 実施例 202の結果より、活性中心非近傍に導入したアミノ酸置換は、活性中心近 傍に導入したアミノ酸置換変異による比活性向上効果を妨げるものではないことが確 f*i¾ れ 。
産業上の利用可能性
[0217] 本発明によれば、基質特異性が改善された PQQGDH、好ましくは熱安定性も改 善された PQQGDHを得ることができる。この改変型 PQQGDHは、グルコースアツセ ィキット、グルコースセンサに利用できる。
また、本発明の改変型ピロ口キノリンキノン依存性グルコース脱水素酵素は、比活 性向上により、測定系への酵素添加量の減量を可能にすることから、フェリシアンィ匕 物イオンをメディエーターとする、グルコースアツセィキットやグルコースセンサーの安 価な製造を可能にする。臨床検査や食品分析など幅広い用途分野に利用すること が出来、産業界に寄与することが大である。

Claims

請求の範囲
[I] 野生型のピロ口キノリンキノン依存性グルコースデヒドロゲナーゼ(PQQGDH)より も二糖類に対する作用性が低下した改変型 PQQGDH。
[2] 野生型のピロ口キノリンキノン依存性グルコースデヒドロゲナーゼ(PQQGDH)より も安定性が向上した請求項 1に記載の改変型 PQQGDH。
[3] 野生型ピロ口キノリンキノン依存性グルコースデヒドロゲナーゼ(PQQGDH)のアミ ノ酸配列において、 1もしくは数個のアミノ酸を欠失、置換もしくは付加することにより
、野生型と比較して、フェリシアンィ匕物イオンをメディエーターとする測定系において
、比活性を向上させる方法
[4] 請求項 3に記載の方法により、野生型と比較して、フ リシアン化物イオンをメデイエ 一ターとする測定系において比活性が向上した、改変型ピロ口キノリンキノン依存性 グルコースデヒドロゲナーゼ(PQQGDH)
[5] 請求項 1または 3に記載の改変型 PQQGDHをコードする遺伝子。
[6] 請求項 5に記載の遺伝子を含むベクター。
[7] 請求項 6に記載のベクターで形質転換された形質転換体。
[8] 請求項 7に記載の形質転換体を培養することを特徴とする改変型 PQQGDHの製 造法。
[9] 請求項 1または 3に記載の改変型 PQQGDHを含むグルコースアツセィキット。
[10] 請求項 1または 3に記載の改変型 PQQGDHを含むグルコースセンサー。
[II] 請求項 1または 3に記載の改変型 PQQGDHを含むグルコース測定方法。
據 ^ 暴 著
Relative Activity
自義
Relative Activity
Relative Activity Relative Activity
Relative Activity
Figure imgf000074_0001
80srTO/ oor<if/i3d o e9ro/soo∑; OAV 1/1/4
Figure imgf000075_0001
希釈系列 差替え 用紙 ,1026) 2/4
WO 2005/026340 PCT/JP200標 2508
[図 3]
Figure imgf000076_0001
0 120 240 360
Mai濃度 (mg/dl)
100mg/dl Glcへ -ス ~»~300mg/dl Glcへ -ス
圆 4]
Figure imgf000076_0002
0 120 240 360
Mai濃度 (mg/dl)
-A— 10Omg/dl Glcへ' -ス 300mg/dl Glcへ 3/4
WO 2005/026340 PCT/JP200標 2508
[図 5]
Figure imgf000077_0001
0 120 240 360
Mai濃度 (mg/dl)
100mg/dl Glcへ -ス ^ ~300mg/dl Glcへ、ース
圆 6]
Figure imgf000077_0002
0 120 240 360
Mai濃度 (mg/dl)
10Omg/dl Glcへ、 -ス 300mg/dl Glcへ 4/4
WO 2005/026340 PCT/JP2004/012508
[図 7]
Figure imgf000078_0001
0 1 20 240 360
Mai濃度 (mg/dl)
10Omg/dl Glcへ、 -ス 300mg/dl Glcへ
PCT/JP2004/012508 2003-09-08 2004-08-31 基質特異性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体 WO2005026340A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602004023736T DE602004023736D1 (de) 2003-09-08 2004-08-31 Pyrrolochinolin-chinon (pqq)-abhängige glucosedehydrogenase-modifikation mit ausgezeichneter substratspezifität
EP04772464A EP1666586B1 (en) 2003-09-08 2004-08-31 Pyrroloquinoline quinone (pqq)-dependent glucose dehydrogenase modification having excellent substrate specificity
US10/570,904 US7479383B2 (en) 2003-09-08 2004-08-31 Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase excellent in substrate specificity

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2003315799 2003-09-08
JP2003-315799 2003-09-08
JP2003-315797 2003-09-08
JP2003315797A JP4029346B2 (ja) 2003-03-24 2003-09-08 基質特異性または安定性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JP2004060283A JP4332794B2 (ja) 2003-03-24 2004-03-04 基質特異性または安定性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JP2004-060282 2004-03-04
JP2004-060283 2004-03-04
JP2004060282A JP4452988B2 (ja) 2003-09-08 2004-03-04 ピロロキノリンキノン依存性グルコース脱水素酵素の比活性を向上する方法、および、比活性の向上したピロロキノリンキノン依存性グルコース脱水素酵素
JP2004-151905 2004-05-21
JP2004151905A JP2005328793A (ja) 2004-05-21 2004-05-21 基質特異性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体

Publications (1)

Publication Number Publication Date
WO2005026340A1 true WO2005026340A1 (ja) 2005-03-24

Family

ID=34317730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012508 WO2005026340A1 (ja) 2003-09-08 2004-08-31 基質特異性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体

Country Status (5)

Country Link
US (1) US7479383B2 (ja)
EP (1) EP1666586B1 (ja)
DE (1) DE602004023736D1 (ja)
TW (1) TW200525033A (ja)
WO (1) WO2005026340A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095758A1 (ja) * 2005-03-11 2006-09-14 Toyo Boseki Kabushiki Kaisha Pqqgdhの基質阻害を回避する方法
EP1752769A1 (en) * 2005-08-11 2007-02-14 Toyo Boseki Kabushiki Kaisha Composition for measuring glucose having improved substrate specificity
CN108292093A (zh) * 2015-08-31 2018-07-17 利赛奥谱特科技责任有限公司 用于使用针对膜或表面改性的扫描光束的装置和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60331477D1 (de) 2002-12-24 2010-04-08 Ikeda Food Res Co Ltd Coenzymbindende glukosedehydrogenase
EP2365073A1 (en) 2005-03-25 2011-09-14 Ikeda Food Research Co. Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US8492130B2 (en) 2006-06-29 2013-07-23 Ikeda Food Research Co., Ltd. FAD-conjugated glucose dehydrogenase gene
DE102008030435A1 (de) 2008-06-26 2010-01-07 Bayer Technology Services Gmbh Neuartige Varianten PQQ-abhängiger Glukosehydrogenase mit verbesserter Substratspezifität
FR2948680B1 (fr) 2009-07-28 2013-10-04 Centre Nat Rech Scient Nouveaux mutants de la pqq s-gdh
JP5753720B2 (ja) 2010-04-22 2015-07-22 アークレイ株式会社 バイオセンサ
WO2012010308A1 (en) 2010-07-23 2012-01-26 Roche Diagnostics Gmbh Zwitterion buffer containing compositions and uses in electroanalytical devices and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243949A (ja) 1998-03-03 1999-09-14 Toyobo Co Ltd Pqqを補欠分子族とするグルコースデヒドロゲナーゼおよびその製造方法
JP2001197888A (ja) 2000-01-18 2001-07-24 Koji Hayade 基質特異性に優れたグルコース脱水素酵素
JP2001346587A (ja) * 2000-06-08 2001-12-18 Koji Hayade 基質特異性に優れたグルコース脱水素酵素
EP1367120A2 (en) * 2002-05-27 2003-12-03 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
JP2004173538A (ja) * 2002-11-25 2004-06-24 Amano Enzyme Inc ピロロキノリンキノン依存性グルコース脱水素酵素

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243786A (ja) 1997-03-03 1998-09-14 Koji Hayade 改変型グルコース脱水素酵素
JP2000262281A (ja) 1999-03-18 2000-09-26 Koji Hayade 架橋グルコースデヒドロゲナーゼ
JP2000350588A (ja) 1999-04-08 2000-12-19 Koji Hayade グルコース脱水素酵素
TWI224136B (en) * 1999-04-30 2004-11-21 Koji Sode Glucose dehydrogenase
JP2000312588A (ja) 1999-04-30 2000-11-14 Koji Hayade グルコース脱水素酵素
JP2001037483A (ja) 1999-07-30 2001-02-13 Koji Hayade 連結型グルコース脱水素酵素
KR100519902B1 (ko) * 2000-10-27 2005-10-10 에프. 호프만-라 로슈 아게 가용성 피롤로퀴놀린 퀴논 의존성 글루코오스 디히드로게나아제의 변이체
US7244600B2 (en) 2001-03-13 2007-07-17 Ultizyme International Ltd. Glucose dehydrogenase
JP2003093071A (ja) 2001-09-26 2003-04-02 Koji Hayade グルコース脱水素酵素
WO2003106668A1 (ja) 2002-06-13 2003-12-24 Sode Koji グルコース脱水素酵素
JPWO2004005499A1 (ja) 2002-07-04 2005-11-04 早出 広司 グルコース脱水素酵素

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243949A (ja) 1998-03-03 1999-09-14 Toyobo Co Ltd Pqqを補欠分子族とするグルコースデヒドロゲナーゼおよびその製造方法
JP2001197888A (ja) 2000-01-18 2001-07-24 Koji Hayade 基質特異性に優れたグルコース脱水素酵素
JP2001346587A (ja) * 2000-06-08 2001-12-18 Koji Hayade 基質特異性に優れたグルコース脱水素酵素
EP1367120A2 (en) * 2002-05-27 2003-12-03 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
JP2004173538A (ja) * 2002-11-25 2004-06-24 Amano Enzyme Inc ピロロキノリンキノン依存性グルコース脱水素酵素

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
C. NIETO ET AL., GENE, vol. 87, 1990, pages 145
J. MOL. BIOL., vol. 289, 1999, pages 319 - 333
M. HUNGER ET AL., GENE, vol. 87, 1990, pages 45
M. M. BAGDASARIAN ET AL., GENE, vol. 26, 1983, pages 273
N. ITOH ET AL., J. BIOCHEM., vol. 110, 1991, pages 614
PNAS, vol. 96, no. 21, 1999, pages 11787 - 11791
PROTEIN SCIENCE, vol. 9, 2000, pages 1265 - 1273
SCIENCE, vol. 214, 1981, pages 1205
See also references of EP1666586A4 *
THE EMBO JOURNAL, vol. 18, no. 19, 1999, pages 5187 - 5194
W. MINAS ET AL., APPL. ENVIRON. MICROBIOL., vol. 59, 1993, pages 2807
Y. ITOH ET AL., GENE, vol. 36, 1985, pages 27

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095758A1 (ja) * 2005-03-11 2006-09-14 Toyo Boseki Kabushiki Kaisha Pqqgdhの基質阻害を回避する方法
EP1752769A1 (en) * 2005-08-11 2007-02-14 Toyo Boseki Kabushiki Kaisha Composition for measuring glucose having improved substrate specificity
US7381540B2 (en) 2005-08-11 2008-06-03 Toyo Boseki Kabushiki Kaisha Composition for measuring glucose having improved substrate specificity
CN108292093A (zh) * 2015-08-31 2018-07-17 利赛奥谱特科技责任有限公司 用于使用针对膜或表面改性的扫描光束的装置和方法

Also Published As

Publication number Publication date
EP1666586A1 (en) 2006-06-07
EP1666586B1 (en) 2009-10-21
EP1666586A4 (en) 2007-06-20
EP1666586A8 (en) 2006-10-04
US20070105173A1 (en) 2007-05-10
DE602004023736D1 (de) 2009-12-03
US7479383B2 (en) 2009-01-20
TW200525033A (en) 2005-08-01

Similar Documents

Publication Publication Date Title
US8999691B2 (en) Glucose dehydrogenase
JP2010035469A (ja) フルクトシルバリルヒスチジン測定用酵素、およびその利用法
WO2005026340A1 (ja) 基質特異性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JP4332794B2 (ja) 基質特異性または安定性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JP2004344145A (ja) 基質特異性または安定性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JP5811521B2 (ja) フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの比活性を向上するための方法
WO2006085509A1 (ja) 基質特異性に優れた改変型ピロロキノリンキノン依存性グルコースデヒドロゲナーゼ
JP5289801B2 (ja) ウリカーゼ活性を有する蛋白質
JP5114756B2 (ja) 基質特異性または安定性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JPWO2004005499A1 (ja) グルコース脱水素酵素
JP4029346B2 (ja) 基質特異性または安定性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JP2006217811A (ja) 基質特異性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JP4452988B2 (ja) ピロロキノリンキノン依存性グルコース脱水素酵素の比活性を向上する方法、および、比活性の向上したピロロキノリンキノン依存性グルコース脱水素酵素
JP2007043983A (ja) 基質特異性に優れた改変型ピロロキノリンキノン依存性グルコースデヒドロゲナーゼ
EP2202304B1 (en) Modified creatinine amidohydrolase
JP5793841B2 (ja) フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの比活性を向上する方法
JP2012029677A (ja) フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの基質特異性を改善するための方法
JP2012191882A (ja) フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの安定性を向上するための方法
JP4890134B2 (ja) ウリカーゼの安定性を向上させる方法、および安定性の向上した改変型ウリカーゼ
JP4415283B2 (ja) 基質特異性または安定性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JP2008022766A (ja) ウリカーゼの比活性を向上させる方法、および比活性の向上した改変型ウリカーゼ
JP2006217810A (ja) 基質特異性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JP4591074B2 (ja) 加熱処理を施した脱水素酵素
JP4058701B2 (ja) 基質特異性または安定性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体
JP2007000020A (ja) 基質特異性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025768.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004772464

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007105173

Country of ref document: US

Ref document number: 10570904

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004772464

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10570904

Country of ref document: US