WO2005024861A1 - 磁気バイアス膜およびこれを用いた磁気センサ - Google Patents

磁気バイアス膜およびこれを用いた磁気センサ Download PDF

Info

Publication number
WO2005024861A1
WO2005024861A1 PCT/JP2004/013266 JP2004013266W WO2005024861A1 WO 2005024861 A1 WO2005024861 A1 WO 2005024861A1 JP 2004013266 W JP2004013266 W JP 2004013266W WO 2005024861 A1 WO2005024861 A1 WO 2005024861A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
bias film
bias
magnetic bias
film
Prior art date
Application number
PCT/JP2004/013266
Other languages
English (en)
French (fr)
Inventor
Nobukazu Hayashi
Kazuhiro Onaka
Yukio Nakao
Masataka Tagawa
Kouji Nabetani
Masako Yamaguchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP04772948A priority Critical patent/EP1662520A4/en
Priority to JP2005513734A priority patent/JP4461098B2/ja
Priority to US10/570,268 priority patent/US7400143B2/en
Publication of WO2005024861A1 publication Critical patent/WO2005024861A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films
    • H01F10/3231Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer
    • Y10T428/325Magnetic layer next to second metal compound-containing layer

Definitions

  • the present invention relates to a magnetic bias film used for various electronic devices and a magnetic sensor using the same.
  • FIG. 19 is a perspective view showing the conventional magnetic sensor field
  • FIG. 20 is a cross-sectional view taken along the line ⁇ ⁇ ⁇ ⁇ ′ ′ of the conventional magnetic sensor shown in FIG.
  • This magnetic sensor holds the substrate 1 so as to cover a Wheatstone bridge circuit 3 including four detection elements 2A to 2D provided on the upper surface of the substrate 1 and the substrate 1 having the Wheatstone bridge circuit. And a first coil 5 ⁇ and a second coil 5 ⁇ ⁇ made of conductive wires of a predetermined number of turns wound around the holder 4 and applying magnetic pipes orthogonal to each other. It has a configuration.
  • this magnetic sensor uses the first coil 5A and the second coil 5B wound around the holder 4 as a means for applying a magnetic bias, the size is increased and the size is easily reduced. Was not. Further, in order to generate a magnetic field, it is necessary to supply current to the first coil 5A and the second coil 5B, so that the power consumption is large.
  • WO 03Z0566276 pamphlet discloses a method using a magnetic bias film made of a thin magnet as a means for applying a magnetic bias.
  • This magnetic sensor does not use a coil as a means for applying a magnetic bias, but uses a magnetic bias film made of a thin-film magnet having a substantially square shape in a plan view. Become.
  • the magnetic bias film must be downsized. There is. For that purpose, it is necessary to reduce the bottom area of the magnetic bias film. However, in this case, there is a problem that a magnetic field generated by the magnetic bias film becomes small and a desired magnetic field cannot be obtained. Furthermore, when a large magnetic field is applied to such a magnetic bias film from the outside, the direction of the magnetic bias is affected, and the output of the magnetic sensor is affected. Disclosure of the invention
  • the present invention solves the above-mentioned problems of the conventional magnetic bias film, and provides a magnetic bias film which can be reduced in size and can obtain a stable and desired magnetic field, and a magnetic sensor using the same.
  • the purpose is to:
  • a magnetic bias film is a magnetic bias film that includes a magnetic layer, and a magnetic bias magnet that generates a magnetic field in a plane perpendicular to the direction in which the magnetic layers are stacked,
  • the magnetic bias magnet is processed into a substantially rectangular parallelepiped shape whose length is reduced in the order of the long side, the short side, and the thickness in the stacking direction, and the ratio of the length of the long side to the short side is in the range of 5 to 200. It is characterized by being.
  • the magnetic bias film according to the present invention includes the magnetic bias magnet processed into a substantially rectangular parallelepiped shape whose length decreases in the order of the long side, the short side, and the thickness in the stacking direction.
  • the ratio of the length of the long side to the short side of the magnetic bias magnet is in the range of 5 to 200.
  • a magnetic sensor includes a substrate, a first magnetic detection unit including at least two magnetic detection elements formed on a main surface side of the substrate, and a first magnetic detection unit on the main surface side of the substrate.
  • a second magnetic detection unit having at least two or more magnetic detection elements formed thereon, a first magnetic bias film provided at a position facing the first magnetic detection unit, and the second magnetic detection And a second magnetic bias film provided at a position facing the portion, wherein the first and second magnetic bias films are provided as described in any one of claims 1 to 13.
  • the first magnetic bias film is generated. It is characterized in that the direction of the magnetic field is different from the direction of the magnetic field generated by the second magnetic bias film.
  • the first and second magnetic detection units each including at least two or more magnetic detection elements are formed on the main surface side of the substrate.
  • a first magnetic bias film is provided at a position facing the first magnetic detection unit, and a second magnetic bias film is provided at a position facing the second magnetic detection unit.
  • the directions of the magnetic fields generated by the first magnetic bias film and the second magnetic bias film are different.
  • a phase difference occurs between the output waveforms from the first and second magnetic detection units, and a magnetic sensor capable of detecting the direction of the external magnetic field with a simple configuration by obtaining a ratio of these two waveform outputs is obtained. be able to.
  • FIG. 1 is a top view of the magnetic bias film according to the first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of a magnetic bias magnet constituting the magnetic bias film according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view of a magnetic bias film according to the second embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between the film thickness and the magnetic bias between the conventional magnetic bias film and the magnetic bias film according to the second embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view of a conventional magnetic bias film having a single-layer structure.
  • FIG. 6 is a longitudinal sectional view of a magnetic bias film according to the second embodiment of the present invention.
  • FIG. 7 is a perspective view of a magnetic bias film according to the third embodiment of the present invention.
  • FIG. 8 is a top view of the magnetic bias film according to the third embodiment of the present invention.
  • FIG. 9 is a longitudinal sectional view of a magnetic bias film according to the third embodiment of the present invention.
  • FIG. 10 is a perspective view of a magnetic sensor according to the fourth embodiment of the present invention.
  • FIG. 11 is an exploded perspective view of a magnetic sensor according to the fourth embodiment of the present invention.
  • FIG. 12 is a sectional view taken along the line I_ ⁇ in the magnetic sensor according to the fourth embodiment of the present invention.
  • FIG. 13 is a top view of the first and second magnetic detection units in the magnetic sensor according to the fourth embodiment of the present invention.
  • FIG. 14 is an electric circuit diagram of a first magnetic detection unit in the magnetic sensor according to the fourth embodiment of the present invention.
  • FIG. 15 is a diagram showing the relationship between the bias magnetic field strength and the direction variation of the magnetic sensor according to the fourth embodiment of the present invention.
  • FIG. 16 is a cross-sectional view showing a modification of the magnetic sensor according to the fourth embodiment of the present invention.
  • FIG. 17 is a sectional view of a magnetic sensor according to the fifth embodiment of the present invention.
  • FIG. 18 is an electric circuit diagram showing a modification of the magnetic detection unit of the magnetic sensor according to the fifth embodiment of the present invention.
  • FIG. 19 is a perspective view of a conventional magnetic sensor.
  • Fig. 20 shows ⁇ ⁇ ⁇ ⁇ -]! In a conventional magnetic sensor.
  • Fig. 20 shows ⁇ ⁇ ⁇ ⁇ -]! In a conventional magnetic sensor.
  • a magnetic bias film in which the direction of a magnetic field is stabilized by changing the shape or configuration will be described.
  • magnetic sensors using these magnetic bias films will be described.
  • the direction of the magnetic field is stabilized by processing a single-layer magnetic bias film into a rectangular parallelepiped shape.
  • a magnetic bias film having a multilayer structure will be described.
  • a configuration in which the first and second embodiments are combined that is, an example in which the direction of a magnetic field is stabilized by processing a magnetic bias film having a laminated structure into a rectangular parallelepiped shape will be described.
  • FIG. 1 is a top view of the magnetic bias film according to the first embodiment of the present invention.
  • the magnetic bias film 9 is composed of a plurality of magnetic bias magnets 9 ⁇ to 9G, and the magnetic bias magnets 9 ⁇ to 9G are respectively in the direction of arrow ⁇ ⁇ (X direction). A magnetic field is generated.
  • the magnetic bias magnets 9A to 9G are made of a CoPt alloy, and have a substantially rectangular parallelepiped shape in which the length becomes shorter in the order of the long side, the short side, and the thickness (in the stacking direction).
  • the “substantially” rectangular parallelepiped means not only a mathematically perfect rectangular parallelepiped but also, for example, a warp due to manufacturing technology constraints, a rounded or chamfered ridge or a vertex, a surface irregularity, etc. Is meant to include a rectangular parallelepiped.
  • CoPt alloys have high magnetocrystalline anisotropy in addition to excellent magnet properties. Therefore, it is preferable as a material for a magnetic bias magnet that requires stability in a magnetic field direction.
  • the long side, short side, and thickness are the thickness direction in the direction (z direction) perpendicular to the paper surface, and the X direction of the rectangle shown in Fig. 1 is the long side.
  • the short side is in the y direction.
  • the other magnetic bias magnets 9B to 9G have the same configuration as the magnetic bias magnet 9A, and are arranged side by side in the same magnetic field direction.
  • the magnetic bias magnets 9 A to 9 G constitute the magnetic bias film 9.
  • a CoPt film is formed on the entire surface of a substrate or the like by a vapor deposition method or a sputtering method.
  • the CoPt film is divided by exposure, etching, or the like to obtain a plurality of substantially rectangular parallelepiped CoPt films.
  • the substantially rectangular parallelepiped Co Pt film is magnetized in the long side direction, and the magnetic field is reduced. Pierce magnets 9 A to 9 G can be obtained.
  • the magnetization direction of the magnetic bias film 9 having such a configuration rarely changes even when it receives a large magnetic field from the outside. Although this reason has not been completely elucidated theoretically, it is considered to be roughly for the following reason.
  • FIG. 2 is a longitudinal sectional view (a sectional view along the xz plane in FIG. 1) of the magnetic bias magnet constituting the magnetic bias film 9 according to the first embodiment of the present invention.
  • Crystal grains 10 exist inside the magnetic bias magnets 9A to 9G.
  • the crystal particles 10 are considered to have a substantially elliptical shape whose major axis is in the long side direction (X direction) of the magnetic bias magnets 9A to 9G. Therefore, the magnetic moment existing inside the crystal grain 10 is likely to be directed in the direction of the arrow B as a whole, and the direction of the magnetic moment hardly changes even when a large magnetic field is applied from the outside.
  • the shape of the crystal grains 10 is substantially elliptical, but the magnetic bias magnets 9A to 9G are not square in plan view, This is probably because the aspect ratio of the short side is set to 5 or more and the flattened rectangle is used to form the crystal grains 10 into a substantially elliptical shape during film formation or magnetization.
  • the influence of the so-called demagnetizing field which depends on the shape of the magnetic bias magnets 9A to 9G (the aspect ratio of the long side and the short side), also exists.
  • the (effective) magnetic field acting inside the magnetic material is smaller than the externally applied magnetic field by the amount of the demagnetizing field.
  • the magnitude of the demagnetizing field is proportional to the magnitude of the magnetic field of the magnetic material, and the proportional coefficient is called a demagnetizing coefficient.
  • the demagnetizing field coefficient in the long side direction (X direction) is small, and the demagnetizing coefficient in the short side direction (y direction) is small.
  • the magnetic field coefficient is large. Therefore, the effective magnetic field in the long side direction is large, and the effective magnetic field in the short side direction is small. Thus, it is understood that the magnetization in the long side direction where the effective magnetic field is large is more stable.
  • the aspect ratio of the long side and the short side of the magnetic bias magnets 9A to 9G is preferably in the range of 5 to 200, and more preferably in the range of 10 to 200. preferable.
  • the aspect ratio of the long side and the short side of the magnetic bias magnets 9A to 9G is set to less than 5, the magnetic bias magnets 9A to 9G when a large magnetic field is applied from the outside.
  • the stability of the bias magnetic field generated from G decreases. This can be understood also from the viewpoint of the demagnetizing field described above.
  • the aspect ratio of the long side and short side of the magnetic bias magnets 9 A to 9 G is set to be larger than 200, the absolute intensity of the bias magnetic field generated from the magnetic bias magnets 9 A to 9 G Is too large to obtain an optimal bias magnetic field. Conversely, if we try to weaken the bias magnetic field while keeping the aspect ratio, it will be difficult to add because the short side is short.
  • the aspect ratio of the long side and the short side of the magnetic bias magnet 9A is set in the range of 5 to 200, whereby the bias generated from the magnetic bias magnet 9A is set.
  • the magnetic field can be stabilized.
  • the crystal particles 10 are not circular in plan view, but have an anisotropic shape in which the long axis direction of the magnetic bias magnet 9A is a long axis. Therefore, it is considered that a stable bias magnetic field can be generated.
  • the direction of the long axis of the substantially elliptical shape of the crystal particle 10 is also a direction perpendicular to the thickness direction. This is because the length in the thickness direction of the magnetic bias magnet 9A is shorter than the length in the long side and the short side direction, so that the length of the substantially elliptical shape in the long side direction is caused by the aspect ratio of the long side and the short side. It is thought that such a configuration is obtained for the same reason that the axis is easily oriented. Even with this configuration, the magnetic bias magnet 9A is unlikely to change its magnetization direction even when it receives a large external magnetic field. '
  • the magnetic bias film according to the first embodiment of the present invention described above has a substantially rectangular parallelepiped shape in which the length becomes shorter in the order of the long side, the short side, and the thickness, and a magnetic field that generates a magnetic field.
  • the magnetic bias film 9 is configured by arranging a plurality of magnetic bias magnets 9A to 9p in the horizontal direction with the magnetic field directions aligned. Furthermore, since the long side and short side of the magnetic bias magnets 9 A to 9 G are set to an aspect ratio of 5 to 200, even if a large magnetic field is received from the outside, The magnetization direction rarely changes, and as a result, a stable magnetic bias can be generated.
  • the thickness of the magnetic bias film 9 is preferably in the range of 250 A to 250 O A. If the thickness of the magnetic bias film 9 is smaller than 25 OA, the magnetic field generated from the magnetic layer 12 will be small. On the other hand, even if the thickness of the magnetic bias film 9 is made larger than 250 OA, the strength of the magnetic field hardly changes. Therefore, it is preferable that the thickness of the magnetic bias film 9 be set in the range of 250 A to 250 OA.
  • the separated Magnetic bias magnets 9A to 9G may be formed.
  • the CoPt film may be formed using a mask having the shape of the magnetic bias magnets 9A to 9G.
  • FIG. 3 is a perspective view of a magnetic bias film according to the second embodiment of the present invention.
  • the magnetic bias film 11 has a structure in which a plurality of magnetic layers 12 and non-magnetic layers 13 are alternately stacked.
  • the magnetic layer 12 is made of a CoPt alloy, and is magnetized in a fixed direction to generate a magnetic field in the direction of arrow A (X direction).
  • the nonmagnetic layer 13 is composed of Cr.
  • C r is an antiferromagnetic material and not nonmagnetic, but in the sense that it is not a ferromagnetic material, the term “nonmagnetic” is also used below for Cr.
  • each side in the present embodiment is as follows: long side (X direction) 700 _im, short side (y direction) 140 m, and thickness (z direction) 0.000 A, and the nonmagnetic layer 13 is 250 A.
  • a method of manufacturing the magnetic bias film 11 configured as described above will be described below.
  • a magnetic layer 12 made of CoPt alloy is formed on the surface of a substrate (not shown) by a vapor deposition method or a sputtering method, and Cr is formed on the upper surface of the magnetic layer 12 by a vapor deposition method or a sputtering method.
  • the non-magnetic layer 13 made of is formed. Further, by repeatedly forming the magnetic layer 12 on the upper surface of the non-magnetic layer 13, it is possible to obtain a laminated film in which the magnetic layer 12 and the non-magnetic layer 13 are laminated in a plurality in the z direction. it can.
  • the magnetic layer 12 in the laminated film is magnetized in the direction of arrow A (X direction).
  • the magnetic bias film 11 can be obtained.
  • this magnetic bias magnet 11 is not a substantially square, and the aspect ratio of the short side (y direction) and the long side (X direction) is in the range of 5 to 200 as in the first embodiment. More preferably, it is more preferably in the range of 10 to 200. That is, if the aspect ratio of the long side and the short side of the magnetic bias magnet 11 is smaller than 5, the stability of the bias magnetic field is reduced, and if the aspect ratio is larger than 200, the absolute value of the bias magnetic field is reduced. This is because the excessive strength becomes too large.
  • the magnetic bias film 11 having such a laminated structure generates a larger magnetic field as compared with a magnetic bias film having a single-layer structure in which the thickness of the magnetic layer is simply increased like a conventional magnetic bias film. Can be. This will be described with reference to the drawings.
  • FIG. 4 shows the magnetic characteristics of a conventional magnetic bias film having a single-layer structure and a magnetic bias film having a multilayer structure of the present embodiment.
  • the horizontal axis represents the thickness of the magnetic layer in units of A.
  • the vertical axis represents the magnetization of the magnetic layer in units of emu.
  • the results of the magnetic bias film having a laminated structure and a single-layer structure are shown by squares ( And inclined rectangles), and are connected by a solid line and a broken line, respectively, so that the results are substantially on a straight line.
  • one layer of the magnetic layer 12 is set to 200 OA. Therefore, the thicknesses of 400 A, 600 OA, and 800 OA indicate that the magnetic layer 12 is composed of two, three, and four layers, respectively. A nonmagnetic layer 13 is inserted between the layers 12.
  • the magnetization of the conventional single-layered magnetic bias film hardly changes in magnitude even when the film thickness is increased.
  • the magnetization of the magnetic bias film having the laminated structure of the present embodiment increases in accordance with the film thickness. The reason for this has not been completely elucidated theoretically, but it is considered to be for the following reasons.
  • FIG. 5 is a longitudinal sectional view of a conventional magnetic bias film having a single-layer structure
  • FIG. 6 is a longitudinal sectional view of a magnetic bias film having a laminated structure according to the present embodiment. Each is a cross section on the xz plane in FIG.
  • Crystal grains 14 exist inside the conventional magnetic bias film 15 having a single-layer structure shown in FIG.
  • the direction of the magnetic moment of the crystal particle 14 is indicated by an arrow in the crystal particle 14.
  • the crystal grains 14 are considered to be substantially elliptical as shown in FIG. 5.
  • the major axis direction of the crystal grains 14 is relatively long. They exist in a random order along the direction (X direction). If the magnetic bias film 15 with a single-layer structure is simply made thicker, the number of crystal grains 14 present inside will increase accordingly, but the major axis of the crystal grains 14 will only be in the long side direction. However, it is also oriented in the thickness direction (z direction) perpendicular to the long side direction.
  • the magnetic bias film 15 of the conventional single-layer structure generates a magnetic field in the long side direction of the magnetic bias film 15 of the single-layer structure as a whole, but the magnetic moment of each crystal grain 14 also has a component in the thickness direction of the magnetic bias film 15 having a single-layer structure.
  • the magnetic field component in the thickness direction does not contribute to the strength of the magnetic field in the long side direction of the magnetic bias film 15 having the single-layer structure. It is considered that as the thickness of the magnetic bias film 15 having a single-layer structure increases, the component in the thickness direction of the magnetic moment of the crystal grain 14 increases. Therefore, even if the thickness of the magnetic bias film 15 having a single-layer structure is simply increased, it is considered that the magnetic field in the long-side direction does not increase correspondingly.
  • the magnetic bias film 11 of the laminated structure of the present invention having a configuration in which the magnetic layer 12 is laminated via the nonmagnetic layer 13 shown in FIG. It is separated by three. Therefore, the orientation of each crystal grain 14 is governed by the thickness of each magnetic layer 12, and the major axis direction of the crystal grain 14 exists relatively uniformly in the long side direction. Accordingly, the component of the magnetic moment in the film thickness direction in each crystal grain 14 decreases, and it is considered that the magnetic moment of the crystal grain 14 contributes to the magnetic field strength in the longer side direction.
  • the shape of the crystal grains 14 is substantially elliptical, it is particularly clear in the magnetic bias film 11 having a laminated structure of the present invention that the thickness of the magnetic layer 12 is thin. It is thought that this is because the crystal grain 14 has a substantially elliptical shape oriented in the long side direction during film formation or magnetization because of a flat structure in which the thickness direction is extremely short.
  • the influence of the demagnetizing field which depends on the shape of the magnetic bias film 11, is present to some extent.
  • the length of the magnetic bias film 11 in the direction (y direction) perpendicular to the paper surface is ignored, and the length in the horizontal direction (X direction) in FIGS. 5 and 6 is equal. That is, the magnetic bias film 11 having a single-layer structure and the magnetic layer 12 constituting the laminated structure differ only in their lengths in the thickness direction (z direction).
  • the demagnetizing factor in the thickness direction (z direction) of the magnetic bias film 11 having the single-layer structure and the laminated structure is substantially the same.
  • the demagnetizing factor in the X direction is large in the single-layer structure shown in FIG. 5 and small in one magnetic layer 12 constituting the laminated structure shown in FIG.
  • the value of the demagnetizing factor in the X direction of both structures takes a value smaller than the demagnetizing factor in the z direction. Therefore, the difference in the value of the demagnetizing factor in the X direction and the z direction is larger in the stacked structure shown in FIG. 6 than in the single-layer structure shown in FIG.
  • the magnetization in the X direction becomes stable.
  • the difference between the effective magnetic field in the vertical direction (z direction) and the horizontal direction (X direction) on the paper is small, so the magnetization in the X direction becomes unstable, The magnetization tends to be oriented in the z direction (thickness direction).
  • the thickness of the magnetic layer 12 is preferably in the range of 250 A to 2500 A. If the thickness of the magnetic layer 12 is less than 25 OA, the magnetic field generated from the magnetic layer 12 will decrease. On the other hand, even if the thickness of the magnetic layer 12 is made larger than 250 OA, as shown in FIG. 5, the thickness direction component of the magnetic moment of the crystal grain 14 becomes larger, and the magnetic field intensity hardly changes. Absent. Therefore, the thickness of the magnetic layer 12 is preferably set in the range of 250 A to 250 OA.
  • the thickness of the nonmagnetic layer 13 is preferably in the range of 50 to 500 mm. In this case, if the thickness of the non-magnetic layer 13 is smaller than 5 OA, the magnetic layers 12 located above and below the non-magnetic layer 13 may interfere with each other and have an adverse effect. On the other hand, if the thickness of the nonmagnetic layer 13 is larger than 500 A, the entire thickness becomes thicker. Therefore, it is preferable that the thickness of the nonmagnetic layer 13 be set in the range of 50 A to 50 OA.
  • the nonmagnetic layer 13 constituting the magnetic bias film 11 is not limited to Cr shown in the present embodiment, but may be Ti, Cu, Al, Sn, Nb, Au, Ag, Ta And non-magnetic elements such as W may be used.
  • the magnetic layer 12 and the non-magnetic layer 13 are formed in the manufacture of the magnetic bias film 11, in the second embodiment of the present invention, an evaporation method or a sputtering method is applied to the surface of a substrate (not shown).
  • the magnetic layer 12 and the non-magnetic layer 13 were formed by the method described above.
  • the present invention is not limited to this.
  • a CoPt alloy and Cr alternately multiple times by a wet method
  • the layer 12 and the nonmagnetic layer 13 may be formed.
  • a Co Pt precursor and a Cr precursor may be alternately applied a plurality of times by another wet method, and then fired to form the magnetic layer 12 and the non-magnetic layer 13.
  • FIG. 7 is a perspective view of a magnetic bias film according to the third embodiment of the present invention.
  • the magnetic bias film 11 according to the third embodiment of the present invention includes a plurality of magnetic bias magnets 11A to 11C, and generates a magnetic field in the direction of arrow A (X direction).
  • the magnetic bias magnet 11 A has a structure in which a plurality of magnetic layers 12 made of a CoPt alloy and a nonmagnetic layer 13 made of Cr are alternately laminated, and a long side (y direction), a short side (X direction) ), And the thickness (z direction) of the magnetic bias film 11A in the laminating direction is reduced in the order of the rectangular parallelepiped shape.
  • each side in the present embodiment is 700 / m for the long side (y direction) and 140 for the short side (x direction), and the length between the magnetic bias magnets 11A and 11B, 11B and 11C.
  • the distance between each is 10 m.
  • the other magnetic bias magnets 11B and 11C also have the same configuration as the magnetic bias magnet 11A. Are arranged in the short side direction (X direction). These magnetic bias magnets 11 A to 11 C constitute a magnetic bias film 11.
  • the aspect ratio of the short side (X direction) and the long side (y direction) of the magnetic bias magnets 11 A to 11 C is 5 to 200 as in the first and second embodiments. It is preferably in the range, and more preferably in the range of 10 to 200. That is, if the magnetic bias magnet 11 A to 11 C has a long side and short side with an aspect ratio of less than 5, the stability of the bias magnetic field decreases, and the aspect ratio becomes greater than 200. If it is large, the absolute intensity of the bias magnetic field becomes too large.
  • a magnetic layer 12 made of a CoPt alloy is formed on the surface of a substrate (not shown) by vapor deposition or sputtering, and a non-magnetic layer made of Cr is formed on the upper surface of the magnetic layer 12 by vapor deposition or sputtering.
  • the magnetic layer 13 is formed. Furthermore, by repeatedly forming the magnetic layer 12 on the upper surface of the non-magnetic layer 13, a laminated film in which a plurality of the magnetic layers 12 and the non-magnetic layer 13 are laminated can be obtained.
  • the laminated film is divided by etching to obtain a plurality of substantially rectangular parallelepiped laminated films.
  • the magnetic layer in the substantially rectangular parallelepiped laminated film is magnetized in the long side direction or the short side direction.
  • Magnetic bias magnets 11 A to 11 C can be obtained.
  • FIG. 8 is a top view of the magnetic bias film 11 according to the third embodiment of the present invention.
  • the magnetic layer 12 is magnetized in the short side direction (X direction) of the magnetic bias magnets 11A to 11C.
  • arranging the magnetic moment in the short side direction (X direction) can generate a stable magnetic bias against an external magnetic field, rather than arranging the magnetic moment in the long side direction (y direction).
  • the interaction between the magnetic bias magnets 11A to 11C and the magnetic layers 12 The interactions seem to be involved.
  • FIG. 9 is a longitudinal sectional view of a magnetic bias film having a laminated structure according to the present embodiment (see FIG. 7). Cross-sectional view on the xz plane).
  • the magnetization direction of the middle magnetic layer 12 among the three magnetic layers 12 is different from the magnetization direction of the other magnetic layers. Seems to be the opposite. Therefore, it is preferable that the number of stacked magnetic layers 12 in the magnetic bias film of the present embodiment be an odd number. As a result, a magnetic bias film 11 whose characteristics are stable even against an external magnetic field can be obtained.
  • the third embodiment of the present invention similarly to the above-described second embodiment of the present invention, there is an effect due to the configuration in which the magnetic layer 12 is laminated via the non-magnetic layer 13. That is, there is an effect that the magnetic field increases as the number of the magnetic layers 12 increases.
  • the magnetic bias magnet 11 having a substantially rectangular parallelepiped shape in which a plurality of magnetic layers 12 and nonmagnetic layers 13 are alternately stacked. 1 C are arranged side by side in the short side direction of the substantially rectangular parallelepiped shape.
  • These magnetic bias magnets 11 A to 11 C each have an aspect ratio of the short side and the long side set in the range of 5 to 200. This makes it possible to obtain a stronger magnetic field as compared with a magnetic bias film, thereby making it possible to reduce the size of the magnetic bias film and to obtain a stable magnetic field with respect to an external magnetic field.
  • the thickness of the magnetic layer 12 and the thickness of the non-magnetic layer 13 are the same as those of the above-described second embodiment of the present invention.
  • the thickness is preferably set in the range of 250 A to 250 OA, and the thickness of the nonmagnetic layer 13 is preferably set in the range of 50 A to 50 OA.
  • non-magnetic layer 13 constituting the magnetic bias film 11 is not limited to Cr shown in the third embodiment of the present invention, and other Ti, Cu, Al, Non-magnetic elements such as Sn, Nb, Au, Ag, Ta, and W may be used.
  • the method for obtaining the magnetic bias magnets 11A to 11C is the same as the method for manufacturing the magnetic bias film according to the third embodiment of the present invention described above.
  • the method is not limited to the method of obtaining the magnetic bias magnets 11 A to 11 C by dividing the film by etching after forming the film.
  • the magnetic bias magnets 11 A to 11 C that are divided from the beginning may be formed.
  • a laminated film of a CoPt alloy and Cr may be formed using a mask having the shape of the magnetic bias magnet 11A to 11C.
  • FIG. 10 is a perspective view of a magnetic sensor according to a fourth embodiment of the present invention
  • FIG. 11 is an exploded perspective view of the magnetic sensor
  • FIG. 12 is a cross-sectional view taken along the line II ′ in FIG. Is a top view of the first and second magnetic detectors in the magnetic sensor
  • FIG. 14 is an electric circuit diagram of the first magnetic detector in the magnetic sensor.
  • the substrate 20 is preferably made of an insulating material such as alumina, and preferably has a glass glaze layer (not shown) formed on its upper surface (main surface). This is because the glass glaze layer easily obtains a smooth surface and facilitates formation of the first and second magnetic detection portions 21 and 22 on the upper surface thereof.
  • each of the first magnetic detection unit 21 and the second magnetic detection unit 22 includes four magnetic detection elements.
  • the magnetic detection element is an element for outputting a signal corresponding to the direction and magnitude of the magnetic field and detecting the direction of the magnetic field, for example, an element utilizing the magnetoresistance effect (the magnetoresistance effect). Element), a Hall element, a magneto-impedance effect element, and the like.
  • These magnetic detecting elements are constituted by a magnetoresistive film formed on the upper surface of the substrate 20.
  • the magnetoresistive film is made of a ferromagnetic thin film containing NiCo or NiFe, or a magnetic film such as a human lattice multilayer film.
  • the magnetoresistive films constituting the first and second magnetic detection sections 21 and 22 are formed by folding a plurality of turns. This is because the number of magnets (for example, geomagnetism) to be measured crosses when multiple folds are folded, so that the resistance change increases and the detection sensitivity improves.
  • the first insulating layer 2 3 A consists S I_ ⁇ 2 having an insulating property, by covering the first magnetic detection portion 2 1, the first magnetic bias to be described later 2 1 and the first magnetic detection portion It provides electrical insulation between the membrane 24. Further, since the second insulating layer 2 3 B also covers the S I_ ⁇ 2 force ⁇ Rannahli, the second magnetic detection portion 2 2 having a first insulating layer 2 3 A as well as insulating the second This electrically insulates the magnetic detection unit 22 from the second magnetic bias film 25 described later.
  • the first magnetic bias film 24 is formed on the upper surface of the first insulating layer 23A, and applies a magnetic bias to the first magnetic detection unit 21.
  • the first magnetic bias film 24 has the magnetic bias film 11 described in the third embodiment of the present invention, that is, the aspect ratio of the short side to the long side is 5 to 200.
  • Magnetic bias magnets 11 A to l in which a plurality of magnetic layers 12 made of CoPt alloy and set in the range and magnetized in one direction and a nonmagnetic layer 13 made of Cr are alternately stacked.
  • the second magnetic bias film 25 is formed on the upper surface of the second insulating layer 23 B, and applies a magnetic bias to the second magnetic detection unit 22.
  • the magnetic bias film 11 described in the third embodiment of the present invention is also used as the second magnetic bias film 25.
  • These first and second magnetic bias films 24 and 25 have a large rate of change in the resistance value of the first and second magnetic detection sections 21 and 22, and the change rate of the magnetic field is small. It is intended to make adjustment so as to change substantially linearly.
  • the first coating layer 26 A is made of epoxy resin, silicon resin, or the like, and covers the first magnetic bias film 24.
  • the second coating layer 26 B is made of epoxy resin, silicon resin, or the like, and covers the second magnetic bias film 25.
  • the first magnetic detection element 27 A and the second magnetic detection element 27 B are electrically connected in series, and the longitudinal directions of the patterns are different by 90 °.
  • the third magnetic detecting element 27C and the fourth magnetic detecting element 27D are also electrically connected in series, and the longitudinal directions of the patterns are different by 90 °. Further, the first magnetic detecting element 27 A and the second magnetic detecting element 27 B and the third magnetic detecting element 27 C and the fourth magnetic detecting element 27 D are electrically connected in parallel. It is connected.
  • the longitudinal directions of the patterns of the first magnetic detection element 27A and the third magnetic detection element 27C are different from each other by 90 °.
  • the first input electrode 28A is formed on the substrate 20 and is electrically connected to the first magnetic detection element 27A and the third magnetic detection element 27C.
  • the first ground electrode 29A is electrically connected to the second magnetic detecting element 27B and the fourth magnetic detecting element 27D.
  • the first output electrode 3 OA is electrically connected to the first magnetic detection element 27 A and the second magnetic detection element 27 B, and the second output electrode 30 B is connected to the third magnetic detection element 27 A.
  • the second magnetic detection unit 22 has a fifth magnetic detection element 27 E to an eighth magnetic detection element 27 H and a second input electrode 2. 8B, a second ground electrode 29B, a third output electrode 30C, and a fourth output electrode 30D. These are the first magnetic detection element 27 A to the fourth magnetic detection element 27 D, the first input electrode 28 A, and the first ground electrode in the first magnetic detection unit 21, respectively.
  • first input electrode 28 A and the second input electrode 28 B are electrically connected, and the first ground electrode 29 A and the second ground electrode 29 B are also electrically connected. ing.
  • first magnetic detection unit 21 and the second magnetic detection unit 22 are electrically connected in parallel.
  • 30 D is composed of silver or silver palladium, respectively.
  • the first to fourth magnetic detection elements 27 A to 27 D constituting the first magnetic detection unit 21 are all formed of a magnetoresistive film, as shown in FIG. 14.
  • the whole constitutes a Wheatstone bridge circuit. Therefore, the difference (differential output voltage) between the two output voltages obtained from the first output electrode 3OA and the second output electrode 30B increases, and the azimuth can be detected with high accuracy. Furthermore, since noise of two output voltages can be canceled, detection variations due to noise can be suppressed.
  • the magnetic field 31 in FIG. 13 indicates the direction of the magnetic field applied by the first magnetic bias film 24 to the first magnetic detection unit 21.
  • the magnetic field 32 indicates the direction of the magnetic field applied by the second magnetic bias film 25 to the second magnetic detection unit 22.
  • the direction differs from the magnetic field 31 by 90 °. I have.
  • first and second magnetic bias films 24, 25 The longitudinal direction of the magnetic field and each pattern of the first magnetic detecting element 27A to the eighth magnetic detecting element 27H forms an angle of 45 °.
  • this angle is 0 ° or 180 °, the magnetic field generated in the first and second magnetic bias films 24 and 25 is reduced by the resistance of the first to eighth magnetic sensing elements 27 A to 27 H. Since it does not contribute to the change, it does not play the role of the bias magnetic field. Therefore, this angle may be other than 45 °, but is preferably an angle excluding 0 ° and 180 °.
  • the first magnetic detecting element 27A to the eighth magnetic detecting element 27H, the first input electrode 28A, the second input electrode are formed on the upper surface of the substrate 20 by printing, vapor deposition, or the like.
  • 28 B, first ground electrode 29 A, second ground electrode 29 B, first output electrode 30 A, second output electrode 30 B, third output electrode 30 C, and A fourth output electrode 30D is formed.
  • the first magnetic detecting element 27A to the fourth magnetic detecting element 27D constitute a first magnetic detecting section 21 and a first input electrode 28A, a first ground. Electrode 29 A, first output electrode 30 A, and second output electrode 30 B are formed at predetermined positions.
  • the fifth magnetic detecting element 27 E to the eighth magnetic detecting element 27 H constitute the second magnetic detecting section 22 and have the second input electrode 2.8 B, The ground electrode 29 B, the third output electrode 30 C, and the fourth output electrode 30 D are formed at predetermined positions.
  • a first insulating layer 23 A is formed on the upper surface of the first magnetic detection unit 21, and a second insulating layer 23 B is formed on the upper surface of the second magnetic detection unit 22.
  • the first insulating layer 23 A covers at least the first magnetic detecting element 27 A to the fourth magnetic detecting element 27 D, and the second insulating layer 23 B has at least the fifth magnetic detecting element 27 A.
  • the magnetic detection element 27 E to the eighth magnetic detection element 27 H is Of the magnetic detection element 27 E to the eighth magnetic detection element 27 H.
  • a first magnetic bias film 24 is formed on the upper surface of the first insulating layer 23 A at a position facing the first magnetic detection section 21 by vapor deposition, sputtering, or the like.
  • a second magnetic bias film 25 is formed on the upper surface of the layer 23B at a position facing the second magnetic detection portion 22 by vapor deposition, sputtering, or the like.
  • the directions of the respective magnetic fields are set by bringing the magnetic field generating coils close to the first magnetic bias film 24 and the second magnetic bias film 25.
  • the magnetic field generated by the first magnetic bias film 24 and the second magnetic bias film 25 and the length of each pattern of the first magnetic detection element 27 A to the eighth magnetic detection element 27 H make sure that the directions make an angle of 45 °.
  • the directions of the magnetic fields generated in the first magnetic bias film 24 and the second magnetic bias film 25 are made to differ from each other by approximately 90 °.
  • a first coating layer 26 A is formed on the upper surface of the first magnetic bias film 24 by molding or the like, and the second coating layer 2 A is formed on the upper surface of the second magnetic bias film 25 by molding or the like.
  • the magnetic sensor according to the fourth embodiment of the present invention can be obtained by the above-described manufacturing method.
  • first magnetic bias film 24 and the second magnetic bias film 25 are formed by a lift-off method, the first insulating layer 23 A, the second insulating layer 23 B, or the first magnetic The effect of preventing damage to the detection unit 21 and the second magnetic detection unit 22 can be obtained. That is, after a resist is applied to the non-formed portions of the first magnetic bias film 24 and the second magnetic bias film 25, the entire surface of the first insulating layer 23A and the second insulating layer 23B is formed.
  • a first magnetic bias film 24 and a second magnetic bias film 25 may be provided at predetermined positions after removing a resist, respectively, after removing the resist.
  • the unnecessary CoPt film can be simultaneously removed only by removing the resist, so that it is not necessary to directly remove the CoPt film unlike the etching method.
  • the etching liquid or the like adheres or penetrates to the first insulating layer 23 A, the second insulating layer 23 B, the first magnetic detecting section 21, and the second magnetic output section 22. Can be prevented.
  • the etching solution adheres to or penetrates the first insulating layer 23 A, the second insulating layer 23 B, or the first magnetic detecting section 21 and the second magnetic detecting section 22 to cause damage. And may deteriorate the moisture resistance.
  • the lift-off method such a problem does not occur, and a highly reliable magnetic sensor as a direction sensor can be obtained.
  • the direction of the magnetic field of the first magnetic bias film 24 and the second magnetic bias film 25 can be set simultaneously or continuously, so that productivity can be improved. it can.
  • a magnetic thin film in which the direction of the magnetic field is already set may be arranged on the upper surfaces of the first insulating layer 23A and the second insulating layer 23B.
  • FIGS. 10 to 14 when a predetermined voltage is applied between the first input electrode 28 A of the first magnetic detection unit 21 and the first ground electrode 29 A, the first magnetic detection element 27 A to the fourth magnetic detection element 27 D change in resistance according to the direction of the earth's magnetism. As a result, a voltage corresponding to the change in the resistance value is output from the first output electrode 3OA and the second output electrode 30B, so that a differential output voltage between the two can be detected.
  • This differential output voltage changes depending on the angle at which the geomagnetism intersects with the first magnetic detection unit 21. When the direction of the geomagnetism is rotated by 360 °, it becomes a substantially sine wave.
  • the fifth magnetic detection element 27 A resistance change occurs in the E to eighth magnetic detection elements 27 H according to the direction of the earth's magnetism.
  • a voltage corresponding to the change in the resistance value is output from the third output electrode 30 C and the fourth output electrode 30 D, and the differential output voltage between the two can be detected.
  • This differential output voltage also changes according to the angle at which the geomagnetism intersects with the second magnetic detection unit 15, as described above. When the direction of the geomagnetism is rotated by 360 °, a substantially sinusoidal wave is generated. It becomes.
  • one differential output voltage and the other The phase with the output voltage is shifted 90 °. That is, assuming that a direction based on a certain one direction is 0, if one differential output voltage is A sin 0, the other differential output voltage is A cos 0. Since the ratio of these two outputs is t an 0, the azimuth 0 can be easily detected.
  • FIG. 15 is a diagram showing the relationship between the bias magnetic field strength and the azimuth variation of the magnetic sensor according to the present embodiment. Even if the bias magnetic field strength is too strong or too weak, the azimuth variation detected by the magnetic sensor increases, so it is necessary to set the strength appropriately.
  • the azimuth variation that can be tolerated for detecting the 36 azimuths is considered to be 7 °, so the bias magnetic field in this case is 5 to 20 ⁇ e, as shown in Fig. 15.
  • the strength of the bias magnetic field may be further limited. For example, if the allowable azimuth variation is 5 °, the bias magnetic field may be set to 6 to 18 ° e, and more preferably, the bias magnetic field may be set to 7.5 to 15 ° e.
  • the first and second magnetic bias films 24 and 25 for applying a magnetic bias to the first and second magnetic detecting units 21 and 22 having a magnetoresistance effect are provided.
  • the magnetic layer 12 has a substantially rectangular parallelepiped shape in which a plurality of magnetic layers 12 and non-magnetic layers 13 are alternately laminated, and an aspect ratio of a short side and a long side is set in a range of 5 to 200.
  • a plurality of bias magnets 11A to 11C are arranged in the short side direction and a magnetic bias film 11 configured to generate a magnetic field in the short side direction is used. Therefore, the total thickness of the magnetic bias film 11 can be reduced, and a stable magnetic bias can be obtained. Thus, it is possible to obtain a magnetic sensor that has stable characteristics against an external magnetic field and can be downsized.
  • the magnetic bias from the first magnetic bias film 24 is applied to the first magnetic detection unit 21, and the magnetic bias from the second magnetic bias film 25 is applied to the second magnetic detection unit 22. Is applied.
  • a small, high-sensitivity magnetic sensor suitable for detecting the direction of terrestrial magnetism is provided. Obtainable.
  • the output waveform from the first magnetic detection unit 21 And the output waveform from the second magnetic detection unit 22 has a phase difference of 90 °. 'By taking the ratio of these two waveform outputs, a magnetic sensor that can detect the direction of the external magnetic field with a simple configuration can be obtained.
  • the magnetic field from the first magnetic bias film 24 and the magnetic field from the second magnetic bias film 25 may be at an angle other than 90 °.
  • the first magnetic bias film 24 and the second magnetic bias film 25 are arranged so that the phases of the outputs of the first magnetic detector 21 and the second magnetic detector 22 are different from each other. What is necessary is just to make the direction of the magnetic field generated from different.
  • the output of the first magnetic detector 21 takes the same value at two azimuth angles because of the sine wave, but the output of the first magnetic detector 21 and the second magnetic detector 21 One angle can be determined by the sign of the difference from the output of 22. Thereby, all directions in the range of 0 to 360 ° can be detected. At this time, it is necessary to change the directions of the magnetic fields so that the waveforms of the outputs of the first magnetic detection unit 21 and the second magnetic detection unit 22 do not overlap.
  • the magnetic sensor of the present invention is not limited to the configuration of the magnetic sensor according to the present embodiment.
  • the following modified examples can be considered.
  • FIG. 16 is a cross-sectional view showing a modification of the magnetic sensor according to the fourth embodiment of the present invention.
  • the magnetic sensors shown in FIGS. 10 to 12 above are separate layers in which the insulating layer 23 A and the insulating layer 23 B are separated, and the coating layer 26 A and the coating layer 26 B are also separated.
  • the magnetic sensor shown in FIG. 16 has a configuration in which the insulating layer 23 covers both the first magnetic detection unit 21 and the second magnetic detection unit 22.
  • the coating layer 26 also covers the first magnetic bias film 24 and the second magnetic bias film 25. Even with such a configuration, the same effects as those of the magnetic sensor shown in FIGS. 10 to 12 can be obtained.
  • the magnetic bias film 11 described in the second embodiment of the present invention that is, the magnetized magnetic layer 12, A layer in which a plurality of nonmagnetic layers 13 are alternately stacked may be used.
  • the magnetic bias film 11 since the magnetic bias film 11 has the effect described in the second embodiment of the present invention, it is possible to reduce the size of the magnetic sensor according to the fourth embodiment of the present invention. This has the effect of becoming
  • the first and second magnetic bias films 24 and 25 have the same length as the magnetic bias film described in the first embodiment of the present invention, that is, the longer side, the shorter side, and the thickness.
  • the magnetic bias magnets 9A to 9G which have a substantially rectangular parallelepiped shape and generate a magnetic field, are arranged by arranging a plurality of magnetic bias magnets 9A to 9G in the direction of the short side. Good.
  • a plurality of magnetic bias magnets 9 A to 9 G having the aspect ratios of the long side and the short side set in the range of 5 to 200 are arranged in the short side direction by aligning the direction of the magnetic field. Since the first and second magnetic bias films 24 and 25 using the magnetic bias film 9 configured as described above are provided, a stable magnetic bias can be obtained, and as a result, It is possible to obtain a magnetic sensor in which the characteristics of the magnetic field are stable with respect to the above magnetic field.
  • FIG. 17 is a sectional view of a magnetic sensor according to the fifth embodiment of the present invention.
  • the same components as those of the magnetic sensor according to the above-described fourth embodiment of the present invention are denoted by the same reference numerals, and only different points will be described. I do.
  • the difference between the magnetic sensor according to the fifth embodiment of the present invention and the magnetic sensor according to the above-described fourth embodiment of the present invention is as follows.
  • the first magnetic detector 21 and the second magnetic detector 22 are formed directly on the upper surface of the substrate 20.
  • the first magnetic bias film 24 and the second magnetic bias film 25 are formed directly on the upper surface of the substrate 20. Even with such a configuration, the same effects as those of the magnetic sensor according to the above-described fourth embodiment of the present invention can be obtained.
  • the magnetic sensor of the present invention is not limited to the contents described in the above-described fourth and fifth embodiments of the present invention.
  • the first magnetic detection unit 21 and the second magnetic detection unit 22 are each formed by a wheel using four magnetic detection elements.
  • the method of detecting the differential output voltage is adopted as a stone bridge circuit, a method of a half bridge circuit configuration using two magnetic detecting elements may be adopted. This will be described with reference to FIG.
  • FIG. 18 is a circuit diagram showing a modification of the magnetic detection unit of the magnetic sensor according to the fifth embodiment of the present invention.
  • the first magnetic detection unit 21 It consists of a detection element 27 A and a second magnetic detection element 27 B, and by applying a predetermined voltage between the first input electrode 28 A and the first ground electrode 29 A, The voltage between the first output electrode 3 OA and the first ground electrode 29 A is detected.
  • This circuit configuration is called a “half-bridge circuit” because it has half the configuration of a Wheatstone bridge circuit.
  • the second magnetic detection unit 22 is configured similarly to the first magnetic detection unit 21.
  • Such a half-bridge circuit configuration requires only half the number of detection elements and requires a small area for the circuit, as compared to a Wheatstone bridge circuit, so the circuit configuration is simple and advantageous for miniaturization. It is.
  • the magnetic sensor as the direction sensor has been described.
  • the present invention is not limited to this, and other magnetic sensors using a magnetic bias may be used. It is also applicable to For example, it is useful for a small sensor that detects a particularly weak magnetic field, such as a magnetic impedance effect element.
  • the magnetic bias magnets 9A to 9G in the first embodiment and the magnetic layer 12 in the second and third embodiments are made of a CoPt alloy.
  • it may be composed of other CoCr alloy, CoCrPt alloy, or ferrite magnet.
  • the CoCr alloy and the CoCrPt alloy, like the CoPt alloy have large magnetocrystalline anisotropy in addition to excellent magnet properties. Therefore, it is preferable as a material for a magnetic bias magnet that requires stability in a magnetic field direction.
  • the insulating layer is made of SiO 2
  • the insulating layer may be made of alumina, epoxy resin, silicon resin, or the like.
  • a method of performing a heat treatment at a predetermined temperature while applying heat can also be mentioned as a means for positively imparting such unidirectional anisotropy (uniaxial anisotropy).
  • the anisotropy imparted by film formation in a magnetic field or heat treatment in a magnetic field is generally called induced magnetic anisotropy.
  • the magnetic sensing element has been described as being a ferromagnetic thin film or a superlattice multilayer film including NiCo and NiFe which are magnetoresistive films.
  • it may be InSb or InAs, which are semiconductors having a high electron mobility and exhibit a magnetoresistance effect.
  • the magnetic bias film according to the present invention can generate a stable and strong magnetic field in a plane perpendicular to the direction in which the magnetic layers are stacked. Therefore, it can be miniaturized and is suitable for a magnetic sensor, which is industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

 磁気バイアス膜9は、磁性層を含み、長辺、短辺、(積層方向の)厚さの順に長さが短くなる略直方体形状に加工され、磁性層の積層方向に垂直な面内に磁界を発生する磁気バイアスマグネット11を備える。そして、磁気バイアスマグネット11は、短辺に対する長辺の長さの比が5~200の範囲である。

Description

磁気バイアス膜およびこれを用いた磁気センサ 技術分野
本発明は、 各種電子機器に使用される磁気バイアス膜およびこれを用いた磁気セ ンサに関する。 背景技術 明
従来の磁気センサとして、 例えば、 特開 2 0 0 3— 1 4 4 5 8号公報に開示され るものがある。 図 1 9は従来の磁気センサ田を示す斜視図、 図 2 0は図 1 9に示した 従来の磁気センサにおける Π— Π ' 線断面図であ書る。
この磁気センサは、 基板 1の上面に設けられた 4個の検出素子 2 A〜 2 Dからな るホイートストンプリッジ回路 3と、 このホイートストンプリッジ回路を有する基 板 1を覆うようにして基板 1を保持するホルダ一 4と、 このホルダー 4の周囲に卷 回された所定巻数の導電線からなり、 かつ互いに直交する磁気パイァスを印加する 第 1のコイル 5 Αと第 2のコイル 5 Βとを備えた構成となっている。
この磁気センサは、 磁気バイアスを印加する手段としてホルダー 4の周囲に巻回 された第 1のコイル 5 Aと第 2のコイル 5 Bとを用いているため、 サイズが大きく なり、 小型化は容易ではなかった。 また、 磁界を発生させるためには、 第 1のコィ ル 5 Aと第 2のコイル 5 Bに電流を流す必要があるため、 消費電力が大きいもので あった。
また、 例えば、 国際公開第 0 3 Z 0 5 6 2 7 6号パンフレツ卜には、 磁気バイァ スを印加する手段として、 薄膜の磁石からなる磁気バイアス膜を用いた方法が開示 されている。
この磁気センサは、 磁気バイァスを印加する手段としてコイルを用いるのではな く、 平面視にて略正方形の薄膜磁石からなる磁気バイアス膜を用いているため、 上 記課題を解決することが可能となる。
この磁気センサをさらに小型化するためには、 磁気バイアス膜も小型にする必要 がある。 そのためには、 磁気バイアス膜の底面積を小さくすることが必要となる。 しかしながら、 この場合、 磁気バイアス膜が発生する磁界が小さくなり、 所望の 磁界が得られないという課題がある。 さらにそのような磁気バイァス膜に外部から 大きな磁界が加わると、 磁気バイアスの向きが影響を受け、 磁気センサの出力に影 響を及ぼすという課題がある。 発明の開示
本発明は、 上記従来の磁気バイアス膜の課題を解決するもので、 小型化が可能で、 かつ安定した所望の磁界を得ることが可能な磁気バイアス膜およびこれを用いた磁 気センサを提供することを目的とする。
この目的のために本発明の一態様に係る磁気バイアス膜は、 磁性層を含み、 前記 磁性層の積層方向に垂直な面内に磁界を発生する磁気バイアスマグネットを備える 磁気バイアス膜であって、 前記磁気バイアスマグネットは、 長辺、 短辺、 積層方向 の厚さの順に長さが短くなる略直方体形状に加工され、 かつ短辺に対する長辺の長 さの比が 5〜2 0 0の範囲であることを特徴とするものである。
この構成によれば、 本発明に係る磁気バイアス膜は、 長辺、 短辺、 積層方向の厚 さの順に長さが短くなる略直方体形状に加工された磁気バイァスマグネットを備え る。 そして、 その磁気バイアスマグネットの短辺に対する長辺の長さの比は 5〜 2 0 0の範囲である。 これにより、 磁気バイアスマグネットに含まれる磁性層の積層 方向に垂直な面内に発生する磁界の方向が安定し、 さらに強い磁界を得ることが可 能となる。 その結果、 磁気バイアス膜の小型化が可能となり、 これを用いた磁気セ ンサの小型化も同時に達成される。
本発明の他の態様に係る磁気センサは、 基板と、 前記基板の主面側に形成された 少なくとも 2以上の磁気検出素子を備えた第 1の磁気検出部と、 前記基板の主面側 に形成された少なくとも 2以上の磁気検出素子を備えた第 2の磁気検出部と、 前記 第 1の磁気検出部に対向する位置に設けられた第 1の磁気バイァス膜と、 前記第 2 の磁気検出部に対向する位置に設けられた第 2の磁気バイアス膜と、 を備えた磁気 センサであって、 前記第 1および第 2の磁気バイアス膜は、 請求項 1乃至 1 3のい ずれかに記載の磁気パイァス膜であり、 かつ前記第 1の磁気バイァス膜が発生する 磁界の向きと、 前記第 2の磁気バイァス膜が発生する磁界の向きとが異なることを 特徵とするものである。
この構成によれば、 本発明に係る磁気センサは、 基板の主面側に、 それぞれ少な くとも 2以上の磁気検出素子を備えた第 1および第 2の磁気検出部が形成されてい る。 そして、 第 1の磁気検出部に対向する位置には第 1の磁気バイアス膜が、 第 2 の磁気検出部に対向する位置には第 2の磁気バイァス膜が、 それぞれ設けられてい る。 これにより、 磁気検出部に有効に磁気バイアスを印加することができる。
また、 第 1の磁気バイァス膜と第 2の磁気バイァス膜とが発生する磁界の向きは 異なっている。 これにより、 第 1および第 2の磁気検出部からの出力波形には位相 差が生じ、 これら 2つの波形出力の比をとることによって、 簡単な構成で外部磁界 の方向を検出できる磁気センサを得ることができる。
本発明の目的、 特徴、 局面、 及び利点は、 以下の詳細な説明と添付図面とによつ て、 より明白となる。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態における磁気バイアス膜の上面図である。
図 2は、 本発明の第 1の実施形態における磁気バイァス膜を構成する磁気バイァ スマグネットの縦断面図である。
図 3は、 本発明の第 2の実施形態における磁気バイァス膜の斜視図である。
図 4は、 従来の磁気バイァス膜と本発明の第 2の実施形態における磁気バイァス 膜とでの、 膜厚と磁ィ匕の関係を示す図である。
図 5は、 従来の単層構造の磁気バイァス膜の縦断面図である。
図 6は、 本発明の第 2の実施形態における磁気バイァス膜の縦断面図である。 図 7は、 本発明の第 3の実施形態における磁気バイァス膜の斜視図である。
図 8は、 本発明の第 3の実施形態における磁気バイァス膜の上面図である。
図 9は、 本発明の第 3の実施形態における磁気パイァス膜の縦断面図である。 図 1 0は、 本発明の第 4の実施形態における磁気センサの斜視図である。
図 1 1は、 本発明の第 4の実施形態における磁気センサの分解斜視図である。 図 1 2は、 本発明の第 4の実施形態における磁気センサにおける I _ Γ 線断面 図である。
図 1 3は、 本発明の第 4の実施形態における磁気センサにおける第 1、 第 2の磁 気検出部の上面図である。
図 1 4は、 本発明の第 4の実施形態における磁気センサにおける第 1の磁気検出 部の電気回路図である。
図 1 5は、 本発明の第 4の実施形態における磁気センサのバイアス磁界強度と方 位ばらつきとの関係を示す図である。
図 1 6は、 本 ¾明の第 4の実施形態における磁気センサの変形例を示す断面図で ある。
図 1 7は、 本発明の第 5の実施形態における磁気センサの断面図である。
図 1 8は、 本発明の第 5の実施形態における磁気センサの磁気検出部の変形例を 示す電気回路図である。
図 1 9は、 従来の磁気センサの斜視図である。
図 2 0は、 従来の磁気センサにおける Π— ]!' 線断面図である。 発明を実施するための最良の形態
以下、 本発明に係る実施形態について、 図面を参照しながら説明する。 以下の第 1〜第 3の実施形態においては、 形状または構成を変えることにより、 磁界の方向 を安定化させた磁気バイアス膜について説明する。 そして、 第 4および第 5の実施 形態においては、 それらの磁気バイアス膜を用いた磁気センサについて説明する。 まず、 第 1·の実施形態では、 単層構造の磁気バイアス膜を直方体形状に加工する ことで磁界の方向を安定ィ匕させる。 第 2の実施形態では、 それとは異なり、 積層構 造の磁気バイアス膜について説明する。 そして、 第 3の実施形態では、 第 1および 第 2の実施形態を合わせた構成、 つまり積層構造の磁気バイアス膜を直方体形状に 加工することで、 磁界の方向を安定化させる例について説明する。
[第 1の実施形態]
図 1は、 本発明の第 1の実施形態における磁気バイアス膜の上面図である。 この 磁気バイァス膜 9は、 複数の磁気パイァスマグネット 9 Α〜 9 Gから構成されてお り、 それら磁気バイアスマグネット 9 Α〜 9 Gは、 それぞれ矢印 Αの方向 (X方 向) に磁界を発生させている。
磁気バイアスマグネット 9 A〜 9 Gは、 CoP t合金からなり、 長辺、 短辺、 (積層方向の) 厚さの順に長さが短くなる略直方体形状をなしている。 ここで、 「略」 直方体とは、 数学上の完全なる直方体のみならず、 例えば、 製造技術上の制 約による反りや、 稜線部や頂点における丸みや面取り、 表面の凹凸等を有するが全 体として直方体形状のものを含む意味である。 この中には、 製造技術上の制約によ り、 磁気バイアスマグネット 9 A〜9Gの底面積が上面積より大きく、 側面が傾斜 した四角錐台形状のものも含む。 このことは、 以下のすべての実施形態においても 当てはまる。
また、 CoP t合金は優れた磁石特性に加え、 大きな結晶磁気異方性を有してい る。 そのため、 磁界方向の安定性が求められる磁気バイアスマグネット用の材料と して好ましい。
この場合、 長辺、 短辺、 厚さは、 図 1に示した座標軸を用いると、 紙面に垂直な 方向 (z方向) が厚さ方向で、 図 1に記載の長方形の X方向が長辺、 y方向が短辺 である。 本実施形態における各辺の長さは、 長辺 700 rn, 短辺 140 rn, 厚 さ 2000A (=0. 2 /im) であり、 磁気バイアスマグネット 9 A〜 9 G間の間 隔はそれぞれ 10 である。
この磁気バイアスマグネット 9 Aの短辺に対する長辺の長さの比 (=長辺の長さ Z短辺の長さ) 、 つまりアスペクト比は、 700 μ,τη/140 ^m=5である。 し たがって、 磁気バイアスマグネット 9 Aの紙面内の形状は長方形であり、 長辺方向 (X方向) に形状磁気異方性が付与されていることになる。
また、 この磁気バイアスマグネット 9 Aの厚さに対する長辺のァスぺクト比 長辺の長さ Z厚さ) は、 700 zmZO. 2 ΠΙ=3500である。 さらに、 この 磁気バイアスマグネット 9 Aの厚さに対する短辺のァスぺクト比 (=短辺の長さ Z 厚さ) は、 140 11170. 2 m=700である。
なお、 他の磁気バイアスマグネット 9 B〜 9 Gも磁気バイアスマグネット 9 Aと 同様の構成となっており、 これらは磁界方向を揃えて横方向に並べられている。 そ して、 これらの磁気バイアスマグネット 9 A〜 9 Gが、 磁気バイアス膜 9を構成し ている。 以上のように構成された磁気バイアス膜 9について、 次に、 その製造方法を説明 する。
まず、 基板等の表面の全面に C o P t膜を蒸着法やスパッタリング法により形成 する。 次に露光、 エッチング等によりこの C o P t膜を分割して、 複数の略直方体 形状の C o P t膜を得る。 この複数の略直方体形状の C o P t膜の長辺方向 (X方 向) に所定の磁界を印加することにより、 略直方体形状の C o P t膜が長辺方向に 磁化されて、 磁気パイァスマグネット 9 A〜 9 Gを得ることができる。
このような構成の磁気バイアス膜 9は、 外部から大きな磁界を受けても、 磁化方 向が変化することは少ない。 この理由については、 理論的に完全に解明された訳で はないが、 おおよそ以下の理由によるものと考えられる。
図 2は、 本発明の第 1の実施形態における磁気バイァス膜 9を構成する磁気バイ ァスマグネットの縦断面図 (図 1における x z平面での断面図) である。 磁気バイ ァスマグネット 9 A〜 9 Gの内部には結晶粒子 1 0が存在している。 この結晶粒子 1 0は、 図 2に示すように、 磁気バイアスマグネット 9 A〜 9 Gの長辺方向 (X方 向) を長軸とする略楕円形状をなしていると考えられる。 そのため、 結晶粒子 1 0 の内部に存在する磁気モーメントは全体的に矢印 Bの方向を向き易く、 外部から大 きな磁界が印加されても磁気モ一メントの方向の変化が生じにくい。
この場合、 何故、 結晶粒子 1 0の形状が略楕円形状になるのかは必ずしも明確で はないが、 磁気バイアスマグネット 9 A〜 9 Gを平面視にて正方形にするのではな く、 長辺、 短辺のアスペクト比を 5以上に設定して大きく偏平した長方形とするこ とにより、 成膜または着磁の際に結晶粒子 1 0が略楕円形状になるためではないか と思われる。
さらに、 磁気バイアスマグネット 9 A〜 9 Gの形状 (長辺、 短辺のアスペクト 比) に依存する、 いわゆる反磁界の影響も少なからず存在すると思われる。 一般に、 磁性体の内部に働く (有効) 磁界は、 外部から印加した磁界より反磁界の分だけ小 さくなる。 そして、 この反磁界の大きさは、 磁性体の磁ィ匕の大きさに比例し、 その 比例係数は反磁界係数と呼ばれる。
本実施形態で用いる磁気バイアスマグネット 9 Aの形状を例に取り、 その厚さを 無視すれば、 長辺方向 (X方向) の反磁界係数は小さく、 短辺方向 (y方向) の反 磁界係数は大きい。 そのため、 長辺方向の有効磁界は大きく、 短辺方向の有効磁界 は小さくなる。 これにより、 有効磁界の大きい長辺方向の磁化の方が安定であるこ とが理解される。
ここで、 磁気バイアスマグネット 9 A〜 9 Gの長辺、 短辺のアスペクト比は 5〜 2 0 0の範囲であることが好ましく、 さらには 1 0〜2 0 0の範囲であることがよ り好ましい。 すなわち、 磁気バイアスマグネット 9 A〜 9 Gの長辺、 短辺のァスぺ クト比を 5より小さくした場合は、 外部から大きな磁界が印加されたときに磁気バ ィァスマグネット 9 A〜 9 Gから発生するバイァス磁界の安定性が低下してしまう。 これは、 前述の反磁界の観点からも理解することができる。
一方、 磁気バイアスマグネット 9 A〜 9 Gの長辺、 短辺のアスペクト比を 2 0 0 より大きぐした場合は、 磁気バイァスマグネット 9 A〜 9 Gから発生するバイァス 磁界の絶対的な強度が大きすぎ、 最適なバイアス磁界が得られなくなる。 逆にその ァスぺクト比を保ったままバイアス磁界を弱めようとすると、 短辺が短いために加 ェが困難となる。
したがって、 このことから、 磁気バイアスマグネット 9 Aの長辺、 短辺のァスぺ クト比を 5〜2 0 0の範囲に設定したもので、 これにより、 磁気バイアスマグネッ ト 9 Aから発生するバイァス磁界の安定化が図れる。
このように結晶粒子 1 0が平面視にて円形でなく、 磁気バイアスマグネット 9 A の長辺方向を長軸とする略楕円形であるという異方的な形状を有することにより、 外部からの磁界に対しても安定したバイアス磁界を発生することができるものと考 えられる。
なお、 結晶粒子 1 0の略楕円形状の長軸の方向は、 厚さ方向と垂直な方向でもあ る。 これは、 磁気バイアスマグネット 9 Aの厚さ方向の長さが長辺、 短辺方向の長 さよりも短いため、 長辺、 短辺のアスペクト比に起因して長辺方向に略楕円形状の 長軸が向き易いことと同様の理由により、 このような構成になると思われる。 この 構成からも、 磁気バイアスマグネット 9 Aは、 外部から大きな磁界を受けても、 磁 化方向が変化することが少ない。 '
上記した本発明の第 1の実施形態における磁気バイアス膜においては、 長辺、 短 辺、 厚さの順に長さが短くなる略直方体形状をなすとともに、 磁界を発生させる磁 気バイアスマグネット 9 A〜 9 pを磁界の方向を揃えて横方向に複数並べることに より磁気バイアス膜 9を構成している。 さらに、 前記磁気バイアスマグネット 9 A 〜 9 Gの長辺、 短辺のァスぺクト比をいずれも 5〜 2 0 0の範囲に設定しているた め、 外部から大きな磁界を受けても、 磁化方向が変化することは少なく、 その結果、 安定した磁気パイァスを発生させることができる。
また、 磁気バイアス膜 9の厚さは、 2 5 0 A〜2 5 0 O Aの範囲が好ましい。 磁 気バイアス膜 9の厚さが 2 5 O Aより薄いと磁性層 1 2から発生する磁界が小さく なってしまう。 一方、 磁気バイアス膜 9の厚さを 2 5 0 O Aより厚くしても、 磁界 の強度はほとんど変わらない。 したがって、 磁気バイアス膜 9の厚さは 2 5 0 A〜 2 5 0 O Aの範囲に設定するのが好ましい。
さらに、 上記製造方法のように、 一度大きな C o P t膜を形成してからエツチン グでこれを分割して磁気バイアスマグネット 9 A〜 9 Gを得る方法ではなく、 最初 から分割された状態の磁気バイアスマグネット 9 A〜 9 Gを形成してもよい。 この 場合は、 磁気バイアスマグネット 9 A〜 9 Gの形状を形取ったマスクを用いて C o P t膜を形成すればよい。
[第 2の実施形態]
図 3は、 本発明の第 2の実施形態における磁気バイアス膜の斜視図である。 図 3 において、 磁気バイアス膜 1 1は、 磁性層 1 2と非磁性層 1 3とを交互に複数積層 した構造となっている。 ここで、 磁性層 1 2は C o P t合金で構成されており、 一 定方向に磁化されることで、 矢印 Aの方向 (X方向) に磁界を発生させている。 ま た、 非磁性層 1 3は C rで構成されている。 C rは厳密には反強磁性体であり非磁 性ではないが、 強磁性体ではないという意味で、 以下、 C rに対しても非磁性とい う言葉を用いる。
本実施形態における各辺の長さは、 長辺 (X方向) 7 0 0 _i m、 短辺 (y方向) 1 4 0 mであり、 厚さ ( z方向) は、 磁性層 1 2が 2 0 0 0 A、 非磁性層 1 3が 2 5 0 Aである。 この磁気バイアス膜 1 1の短辺に対する長辺のアスペクト比は、 7 0 0 m/ 1 4 0 m= 5である。 したがって、 磁気バイアス膜 1 1の紙面内の 形状は長方形であり、 長辺方向 (X方向) に形状磁気異方性が付与されていること になる。
また、 この磁性層 1 2の厚さに対する長辺のアスペクト比 (=長辺の長さ/厚 さ) は、 7 0 0 mZ 0 . 2 ΠΙ= 3 5 0 0である。 さらに、 この磁性層 1 2の厚 さに対する短辺のァスぺク卜比 (=短辺の長さ Ζ厚さ) は、 1 4 0 u m/ 0 . 2 ίΐ m= 7 0 0である。
なお、 本実施形態においては、 磁気バイアスマグネットは 1つであるので、 磁気 バイアス膜と同義である。
以上のように構成された磁気バイアス膜 1 1について、 以下にその製造方法を説 明する。 基板 (図示せず) の表面に蒸着法やスパッタリング法によって C o P t合 金からなる磁性層 1 2を形成し、 そしてこの磁性層 1 2の上面に蒸着法やスパッ夕 リング法によって C rからなる非磁性層 1 3を形成する。 さらに、 この非磁性層 1 3の上面に磁性層 1 2を形成するということを繰り返すことにより、 磁性層 1 2と 非磁性層 1 3とが z方向に複数積層された積層膜を得ることができる。
そしてこれら磁性層 1 2の積層方向に垂直な所定の方向 (図 3における X方向) に所定の磁界を印加することにより、 積層膜における磁性層 1 2が矢印 Aの方向 ( X方向) に磁化されて、 磁気バイアス膜 1 1を得ることができる。
ここで、 この磁気バイアスマグネット 1 1は略正方形ではなく、 短辺 (y方向) と長辺 (X方向) のアスペクト比が第 1の実施形態と同様に、 5〜2 0 0の範囲で あることが好ましく、 さらには 1 0〜2 0 0の範囲であることがより好ましい。 す なわち、 磁気バイアスマグネット 1 1の長辺、 短辺のアスペクト比が 5より小さい とバイアス磁界の安定性が低下し、 ァスぺクト比が 2 0 0より大きいとバイアス磁 界の絶対的な強度が大きくなりすぎてしまうからである。
このような積層構造の磁気バイアス膜 1 1は、 従来の磁気バイアス膜のように、 磁性層の膜厚を単純に厚くした単層構造の磁気バイアス膜と比較して、 大きな磁界 を発生させることができる。 これについて、 図面を用いて説明する。
図 4は、 従来の単層構造の磁気バイアス膜と、 本実施形態の積層構造の磁気バイ ァス膜についての磁気特性を示したものであり、 横軸は磁性層の膜厚を A単位で、 縦軸はその磁性層の磁化を e m u単位で表したものである。
この図 4において、 積層構造、 単層構造の磁気バイアス膜の結果を、 四角形 (お よび傾いた四角形) で表し、 それらの結果が略一直線上に乗るように、 それぞれ実 線、 破線の直線でつないである。 ここで、 積層構造の磁気バイアス膜に関しては、 磁性層 1 2の 1つの層を 2 0 0 O Aとしている。 したがって、 膜厚が 4 0 0 0 A、 6 0 0 O A, 8 0 0 O Aというのは、 磁性層 1 2がそれぞれ 2層、 3層、 4層で構 成されていることを表し、 それら磁性層 1 2の間には非磁性層 1 3が挿入されてい る。
この図 4からわかるように、 従来の単層構造の磁気バイアス膜は膜厚を厚くして もほとんど磁化の大きさは変わらない。 それに対して、 本実施形態の積層構造の磁 気バイアス膜は、 膜厚に応じて磁化が大きくなつている。 この理由については、 理 論的に完全に解明された訳ではないが、 おおよそ以下の理由によるものと考えられ る。
図 5は従来の単層構造の磁気バイァス膜の縦断面図、 図 6は本実施形態における 積層構造の磁気バイアス膜の縦断面図である。 いずれも、 図 3における x z平面で の断面である。
図 5に示す従来の単層構造の磁気バイァス膜 1 5の内部には結晶粒子 1 4が存在 している。 また、 結晶粒子 1 4が持つ磁気モーメントの向きを、 結晶粒子 1 4の中 に矢印で示す。
この結晶粒子 1 4は、 図 5に示すように略楕円形状であると考えられ、 薄い単層 構造の磁気バイアス膜 1 5内においては、 結晶粒子 1 4の長軸方向は比較的長辺方 向 (X方向) に揃いながら無秩序に存在している。 単層構造の磁気バイアス膜 1 5 を単純に厚くした場合は、 それに対応してこの内部に存在する結晶粒子 1 4の数も 増加するが、 結晶粒子 1 4の長軸方向は長辺方向だけでなく、 長辺方向と垂直の厚 さ方向 (z方向) にも向いてくる。
この場合、 従来の単層構造の磁気バイアス膜 1 5は、 全体としては単層構造の磁 気バイアス膜 1 5の長辺方向に磁界を発生させるものの、 各々の結晶粒子 1 4の磁 気モーメントは単層構造の磁気バイアス膜 1 5の厚さ方向に対しての成分も有して いる。 この厚さ方向の磁界成分は単層構造の磁気バイアス膜 1 5の長辺方向の磁界 の強さには寄与しない。 そして、 単層構造の磁気バイアス膜 1 5の厚さが厚くなる と、 結晶粒子 1 4の磁気モーメントが持つ厚さ方向の成分がより大きくなると考え られるため、 単層構造の磁気バイアス膜 1 5の厚さを単純に厚くしても、 これに対 応して長辺方向の磁界は増加しないものと考えられる。
これに対し、 図 6に示す非磁性層 1 3を介して磁性層 1 2を積層した構成をもつ 本発明の積層構造の磁気バイアス膜 1 1は、 各々の磁性層 1 2が非磁性層 1 3で分 離されている。 そのため、 各結晶粒子 1 4の配向は各々の磁性層 1 2の厚さに支配 されることになり、 結晶粒子 1 4の長軸方向は比較的長辺方向に揃いながら存在す る。 これにより、 各々の結晶粒子 1 4における磁気モーメントの膜厚方向の成分は 少なくなるため、 結晶粒子 1 4の磁気モーメントはより長辺方向の磁界の強さに寄 与するものと考えられる。
ここで、 この図 6に示した磁気モーメントの X軸上での向き (図の左向きか、 右 向きか) は模式的なものであり、 必ずしもすべての磁気モーメントが同じ向きに揃 つているという意味ではない。
何故、 結晶粒子 1 4の形状が略楕円形状になるのかは必ずしも明確ではないが、 本発明の積層構造の磁気バイアス膜 1 1においては、 特に磁性層 1 2の膜厚が薄ぐ 長辺方向に対する厚さ方向が極端に短い偏平な構造であるため、 成膜または着磁の 際に結晶粒子 1 4が長辺方向に配向した略楕円形状になるためではないかと思われ る。
さらに、 磁気バイアス膜 1 1の形状に依存する、 反磁界の影響も少なからず存在 すると思われる。 今、 磁気バイアス膜 1 1の紙面に垂直な方向 (y方向) の長さを 無視し、 図 5および図 6における横方向 (X方向) の長さは等しいとする。 つまり、 単層構造の磁気バイアス膜 1 1と積層構造を構成する 1つの磁性層 1 2とは、 それ らの厚さ方向 (z方向) の長さが異なるのみである。
このとき、 単層構造と積層構造の磁気バイアス膜 1 1の厚さ方向 (z方向) の反 磁界係数は略同じである。 それに対して、 X方向の反磁界係数は、 図 5に示した単 層構造では大きく、 図 6に示した積層構造を構成する 1つの磁性層 1 2では小さく なる。 しかしながら、 どちらの構造の X方向の反磁界係数の値も、 z方向の反磁界 係数より小さい値を取る。 したがって、 図 6に示した積層構造の方が、 図 5に示し た単層構造に比べ、 X方向と z方向での反磁界係数の値の差が大きい。
つまり、 図 6に示した積層構造では、 紙面における横方向 (X方向) の有効磁界 が大きく、 それに比べると紙面における縦方向 (Z方向) の有効磁界が小さいため、
X方向の磁化が安定となる。 それに対して、 図 5に示した単層構造では、 紙面にお ける縦方向 (z方向) と横方向 (X方向) での有効磁界の差が小さいため、 X方向 の磁化が不安定となり、 磁化は z方向 (厚さ方向) にも向き易くなる。
ここで、 磁性層 12の厚さは、 250 A〜 2500 Aの範囲が好ましい。 磁性層 12の厚さが 25 OAより薄いと磁性層 12から発生する磁界が小さくなつてしま う。 一方、 磁性層 12の厚さを 250 OAより厚くしても、 図 5に示したように、 結晶粒子 14の磁気モーメントの厚さ方向成分がより大きくなり、 磁界の強度はほ とんど変わらない。 したがって、 磁性層 12の厚さは 250A〜250 OAの範囲 に設定するのが好ましい。
また、 非磁性層 13の厚さは、 50 Α〜500 Αの範囲が好ましい。 この場合、 非磁性層 13は厚さを 5 OAより薄くすると、 この非磁性層 13の上下に位置する 磁性層 12同士が干渉して悪影響を及ぼすおそれがある。 一方、 非磁性層 13の厚 さを 500Aより厚くすると全体が厚くなつてしまう。 したがって、 非磁性層 13 の厚さは 50A〜50 OAの範囲に設定するのが好ましい。
磁気バイァス膜 11を構成する非磁性層 13は、 本実施形態で示した C rに限定 されるものではなく、 これ以外の T i、 Cu、 A l、 Sn、 Nb、 Au、 Ag、 T a、 Wなどの非磁性元素を用いてもよい。
そしてまた、 磁気バイアス膜 11の製造において、 磁性層 12と非磁性層 13を 形成する場合、 本発明の第 2の実施形態においては、 基板 (図示せず) の表面に蒸 着法やスパッタリング法によって磁性層 12と非磁性層 13を形成していたが、 こ れに限定されるものではなく、 例えば、 湿式法によって、 CoP t合金と C rとを 交互に複数回形成することにより、 磁性層 12と非磁性層 13を形成してもよい。 また、 別の湿式法により、 Co P t前駆体と C r前駆体とを交互に複数回塗布し、 これを焼成して磁性層 12と非磁性層 13を形成してもよい。
さらに、 磁性層 12は最低 2層以上必要であるため、 磁気バイアス膜 11の総厚 さを薄くするためには、 最上層および最下層を磁性層 12にして積層する構成がよ い。
以上のように本発明の第 2の実施形態においては、 磁化された磁性層 12と非磁 性層 13とを複数積層して磁気バイアス膜 1 1を構成しているため、 磁性層 12の 厚さに応じた大きな磁界を発生する磁気バイアス膜 11を得ることができる。
[第 3の実施形態]
図 7は、 本発明の第 3の実施形態における磁気バイアス膜の斜視図である。 本発 明の第 3の実施形態における磁気バイアス膜 1 1は、 複数の磁気バイアスマグネッ ト 1 1A〜1 1 Cから構成されており、 矢印 Aの方向 (X方向) に磁界を発生させ ている。 そして、 磁気バイアスマグネット 1 1 Aは、 CoP t合金からなる磁性層 12と C rからなる非磁性層 13とを交互に複数積層した構造からなり、 長辺 (y 方向) 、 短辺 (X方向) 、 および磁気バイアス膜 1 1 Aの積層方向である厚さ (z 方向) の順に長さが短くなる略直方体形状を有する。
本実施形態における各辺の長さは、 長辺 (y方向) 700 /m、 短辺 (x方向) 140 であり、 磁気バイアスマグネット 1 1 Aと 1 1 B、 1 1 Bと 1 1 C間の 間隔はそれぞれ 10 mである。 また、 厚さ (z方向) は、 磁性層 12が 2000 A、 非磁性層 13が 25 OAである。 したがって、 磁気バイアスマグネット 1 1 A の短辺に対する長辺のァスぺク卜比は、 700 ΐΐΐ/140 m=5である。
また、 この磁性層 12の厚さに対する長辺のアスペクト比 (=長辺の長さ Z厚 さ) は、 700 2 m=3500である。 さらに、 この磁性層 12の厚 さに対する短辺のァスぺクト比 (=短辺の長さ/厚さ) は、 140 n /Q. 2 a m=700である。
なお、 他の磁気バイァスマグネッ卜 1 1 B、 1 1 Cもこの磁気バイァスマグネッ ト 1 1 Aと同様の構成を有するもので、 これらは磁界方向を揃えて図の横方向、 す なわち、 略直方体形状の短辺方向 (X方向) に並べられている。 そして、 これらの 磁気バイアスマグネット 11 A〜l 1 Cが、 磁気バイアス膜 1 1を構成している。 ここで、 この磁気バイアスマグネット 1 1 A〜l 1 Cの短辺 (X方向) と長辺 (y方向) とのアスペクト比は、 第 1および第 2の実施形態と同様に、 5〜200 の範囲であることが好ましく、 さらには 10〜200の範囲であることがより好ま しい。 すなわち、 磁気バイアスマグネット 1 1 A〜l 1 Cの長辺、 短辺のァスぺク ト比が 5より小さいとバイァス磁界の安定性が低下し、 ァスぺクト比が 200より 大きいとバイァス磁界の絶対的な強度が大きくなりすぎてしまうからである。
以上のように構成された本発明の第 3の実施形態における磁気バイアス膜 1 1に ついて、 以下にその製造方法を説明する。
基板 (図示せず) の表面に蒸着法やスパッタリング法によって C o P t合金から なる磁性層 1 2を形成し、 そしてこの磁性層 1 2の上面に蒸着法やスパッタリング 法によって C rからなる非磁性層 1 3を形成する。 さらに、 この非磁性層 1 3の上 面に磁性層 1 2を形成するということを繰り返すことにより、 磁性層 1 2と非磁性 層 1 3とが複数積層された積層膜を得ることができる。
次にフォトリソグラフィ技術を用いて、 レジスト塗布後、 露光、 現像によるパタ —ニングを行った後、 エッチングによりこの積層膜を分割して複数の略直方体形状 の積層膜を得ることができる。
この複数の略直方体形状の積層膜においては、 長辺方向あるいは短辺方向に所定 の磁界を印加することにより、 略直方体形状の積層膜における磁性層が、 長辺方向 あるいは短辺方向に磁化された磁気バイアスマグネット 1 1 A〜l 1 Cを得ること ができる。
また、 このような構成においては、 長辺方向に比べて短辺方向に磁化されやすい。 つまり、 短辺方向に磁化された場合の磁気バイアス膜 1 1は、 長辺方向に磁化され た場合に比べて、 外部から大きな磁界を受けても磁ィ匕方向が変化しにくい。 言い換 えれば、 本実施形態においては長辺方向に比べ、 短辺方向に大きな磁気異方性が付 与されていると思われる。 この状態について図 8を用いて説明をする。
図 8は、 本発明の第 3の実施形態における磁気バイアス膜 1 1の上面図である。 ここでは磁性層 1 2が磁気バイァスマグネット 1 1 A〜 1 1 Cの短辺方向 (X方 向) に磁化されている。 この場合、 長辺方向 (y方向) に磁気モーメントを配置す るよりも、 短辺方向 (X方向) に磁気モーメントを配置した方が、 外部磁界に対し 安定した磁気バイアスを発生させることができる。 この理由についての理論的な解 明はなされていないが、 磁気バイアスマグネット 1 1 A〜1 1 C間の相互作用およ び磁性層 1 2を複数層積層することによる各磁性層 1 2間の相互作用が関係してい ると思われる。
図 9は、 本実施形態における積層構造の磁気バイァス膜の縦断面図 (図 7におけ る x z平面での断面図) である。 本実施形態においては、 磁性層 1 2間の静磁結合 により、 3層ある磁性層 1 2の内、 真ん中の磁性層 1 2の磁化の向きが、 それ以外 の磁性層の磁化の向きに対して反対になっていると思われる。 このため、 本実施形 態の磁気バイアス膜における磁性層 1 2の積層数は奇数にすることが好ましい。 こ れにより、 外部からの磁界に対しても特性が安定した磁気バイアス膜 1 1が得られ るからである。
また、 本発明の第 3の実施形態においては、 上記本発明の第 2の実施形態で説明 したものと同様に、 非磁性層 1 3を介して磁性層 1 2を積層した構成による効果が 存在する、 すなわち、 磁性層 1 2の層数の増加に応じて磁界が強くなるという効果 を有する。
以上の通り、 本発明の第 3の実施形態における磁気バイアス膜 1 1においては、 磁性層 1 2と非磁性層 1 3とを交互に複数積層した略直方体形状の磁気バイアスマ グネット 1 1 A〜l 1 Cを略直方体形状の短辺方向に並べて配置している。 そして、 これらの磁気バイアスマグネット 1 1 A〜l 1 Cは、 短辺と長辺とのァスぺクト比 をいずれも 5〜2 0 0の範囲に設定しているため、 従来における単層の磁気バイァ ス膜に比べて強い磁界を得ることが可能となり、 これにより、 磁気バイアス膜の小 型化が可能になるとともに、 外部磁界に対しても安定した磁界が得られるという効 果を有する。
また、 本発明の第 3の実施形態においても、 磁性層 1 2の厚さおよび非磁性層 1 3の厚さは、 上記した本発明の第 2の実施形態と同様に、 磁性層 1 2の厚さは、 2 5 0 A〜2 5 0 O Aの範囲に設定するのが好ましく、 また、 非磁性層 1 3の厚さは、 5 0 A〜5 0 O Aの範囲に設定するのが好ましい。
また、 磁気バイアス膜 1 1を構成する非磁性層 1 3は、 本発明の第 3の実施形態 で示した C rに限定されるものではなく、 これ以外の T i、 C u、 A l、 S n、 N b、 A u、 A g、 T a、 Wなどの非磁性元素を用いてもよい。
そしてまた、 磁気バイアスマグネット 1 1 A〜 1 1 Cを得る方法は、 上記本発明 の第 3の実施形態における磁気バイァス膜の製造方法のように、 一度大きな C o P t合金と C rの積層膜を形成してから、 エッチングでこれを分割することにより、 磁気バイアスマグネット 1 1 A〜l 1 Cを得る方法に限定されるものではなく、 最 初から分割された状態の磁気バイアスマグネット 1 1 A〜l 1 Cを形成してもよい。 この場合は、 磁気バイアスマグネット 1 1 A〜l 1 Cの形状を形取ったマスクを用 いて C o P t合金と C rの積層膜を形成すればよい。
[第 4の実施形態]
図 1 0は本発明の第 4の実施形態における磁気センサの斜視図、 図 1 1は同磁気 センサの分解斜視図、 図 1 2は図 1 0における I— I ' 線断面図、 図 1 3は同磁気 センサにおける第 1、 第 2の磁気検出部の上面図、 図 1 4は同磁気センサにおける 第 1の磁気検出部の電気回路図である。
図 1 0〜図 1 4において、 基板 2 0はアルミナなどの絶縁性を有する材料からな り、 その上面 (主面) にはガラスグレーズ層 (図示せず) が形成されていることが 好ましい。 ガラスグレーズ層は、 平滑な表面を得易く、 その上面への第 1および第 2の磁気検出部 2 1、 2 2の形成が容易となるためである。
本実施形態においては、 第 1の磁気検出部 2 1および第 2の磁気検出部 2 2は、 それぞれ 4つの磁気検出素子から構成されている。 ここで、 磁気検出素子とは、 磁 界の向きおよび大きさに応じた信号を出力し、 磁界の向きなどを検出するための素 子であり、 例えば磁気抵抗効果を利用した素子 (磁気抵抗効果素子) や、 ホール素 子、 磁気インピーダンス効果素子などが挙げられる。
これら磁気検出素子は、 基板 2 0の上面に形成された磁気抵抗膜により構成され ている。 ここで、 磁気抵抗膜は、 N i C oや N i F eなどを含む強磁性薄膜や、 人 ェ格子多層膜などの磁性膜からなる。 そして、 第 1または第 2の磁気検出部 2 1、 2 2は、 その形成面に対し、 外部磁界が垂直に印加されたときに抵抗変化量が最大 となる。
また、 第 1および第 2の磁気検出部 2 1、 2 2を構成する磁気抵抗膜は、 複 数折り返して形成されている。 これは、 複数折り返すことにより、 測定すべき 磁気 (例えば、 地磁気) が横切る本数が増えるため、 抵抗変化量が大きくなり、 検出感度が向上するためである。
第 1の絶縁層 2 3 Aは、 絶縁性を有する S i〇2からなり、 第 1の磁気検出部 2 1を覆うことにより、 第 1の磁気検出部 2 1と後述する第 1の磁気バイアス 膜 2 4との間の電気的絶縁を行うものである。 また、 第 2の絶縁層 2 3 Bも第 1の絶縁層 2 3 Aと同様に絶縁性を有する S i〇2力 ^らなり、 第 2の磁気検出部 2 2を覆うことにより、 第 2の磁気検出部 2 2と後述する第 2の磁気バイアス 膜 2 5との間の電気的絶縁を行うものである。
第 1の磁気バイアス膜 2 4は、 第 1の絶縁層 2 3 Aの上面に形成されており、 第 1の磁気検出部 2 1へ磁気バイアスを印加させている。 そして、 この第 1の 磁気バイアス膜 2 4には、 上記本発明の第 3の実施形態において説明した磁気 バイアス膜 1 1、 すなわち、 短辺と長辺とのアスペクト比が 5〜2 0 0の範囲 に設定され、 かつ C o P t合金からなり一方向に磁化されている磁性層 1 2と、 C rからなる非磁性層 1 3とを交互に複数積層した磁気バイアスマグネット 1 1 A〜 l 1 Cから構成され、 磁気バイアスマグネット 1 1 A〜 l 1 Cを短辺方 向に複数並べて配置し、 かつ短辺方向に磁界を発生するように構成した磁気バ ィァス膜 1 1を用いている。
また、 第 2の磁気バイアス膜 2 5は、 第 2の絶縁層 2 3 Bの上面に形成されてい るもので、 第 2の磁気検出部 2 2へ磁気バイアスを印加させている。 そして、 この 第 2の磁気バイァス膜 2 5にも上記本発明の第 3の実施形態において説明した磁気 バイアス膜 1 1を用いている。 これら第 1および第 2の磁気バイアス膜 2 4、 2 5 は、 第 1および第 2の磁気検出部 2 1、 2 2の抵抗値の変化率が大きく、 かつそれ が磁界の変ィ匕に対して略リニアに変化するように調整するためのものである。
第 1の被覆層 2 6 Aは、 エポキシ樹脂、 シリコン樹脂等からなり、 第 1の磁気バ ィァス膜 2 4を覆っている。 また、 第 2の被覆層 2 6 Bも同様に、 エポキシ樹脂、 シリコン樹脂等からなり、 第 2の磁気バイアス膜 2 5を覆っている。
第 1の磁気検出素子 2 7 Aと第 2の磁気検出素子 2 7 Bとは電気的に直列に接続 されているもので、 パターンの長手方向が 9 0 ° 異なっている。 また、 第 3の磁気 検出素子 2 7 Cと第 4の磁気検出素子 2 7 Dも電気的に直列に接続されているもの で、 パターンの長手方向が 9 0 ° 異なっている。 さらに、 第 1の磁気検出素子 2 7 Aおよび第 2の磁気検出素子 2 7 Bと、 第 3の磁気検出素子 2 7 Cおよび第 4の磁 気検出素子 2 7 Dとは電気的に並列に接続されている。 また、 第 1の磁気検出素子 2 7 Aと第 3の磁気検出素子 2 7 Cとのパターンの長手方向は互いに 9 0 ° 異なる。 第 1の入力電極 2 8 Aは、 基板 2 0上に形成されているもので、 第 1の磁気検出 素子 2 7 Aおよび第 3の磁気検出素子 2 7 Cと電気的に接続されている。 第 1のグ ランド電極 2 9 Aは、 第 2の磁気検出素子 2 7 Bおよび第 4の磁気検出素子 2 7 D と電気的に接続されている。 第 1の出力電極 3 O Aは、 第 1の磁気検出素子 2 7 A と第 2の磁気検出素子 2 7 Bと電気的に接続されており、 かつ第 2の出力電極 3 0 Bは、 第 3の磁気検出素子 2 7 Cと第 4の磁気検出素子 2 7 Dと電気的に接続され ている。 また、 第 2の磁気検出部 2 2も第 1の磁気検出部 2 1と同様に、 第 5の磁 気検出素子 2 7 E〜第 8の磁気検出素子 2 7 H、 第 2の入力電極 2 8 B、 第 2のグ ランド電極 2 9 B、 第 3の出力電極 3 0 Cおよび第 4の出力電極 3 0 Dから構成さ れている。 これらは、 それぞれ第 1の磁気検出部 2 1における第 1の磁気検出素子 2 7 A〜第 4の磁気検出素子 2 7 D、 第 1の入力電極 2 8 A、 第 1のグランド電極
2 9 A、 第 1の出力電極 3 O Aおよび第 2の出力電極 3 0 Bに対応する。
なお、 第 1の入力電極 2 8 Aと第 2の入力電極 2 8 Bは電気的に接続され、 かつ 第 1のグランド電極 2 9 Aと第 2のグランド電極 2 9 Bも電気的に接続されている。 これにより、 第 1の磁気検出部 2 1と第 2の磁気検出部 2 2とは電気的に並列に接 続される。 また、 第 1の入力電極 2 8 A、 第 2の入力電極 2 8 B、 第 1のグランド 電極 2 9 A、 第 2のグランド電極 2 9 B、 第 1の出力電極 3 0 A〜第 4の出力電極
3 0 Dはそれぞれ銀、 または銀パラジウムにより構成されている。
第 1の磁気検出部 2 1を構成する第 1の磁気検出素子 2 7 A〜第 4の磁気検出素 子 2 7 Dは、 いずれも磁気抵抗膜からなるもので、 図 1 4に示すように、 全体でホ ィートストンブリッジ回路を構成している。 したがって、 第 1の出力電極 3 O Aと 第 2の出力電極 3 0 Bからそれぞれ得られた 2つの出力電圧の差 (差動出力電圧) が大きくなり、 方位が精度よく検知される。 さらに 2つの出力電圧のノイズをキヤ ンセルできるため、 ノイズによる検出ばらつきを抑えることができる。
図 1 3における磁界 3 1は、 第 1の磁気バイアス膜 2 4が第 1の磁気検出部 2 1 に印加する磁界の方向を示している。 一方、 磁界 3 2は、 第 2の磁気バイアス膜 2 5が第 2の磁気検出部 2 2に印加する磁界の方向を示したものであり、 磁界 3 1と はその方向が 9 0 ° 異なっている。
本実施形態においては、 第 1および第 2の磁気バイアス膜 2 4、 2 5で発生する 磁界と第 1の磁気検出素子 2 7 A〜第 8の磁気検出素子 2 7 Hの各パターンの長手 方向が 4 5 ° の角度をなすように構成されている。 この角度が 0 ° または 1 8 0 ° では、 第 1および第 2の磁気バイァス膜 2 4、 2 5で発生する磁界が、 第 1〜第 8 の磁気検出素子 2 7 A〜2 7 Hの抵抗変化に寄与しないので、 バイアス磁界の役割 を果たさない。 したがって、 この角度は 4 5 ° 以外でも構わないが、 0 ° と 1 8 0 ° を除いた角度にすることが好ましい。
以上のように構成された本発明の第 4の実施形態における磁気センサについて、 次に、 その製造方法を説明する。
まず、 基板 2 0の上面に印刷、 蒸着等の方法によって、 第 1の磁気検出素子 2 7 A〜第 8の磁気検出素子 2 7 H、 第 1の入力電極 2 8 A、 第 2の入力電極 2 8 B、 第 1のグランド電極 2 9 A、 第 2のグランド電極 2 9 B、 第 1の出力電極 3 0 A、 第 2の出力電極 3 0 B、 第 3の出力電極 3 0 C、 および第 4の出力電極 3 0 Dを形 成する。
このとき、 第 1の磁気検出素子 2 7 A〜第 4の磁気検出素子 2 7 Dにより第 1の 磁気検出部 2 1が構成されるとともに、 第 1の入力電極 2 8 A、 第 1のグランド電 極 2 9 A、 第 1の出力電極 3 0 Aおよび第 2の出力電極 3 0 Bが所定の位置に形成 される。 これと同様に、 第 5の磁気検出素子 2 7 E〜第 8の磁気検出素子 2 7 Hに より第 2の磁気検出部 2 2が構成されるとともに、 第 2の入力電極 2.8 B、 第 2の グランド電極 2 9 B、 第 3の出力電極 3 0 Cおよび第 4の出力電極 3 0 Dが所定の 位置に形成される。
次に、 第 1の磁気検出部 2 1の上面に第 1の絶縁層 2 3 Aを形成し、 かつ第 2の 磁気検出部 2 2の上面に第 2の絶緣層 2 3 Bを形成する。 このとき、 第 1の絶縁層 2 3 Aは少なくとも第 1の磁気検出素子 2 7 A〜第 4の磁気検出素子 2 7 Dを覆う ようにし、 かつ第 2の絶縁層 2 3 Bは少なくとも第 5の磁気検出素子 2 7 E〜第 8 の磁気検出素子 2 7 Hを覆うようにする。
次に、 第 1の絶縁層 2 3 Aの上面における第 1の磁気検出部 2 1と対向する位置 に第 1の磁気バイアス膜 2 4を蒸着、 スパッ夕等によって形成するとともに、 第 2 の絶縁層 2 3 Bの上面における第 2の磁気検出部 2 2と対向する位置に第 2の磁気 バイアス膜 2 5を蒸着、 スパッ夕等によって形成する。 その後、 第 1の磁気バイアス膜 2 4、 第 2の磁気バイアス膜 2 5に磁界発生コィ ルを近接させることによって、 それぞれの磁界の向きを設定する。 このとき、 第 1 の磁気バイアス膜 2 4および第 2の磁気バイアス膜 2 5で発生する磁界と第 1の磁 気検出素子 2 7 A〜第 8の磁気検出素子 2 7 Hの各パターンの長手方向が 4 5 ° の 角度をなすようにする。 また、 第 1の磁気バイアス膜 2 4、 第 2の磁気バイアス膜 2 5で発生する磁界の方向を互いに略 9 0 ° 異なるようにしている。
最後に、 第 1の磁気バイァス膜 2 4の上面にモールド等によって第 1の被覆層 2 6 Aを形成するとともに、 第 2の磁気バイアス膜 2 5の上面にモールド等によって 第 2の被覆層 2 6 Bを形成する。
上記した製造方法によって、 本発明の第 4の実施形態における磁気センサを得る ことができる。 ,
なお、 第 1の磁気バイアス膜 2 4、 第 2の磁気バイアス膜 2 5をリフトオフ法に よって形成すれば、 第 1の絶縁層 2 3 A、 第 2の絶縁層 2 3 Bまたは第 1の磁気検 出部 2 1、 第 2の磁気検出部 2 2へのダメージを防止できるという効果が得られる。 すなわち、 第 1の磁気バイアス膜 2 4、 第 2の磁気バイアス膜 2 5の非形成部にレ ジストを塗布した後、 第 1の絶縁層 2 3 A、 第 2の絶縁層 2 3 Bの全面にそれぞれ C o P t膜を形成し、 その後、 レジストを除去して所定位置に第 1の磁気バイアス 膜 2 4、 第 2の磁気バイアス膜 2 5を設けるようにしてもよい。
この場合、 レジストの除去さえすれば不要な C o P t膜も同時に除去できるため、 エッチング法のように C o P t膜を直接除去する必要がなくなる。 その結果、 エツ チング液等が第 1の絶縁層 2 3 A、 第 2の絶縁層 2 3 Bまたは第 1の磁気検出部 2 1、 第 2の磁^ ^出部 2 2へ付着あるいは浸透するのを防止することができる。
特に、 第 1の磁気バイアス膜 2 4および第 2の磁気バイアス膜 2 5に C o P t合 金を用いた場合、 エッチング液として強酸性のものを使用する必要がある。 そのた め、 第 1の絶縁層 2 3 A、 第 2の絶縁層 2 3 Bまたは第 1の磁気検出部 2 1、 第 2 の磁気検出部 2 2にエッチング液が付着あるいは浸透してダメージを与え、 耐湿性 等を悪化させるおそれがある。 しかし、 リフトオフ法であれば、 このような問題は 生じず、 信頼性の高い方位センサとしての磁気センサを得ることができる。
また、 第 1の磁気バイアス膜 2 4、 第 2の磁気バイアス膜 2 5を形成した後、 磁 界の向きを設定するようにすれば、 同時あるいは連続して第 1の磁気バイアス膜 2 4、 第 2の磁気バイアス膜 2 5の磁界の向きを設定できるため、 生産性を向上させ ることができる。
そしてまた、 すでに磁界の向きが設定された磁性薄膜を第 1の絶縁層 2 3 A、 第 2の絶縁層 2 3 Bの上面に配置するようにしてもよい。
次に、 本発明の第 4の実施形態における磁気センサの動作について説明する。 図 1 0〜図 1 4において、 第 1の磁気検出部 2 1の第 1の入力電極 2 8 Aと第 1 のグランド電極 2 9 A間に所定の電圧を印加すると、 第 1の磁気検出素子 2 7 A〜 第 4の磁気検出素子 2 7 Dには、 地磁気の方向に応じた抵抗変化が生じる。 これに より、 第 1の出力電極 3 O Aと第 2の出力電極 3 0 Bから抵抗値変化に応じた電圧 が出力されるため、 この両者間の差動出力電圧を検出することができる。 この差動 出力電圧は、 地磁気と第 1の磁気検出部 2 1とが交わる角度によって変化するもの であり、 地磁気の方向を 3 6 0 ° 回転させると略正弦波となる。
上記したものと同様に、 第 2の磁気検出部 2 2の第 2の入力電極 2 8 Bと第 2の グランド電極 2 9 B間に所定の電圧を印加すると、 第 5の磁気検出素子 2 7 E〜第 8の磁気検出素子 2 7 Hには、 地磁気の方向に応じた抵抗変化が生じる。 これによ り、 第 3の出力電極 3 0 Cと第 4の出力電極 3 0 Dから抵抗値変化に応じた電圧が 出力されるため、 この両者間の差動出力電圧を検出することができる。 この差動出 力電圧も、 上記したものと同様に、 地磁気と第 2の磁気検出部 1 5とが交わる角度 によって変化するものであり、 地磁気の方向を 3 6 0 ° 回転させると略正弦波とな る。
ここで、 本実施形態のように、 第 1の磁気バイアス膜 2 4と第 2の磁気バイアス 膜 2 5の磁界方向を 9 0 ° 異ならせることにより、 一方の差動出力電圧と他方の差 動出力電圧との位相は 9 0 ° ずれる。 すなわち、 ある所定の一方向を基準にした方 位を 0とすると、 一方の差動出力電圧が A s i n 0となる場合、 他方の差動出力電 圧が A c o s 0となる。 これら両出力の比は t a n 0になるため、 容易に方位 0を 検出することができる。
次に、 第 1の磁気バイアス膜 2 4、 第 2の磁気バイアス膜 2 5によるバイアス磁 界強度について説明する。 図 1 5は、 本実施形態における磁気センサのバイアス磁界強度と方位ばらつきと の関係を示す図である。 バイァス磁界強度は強すぎても弱すぎても磁気センサが検 出する方位ばらつきは大きくなるため、 適切な強度にする必要がある。 3 6方位を 検出するために許容できる方位のばらつきは 7 ° であると考えられるため、 この場 合のバイアス磁界としては、 図 1 5からわかるように 5〜2 0〇eが適当である。 要求される方位ばらつきを小さくしたい場合には、 バイアス磁界の強度をさらに 限定すればよい。 例えば、 許容できる方位のばらつきが 5 ° の場合にはバイアス磁 界を 6〜1 8〇eとすればよく、 さらに好ましくはバイアス磁界を 7 . 5〜1 5〇 eとすればよい。
上記した本実施形態における磁気センサにおいては、 磁気抵抗効果を有する第 1、 第 2の磁気検出部 2 1、 2 2に磁気バイァスを印加する第 1、 第 2の磁気バイァス 膜 2 4、 2 5として、 磁性層 1 2と非磁性層 1 3とを交互に複数積層し、 かつ短辺 と長辺とのァスぺク卜比を 5〜2 0 0の範囲に設定した略直方体形状の磁気バイァ スマグネット 1 1 A〜 1 1 Cを短辺方向に複数並べて配置し、 かつ短辺方向に磁界 を発生するように構成した磁気バイアス膜 1 1を用いている。 そのため、 磁気バイ ァス膜 1 1の総膜厚を薄くすることができ、 かつ安定した磁気バイアスが得られる。 これにより、 外部からの磁界に対しても特性が安定しており、 かつ小型化が可能な 磁気センサを得ることができる。
また、 第 1の磁気バイアス膜 2 4からの磁気バイアスを第 1の磁気検出部 2 1に 印加するとともに、 第 2の磁気バイアス膜 2 5からの磁気バイアスを第 2の磁気検 出部 2 2に印加する。 そして、 第 1の磁気バイアス膜 2 4からの磁界と第 2の磁気 バイアス膜 2 5からの磁界との方向を異ならせることによって、 小型で、 地磁気の 方向の検出に適する高感度な磁気センサを得ることができる。
特に、 第 1の磁気バイアス膜 2 4からの磁界と第 2の磁気バイアス膜 2 5からの 磁界の方向を 9 0 ° 異なる構成にしているため、 第 1の磁気検出部 2 1からの出力 波形と第 2の磁気検出部 2 2からの出力波形との位相差は 9 0 ° 異なる。 'これら 2 つの波形出力の比をとることによって、 簡単な構成で外部磁界の方向を検出できる 磁気センサを得ることができる。
勿論、 第 1の磁気バイアス膜 2 4からの磁界と第 2の磁気バイアス膜 2 5からの 磁界の方向は 9 0 ° 以外の角度にしてもよい。 この場合は、 第 1の磁気検出部 2 1 および第 2の磁気検出部 2 2の出力の位相が互いに異なるように、 第 1の磁気バイ ァス膜 2 4、 第 2の磁気バイアス膜 2 5から発生する磁界の向きを異ならせればよ い。
この構成によれば、 第 1の磁気検出部 2 1の出力は正弦波のため同一値を 2つの 方位の角度で取るが、 第 1の磁気検出部 2 1の出力と第 2の磁気検出部 2 2の出力 との差の符号によって 1つの角度に決定できる。 これにより、 0〜3 6 0 ° の範囲 の全方位を検出できる。 このとき、 第 1の磁気検出部 2 1、 第 2の磁気検出部 2 2 の各出力の波形が重ならない程度に磁界の向きを異ならせる必要がある。
なお、 本発明の磁気センサは、 本実施形態における磁気センサの構成に限定され るものではなく、 例えば、 以下の変形例が考えられる。
図 1 6は、 本発明の第 4の実施形態における磁気センサの変形例を示す断面図で ある。 上記図 1 0〜図 1 2に示した磁気センサは、 絶縁層 2 3 A、 絶縁層 2 3 Bが 分離された別の層であり、 かつ被覆層 2 6 A、 被覆層 2 6 Bも分離された別の層と なっていた。 図 1 6に示す磁気センサは、 絶縁層 2 3が第 1の磁気検出部 2 1およ び第 2の磁気検出部 2 2をともに覆う構成となっている。 また、 被覆層 2 6も第 1 の磁気バイアス膜 2 4および第 2の磁気バイアス膜 2 5をともに覆う構成となって いる。 このような構成であっても図 1 0〜図 1 2に示した磁気センサと同様の効果 を得ることができる。
また、 第 1の磁気バイアス膜 2 4、 第 2の磁気バイアス膜 2 5として、 本発明の 第 2の実施形態において説明した磁気バイアス膜 1 1、 すなわち磁化されている磁 性層 1 2と、 非磁性層 1 3とを交互に複数積層したものを用いてもよい。 この場合 は、 磁気バイアス膜 1 1が本発明の第 2の実施形態で説明したような効果を奏する ため、 これに起因して本発明の第 4の実施形態における磁気センサにおいても小型 化が可能になるという効果を奏する。
この第 1および第 2の磁気バイアス膜 2 4、 2 5は、 本発明の第 1の実施形態に おいて説明した磁気バイアス膜、 すなわち、 長辺、 短辺、 厚さの順に長さが短くな る略直方体形状をなすとともに磁界を発生させる磁気バイァスマグネット 9 A〜 9 Gを磁界の方向を揃えて短辺方向に複数並べることにより構成したものであっても よい。
この磁気センサは、 長辺、 短辺のアスペクト比をいずれも 5〜2 0 0の範囲に設 定した磁気バイアスマグネット 9 A〜 9 Gを磁界の方向を揃えて短辺方向に複数並 ベることにより構成した磁気バイァス膜 9を用いてなる第 1および第 2の磁気パイ ァス膜 2 4、 2 5を備えているため、 安定した磁気バイアスを得ることができ、 そ の結果、 外部からの磁界に対しても磁界の特性が安定している磁気センサを得るこ とができる。
[第 5の実施形態]
図 1 7は、 本発明の第 5の実施形態における磁気センサの断面図である。 本発明 の第 5の実施形態における磁気センサは、 上記した本発明の第 4の実施形態におけ る磁気センサと同じ構成要素には同じ符号を付しており、 ここでは、 異なる点のみ を説明する。
すなわち、 本発明の第 5の実施形態における磁気センサが上記した本発明の第 4 の実施形態における磁気センサと異なるところは以下の通りである。 上記した本発 明の第 4の実施形態における磁気センサでは、 基板 2 0の上面に直接第 1の磁気検 出部 2 1、 第 2の磁気検出部 2 2を形成していた。 それに して、 本発明の第 5の 実施形態における磁気センサでは、 基板 2 0の上面に直接第 1の磁気バイアス膜 2 4、 第 2の磁気バイアス膜 2 5を形成している。 このような構成であっても上記し た本発明の第 4の実施形態における磁気センサと同様の効果を得ることができる。 なお、 本発明の磁気センサは、 上記した本発明の第 4および第 5の実施形態で説 明した内容に限定されるものではない。
例えば、 上記本発明の第 4および第 5の実施形態においては、 第 1の磁気検出部 2 1および第 2の磁気検出部 2 2を、 いずれも 4個の磁気検出素子を用いたホイ一 トストンブリッジ回路とし、 その差動出力電圧を検知する方法を採用していたが、 2個の磁気検出素子を用いたハーフブリッジ回路構成による方法を採用してもよい。 これについて、 図 1 8を用いて説明する。
図 1 8は、 本発明の第 5の実施形態における磁気センサの磁気検出部の変形例を 示す回路図である。 この図 1 8に示すように、 第 1の磁気検出部 2 1は第 1の磁気 検出素子 2 7 Aと第 2の磁気検出素子 2 7 Bとからなるもので、 第 1の入力電極 2 8 Aと第 1のグランド電極 2 9 A間に所定の電圧を印加することにより、 第 1の出 力電極 3 O Aと第 1のグランド電極 2 9 A間の電圧を検知する。 この回路構成は、 ホイ一トストンプリッジ回路の半分の構成を有することから、 「ハーフブリッジ回 路」 といわれているものである。 また第 2の磁気検出部 2 2も、 第 1の磁気検出部 2 1と同様に構成される。
このようなハーフブリッジ回路構成は、 ホイートストンプリッジ回路の場合に比 ベて、 検出素子の数が半分で、 回路が必要とする面積も小さくて済むため、 回路構 成が簡単となり小型化にも有利である。
[その他の実施形態]
(A) 上記本発明の第 4および第 5の実施形態においては、 方位センサとしての 磁気センサについて説明したが、 本発明は、 これに限定されるものではなく、 磁気 バイアスを用いるその他の磁気センサにも応用可能である。 例えば、 磁気インピー ダンス効果素子などの、 特に微弱な磁界を検出する小型センサに有用である。
(B) 本発明の上記実施形態においては、 第 1の実施形態における磁気バイアス マグネット 9 A〜 9 Gや、 第 2、 3の実施形態における磁性層 1 2を C o P t合金 で構成したものについて説明したが、 これ以外の C o C r合金や C o C r P t合金、 またはフェライトマグネットで構成してもよい。 特に、 C o C r合金や C o C r P t合金は、 C o P t合金同様、 優れた磁石特性に加え、 大きな結晶磁気異方性を有 している。 そのため、 磁界方向の安定性が求められる磁気バイアスマグネット用の 材料として好ましい。
(C) 本発明の上記実施形態においては、 絶縁層を S i 02で構成する例について 説明したが、 それ以外にアルミナ、 エポキシ樹脂、 シリコン樹脂等により構成して もよい。
(D) 本発明の上記実施形態においては、 磁性層 1 2としての C o P t合金を、 蒸着法やスパッタリング法により形成する例について説明した。 しかし、 それ以外 にも、 湿式法により C o P t前駆体を塗布し、 これを焼成して C o P t膜を形成す ることも可能である。 (E) 本発明の上記実施形態においては、 加工を行ったり積層構造を採用したり することで、 磁気バイアス膜 1 1の磁界の方向を安定化させる例について説明した。 しかし、 それ以外にも、 磁気バイアス膜 1 1を成膜する際に磁石等で一方向の磁界 を印加する方法 (磁界中成膜) や、 磁気バイアス膜 1 1成膜後、 一方向の磁界を印 加しながら所定の温度で熱処理を行う方法 (磁界中熱処理) も、 このような一方向 の異方性 (一軸異方性) を積極的に付与する手段として挙げられる。 これら磁界中 成膜や磁界中熱処理によって付与される異方性は、 通常、 誘導磁気異方性と呼ばれ ている。
さらには、 磁歪の逆効果、 つまり磁気バイアス膜 1 1の成膜時などに応力を印加 することにより、 磁気バイアス膜 1 1に一軸異方性を付与する手段なども挙げられ る。
本実施形態においても、 これらの方法を用い磁気バイアス膜 1 1に磁気異方性を 付与することは、 バイァス磁界がより安定化するので好ましい。
( F ) 本発明の上記実施形態においては、 磁気検出素子は磁気抵抗膜である N i C oや N i F eなどを含む強磁性薄膜や人工格子多層膜であるとして説明したが、 それ以外にも、 電子移動度の大きい半導体であり、 磁気抵抗効果を示すものとして 知られている I n S bや I n A sであってもよい。 本発明は詳細に説明されたが、 上記した説明は、 全ての局面において、 例示であ つて、 本発明がそれに限定されるものではない。 例示されていない無数の変形例が、 この発明の範囲から外れることなく想定され得るものと解される。 産業上の利用可能性
本発明に係る磁気バイアス膜は、 磁性層の積層方向に垂直な面内に、 安定した強 い磁界を発生できる。 そのため、 小型化が可能であり、 磁気センサに好適であるの で、 産業上有用である。

Claims

請 求 の 範 囲
1. 磁性層を含み、 前記磁性層の積層方向に垂直な面内に磁界を発生する磁 気バイアスマグネットを備える磁気バイアス膜であって、
前記磁気バイアスマグネットは、 長辺、 短辺、 積層方向の厚さの順に長さが短く なる略直方体形状に加工され、 かつ短辺に対する長辺の長さの比が 5〜 200の範 囲であることを特徴とする磁気バイアス膜。
2. 前記磁気バイアスマグネットは、 短辺方向に複数配置されることを特徴 とする請求項 1記載の磁気バイァス膜。
3. 前記磁気バイアスマグネットは、 さらに非磁性層を含み、 2以上の前記 磁性層と 1または 2以上の前記非磁性層とが交互に積層されることを特徴とする請 求項 1または 2に記載の磁気バイァス膜。
4. 前記非磁性層は、 C r、 T i、 Cu、 Al、 Sn、 Nb、 Au、 Ag、 T a、 Wのいずれか 1つで構成されることを特徴とする請求項 3記載の磁気バイァ ス膜。
5. 前記非磁性層の厚さは、 50人〜 50 OAの範囲であることを特徴とす る請求項 3または 4に記載の磁気バイァス膜。
6. 前記磁気バイアスマグネットが発生する磁界の方向は、 長辺方向である ことを特徴とする請求項 1乃至 5のいずれかに記載の磁気バイァス膜。
7. 前記磁気バイアスマグネットが発生する磁界の方向は、 短辺方向である ことを特徴とする請求項 3乃至 5のいずれかに記載の磁気バイァス膜。
8. 前記磁性層は、 C o P t合金、 C o C r合金、 CoC r P t合金、 また はフェライトマグネットのいずれか 1つで構成されることを特徴とする請求項 1乃 至 7のいずれかに記載の磁気バイァス膜。
9. 前記磁性層の厚さは、 250A〜250 OAの範囲であることを特徴と する請求項 1乃至 8のいずれかに記載の磁気バイァス膜。
10. 前記磁性層の層数が奇数であることを特徴とする請求項 1乃至 9のい ずれかに記載の磁気バイァス膜。
11. 発生する磁界の強度が 5〇e以上 2 OOe以下であることを特徴とす る請求項 1乃至 1 0のいずれかに記載の磁気バイァス膜。
1 2 . 前記磁性層の積層方向に垂直な面内の一方向に磁場を印加しながら前 記磁性層が成膜されることで、 前記磁性層に磁気異方性を付与することを特徴とす る請求項 1乃至 1 1のいずれかに記載の磁気バイァス膜。
1 3 . 前記磁性層の積層方向に垂直な面内の一方向に磁場を印加しながら前 記磁気バイアスマグネットが所定の温度で熱処理を施されることで、 前記磁性層に 磁気異方性を付与することを特徴とする請求項 1乃至 1 2のいずれかに記載の磁気 バイァス膜。
1 4. 基板と、
前記基板の主面側に形成された少なくとも 2以上の磁気検出素子を備えた第 1の 磁気検出部と、
前記基板の主面側に形成された少なくとも 2以上の磁気検出素子を備えた第 2の 磁気検出部と、
前記第 1の磁気検出部に対向する位置に設けられた第 1の磁気バイアス膜と、 前記第 2の磁気検出部に対向する位置に設けられた第 2の磁気バイアス膜と、 を備えた磁気センサであつて、
前記第 1および第 2の磁気バイァス膜は、 請求項 1乃至 1 3のいずれかに記載の 磁気パイァス膜であり、 かつ前記第 1の磁気バイァス膜が発生する磁界の向きと、 前記第 2の磁気バイァス膜が発生する磁界の向きとが異なることを特徴とする磁気 センサ。
1 5 . 前記第 1の磁気検出部と前記第 2の磁気検出部との少なくとも一方を 覆う絶縁膜をさらに備えたことを特徴とする請求項 1 4記載の磁気センサ。
1 6 . 前記第 1の磁気検出部は、
第 1の磁気検出素子と、
前記第 1の磁気検出素子とパターンの長手方向が異なり、 かつ前記第 1の磁気 検出部と電気的に直列に接続された第 2の磁気検出素子と、
前記第 2の磁気検出素子とパターンの長手方向が平行である第 3の磁気検出素 子と、
前記第 1の磁気検出素子とパターンの長手方向が平行であり、 かつ前記第 3の 磁気検出部と電気的に直列に接続された第 4の磁気検出素子と、 を備え、
前記第 1の磁気検出素子と前記第 2の磁気検出素子、 前記第 3の磁気検出素子 と前記第 4の磁気検出素子とがそれぞれ電気的に並列に接続されており、
前記第 2の磁気検出部は、
第 5の磁気検出素子と、
前記第 5の磁気検出素子とパターンの長手方向が異なり、 かつ前記第 5の磁気 検出部と電気的に直列に接続された第 6の磁気検出素子と、
前記第 6の磁気検出素子とパターンの長手方向が平行である第 7の磁気検出素 子と、
前記第 5の磁気検出素子とパターンの長手方向が平行であり、 かつ前記第 7の 磁気検出部と電気的に直列に接続された第 8の磁気検出素子と、 を備え、
前記第 5の磁気検出素子と前記第 6の磁気検出素子、 前記第 7の磁気検出素子 と前記第 8の磁気検出素子とがそれぞれ電気的に並列に接続されていることを特徴 とする請求項 1 4または 1 5に記載の磁気センサ。
1 7 . 前記第 1の磁気バイアス膜で発生する磁界の向きと、 前記第 2の磁気 バイアス膜で発生する磁界の向きとのなす角度が 9 0 ° であり、 前記第 1の磁気検 出素子のパターンの長手方向と、 前記第 2の磁気検出素子のパターンの長手方向と のなす角度が 9 0 ° であり、 かつ前記第 5の磁気検出素子のパターンの長手方向と、 前記第 6の磁気検出素子のパターンの長手方向とのなす角度が 9 0 ° であることを 特徴とする請求項 1 6記載の磁気センサ。
1 8 . 前記第 1の磁気バイァス膜で発生する磁界の向きと、 前記第 1の磁気 検出素子のパターンの長手方向とのなす角度が 4 5 ° であり、
前記第 2の磁気バイァス膜で発生する磁界の向きと、 前記第 5の磁気検出素子の パターンの長手方向とのなす角度が 4 5 ° であることを特徴とする請求項 1 7記載 の磁気センサ。
1 9. 前記第 1の磁気検出部は、
第 1の磁気検出素子と、
前記第 1の磁気検出素子とパターンの長手方向が異なり、 かつ前記第 1の磁気 検出部と電気的に直列に接続された第 2の磁気検出素子と、 を備え、 前記第 2の磁気検出部は、
第 3の磁気検出素子と、
前記第 3の磁気検出素子とパターンの長手方向が異なり、 かつ前記第 3の磁気 検出部と電気的に直列に接続された第 4の磁気検出素子と、 を備えたことを特徴と する請求項 1 4または 1 5に記載の磁気センサ。
2 0 . 前記磁気検出素子は、 N i C oまたは N i F eを含む磁性膜から構成 されることを特徴とする請求項 1 4乃至 1 9のいずれかに記載の磁気センサ。
2 1 . 前記絶縁膜は、 S i 02であることを特徴とする請求項 1 4乃至 2 0の レ ^ずれかに記載の磁気センサ。
PCT/JP2004/013266 2003-09-05 2004-09-06 磁気バイアス膜およびこれを用いた磁気センサ WO2005024861A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04772948A EP1662520A4 (en) 2003-09-05 2004-09-06 MAGNETIC POLARIZATION FILM AND MAGNETIC SENSOR USING THE SAME
JP2005513734A JP4461098B2 (ja) 2003-09-05 2004-09-06 磁気バイアス膜およびこれを用いた磁気センサ
US10/570,268 US7400143B2 (en) 2003-09-05 2004-09-06 Magnetic bias film and magnetic sensor using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003313945 2003-09-05
JP2003-313945 2003-09-05
JP2004-000074 2004-01-05
JP2004000074 2004-01-05

Publications (1)

Publication Number Publication Date
WO2005024861A1 true WO2005024861A1 (ja) 2005-03-17

Family

ID=34277709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013266 WO2005024861A1 (ja) 2003-09-05 2004-09-06 磁気バイアス膜およびこれを用いた磁気センサ

Country Status (4)

Country Link
US (1) US7400143B2 (ja)
EP (1) EP1662520A4 (ja)
JP (1) JP4461098B2 (ja)
WO (1) WO2005024861A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119518A (ja) * 2010-12-01 2012-06-21 Denso Corp 回転角センサ
DE112020007271T5 (de) 2020-06-02 2023-05-11 Mitsubishi Electric Corporation Magnetsensor und verfahren zur herstellung desselben

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1814172A1 (en) * 2006-01-27 2007-08-01 IEE International Electronics & Engineering S.A.R.L. Magnetic field sensing element
JP4485499B2 (ja) * 2006-09-04 2010-06-23 アルプス電気株式会社 磁気検出装置およびその製造方法
US8587297B2 (en) * 2007-12-04 2013-11-19 Infineon Technologies Ag Integrated circuit including sensor having injection molded magnetic material
US8058870B2 (en) 2008-05-30 2011-11-15 Infineon Technologies Ag Methods and systems for magnetic sensing
US20110187359A1 (en) * 2008-05-30 2011-08-04 Tobias Werth Bias field generation for a magneto sensor
US8610430B2 (en) 2008-05-30 2013-12-17 Infineon Technologies Ag Bias field generation for a magneto sensor
US8174256B2 (en) * 2008-05-30 2012-05-08 Infineon Technologies Ag Methods and systems for magnetic field sensing
JP5602682B2 (ja) * 2011-06-03 2014-10-08 株式会社東海理化電機製作所 磁気センサ、及び磁気センサ用パターン
US9625281B2 (en) * 2014-12-23 2017-04-18 Infineon Technologies Ag Fail-safe operation of an angle sensor with mixed bridges having separate power supplies
KR102451098B1 (ko) 2015-09-23 2022-10-05 삼성전자주식회사 자기 메모리 장치 및 이의 제조 방법
US10041810B2 (en) * 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US20230236268A1 (en) * 2022-01-21 2023-07-27 Allegro Microsystems, Llc Magnet structure for back-biased sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074620A (ja) * 2000-08-28 2002-03-15 Mitsumi Electric Co Ltd 磁気抵抗効果型磁気ヘッド
JP2002074617A (ja) * 2000-08-23 2002-03-15 Sony Corp 磁気抵抗効果型磁気ヘッド及びその製造方法
JP2002176210A (ja) * 2000-12-11 2002-06-21 Alps Electric Co Ltd 磁気インピーダンス効果素子およびその製造方法
JP2003014458A (ja) 2001-07-05 2003-01-15 Matsushita Electric Ind Co Ltd 方位センサ
WO2003056276A1 (fr) 2001-12-27 2003-07-10 Matsushita Electric Industrial Co., Ltd. Capteur de direction et procede de production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742162A (en) * 1996-07-17 1998-04-21 Read-Rite Corporation Magnetoresistive spin valve sensor with multilayered keeper
JPH10162320A (ja) * 1996-11-26 1998-06-19 Nec Corp 磁気抵抗効果型ヘッドおよびその使用方法
US5936400A (en) * 1996-12-23 1999-08-10 Federal Products Co. Magnetoresistive displacement sensor and variable resistor using a moving domain wall
WO1998057188A1 (en) * 1997-06-13 1998-12-17 Koninklijke Philips Electronics N.V. Sensor comprising a wheatstone bridge
WO2000010023A1 (en) * 1998-08-14 2000-02-24 Koninklijke Philips Electronics N.V. Magnetic field sensor comprising a spin tunneling junction element
DE60037790T2 (de) * 1999-06-18 2009-01-08 Koninklijke Philips Electronics N.V. Magnetisches messsystem mit irreversibler charakteristik, sowie methode zur erzeugung, reparatur und verwendung eines solchen systems
FR2830621B1 (fr) * 2001-10-09 2004-05-28 Commissariat Energie Atomique Structure pour capteur et capteur de champ magnetique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074617A (ja) * 2000-08-23 2002-03-15 Sony Corp 磁気抵抗効果型磁気ヘッド及びその製造方法
JP2002074620A (ja) * 2000-08-28 2002-03-15 Mitsumi Electric Co Ltd 磁気抵抗効果型磁気ヘッド
JP2002176210A (ja) * 2000-12-11 2002-06-21 Alps Electric Co Ltd 磁気インピーダンス効果素子およびその製造方法
JP2003014458A (ja) 2001-07-05 2003-01-15 Matsushita Electric Ind Co Ltd 方位センサ
WO2003056276A1 (fr) 2001-12-27 2003-07-10 Matsushita Electric Industrial Co., Ltd. Capteur de direction et procede de production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. TSUKATOS ET AL.: "Journal of Applied Physics", vol. 79, 15 April 1996, AIP USA, article "Cr\ (CoPtCr, Coptx) layered film studies for hard bias applications", pages: 5018 - 5020
See also references of EP1662520A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119518A (ja) * 2010-12-01 2012-06-21 Denso Corp 回転角センサ
DE112020007271T5 (de) 2020-06-02 2023-05-11 Mitsubishi Electric Corporation Magnetsensor und verfahren zur herstellung desselben

Also Published As

Publication number Publication date
US7400143B2 (en) 2008-07-15
EP1662520A1 (en) 2006-05-31
US20070018641A1 (en) 2007-01-25
EP1662520A4 (en) 2011-05-25
JP4461098B2 (ja) 2010-05-12
JPWO2005024861A1 (ja) 2006-11-16

Similar Documents

Publication Publication Date Title
US9857436B2 (en) High sensitive micro sized magnetometer
JP5389005B2 (ja) 磁気抵抗型積層構造体ならびに該構造体を備えたグラジオメータ
TWI438460B (zh) 磁通閘感測器及使用該感測器之電子羅盤
JP2002357489A (ja) 応力センサー
US20160202330A1 (en) Magnetic sensor element
KR100800279B1 (ko) 스핀 밸브형 거대 자기 저항 효과 소자를 가진 방위계
JP4461098B2 (ja) 磁気バイアス膜およびこれを用いた磁気センサ
JP2008197089A (ja) 磁気センサ素子及びその製造方法
JP2005183614A (ja) 磁気センサ
JP4329746B2 (ja) 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
JP4244807B2 (ja) 方位センサ
JP2010266247A (ja) 磁気センサ及び磁界測定装置
JP4331630B2 (ja) 磁気センサ
JP2006066821A (ja) 磁気抵抗効果素子を備えた磁気センサ
JP2003215222A (ja) 磁気抵抗効果素子センサ
CN100547701C (zh) 磁偏膜及使用了该磁偏膜的磁传感器
JP4575602B2 (ja) 磁気検知素子
JP4110468B2 (ja) 磁気インピーダンス素子
WO2020054112A1 (ja) 磁気センサおよび電流センサ
JP4984962B2 (ja) 磁気式角度センサ
JP6739219B2 (ja) 磁気センサ及び磁界検出装置
JP2002357488A (ja) 応力センサー
JPH11287669A (ja) 磁界センサ
JPH10170619A (ja) 磁気センサとその交番バイアス磁界印加方法
WO2024034206A1 (ja) 磁気接合体、tmr素子、tmr素子アレイ、磁気センサ、リニアエンコーダ用磁気センサ及び磁気式ロータリーエンコーダ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025316.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513734

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007018641

Country of ref document: US

Ref document number: 10570268

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004772948

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004772948

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10570268

Country of ref document: US