WO2005022237A1 - 網膜走査型ディスプレイ装置 - Google Patents

網膜走査型ディスプレイ装置 Download PDF

Info

Publication number
WO2005022237A1
WO2005022237A1 PCT/JP2004/011044 JP2004011044W WO2005022237A1 WO 2005022237 A1 WO2005022237 A1 WO 2005022237A1 JP 2004011044 W JP2004011044 W JP 2004011044W WO 2005022237 A1 WO2005022237 A1 WO 2005022237A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulated light
unit
front frame
scanning
waveguide
Prior art date
Application number
PCT/JP2004/011044
Other languages
English (en)
French (fr)
Inventor
Haruhisa Takayama
Mitsuyoshi Watanabe
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003303463A external-priority patent/JP4022921B2/ja
Priority claimed from JP2003322623A external-priority patent/JP2005091553A/ja
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Publication of WO2005022237A1 publication Critical patent/WO2005022237A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7475Constructional details of television projection apparatus
    • H04N5/7491Constructional details of television projection apparatus of head mounted projectors

Definitions

  • the present invention relates to a retinal scanning display device that displays an image by directly projecting light onto a retina of a human eye and scanning the light on the retina.
  • Japanese Patent No. 2874208 discloses a conventional example of a retinal scanning display device.
  • This conventional example includes a modulated light output unit 200 and a scanning unit 201, as shown in FIG.
  • the modulated light output section 200 modulates the laser light in accordance with the image information and outputs the modulated light as modulated light.
  • the scanning unit 201 scans the output modulated light on the retina 202 of the human eye, thereby displaying an image on the retina 202.
  • a retinal scanning display device of this type projects light on a screen so that an observer can perceive an image by directly projecting the light onto the retina, and observes the reflected light from the screen. It is different from an image display device of a type that allows a person to perceive an image. Disclosure of the invention
  • the conventional retinal scanning display device is configured on the assumption that it is installed and used at a specific place such as a tabletop. Therefore, the conventional retinal scanning display device has a problem that it can be used only at a specific place where the device is installed.
  • an object of the present invention is to provide a retinal scanning type display device in which the usable spatial range is expanded.
  • a retinal scanning display device that displays an image on the retina by scanning light on the retina of an observer's eye
  • a modulated light output unit that modulates light according to image information and outputs the modulated light as modulated light
  • a scanning unit provided on the frame, for scanning the modulated light on the retina, to display an image on the retina
  • An optical transmission unit provided on the frame and transmitting the modulated light output from the modulated light output unit to the scanning unit;
  • a retinal scanning display device including:
  • a frame is mounted on the head of the observer, a scanning unit is mounted on the frame, and a modulated light output unit is connected to the scanning unit by an optical transmission unit. Therefore, when the observer moves, the frame and the scanning unit move with the observer, so that the mobility of the retinal scanning display device is improved, and the observer can perform his or her actions to observe the display image.
  • the range does not have to be limited.
  • the optical transmission unit is provided in the frame, of the optical transmission unit, the vicinity of the connection with the running unit is suppressed from vibrating with respect to the running unit.
  • an image is displayed with stable image quality, despite being displayed by the modulated light running on the retina by the running section.
  • a light reflecting surface portion provided on the frame so as to face the eye is included.
  • the scanning unit scans the modulated light while emitting the modulated light toward the light reflecting surface unit
  • a retinal scanning display device according to item 1.
  • the modulated light output from the scanning unit is reflected on a light reflecting surface portion provided on a frame so as to face the eyes of the observer, and then applied to the retina of the observer.
  • a light reflecting surface portion provided on a frame so as to face the eyes of the observer, and then applied to the retina of the observer.
  • an image is displayed on the retina. Therefore, according to this device, it is possible to scan the modulated light over a wide range on the retina by enlarging the area of the light reflecting surface, and as a result, an image having a large angle of view is displayed. That's the power.
  • the light reflecting surface portion includes an elliptical surface facing the eye and having two focal points, and the light reflecting surface portion has the eye at one of the two focal points. Are positioned so that
  • the scanning section includes an emission section of scanning light scanned by the scanning section so as to be positioned at the other of the two focal points, and the scanning section maps the modulated light to the ellipse.
  • the retinal scanning display device according to item (2), wherein the modulated light is reflected by the elliptical surface by scanning while emitting toward the surface, thereby displaying an image on the eye.
  • the light reflecting surface portion includes an elliptical surface having two focal points, one of the focal points is an eye, and the other is a scanning light beam scanned by the scanning portion of the scanning portion. Emission parts for emitting light are respectively arranged.
  • the light intensity S emitted from the emission part enters the observer's eye via reflection on the elliptical surface, and the emitted light power is independent of the position of the reflection point. Finally enters the observer's eyes, and an image is displayed on the observer's retina.
  • the optical transmission unit is formed as a waveguide, for example, the structure for transmitting the modulated light output from the modulated light output unit to the scanning unit is simplified. It becomes easier.
  • the retinal scanning display device according to (4), further including a stopper for fixing the waveguide to the frame.
  • a stopper for fixing the waveguide to the frame.
  • the retinal scanning display device according to the item (4), further including a through portion through which the waveguide is passed in the frame.
  • the frame is provided with a through portion through which the waveguide passes, so that, for example, the vicinity of the portion of the waveguide that is connected to the running portion causes vibration with respect to the running portion.
  • the frame is stably supported. Therefore, according to this device, for example, an image is displayed with stable image quality despite being displayed by scanning the modulated light on the retina by the scanning unit.
  • the waveguide in the insertion portion does not need to be exposed to the outside from the frame. Therefore, according to this device, it is possible to suppress the waveguide from oscillating with respect to the scanning unit due to, for example, the waveguide being exposed from the frame and the exposed portion coming into contact with an observer or an external device. It becomes easy to do.
  • the device since the frame is formed into a spectacle type, the device can be used in the same manner of use as spectacles.
  • the frame is formed in a spectacle shape, and the crane of the frame is formed by the light transmission unit. Therefore, according to this device, it is easy to suppress the vicinity of the connection portion with the running portion of the optical transmission portion from vibrating with respect to the running portion, and as a result, the image is displayed on the running portion. Although the modulated light is displayed by being scanned on the retina by the unit, the image is displayed with stable image quality. In addition, this device According to this, since the frame and the optical transmission unit do not have to be formed as independent components, it is easy to reduce the size of the device.
  • the retinal scanning display device according to the mode (7), further including a through portion through which the waveguide is inserted in the frame, wherein the through portion is provided on the vine.
  • the through portion through which the waveguide is passed is provided inside the crane of the frame, it is easier to reduce the size of the device than when it is provided outside the frame. .
  • the crane may include a connecting portion connected to the front frame, and an ear hook portion having a shape extending from the connecting portion and being bent over the ear of the observer.
  • the optical transmission unit is a waveguide, and the waveguide extends along the connection unit and is connected to the modulated light output unit on a substantially extended line thereof. Retinal scanning display device.
  • the vine is configured to include the connecting portion and the ear hook portion, and further, the waveguide extends along the connecting portion, and substantially extends along the line to the modulated light output portion. Connected. Therefore, according to this device, bending of the waveguide is suppressed between the frame and the modulated light output section.
  • the crane may include a connecting portion connected to the front frame, and an ear hook portion having a shape bent and extending from the connecting portion and hung on the ear of the observer.
  • the optical transmission section is a waveguide, and the waveguide extends along the ear hook section and is connected to the modulated light output section on a substantially extended line thereof. Retina running
  • the vine is configured to include the connecting portion and the ear hook portion, and further, the waveguide extends along the ear hook portion, and the modulated light output portion extends on a substantially extended line thereof. Connected to. Therefore, according to this device, the bending of the waveguide is suppressed between the frame and the modulated light output section.
  • the optical transmission section is a waveguide, and the waveguide has a heading from a base end, which is connected to the front frame, to a front end, in a side view, in a side view.
  • the turkey extends and is connected to the modulated light output portion so as to have a direction of being bent obliquely downward and having a direction away from the head of the observer in plan view ( 7)
  • a retinal scanning display device as described in the above.
  • the path from the waveguide extending from the crane to connecting to the modulated light output portion is, for example, a guide extending from the crane when the frame is removed from the observer's head.
  • the possibility that the wave path is pressed against the observer's ear from behind and bends is reduced, and the frame is shifted from a horizontal position to a laterally tilted position when viewed from the front.
  • the setting is made for the purpose of reducing the possibility that the waveguide extending from the turkey is pressed against the side surface of the observer's head and bent.
  • the waveguide is configured such that, when viewed from the side, a force is applied from the base end connected to the front frame to the tip of the crane, and the direction of the waveguide is changed. It extends out of the vine and is connected to the modulated light output portion so that it has a direction that bends obliquely downward with respect to and has a direction that goes away from the observer's head in plan view.
  • the waveguide is connected to the modulated light output portion while being stably supported by the frame over its entire length. Is performed.
  • a hinge portion is provided between the front frame and the crane, and connects the front frame and the crane so that the crane can be folded to the front frame,
  • the scanning unit is provided on the front frame,
  • the optical transmission unit is a waveguide, and the waveguide is provided on the vine so as to extend between the modulated light output unit and the hinge unit.
  • the retinal scanning display device further includes a modulated light input unit for inputting the modulated light transmitted by the waveguide to the scanning unit, wherein the modulated light input unit is arranged between the scanning unit and the hinge unit. Including those provided in the frame,
  • the hinges contact each other to allow transmission of the modulated light from the waveguide to the modulated light input unit, while the vine is connected to the front frame.
  • the retinal scanning display device wherein in the folded state, the transmission of the modulated light from the waveguide to the modulated light input section is interrupted while being separated from each other.
  • the hinge is provided between the front frame and the crane, the crane can be folded with respect to the front frame. Therefore, when the device is not used, the crane can be attached to the front frame. On the other hand, by folding, the device can be housed compactly.
  • one end of the waveguide and one end of the modulated light input portion come into contact with each other with the operation of the hinge portion accompanying the operation of the crane with respect to the front frame, and the one end of the modulated light input portion comes out of the waveguide.
  • the state is changed to a state in which the transmission of the modulated light to the modulated light input section is permitted, and a state in which the transmission of the modulated light to the waveguide power modulated light input section is separated from each other.
  • the state automatically shifts to the state where transmission of the modulated light from the waveguide to the modulated light input section is cut off. .
  • the cutoff state transmission of the modulated light from the waveguide to the scanning unit is cut off.
  • the observer only needs to fold the crane with respect to the front frame in order to accommodate the device, and without performing other operations, the modulated light can be transmitted from the waveguide.
  • the transmission of the modulated light to the input unit is cut off. If the transmission is cut off, the modulated light will not be transmitted to the running section, so that when the device is not in use, the observer will not feel uncomfortable due to light leakage from the running section. .
  • the waveguide is penetrated into a crane through hole provided in the crane, and is an end of both ends of the waveguide that is closer to the modulated light input section.
  • the modulated light input unit side end is provided to protrude from the through hole.
  • the modulated light input portion is passed through a front frame through hole provided in the front frame, and an end of the modulated light input portion near the waveguide is the front frame through hole. From the edge of It is provided at a position retracted inside the front frame insertion hole,
  • the waveguide In the unfolded state, the waveguide enters the through hole of the front frame and comes into contact with the modulated light input section, while in the folded state, the waveguide is separated from the modulated light input section (14). Item 20).
  • the position A where the waveguide and the modulated light input portion contact each other is the position B where the crane and the front frame contact each other. (E.g., a position where the through hole and the front frame are in contact with each other). Therefore, according to this device, compared with the case where the position A is on the same plane as the position B, for example, the disturbance light entering from the gap between the crane and the front frame allows the disturbance light to enter the waveguide and the modulated light. The possibility of intrusion into the gap between the force part is reduced. As a result, it is easy to suppress a decrease in image quality due to the intrusion of disturbance light.
  • the modulated light input portion is passed through a front frame through hole provided in the front frame, and the modulated light input portion is provided to protrude from the front frame insertion hole.
  • the waveguide is inserted into a crane insertion hole provided in the crane, and of both ends of the waveguide, an end on the side of the modulated light input portion that is closer to the modulated light input portion.
  • the portion is provided at a position retracted from the edge of the hole for insertion of the crane into the hole for insertion of the crane, and the modulated light input section enters the hole for insertion of the crane and guides the light in the unfolded state.
  • the retinal display device according to mode (14), wherein the retinal display device is separated from the waveguide in the folded state while being in contact with the waveguide.
  • disturbance light that has entered through the gap between the crane and the front frame causes the disturbance light between the waveguide and the modulated light input section.
  • the possibility of entering the gap is reduced.
  • a light-shielding portion for blocking modulated light emitted from an end of the waveguide closer to the modulated light input portion among both ends of the waveguide is included in the mode (14).
  • a retinal scanning display device according to claim 1.
  • the electric switch includes an electric switch provided on the hinge section, for turning on and off an electric circuit of the modulated light output section in conjunction with the operation of the hinge section. In the state, it is turned on to permit the operation of the modulated light output unit, while in the folded state, it is turned off to prohibit the operation of the modulated light output unit (14). ).
  • the retinal scanning display device according to any one of the above.
  • the electric circuit of the modulated light output unit is turned on and off by an electric switch that is linked to the operation of the hinge unit. Then, in a state where the vine is expanded with respect to the front frame, the electric switch is turned on and the operation of the modulated light output unit is permitted, while in a state where the vine is folded with respect to the front frame, Then, the electric switch is turned off and the operation of the modulated light output section is inhibited.
  • the operation of the modulated light output unit is prohibited without any special operation by the observer in a state where the crane is folded with respect to the front frame in order not to use the device.
  • power consumption by the modulated light output unit and light leakage from the device are avoided.
  • an electric switch is provided on the hinge portion and turns on and off an electric circuit of the scanning portion in conjunction with the operation of the hinge portion.
  • the electric switch is in the unfolded state, When turned on to permit the operation of the scanning unit, while in the folded state, when turned off, the operation of the scanning unit is prohibited (14) or (17).
  • the electric circuit of the running unit is turned on and off by an electric switch that is linked to the operation of the hinge unit.
  • the electric switch When the crane is deployed with respect to the front frame, the electric switch is turned on to allow the running section to operate. On the other hand, when the crane is folded with respect to the front frame, the electric switch is activated. Is turned off and the operation of the running unit is prohibited.
  • the operation of the running unit is prohibited without any special operation by the observer in a state where the crane is folded with respect to the front frame in order not to use the device. Therefore, waste of power by the scanning unit and leakage of light from the device are avoided.
  • a hinge portion is provided between the front frame and the crane, and the hinge portion connects the front frame and the crane so that the crane can be folded to the front frame,
  • the retinal scanning display device according to mode (7), wherein the scanning unit is provided on the crane.
  • the modulated light In the case where the scanning section as the transmission destination of the modulated light is provided in the front frame of the frame, the modulated light must be transmitted from the vine to the scanning section via the hinge section. Les ,. In this case, there is a possibility that the waveguide for transmitting the modulated light from the crane to the running section must be divided into two so as to contact and separate in accordance with the operation of the hinge section, for example. is there.
  • the running section is provided not on the front frame but on the vine. Therefore, according to this device, since the waveguide does not need to pass through the hinge portion, the structure of the waveguide can be easily simplified as compared with the case where the running portion is provided in the front frame.
  • the frame is formed in a spectacle shape including a front frame and two vines connected to the front frame,
  • the two scanning units are provided corresponding to both eyes of the observer, respectively, and the optical transmission unit transmits the modulated light output from the modulated light output unit to the two units, respectively.
  • the retinal scanning display device according to the above mode (1) or (2), wherein the number of the scanning units is equal to the number of the scanning units.
  • the frame is formed in a spectacle type including a front frame and two vines, and two optical transmission units are collectively provided on one vine. Therefore, according to this device, for example, the structure that supports the two optical transmission units in the frame is simplified as compared with the case where the two optical transmission units are provided by being divided into two vines. It becomes easier.
  • the optical transmission unit is a flexible optical fiber that transmits light as an analog signal, and the amount of light loss when transmitting light substantially depends on the bending of the optical transmission unit.
  • Retinal scanning type as described in any of (1) to (21), [0061] According to this device, even if the optical fiber is bent, a change in light transmission characteristics of the optical fiber is suppressed. Therefore, according to this device, it becomes easy to stably transmit an analog signal to be transmitted as light without being affected by the bending of the optical transmission unit.
  • the "bend" in this section can be expressed, for example, as a radius of curvature or as a bending angle. Further, it can be defined as a concept including torsion.
  • the photonic crystal fiber includes a core portion and a cladding portion covering the core portion, and the cladding portion has a plurality of air holes in silica glass at a period substantially equal to the wavelength of the light.
  • optical transmission device wherein the optical transmission unit is configured as an optical fiber having optical characteristics in which the amount of light loss when transmitting light does not substantially depend on the bending of the optical transmission unit.
  • optical transmission device for transmitting light already exists.
  • this optical transmission device there is already known an optical transmission device in which a plurality of physically independent units are connected to each other by a flexible optical transmission unit that transmits light as an analog signal between the units. ing.
  • a flexible optical transmission unit that transmits light as an analog signal between the units.
  • One example is disclosed in Japanese Patent Application Laid-Open No. 6-138499.
  • the apparatus is configured to include a reflector, such as a spectacle lens, an optical scanner, a laser light source, and a fiber relay.
  • the optical scanner and the laser light source are connected to each other by a fiber relay.
  • the optical transmission unit transmits the light to be transmitted without loss irrespective of the dynamic change of the bending.
  • the amount of light loss when the optical transmission unit transmits light tends to depend on the bending of the optical transmission unit, so that the light transmission characteristics of the optical transmission unit are reduced. Time was not stable.
  • the optical transmission device when the optical transmission device is embodied as an image display device that displays an image using light, if the light transmission characteristics of the optical transmission unit are unstable, the displayed image may flicker. , Noise is easy to mix.
  • the optical transmission device includes a plurality of physically independent units, each of which includes a flexible optical transmission unit that transmits light as an analog signal between the units. It is an object of the present invention to stabilize light transmission characteristics of an optical transmission unit in optical transmission devices connected to each other.
  • the optical transmission section is configured as an optical fiber, and the optical fiber has optical characteristics in which the amount of light loss when transmitting light does not substantially depend on the bending of the optical fiber. It is configured as something. Therefore, according to this device, even if the optical fiber is bent, a change in the light transmission characteristic of the optical fiber is suppressed. Therefore, according to this device, it becomes easy to stably transmit an analog signal to be transmitted as light without being affected by the bending of the optical transmission unit.
  • the "bend" in this section can be expressed, for example, as a radius of curvature or as a bending angle. Further, it can be defined as a concept including torsion.
  • the "optical transmission device” can be used for transmitting image information, but can also be used for other purposes. For example, it can be used to transmit image information and audio information instead of image information.
  • the plurality of units include a first unit having an emission unit that emits a light beam of an image to be displayed, and a unit for displaying the light beam emitted from the first unit on an image display surface.
  • This device is a device in which the optical transmission device according to the above item (25) is adapted for use in displaying an image on an image display surface by a light beam. Includes independent first and second units.
  • the first unit includes an emission unit that emits a light beam
  • the second unit includes a scanning unit that emits a light beam emitted from the first unit.
  • the first unit and the second unit are connected to each other by the optical fiber in the above item (25).
  • the optical transmission device can be implemented in a mode including a wavefront modulation unit that modulates the wavefront of a light beam.
  • the wavefront modulator can be provided in the first unit or in the second unit.
  • the optical property of the light beam incident on the optical fiber is such that it is impossible or difficult to preserve it. Is usually present. Therefore, when it is necessary to preserve the optical properties that are at least difficult to preserve depending on the optical fiber, it is desirable that the light flux having such optical properties does not pass through the optical fiber. Les ,.
  • the divergence angle of the light beam changes according to the curvature of the wavefront, and it may be necessary to transmit the light beam such that the divergence angle is maintained. Confuse.
  • the wavefront modulating unit is located on the upstream side of the optical fiber, and is located on the downstream side of the optical fiber that is separated from the first unit where the light beam enters the optical fiber.
  • the light flux is provided in the second unit where the light flux does not enter the optical fiber. Therefore, according to this device, the optical characteristics of the light beam that should be preserved are determined by the optical fiber. This makes it easy to avoid loss.
  • an optical fiber As a photonic crystal fiber. It is already known that this photonic crystal fiber is a fiber in which the amount of light loss when transmitting light does not substantially depend on the bending of the photonic crystal fiber.
  • the optical fiber according to any of the above (25) to (27) is configured as a photonic crystal fiber.
  • the photonic crystal fiber includes a core portion and a cladding portion covering the core portion, and the cladding portion includes a plurality of air holes in silica glass at a period substantially equal to the wavelength of the light beam.
  • the second unit When the second unit is mounted on the observer's head, it is usually assumed that the first unit is mounted on the waist or other torso. In this case, the optical fiber as the optical transmission unit is bent or shaken by the relative movement of the head and the trunk.
  • the optical fiber since the optical fiber is configured to have the optical characteristics described in the above (25), the optical fiber can be viewed despite the bending or shaking of the optical fiber. The image displayed to the observer is stabilized.
  • FIG. 1 is a perspective view showing a retinal scanning display device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing the retinal scanning display device shown in FIG. 1.
  • FIG. 3 is an enlarged plan sectional view showing a spheroid of a light reflecting surface portion of the retinal scanning display device shown in FIG. 1.
  • FIG. 4 is a side sectional view showing a spheroid shown in FIG. 3.
  • FIG. 5 is a reflection surface of the retinal scanning display device shown in FIG.
  • FIG. 5 is a front view for explaining light reflection by the spheroid shown in FIG. 4.
  • FIG. 6 is a system diagram showing the retinal scanning display device shown in FIG. 1.
  • FIG. 7 is a plan view showing a retinal scanning display device according to a second embodiment of the present invention.
  • FIG. 8 is a transverse sectional view showing a knurl in a retinal scanning display device according to a third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a knurl in a retinal scanning display device according to a fourth embodiment of the present invention.
  • FIG. 10 is a transverse sectional view showing a crane in a retinal scanning display device according to a fifth embodiment of the present invention.
  • FIG. 11 is a plan view showing a connecting portion between a front frame and a crane in a retinal scanning display device according to a sixth embodiment of the present invention.
  • FIG. 12 is an enlarged perspective view showing the optical fiber and the modulated light input section in FIG. 11 in a state where they are in contact with each other, that is, in a state where the crane is deployed.
  • FIG. 13 is an enlarged perspective view showing the optical fiber and the modulated light input section in FIG. 11 in a state where they are separated from each other, that is, in a folded state of a crane.
  • FIG. 14 is a partial cross-sectional plan view showing a connecting portion between a front frame and a crane in a retinal scanning display device according to a seventh embodiment of the present invention.
  • FIG. 15 is a partial cross-sectional plan view showing a connecting portion between a front frame and a crane in a retinal scanning display device according to an eighth embodiment of the present invention.
  • FIG. 16 is a plan view showing a front frame and a crane in a retinal scanning display device according to a ninth embodiment of the present invention.
  • FIG. 17 is a plan view showing a front frame, a crane, and an electric circuit of a modulated light output unit in a retinal scanning display device according to a tenth embodiment of the present invention.
  • FIG. 18 is a plan view showing a front frame, a crane, and an electric circuit of a running unit in a retinal scanning display device according to an eleventh embodiment of the present invention.
  • FIG. 19 is a diagram showing a retinal scanning display device according to a twelfth embodiment of the present invention.
  • FIG. 3 is a plan view showing a front frame, a crane, a modulated light output unit, and an electric circuit of a scanning unit.
  • FIG. 20 is a side view showing a retinal scanning display device according to a thirteenth embodiment of the present invention.
  • FIG. 21 is a side view showing a retinal scanning display device according to a fourteenth embodiment of the present invention.
  • FIG. 22 is a side view showing a retinal scanning display device according to a fifteenth embodiment of the present invention.
  • FIG. 23 is a perspective view showing a retinal scanning display device according to a sixteenth embodiment of the present invention.
  • FIG. 24 is a plan view and a side view showing one of two crane in the retinal scanning display device shown in FIG. 23.
  • FIG. 25 is a perspective view showing a retinal scanning display device according to a seventeenth embodiment of the present invention.
  • FIG. 26 is a perspective view showing a retinal scanning display device according to an eighteenth embodiment of the present invention.
  • FIG. 27 is a perspective view showing a retinal scanning display device according to a nineteenth embodiment of the present invention.
  • FIG. 28 is a plan view showing a retinal scanning display device according to a twentieth embodiment of the present invention.
  • FIG. 29 is a sectional view showing an optical fiber in a retinal scanning display device according to a twenty-first embodiment of the present invention.
  • FIG. 30 is a diagram showing physical property data of the optical fiber shown in FIG. 29 in a table format.
  • FIG. 31 is a system diagram showing a retinal scanning display device according to a twenty-second embodiment of the present invention.
  • FIG. 32 is a block diagram conceptually showing a conventional example of a retinal scanning display device.
  • FIG. 1 to FIG. 6 show a retinal scanning display device 1 according to the first embodiment of the present invention.
  • the retinal scanning display device 1 includes a frame 2, a modulated light output unit 3, a scanning unit 4, and an optical fiber 5.
  • the optical fiber 5 constitutes an optical transmission section or a waveguide through which light is transmitted.
  • the optical fiber 5 can be formed as a photonic crystal fiber.
  • the frame 2 is mounted on the observer's head.
  • the modulated light output unit 3 modulates the intensity of light such as a laser beam in accordance with image information, and outputs the resulting light as modulated light.
  • the scanning unit 4 scans the modulated light on the observer's retina, thereby displaying an image on the retina.
  • the modulated light output unit 3 and the scanning unit 4 are provided separately from each other. That is, the modulated light output unit 3 is used by being attached to a part such as the waist and back of the observer by a fixing device such as a belt (not shown).
  • the scanning unit 4 is provided on the frame 2.
  • the modulated light output unit 3 and the scanning unit 4 are optically connected by an optical fiber 5.
  • the optical fiber 5 is attached to the frame 2 by means such as an adhesive (not shown).
  • the optical fiber 5 functions as an optical transmission unit that transmits the modulated light output from the modulated light output unit 3 to the scanning unit 4.
  • Frame 2 is formed into a spectacle shape by the front frame 6 and the two cranes 7, 7 connected to both ends of the front frame 6, the frame 2 can be used in the same manner as the spectacles. .
  • Frame 2 is not limited to a spectacle type as long as it can be worn on the observer's head.
  • the front frame 6 is provided with two light reflecting surface portions 8, 8.
  • Each light reflecting surface section 8 is provided at a position facing each eye of the observer with the frame 2 mounted on the observer's head.
  • Each light reflecting surface section 8 has a light reflecting surface 9 facing the eye of the observer.
  • the light reflection surface 9 is formed as a spheroid. As shown in FIG. 4, the spheroid is rotated by rotating the ellipse S1 about the major axis L of the ellipse S1 shown in FIG. Is formed as a surface S2 drawn as a trajectory by a part of the ellipse SI.
  • the elliptical shape S1 has two focal points A and B.
  • One of the characteristics of the elliptical shape is that, as shown in Fig. 3, light emitted from the light source located at one focal point A and reflected by the elliptical reflecting surface converges at the other focal point B. is there. Then, since the light reflecting surface 9 is formed as a spheroidal surface as described above, as shown in FIG. 5, light emitted from one focal point A is then transmitted to any position on the light reflecting surface 9 (for example, , At the positions indicated by a, b, c, and d), the light is collected at the other focal point B.
  • the scanning light emitting section 4a (see Fig. 2) from which the scanning light scanned by the scanning section 4 is emitted is located at one focal point A of the elliptical shape S1.
  • the running section 4 is attached to the dock 7 and the frame 2 is formed so that the observer's eye is located at the other focal point B, as shown in FIG.
  • the traveling light emitted from the light emitting section 4a will be focused on the observer's eyes regardless of the position on the light reflecting surface 9 after that.
  • the modulated light output unit 3 includes an image signal processing circuit 10, a red light source 11, a green light source 12, and a blue light source 13, collimating lenses 14, 15, 16, Mirrors 17, 18, and 19 (for example, dichroic mirrors) and a focus lens 20 are provided.
  • the image signal processing circuit 10 outputs an intensity modulation signal to the red light source 11, the green light source 12, and the blue light source 13 based on the image data, and outputs a control signal to the scanning unit 4. Output.
  • the outgoing lights from the red light source 11, the green light source 12, and the blue light source 13 are converted into substantially parallel rays by the respective collimating lenses 14, 15, and 16, and then combined by the respective wavelength selective mirrors 1, 7, 18, and 19. After being waved, it is condensed by the focus lens 20 and then enters the optical fiber 5.
  • the control signal is transmitted from the modulated light output unit 3 to the scanning unit 4 by an optical fiber 5 or by an electric cable that is an example of a transmission medium different from the optical fiber 5.
  • the running unit 4 includes a collimating lens 21, a first deflector 22, and a relay lens.
  • a second deflector 24 a relay lens 25, a control circuit 26, and a beam detector 27.
  • the collimating lens 21 is provided at the optical output end of the optical fiber 5 and The output modulated light is converted into a substantially parallel light beam.
  • the first deflector 22 is provided so as to be rotatable around a rotation axis 28.
  • One example of the first deflector 22 is a polygon mirror.
  • the first deflector 22 reflects the light beam that has passed through the collimator lens 21 in a direction corresponding to the rotational position of the first deflector 22.
  • the relay lens 23 focuses the light beam reflected by the first deflector 22 on the second deflector 24 and causes the light beam to enter the second deflector 24.
  • the second deflector 24 is provided so as to be swingable around a rotation axis 29.
  • the second deflector 24 is a galvanomirror.
  • the second deflector 24 reflects the light beam that has passed through the relay lens 23 in a direction corresponding to the rotational position of the second deflector 24.
  • the relay lens 25 focuses the light beam reflected by the second deflector 24 on the retina M4 through the pupil M2 and the lens M3 surrounded by the iris Ml of the observer's eye M, thereby An image is displayed on the retina M4.
  • the control circuit 26 controls the deflection of the first and second deflectors 22, 24 based on the control signal transmitted from the modulated light output unit 3, thereby controlling the deflection on the retina M4 of the observer. An image is displayed by scanning the modulated light.
  • the beam detector 27 detects a beam emitted from the first deflector 22 to detect that the beam has reached a specific position.
  • the signal from the beam detector 27 is supplied to the image signal processing circuit 10 via the control circuit 26. Based on the supplied signal, the image signal processing circuit 10 controls the light emission timing of each of the light sources 11, 12, and 13, thereby adjusting the starting point of the modulated light scanned on the retina M4.
  • an observer wishing to use the retinal scanning display device 1 wears the modulated light output unit 3 on the waist or back of the observer with a fixing device such as a belt. Then, as in the case of ordinary glasses, the frame 2 is mounted on the observer's head by hanging the vine 7 of the frame 2 on the observer's ear. In this state, as shown in FIG. 2, the scanning light emitting portion a of the scanning portion 4 is located at one focal point of the light reflecting surface 9 provided on each light reflecting surface portion 8 of the frame 2, and The observer's eye will be located at the focal point of.
  • the laser light is intensity-modulated in the modulated light output unit 3 shown in FIG. 6 according to the image information and is output as modulated light. So The modulated light is transmitted by the optical fiber 5 and input to the scanning unit 4.
  • the scanning unit 4 irradiates the modulated light to the light reflecting surface 9
  • the modulated light is reflected by the light reflecting surface 9 and is focused on the light reflecting surface 9. Since the observer's eye is located at the focal point, the modulated light is scanned on the observer's retina M4 to display an image.
  • the portion of the optical fiber 5 attached to the frame 2 may vibrate relative to the frame 2. But few. That is, in the optical fiber 5, the vicinity of the connection with the running section 4 is less likely to vibrate with respect to the running section 4. Therefore, even if the signal transmitted by the optical fiber 5 is an analog signal, the signal is transmitted to the scanning unit 4 by the optical fiber 5 that does not include noise based on the vibration of the optical fiber 5.
  • the light reflecting surface section 8 can be formed by a translucent member. In this case, since the observer can see the surrounding real outside world through the light reflecting surface section 8, the observer superimposes on the image transmitted from the modulated light output section 3 by the optical fiber 5. You can see the real world around you.
  • the frame 2 is of a type that can be mounted on the observer's head, the observer can, for example, perform an image transmitted from the modulated light output unit 3 while performing manual work. I can see it.
  • the modulated light output from the scanning unit 4 is once reflected by the light reflecting surface 9 and then enters the observer's eyes, the area of the light reflecting surface 9 is increased.
  • the modulated light can be scanned over a wide range on the retina M4 of the observer, and an image can be displayed so as to have a large angle of view.
  • the light reflection surface 9 of the frame 2 is formed as a spheroid, but the deflection angle of the first deflector 22 and the deflection angle of the second deflector 24 By adjusting the deflection angle so that the modulated light emitted from the scanning unit 4 passes through the pupil M2 of the observer's eye M and the lens M3 and forms an image on the retina M4, the light reflecting surface Even when the surface 9 is formed as a plane or a curved surface other than the spheroid, the same operation and effect can be obtained.
  • the light reflecting surface portion 8 and the light reflecting surface 9 are not provided.
  • a feature of the present embodiment is that the frame 2 is mounted on the head of the observer, and the two scanning units 4 are provided on the front frame 6 so as to face each eye M of the observer. On the point.
  • the scanning light emitting portion 4a of each scanning portion 4 is arranged at a position facing each eye M of the observer, and the modulated light emitted from each scanning portion 4 is directly transmitted to each eye M of the observer.
  • the pupil passes through the pupil M2 and the lens M3, reaches the retina M4, and is scanned on the retina M4.
  • the present embodiment as compared with the first embodiment, it is not necessary to form a light reflection surface formed as a spheroid on the front frame 6, and therefore, it is easy to manufacture a retinal scanning display device. become.
  • the feature of the present embodiment is that a plurality of stoppers 31 are provided on the outer surface of the hook 7 along the outer surface in order to fix the optical fiber 5 along the outer surface of the vine 7. is there.
  • the stopper 31 has a generally annular shape, and has a through hole 32 through which the optical fiber 5 is inserted by a force cooperating with the crane 7 or alone.
  • the stopper 31 may be formed integrally with the crane 7 or may be formed separately from the crane 7 and attached to the crane 7.
  • the optical fiber 5 is passed through the through hole 32 of the stopper 31 and wired, whereby the optical fiber 5 is connected to the crane 7. Along with its crane 7. Thereafter, both ends of the optical fiber 5 are optically connected to the modulated light output unit 3 and the scanning unit 4, respectively.
  • the optical fiber 5 is supported on the vine 7 by a simple operation of passing the optical fiber 5 through the through hole 32 of the stopper 31. Can be done.
  • the optical fiber 5 is suppressed from vibrating with respect to the crane 7, and as a result, is stably supported by the crane 7. Therefore, in the optical fiber 5, the vicinity of the connection with the running section 4 is suppressed from vibrating with respect to the running section 4.
  • the stopper 31 is detachably attached to the crane 7, so that the insertion of the optical fiber 5 can be facilitated.
  • a communication portion is provided inside the crane 7, and an optical fiber is provided in the communication portion.
  • the optical fiber 5 is supported by the crane 7 by inserting the eye bar 5 therethrough.
  • a through hole 33 penetrating through the inside of the crane 7 is formed along the longitudinal direction of the crane 7, and the through hole 33 constitutes the insertion portion.
  • the optical fiber 5 is wired so as to pass through the through hole 33 provided in the crane 7, and then both ends of the optical fiber 5 are respectively connected to the modulated light output section 3. And the scanning section 4.
  • the optical fiber 5 since the optical fiber 5 is buried in the crane 7, the optical fiber 5 may be touched by an observer's hand or the like. There is no danger that the fiber 5 will vibrate with respect to the running part 4.
  • the feature of the present embodiment is that the communication part of the crane 7 of the frame 2 through which the optical fiber 5 is inserted is provided.
  • the optical fiber 5 is positioned outside the groove 34 so as to extend along the opening of the groove 34. Thereafter, the optical fiber 5 is moved in a direction perpendicular to the direction in which it extends (the direction indicated by arrow C in the figure), whereby it is pushed into the groove 34 from the side, and as a result, the optical fiber 5 is inserted into the groove 34. Thereafter, all or part of the opening of the groove 34 is closed, thereby preventing the optical fiber 5 from dropping out of the groove 34.
  • the crane 7 is provided with the optical fiber 5 as a separate member.
  • the crane 7 itself is provided by an optical transmission unit having a function of transmitting light. If the optical fiber 5 is formed, it is not necessary to provide the optical fiber 5 which is a separate member from the crane 7 in order to transmit light.
  • the frame 2 has a front frame 6 and two cranes 7, 7, and is formed in a spectacle shape.
  • the front frame 6 and the knoll 7 are connected to each other by a hinge 36 so that the vine 7 can be folded with respect to the front frame 6. That is, the crane 7 can be displaced with respect to the front frame 6 between an expanded state and a folded state.
  • the deployed state refers to a state in which the hinge portion 36 is extended.
  • the folded state means the hinge The state in which the crane 7 is folded with respect to the front frame 6 when the 36 is bent.
  • the front frame 6 includes (a) two light reflecting surface portions 8 and 8, (b) a bridge 37 connecting the light reflecting surface portions 8 and 8 to each other, and (c) a light reflecting surface portion 8 and 8 With two wisdoms 38, 38 on each side of the Each chi 38 is connected to the vine 7 by a hinge 36
  • Each run 38 has a running section 4.
  • Each running unit 4 is provided so as to be located at one focal point of the light reflecting surface 9 of each light reflecting surface unit 8, and this point is common to the running unit 4 of the first embodiment.
  • the modulated light output from the modulated light output unit 3 is transmitted through the optical fiber 39 and the modulated light input unit 40, and is input to the scanning unit 4.
  • the optical fiber 39 is provided on the crane 7 between the modulated light output unit 3 and the hinge unit 36.
  • the modulated light input unit 40 is provided between the scanning unit 4 and the hinge unit 36 at the point 38.
  • the modulated light input section 40 can be formed by an optical fiber.
  • the crane 7 is folded with respect to the front frame 6 to thereby provide the retinal scanning display device. It is possible to house 1 compactly.
  • the modulated light output from the modulated light output unit 3 is transmitted by the optical fiber 39 and the modulated light input unit 40 and is input to the scanning unit 4.
  • the optical fiber 39 is provided so as to be passed through a crane hole 45 provided in the crane 7.
  • the end 39a of the optical fiber 39 on the side of the modulated light input section is It protrudes from the opening end of the crane insertion hole 45 toward the input section 40.
  • the modulated light input section 40 is provided so as to be inserted into a front frame through hole 46 provided in the front frame 6.
  • the distal end of the modulated light input section 40 is positioned at a position retreated toward the inside of the front frame ⁇ through hole 46, so as to move away from the optical fiber 39.
  • Light emitted from the emission end of the modulated light input unit 40 is guided to the collimator lens 21 via, for example, a reflection mirror 47 as a guiding element.
  • the tip of the optical fiber 39 enters the front frame ⁇ through hole 46, and the front frame ⁇ The end of the modulated light input section 40 contacts the hole 46. In this contact state, the modulated light output from the modulated light output unit 3 is input to the modulated light input unit 40.
  • the tip of the optical fiber 39 is separated from the tip of the modulated light input section 40. In this separated state, the modulated light output from the modulated light output unit 3 is not input to the modulated light input unit 40.
  • the optical fiber 39 and the modulated light input unit 40 are selectively approached and separated from each other, and accordingly, the modulated light from the modulated light output unit 3 to the modulated light input unit 40 is modulated. Permitting / blocking of light input is selectively performed.
  • the tip of the optical fiber 39 is separated from the modulated light input unit 40, so that the scanning unit 4 emits external light. It does not need to be leaked. Therefore, when the retinal scanning display device 1 is not used, the observer is avoided from remarkably perceiving the light emission of the retinal scanning display device 1 though he does not want it.
  • the modulated light output from the modulated light output unit 3 is transmitted and transmitted by the optical fiber 39 and the modulated light input unit 40 in that order. ⁇ ⁇ ⁇ Input to Part 4.
  • the relative positional relationship between the tip surfaces of the optical fiber 39 and the modulated light input section 40 is different from that of the seventh embodiment.
  • the modulated light input section 40 is provided so as to be inserted into the front frame through hole 46 provided in the front frame 6 as in the seventh embodiment.
  • the tip of the modulated light input section 40 projects from the opening end of the front frame insertion hole 46 toward the optical fiber 39.
  • the optical fiber 39 is provided so as to pass through the crane hole 45 provided in the crane 7.
  • the modulated light input section side end 39a of the optical fiber 39 extends from the edge 45a of the through hole 45 so as to be away from the modulated light input section 40. It is positioned at a position retracted toward the inside of the through hole 45.
  • the tip of the modulated light input section 40 enters the through hole 45 and contacts the tip of the optical fiber 39 in the through hole 45, The state is selectively shifted to the separated state.
  • the tip of the modulated light input unit 40 comes into contact with the tip of the optical fiber 39, and the output from the modulated light output unit 3 is output.
  • the modulated light input to the modulated light input unit 40 when the crane 7 is folded with respect to the front frame 6, the tip of the modulated light input section 40 is separated from the selection of the optical fiber 39, and the modulated light output from the modulated light output section 3 is modulated light. Not input to input unit 40.
  • the tip of the optical fiber 39 is separated from the modulated light input unit 40 when the retinal scanning display device 1 in which the crane 7 is folded is not used. Thus, light from the scanning unit 4 does not leak to the outside.
  • the feature of this embodiment is that, unlike the sixth embodiment shown in FIG. 11, when the crane 7 is folded with respect to the front frame 6, the end of the optical fiber 39 on the side of the modulated light input section.
  • the portion 39a has a light shielding portion 50 for shielding light leaking to the outside.
  • the light shielding portion 50 can be formed to have a plate shape having a base end and a front end.
  • the base end of the light shielding unit 50 is provided outside the modulated light input unit 40, while the distal end extends toward the vine 7 beyond the light input end of the modulated light input unit 40. I have.
  • the light shielding unit 50 is in a state where the vine 7 is in the folded position indicated by the two-dot chain line in FIG. It extends from the front frame 6 to a position for receiving the light emitted from the tip of the optical fiber 39 of the crane 7.
  • the light output from the modulated light input unit side end 39a of the optical fiber 39 is In addition, since the light is reflected on the inner surface of the light shielding unit 50, it is prevented from passing through the light shielding unit 50 and leaking to the outside.
  • the power supply 51 of the modulated light output unit 3 is electrically connected to the modulated light output unit 3 by a wire 52.
  • the power supply 51 may be a DC power supply or an AC power supply.
  • the wire 52 is wired to the frame 2 so that a part of the wire 52 forms a loop over the vine 7 and the front frame 6.
  • the wire 52 is divided at the hinge portion 36 into a first partial wire 53 located on the crane 7 and a second partial wire 54 located on the front frame 6.
  • the first partial wire 53 is composed of two wires extending along the vine 7, and both ends 55, 55 of the ends of each wire located at the hinge portion 36 from the end face of the vine 7 It is exposed.
  • the second partial wire 54 is constituted by a single wire forming an open-end loop, and both ends 56, 56 thereof are exposed from the end surface of the front frame 6.
  • the two ends 55, 55 of the first partial wire 53 and the two ends 56, 56 of the second partial wire 54 are in a state where the crane 7 is deployed with respect to the front frame 6, respectively. Are in a contact state where they are in contact with each other, while in a state where the vine 7 is folded against the front frame 6, they are in a separated state where they are separated from each other. In the contact state, power supply from the power supply 51 to the modulated light output unit 3 is permitted, while in the separated state, the power supply 51 Power supply to 3 is cut off.
  • the ends 55, 56 of the first and second partial wires 53, 54 function as contacts that open and close in conjunction with the hinge 36, so that the modulated light output It functions as an electric switch provided between the unit 3 and the power supply 51.
  • the first and second parts are When the ends 55 and 56 of the wires 53 and 54 come into contact with each other, power is supplied from the power supply 51 to the modulated light output unit 3, and as a result, the modulated light output unit 3 outputs the modulated light.
  • the retinal scanning display device 1 when the retinal scanning display device 1 is not used, that is, when the crane 7 is folded with respect to the front frame 6, the end portions of the first and second partial wires 53, 54 Since the 55 and 56 are not in contact with each other, the supply of power from the power supply 51 to the modulated light output unit 3 is cut off. As a result, the modulated light output unit 3 does not output the modulated light.
  • the observer in order to shift the retinal scanning display device 1 from the non-use state to the use state, the observer moves the vine 7 with respect to the front frame 6.
  • the modulated light output unit 3 When unfolded, the modulated light output unit 3 is automatically operated by being supplied with power from the power supply 51.
  • the observer if the observer folds the crane 7 with respect to the front frame 6 in order to shift the retinal scanning display device 1 from the use state to the non-use state, the observer automatically switches from the power supply 51 to the modulated light output section 3. Power supply is cut off.
  • the power supply 61 of the running unit 4 is electrically connected to the running unit 4 by a wire 62.
  • the power supply 61 may be a DC power supply or an AC power supply.
  • the wire 62 is divided into a first partial wire 63 and a second partial wire 64 at the hinge portion 36. Both ends 65, 65 of the first part wire 63 are exposed at the end face of the front frame 6, while both ends 66, 66 of the second part wire 64 are exposed at the end face of the crane 7.
  • the end portions 65, 66 of the first and second partial wires 63, 64 function as contacts that open and close in conjunction with the hinge portion 36, so that the running portion 4 It functions as an electric switch provided between the power supply 61 and the power supply 61.
  • the first and second partial wires 63 , 64 are brought into contact with each other, whereby power is supplied to the running unit 4 from the power supply 61, and as a result, the running unit 4 operates.
  • the scanning unit 4 in order to use the retinal scanning display device 1, if the observer expands the crane 7 with respect to the front frame 6, the scanning unit 4 is powered by power supply 61 and operates. On the other hand, when the retinal scanning display device 1 is not used, if the observer folds the vine 7 with respect to the front frame 6, the supply of power from the power supply 61 to the scanning unit 4 stops. Therefore, power is not wasted when the retinal scanning display device 1 is not used.
  • a feature of the present embodiment is that a power supply 71 common to the modulated light output unit 3 and the scanning unit 4 is electrically connected to the modulated light output unit 3 and the scanning unit 4 by wires 72.
  • the power supply 71 may be a DC power supply or an AC power supply.
  • the wire 72 is divided at the hinge portion 36 into a first partial wire 73 and a second partial wire 74. Both ends 75, 75 of the first partial wire 73 are exposed at the end face of the crane 7. Both ends 76, 76 of the second partial wire 74 are exposed at the end face of the front frame 6. It is.
  • the ends 75, 76 of the first and second partial wires 73, 74 come into contact with each other when the vine 7 is expanded with respect to the front frame 6, and the modulated light output unit 3 The power is supplied to the scanning unit 4.
  • the crane 7 is folded with respect to the front frame 6, the crane 7 is separated from the crane 7, and the power supply from the power supply 71 to the modulated light output unit 3 and the scanning unit 4 is cut off.
  • the ends 75, 76 of the first and second partial wires 73, 74 function as contacts that operate in conjunction with the hinge 36, thereby providing a connection between the modulated light output unit 3 and the scanning unit 4 and the power supply 71. It functions as an electric switch provided in.
  • the first and second parts are When the ends 75 and 76 of the wires 73 and 74 come into contact with each other, power is supplied from the power supply 71 to the modulated light output unit 3 and the scanning unit 4, and as a result, the modulated light output unit 3 and the scanning unit 4 Operates.
  • the retinal scanning display device 1 is not used, that is, when the crane 7 is folded with respect to the front frame 6, the end portions 75, 76 of the first and second partial wires 73, 74 are provided. The separation between them causes the supply of power from the power supply 71 to the modulated light output unit 3 and the scanning unit 4 to be stopped. As a result, the modulated light output unit 3 and the scanning unit 4 do not operate.
  • the retinal scanning display device 1 when the retinal scanning display device 1 is used, if the vine 7 is expanded with respect to the front frame 6, the modulated light output unit 3 and the scanning unit 4 are powered.
  • the retinal scanning display device 1 when the retinal scanning display device 1 is not used, when the vine 7 is folded with respect to the front frame 6, the power supply to the modulated light output unit 3 and the scanning unit 4 is provided. Supply of power from is stopped. Therefore, when the retinal scanning display device 1 is not in use, power is not wasted, and furthermore, component failure due to useless operation of the modulated light output unit 3 and the scanning unit 4 can be prevented. Be suppressed.
  • the modulated light output unit 3 and the scanning unit 4 by selectively connecting and disconnecting the power lines from which power is supplied to the modulated light output unit 3 and the scanning unit 4 from the outside, the modulated light output The operation of section 3 and scanning section 4 is selectively enabled. * This is prohibited, but the external signal is selectively connected to the command signal lines supplied to modulated light output section 3 and scanning section 4. By blocking, the operation of the modulated light output unit 3 and the scanning unit 4 can be selectively permitted or prohibited to implement the present invention.
  • the frame 2 is constituted by the front frame 6 and the two vines 7, 7, and each vine 7 has a connecting portion 80 connected to the front frame 6, an ear hook portion 81, Is composed by.
  • the connecting portion 80 is a portion that extends generally linearly, whereas the ear hook portion 81 is a portion that bends and extends from the tip of the connecting portion 80.
  • the optical fiber 5 is mounted on the crane 7 so as to extend along the connecting portion 80, thereby being connected to the scanning portion 4 and the modulated light output portion 3.
  • the optical fiber 5 extends along the connecting portion 80 of the crane 7, and is connected to the modulated light output portion 3 on the extension line. Therefore, when the modulated light output unit 3 is disposed on an extension of the connecting unit 80, the optical fiber 5 does not need to be bent greatly, and the possibility that the optical fiber 5 is damaged by excessive bending is reduced.
  • a frame 2 is constituted by a front frame 6 and two crane 7 and 7, and each crane 7 is connected to the front frame 6 It is composed of the connecting portion 80 and the ear hanging portion 81.
  • the ear hook portion 81 is bent from the distal end of the connecting portion 80 obliquely downward with respect to the extension direction so that the frame 2 is attached to the observer's head so that the frame 2 can be easily caught by the observer's ear. And extend it.
  • the optical fiber 5 is attached to the crane 7 in a state where the optical fiber 5 extends along the crook 7 bent at the joint between the joint 80 and the ear hook 81.
  • the optical fiber 5 is optically connected to the modulated light output unit 3 on an extension of the ear hook unit 81.
  • the optical fiber 5 extends along the ear hook portion 81 of the crane 7, further extends along the extension of the ear hook portion 81, and on the extension line, the modulated light output portion 3 Connected to. Therefore, when the modulated light output unit 3 is disposed on an extension of the ear hook unit 61, the optical fiber 5 does not need to be bent greatly, and the possibility that the optical fiber 5 is damaged by excessive bending is reduced. .
  • the frame 2 is configured by the front frame 6 and the two hooks 7, 7, and each of the vines 7 is connected to the front frame 6. It comprises a connecting portion 80 and an ear hanging portion 81.
  • the ear hook portion 81 is bent obliquely downward from the distal end of the connecting portion 80 with respect to the extension direction so that the frame 2 is easily hooked on the observer's ear. Extending in state.
  • the modulated light output unit 3 is arranged on the ear hanging unit 81.
  • the ear hook portion 81 is optically connected to the running portion 4 along the connecting portion 80 by an optical fiber 5 provided at the connecting portion 80.
  • the possibility of the optical fiber 5 vibrating is low. Therefore, according to the present embodiment, the possibility that noise is mixed into the signal transmitted by the optical fiber 5 is low.
  • a frame 2 is configured by a front frame 6 and two
  • the crane 7 is configured to include a connecting portion 80 connected to the front frame 6 and an ear hook portion 81.
  • the ear hook portion 81 is bent obliquely downward from the distal end of the connecting portion 80 extending substantially horizontally so as to be easily hooked on the observer's ear. are doing.
  • the optical fiber 5 includes a first portion 90 that extends substantially linearly from the scanning portion 4 along the connecting portion 80, and the terminal force of the first portion 90 also indicates that the modulated light output portion 3 And a second portion 92 extending therefrom.
  • the first part 90 is attached to the connecting part 80.
  • the connecting portion between the first portion 90 and the second portion 92 is attached to the crane 7 by the attachment 94.
  • the mounting tool 94 mounts the optical fiber 5 on the crane 7 so as to extend in a specific direction in the natural state of the second portion 92. That is, the mounting tool 94 defines and defines the direction in which the second portion 92 extends in the natural state.
  • the second portion 92 is bent sharply downward from a connection portion with the first portion 90 in a side view, and At the point, as shown in FIG. 3A, the connecting portion with the first portion 90 sharply bends in a direction away from the observer's head. It is attached to vine 7 as if to bend. The end of the second portion 92 so arranged is optically connected to the modulated light output 3.
  • the modulated light is applied to the optical fiber 5 substantially on the extension of the second portion 92.
  • the optical fiber 5 is used when the frame 2 is tilted to the left or right or removed from the front while the frame 2 is mounted on the observer's head.
  • the likelihood of large flexion on the observer's head or ears is reduced. Therefore, according to this embodiment, the possibility that the optical fiber 5 is broken due to excessive bending is reduced, and further, the retinal scanning display device 1 can be easily attached to and detached from the observer's head. improves.
  • a frame 2 is constituted by a front frame 6 and two cranes 7, 7, and each front frame 6 has two light reflections. It is configured to include the surface portions 8 and 8 and a bridge 37 connecting the light reflecting surface portions 8 and 8 to each other.
  • two scanning sections 4, 4 arranged respectively on the left and right sides of the frame 2, two optical fibers 5 extending respectively, 5 forces, one of the two crane 7, 7
  • the leading end of one bundle is connected to the modulated light output unit 3.
  • one optical fiber 5 extends from one scanning unit 4 along a crane 7 on which the scanning unit 4 is disposed, and outputs a modulated light output unit. Connected to 3.
  • the other optical fiber 5 is connected to the other scanning portion 4 from the upper edge of the two light reflecting surface portions 8 and 8 which are closer to the scanning portion 4, the upper edge of the bridge 37, and the other light reflecting surface portion. 8 extends along the upper edge to one of the vines 7.
  • the other optical fiber 5 further extends along the one optical fiber 5 and is bundled with the one optical fiber 5 by a locking tool 96 (bundling tool) in front of the modulated light output unit 3. I have.
  • the two scanning sections 4 and 4 are controlled by one modulated light output section 3 respectively.
  • the two optical fibers 5 and 5 respectively connected to the two running sections 4 and 4 are bundled together by a ring-shaped locking member 96. State In this state, it extends along one crane 7 and is connected to the modulated light output unit 3.
  • each optical fiber 5 since the two optical fibers 5, 5 extend in a state of being bundled into one bundle between the pull 7 and the modulated light output section 3, each optical fiber 5 Separates from the other optical fiber 5 and extends between the corresponding one of the two crane 7, 7 and the corresponding one of the two modulated light output sections 3, 3, as compared to the optical fiber 5 of FIG.
  • the rigidity of the fiber 5 (especially, the rigidity at the portion connecting the crane 7 and the modulated light output unit 3) apparently increases, and as a result, the deterioration of the image quality due to the fluctuation of the optical fiber 5 is suppressed.
  • the optical fiber 5 is arranged so as to extend substantially horizontally along the running portion 4 and the power tool 7, and to exit from the tip of the tool 7. I have.
  • the optical fiber 5 extends downward from each of the scanning units 4 disposed near the connecting portion of the fastener 7 with the front frame 6 and extends to the outside. It is arranged to exit.
  • the optical fiber 5 does not have to pass through the ear in the process of mounting the frame 2 on the head by the observer. The trouble of monitoring and adjusting the path of the optical fiber 5 so as not to interfere with the operation is released.
  • the optical fiber 5 is disposed on the frame 2 so as to extend downward from the scanning unit 4.
  • the optical fiber 5 travels with the bending position at the approximate middle position between the running position 4 of the crane 7 and the tip of the crane 7. It extends substantially horizontally along the vine 7 from the ⁇ part 4 to its bent position, and then extends downward from the bent position.
  • a reflection mirror is provided between the first portion of the optical fiber 5 that extends substantially horizontally and the second portion that extends downward, and light emitted from the first portion is emitted. It is bent and guided to the second part.
  • the first part and the reflection mirror One is set in vine 7.
  • the possibility that the horizontally extending first portion and the downwardly extending second portion are damaged by bending is reduced.
  • two optical fibers 5, 5 extending from the two running sections 4, 4, respectively, go out of the tip of each crane 7 to the outside. After being bundled into a bundle, it is connected to the modulated light output unit 3 common to the two scanning units 4 and 4.
  • the two optical fibers 5, 5 are bound using, for example, a ring-shaped binding tool 97.
  • the two optical fibers 5, 5 extending from the tips of the two crane 7, 7, respectively, are connected to each other.
  • the tips of the two crane 7, 7 form a closed loop in cooperation with a part of the optical fiber 5, 5, which is a continuous member.
  • the observer can carry the frame 2 removed from his / her head without holding the frame 2 by himself. This is convenient for the observer.
  • the optical fiber 5 is configured as a photonic crystal fiber (hereinafter, abbreviated as "PCF"). It is already known that PCF has more stable optical transmission characteristics against bending and shaking of itself than general optical fibers.
  • PCF photonic crystal fiber
  • a general optical fiber is composed of a core and a cladding surrounding the core, and the core and the cladding surround the core.
  • the clad is formed using materials having different refractive indexes. Specifically, a material having a high refractive index is used for the core, while a material having a low refractive index is used for the cladding.
  • the PCF is composed of a core portion and a cladding portion surrounding the core portion in the same manner as a general optical fiber. It has a crystal structure in which a plurality of air holes are regularly arranged at the same period as the wavelength of the light.
  • the core portion is formed of silica without air holes, while the clad portion is formed of silica with air holes.
  • FIG. 29 is a cross-sectional view showing a standard structure of a PCF.
  • the cladding 120 and the core 122 are made of the same material, silica.
  • a plurality of air holes 124 are arranged so as to form a triangular arrangement structure, whereas the core part 122 has no air holes 124.
  • the core portion 122 has a high refractive index characteristic for light
  • the clad portion 120 has a low refractive index characteristic for light due to the presence of the air hole 124. Show. Therefore, similarly to a general optical fiber, the light incident on the PCF is confined in the core 122 and transmitted along the PCF without leaking from the core 122 to the cladding 120.
  • a characteristic of this PCF is that bending loss is small. Bending loss is the loss of the amount of light that occurs when an optical fiber is bent.If the bending loss is small, the optical fiber has stable optical transmission characteristics against bending and shaking. I get it.
  • the observer places the retinal scanning display device 1 (also referred to as “RSD”) on its frame 2 and scanning unit 4 (hereinafter, collectively referred to as “wearing unit”) on its head.
  • the modulated light output unit 3 functions as a “light source unit”
  • the modulated light output unit 3 is used for connecting the mounted unit and the modulated light output unit 3 to each other.
  • Extra length If the portion is stored in a small space, a large bend occurs in the optical fiber 5, and the optical fiber 5 shakes with the movement of the observer.
  • a conventional retinal scanning display device when such bending or shaking occurs, an observer cannot observe an image with stable quality due to bending loss of the optical fiber.
  • a PCF is used as the optical fiber 5, whereby the optical fiber 5 can always transmit a stable image signal.
  • Experimental data show that the bending loss of a PCF is always OdB in a certain wavelength region of transmitted light without depending on the radius of curvature of the PCF, see the document "Photonic Crystal Fiber (1)-Optical Characteristics-" ( Mitsubishi Cable Industrial Times No. 99, July 2002).
  • Fig. 30 shows an example of data on bending loss of PCF.
  • This is the physical property data listed in the PCF catalog provided under the Mitsubishi Electric Cable Industries Co., Ltd. product name “DIAGUIDE (registered trademark) PCF Series”. According to this data, when visible light having a wavelength of 0.63 / im is transmitted by a PCF spirally wound 10 times around a 40 mm diameter cylindrical surface, the bending loss of the PCF is OdB. is there.
  • PCF has very small bending loss and has stable optical transmission characteristics against bending and shaking.
  • the optical fiber 5 is configured as a PCF, an image signal can be transmitted with stable characteristics against bending and shaking. Even if the extra length of the optical fiber 5 is spirally wound and stored in a small space, or if the observer operates with the retinal scanning display device 1 attached, Can observe a clear image with stable quality.
  • the modulated light output unit 3 and the scanning unit 4 cooperate with each other to exemplify the “plurality of units” in the above item (25).
  • the optical fiber 5 constitutes an example of the “optical fiber” in the same section and an example of the “photonic crystal fino” in the section (28).
  • the light source unit 50 is one of the "emission unit” in the above item (26).
  • the polygon mirror 100 and the galvanometer mirror 102 cooperate with each other to form an example of the “scanning section” in the same section, and the laser beam forms an example of the “beam” in the same section.
  • the dimming output unit 3 constitutes an example of the “first unit” in the same paragraph
  • the scanning unit 4 constitutes an example of the “second unit” in the same paragraph or (30).
  • the running unit 4 of the retinal scanning display device 1 converts the laser light emitted from the modulated light output unit 3 into two-dimensional directions in the main scanning direction and the sub-scanning direction.
  • the scanning unit 4 is provided with a polygon mirror 22 for main scanning and a galvano mirror 24 for sub-scanning.
  • the scanning section 4 further modulates the wavefront of the laser light between the collimator lens 21 and the polygon mirror 22 in the optical path.
  • An optical system 140 is provided.
  • the wavefront modulation optical system 140 is an optical system that modulates the wavefront (wavefront curvature) of the laser light emitted from the modulated light output unit 3.
  • the wavefront modulation optical system 140 is mainly configured by a combination of a condenser lens 142 and a movable mirror 144 displaceable on the optical axis thereof. More specifically, the wavefront modulation optical system 140 includes a half mirror 146 on which the laser beam emitted from the collimator lens 21 is incident, and a condenser lens 142 for condensing the laser beam reflected and emitted therefrom. A movable mirror 144 for reflecting the laser beam emitted from the condenser lens 142 with a plane mirror; and an actuator 148 for changing the position of the movable mirror 144 on the optical axis. An example of the actuator 148 is a type using a piezoelectric element. In the wavefront modulation optical system 140, the laser beam reflected by the movable mirror 144 passes through the condenser lens 142 and the half mirror 146 and enters the polygon mirror 22 described above.
  • the image signal processing circuit 10 needs to supply the actuator 148 to modulate the wavefront of the laser light based on the video signal supplied from the outside. It is designed to generate a necessary wavefront modulation signal and supply it to a control circuit 26 provided in the scanning unit 4.
  • the actuator 148 modulates the wavefront of the laser light emitted from the wavefront modulation optical system 140 based on the wavefront modulation signal supplied to the control circuit 26.
  • the wavefront modulation optical system 140 since the wavefront modulation optical system 140 is provided not in the modulated light output unit 3 but in the scanning unit 4, the laser light having the wavefront modulated passes through the optical fiber 5. You don't have to. Therefore, according to the present embodiment, the optical properties of the laser light whose wavefront has been modulated do not need to be degraded by the optical fiber 5.
  • the wavefront modulation optical system 140 constitutes the “wavefront modulation section” in the above item (27).
  • the retinal scanning display device 1 described above is of a type in which images are projected onto the retinas M4, M4 of both eyes M, M of the observer. Therefore, the retinal scanning display device 1 includes optical systems independent of each other for each of the eyes M, M. Specifically, for each eye M, a scanning unit 4 and a light reflecting surface unit 8 (projector for projecting a scanning light beam on the eye M and projecting it on the retina M4) are provided.
  • the light reflecting surface portion 8 as a projection tool reflects the light beam scanned by the scanning portion 4 to enter the retina M4. It has been.
  • the light reflecting surface section 8 is configured using a half mirror having a shape similar to each lens in ordinary glasses.
  • the surface facing the observer is a reflection surface, and the light beam incident on the reflection surface from the scanning portion 4 is reflected by the reflection surface and enters the eye M.
  • the light reflection surface section 8 can have a transmission function of transmitting light incident from the front of the frame 2 and entering the eye M.
  • the observer can visually recognize the image transmitted from the retinal scanning display device 1 by superimposing the image transmitted through the light reflecting surface portion 8 on the actual scene in front of the user.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)

Abstract

 使用可能な場所的範囲が拡大された網膜走査型ディスプレイ装置が開示されている。この装置は、観察者の頭部に装着されるフレームと、画像情報に応じて光を変調し、その変調された光を被変調光として出力する被変調光出力部と、前記フレームに設けられ、前記被変調光を前記網膜上において走査することにより、その網膜上に画像を表示するための走査部と、前記フレームに設けられ、前記被変調光出力部から出力された被変調光を前記走査部に伝送する光伝送部とを備えている。

Description

明 細 書
網膜走査型ディスプレイ装置
技術分野
[0001] 本発明は、人間の眼の網膜上に光を直接投影し、その光を網膜上において走査 することにより、画像を表示する網膜走査型ディスプレイ装置に関する。 背景技術
[0002] 日本国特許第 2874208号公報は、網膜走査型ディスプレイ装置の一従来例を開 示している。この従来例は、図 32に示すように、被変調光出力部 200と、走査部 201 とを備えている。被変調光出力部 200は、画像情報に応じてレーザ光を変調し、それ を被変調光として出力する。走査部 201は、その出力された被変調光を人間の眼の 網膜 202上において走査し、それにより、網膜 202上に画像を表示する。
[0003] この種の網膜走査型ディスプレイ装置は、光を網膜上に直接投影することにより、 観察者に画像を知覚させる点で、光をスクリーン上に投影し、そのスクリーンからの反 射光によって観察者に画像を知覚させる種類の画像表示装置とは異なる。 発明の開示
[0004] しかし、従来の網膜走査型ディスプレイ装置は、卓上等、特定の場所に設置されて 使用されることを前提として構成されていた。そのため、従来の網膜走査型ディスプ レイ装置には、それが設置された特定の場所でしか使用することができないという問 題があった。
[0005] したがって、本発明の目的は、使用可能な場所的範囲が拡大された網膜走查型デ イスプレイ装置を提供することにある。
[0006] 本発明によって下記の各態様が得られる。各態様は、項に区分し、各項には番号 を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、本発明が 採用し得る技術的特徴の一部およびそれの組合せの理解を容易にするためであり、 本発明が採用し得る技術的特徴およびそれの組合せが以下の態様に限定されると 解釈すべきではない。すなわち、下記の態様には記載されていないが本明細書には 記載されている技術的特徴を本発明の技術的特徴として適宜抽出して採用すること は妨げられないと解釈すべきなのである。
[0007] さらに、各項を他の項の番号を引用する形式で記載することが必ずしも、各項に記 載の技術的特徴を他の項に記載の技術的特徴力 分離させて独立させることを妨げ ることを意味するわけではなぐ各項に記載の技術的特徴をその性質に応じて適宜 独立させることが可能であると解釈すべきである。
[0008] (1) 観察者の眼の網膜上において光を走査することにより、前記網膜上に画像を表 示する網膜走査型ディスプレイ装置であって、
前記観察者の頭部に装着されるフレームと、
画像情報に応じて光を変調し、その変調された光を被変調光として出力する被変 調光出力部と、
前記フレームに設けられ、前記被変調光を前記網膜上において走査することにより 、その網膜上に画像を表示するための走査部と、
前記フレームに設けられ、前記被変調光出力部から出力された被変調光を前記走 查部に伝送する光伝送部と
を含む網膜走査型ディスプレイ装置。
[0009] この装置においては、観察者の頭部にフレームが装着され、そのフレームに走査部 が装着され、その走査部に被変調光出力部が光伝送部によって接続されている。し たがって、観察者が移動すれば、それと一緒にフレームおよび走査部が移動するた め、当該網膜走査型ディスプレイ装置のモビリティが向上し、観察者は、表示画像を 観察するために自分の行動範囲が制限されずに済む。
[0010] また、この装置においては、光伝送部がフレームに設けられるため、光伝送部のう ち走查部との接続部近傍がその走查部に対して振動することが抑制される。それに より、この装置によれば、画像が、その走查部によって被変調光が網膜上において走 查されることによって表示されるにもかかわらず、安定した画質で表示される。
[0011] (2) さらに、前記眼に対面するように前記フレームに設けられた光反射面部を含み 前記走査部は、前記被変調光を前記光反射面部に向かって出射しつつ走査する(
1)項に記載の網膜走査型ディスプレイ装置。
[0012] この装置においては、走査部から出力された被変調光が、観察者の眼に対面する ようにフレームに設けられた光反射面部で反射した後に、観察者の網膜上に照射さ れ、それにより、その網膜上に画像が表示されるようになっている。したがって、この 装置によれば、光反射面部の面積を拡大することにより、網膜上の広い範囲におい て被変調光を走查することが可能となり、その結果、大きな画角を有する画像を表示 すること力 s可肯 となる。
[0013] (3) 前記光反射面部は、前記眼に対面する楕円面であって 2つの焦点を有するも のを含み、その光反射面部は、前記 2つの焦点のうちの一方に前記眼が位置するよ うに配置され、
前記走查部は、その走查部によって走査された走查光の出射部を、前記 2つの焦 点のうちの他方に位置するように含み、その走査部は、前記被変調光を前記楕円面 に向かって出射しつつ走査することにより、前記被変調光を前記楕円面で反射させ、 それにより、前記眼に画像を表示する(2)項に記載の網膜走査型ディスプレイ装置。
[0014] この装置においては、 2つの焦点を有する楕円面を光反射面部が含み、それら焦 点の一方には眼が、他方には、走査部のうちその走査部によって走査された走査光 が出射される出射部がそれぞれ配置される。
[0015] したがって、この装置によれば、出射部からの出射光力 S、楕円面での反射を経て観 察者の眼に入射するが、その反射点の位置の如何を問わず、出射光が最終的には 観察者の眼に入射して、その観察者の網膜上に画像が表示される。
[0016] (4) 前記光伝送部は、導波路である(1)ないし(3)項のいずれかに記載の網膜走
[0017] この装置によれば、光伝送部が導波路として形成されるため、例えば、被変調光出 力部から出力された被変調光を走查部に伝送するための構造を簡略化することが容 易となる。
[0018] (5) さらに、前記導波路を前記フレームに固定する止具を含む(4)項に記載の網膜 走査型ディスプレイ装置。 [0019] この装置によれば、止具によつて導波路がフレームに固定されるため、例えば、導 波路のうち走査部との接続部近傍がその走査部に対して振動することを抑制すること が容易となる。よって、この装置によれば、例えば、画像が、走査部によって被変調 光が網膜上において走査されることによって表示されるにもかかわらず、安定した画 質で表示される。
[0020] (6) さらに、前記フレーム内において前記導波路が揷通される揷通部を含む (4)項 に記載の網膜走査型ディスプレイ装置。
[0021] この装置によれば、導波路が揷通される揷通部がフレームに設けられるため、例え ば、導波路のうち走查部との接続部近傍が、その走查部に対する振動が抑制される ことにより、安定的にフレームに支持される。したがって、この装置によれば、例えば、 画像が、走查部によって被変調光が網膜上において走査されることによって表示さ れるにもかかわらず、安定した画質で表示される。
[0022] さらに、この装置によれば、挿通部内の導波路はフレームから外部に露出せずに済 む。したがって、この装置によれば、例えば、導波路がフレームから露出し、その露出 部が観察者や外部機器に接触することなどが原因で、導波路が走査部に対して振 動することを抑制することが容易となる。
[0023] (7) 前記フレームは、前枠とツルとを有する眼鏡型に形成されている(1)ないし(6) 項のいずれかに記載の網膜走査型ディスプレイ装置。
[0024] この装置によれば、フレームが眼鏡型に形成されるため、当該装置を眼鏡と同様な 使用態様で使用することが可能となる。
[0025] (8) 前記フレームは、前枠とツルとを有する眼鏡型に形成され、そのツルは、前記 光伝送部によって形成されている(1)ないし(3)項のいずれかに記載の網膜走查型
[0026] この装置によれば、フレームが眼鏡型に形成され、そのフレームのうちのツルが光 伝送部によって形成される。したがって、この装置によれば、その光伝送部のうち走 查部との接続部近傍がその走查部に対して振動することを抑制することが容易となり 、その結果、画像が、その走查部によって被変調光が網膜上において走査されること によって表示されるにもかかわらず、安定した画質で表示される。さらに、この装置に よれば、フレームと光伝送部とを互いに独立した部品として形成せずに済むため、当 該装置を小型化することが容易となる。
[0027] (9) さらに、前記フレーム内において前記導波路が挿通される揷通部を含み、その 揷通部は、前記ツルに設けられた(7)項に記載の網膜走査型ディスプレイ装置。
[0028] この装置によれば、導波路が揷通される揷通部がフレームのツル内に設けられるた め、フレームの外部に設けられる場合より、当該装置を小型化することが容易となる。
[0029] (10) 前記ツルは、前記前枠に連結される連結部と、その連結部から曲がって延び る形状を有して前記観察者の耳に掛けられる耳掛け部とを含むように構成され、 前記光伝送部は、導波路であり、その導波路は、前記連結部に沿って延びて、そ の略延長線上において前記被変調光出力部に接続される(7)項に記載の網膜走査 型ディスプレイ装置。
[0030] この装置においては、ツルが連結部と耳掛け部とを含むように構成され、さらに、導 波路が、その連結部に沿って延びて、その略延長線上において被変調光出力部に 接続される。したがって、この装置によれば、フレームと被変調光出力部との間にお レ、て導波路の屈曲が抑制される。
[0031] (11) 前記ツルは、前記前枠に連結される連結部と、その連結部から曲がって延び る形状を有して前記観察者の耳に掛けられる耳掛け部とを含むように構成され、 前記光伝送部は、導波路であり、その導波路は、前記耳掛け部に沿って延びて、 その略延長線上において前記被変調光出力部に接続される(7)項に記載の網膜走
[0032] この装置においては、ツルが連結部と耳掛け部とを含むように構成され、さらに、導 波路が、その耳掛け部に沿って延びて、その略延長線上において被変調光出力部 に接続される。したがって、この装置によれば、フレームと被変調光出力部との間に ぉレ、て導波路の屈曲が抑制される。
[0033] (12) 前記光伝送部は、導波路であり、その導波路は、側面視においては、前記ッ ノレのうち、前記前枠と連結される基端から先端に向力 向きに対して下方に斜めに折 れ曲がる向きを有し、かつ、平面視においては、前記観察者の頭部から遠ざかる向き を有するように、前記ツルカ 延び出て前記被変調光出力部に接続される(7)項に 記載の網膜走査型ディスプレイ装置。
[0034] この装置においては、導波路がツルから延び出て被変調光出力部に接続されるま での経路が、例えば、フレームが観察者の頭部から取り外される際に、ツルカ 延び 出る導波路が観察者の耳にその背後から押し当てられて屈曲させられる可能性の軽 減と、フレームが、正面視において、水平である配置から側方に傾力、された配置に移 行させられる際に、ツルカ 延び出る導波路が観察者の頭部の側面に押し付けられ て屈曲させられる可能性の軽減とを目的として設定される。
[0035] 具体的には、この装置においては、その目的を達成するために、導波路が、側面 視においては、ツルのうち、前枠と連結される基端から先端に向力、う向きに対して下 方に斜めに折れ曲がる向きを有し、かつ、平面視においては、観察者の頭部から遠 ざかる向きを有するように、ツルから延び出て被変調光出力部に接続される。
[0036] したがって、この装置によれば、観察者の頭部に装着されているフレームが観察者 の前方にずらされたり、側方に傾かせられたりしても、導波路が観察者の耳や頭部に 強く接触することが抑制され、それにより、導波路の屈曲が抑制される。
[0037] (13) 前記被変調光出力部は、前記耳掛け部に装着される(10)項に記載の網膜
[0038] この装置によれば、被変調光出力部が耳掛け部に設けられるため、導波路は、そ の全長に亘つてフレームに安定的に支持される状態で被変調光出力部に接続され る。
[0039] (14) さらに、前記前枠と前記ツルとの間に設けられ、それら前枠とツルとを、ツルが 前枠に対して折畳み可能に連結するヒンジ部を含み、
前記走査部は、前記前枠に設けられ、
前記光伝送部は、導波路であり、その導波路は、前記被変調光出力部と前記ヒン ジ部との間におレ、て延びるように前記ツルに設けられ、
当該網膜走査型ディスプレイ装置が、さらに、前記導波路によって伝送された被変 調光を前記走査部に入力する被変調光入力部であって、前記走査部と前記ヒンジ 部との間において前記前枠に設けられたものを含み、
前記導波路の一端部と、前記被変調光入力部の一端部とは、前記ツルが前記前 枠に対して展開された展開状態においては、前記ヒンジ部において互いに接触して 、前記導波路から前記被変調光入力部への前記被変調光の伝送を許可する一方、 前記ツルが前記前枠に対して折り畳まれた折畳み状態においては、互いに離間して 、前記導波路から前記被変調光入力部への前記被変調光の伝送を遮断する(7)項 に記載の網膜走査型ディスプレイ装置。
[0040] この装置によれば、前枠とツルとの間にヒンジ部が設けられることにより、ツルが前 枠に対して折畳み可能であるため、当該装置の不使用時には、ツルを前枠に対して 折り畳むことにより、当該装置をコンパクトに収容することができる。
[0041] さらに、この装置によれば、ツルの前枠に対する動作に伴うヒンジ部の動作に伴い、 導波路の一端部と被変調光入力部の一端部とが、互いに接触して導波路から被変 調光入力部への被変調光の伝送を許可する状態と、互いに離間して導波路力 被 変調光入力部への被変調光の伝送を遮断する状態とに移行させられる。その結果、 この装置によれば、当該装置を使用するためにツルが前枠に対して展開されれば、 自動的に、導波路から被変調光入力部への被変調光の伝送を許可する状態に移行 する一方、当該装置を収容するためにツルが前枠に対して折り畳まれれば、 自動的 に、導波路から被変調光入力部への被変調光の伝送を遮断する状態に移行する。 その遮断状態においては、結局、導波路から走査部への被変調光の伝送が遮断さ れる。
[0042] したがって、この装置によれば、観察者は、当該装置を収容するためにツルを前枠 に対して折り畳みさえすれば、それ以外の操作を行わなくても、導波路から被変調光 入力部への被変調光の伝送が遮断される。その伝送が遮断されれば、被変調光が 走查部に伝送されないため、当該装置の不使用時に、走查部からの光の漏れが原 因で観察者が違和感を抱くことが回避される。
[0043] (15) 前記導波路は、前記ツルに設けられたツル揷通孔内に揷通され、その導波路 の両端部のうち、前記被変調光入力部に近い側の端部である被変調光入力部側端 部は、前記ツル揷通孔から突出して設けられ、
前記被変調光入力部は、前記前枠に設けられた前枠揷通孔内に揷通され、その 被変調光入力部のうち、前記導波路に近い端部は、前記前枠揷通孔の縁からその 前枠挿通孔の内部へ後退した位置に設けられ、
前記導波路は、前記展開状態においては、前記前枠揷通孔内に進入して前記被 変調光入力部に接触する一方、前記折畳み状態においては、前記被変調光入力部 から離間する(14)項に記載の網膜走査型ディスプレイ装置。
[0044] この装置においては、ツルが前枠に対して展開された状態において、導波路と被 変調光入力部とが互いに接触する位置 Aが、それらツルと前枠とが互いに接触する 位置 B (例えば、ツル揷通孔と前枠揷通孔とが互いに接触する位置)と同一平面上に なレ、。したがって、この装置によれば、位置 Aが位置 Bと同一平面上にある場合に比 較し、例えば、ツルと前枠との間の隙間から侵入した外乱光が、導波路と被変調光入 力部との間の隙間内へ侵入する可能性が軽減される。その結果、外乱光の侵入によ る画質の低下を抑制することが容易となる。
[0045] (16) 前記被変調光入力部は、前記前枠に設けられた前枠揷通孔内に揷通され、 その被変調光入力部は、前記前枠挿通孔から突出して設けられ、
前記導波路は、前記ツルに設けられたツル挿通孔内に挿通され、その導波路の両 端部のうち、前記被変調光入力部に近い側の端部である被変調光入力部側端部は 、前記ツル揷通孔の縁からそのツル挿通孔の内部へ後退した位置に設けられ、 前記被変調光入力部は、前記展開状態においては、前記ツル挿通孔内に進入し て前記導波路に接触する一方、前記折畳み状態においては、前記導波路から離間 する(14)項に記載の網膜型ディスプレイ装置。
[0046] この装置によれば、前記(15)項に係る装置と同様にして、ツルと前枠との間の隙間 から侵入した外乱光が、導波路と被変調光入力部との間の隙間内へ侵入する可能 性が軽減される。その結果、外乱光の侵入による画質の低下を抑制することが容易と なる。
[0047] (17) さらに、前記折畳み状態において、前記導波路の両端部のうち前記被変調光 入力部に近い側の端部から出射する被変調光を遮る遮光部を含む(14)項に記載 の網膜走査型ディスプレイ装置。
[0048] この装置によれば、ツルが前枠に対して折り畳まれた状態において、ツルに設けら れた導波路から被変調光が漏れても、この被変調光が遮光部によって遮られる。した がって、この装置によれば、そのような遮光部を有しない場合に比較し、導波路から 漏れた光が観察者の眼に入射する可能性が軽減され、ひいては、その導波路から漏 れた光が原因で観察者が違和感を抱く可能性が軽減される。
[0049] (18) さらに、前記ヒンジ部に設けられ、前記被変調光出力部の電気回路を前記ヒ ンジ部の動作に連動してオンオフする電気スィッチを含み、その電気スィッチは、前 記展開状態においては、オンされて前記被変調光出力部の作動を許可する一方、 前記折畳み状態においては、オフされて前記被変調光出力部の作動を禁止する(1 4)なレ、し(17)項のレ、ずれかに記載の網膜走查型ディスプレイ装置。
[0050] この装置においては、ヒンジ部の動作に連動する電気スィッチにより、被変調光出 力部の電気回路がオンオフされる。そして、ツルが前枠に対して展開された状態にお いては、電気スィッチがオンされて被変調光出力部の作動が許可される一方、ツル が前枠に対して折り畳まれた状態においては、電気スィッチがオフされて被変調光 出力部の作動が禁止される。
[0051] したがって、この装置によれば、当該装置を使用しないためにツルが前枠に対して 折り畳まれた状態において、観察者による特別な操作なしで、被変調光出力部の作 動が禁止されるため、被変調光出力部による電力浪費および当該装置からの光の漏 れが回避される。
[0052] (19) さらに、前記ヒンジ部に設けられ、前記走査部の電気回路を前記ヒンジ部の動 作に連動してオンオフする電気スィッチを含み、その電気スィッチは、前記展開状態 においては、オンされて前記走査部の作動を許可する一方、前記折畳み状態にお レ、ては、オフされて前記走査部の作動を禁止する(14)なレ、し(17)項のレ、ずれかに 記載の網膜走査型ディスプレイ装置。
[0053] この装置においては、ヒンジ部の動作に連動する電気スィッチにより、走查部の電 気回路がオンオフされる。そして、ツルが前枠に対して展開された状態においては、 電気スィッチがオンされて走查部の作動が許可される一方、ツルが前枠に対して折り 畳まれた状態においては、電気スィッチがオフされて走查部の作動が禁止される。
[0054] したがって、この装置によれば、当該装置を使用しないためにツルが前枠に対して 折り畳まれた状態において、観察者による特別な操作なしで、走查部の作動が禁止 されるため、走査部による電力浪費および当該装置からの光の漏れが回避される。
[0055] (20) さらに、前記前枠と前記ツルとの間に設けられ、それら前枠とツルとを、ツルが 前枠に対して折畳み可能に連結するヒンジ部を含み、
前記走査部は、前記ツルに設けられた(7)項に記載の網膜走査型ディスプレイ装 置。
[0056] 被変調光の伝送先である走查部がフレームのうちの前枠に設けられる場合には、 被変調光をツルからヒンジ部を経由して走查部に伝送しなければならなレ、。この場合 、被変調光をツルから走查部に伝送するための導波路は、例えば、ヒンジ部の動作 に連動して接触 ·離間するように、 2分割しなければならなレ、可能性がある。
[0057] これに対し、本項に係る装置においては、走查部が、前枠にではなくツルに設けら れている。したがって、この装置によれば、導波路がヒンジ部を経由せずに済むため 、走查部が前枠に設けられる場合に比較し、導波路の構造を単純化することが容易 となる。
[0058] (21) 前記フレームは、前枠と、その前枠に連結された 2本のツルとを備えた眼鏡型 に形成され、
前記走査部は、前記観察者の両眼にそれぞれ対応して 2つ設けられ、 前記光伝送部は、前記被変調光出力部から出力された被変調光を前記 2つの查 部にそれぞれ伝送するためにそれら走査部の数と同数、前記 2本のツルのうちの一 方に設けられた(1)または(2)項に記載の網膜走査型ディスプレイ装置。
[0059] この装置においては、フレームが、前枠と 2本のツルを備えた眼鏡型に形成され、さ らに、 2つの光伝送部が 1本のツルにまとめて設けられている。したがって、この装置 によれば、それら 2つの光伝送部が 2本のツルに分配されて設けられる場合に比較し 、例えば、フレームのうち、それら 2つの光伝送部を支持する構造を単純化することが 容易となる。
[0060] (22) 前記光伝送部は、光をアナログ信号として伝達するフレキシブルな光ファイバ であって、光を伝送する際の光の損失量が前記光伝送部の曲がりに実質的に依存し ない光学特性を有するものとして構成されている(1)ないし(21)項のいずれかに記 載の網膜走査型 [0061] この装置によれば、光ファイバの曲がりがあっても、光ファイバによる光の伝送特性 が変化することが抑制される。よって、この装置によれば、光伝送部の曲がりに影響 を受けることなぐ光として伝送すべきアナログ信号を安定して伝送することが容易と なる。
[0062] 本項における「曲がり」は、例えば、曲率半径として表現したり、屈曲角度として表現 することが可能である。また、捩じれを含む概念として定義することも可能である。
[0063] (23) 前記光ファイバは、フォトニック結晶ファイバである(22)項に記載の網膜走查 型ディスプレイ装置。
[0064] (24) 前記フォトニック結晶ファイバは、コア部とそれを覆うクラッド部とを含み、その クラッド部は、シリカガラス中に前記光の波長と同程度の周期で複数個のエアホール が規則的に配列された結晶構造を有する(23)項に記載の網膜走査型
[0065] (25) 物理的に互いに独立した複数個のユニットが、それらユニット間において光を アナログ信号として伝達するフレキシブルな光伝送部によって互いに接続される光伝 送装置であって、
前記光伝送部は、光を伝送する際の光の損失量が前記光伝送部の曲がりに実質 的に依存しない光学特性を有する光ファイバとして構成されている光伝送装置。
[0066] 光を伝送する光伝送装置が既に存在する。この光伝送装置の一形式として、物理 的に互いに独立した複数個のユニットが、それらユニット間において光をアナログ信 号として伝達するフレキシブルな光伝送部によって互いに接続される光伝送装置が 既に知られている。その一例が日本国特開平 6-138499号公報に開示されている。
[0067] この公報には、この種の光伝送装置の一従来例として、眼鏡型の網膜走査型ディ スプレイ装置が記載されている。この装置は、眼鏡のレンズの如き反射器と、光学ス キヤナと、レーザ光源と、ファイバリレーとを含むように構成されている。光学スキャナ とレーザ光源とはファイバリレーによって互いに接続されている。
[0068] この種の光伝送装置においては、物理的に互いに独立した複数個のユニットがフ レキシブルな光伝送部によって互いに接続されるが、この光伝送装置の使用中、光 伝送部に揺れや曲げが発生する場合がある。光伝送部の曲がりが動的に変化する 場合があるのである。
[0069] この種の光伝送装置においては、光伝送部が、それの曲がりの動的変化にもかか わらず、伝送すべき光を損失なしで伝送することが理想的である。し力 ながら、従来 の光伝送装置においては、光伝送部が光を伝送する際の光の損失量がその光伝送 部の曲がりに依存する傾向があつたため、光伝送部による光の伝送特性が時間的に 安定しないィ頃向があった。
[0070] 例えば、光伝送装置が、光によって画像を表示する画像表示装置として具現化さ れる場合には、光伝送部による光の伝送特性が不安定であると、表示される画像が ちらついたり、ノイズが混入し易い。
[0071] このような事情を背景として、本項に係る光伝送装置は、物理的に互いに独立した 複数個のユニットが、それらユニット間において光をアナログ信号として伝達するフレ キシブルな光伝送部によって互いに接続される光伝送装置において、光伝送部によ る光の伝送特性を安定化することを課題としてなされたものである。
[0072] この装置においては、光伝送部が光ファイバとして構成され、かつ、その光ファイバ は、光を伝送する際の光の損失量が光ファイバの曲がりに実質的に依存しない光学 特性を有するものとして構成されている。したがって、この装置によれば、光ファイバ の曲がりがあっても、光ファイバによる光の伝送特性が変化することが抑制される。よ つて、この装置によれば、光伝送部の曲がりに影響を受けることなぐ光として伝送す べきアナログ信号を安定して伝送することが容易となる。
[0073] 本項における「曲がり」は、例えば、曲率半径として表現したり、屈曲角度として表現 することが可能である。また、捩じれを含む概念として定義することも可能である。
[0074] 本項に係る「光伝送装置」は、画像情報を伝送するために使用することが可能であ るが、他の用途に使用することも可能である。例えば、画像情報に代えて画像情報お よび音声情報を伝送するために使用することが可能である。
[0075] (26) 前記複数個のユニットは、表示すべき画像の光束を出射する出射部を備えた 第 1ユニットと、その第 1ユニットから出射した光束を画像表示面上に表示するために 走查する走查部を備えた第 2ユニットとを含み、それら第 1ユニットと第 2ユニットとは 前記光ファイバによって互いに接続されている(25)項に記載の光伝送装置。 [0076] この装置は、光束によって画像表示面上に画像を表示するとレ、う用途に、前記(25 )項に係る光伝送装置を適合させたものであり、この装置は、物理的に互いに独立し た第 1ユニットと第 2ユニットとを含んでいる。
[0077] 第 1ユニットは、光束を出射する出射部を備えており、第 2ユニットは、その第 1ュニ ットから出射した光束を走查する走查部を備えている。そして、それら第 1ユニットと第 2ユニットとは、前記(25)項における光ファイバによって互いに接続されている。
[0078] したがって、この装置によれば、その装置の使用中に、第 1ユニットと第 2ユニットと の相対位置が変化して光ファイバの曲がりが変化しても、それらユニット間の光フアイ バ内に伝送される光の量が安定化される。よって、この装置によれば、使用中におけ る光ファイバの曲がりの動的変化にもかかわらず、画像表示面上に表示される画像 の品質が安定化させられる。
[0079] (27) 前記第 2ユニットは、さらに、前記光束の波面を変調する波面変調部を備えて レ、る(26)項に記載の光伝送装置。
[0080] 前記(26)項に係る光伝送装置は、光束の波面を変調する波面変調部を含む態様 で実施することが可能である。この態様においては、その波面変調部を、第 1ユニット に設けることも、第 2ユニットに設けることも可能である。
[0081] しかし、光ファイバを使用する場合には、その光ファイバに入射した光束の光学的 性質につき、保存することが不可能であるかまたは可能であるにしても困難である光 学的性質が存在するのが通常である。そのため、光ファイバによっては保存が少なく とも困難である光学的性質を保存することが必要である場合には、そのような光学的 性質を有する光束を光ファイバを通過させなレ、ことが望ましレ、。
[0082] 一方、光束の波面を変調する場合には、その波面の曲率に応じて光束の拡がり角 が変化し、その拡がり角が維持されるように光束を伝送することが必要である場合が める。
[0083] そこで、本項に係る装置においては、波面変調部が、光ファイバの上流側に位置し て光束がその光ファイバに入射する第 1ユニットにではなぐ光ファイバの下流側に位 置して光束がその光ファイバに入射しない第 2ユニットに設けられている。したがって 、この装置によれば、光束の光学的特性のうち保存されるべきものが光ファイバによ つて喪失されることを回避することが容易となる。
[0084] (28) 前記光ファイバは、フォトニック結晶ファイバである(25)ないし(27)項のいず れかに記載の光伝送装置。
[0085] 光ファイバをフォトニック結晶ファイバとして構成することが既に知られている。この フォトニック結晶ファイバは、光を伝送する際の光の損失量が、フォトニック結晶フアイ バの曲がりに実質的に依存しなレ、ファイバであることも既に知られてレ、る。
[0086] そこで、本項に係る装置においては、前記(25)ないし(27)項のいずれかにおける 光ファイバがフォトニック結晶ファイバとして構成されている。
[0087] (29) 前記フォトニック結晶ファイバは、コア部とそれを覆うクラッド部とを含み、その クラッド部は、シリカガラス中に前記光束の波長と同程度の周期で複数個のエアホー ルが規則的に配列された結晶構造を有する(28)項に記載の光伝送装置。
[0088] (30) 前記第 2ユニットは、観察者の頭部に装着される(26)または(27)項に記載の 光伝送装置。
[0089] 第 2ユニットが観察者の頭部に装着される場合、第 1ユニットは腰部等の胴部に装 着されることが通常想定される。この場合、光伝送部としての光ファイバには、それら 頭部および胴部の相対的な動きによって曲がりや揺れが生じる。
[0090] これに対し、本項に係る装置によれば、光ファイバが前記(25)項における光学特 性を有するように構成されるため、その光ファイバの曲がりや揺れにもかかわらず、観 察者に表示される画像が安定する。 図面の簡単な説明
[0091] [図 1]図 1は、本発明の第 1実施形態に従う網膜走査型ディスプレイ装置を示す斜視 図である。
[図 2]図 2は、図 1に示す網膜走査型ディスプレイ装置を示す平面図である。
[図 3]図 3は、図 1に示す網膜走査型ディスプレイ装置の光反射面部の回転楕円面を 拡大して示す平面断面図である。
[図 4]図 4は、図 3に示す回転楕円面を示す側面断面図である。
[図 5]図 5は、図 1に示す網膜走査型ディスプレイ装置の反射面であって図 3および 図 4に示す回転楕円面として形成されたものによる光の反射を説明するための正面 図である。
[図 6]図 6は、図 1に示す網膜走査型ディスプレイ装置を示す系統図である。
[図 7]図 7は、本発明の第 2実施形態に従う網膜走査型ディスプレイ装置を示す平面 図である。
[図 8]図 8は、本発明の第 3実施形態に従う網膜走査型ディスプレイ装置におけるッ ルを示す横断面図である。
[図 9]図 9は、本発明の第 4実施形態に従う網膜走查型ディスプレイ装置におけるッ ルを示す横断面図である。
[図 10]図 10は、本発明の第 5実施形態に従う網膜走查型ディスプレイ装置における ツルを示す横断面図である。
[図 11]図 11は、本発明の第 6実施形態に従う網膜走査型ディスプレイ装置における 前枠とツルとの連結部を示す平面図である。
[図 12]図 12は、図 11における光ファイバと被変調光入力部とを、互いに当接した状 態すなわちツルの展開状態で拡大して示す斜視図である。
[図 13]図 13は、図 11における光ファイバと被変調光入力部とを、互いに離間した状 態すなわちツルの折畳み状態で拡大して示す斜視図である。
[図 14]図 14は、本発明の第 7実施形態に従う網膜走査型ディスプレイ装置における 前枠とツルとの連結部を示す部分断面平面図である。
[図 15]図 15は、本発明の第 8実施形態に従う網膜走査型ディスプレイ装置における 前枠とツルとの連結部を示す部分断面平面図である。
[図 16]図 16は、本発明の第 9実施形態に従う網膜走查型ディスプレイ装置における 前枠とツルとを示す平面図である。
[図 17]図 17は、本発明の第 10実施形態に従う網膜走査型ディスプレイ装置におけ る前枠とツルと被変調光出力部の電気回路とを示す平面図である。
[図 18]図 18は、本発明の第 11実施形態に従う網膜走査型ディスプレイ装置におけ る前枠とツルと走查部の電気回路とを示す平面図である。
[図 19]図 19は、本発明の第 12実施形態に従う網膜走査型ディスプレイ装置におけ る前枠とツルと被変調光出力部および走査部の電気回路とを示す平面図である。
[図 20]図 20は、本発明の第 13実施形態に従う網膜走査型ディスプレイ装置を示す 側面図である。
[図 21]図 21は、本発明の第 14実施形態に従う網膜走査型ディスプレイ装置を示す 側面図である。
[図 22]図 22は、本発明の第 15実施形態に従う網膜走査型ディスプレイ装置を示す 側面図である。
[図 23]図 23は、本発明の第 16実施形態に従う網膜走査型ディスプレイ装置を示す 斜視図である。
[図 24]図 24は、図 23に示す網膜走查型ディスプレイ装置における 2本のツルの一方 を示す平面図および側面図である。
[図 25]図 25は、本発明の第 17実施形態に従う網膜走査型ディスプレイ装置を示す 斜視図である。
[図 26]図 26は、本発明の第 18実施形態に従う網膜走査型ディスプレイ装置を示す 斜視図である。
[図 27]図 27は、本発明の第 19実施形態に従う網膜走査型ディスプレイ装置を示す 斜視図である。
[図 28]図 28は、本発明の第 20実施形態に従う網膜走査型ディスプレイ装置を示す 平面図である。
[図 29]図 29は、本発明の第 21実施形態に従う網膜走査型ディスプレイ装置におけ る光ファイバを示す断面図である。
[図 30]図 30は、図 29に示す光ファイバの物性データを表形式で表す図である。
[図 31]図 31は、本発明の第 22実施形態に従う網膜走査型ディスプレイ装置を示す 系統図である。
[図 32]図 32は、網膜走査型ディスプレイ装置の一従来例を概念的に表すブロック図 である。
発明を実施するための最良の形態
以下、本発明のさらに具体的に実施の形態のいくつかを複数の図面に基づいて詳 細に説明する。それら図面において同一の符号は互いに類似する部分を示している
[0093] 図 1ないし図 6には、本発明の第 1実施形態に従う網膜走査型ディスプレイ装置 1が 示されている。この網膜走查型ディスプレイ装置 1は、フレーム 2と、被変調光出力部 3と、走查部 4と、光ファイバ 5とを備えている。その光ファイバ 5により、光が伝送され る光伝送部または導波路が構成される。その光ファイバ 5は、フォトニック結晶フアイ バとして形成することが可能である。
[0094] フレーム 2は、観察者の頭部に装着される。被変調光出力部 3は、レーザ光等の光 を画像情報に応じて強度変調し、それを被変調光として出力する。走査部 4は、被変 調光を観察者の網膜上において走査し、それにより、その網膜上に画像を表示する
[0095] それら被変調光出力部 3と走查部 4とは、互いに分離して設けられている。すなわち 、被変調光出力部 3は、図示しないベルト等の固定具によつて観察者の腰や背中等 の部位に装着されて使用される。一方、走査部 4は、フレーム 2に設けられている。そ れら被変調光出力部 3と走査部 4とは、光ファイバ 5によって光学的に接続されている 。光ファイバ 5は、図示しない接着剤等の手段によってフレーム 2に取り付けられてい る。この光ファイバ 5は、被変調光出力部 3から出力された被変調光を走査部 4に伝 送する光伝送部として機能する。
[0096] フレーム 2は、前枠 6と、その前枠 6の両端に連結された 2本のツル 7, 7とによって 眼鏡型に形成すれば、眼鏡と同様な使用態様で使用することができる。もっとも、フレ ーム 2は、観察者の頭部に装着できる形態であればよぐ眼鏡型に限定されるもので はない。
[0097] 図 2に示すように、前枠 6には、 2つの光反射面部 8, 8が設けられている。各光反射 面部 8は、フレーム 2が観察者の頭部に装着された状態で、観察者の各眼に対面す る位置に設けられている。
[0098] 各光反射面部 8は、観察者の眼に対面する光反射面 9を有している。その光反射 面 9は、回転楕円面として形成されている。その回転楕円面は、図 4に示すように、図 3に示す楕円形 S1の長軸 Lを回転軸としてその楕円形 S1を回転させることにより、そ の楕円形 SIの一部によって軌跡として描かれる面 S2として形成される。
[0099] 図 3に示すように、楕円形 S1は、 2つの焦点 A, Bを有している。楕円形の性質の一 つとして、図 3に示すように、一方の焦点 Aに配置された光源から出射して楕円形の 反射面で反射された光は、他方の焦点 Bに集まるという特性がある。そして、光反射 面 9は前述のように回転楕円面として形成されているため、図 5に示すように、一方の 焦点 Aから出射した光は、その後光反射面 9上のいずれの位置 (例えば、図中、 a, b , c, dでそれぞれ示す位置)で反射しても、他方の焦点 Bに集まる。
[0100] したがって、走查部 4のうち、その走查部 4によって走査された走查光が出射する走 查光出射部 4a (図 2参照)が楕円形 S1の一方の焦点 Aに位置するように、走查部 4 をッノレ 7に取り付け、かつ、他方の焦点 Bに観察者の眼が位置するようにフレーム 2を 形成すれば、図 5に示すように、走查部 4の走查光出射部 4aから出射した走查光は 、その後光反射面 9上におけるいずれの位置で反射しても、観察者の眼に集まること となる。
[0101] 図 6に示すように、被変調光出力部 3は、画像信号処理回路 10と、赤色光源 11, 緑色光源 12および青色光源 13と、コリメートレンズ 14, 15, 16と、波長選択性ミラー 17, 18, 19 (例えば、ダイクロイツクミラー)と、フォーカスレンズ 20とを備えている。
[0102] 画像信号処理回路 10は、画像データに基づいて、赤色光源 11、緑色光源 12およ び青色光源 13に対しては強度変調信号を出力し、走査部 4に対しては制御信号を 出力する。赤色光源 11、緑色光源 12および青色光源 13からの各出射光は、各コリ メートレンズ 14, 15, 16によって略平行光線に変換された後、各波長選択性ミラー 1 7, 18, 19によって合波され、やがて、フォーカスレンズ 20によって集光されて光ファ ィバ 5に入射するようになっている。前記制御信号は、被変調光出力部 3から走查部 4に、光ファイバ 5によって伝送され、または、光ファイバ 5とは別の伝送媒体の一例で ある電気ケーブルによって伝送される。
[0103] 図 6に示すように、走查部 4は、コリメートレンズ 21と、第 1偏向器 22と、リレーレンズ
23と、第 2偏向器 24と、リレーレンズ 25と、制御回路 26と、ビームディテクタ 27とを備 えている。
[0104] コリメートレンズ 21は、光ファイバ 5の光出力端に設けられて、その光ファイバ 5から 出力された被変調光を略平行な光線に変換する。第 1偏向器 22は、回転軸 28まわり に回転可能に設けられている。この第 1偏向器 22の一例は、ポリゴンミラーである。こ の第 1偏向器 22は、コリメートレンズ 21を通過した光線を、第 1偏向器 22の回転位置 に応じた方向へ反射する。リレーレンズ 23は、第 1偏向器 22によって反射された光 線を第 2偏向器 24に集光して入射させる。その第 2偏向器 24は、回転軸 29まわりに 揺動可能に設けられている。この第 2偏向器 24の一例は、ガルバノミラーである。こ の第 2偏向器 24は、リレーレンズ 23を通過した光線を、第 2偏向器 24の回転位置に 応じた方向へ反射する。リレーレンズ 25は、第 2偏向器 24で反射された光線を、観 察者の眼 Mの虹彩 Mlで囲まれた瞳孔 M2および水晶体 M3を通過して網膜 M4上 に集光させ、それにより、網膜 M4上に画像が表示される。
[0105] 制御回路 26は、被変調光出力部 3から伝送されてきた制御信号に基づき、第 1お よび第 2偏向器 22, 24の偏向を制御することにより、観察者の網膜 M4上において 被変調光を走査して画像を表示する。
[0106] ビームディテクタ 27は、第 1偏向器 22から出射するビームを検出することにより、そ のビームが特定の位置に到達したことを検出する。そのビームディテクタ 27からの信 号は制御回路 26を経由して画像信号処理回路 10に供給される。その供給された信 号に基づき、画像信号処理回路 10は、各光源 11 , 12, 13の発光タイミングを制御し 、それにより、網膜 M4上において走査される被変調光の始点が調整される。
[0107] 次に、上記のように構成された網膜走査型ディスプレイ装置 1の使用方法および作 動について説明する。
[0108] まず、網膜走査型ディスプレイ装置 1を使用したいと希望する観察者は、被変調光 出力部 3を観察者の腰や背中等にベルト等の固定具によつて装着する。その後、通 常の眼鏡と同様に、フレーム 2のツル 7を観察者の耳に掛けることにより、フレーム 2を 観察者の頭部に装着する。この状態においては、図 2に示すように、フレーム 2の各 光反射面部 8に設けられた光反射面 9の一方の焦点には走查部 4の走查光出射部 a が位置し、他方の焦点には観察者の眼が位置することになる。
[0109] その後、被変調光出力部 3が起動させられると、レーザ光が、図 6に示す被変調光 出力部 3において画像情報に応じて強度変調されて被変調光として出力される。そ の被変調光は、光ファイバ 5によって伝送されて走査部 4に入力される。
[0110] 図 2に示すように、その走査部 4が被変調光を光反射面 9に照射すると、その被変 調光は光反射面 9で反射されて光反射面 9の焦点に集まる。その焦点には観察者の 眼が位置しているため、観察者の網膜 M4上において被変調光が走査されて画像が 表示される。
[0111] 本実施形態においては、光ファイバ 5がフレーム 2に取り付けられるため、観察者が 動いても、その光ファイバ 5のうちフレーム 2に取り付けられている部分はフレーム 2に 対して振動するおそれが少なレ、。すなわち、光ファイバ 5のうち走查部 4との接続部 近傍は、走查部 4に対して振動するおそれが少ないのである。そのため、光ファイバ 5によって伝送される信号がアナログ信号であっても、その信号は、光ファイバ 5の振 動に基づくノイズを含むことなぐ光ファイバ 5によって走查部 4へ伝送される。
[0112] 本実施形態においては、光反射面部 8を透光性の部材によって形成することが可 能である。この場合には、観察者はその光反射面部 8を通して周囲の実外界を目視 することができるため、観察者は、光ファイバ 5によって被変調光出力部 3から伝送さ れる画像に重ね合わせるようにして周囲の実外界を目視することができる。
[0113] 本実施形態においては、フレーム 2が、観察者の頭部に装着できるタイプであるた め、観察者は例えば、手作業をしながら、被変調光出力部 3から伝送される画像を目 視すること力できる。
[0114] さらに、本実施形態においては、走査部 4から出力される被変調光は光反射面 9で 一旦反射された後に観察者の眼に入射するため、光反射面 9の面積を広くすること により、観察者の網膜 M4上において被変調光を広い範囲に走査することができ、よ つて、大きな画角を有するように画像を表示することができる。
[0115] なお、本実施形態においては、フレーム 2の光反射面 9が回転楕円面として形成さ れているが、走查部 4の第 1偏向器 22の偏向角および第 2偏向器 24の偏向角を調 整することにより、走查部 4から出射した被変調光が観察者の眼 Mの瞳孔 M2および 水晶体 M3を通過して網膜 M4上に結像するようにすれば、光反射面 9を回転楕円 面以外の平面や曲面として形成しても、同様の作用効果を奏することができる。
[0116] 次に、図 7を参照しつつ、本発明の第 2実施形態を説明する。 [0117] 本実施形態においては、第 1実施形態とは異なり、光反射面部 8および光反射面 9 が設けられていない。本実施形態の特徴は、フレーム 2が観察者の頭部に装着され た状態で、 2つの走査部 4が観察者の各眼 Mにそれぞれ対面するように、前枠 6に設 けられている点にある。各走查部 4のうちの走查光出射部 4aは、観察者の各眼 Mに 対面する位置に配置され、各走査部 4から出射した被変調光は、直接、観察者の各 眼 Mの瞳孔 M2および水晶体 M3を通過して網膜 M4上に達し、その網膜 M4上に おいて走査される。
[0118] 本実施形態においては、第 1実施形態と比較し、回転楕円面として形成された光反 射面を前枠 6に形成する必要がないため、網膜走査型ディスプレイ装置の製作が容 易になる。
[0119] 次に、図 8を参照しつつ、本発明の第 3実施形態を説明する。
[0120] 本実施形態の特徴は、ツル 7の外側面に沿って光ファイバ 5を固定するために、ッ ノレ 7の外側面にその外側面に沿って複数の止具 31を設けた点にある。止具 31は、 概して環状を成しており、ツル 7と共同する力または単独で、光ファイバ 5が挿通され る揷通孔 32を内部に備えている。止具 31は、ツル 7と一体に形成してもよいし、ツル 7とは別体に形成してツル 7に取り付けるようにしてもよい。
[0121] 本実施形態に従って網膜走査型ディスプレイ装置を組み立てる場合には、光フアイ バ 5が止具 31の揷通孔 32内に揷通されて配線され、それにより、光ファイバ 5がツル 7に沿ってそのツル 7に支持される。その後、光ファイバ 5の両端がそれぞれ被変調 光出力部 3と走査部 4とに光学的に接続される。
[0122] 本実施形態においては、第 1実施形態と比較し、光ファイバ 5を止具 31の揷通孔 3 2に揷通させるという簡単な作業により、光ファイバ 5をツル 7に支持させることができ る。光ファイバ 5は、ツル 7に対して振動することが抑制され、その結果、安定的にッ ル 7に支持される。よって、光ファイバ 5のうち走查部 4との接続部近傍は、走查部 4に 対して振動することが抑制される。なお、止具 31は、ツル 7に着脱可能に取り付けるこ とにより、光ファイバ 5の揷入を容易にすることができる。
[0123] 次に、図 9を参照しつつ、本発明の第 4実施形態を説明する。
[0124] 本実施形態においては、ツル 7の内部に揷通部が設けられ、その揷通部内に光フ アイバ 5を挿通させることにより、光ファイバ 5がツル 7に支持されている。特に、本実 施形態においては、ツル 7の長手方向に沿ってツル 7の内部を貫通する貫通孔 33が 形成され、この貫通孔 33により、前記挿通部が構成される。
[0125] 本実施形態においては、ツル 7に設けられた貫通孔 33内に揷通されるように光ファ ィバ 5が配線され、その後、光ファイバ 5の両端がそれぞれ被変調光出力部 3と走查 部 4とに光学的に接続される。
[0126] 本実施形態においては、第 1実施形態とは異なり、光ファイバ 5がツル 7内に埋設さ れた状態にあるため、観察者の手等に触れる等の事象が原因となって光ファイバ 5が 走查部 4に対して振動するおそれがなレ、。
[0127] 次に、図 10を参照しつつ、本発明の第 5実施形態を説明する。
[0128] 本実施形態の特徴は、フレーム 2のツル 7のうち光ファイバ 5が揷通される揷通部を
、ツル 7の側面にその側面に沿って設けられた溝 34によって形成した点にある。
[0129] 本実施形態においては、図 10に示すように、まず、光ファイバ 5が溝 34の外部にお いて、その溝 34の開口部に沿って延びる姿勢で位置決めされる。その後、光フアイ バ 5は、それが延びる方向とは直角な方向(図において矢印 Cで示す方向)へ移動さ せられ、それにより、溝 34内に側方から押し込まれ、その結果、光ファイバ 5が溝 34 内に挿通される。その後、溝 34の開口部の全体または一部が閉塞され、それにより、 光ファイバ 5が溝 34から脱落することが防止される。
[0130] なお、以上説明したいくつかの実施形態においてはいずれも、ツル 7に別部材とし ての光ファイバ 5が設けられているが、光を伝送する機能を有する光伝送部によって ツル 7自体を形成すれば、光を伝送するために、ツル 7とは別部材の光ファイバ 5を設 ける必要がない。
[0131] 次に、図 11ないし図 13を参照しつつ、本発明の第 6実施形態を説明する。
[0132] 本実施形態においては、フレーム 2が、前枠 6と 2本のツル 7, 7とを有して眼鏡型に 形成されている。それら前枠 6とッノレ 7とは、ヒンジ部 36によって互いに連結されること により、ツル 7が前枠 6に対して折畳み可能になっている。すなわち、ツル 7が前枠 6 に対して、展開状態と折畳み状態とに変位可能になっているのである。ここで、展開 状態とは、ヒンジ部 36が伸長した状態をいう。これに対し、折畳み状態とは、ヒンジ部 36が折れ曲がることにより、前枠 6に対してツル 7が折り畳まれる状態をいう。
[0133] 前枠 6は、(a) 2つの光反射面部 8, 8と、(b)それら光反射面部 8, 8同士を互いに 連結するブリッジ 37と、(c)それら光反射面部 8, 8の両側にそれぞれ設けられた 2つ の智 38, 38とを備えてレ、る。各智 38は、ヒンジ部 36によってツル 7に連結されている
[0134] 各智 38には、走查部 4が設けられている。各走查部 4が各光反射面部 8の光反射 面 9の一方の焦点に位置するように設けられており、この点は、第 1実施形態の走查 部 4と共通する。
[0135] そして、被変調光出力部 3から出力された被変調光は、光ファイバ 39と被変調光入 力部 40とを通って伝送されて、走查部 4に入力される。光ファイバ 39は、被変調光出 力部 3とヒンジ部 36との間において、ツル 7に設けられている。これに対し、被変調光 入力部 40は、走查部 4とヒンジ部 36との間において、智 38に設けられている。被変 調光入力部 40は、光ファイバによって形成することができる。
[0136] 図 12に拡大して示すように、ツル 7が前枠 6に対して展開された状態においては、 光ファイバ 39の光出力端と、被変調光入力部 40の光入力端とが互いに当接し、そ れにより、光ファイバ 39から被変調光入力部 40へ被変調光が入力されるようになつ ている。一方、図 13に示すように、ツル 7が前枠 6に対して折り畳まれた状態におい ては、光ファイバ 39の光出力端と、被変調光入力部 40の光入力端とが互いに離間し 、それにより、光ファイバ 39から被変調光入力部 40への被変調光の入力が遮断され るようになっている。
[0137] 本実施形態においては、第 1実施形態と比較し、当該網膜走査型ディスプレイ装置 1の不使用時に、ツル 7を前枠 6に対して折り畳むことにより、当該網膜走查型デイス プレイ装置 1をコンパクトに収容することが可能である。
[0138] 次に、図 14を参照しつつ、本発明の第 7実施形態を説明する。
[0139] 本実施形態においては、被変調光出力部 3から出力された被変調光は、光フアイ バ 39および被変調光入力部 40によって伝送されて走查部 4に入力される。光フアイ バ 39は、ツル 7に設けられたツル揷通孔 45内に揷通された状態で設けられている。
[0140] 図 14に示すように、光ファイバ 39のうち被変調光入力部側端部 39aは、被変調光 入力部 40へ向けてツル挿通孔 45の開口端から突出している。被変調光入力部 40 は、前枠 6に設けられた前枠揷通孔 46内に挿通された状態で設けられている。被変 調光入力部 40の先端は、光ファイバ 39から遠ざかるように前枠揷通孔 46の縁 46a 力、ら前枠揷通孔 46の内部へ向けて後退した位置に位置決めされている。被変調光 入力部 40の出射端から出射した光は、例えば、誘導要素としての反射ミラー 47を経 てコリメートレンズ 21に誘導される。
[0141] ツル 7が前枠 6に対して展開された状態(フレーム 2の使用状態)にあれば、光フアイ バ 39の先端が前枠揷通孔 46内に進入し、その前枠揷通孔 46内において被変調光 入力部 40の先端に接触する。この接触状態においては、被変調光出力部 3から出 力された被変調光が被変調光入力部 40へ入力される。
[0142] これに対し、ツル 7が前枠 6に対して折り畳まれた状態(フレーム 2の不使用状態)に あれば、光ファイバ 39の先端が被変調光入力部 40の先端力も離間する。この離間 状態においては、被変調光出力部 3から出力された被変調光が被変調光入力部 40 へ入力されない。
[0143] このように、光ファイバ 39と被変調光入力部 40とは、接近および離間が選択的に行 われ、それに伴い、被変調光出力部 3から被変調光入力部 40への被変調光の入力 の許可 ·遮断が選択的に行われるのである。
[0144] 本実施形態においては、ツル 7が折り畳まれた網膜走査型ディスプレイ装置 1の不 使用時には、光ファイバ 39の先端が被変調光入力部 40から離間するため、走査部 4 力 光が外部へ漏洩せずに済む。したがって、網膜走査型ディスプレイ装置 1の不使 用時に、観察者は、希望しないにもかかわらず、この網膜走査型ディスプレイ装置 1 力 の光の放射を顕著に知覚することから回避される。
[0145] 次に、図 15を参照しつつ、本発明の第 8実施形態を示す。
[0146] 本実施形態においては、第 7実施形態と同様に、被変調光出力部 3から出力され た被変調光は、光ファイバ 39および被変調光入力部 40によってそれらの順に伝送 されて走查部 4に入力される。ただし、本実施形態においては、それら光ファイバ 39 および被変調光入力部 40の先端面同士の相対位置関係が第 7実施形態とは異なつ ている。 [0147] 被変調光入力部 40は、第 7実施形態と同様に、前枠 6に設けられた前枠揷通孔 46 内に挿通された状態で設けられている。ただし、この被変調光入力部 40の先端は、 第 7実施形態とは異なり、光ファイバ 39へ向けて前枠挿通孔 46の開口端から突出し ている。
[0148] これに対し、光ファイバ 39は、第 7実施形態と同様に、ツル 7に設けられたツル揷通 孔 45内に揷通された状態で設けられている。ただし、この光ファイバ 39のうちの被変 調光入力部側端部 39aは、第 7実施形態とは異なり、被変調光入力部 40から遠ざか るようにツル揷通孔 45の縁 45aからそのツル揷通孔 45の内部へ向けて後退した位 置に位置決めされている。
[0149] したがって、被変調光入力部 40の先端は、ツル揷通孔 45内に進入し、そのツル揷 通孔 45内において光ファイバ 39の先端に接触する状態と、光ファイバ 39の先端から 離間する状態とに選択的に移行させられる。
[0150] そして、本実施形態において、ツル 7を前枠 6に対して展開すると、被変調光入力 部 40の先端が光ファイバ 39の先端に接触して、被変調光出力部 3から出力された被 変調光が被変調光入力部 40へ入力される。一方、ツル 7を前枠 6に対して折り畳むと 、被変調光入力部 40の先端が光ファイバ 39の選択から離間して、被変調光出力部 3から出力された被変調光は被変調光入力部 40へ入力されない。
[0151] 本実施形態においても、第 7実施形態と同様に、ツル 7が折り畳まれた網膜走査型 ディスプレイ装置 1の不使用時には、光ファイバ 39の先端が被変調光入力部 40から 離間するため、走査部 4から光が外部へ漏洩せずに済む。
[0152] 次に、図 16を参照しつつ、本発明の第 9実施形態を示す。
[0153] 本実施形態の特徴は、図 11に示す第 6実施形態とは異なり、ツル 7が前枠 6に対し て折り畳まれた状態において、光ファイバ 39のうちの被変調光入力部側端部 39a力、 ら外部へ漏れる光を遮光する遮光部 50を有する点にある。
[0154] 遮光部 50は、基端と先端とを有して板状を成すように形成することができる。この遮 光部 50の基端は、被変調光入力部 40の外側に設けられ、一方、その先端は、被変 調光入力部 40の光入力端を超えてツル 7側へ向けて延びている。具体的には、遮 光部 50は、ツル 7が図 16において二点鎖線で示す折畳み位置にある状態において 、そのツル 7の光ファイバ 39の先端から出射する光を受光する位置まで、前枠 6から 延びている。
[0155] このように構成された本実施形態においては、ツル 7が前枠 6に対して折り畳まれた 状態において、光ファイバ 39のうちの被変調光入力部側端部 39aから出力した光は 、遮光部 50の内面に当たって反射することにより、遮光部 50を通過して外部へ漏れ てしまうことが防止される。
[0156] なお、遮光部 50の内面に微小な凹凸を形成した場合には、被変調光入力部側端 部 39aから出射してその遮光部 50の内面に入射した光は、その内面において乱反 射し、一方向へは反射しない。そのため、この場合には、当該網膜走查型ディスプレ ィ装置 1の不使用時に、光ファイバ 39から放出される光が、観察者に知覚される可能 性が一層軽減される。
[0157] 次に、図 17を参照しつつ、本発明の第 10実施形態を説明する。
[0158] 本実施形態においては、被変調光出力部 3の電源 51がその被変調光出力部 3に ワイヤ 52によって電気的に接続されている。電源 51は、直流電源でも交流電源でも よい。
[0159] 図 17に示すように、ワイヤ 52は、それの一部がツル 7と前枠 6とに跨ってループ状 を成すようにフレーム 2に配線されている。この配線を行うため、ワイヤ 52は、ヒンジ部 36において、ツル 7に位置する第 1部分ワイヤ 53と、前枠 6に位置する第 2部分ワイ ャ 54とに分断されている。
[0160] 第 1部分ワイヤ 53は、ツル 7に沿って延びる 2本のワイヤによって構成されており、 各ワイヤの両端部のうちヒンジ部 36に位置する両端部 55, 55力 ツル 7の端面から 露出させられている。第 2部分ワイヤ 54は、開端ループ状を成す 1本のワイヤによつ て構成されており、それの両端部 56, 56が前枠 6の端面から露出させられている。
[0161] 第 1部分ワイヤ 53の 2個の端部 55, 55と、第 2部分ワイヤ 54の 2個の端部 56, 56と はそれぞれ、ツル 7が前枠 6に対して展開された状態においては、互いに接触する接 触状態にある一方、ツル 7が前枠 6に対して折り畳まれた状態においては、互いに離 間する離間状態にある。接触状態においては、電源 51から被変調光出力部 3への 電力の供給が許可される一方、離間状態においては、電源 51から被変調光出力部 3への電力の供給が遮断される。
[0162] すなわち、本実施形態においては、第 1および第 2部分ワイヤ 53, 54の端部 55, 5 6は、ヒンジ部 36と連動して開閉する接点として機能することにより、被変調光出力部 3と電源 51との間に設けられた電気スィッチとして機能するのである。
[0163] 本実施形態においては、上記の構成により、当該網膜走查型ディスプレイ装置 1の 使用時、すなわち、ツル 7が前枠 6に対して展開された状態においては、第 1および 第 2部分ワイヤ 53, 54の端部 55, 56同士が接触することにより、電源 51から被変調 光出力部 3に電力が供給され、その結果、被変調光出力部 3が被変調光を出力する
[0164] これに対し、当該網膜走査型ディスプレイ装置 1の不使用時、すなわち、ツル 7が前 枠 6に対して折り畳まれた状態においては、第 1および第 2部分ワイヤ 53, 54の端部 55, 56同士が接触しない状態にあることにより、電源 51から被変調光出力部 3への 電力の供給が遮断され、その結果、被変調光出力部 3は被変調光を出力しない。
[0165] 以上の説明から明らかなように、本実施形態においては、当該網膜走査型ディスプ レイ装置 1を不使用状態から使用状態に移行させるために観察者がツル 7を前枠 6に 対して展開すれば自動的に、被変調光出力部 3が電源 51から電力を供給されて作 動する。一方、当該網膜走査型ディスプレイ装置 1を使用状態から不使用状態に移 行させるために観察者がツル 7を前枠 6に対して折り畳めば自動的に、電源 51から 被変調光出力部 3への電力の供給が遮断される。
[0166] したがって、本実施形態によれば、当該網膜走査型ディスプレイ装置 1の不使用時 に、観察者が当該網膜走査型ディスプレイ装置 1のメインスィッチをオフにし忘れても 、電力が無駄に消費されずに済み、その結果、節電が容易になる。
[0167] 次に、図 18を参照しつつ、本発明の第 11実施形態を説明する。
[0168] 本実施形態においては、走查部 4の電源 61がその走查部 4にワイヤ 62によって電 気的に接続されている。電源 61は、直流電源でも交流電源でもよい。ワイヤ 62は、ヒ ンジ部 36において第 1部分ワイヤ 63と第 2部分ワイヤ 64とに分断されている。第 1部 分ワイヤ 63の両端部 65, 65は、前枠 6の端面において露出させられる一方、第 2部 分ワイヤ 64の両端部 66, 66は、ツル 7の端面において露出させられている。 [0169] それら第 1および第 2部分ワイヤ 63, 64の端部 65, 66は、ツル 7が前枠 6に対して 展開された状態においては、互いに接触し、電源 61から走査部 4に電力が供給され る一方、ツル 7が前枠 6に対して折り畳まれた状態においては、互いに離間し、電源 6 1から走查部 4への電力の供給が遮断される。
[0170] すなわち、本実施形態においては、第 1および第 2部分ワイヤ 63, 64の端部 65, 6 6は、ヒンジ部 36と連動して開閉する接点として機能することにより、走查部 4と電源 6 1との間に設けられた電気スィッチとして機能するのである。
[0171] 本実施形態においては、上記の構成により、当該網膜走査型ディスプレイ装置 1を 使用するために観察者がツル 7を前枠 6に対して展開すると、第 1および第 2部分ワイ ャ 63, 64の端部 65, 66同士が接触し、それにより、走查部 4に電源 61から電力が 供給され、その結果、走查部 4が作動する。
[0172] 一方、当該網膜走査型ディスプレイ装置 1を使用することが不要となったため、観察 者がツル 7を前枠 6に対して折り畳むと、第 1および第 2部分ワイヤ 63, 64の端部 65 , 66同士が離間し、それにより、電源 61から走査部 4への電力の供給が遮断され、 その結果、走査部 4の作動が停止する。
[0173] 以上の説明から明らかなように、本実施形態においては、当該網膜走査型ディスプ レイ装置 1を使用するために、観察者がツル 7を前枠 6に対して展開すれば、走査部 4が電源 61から電力を供給されて作動する。一方、当該網膜走査型ディスプレイ装 置 1の不使用時においては、観察者がツル 7を前枠 6に対して折り畳めば、電源 61か ら走査部 4への電力の供給が停止する。したがって、当該網膜走査型ディスプレイ装 置 1の不使用時に電力が無駄に消費されずに済む。
[0174] 次に、図 19を参照しつつ、本発明の第 12実施形態を説明する。
[0175] 本実施形態の特徴は、被変調光出力部 3と走査部 4とに共通の電源 71がそれら被 変調光出力部 3および走查部 4にワイヤ 72によって電気的に接続されている。電源 7 1は、直流電源でも交流電源でもよい。
[0176] ワイヤ 72は、ヒンジ部 36において、第 1部分ワイヤ 73と第 2部分ワイヤ 74とに分断 されている。第 1部分ワイヤ 73の両端部 75, 75は、ツル 7の端面において露出させら れている。第 2部分ワイヤ 74の両端部 76, 76は、前枠 6の端面において露出させら れている。
[0177] それら第 1および第 2部分ワイヤ 73, 74の端部 75, 76は、ツル 7が前枠 6に対して 展開された状態において、互いに接触し、電源 71から被変調光出力部 3および走査 部 4に電力が供給される。これに対し、ツル 7が前枠 6に対して折り畳まれた状態にお いては、互いに離間し、電源 71から被変調光出力部 3および走查部 4への電力の供 給が遮断される。それら第 1および第 2部分ワイヤ 73, 74の端部 75, 76は、ヒンジ部 36と連動する接点として機能することにより、被変調光出力部 3および走查部 4と電 源 71との間に設けられた電気スィッチとして機能する。
[0178] 本実施形態においては、上記の構成により、当該網膜走查型ディスプレイ装置 1の 使用時、すなわち、ツル 7が前枠 6に対して展開された状態においては、第 1および 第 2部分ワイヤ 73, 74の端部 75, 76同士が接触することにより、被変調光出力部 3 および走查部 4に電源 71から電力が供給され、その結果、被変調光出力部 3および 走査部 4が作動する。これに対し、当該網膜走査型ディスプレイ装置 1の不使用時、 すなわち、ツル 7が前枠 6に対して折り畳まれた状態においては、第 1および第 2部分 ワイヤ 73, 74の端部 75, 76同士が離間することにより、電源 71から被変調光出力部 3および走査部 4への電力の供給が停止し、その結果、被変調光出力部 3および走 查部 4は作動しない。
[0179] このように、本実施形態においては、当該網膜走査型ディスプレイ装置 1の使用時 においては、ツル 7を前枠 6に対して展開すれば被変調光出力部 3および走査部 4が 電源 71から電力を供給されて作動する一方、当該網膜走査型ディスプレイ装置 1の 不使用時においては、ツル 7を前枠 6に対して折り畳めば被変調光出力部 3および 走查部 4に対する電源 71からの電力の供給が停止する。したがって、当該網膜走查 型ディスプレイ装置 1の不使用時に、電力が無駄に消費されずに済み、さらに、被変 調光出力部 3および走查部 4の無駄な作動に起因した部品の故障が抑制される。
[0180] なお、本実施形態においては、電力が外部から被変調光出力部 3および走查部 4 に供給されるパワーラインが選択的に接続 '遮断されることにより、それら被変調光出 力部 3および走查部 4の作動が選択的に許可 *禁止されるようになっているが、外部 力 被変調光出力部 3および走査部 4に供給される指令信号ラインが選択的に接続 •遮断されることにより、それら被変調光出力部 3および走査部 4の作動が選択的に 許可'禁止される態様で本発明を実施することが可能である。
[0181] 次に、図 20を参照しつつ、本発明の第 13実施形態を説明する。
[0182] 本実施形態においては、前枠 6と 2本のツル 7, 7とによってフレーム 2が構成され、 各ツル 7は、前枠 6に連結された連結部 80と、耳掛け部 81とによって構成されている 。連結部 80は、概して直線的に延びる部分であるのに対し、耳掛け部 81は、連結部 80の先端から屈曲して延びる部分である。光ファイバ 5は、連結部 80に沿って延び るようにツル 7に装着されており、それにより、走查部 4と被変調光出力部 3とに接続さ れている。
[0183] 本実施形態においては、光ファイバ 5が、ツル 7の連結部 80に沿って延び、その延 長線上において被変調光出力部 3に接続される。したがって、被変調光出力部 3が 連結部 80の延長線上に配置される場合には、光ファイバ 5が大きく折れ曲がらずに 済み、光ファイバ 5が過大な屈曲によって破損する可能性が低減する。
[0184] 次に、図 21を参照しつつ、本発明の第 14実施形態を説明する。
[0185] 本実施形態においては、図 20に示す第 13実施形態と同様に、前枠 6と 2本のツル 7, 7とによってフレーム 2が構成され、各ツル 7は、前枠 6に連結された連結部 80と、 耳掛け部 81とによって構成されている。耳掛け部 81は、フレーム 2が観察者の頭部 に装着された状態で、観察者の耳に掛かり易いように、連結部 80の先端から、その 延長方向に対して斜め下方へ屈曲した状態で延びてレ、る。本実施形態にぉレ、ては、 光ファイバ 5が、連結部 80と耳掛け部 81との連結部において屈曲したツル 7に沿つ て延びる状態でそのツル 7に装着されている。それにより、光ファイバ 5は、耳掛け部 81の延長線上において被変調光出力部 3に光学的に接続される。
[0186] 本実施形態においては、光ファイバ 5がツル 7の耳掛け部 81に沿って延び、さらに 、その耳掛け部 81の延長線に沿って延び、その延長線上において被変調光出力部 3に接続される。したがって、被変調光出力部 3が耳掛け部 61の延長線上に配置さ れる場合には、光ファイバ 5が大きく折れ曲がらずに済み、光ファイバ 5が過大な屈曲 によって破損する可能性が低減する。
[0187] 次に、図 22を参照しつつ、本発明の第 15実施形態を説明する。 [0188] 本実施形態においては、第 13および第 14実施形態と同様に、前枠 6と 2本のッノレ 7, 7とによってフレーム 2が構成され、各ツル 7は、前枠 6に連結された連結部 80と、 耳掛け部 81とによって構成されている。その耳掛け部 81は、フレーム 2が観察者の 頭部に装着された状態で、観察者の耳に掛かり易いように、連結部 80の先端から、 その延長方向に対して斜め下方へ屈曲した状態で延びている。
[0189] 本実施形態においては、被変調光出力部 3が耳掛け部 81に配置されている。その 耳掛け部 81は、連結部 80に沿ってその連結部 80に設けられた光ファイバ 5によって 走查部 4と光学的に接続されている。
[0190] 本実施形態においては、光ファイバ 5がその全長に亘つてツル 7の連結部 80によつ てリジッドに支持されるため、光ファイバ 5が振動する可能性が低レ、。したがって、本 実施形態によれば、光ファイバ 5によって伝送される信号にノイズが混入してしまう可 能性も低い。
[0191] 次に、図 23および図 24を参照しつつ、本発明の第 16実施形態を説明する。
[0192] 本実施形態においては、第 13実施形態ないし第 15実施形態と同様に、図 23に示 すように、前枠 6と 2本のツル 7, 7とによってフレーム 2が構成され、各ツル 7は、前枠 6に連結された連結部 80と、耳掛け部 81とを含むように構成されている。耳掛け部 8 1は、図 24 (b)に示すように、観察者の耳に掛カり易いように、略水平に延びる連結 部 80の先端から、その延長方向に対して斜め下方へ屈曲している。
[0193] 本実施形態においては、光ファイバ 5が、走査部 4から、連結部 80に沿って略直線 的に延びる第 1部分 90と、その第 1部分 90の末端力も被変調光出力部 3に延びる第 2部分 92とを含むように構成されている。第 1部分 90は連結部 80に装着されている。 第 1部分 90と第 2部分 92との連結部が、装着具 94によってツル 7に装着されている。 装着具 94は、第 2部分 92の自然状態において、特定の方向に延びるように、光ファ ィバ 5をツル 7に装着する。すなわち、装着具 94は、第 2部分 92が自然状態におい て延びる方向を規定してレ、るのである。
[0194] 具体的には、第 2部分 92は、側面視においては、図 24 (b)に示すように、第 1部分 90との連結部から下方に鋭角的に屈曲し、かつ、平面視においては、同図(a)に示 すように、第 1部分 90との連結部から、観察者の頭部から遠ざかる向きに鋭角的に屈 曲するように、ツル 7に装着されている。そのように配置された第 2部分 92の末端は、 被変調光出力部 3に光学的に接続される。
[0195] 本実施形態によれば、第 2部分 92が観察者の頭部および耳に干渉し難いように配 置されるため、第 2部分 92の略延長線上において光ファイバ 5に被変調光出力部 3 が接続される場合には、フレーム 2が観察者の頭部に装着されている状態からフレー ム 2が左右に傾斜させられたり、前方に取り外されたりする際に、光ファイバ 5が観察 者の頭部や耳に強く当たって大きく屈曲する可能性が軽減される。したがって、本実 施形態によれば、光ファイバ 5が過大な屈曲によって破損する可能性が軽減され、さ らに、観察者の頭部に対する当該網膜走査型ディスプレイ装置 1の装着'取外し易さ が向上する。
[0196] 次に、図 25を参照しつつ、本発明の第 17実施形態を説明する。
[0197] 本実施形態においては、図 11に示す第 6実施形態と同様に、前枠 6と 2本のツル 7 , 7とによってフレーム 2が構成され、各前枠 6は、 2つの光反射面部 8, 8と、それら光 反射面部 8, 8を互いに連結するブリッジ 37とを含むように構成されている。
[0198] 本実施形態においては、フレーム 2の左右にそれぞれ配置された 2個の走査部 4, 4力 それぞれ延びる 2本の光ファイバ 5, 5力 2本のツル 7, 7の一方において 1本 の束に束ねられ、その 1本の束の先端が被変調光出力部 3に接続されている。
[0199] 具体的には、一方の光ファイバ 5は、第 6実施形態と同様に、一方の走査部 4から、 その走査部 4が配置されたツル 7に沿って延びて被変調光出力部 3に接続されてい る。これに対し、他方の光ファイバ 5は、他方の走査部 4から、 2つの光反射面部 8, 8 のうちその走査部 4に近いものの上縁、ブリッジ 37の上縁、および他方の光反射面部 8の上縁に沿って延びて、上記一方のツル 7に至っている。この他方の光ファイバ 5は 、さらに、上記一方の光ファイバ 5に沿って延び、被変調光出力部 3の手前において 係止具 96 (結束具)により、上記一方の光ファイバ 5に束ねられている。本実施形態 においては、 1つの被変調光出力部 3により、 2つの走查部 4, 4がそれぞれ制御され る。
[0200] このように構成された本実施形態においては、 2つの走查部 4, 4にそれぞれに接 続された 2本の光ファイバ 5, 5は、リング状の係止具 96によって 1束にまとめられた状 態で一方のツル 7に沿って延びて被変調光出力部 3に接続される。
[0201] したがって、本実施形態によれば、 2本の光ファイバ 5, 5が 2本のツル 7, 7にそれ ぞれ分かれて延びて各被変調光出力部 3に接続される場合と比較して、光ファイバ 5 , 5の取り回しの経路およびその作業が簡略化される。
[0202] さらに、本実施形態によれば、 2本の光ファイバ 5, 5が 1束にまとめられた状態でッ ル 7と被変調光出力部 3との間において延びるため、各光ファイバ 5が他方の光フアイ バ 5から分離して、 2本のツル 7, 7のうち対応するものと、 2つの被変調光出力部 3, 3 のうち対応するものとの間において延びる場合より、光ファイバ 5の剛性(特にツル 7と 被変調光出力部 3とをつなぐ部分の剛性)がみかけ上増加し、その結果、光ファイバ 5のゆれ等による画質の低下が抑制される。
[0203] 次に、図 26を参照しつつ、本発明の第 18実施形態を説明する。
[0204] 以上説明したいくつかの実施形態においてはいずれも、光ファイバ 5が、走查部 4 力 ツル 7に沿って略水平に延びてそのツル 7の先端から外部に出るように配置され ている。これに対し、本実施形態においては、図 26に示すように、光ファイバ 5が、ッ ノレ 7のうち前枠 6との連結部近傍に配置された各走査部 4から下方に延びて外部に 出るように配置されている。
[0205] したがって、本実施形態によれば、観察者がフレーム 2を頭部に装着する過程にお いて、光ファイバ 5が耳を通過せずに済むため、観察者は、光ファイバ 5が耳と干渉し ないように光ファイバ 5の経路を監視したり調整する煩力 解放される。
[0206] 次に、図 27を参照しつつ、本発明の第 19実施形態を説明する。
[0207] 図 26を参照して説明した第 18実施形態においては、光ファイバ 5が走査部 4から 下方に延びるようにフレーム 2に配置されている。これに対し、本実施形態において は、図 27に示すように、光ファイバ 5が、ツル 7のうちその走查部 4の設置位置とツル 7 の先端との略中間位置を折れ位置として、走查部 4からその折れ位置までは、ツル 7 に沿って略水平に延び、その後、その折れ位置から下方に延びている。
[0208] その折れ位置においては、例えば、光ファイバ 5のうち略水平に延びる第 1部分と、 下方に延びる第 2部分との間に、反射ミラーが設けられ、第 1部分から出射した光が 曲げられて第 2部分に誘導される。本実施形態においては、第 1部分および反射ミラ 一がツル 7内に坦設されてレ、る。
[0209] したがって、本実施形態によれば、水平に延びる第 1部分と下方に延びる第 2部分 とが屈曲によって破損する可能性が低減される。
[0210] 次に、図 28を参照しつつ、本発明の第 20実施形態を説明する。
[0211] 本実施形態においては、図 28に示すように、 2つの走查部 4, 4からそれぞれ延び る 2本の光ファイバ 5, 5が各ツル 7の先端から外部に出た後、 1束に結束され、やが て、 2つの走查部 4, 4に共通の被変調光出力部 3に接続される。それら 2本の光ファ ィバ 5, 5の結束は、例えばリング状を成す結束具 97を用いて行われる。
[0212] 本実施形態によれば、観察者の頭部にフレーム 2が装着された状態において、 2本 のツル 7, 7の先端からそれぞれ延び出る 2本の光ファイバ 5, 5が互いに連結され、 その結果、それら 2本のツル 7, 7の先端同士が、連続部材である光ファイバ 5, 5の一 部と共同して、閉じたループを形成する。
[0213] フレーム 2が観察者の頭部から離脱すると、観察者の頭部によるフレーム 2の圧迫 が解除され、その圧迫の解除後は、観察者の頭部との摩擦力を失い、フレーム 2が 自重によって落下しょうとする。
[0214] しかし、本実施形態においては、フレーム 2が観察者の頭部から離脱すると、上記 形成されたループが観察者の首に引つかかり、フレーム 2が観察者の首から吊り下げ られる。したがって、本実施形態によれば、観察者は、頭部から取り外されたフレーム 2を自ら持ち続けなくても、携帯することが可能である。これは、観察者にとって便利 なことである。
[0215] 次に、図 29を参照しつつ、本発明の第 21実施形態を説明する。ただし、本実施形 態は、第 1実施形態と共通する要素が多いため、共通する要素については、同一の 名称または符号を使用して引用することにより、重複した説明を省略し、異なる要素 についてのみ、詳細に説明する。
[0216] 本実施形態においては、光ファイバ 5がフォトニック結晶ファイバ(以下、「PCF」と 略称する。)として構成されている。 PCFは、一般的な光ファイバと比較して、それ自 体の曲げや揺れに対して安定した光伝送特性を有することが既に知られている。
[0217] 一般的な光ファイバは、コアとそれを囲むクラッドとによって構成され、それらコアと クラッドとは、互いに屈折率が異なる材料を用いて形成されている。具体的には、コア には高屈折率の材料が用いられ、これに対し、クラッドには低屈折率の材料が用いら れている。これにより、光ファイバに入射した光は、コア内に閉じ込められ、コアからク ラッドに漏れることなぐ光ファイバに沿って伝送される。
[0218] これに対し、 PCFは、一般的な光ファイバと同様にして、コア部とこれを囲むクラッド 部とによって構成されているが、一般的な光ファイバとは異なり、シリカガラス中にレ 一ザ光の波長と同程度の周期で複数個のエアホールが規則正しく配列された結晶 構造を有している。具体的には、コア部は、エアホールを有しない状態でシリカによつ て形成される一方、クラッド部は、エアホールを有する状態でシリカによって形成され ている。
[0219] 図 29には、 PCFの標準的な構造が断面図で示されている。同図に示すように、クラ ッド部 120とコア部 122とは同一の材料であるシリカによって構成されている。クラッド 部 120においては、複数個のエアホール 124が三角配列構造を成すように配列され ており、これに対し、コア部 122にはエアホール 124が存在しない。
[0220] このような構造を採用すると、コア部 122は光に対して高屈折率の特性を示すのに 対し、クラッド部 120はエアホール 124の存在によって光に対して低屈折率の特性を 示す。そのため、一般的な光ファイバと同様に、 PCFに入射した光は、コア部 122内 に閉じ込められ、そのコア部 122からクラッド部 120に漏れることなぐ PCFに沿って 伝送される。
[0221] この PCFの特徴として、曲げ損失が小さいことが挙げられる。曲げ損失とは、光ファ ィバが曲げられると生じる光量の損失のことで、曲げ損失が小さいとその光ファイバ は曲げや揺れに対して安定した光伝送特性を有してレ、るとレ、える。
[0222] 一般的な光ファイバは、曲率半径が小さくなるほど曲げ損失が大きくなり、曲げや揺 れに対して安定した光伝送特性を有することができ難くなる。
[0223] ところで、観察者が網膜走査型ディスプレイ装置 1 (「RSD」とも称される。)を、それ のフレーム 2および走査部 4 (以下、「装着部」と総称する。)は頭部に、被変調光出力 部 3 (「光源ユニット」として機能する。 )は身体にそれぞれ装着して使用する場合には 、それら装着部と被変調光出力部 3とを互いに接続する光ファイバ 5のうち余分な長 さの部分を小さい空間内に格納すると、光ファイバ 5に大きな曲がりが発生し、また、 観察者の動作に伴って光ファイバ 5に揺れが発生する。従来の網膜走査型ディスプ レイ装置では、そのような曲げや揺れが発生すると、光ファイバの曲げ損失が原因で 、観察者は安定した品質で画像を観察することができなかった。
[0224] これに対し、本実施形態においては、光ファイバ 5として PCFが用いられ、これによ り、光ファイバ 5は常に安定した画像信号を伝送することができる。 PCFの曲げ損失 は、伝送される光のある波長領域においては、 PCFの曲率半径に依存することなぐ 常に OdBであるという実験データが、文献「フォトニック結晶ファイバ(1) -光学特性- 」(三菱電線工業時報 第 99号 2002年 7月発行)によって報告されている。
[0225] 図 30には、 PCFの曲げ損失に関するデータの一例が示されている。これは、三菱 電線工業株式会社力 商品名「DIAGUIDE (登録商標) PCF Series」のもとに提 供している PCFのカタログに掲載されている物性データである。このデータによれば 、波長が 0. 63 /i mである可視光を、直径 40mmの円筒面にらせん状に 10回巻き付 けられた PCFによって伝送する場合に、その PCFの曲げ損失は OdBである。
[0226] このデータから分かるように、 PCFは曲げ損失が非常に小さぐ曲げや揺れに対し て安定した光伝送特性を有してレ、る。
[0227] したがって、本実施形態においては、光ファイバ 5が、 PCFとして構成されることに より、曲げや揺れに対して安定した特性で画像信号を伝送することができるため、観 察者が、余分な長さの光ファイバ 5を小さい空間内にらせん状に巻いて格納した場合 であっても、網膜走査型ディスプレイ装置 1を装着した状態で観察者が動作した場合 であっても、観察者は安定した品質で鮮明な画像を観察することができる。
[0228] よって、本実施形態によれば、 PCFの曲がりの影響を受けることなぐ光として伝送 すべきアナログ信号を安定して伝送することが容易となる。
[0229] 以上の説明から明らかなように、本実施形態においては、被変調光出力部 3と走查 部 4とが互いに共同して前記(25)項における「複数個のユニット」の一例を構成し、 光ファイバ 5が同項における「光ファイバ」の一例と、前記(28)項における「フォトニッ ク結晶ファイノ 」の一例とをそれぞれ構成しているのである。
[0230] さらに、本実施形態においては、光源部 50が前記(26)項における「出射部」の一 例を構成し、ポリゴンミラー 100とガルバノミラー 102とが互いに共同して同項におけ る「走査部」の一例を構成し、レーザ光が同項における「光束」の一例を構成し、被変 調光出力部 3が同項における「第 1ユニット」の一例を構成し、走査部 4が同項または (30)項における「第 2ユニット」の一例を構成してレ、るのである。
[0231] 次に、図 31を参照しつつ、本発明の第 22実施形態を説明する。ただし、本実施形 態は、第 21実施形態と共通する要素が多ぐ異なる要素は走查部 4に関するものの みであるため、異なる要素についてのみ詳細に説明し、共通する要素については、 同一の符号または名称を使用して引用することにより、詳細な説明を省略する。
[0232] 第 21実施形態においては、網膜走查型ディスプレイ装置 1の走查部 4が、被変調 光出力部 3から出射したレーザ光を主走查方向と副走查方向とに 2次元的に走査す るために設けられており、そのため、走查部 4は、主走査のためのポリゴンミラー 22と 副走査のためのガルバノミラー 24とを備えている。
[0233] これに対し、本実施形態においては、図 31に示すように、走査部 4が、さらに、光路 におけるコリメートレンズ 21とポリゴンミラー 22との間に、レーザ光の波面を変調する 波面変調光学系 140を備えている。この波面変調光学系 140は、被変調光出力部 3 力 出射したレーザ光の波面(波面曲率)を変調する光学系である。
[0234] 具体的には、この波面変調光学系 140は、集光レンズ 142とそれの光軸上におい て変位可能な可動ミラー 144との組合せを主体として構成されている。さらに具体的 には、波面変調光学系 140は、コリメートレンズ 21から出射したレーザビームが入射 するハーフミラー 146と、そこで反射して出射したレーザビームを集光する集光レンズ 142とを備え、さらに、その集光レンズ 142から出射したレーザビームを平面ミラーで 反射する可動ミラー 144と、その可動ミラー 144の位置を光軸上において変化させる ァクチユエータ 148とを備えている。ァクチユエータ 148の一例は、圧電素子を利用 する形式である。この波面変調光学系 140においては、可動ミラー 144において反 射したレーザビームが集光レンズ 142およびハーフミラー 146を透過して前述のポリ ゴンミラー 22に入射する。
[0235] 本実施形態においては、画像信号処理回路 10が、外部から供給された映像信号 に基づき、レーザ光の波面を変調するためにァクチユエータ 148に供給することが必 要な波面変調信号を生成し、走査部 4に備えられた制御回路 26に供給するように設 計されている。ァクチユエータ 148は、制御回路 26に供給された波面変調信号に基 づき、波面変調光学系 140から出射するレーザ光の波面を変調する。
[0236] なお付言するに、この波面変調光学系 140においてレーザ光の波面を変調する方 式として別のものを採用することが可能である。例えば、ァクチユエータ 148によって 焦点距離が変化させられる可変焦点ミラーを用レ、、入射したレーザ光を反射する反 射面の曲率を変化させてそのレーザ光の波面を変調するという方式を採用すること が可能である。
[0237] したがって、本実施形態によれば、被変調光出力部 3から出射したレーザ光の波面 を変調することができるため、奥行きのある画像を表示したり、画像の表示位置と観 察者との距離を変化させることが可能となる。
[0238] さらに、本実施形態によれば、波面変調光学系 140が被変調光出力部 3にではな く走査部 4に設けられるため、波面が変調されたレーザ光が光ファイバ 5を通過せず に済む。したがって、本実施形態によれば、波面が変調されたレーザ光の光学的性 質が光ファイバ 5によって劣化せずに済む。
[0239] 以上の説明から明らかなように、本実施形態においては、波面変調光学系 140が 前記(27)項における「波面変調部」を構成してレ、るのである。
[0240] なお付言するに、以上説明した網膜走査型ディスプレイ装置 1は、観察者の両眼 M , Mの網膜 M4, M4上にそれぞれ画像を投影する形式である。そのため、網膜走査 型ディスプレイ装置 1は、両眼 M, Mのそれぞれについて互いに独立した光学系を 備えている。具体的には、各眼 Mごとに、走査部 4と、光反射面部 8 (走査光束を眼 M に入射させて網膜 M4上に投影する投影具)とを備えている。
[0241] さらに付言するに、以上説明した網膜走査型ディスプレイ装置 1においては、投影 具としての光反射面部 8は、走查部 4によって走査された光束を反射して網膜 M4に 入射させる反射式とされている。具体的には、この光反射面部 8は、通常の眼鏡にお ける各レンズに類似の形状を有するハーフミラーを用いて構成されている。この光反 射面部 8においては、観察者に対向する表面が反射面とされており、走查部 4からそ の反射面に入射した光束がその反射面で反射して眼 Mに入射する。 [0242] 光反射面部 8は、上述の反射機能に加えて、フレーム 2の前方から入射する光を透 過して眼 Mに入射させる透過機能も有するものとすることが可能である。この場合に は、観察者は、網膜走査型ディスプレイ装置 1から伝送される画像を、光反射面部 8 を透過した眼前の実景に重ね合わせて視認することができる。ただし、光反射面部 8 をハーフミラーを用いて構成することは本発明を実施するうえに不可欠なことではなく 、反射機能は有するが透過機能は有しない光学部品を用いて光反射面部 8を構成 することが可能である。
[0243] 以上、本発明のいくつかの実施形態を図面に基づいて詳細に説明したが、これら は例示であり、前記 [発明の開示]の欄に記載の態様を始めとして、当業者の知識に 基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である

Claims

請求の範囲
[1] 観察者の眼の網膜上において光を走査することにより、前記網膜上に画像を表示す る網膜走査型ディスプレイ装置であって、
前記観察者の頭部に装着されるフレームと、
画像情報に応じて光を変調し、その変調された光を被変調光として出力する被変 調光出力部と、
前記フレームに設けられ、前記被変調光を前記網膜上において走査することにより 、その網膜上に画像を表示するための走査部と、
前記フレームに設けられ、前記被変調光出力部から出力された被変調光を前記走 查部に伝送する光伝送部と
を含む網膜走査型ディスプレイ装置。
[2] さらに、前記眼に対面するように前記フレームに設けられた光反射面部を含み、 前記走査部は、前記被変調光を前記光反射面部に向かって出射しつつ走査する 請求の範囲第 1項に記載の網膜走査型ディスプレイ装置。
[3] 前記光反射面部は、前記眼に対面する楕円面であって 2つの焦点を有するものを含 み、その光反射面部は、前記 2つの焦点のうちの一方に前記眼が位置するように配 置され、
前記走查部は、その走查部によって走査された走查光の出射部を、前記 2つの焦 点のうちの他方に位置するように含み、その走査部は、前記被変調光を前記楕円面 に向かって出射しつつ走査することにより、前記被変調光を前記楕円面で反射させ、 それにより、前記眼に画像を表示する請求の範囲第 2項に記載の網膜走查型デイス プレイ装置。
[4] 前記光伝送部は、導波路である請求の範囲第 1項に記載の網膜走査型
[5] さらに、前記導波路を前記フレームに固定する止具を含む請求の範囲第 4項に記載 の網膜走査型ディスプレイ装置。
[6] さらに、前記フレーム内において前記導波路が挿通される揷通部を含む請求の範囲 第 4項に記載の網膜走査型ディスプレイ装置。
[7] 前記フレームは、前枠とツルとを有する眼鏡型に形成されている請求の範囲第 1項に 記載の網膜走査型ディスプレイ装置。
[8] 前記フレームは、前枠とツルとを有する眼鏡型に形成され、そのツルは、前記光伝送 部によって形成されている請求の範囲第 1項に記載の網膜走查型ディスプレイ装置
[9] さらに、前記フレーム内において前記導波路が揷通される揷通部を含み、その揷通 部は、前記ツルに設けられた請求の範囲第 7項に記載の網膜走查型ディスプレイ装
[10] 前記ツルは、前記前枠に連結される連結部と、その連結部から曲がって延びる形状 を有して前記観察者の耳に掛けられる耳掛け部とを含むように構成され、
前記光伝送部は、導波路であり、その導波路は、前記連結部に沿って延びて、そ の略延長線上において前記被変調光出力部に接続される請求の範囲第 7項に記載 の網膜走査型ディスプレイ装置。
[11] 前記ツルは、前記前枠に連結される連結部と、その連結部から曲がって延びる形状 を有して前記観察者の耳に掛けられる耳掛け部とを含むように構成され、
前記光伝送部は、導波路であり、その導波路は、前記耳掛け部に沿って延びて、 その略延長線上において前記被変調光出力部に接続される請求の範囲第 7項に記 載の網膜走査型ディスプレイ装置。
[12] 前記光伝送部は、導波路であり、その導波路は、側面視においては、前記ツルのう ち、前記前枠と連結される基端から先端に向力 向きに対して下方に斜めに折れ曲 力 ¾向きを有し、かつ、平面視においては、前記観察者の頭部から遠ざかる向きを有 するように、前記ツルカ 延び出て前記被変調光出力部に接続される請求の範囲第
7項に記載の網膜走査型ディスプレイ装置。
[13] 前記被変調光出力部は、前記耳掛け部に装着される請求の範囲第 10項に記載の 網膜走査型ディスプレイ装置。
[14] さらに、前記前枠と前記ツルとの間に設けられ、それら前枠とツルとを、ツルが前枠に 対して折畳み可能に連結するヒンジ部を含み、
前記走査部は、前記前枠に設けられ、 前記光伝送部は、導波路であり、その導波路は、前記被変調光出力部と前記ヒン ジ部との間におレ、て延びるように前記ツルに設けられ、
当該網膜走査型ディスプレイ装置が、さらに、前記導波路によって伝送された被変 調光を前記走査部に入力する被変調光入力部であって、前記走査部と前記ヒンジ 部との間において前記前枠に設けられたものを含み、
前記導波路の一端部と、前記被変調光入力部の一端部とは、前記ツルが前記前 枠に対して展開された展開状態においては、前記ヒンジ部において互いに接触して 、前記導波路から前記被変調光入力部への前記被変調光の伝送を許可する一方、 前記ツルが前記前枠に対して折り畳まれた折畳み状態においては、互いに離間して 、前記導波路から前記被変調光入力部への前記被変調光の伝送を遮断する請求の 範囲第 7項に記載の網膜走査型ディスプレイ装置。
[15] 前記導波路は、前記ツルに設けられたツル揷通孔内に揷通され、その導波路の両 端部のうち、前記被変調光入力部に近い側の端部である被変調光入力部側端部は 、前記ツル揷通孔から突出して設けられ、
前記被変調光入力部は、前記前枠に設けられた前枠揷通孔内に挿通され、その 被変調光入力部のうち、前記導波路に近い端部は、前記前枠挿通孔の縁からその 前枠挿通孔の内部へ後退した位置に設けられ、
前記導波路は、前記展開状態においては、前記前枠揷通孔内に進入して前記被 変調光入力部に接触する一方、前記折畳み状態においては、前記被変調光入力部 力 離間する請求の範囲第 14項に記載の網膜走査型ディスプレイ装置。
[16] 前記被変調光入力部は、前記前枠に設けられた前枠揷通孔内に挿通され、その被 変調光入力部は、前記前枠揷通孔から突出して設けられ、
前記導波路は、前記ツルに設けられたツル揷通孔内に揷通され、その導波路の両 端部のうち、前記被変調光入力部に近い側の端部である被変調光入力部側端部は 、前記ツル揷通孔の縁からそのツル揷通孔の内部へ後退した位置に設けられ、 前記被変調光入力部は、前記展開状態においては、前記ツル揷通孔内に進入し て前記導波路に接触する一方、前記折畳み状態においては、前記導波路から離間 する請求の範囲第 14項に記載の網膜型
[17] さらに、前記折畳み状態において、前記導波路の両端部のうち前記被変調光入力 部に近い側の端部から出射する被変調光を遮る遮光部を含む請求の範囲第 14項 に記載の網膜走査型ディスプレイ装置。
[18] さらに、前記ヒンジ部に設けられ、前記被変調光出力部の電気回路を前記ヒンジ部 の動作に連動してオンオフする電気スィッチを含み、その電気スィッチは、前記展開 状態においては、オンされて前記被変調光出力部の作動を許可する一方、前記折 畳み状態においては、オフされて前記被変調光出力部の作動を禁止する請求の範 囲第 14項に記載の網膜走査型ディスプレイ装置。
[19] さらに、前記ヒンジ部に設けられ、前記走查部の電気回路を前記ヒンジ部の動作に連 動してオンオフする電気スィッチを含み、その電気スィッチは、前記展開状態におい ては、オンされて前記走查部の作動を許可する一方、前記折畳み状態においては、 オフされて前記走査部の作動を禁止する請求の範囲第 14項に記載の網膜走査型
[20] さらに、前記前枠と前記ツルとの間に設けられ、それら前枠とツルとを、ツルが前枠に 対して折畳み可能に連結するヒンジ部を含み、
前記走査部は、前記ツルに設けられた請求の範囲第 7項に記載の網膜走査型ディ
[21] 冃 U =lフレームは、前枠と、その前枠に連結された 2本のツルとを備えた眼鏡型に形成 され、
前記走査部は、前記観察者の両眼にそれぞれ対応して 2つ設けられ、 前記光伝送部は、前記被変調光出力部から出力された被変調光を前記 2つの查 部にそれぞれ伝送するためにそれら走查部の数と同数、前記 2本のツルのうちの一 方に設けられた請求の範囲第 1項に記載の網膜走査型ディスプレイ装置。
[22] 前記光伝送部は、光をアナログ信号として伝達するフレキシブルな光ファイバであつ て、光を伝送する際の光の損失量が前記光伝送部の曲がりに実質的に依存しない 光学特性を有するものとして構成されている請求の範囲第 1項に記載の網膜走査型
[23] 前記光ファイバは、フォトニック結晶ファイバである請求の範囲第 22項に記載の網膜 [24] 前記フォトニック結晶ファイバは、コア部とそれを覆うクラッド部とを含み、そのクラッド 部は、シリカガラス中に前記光の波長と同程度の周期で複数個のエアホールが規則 的に配列された結晶構造を有する請求の範囲第 23項に記載の網膜走査型ディスプ レイ装置。
PCT/JP2004/011044 2003-08-27 2004-08-02 網膜走査型ディスプレイ装置 WO2005022237A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-303463 2003-08-27
JP2003303463A JP4022921B2 (ja) 2003-08-27 2003-08-27 網膜走査表示装置
JP2003-322623 2003-09-16
JP2003322623A JP2005091553A (ja) 2003-09-16 2003-09-16 光伝送装置

Publications (1)

Publication Number Publication Date
WO2005022237A1 true WO2005022237A1 (ja) 2005-03-10

Family

ID=34277635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011044 WO2005022237A1 (ja) 2003-08-27 2004-08-02 網膜走査型ディスプレイ装置

Country Status (1)

Country Link
WO (1) WO2005022237A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081272A (ja) * 2008-09-25 2010-04-08 Brother Ind Ltd 眼鏡型の画像表示装置
CN102939357A (zh) * 2010-06-16 2013-02-20 费德罗-莫格尔动力系公司 一种阻燃性复合物,由此构造而成的连续材料和产品及其制造方法
US8922723B2 (en) 2010-06-30 2014-12-30 Panasonic Corporation Optical device
US9019604B2 (en) 2010-08-09 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Stereoscopic image viewing device
CN106662744A (zh) * 2014-08-13 2017-05-10 谷歌公司 用于头部安装设备的紧凑折叠结构
CN109375374A (zh) * 2018-12-05 2019-02-22 谷东科技有限公司 光源分离式增强现实显示设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103282A (ja) * 1991-10-09 1993-04-23 Yaskawa Electric Corp パーソナル映像器
JPH06138499A (ja) * 1992-03-25 1994-05-20 Motorola Inc 直接網膜スキャン・ディスプレイ
JPH09504120A (ja) * 1993-10-22 1997-04-22 コピン・コーポレーシヨン 頭部装着形表示システム
JPH10123453A (ja) * 1996-10-15 1998-05-15 Sony Corp ディスプレイ装置
JPH10301055A (ja) * 1997-04-25 1998-11-13 Sony Corp 画像表示装置
JPH11160650A (ja) * 1997-11-27 1999-06-18 Nec Corp 画像表示装置
JP2000111829A (ja) * 1998-10-08 2000-04-21 Olympus Optical Co Ltd 映像表示装置
JP2000515645A (ja) * 1996-08-05 2000-11-21 ダイムラークライスラー・アクチェンゲゼルシャフト 網膜反射画像を撮影し、目の中で追加画像を重ね合わせるための装置
JP2002359420A (ja) * 2001-03-16 2002-12-13 Alcatel 二重クラッドフォトニック光ファイバ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103282A (ja) * 1991-10-09 1993-04-23 Yaskawa Electric Corp パーソナル映像器
JPH06138499A (ja) * 1992-03-25 1994-05-20 Motorola Inc 直接網膜スキャン・ディスプレイ
JPH09504120A (ja) * 1993-10-22 1997-04-22 コピン・コーポレーシヨン 頭部装着形表示システム
JP2000515645A (ja) * 1996-08-05 2000-11-21 ダイムラークライスラー・アクチェンゲゼルシャフト 網膜反射画像を撮影し、目の中で追加画像を重ね合わせるための装置
JPH10123453A (ja) * 1996-10-15 1998-05-15 Sony Corp ディスプレイ装置
JPH10301055A (ja) * 1997-04-25 1998-11-13 Sony Corp 画像表示装置
JPH11160650A (ja) * 1997-11-27 1999-06-18 Nec Corp 画像表示装置
JP2000111829A (ja) * 1998-10-08 2000-04-21 Olympus Optical Co Ltd 映像表示装置
JP2002359420A (ja) * 2001-03-16 2002-12-13 Alcatel 二重クラッドフォトニック光ファイバ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081272A (ja) * 2008-09-25 2010-04-08 Brother Ind Ltd 眼鏡型の画像表示装置
US8344965B2 (en) 2008-09-25 2013-01-01 Brother Kogyo Kabushiki Kaisha Head mounted display device
CN102939357A (zh) * 2010-06-16 2013-02-20 费德罗-莫格尔动力系公司 一种阻燃性复合物,由此构造而成的连续材料和产品及其制造方法
CN102939357B (zh) * 2010-06-16 2015-04-22 费德罗-莫格尔动力系公司 一种阻燃性复合物,由此构造而成的连续材料和产品及其制造方法
US8922723B2 (en) 2010-06-30 2014-12-30 Panasonic Corporation Optical device
US9036097B2 (en) 2010-06-30 2015-05-19 Panasonic Intellectual Property Managment Co., Ltd. Optical device
US9019604B2 (en) 2010-08-09 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Stereoscopic image viewing device
CN106662744A (zh) * 2014-08-13 2017-05-10 谷歌公司 用于头部安装设备的紧凑折叠结构
CN109375374A (zh) * 2018-12-05 2019-02-22 谷东科技有限公司 光源分离式增强现实显示设备

Similar Documents

Publication Publication Date Title
US8123352B2 (en) Head mounted display
JP5133925B2 (ja) 頭部装着型画像表示装置
US7595933B2 (en) Head mounted display system
JP2018060212A (ja) 仮想現実および拡張現実のシステムおよび方法
US20110012814A1 (en) Adjustable Attachment for Attaching Head-Mounted Display to Eyeglasses-Type Frame
JP2008176096A (ja) 画像表示装置
US20140177017A1 (en) Image display device
JP6075083B2 (ja) 頭部装着型表示装置および頭部装着型表示装置の制御方法
JP2003279883A (ja) 表示装置付き帽子
JP2011066549A (ja) ヘッドマウントディスプレイ
WO2005022237A1 (ja) 網膜走査型ディスプレイ装置
JP4022921B2 (ja) 網膜走査表示装置
CN108845419B (zh) 头戴式显示设备和用于头戴式显示设备的方法
JP2016224345A (ja) 画像表示装置
JP5272813B2 (ja) ヘッドマウントディスプレイ
JP7235146B2 (ja) 頭部装着型表示装置および表示システム
JP4423776B2 (ja) 映像表示装置
JP6135157B2 (ja) ヘッドマウントディスプレイ
JP4423941B2 (ja) 画像表示装置
JP2017026885A (ja) 画像表示装置および画像表示装置の駆動方法
JP2010128246A (ja) ディスプレイユニット
JP2017040694A (ja) 画像表示装置
JP2005091553A (ja) 光伝送装置
JP2016151601A (ja) 画像表示装置
JPH06110013A (ja) 眼鏡型映像表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase