WO2005020825A1 - Polyhydroxyalkanoate nerve regeneration devices - Google Patents
Polyhydroxyalkanoate nerve regeneration devices Download PDFInfo
- Publication number
- WO2005020825A1 WO2005020825A1 PCT/US2004/026932 US2004026932W WO2005020825A1 WO 2005020825 A1 WO2005020825 A1 WO 2005020825A1 US 2004026932 W US2004026932 W US 2004026932W WO 2005020825 A1 WO2005020825 A1 WO 2005020825A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nerve
- conduit
- regeneration
- polymer
- devices
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/11—Surgical instruments, devices or methods for performing anastomosis; Buttons for anastomosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/11—Surgical instruments, devices or methods for performing anastomosis; Buttons for anastomosis
- A61B17/1128—Surgical instruments, devices or methods for performing anastomosis; Buttons for anastomosis of nerves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/32—Materials or treatment for tissue regeneration for nerve reconstruction
Definitions
- the present invention generally relates to nerve regeneration devices derived from poly-4-hydroxybutyrate and its copolymers. This application claims priority to U.S.S.N. 60/497,173 filed August 22, 2003.
- Several reports have described the use of alternative methods to repair severed nerves to restore both motor and sensory function that are lost when a nerve is injured.
- Existing microsurgical techniques attempt to align the severed nerve endings in a tension-free manner by suturing. If the defect is large, a nerve graft is utihzed.
- tubular conduits have also been tested as a method to provide a channel that can prevent or retard the infiltration of scar-forming tissue, potentially increase the concentration of nerve growth factor locally within the conduit, and also to bridge larger defects without the use of a graft.
- the severed nerve endings are drawn into proximity in a manner that minimizes additional trauma by placing them inside opposite ends of the nerve guide channel.
- Various materials have been tested as candidates for nerve channel conduits, and some have been used clinically. These include silicone rubber, polyglactin mesh, acrylic copolymer tubes, and other polyesters.
- PCT WO 88/06866 It has been reported by PCT WO 88/06866 by Aebischer et al., however, that there are significant shortcomings with devices prepared from these materials. These include inflammatory responses, formation of scar tissue, and loss of sensory or motor function.
- PPB poly-3-hydroxybutrate
- tubular piezoelectric nerve conduits including a device formed from PHB.
- Hazari et al. in Vol. 24B J. Hand Surgery, pp. 291-295 (1999), Ljungberg et al. in Vol.19 Microsurgery, pp. 259-264 (1999), and Hazari et al. in Vol. 52 British J. Hand Surgery, pp. 653-657 (1999) also disclose PHB conduits for nerve regeneration.
- PCT WO 03/041758 to Wiberg discloses a nerve repair unit comprising PHB and an alginate matrix containing human Schwann cells
- PCT WO 01/54593 also discloses PHB conduits that include Schwann cells.
- 653-657 (1999) discloses a rate of axonal regeneration using a PHB conduit to bridge a 10 mm nerve gap in a rat sciatic nerve of approx. 10% at 7 days, 50% at 14 days, and complete regeneration at 30 days.
- a rate of axonal regeneration using a PHB conduit to bridge a 10 mm nerve gap in a rat sciatic nerve of approx. 10% at 7 days, 50% at 14 days, and complete regeneration at 30 days.
- Nerve regeneration devices are provided with improved rates of axonal regeneration, and methods for their manufacture are also disclosed.
- the devices are formed from a biocompatible, absorbable polymer, known as poly-4-hydroxybutyrate. Growth factors, drugs, or cells that improve nerve regeneration may be incorporated into the devices.
- the devices are administered by implantation preferably without the use of sutures.
- the device is in the form of a wrap that can be used easily to capture the severed nerve bundle ends during surgery, and formed into a conduit in situ.
- the edges of the wrap can be melted together to seal the conduit, and hold it in place.
- a major advantage of the device is that it does not need to be removed after use since it is slowly degraded and cleared by the patient's body, yet remains functional in situ beyond the time required for nerve regeneration, and helps exclude scar tissue.
- the device also degrades in a cell-friendly manner, and does not release highly acidic or inflammatory metabolites.
- the device is flexible, strong, does not crush the regenerating nerve, is easy to handle, reduces surgical time by eliminating the need to harvest an autologous graft, and allows the surgeon to repair the nerve without a prolonged delay.
- Detailed Description of the Invention Devices for the repair of severed or damaged nerves are provided. These devices can be used instead of suture-based repairs, grafts to repair nerves, and/or where it is desirable to administer locally nerve cells, growth factors or other substances that promote nerve regeneration.
- Poly-4-hydroxybutyrate means a homopolymer comprising
- Copolymers of poly-4-hydroxybutyrate mean any polymer comprising 4-hydroxybutyrate with one or more different hydroxy acid units.
- Biocompatible refers to materials that are not toxic, and do not elicit prolonged inflammatory or chronic responses in vivo. Any metabolites of these materials should also be biocompatible.
- Biode gradation means that the polymer must break down in vivo, preferably in less than two years, and more preferably in less than one year. Biode gradation refers to a process in an animal or human. The polymer may break down by surface erosion, bulk erosion, hydrolysis, or a combination of these mechanisms.
- the polymers should be biocompatible and biode radable.
- the polymers are typically prepared by fermentation.
- Preferred polymers are poly-4-hydroxybutyrate and copolymers thereof. Examples of these polymers are produced by Tepha, Inc. of Cambridge, MA using transgenic fermentation methods, and have weight average molecular weights in the region of 50,000 to 1,000,000.
- Poly-4-hydroxybutyrate (PHA4400) is a strong pliable thermoplastic that is produced by a fermentation process (see U.S. Patent No. 6,548,569 to Williams et al.). Despite its biosynthetic route, the structure of the polyester is relatively simple.
- the polymer belongs to a larger class of materials called polyhydroxyalkanoates (PHAs) that are produced by numerous microorganims (for reviews see: Steinb ⁇ chel, A. (1991) Polyhydroxyalkanoic acids, in Biomaterials, (Byrom, D., Ed.), pp. 123-213. New York: Stockton Press. Steinb ⁇ chel, A. and Valentin, H.E. (1995) FEMS Microbial. Lett. 128:219-228; and Doi, 1990 in Microbial Polyesters, New York: VCH). In nature these polyesters are produced as storage granules inside cells, and serve to regulate energy metabolism. They are also of commercial interest because of their thermoplastic properties, and relative ease of production.
- PHAs polyhydroxyalkanoates
- PHAs are known to be useful to produce a range of medical devices.
- U.S. Patent No. 6,514,515 to Williams discloses tissue engineering scaffolds
- U.S. Pat. Nos. 6,555,123 and 6,585,994 to Williams and Martin discloses soft tissue repair, augmentation and viscosupplementation
- U.S. Patent No. 6,592,892 to Williams discloses flushable disposable polymeric products
- PCT WO 01/19361 to Williams and Martin discloses PHA prodrug therapeutic compositions.
- the nerve regeneration devices are preferably manufactured in a porous form by methods such as particulate leaching, phase separation, lyophilization, compression molding, or melt extrusion into fibers and subsequent processing into a textile construct.
- the device could be fabricated as a nonwoven, woven or knitted structure.
- the pores of the device are between 5 and 500 ⁇ m in diameter.
- the device should be slightly longer than the nerve gap to be repaired.
- the device is about 2 mm longer at either end than the gap to be repaired.
- the diameter of the device, if preformed, should be large enough so that it does not exert pressure on the re-growing nerve, but small enough to provide a good seal at the nerve endings. The exact size will depend on the diameter of the nerve to be repaired.
- the device can be formed from a sheet like material of the polymer that can be wrapped around the nerve endings and secured into a nerve conduit channel to make it easier to bring the severed ends together (as opposed to insertion of nerve bundles into prefabricated tube ends).
- the polymer may be pre- seeded with cells, such as Schwann cells, and/or combined with a drug or growth factor.
- the latter is dispersed evenly throughout the device using a method such as solvent casting, spray drying, or melt extrusion.
- the cells, growth factors or drugs may be encapsulated in the form of microspheres, nanospheres, microparticles and/or microcapsules, and seeded into the porous device.
- Non-limiting examples demonstrate methods for preparing the nerve regeneration devices, and the rate of axonal regeneration that can be achieved with these devices.
- EXAMPLE 1 Preparation of PHA Porous foam sheet by lyophilization, water extraction. PHA4400 (Mw 800 K by GPC) was dissolved in dioxane at 5% wt/vol.
- the polymer solution was mixed with sodium particles that had been sieved between 100 and 250 Dm stainless steel sieves.
- the mixture contained 1 part by weight salt particles and 2 parts polymer solution.
- a 10-12 g portion of the salt/polymer mixture was poured onto a Mylar® sheet and covered with a second Mylar® sheet separated by a 300-500 steel spacers.
- the salt/polymer mixture was pressed to a uniform thickness using a Carver press.
- the mixture was frozen at -26°C between aluminum plates that had been pre-cooled to -26°C.
- the top Mylar® sheet was removed while keeping the sample frozen.
- Sample A The sample was transferred while frozen to a lyophilizer and was lyophilized overnight to remove the dioxane solvent and yield a PHA4400 foam containing salt particles.
- the sample was removed from the bottom Mylar® sheet and the salt particles were leached out of the sample into deionized water to yield a sheet of highly porous PHA4400 foam, referred to as Sample A.
- EXAMPLE 2 Preparation of PHA Porous foam sheet, lyophilization, surfactant extraction.
- a porous foam sheet of PHA4400 was prepares as in example 1, except the salt was leached out into an aqueous solution containing 0.025% Tween 80, rather than water. This was referred to as Sample B.
- EXAMPLE 3 Preparation of PHA Porous foam sheet, ethanol extraction of dioxane, water extraction of salt.
- PHA4400 Mw 800 K by GPC
- the polymer solution was mixed with sodium particles that had been sieved between 100 and 250 Dm stainless steel sieves.
- the mixture contained 1 part salt particles and 2 parts by weight polymer solution.
- a 10-12 g portion of the salt/polymer mixture was poured onto a Mylar® sheet and covered with a second Mylar® sheet separated by a 300-500 steel spacers.
- the salt/polymer mixture was pressed to a uniform thickness using a Carver press.
- the mixture was frozen at -26°C between aluminum plates that had been pre-cooled to -26°C.
- the top Mylar® sheet was removed while keeping the sample frozen.
- the sample was transferred while frozen into a bath of cold ethanol (95%) to remove the dioxane solvent and yield a PHA4400 foam containing salt particles.
- the sample was removed from the bottom Mylar® sheet and the salt particles were leached out of the sample into deionized water to yield a sheet of highly porous PHA4400 foam, referred to as Sample C.
- EXAMPLE 4 Formation of PHA Porous foam sheet, ethanol extraction of dioxane, surfactant extraction of salt.
- a porous foam sheet of PHA4400 was prepared as in Example 3, except that the salt was leached out into an aqueous solution containing 0.025% Tween 80, rather than water. This was referred to as Sample D.
- EXAMPLE 5 Implantation of Nerve grafts or PHA conduits. Thirty male Sprague-Dawley rats were divided into 5 groups of 6 animals.
- a 10 mm segment of the sciatic nerve was exposed in each animal, resected, and then bridged with either an autologous nerve graft or a PHA4400 conduit that was prepared by wrapping the nerve endings with the foams derived from examples 1-4 and thermally melting the edge to form a seal.
- One group received autologous nerve grafts, each of the remaining groups was implanted with conduits derived from Samples A, B, C or D.
- Three animals from each group were sacrificed at 10 and 20 days post-operatively, and the repair sites harvested. After fixation the tissue was blocked, sectioned, and then stained with polyclonal antibody to PGP (a pan-neuronal marker) and S100 (an antibody marker for Schwann cells).
- the axonal and SC (Schwann cell) regeneration distance and area of axonal regeneration were then quantified. All four samples of PHA4400 handled well, were flexible, had a good tensile strength and held sutures. At the time of harvest there was no evidence of wound infections, no macroscopic evidence of inflammation and no anastomotic failures. At both harvest points the PHA4400 tubes maintained their structure with no evidence of collapse, and the tubes had not adhered to the underlying muscles. Macroscopically there appeared to be no difference between the four PHA4400 samples. The distance reached into the conduits by the furthermost PGP and S100 positive fibers were measured at 10 and 20 days for each group.
- Table 1 Percentage of axonal regeneration area in the distal stump at 10 and 20 days for the four different PHA4400 conduits used to repair a 10 mm gap in a rat sciatic nerve.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Transplantation (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dermatology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Vascular Medicine (AREA)
- Neurology (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2004268560A AU2004268560B2 (en) | 2003-08-22 | 2004-08-20 | Polyhydroxyalkanoate nerve regeneration devices |
| JP2006524041A JP2007503221A (ja) | 2003-08-22 | 2004-08-20 | ポリヒドロキシアルカノエート神経再生デバイス |
| US10/568,649 US20060287659A1 (en) | 2003-08-22 | 2004-08-20 | Polyhydroxyalkanoate nerve regeneration devices |
| CA2536510A CA2536510C (en) | 2003-08-22 | 2004-08-20 | Polyhydroxyalkanoate nerve regeneration devices |
| EP04781590A EP1663017A1 (en) | 2003-08-22 | 2004-08-20 | Polyhydroxyalkanoate nerve regeneration devices |
| US12/207,911 US20090209983A1 (en) | 2003-08-22 | 2008-09-10 | Polyhydroxyalkanoate nerve regeneration devices |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US49717303P | 2003-08-22 | 2003-08-22 | |
| US60/497,173 | 2003-08-22 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/207,911 Continuation US20090209983A1 (en) | 2003-08-22 | 2008-09-10 | Polyhydroxyalkanoate nerve regeneration devices |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2005020825A1 true WO2005020825A1 (en) | 2005-03-10 |
Family
ID=34272540
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/026932 Ceased WO2005020825A1 (en) | 2003-08-22 | 2004-08-20 | Polyhydroxyalkanoate nerve regeneration devices |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20060287659A1 (enExample) |
| EP (1) | EP1663017A1 (enExample) |
| JP (1) | JP2007503221A (enExample) |
| AU (1) | AU2004268560B2 (enExample) |
| CA (1) | CA2536510C (enExample) |
| WO (1) | WO2005020825A1 (enExample) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1849483A3 (en) * | 2006-03-30 | 2008-01-30 | GC Corporation | Bioabsorbable tube and production method thereof |
| WO2012064526A1 (en) | 2010-11-09 | 2012-05-18 | Tepha, Inc. | Drug eluting cochlear implants |
| US8758374B2 (en) | 2010-09-15 | 2014-06-24 | University Of Utah Research Foundation | Method for connecting nerves via a side-to-side epineurial window using artificial conduits |
| WO2015026964A1 (en) | 2013-08-20 | 2015-02-26 | Tepha, Inc. | Closed cell foams including poly-4-hydroxybutyrate and copolymers thereof |
| US9302029B2 (en) | 2013-10-31 | 2016-04-05 | Tepha, Inc. | Pultrusion of poly-4-hydroxybutyrate and copolymers thereof |
| US9931121B2 (en) | 2011-10-17 | 2018-04-03 | University Of Utah Research Foundation | Methods and devices for connecting nerves |
| WO2018227264A1 (en) * | 2017-06-13 | 2018-12-20 | Dosta Anatoli D | Implant for injured nerve tissue prosthetics, method of surgical treatment for injured nerve tissue and use of porous polytetrafluorethylene |
| US10842494B2 (en) | 2011-10-17 | 2020-11-24 | University Of Utah Research Foundation | Methods and devices for connecting nerves |
| US11806447B2 (en) | 2013-11-05 | 2023-11-07 | Tepha, Inc. | Compositions and devices of poly-4-hydroxybutyrate |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7943683B2 (en) | 2006-12-01 | 2011-05-17 | Tepha, Inc. | Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers |
| CN101979102B (zh) * | 2010-09-30 | 2013-03-13 | 中山大学 | 制备具有各向异性孔结构的组织工程支架的方法和设备 |
| ES2916298T3 (es) | 2017-12-04 | 2022-06-29 | Tepha Inc | Implantes médicos de poli-4-hidroxibutirato termoformado con membrana al vacío |
| WO2023034614A1 (en) * | 2021-09-02 | 2023-03-09 | The Brigham And Women's Hospital, Inc. | Systems and methods for stimulation, nerve repair and/or drug delivery |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999032536A1 (en) * | 1997-12-22 | 1999-07-01 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
| WO2001019422A1 (en) * | 1999-09-14 | 2001-03-22 | Tepha, Inc. | Polyhydroxyalkanoate compositions for soft tissue repair, augmentation, and viscosupplementation |
| WO2002007749A2 (en) * | 2000-07-21 | 2002-01-31 | Board Of Regents, The University Of Texas System | Device providing regulated growth factor delivery for the regeneration of peripheral nerves |
| WO2003041758A1 (en) * | 2001-11-16 | 2003-05-22 | Mikael Wiberg | Nerve repair unit and method of producing it |
Family Cites Families (90)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3598122A (en) * | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
| US3598123A (en) * | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
| US3797494A (en) * | 1969-04-01 | 1974-03-19 | Alza Corp | Bandage for the administration of drug by controlled metering through microporous materials |
| US3731683A (en) * | 1971-06-04 | 1973-05-08 | Alza Corp | Bandage for the controlled metering of topical drugs to the skin |
| US3982543A (en) * | 1973-04-24 | 1976-09-28 | American Cyanamid Company | Reducing capillarity of polyglycolic acid sutures |
| US4031894A (en) * | 1975-12-08 | 1977-06-28 | Alza Corporation | Bandage for transdermally administering scopolamine to prevent nausea |
| US4205399A (en) * | 1977-06-13 | 1980-06-03 | Ethicon, Inc. | Synthetic absorbable surgical devices of poly(alkylene oxalates) |
| US4201211A (en) * | 1977-07-12 | 1980-05-06 | Alza Corporation | Therapeutic system for administering clonidine transdermally |
| US4286592A (en) * | 1980-02-04 | 1981-09-01 | Alza Corporation | Therapeutic system for administering drugs to the skin |
| US4314557A (en) * | 1980-05-19 | 1982-02-09 | Alza Corporation | Dissolution controlled active agent dispenser |
| US4379454A (en) * | 1981-02-17 | 1983-04-12 | Alza Corporation | Dosage for coadministering drug and percutaneous absorption enhancer |
| US4849226A (en) * | 1981-06-29 | 1989-07-18 | Alza Corporation | Method for increasing oxygen supply by administering vasodilator |
| US4435180A (en) * | 1982-05-25 | 1984-03-06 | Alza Corporation | Elastomeric active agent delivery system and method of use |
| EP0104731B1 (en) * | 1982-08-27 | 1987-11-25 | Imperial Chemical Industries Plc | 3-hydroxybutyrate polymers |
| US4856188A (en) * | 1984-10-12 | 1989-08-15 | Drug Delivery Systems Inc. | Method for making disposable and/or replenishable transdermal drug applicators |
| EP0145233B2 (en) * | 1983-11-23 | 1991-11-06 | Imperial Chemical Industries Plc | Separation processfor a 3-hydroxybutyrate polymer |
| US4588580B2 (en) * | 1984-07-23 | 1999-02-16 | Alaz Corp | Transdermal administration of fentanyl and device therefor |
| GB8424950D0 (en) * | 1984-10-03 | 1984-11-07 | Ici Plc | Non-woven fibrous materials |
| US4573995A (en) * | 1984-10-09 | 1986-03-04 | Alza Corporation | Transdermal therapeutic systems for the administration of naloxone, naltrexone and nalbuphine |
| US4648978A (en) * | 1985-04-24 | 1987-03-10 | American Sterilizer Company | Process for the continuous preparation of sterile, depyrogenated solutions |
| US4645502A (en) * | 1985-05-03 | 1987-02-24 | Alza Corporation | Transdermal delivery of highly ionized fat insoluble drugs |
| AU603076B2 (en) * | 1985-12-09 | 1990-11-08 | W.R. Grace & Co.-Conn. | Polymeric products and their manufacture |
| US4664655A (en) * | 1986-03-20 | 1987-05-12 | Norman Orentreich | High viscosity fluid delivery system |
| US4758234A (en) * | 1986-03-20 | 1988-07-19 | Norman Orentreich | High viscosity fluid delivery system |
| US5032638A (en) * | 1986-09-05 | 1991-07-16 | American Cyanamid Company | Bioabsorbable coating for a surgical device |
| US4908027A (en) * | 1986-09-12 | 1990-03-13 | Alza Corporation | Subsaturated transdermal therapeutic system having improved release characteristics |
| JPH0725689B2 (ja) * | 1986-10-07 | 1995-03-22 | 中外製薬株式会社 | 顆粒球コロニ−刺激因子を含有する徐放性製剤 |
| NL8603073A (nl) * | 1986-12-02 | 1988-07-01 | Rijksuniversiteit | Werkwijze voor het bereiden van polyesters door fermentatie; werkwijze voor het bereiden van optisch actieve carbonzuren en esters; polyester omvattende voortbrengselen. |
| US4816258A (en) * | 1987-02-26 | 1989-03-28 | Alza Corporation | Transdermal contraceptive formulations |
| US5059211A (en) * | 1987-06-25 | 1991-10-22 | Duke University | Absorbable vascular stent |
| US5480794A (en) * | 1987-06-29 | 1996-01-02 | Massachusetts Institute Of Technology And Metabolix, Inc. | Overproduction and purification of soluble PHA synthase |
| US5245023A (en) * | 1987-06-29 | 1993-09-14 | Massachusetts Institute Of Technology | Method for producing novel polyester biopolymers |
| US5229279A (en) * | 1987-06-29 | 1993-07-20 | Massachusetts Institute Of Technology | Method for producing novel polyester biopolymers |
| US4943435A (en) * | 1987-10-05 | 1990-07-24 | Pharmetrix Corporation | Prolonged activity nicotine patch |
| US5502158A (en) * | 1988-08-08 | 1996-03-26 | Ecopol, Llc | Degradable polymer composition |
| US4938763B1 (en) * | 1988-10-03 | 1995-07-04 | Atrix Lab Inc | Biodegradable in-situ forming implants and method of producing the same |
| US5085629A (en) * | 1988-10-06 | 1992-02-04 | Medical Engineering Corporation | Biodegradable stent |
| US5026381A (en) * | 1989-04-20 | 1991-06-25 | Colla-Tec, Incorporated | Multi-layered, semi-permeable conduit for nerve regeneration comprised of type 1 collagen, its method of manufacture and a method of nerve regeneration using said conduit |
| US5041100A (en) * | 1989-04-28 | 1991-08-20 | Cordis Corporation | Catheter and hydrophilic, friction-reducing coating thereon |
| US5002067A (en) * | 1989-08-23 | 1991-03-26 | Medtronic, Inc. | Medical electrical lead employing improved penetrating electrode |
| EP0423484B1 (de) * | 1989-10-16 | 1993-11-03 | PCD-Polymere Gesellschaft m.b.H. | Pressling mit retardierter Wirkstofffreisetzung |
| JPH0662839B2 (ja) * | 1989-11-14 | 1994-08-17 | 工業技術院長 | 微生物分解性プラスチック成形物及びその製造方法 |
| US5705187A (en) * | 1989-12-22 | 1998-01-06 | Imarx Pharmaceutical Corp. | Compositions of lipids and stabilizing materials |
| AU636481B2 (en) * | 1990-05-18 | 1993-04-29 | Bracco International B.V. | Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography |
| IT1247157B (it) * | 1991-02-11 | 1994-12-12 | Fidia Spa | Canali di guida biodegradabili e bioassorbibili da impiegare per la rigenerazione nervosa. |
| DE4113984C2 (de) * | 1991-04-29 | 2002-05-08 | Koehler Chemie Dr Franz | Salze der 4-Hydroxy-Buttersäure |
| FR2676927B1 (fr) * | 1991-05-29 | 1995-06-23 | Ibf | Microspheres utilisables pour les occlusions vasculaires therapeutiques et solutions injectables les contenant. |
| US5236431A (en) * | 1991-07-22 | 1993-08-17 | Synthes | Resorbable fixation device with controlled stiffness for treating bodily material in vivo and introducer therefor |
| JP2777757B2 (ja) * | 1991-09-17 | 1998-07-23 | 鐘淵化学工業株式会社 | 共重合体およびその製造方法 |
| EP0560984B1 (en) * | 1991-09-27 | 1999-05-26 | Terumo Kabushiki Kaisha | Flexible member for medical use |
| US5876452A (en) * | 1992-02-14 | 1999-03-02 | Board Of Regents, University Of Texas System | Biodegradable implant |
| US5204382A (en) * | 1992-02-28 | 1993-04-20 | Collagen Corporation | Injectable ceramic compositions and methods for their preparation and use |
| CH689767A5 (de) * | 1992-03-24 | 1999-10-15 | Balzers Hochvakuum | Verfahren zur Werkstueckbehandlung in einer Vakuumatmosphaere und Vakuumbehandlungsanlage. |
| US5700485A (en) * | 1992-09-10 | 1997-12-23 | Children's Medical Center Corporation | Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid |
| US5278256A (en) * | 1992-09-16 | 1994-01-11 | E. I. Du Pont De Nemours And Company | Rapidly degradable poly (hydroxyacid) compositions |
| GB9223350D0 (en) * | 1992-11-06 | 1992-12-23 | Ici Plc | Polymer composition |
| GB9223351D0 (en) * | 1992-11-06 | 1992-12-23 | Ici Plc | Polyesters |
| JP3263710B2 (ja) * | 1992-12-11 | 2002-03-11 | 高砂香料工業株式会社 | 生分解性光学活性ポリマー及びその製造方法 |
| US5443458A (en) * | 1992-12-22 | 1995-08-22 | Advanced Cardiovascular Systems, Inc. | Multilayered biodegradable stent and method of manufacture |
| US5709854A (en) * | 1993-04-30 | 1998-01-20 | Massachusetts Institute Of Technology | Tissue formation by injecting a cell-polymeric solution that gels in vivo |
| US5412067A (en) * | 1993-05-10 | 1995-05-02 | Mitsui Toatsu Chemicals, Inc. | Preparation process of polyester |
| US5874040A (en) * | 1993-06-02 | 1999-02-23 | Monsanto Company | Processing of polyesters |
| GB9311402D0 (en) * | 1993-06-02 | 1993-07-21 | Zeneca Ltd | Processing of polyesters |
| JP3243334B2 (ja) * | 1993-06-10 | 2002-01-07 | テルモ株式会社 | ヒドロキシアルカノエート重合体組成物 |
| JPH08512054A (ja) * | 1993-06-25 | 1996-12-17 | アルザ・コーポレーション | 経皮系におけるポリ−n−ビニルアミドの含有 |
| AU1560095A (en) * | 1994-01-06 | 1995-08-01 | Metabolix, Inc. | Methods for synthesizing oligomers containing hydroxy acid units |
| SK96996A3 (en) * | 1994-01-28 | 1997-06-04 | Procter & Gamble | Biodegradable copolymers and plastic articles comprising biodegradable copolymers of 3-hydroxyhexanoate |
| ZA95627B (en) * | 1994-01-28 | 1995-10-05 | Procter & Gamble | Biodegradable copolymers and plastic articles comprising biodegradable copolymers |
| AU686823B2 (en) * | 1994-06-06 | 1998-02-12 | Case Western Reserve University | Biomatrix for tissue regeneration |
| US5629077A (en) * | 1994-06-27 | 1997-05-13 | Advanced Cardiovascular Systems, Inc. | Biodegradable mesh and film stent |
| DE69515044T2 (de) * | 1994-08-12 | 2000-06-08 | Minnesota Mining And Mfg. Co., Saint Paul | Poly(beta-hydroxyorganoat)haftklebstoffzusammensetzungen |
| US5599852A (en) * | 1994-10-18 | 1997-02-04 | Ethicon, Inc. | Injectable microdispersions for soft tissue repair and augmentation |
| US5879322A (en) * | 1995-03-24 | 1999-03-09 | Alza Corporation | Self-contained transdermal drug delivery device |
| DE19539449A1 (de) * | 1995-10-24 | 1997-04-30 | Biotronik Mess & Therapieg | Verfahren zur Herstellung intraluminaler Stents aus bioresorbierbarem Polymermaterial |
| JP3369421B2 (ja) * | 1996-12-18 | 2003-01-20 | 理化学研究所 | ポリ(3−ヒドロキシブタン酸)からなるフィルム |
| IL132120A0 (en) * | 1997-04-03 | 2001-03-19 | Guilford Pharm Inc | Biodegradable terephthalate polyester-poly (phosphate) polymers compositions articles and methods for making and using the same |
| US6245537B1 (en) * | 1997-05-12 | 2001-06-12 | Metabolix, Inc. | Removing endotoxin with an oxdizing agent from polyhydroxyalkanoates produced by fermentation |
| US6610764B1 (en) * | 1997-05-12 | 2003-08-26 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
| US5876455A (en) * | 1997-07-24 | 1999-03-02 | Harwin; Steven F. | Bio-shim |
| US6056970A (en) * | 1998-05-07 | 2000-05-02 | Genzyme Corporation | Compositions comprising hemostatic compounds and bioabsorbable polymers |
| US7662409B2 (en) * | 1998-09-25 | 2010-02-16 | Gel-Del Technologies, Inc. | Protein matrix materials, devices and methods of making and using thereof |
| FR2784580B1 (fr) * | 1998-10-16 | 2004-06-25 | Biosepra Inc | Microspheres de polyvinyl-alcool et procedes de fabrication de celles-ci |
| AU3722800A (en) * | 1999-03-04 | 2000-09-21 | Tepha, Inc. | Bioabsorbable, biocompatible polymers for tissue engineering |
| ES2295021T3 (es) * | 1999-03-25 | 2008-04-16 | Metabolix, Inc. | Utilizacion y aplicaciones medicas de polimeros de poli(hidroxialcanoatos). |
| CA2382599C (en) * | 1999-08-30 | 2005-11-08 | Tepha, Inc. | Flushable disposable polymeric products |
| US7025980B1 (en) * | 1999-09-14 | 2006-04-11 | Tepha, Inc. | Polyhydroxyalkanoate compositions for soft tissue repair, augmentation, and viscosupplementation |
| US20020168518A1 (en) * | 2001-05-10 | 2002-11-14 | The Procter & Gamble Company | Fibers comprising starch and polymers |
| WO2003014451A1 (en) * | 2001-08-07 | 2003-02-20 | The Procter & Gamble Company | Fibers and webs capable of high speed solid state deformation |
| EP1473324A4 (en) * | 2002-02-05 | 2005-07-06 | Mitsui Chemicals Inc | BIODEGRADABLE RESIN COMPOSITION AND MOLDED OBJECT BASED ON THE COMPOSITION |
| DK1778305T3 (da) * | 2004-08-03 | 2010-10-18 | Tepha Inc | Ikke-krøllende polyhydroxyalkanoatsuturer |
-
2004
- 2004-08-20 JP JP2006524041A patent/JP2007503221A/ja active Pending
- 2004-08-20 AU AU2004268560A patent/AU2004268560B2/en not_active Ceased
- 2004-08-20 EP EP04781590A patent/EP1663017A1/en not_active Ceased
- 2004-08-20 WO PCT/US2004/026932 patent/WO2005020825A1/en not_active Ceased
- 2004-08-20 US US10/568,649 patent/US20060287659A1/en not_active Abandoned
- 2004-08-20 CA CA2536510A patent/CA2536510C/en not_active Expired - Fee Related
-
2008
- 2008-09-10 US US12/207,911 patent/US20090209983A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999032536A1 (en) * | 1997-12-22 | 1999-07-01 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
| WO2001019422A1 (en) * | 1999-09-14 | 2001-03-22 | Tepha, Inc. | Polyhydroxyalkanoate compositions for soft tissue repair, augmentation, and viscosupplementation |
| WO2002007749A2 (en) * | 2000-07-21 | 2002-01-31 | Board Of Regents, The University Of Texas System | Device providing regulated growth factor delivery for the regeneration of peripheral nerves |
| WO2003041758A1 (en) * | 2001-11-16 | 2003-05-22 | Mikael Wiberg | Nerve repair unit and method of producing it |
Non-Patent Citations (6)
| Title |
|---|
| ANONYMOUS: "Absorbable Biomaterial Is Suited for Diverse Applications", INTERNET ARTICLE, October 2001 (2001-10-01), XP002311372, Retrieved from the Internet <URL:http://www.devicelink.com./mpmn/archive/01/10/009.html> [retrieved on 20041217] * |
| ANONYMOUS: "Tepha announces submission of device master file to FDA", INTERNET ARTICLE, 3 June 2002 (2002-06-03), XP002311371, Retrieved from the Internet <URL:http://www.pressreleases.be/script_UK/newsdetail.asp?ndays=m&ID=695> [retrieved on 20041217] * |
| ANONYMOUS: "Tepha submits device master file to FDA-New Technology", INTERNET ARTICLE, July 2002 (2002-07-01), XP002311373, Retrieved from the Internet <URL:http://www.findarticles.com/p/articles/mi_m0BPC/is_7_26/ai_89018276> [retrieved on 20041217] * |
| C. LJUNGBERG ET AL: "Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair", MICROSURGERY, vol. 19, no. 6, 1999, pages 259 - 264, XP008040666 * |
| HAZARI A ET AL: "A new resorbable wrap-around implant as an alternative nerve reapir technique", JOURNAL OF HAND SURGERY, vol. 24, no. 3, June 1999 (1999-06-01), pages 291 - 295, XP008040665 * |
| HAZARI A ET AL: "A resorbale nerve conduit as an alternative to nerve autograft in nerve gap repair", BRITISH JOURNAL OF PLASTIC SURGERY, CHURCHILL LIVINGSTONE, GB, vol. 52, 1999, pages 653 - 657, XP002977372, ISSN: 0007-1226 * |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1849483A3 (en) * | 2006-03-30 | 2008-01-30 | GC Corporation | Bioabsorbable tube and production method thereof |
| US8758374B2 (en) | 2010-09-15 | 2014-06-24 | University Of Utah Research Foundation | Method for connecting nerves via a side-to-side epineurial window using artificial conduits |
| US9162010B2 (en) | 2010-11-09 | 2015-10-20 | Tepha, Inc. | Drug eluting cochlear implants |
| WO2012064526A1 (en) | 2010-11-09 | 2012-05-18 | Tepha, Inc. | Drug eluting cochlear implants |
| US10772633B2 (en) | 2011-10-17 | 2020-09-15 | University Of Utah Research Foundation | Methods and devices for connecting nerves |
| US9931121B2 (en) | 2011-10-17 | 2018-04-03 | University Of Utah Research Foundation | Methods and devices for connecting nerves |
| US10842494B2 (en) | 2011-10-17 | 2020-11-24 | University Of Utah Research Foundation | Methods and devices for connecting nerves |
| US10689498B2 (en) | 2013-08-20 | 2020-06-23 | Tepha, Inc. | Closed cell foams including poly-4-hydroxybutyrate and copolymers thereof |
| WO2015026964A1 (en) | 2013-08-20 | 2015-02-26 | Tepha, Inc. | Closed cell foams including poly-4-hydroxybutyrate and copolymers thereof |
| US11292885B1 (en) | 2013-08-20 | 2022-04-05 | Tepha, Inc. | Closed cell foams including poly-4-hydroxybutyrate and copolymers thereof |
| US9302029B2 (en) | 2013-10-31 | 2016-04-05 | Tepha, Inc. | Pultrusion of poly-4-hydroxybutyrate and copolymers thereof |
| US11806447B2 (en) | 2013-11-05 | 2023-11-07 | Tepha, Inc. | Compositions and devices of poly-4-hydroxybutyrate |
| WO2018227264A1 (en) * | 2017-06-13 | 2018-12-20 | Dosta Anatoli D | Implant for injured nerve tissue prosthetics, method of surgical treatment for injured nerve tissue and use of porous polytetrafluorethylene |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1663017A1 (en) | 2006-06-07 |
| US20060287659A1 (en) | 2006-12-21 |
| AU2004268560A1 (en) | 2005-03-10 |
| AU2004268560B2 (en) | 2008-08-21 |
| US20090209983A1 (en) | 2009-08-20 |
| CA2536510C (en) | 2011-01-18 |
| CA2536510A1 (en) | 2005-03-10 |
| JP2007503221A (ja) | 2007-02-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090209983A1 (en) | Polyhydroxyalkanoate nerve regeneration devices | |
| Oudega et al. | Axonal regeneration into Schwann cell grafts within resorbable poly (α-hydroxyacid) guidance channels in the adult rat spinal cord | |
| US5741329A (en) | Method of controlling the pH in the vicinity of biodegradable implants | |
| EP1254671B1 (en) | Collagen devices for regenerating nerves | |
| KR101766679B1 (ko) | 유착 방지를 위한 히드로겔 막 | |
| US6065476A (en) | Method of enhancing surface porosity of biodegradable implants | |
| US12096941B2 (en) | Methods for forming a nerve barrier | |
| EP0857072A1 (en) | Implantable bioresorbable membrane and method for the preparation thereof | |
| US20240342341A1 (en) | Porous Foams Derived From Extracellular Matrix, Porous Foam ECM Medical Devices, and Methods of Use and Making Thereof | |
| KR20080065606A (ko) | 세포 이식 방법 | |
| WO1996019248A9 (en) | METHOD OF CONTROLLING pH IN THE VICINITY OF BIODEGRADABLE IMPLANTS, AND METHOD OF INCREASING SURFACE POROSITY | |
| JP2017526739A (ja) | 骨および軟組織の治癒および再生を向上させるための組成物および方法 | |
| Andrychowski et al. | Nanofiber nets in prevention of cicatrisation in spinal procedures. Experimental study | |
| WO2019166087A1 (en) | Implantable nerve guidance conduit for nerve repair | |
| AU2021207853A1 (en) | Methods and devices for in situ formed nerve cap with rapid release | |
| JP4002299B2 (ja) | 組織処理用の改善されたヒドロゲル | |
| JP4690892B2 (ja) | 脊椎・脊髄手術用癒着防止材 | |
| CN105233336A (zh) | 丝胶蛋白神经导管及其制备方法与应用 | |
| AU2022201887A1 (en) | A ready to use biodegradable and biocompatible cell-based nerve conduit for nerve injury and a method of preparation thereof | |
| JPH0480693B2 (enExample) | ||
| KR100464930B1 (ko) | 조직재생 유도용 차폐막 및 그의 제조방법 | |
| JP2025513507A (ja) | 組織伝導性足場材料 | |
| EP3338817B1 (en) | Prosthesis with a chitosan core for regeneration of nerves and method of its manufacturing | |
| Shen et al. | Evaluation of PLGA/chitosan/HA conduits for nerve tissue reconstruction | |
| JP2009513290A (ja) | 強膜バックリングバンドとその製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2006524041 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006287659 Country of ref document: US Ref document number: 10568649 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2536510 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004268560 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004781590 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2004268560 Country of ref document: AU Date of ref document: 20040820 Kind code of ref document: A |
|
| WWP | Wipo information: published in national office |
Ref document number: 2004268560 Country of ref document: AU |
|
| DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWP | Wipo information: published in national office |
Ref document number: 2004781590 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 10568649 Country of ref document: US |