WO2005014486A1 - 超伝導磁気分離による廃水処理システム - Google Patents

超伝導磁気分離による廃水処理システム Download PDF

Info

Publication number
WO2005014486A1
WO2005014486A1 PCT/JP2004/011586 JP2004011586W WO2005014486A1 WO 2005014486 A1 WO2005014486 A1 WO 2005014486A1 JP 2004011586 W JP2004011586 W JP 2004011586W WO 2005014486 A1 WO2005014486 A1 WO 2005014486A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
wastewater
separated
substance
filter
Prior art date
Application number
PCT/JP2004/011586
Other languages
English (en)
French (fr)
Inventor
Takefumi Niki
Yasuhiro Noda
Tatsuo Fukunishi
Original Assignee
Niki Glass Co., Ltd.
Tatsumi Air Engineering, Ltd.
Futaba Shoji Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niki Glass Co., Ltd., Tatsumi Air Engineering, Ltd., Futaba Shoji Co., Ltd. filed Critical Niki Glass Co., Ltd.
Priority to EP04771561A priority Critical patent/EP1683764A4/en
Priority to JP2005513017A priority patent/JP4597862B2/ja
Priority to AU2004263451A priority patent/AU2004263451A1/en
Priority to KR1020057001383A priority patent/KR101125288B1/ko
Priority to US10/523,245 priority patent/US7473356B2/en
Publication of WO2005014486A1 publication Critical patent/WO2005014486A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/035Open gradient magnetic separators, i.e. separators in which the gap is unobstructed, characterised by the configuration of the gap
    • B03C1/0355Open gradient magnetic separators, i.e. separators in which the gap is unobstructed, characterised by the configuration of the gap using superconductive coils
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them

Definitions

  • the present invention relates to a wastewater treatment system using superconducting magnetic separation, and more particularly to a wastewater treatment system for purifying wastewater using a solenoid type superconducting magnetic separation device.
  • the “wastewater treatment” of the present invention includes advanced treatment (ie, high purification level) in a water treatment plant, and advanced treatment of groundwater, river water, seawater, and the like.
  • the term "wastewater” in the present description and the claims is not limited to wastewater or drainage from various factories, experimental facilities, research laboratories, schools, homes, etc., but also groundwater, river water, water purification plants, sewage. It also includes treated water and seawater, and is widely used to mean “water containing substances to be separated”. Background art
  • Wastewater from various factories contains various substances to be separated from wastewater (hereinafter referred to as “substances to be separated”) from the viewpoint of environmental protection and resource reuse.
  • wastewater from recycled paper mills contains many substances to be separated, such as organic components such as dyes, pigments, and adhesives contained in waste paper, and flocculants added during normal wastewater treatment. including c of these materials are the causative agent for increasing the COD (chemical oxygen demand), its emission for environmental protection it has come to be recently strictly regulated.
  • COD indicators include BOD (Biological Oxygen Demand) and TOC (Total Organic Carbon) are regulated from the viewpoint of environmental conservation, and the emission of substances causing these indicators to increase is also regulated. Something to be done.
  • Conventional wastewater treatment involves biological treatment using activated sludge after normal treatment using a flocculant.
  • the organic matter contained in the wastewater was decomposed using various kinds of bacteria and organisms (activated sludge) and discharged.
  • an object of the present invention is to provide a wastewater treatment system that solves the above-mentioned problems associated with wastewater treatment using activated sludge, and realizes low cost, space saving, high efficiency, high speed, and advanced treatment.
  • the conventional general-purpose superconducting magnetic separation device temporarily stops the superconducting magnet and backwashes the magnetic filter to remove the magnetic filter, or removes it, cleans it, reattaches it, and then re-energizes it was very inefficient in terms of time, economy and operation.
  • another object of the present invention is to provide a wastewater treatment system using a superconducting magnetic separation device that can efficiently clean a magnetic filter.
  • the present invention provides a wastewater treatment system that imparts magnetism to a substance to be separated and separates the wastewater by a solenoid type superconducting magnetic separation device.
  • Body, activated carbon or a carrier was used as a sorbent, and the substance to be separated was sorbed to impart magnetism to the substance to be separated.
  • the superconducting magnetic separation device used in the wastewater treatment system of the present invention is a superconducting magnetic filter in which unit magnetic filters are detachably laminated to make the total length at least equal to or greater than the longitudinal length of the superconducting magnet.
  • a configuration may be provided in the bore of the magnet. In such a configuration, the unit magnetic filter is pushed into the downstream side (clean water side) of the laminated magnetic filter during excitation of the superconducting magnet, so that the unit magnetic filter is taken out from the upstream side (sewage side), washed, and then washed again. It may be configured to return to the downstream side.
  • the material to be separated in the wastewater is absorbed by the magnetic sorbent in the treatment tank, and the magnetic filter is washed in the treatment tank. It is also possible to adopt a configuration in which the sorbent adhering to the separator is peeled off and returned directly into the treatment tank. In such a configuration, a carrier to which microorganisms are attached, such as biological activated carbon, can be used as the sorbent. Purifying wastewater by performing biodegradation using a carrier to which microorganisms are attached in this way is also referred to as “wastewater treatment by a microorganism immobilization method”. Further, the superconducting magnetic separation device used in the wastewater treatment system of the present invention,
  • a pair of magnetic filters that are movable in the longitudinal direction through the pores of the superconducting magnet are provided, and one magnetic filter is located in the pore. While magnetic separation is performed, the other magnetic filter can be backwashed outside the pore.
  • Wastewater that includes a magnetizing means for imparting magnetism to a substance to be separated and a solenoid type superconducting magnetic separation means, and captures the magnetized substance to be separated by a magnetic field generated by a solenoid type superconducting magnet.
  • the treatment system uses a porous material, activated carbon or a carrier with magnetism as a sorbent, and imparts magnetism to the separated material by sorbing the separated material.
  • a laminated magnetic filter formed by detachably laminating unit magnetic filters is provided in the pore of the superconducting magnet, and the length of the laminated magnetic filter is at least longer than the length of the superconducting magnet in the longitudinal direction.
  • the longitudinal center of the laminated magnetic filter is originally located at the same position as the longitudinal magnetic field center of the superconducting magnet. Therefore, even if the laminated magnetic filter is moved in the longitudinal direction in this state, it is strongly pulled back to the magnetic field center. Therefore, the unit magnetic filter from the downstream side When one is pressed, the laminated magnetic filter becomes longer on the downstream side, and its longitudinal center shifts to the downstream side, so that a force is drawn to the upstream side to make it more stable. As a result, the unit magnetic filter is pushed out to the upstream side, and it is easy to take out from the laminated magnetic filter.
  • the unit magnetic filter taken out from the upstream side of the laminated magnetic filter is cleaned in the processing tank with an ultrasonic cleaning device and the magnetic sorbent is returned directly to the processing tank side. Can be efficiently recovered, regenerated and reused.
  • the adsorption function and the biodegradation function can be used together. High-speed and advanced processing can be realized with high efficiency and low cost. Furthermore, microorganisms adhering to the surface of biological activated carbon also decompose organic substances clogged in pores on the surface of activated carbon and regenerate the activated carbon adsorption performance, thereby reducing the frequency of replacement of activated carbon.
  • a pair of connected magnetic filters that are movable in the longitudinal direction in the bore of the superconducting magnet is provided, and while one magnetic filter is located in the bore and treating wastewater, the other magnetic filter is used. Can be backwashed outside the bore (switchback type), so that wastewater treatment can be performed without time loss required for switching magnetic filters.
  • a unit magnetic filter is taken out upstream, washed, and incorporated into the downstream side No mechanism is required.
  • the switchback type magnetic filter has a magnetic filter fixed in a closed container, so if bacteria such as 0_157 and toxic substances such as environmental hormones are captured, these Can be taken out after the necessary treatment in the container without dissipating.
  • FIG. 1 is a schematic diagram of a wastewater treatment system according to the present invention.
  • FIG. 2 is a schematic diagram showing another embodiment of the wastewater treatment system according to the present invention.
  • FIG. 3 shows the results of a test for removing a substance that causes an increase in COD performed using the waste liquid treatment system according to the present invention.
  • FIG. 4 is a schematic diagram of a laminated magnetic filter used in the wastewater treatment system according to the present invention and a transfer / cleaning apparatus for the unit magnetic filter.
  • FIG. 5 is a schematic view of a unit magnetic filter
  • FIG. 5 (a) is a front view
  • FIG. 5 (b) is a cross-sectional view taken along line BB ′.
  • Figure 6 shows a configuration in which the sorbent adhering to the unit magnetic filter is peeled off in the treatment tank by an ultrasonic cleaning device and returned directly to the tank side.
  • FIG. 7 is a schematic diagram of a switchback type superconducting magnetic separation device according to the present invention.
  • FIG. 8 is an explanatory diagram of the configuration of a magnetic separation experiment performed using the laminated magnetic filter according to the present invention.
  • 13 magnetic filter sets are stacked and used (FIG. 8 (a)). It is a stack of four magnetic filters (Fig. 8 (b)).
  • the wastewater treatment system comprises: a magnetizing means for imparting magnetism to a substance to be separated; and a magnetic field generated by a solenoid type superconducting magnet. And a superconducting magnetic separation means for separating the magnetic flux from the magnetic field.
  • the wastewater targeted by the present invention can be, but is not limited to, wastewater from various factories, for example, a paper mill, a foodstuff factory, a semiconductor factory, a chemical factory, a dyeing factory, and a metzuki factory.
  • Various types of wastewater can be considered, such as wastewater from daily life and wastewater from schools and research laboratories.
  • river water and groundwater are also considered wastewater, and these wastewaters are collected and purified at sewage treatment plants and water treatment plants. Therefore, purification treatment at water treatment plants is also included in wastewater treatment.
  • the substances to be separated include various substances to be separated from wastewater.
  • various substances to be separated from wastewater For example, dyes, pigments, adhesives, and wastewater contained in wastewater from paper mills and waste paper mills Norerosu, (the causative agent of COD increase) flocculant such as, S i C, inorganic substances such as S i 0 2, biological materials such as Aoko, heavy oil, metallic ions such as various contained waste liquid exiting the semiconductor processing plants
  • S i C inorganic substances
  • S i 0 2 inorganic substances
  • biological materials such as Aoko
  • heavy oil heavy oil
  • metallic ions such as various contained waste liquid exiting the semiconductor processing plants
  • Non-magnetic substances are conceivable. However, these are only examples and should not be construed as limiting the substance to be separated.
  • O-157 bacteria and environmental hormones can be assumed as substances to be separated.
  • a colloidal chemical magnetization method As a method for imparting magnetism to the substance to be separated (magnetization method), a colloidal chemical magnetization method, a mechanochemical magnetization method, an electrochemical magnetization method, or the like can be appropriately employed.
  • the colloidal chemical magnetizing method include a method in which a colloid of iron oxide is adhered to a substance to be separated by means of a sorption sol- tion, and a method in which iron hydroxide is precipitated or coprecipitated on the substance to be separated and oxidized.
  • the mechanochemical magnetizing method is a method of mechanically attaching a magnetic substance such as an iron piece to a substance to be separated.
  • the sorbent is preliminarily magnetized by a colloidal chemical magnetizing method, a mechanochemical magnetizing method, an electrochemical magnetizing method, or the like, and the substance to be separated is sorbed on the sorbent.
  • adsorption and absorption can also impart magnetism to the substance to be separated.
  • the sorbent include magnetite, a ceramic porous body, a zeolite porous body, activated carbon, a plastic carrier and the like.
  • the superconducting magnetic separation means of the present invention may be configured to arrange a magnetic wire in a magnetic field to generate a high gradient magnetic field (closed filter system).
  • the magnetically separated substance in the waste liquid is adsorbed on the magnetic fine wire by the action of the high gradient magnetic field. Since a high gradient magnetic field can be generated by providing a magnetic wire in a magnetic field as described above, a magnetic force acting on a substance to be separated can be strengthened, and more efficient processing can be performed.
  • a sedimentation tank can be provided between the magnetizing means and the magnetic separation means to separate the sedimented substance from the wastewater, thereby further improving the separation efficiency.
  • the present invention also provides a closed filter system, comprising a plurality of detachably stacked magnetic filters ("unit magnetic filters") made of a magnetic material such as a magnetic fine wire, and at least the length of the superconducting magnet in the longitudinal direction.
  • unit magnetic filters made of a magnetic material such as a magnetic fine wire
  • the laminated magnetic filter described above can be provided in the bore of the superconducting magnet. With such a configuration, Even when the superconducting magnet is excited (that is, when a magnetic field is being generated), the clean unit magnetic filters are pushed one by one from the downstream side, and the upstream magnetic filters that capture more substances to be separated are taken out in order. However, it can be easily returned to the downstream side after washing. This principle has been described above. This enables continuous processing without interrupting the magnetic separation processing for washing the magnetic filter.
  • the wastewater treatment system of the present invention is characterized in that, during excitation of the superconducting magnet, a clean unit magnetic filter is pushed in from the downstream side of the multilayer filter, the unit magnetic filter on the upstream side of the multilayer filter is taken out, washed, and then downstream again.
  • a transfer / washing means configured to perform a series of operations of pushing into the container may be further provided.
  • any washing method such as a suction washing method in which the adhering matter on the filter surface is sucked by air suction, a jet washing method in which high-pressure water or the like is applied, an ultrasonic washing method, a bubble washing method, and the like can be appropriately used. Can also be used in combination.
  • the transfer / cleaning means preferably includes an ultrasonic cleaning device in the processing tank, transfers the unit magnetic filter taken out from the upstream side of the laminated magnetic filter to the cleaning device in the processing tank, and removes the adsorbed sorbent. It is also possible to adopt a configuration in which it is peeled off and returned directly to the processing tank side. By returning the sorbent such as activated carbon, ceramic porous body, ceramic or plastic carrier directly to the treatment tank side, the sorbent can be efficiently collected, regenerated and reused.
  • the carrier to which the microorganisms used as the sorbent has adhered may be biological activated carbon having microorganisms attached to the surface of activated carbon.
  • activated carbon has not only a function of adsorbing a substance to be separated but also a function of biodegrading, it can decompose organic matter in a treatment tank and further improve purification performance in combination with magnetic separation.
  • biodegradation function of biological activated carbon decomposes organic substances clogged in the pores on the surface of activated carbon and regenerates activated carbon, thereby reducing the frequency of replacement of activated carbon.
  • a pair of connected magnetic filters can be moved in the longitudinal direction through the pores of the superconducting magnet.
  • the other magnetic filter can be backwashed outside the pore while the wastewater is being treated while located inside the pore (a “switchback type”).
  • the switchback type magnetic filter has a magnetic filter fixed in a closed container, so when bacteria such as O-157 and toxic substances such as environmental hormones are captured, It is excellent in safety because it can be taken out after the necessary treatment in the container without dissipating them.
  • FIG. 1 is a conceptual diagram of one embodiment of a wastewater treatment system according to the present invention.
  • Wastewater 1 from a factory or the like is first filtered by a filter 6 and sent to a magnetizing device 2.
  • the magnetic sorbent 5 is added to the wastewater and stirred to sorb organic components such as dyes, pigments and adhesives (that is, substances to be separated) to the magnetic sorbent 5.
  • the substance to be separated can be directly magnetized by a colloidal chemical magnetizing method or a mechanochemical magnetizing method.
  • the wastewater containing the substance to be separated provided with magnetism is sent to the superconducting magnetic separator 3, and passes through the high magnetic field strength and high gradient magnetic field created by the solenoid type superconducting magnet.
  • the magnetically separated substance adheres to the tube wall inside the magnet bore.
  • a closed filter system in which a magnetic wire is provided in a magnetic field, the magnetically separated substance adheres to the magnetic wire.
  • the magnetic sorbent 5 among the substances to be separated 4 thus separated is collected, regenerated and reused, and the rest is discarded.
  • the separated water is drained to sewage or recycled.
  • FIG. 2 shows another embodiment according to the present invention, which is different from the embodiment of FIG. 1 in that a sedimentation tank 7 is provided between the magnetizing device 2 and the magnetic separation device 3. In the sedimentation tank 7, water is separated from the substance to be separated by precipitating the substance to be separated.
  • FIG. 3 shows the results of a test for removing substances causing a rise in COD in wastewater using the wastewater treatment system of the present invention.
  • the COD component in the raw effluent is about 150 mg Zl, and after primary separation (equivalent to 6 in Fig. 1) by the filter at the previous stage, it becomes about 70 mg Zl, After secondary separation (after 7 in Fig. 2), it is about 4 Omg Zl, and after magnetic separation (after 3 in Fig. 2), it is about 2 Omg Zl. It shows good removal performance of the wastewater treatment system.
  • FIG. 4 shows a state in which the laminated magnetic filter 31 used in the wastewater treatment system of the present invention and the unit magnetic filter 32 constituting the laminated magnetic filter 31 are washed.
  • the laminated magnetic filter 31 is configured by detachably stacking a plurality of unit magnetic filters 32, and has a total length at least equal to or greater than the length of the superconducting magnet 30 in the longitudinal direction.
  • the laminated magnetic filter 31 captures a large amount of the substance to be separated toward the inflow side (upstream side) of the wastewater, the unit magnetic filter 32 is pushed into the downstream side to push the upstream side toward the upstream side. Take out the unit magnetic filter 32 in order, wash it, and return it to the downstream side.
  • the unit magnetic filter 32 When the unit magnetic filter 32 is taken out on the upstream side, for example, it is pushed up in a direction perpendicular to the longitudinal direction of the magnet.
  • the washing can be appropriately used such as bubble washing, ultrasonic washing, jet washing, and suction washing, and washing can also be performed by appropriately combining these.
  • the clean unit magnetic filter 32 can be pushed from the downstream side even when the superconducting magnet 30 is excited.
  • the unit magnetic filters 32 on the upstream side are sequentially taken out and washed, and it is easy to return to the downstream side after washing.
  • the longitudinal center of the laminated magnetic filter coincides with the longitudinal magnetic field center of the superconducting magnet.
  • FIG. 5 is an example of a unit magnetic filter 32 constituting the laminated magnetic filter 31.
  • a wire mesh 34 made of a magnetic material is attached to the filter case 50 and supported by the support 35 as necessary.
  • the mesh roughness of the wire netting 34, the diameter and the thickness of the filter, and the like can be appropriately selected in consideration of the processing target, the processing capacity, and the like.
  • the wire mesh can be of a replaceable structure or can be overlaid.
  • a magnetic material such as the wire netting 34 exerts a magnetic force in a magnetic field that attempts to dispose it in the direction of the magnetic field lines. Therefore, if a single unit magnetic filter is disposed in the bore of the solenoid magnet, the axial direction The force to turn sideways acts. Therefore, if there is a gap between the unit magnetic filters 32 that are continuously laminated, a force that causes the unit magnetic filters to fall down acts, and there is a risk that close lamination may be hindered.
  • the filter case 50 may be made of a magnetic material, or a magnetic rod may be attached to the filter case 50 in an appropriate position in the axial direction to increase the axial stability. No.
  • FIG. 6 shows a wastewater treatment system using a laminated magnetic filter 31 according to the present invention.
  • a sorbent 37 such as activated carbon or a porous body is unitized by an ultrasonic cleaning device 36.
  • sorbent holding type magnetic filter system By returning the sorbent 37 directly to the processing tank 51, for example, the sorbent 37 collected at the bottom of the processing tank 51 can be easily collected, regenerated, and reused.
  • the treatment method combining the magnetic separation using the laminated magnetic filter and the biodegradation with biological activated carbon according to the present invention is also referred to as a “magnetically separated biological activated carbon treatment method”.
  • the treatment speed (flow rate) cannot be increased so much to prevent the activated carbon from flowing out of the biological treatment tank.
  • the magnetic separation type biological activated carbon treatment method according to the present invention by installing a magnetic separation device at the outlet of purified water from the biological treatment tank, the processing capacity at a flow rate of approximately 10 to 20 cmZ seconds can be achieved. realizable.
  • the size of the treatment tank should be such that the residence time of water in the treatment tank is about 10 minutes.
  • the magnetic separation type biological activated carbon treatment method according to the present invention can greatly improve the processing speed, reduce the size of the apparatus (for example, about several tenths of that of the conventional apparatus) and can improve the processing speed as compared with the ordinary biological activated carbon treatment method. Cost reduction can be realized.
  • FIG. 7 shows a switchback type magnetic separation device according to the present invention.
  • a non-magnetic or weak-magnetic tubular container 39 is divided at the center by a partition plate 43 to form two chambers 44, 45.
  • a separation wall 42 forms a forward path 40 and a return path 41.
  • a magnetic filter 38 is provided in each of the outward routes 40.
  • As the structure of the magnetic filter 38 a laminated magnetic filter in which unit magnetic filters are laminated, a magnetic filter of an integrated structure, or the like can be appropriately used.
  • the entire tubular container 39 can be moved in the longitudinal direction indicated by the arrow A in the pores of the superconducting magnet 30 by a suitable driving means (not shown).
  • Each chamber 44, 45 has an inlet for raw wastewater and an outlet for treated wastewater, and the wastewater entering from the inlet is filtered by a magnetic filter 38 arranged in the outgoing section 40. Exit the exit through the return section 41.
  • a suitable valve (not shown)
  • the flow of raw wastewater into one chamber can be stopped and flow into the other chamber.
  • washing water is supplied from the outlet by operating an appropriate valve (not shown), and the magnetic filter 38 of the outward path 40 is back-washed through the return path 41. Then, the sludge water after washing can be discharged from the inlet.
  • a bubbling air supply pipe is installed near the magnetic filter 38 to increase the cleaning capacity.
  • the drive means moves the entire container 39 containing the magnetic filter, and Pull out the superconducting magnet 30 and place the other magnetic filter in the bore of the superconducting magnet for filtration. In the meantime, backwash the used magnetic filter.
  • the two magnetic filters can be used alternately and used, and the other magnetic filter can be washed while filtering using one magnetic filter, which is efficient. It is.
  • the magnetic filter itself is provided in a closed container, if bacteria such as O-157 and toxic substances such as environmental hormones are captured by the filter, necessary processing is required. And then remove it.
  • FIG. 8 shows a configuration of a magnetic separation experiment performed using the laminated magnetic filter according to the present invention.
  • 13 magnetic filter sets 46 (indicated by (1), (2), ⁇ ⁇ ⁇ , (13) in order from the inflow side) are laminated and the laminated magnetic filter 3 Make up 1.
  • Each magnetic filter set 46 is composed of four magnetic filters 47, as shown in Fig. 8 (b), and a spacer 48 with a width of 1 cm is provided between each magnetic filter 47. Have been.
  • a superconducting magnet 30 generates a magnetic field of 3 T.
  • 50 liters of water ie, a concentration of 5% by weight
  • 50 g of magnetite isetite
  • Table 1 shows the results.
  • the more upstream magnetic filter cassettes capture more magnetite, and cassettes (1) and (2) have recovered almost 70% of magnetite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

本発明は、磁気フィルターの洗浄を効率よく行うことができる超伝導磁気分離装置を用いた廃水処理システムを提供することを目的としており、単位磁気フィルターを着脱自在に積層して構成した積層磁気フィルターを超伝導磁石のボア内に備え、この積層磁気フィルターの全長を少なくとも超伝導磁石の長手方向の長さ以上にする。超伝導磁石の励磁中に、積層磁気フィルターの下流側(清浄水側)に単位磁気フィルターを押し込むことにより上流側(汚水側)から単位磁気フィルターを取り出し、洗浄した後に再度下流側に戻す。

Description

明細書 超伝導磁気分離による廃水処理システム 技術分野
本発明は、 超伝導磁気分離による廃水処理システムに係り、 特にソレノイド型 の超伝導磁気分離装置を利用して廃水を浄化する廃水処理システムに関する。 こ こで、 本発明の 「廃水処理」 は、 浄水場での高度 (すなわち浄化レベルの高い) 処理、 地下水 ·河川水 ·海水等の高度処理なども含む。 また、 本明細書及び特許 請求の範囲における 「廃水」 なる用語は、各種の工場、実験施設、研究所、学校、 家庭などからの廃水又は排水のみならず、 地下水、 河川水、 浄水場 ·下水場の処 理水、 海水なども含み、 広く 「分離すべき物質を含んだ水」 という意味で用いら れる。 背景技術
各種工場からの廃水には、 環境保護 ·資源再利用の観点から、 廃水から分離す べき物質 (以下 「被分離物質」 という) が種々含まれている。 例えば、 再生紙製 造工場からの廃水には、 古紙等の中に含まれる染料,顔料、 接着剤等の有機成分 や通常の廃水処理の際に添加される凝集剤など多くの被分離物質が含まれている c これらの物質は、 C O D (化学的酸素要求量) を上昇させる原因物質であり、 環 境保護のためにその排出が近年厳しく規制されるようになってきた。 また、 C O Dの指標だけでなく、 B O D (生物的酸素要求量) や T O C (全有機炭素) など の指標についても、 同様に環境保全の観点からそれらの指標を上昇させる原因物 質の排出は規制されるべきものである。
従来の廃水処理は、 凝集剤を利用した通常の処理の後に、 活性汚泥を利用した 生物処理を行うものである。 すなわち、 廃水中に含まれる有機物を様々な種類の バクテリアや生物の集合体 (活性汚泥) を用いて分解して排水していた。
なお、 本出願に係る発明に関連する先行技術文献としては例えば以下のものが ある n 発明の開示
(発明が解決しようとする課題)
従来の活性汚泥による生物処理では、 生物の処理速度が遅いことに起因して大 規模な設備と広大な設置面積を必要とし、 また、 活性汚泥を効率的に機能させる ための条件管理に高度の熟練を要するという問題があった。
従って、 本発明の目的は、 活性汚泥による廃水処理に伴う上記問題を解消し、 低コス ト、 省スペース、 高効率、 高速かつ高度処理を実現する廃水処理システム を提供することである。
また、 従来の汎用の超伝導磁気分離装置は、 磁気フィルターの洗浄のため、 一 旦超伝導磁石を停止して磁気フィルターを逆洗するか、 又は取り出して洗浄して 再装着し、 その後再励磁を行っていたので、 時間、 経済及び操作上非常に効率が 悪カ った。
よって、 本発明の別の目的は、 磁気フィルターの洗浄を効率よく行うことがで きる超伝導磁気分離装置を用レ、た廃水処理システムを提供することである。
(課題を解決するための手段)
上記の問題点を解決するため、 本発明は、 被分離物質に磁性を付与して、 ソレ ノィド型の超伝導磁気分離装置により廃水から分離する廃水処理システムにおい て、 磁性の与えられた多孔質体、 活性炭又は担体を収着剤として用い、 被分離物 質を収着させることにより被分離物質に磁性を付与するようにした。
また、 本発明の廃水処理システムにおいて用いられる超伝導磁気分離装置は、 単位磁気フィルターを着脱自在に積層して全長を少なくとも超伝導磁石の長手方 向の長さ以上にした積層磁気フィルターを超伝導磁石のボア内に設ける構成とし 得る。 このような構成において、 超伝導磁石の励磁中に積層磁気フィルターの下 流側 (清浄水側) に単位磁気フィルターを押し込むことにより上流側 (汚水側) から単位磁気フィルターを取り出し、 洗浄した後に再度下流側に戻すように構成 し得る。
加えて、 処理槽において廃水中の被分離物質を磁性収着剤に収着させることに より担磁させると共に、 この処理槽中にて磁気フィルターを洗浄して磁気フィル ターに付着した収着剤を剥離して処理槽中に直接戻すように構成することもでき る。 このような構成において、 収着剤として生物活性炭のような微生物の付着し た担体を用いることもできる。 このように微生物の付着した担体を用いて生分解 を行って廃水を浄化することを 「微生物固定化法による廃水処理」 ともいう。 また、 本発明の廃水処理システムにおいて用いられる超伝導磁気分離装置は、
2つの磁気フィルターを交互に切り替えて使用すべく、 超伝導磁石のポアを通つ て長手方向に移動自在な連結した 1対の磁気フィルターを備え、 一方の磁気フィ ルターがポア内に位置して磁気分離している間に、 もう一方の磁気フィルターを ポア外にて逆洗できる構成とすることもできる。
(発明の効果)
被分離物質に磁性を付与するための磁性付与手段と、 ソレノィド型の超伝導磁 気分離手段とを備え、 磁性の付与された被分離物質をソレノィド型超伝導磁石が 発生する磁場で捕獲する廃水処理システムにおいて、磁性の与えられた多孔質体、 活性炭又は担体を収着剤として用い、 被分離物質を収着させることにより被分離 物質に磁性を付与する構成とすることで、 従来技術と比べて設備コス トの大幅削 減、 省スペース化、 簡単な操作性、 処理の高速性、 髙効率性、 高度化などが達成 された。 また、 磁性収着剤を回収し再生して再使用することで効率、 経済性が高 められる。
また、 単位磁気フィルターを着脱自在に積層して構成した積層磁気フィルター を超伝導磁石のポア内に設け、 この積層磁気フィルターの長さを少なくとも超伝 導磁石の長手方向の長さ以上にすることで、 超伝導磁石が励磁中でも磁場を落と すことなく、 下流側から清浄な単位磁気フィルターを押し込むことにより上流側 の単位磁気フィルターを順次取り出して洗浄し、 洗浄した後に下流側に戻すこと が容易になる。
この原理的な説明を加えるに、本来、積層磁気フィルターの長手方向の中心は、 超伝導磁石の長手方向の磁場センターに一致して位置するのが最も安定である。 従って、 この状態で積層磁気フィルターを長手方向に移動させようとしても磁場 センターに強力に引き戻されてしまう。 そこで、 下流側から単位磁気フィルター を 1つ押し込むことにより積層磁気フィルターが下流側に長くなり、 その長手方 向の中心が下流側にずれるので、 より安定な状態になるべく上流側に引き込む力 が生ずるのである。 その結果、 上流側に単位磁気フィルターが押し出されること になり、 積層磁気フィルターから取り出すことが容易になる。
さらに、 積層磁気フィルターの上流側から取り出した単位磁気フィルターを処 理槽中において超音波洗浄装置等で洗浄して磁性収着剤を処理槽側に直接戻す構 成とすることで、 収着剤を効率良く回収し再生して再利用できる。
加えて、 収着剤として生物活性炭のような微生物の付着した磁性担体を用い、 槽外に汚泥を取り出さず槽内に担体を閉じ込めることにより、 吸着機能と生分解 機能とを併用できるので、 より高速かつ高度な処理が高効率、 低コス トで実現で きる。 さらに、 生物活性炭の表面に付着した微生物は、 活性炭表面の孔に詰まつ た有機物をも分解して活性炭の吸着性能を再生してくれるので、 活性炭の取り替 え頻度が低減される。
また、 超伝導磁石のボア内で長手方向に移動自在な連結した 1対の磁気フィル ターを設け、 一方の磁気フィルターがボア内に位置して廃水処理している間に、 もう一方の磁気フィルターをボア外にて逆洗できる構成 (スィツチバック型) と することにより、磁気フィルターの切り替えに要する時間ロスなく廃水処理でき、 また上流側にて単位磁気フィルターを取り出して洗浄して下流側に組み入れる機 構が不要となる。 また、 スィツチバック型磁気フィルタ一は、 閉鎖的な容器内に 磁気フィルターを固定しているので、 0 _ 1 5 7等の細菌類や環境ホルモン等の 毒性物質などを捕獲した場合には、 これらを散逸させることなく容器内で必要な 処理をした後に取り出すことができる。 . 図面の簡単な説明
以下、 図面を参照して本発明を説明する。
図 1は、 本発明による廃水処理システムの概略図である。
図 2は、 本発明による廃水処理システムの別の実施態様を示す概略図である。 図 3は、 本発明による廃液処理システムを用いて行った C O D上昇の原因物質 の除去試験の結果を示す。 図 4は、 本発明による廃水処理システムで用いられる積層磁気フィルターとそ の単位磁気フィルターの移送■洗浄装置の概略図である。
図 5は、 単位磁気フィルターの概略図であり、 図 5 ( a ) は正面図、 図 5 ( b ) は B— B ' 線の断面図である。
図 6は、 単位磁気フィルターに付着した収着剤を処理槽中において超音波洗浄 装置で剥離して槽側に直接戻す構成を示す。
図 7は、本発明によるスィツチバック型の超伝導磁気分離装置の概略図である。 図 8は、 本発明による積層磁気フィルターを用いて行つた磁気分離実験の構成 説明図であり、 1 3個の磁気フィルターセットを積層して用い (図 8 ( a ) )、 各 磁気フィルターセットは、 4つの磁気フィルターを積層したものである (図 8 ( b ) )。 発明を実施するための最良の形態
本発明による廃水処理システムは、 被分離物質に磁性を付与する磁性付与手段 と、 磁性の付与された被分離物質をソレノィド型超伝導磁石が発生する磁場で捕 獲することにより被分離物質を廃水から分離する超伝導磁気分離手段とを備えて いる。
ソレノィド型の超伝導磁石内にて軸方向に廃水を流し、 廃水中の磁性を帯びた 被分離物質のみを超伝導磁石が発生する磁場により磁石ボア内の管壁等に吸着す ることもできる。 このように磁場中に磁性物質を配置しない空芯型のソレノィド 磁石を用いる磁気分離装置を 「オープンフィルターシステム」 とも称する。
本発明が対象とする廃水は、 各種工場、 例えば製紙工場、 食料品工場、 半導体 工場、 化学品工場、 染色工場、 メツキ工場等からの廃水が想定されるがこれらに 限定されるものではなく、 日常生活で生じる廃水や学校■研究所等で出る廃水な ど様々なものが考えられる。 例えば、 河川水や地下水等も廃水と考えられ、 これ らの廃水が下水処理場 ·浄水場に集められて浄化されるのであるから、 浄水場に おける浄化処理も廃水処理に含まれる。
被分離物質としては、 廃水から分離すべき種々の物質が対象となる。 例えば、 製紙工場や古紙製造工場などから出る廃水中に含まれる染料、 顔料、 接着剤、 セ ノレロース、凝集剤など (C O D上昇の原因物質)、半導体加工工場から出る廃液中 に含まれる S i C、 S i 02 などの無機物質、 ァォコなどの生体物質、 重油、 金 属イオンなど様々な非磁性物質が考えられる。 ただし、 これらは例示であり、 被 分離物質を限定して解釈すべきでない。 例えば、 O— 1 5 7細菌や環境ホルモン なども被分離物質として想定できる。
被分離物質への磁性の付与法 (担磁法) は、 コロイド化学的担磁法、 メカノケ ミカル的担磁法、 電気化学的担磁法などが適宜採用できる。 コロイド化学的担磁 法としては、 例えば酸化鉄のコロイドを被分離物質にォレーシヨンゃォキソレー シヨンによって付着させる方法、 被分離物質に水酸化鉄を析出や共沈させ酸化す る方法などがある。 メカノケミカル的担磁法は、 鉄片等の磁性物質を被分離物質 に機械的に付着させる方法である。
また、 予め収着剤をコロイド化学的担磁法、 メカノケミカル的担磁法、 電気化 学的担磁法などにより担磁させておき、 この収着剤に被分離物質を収着 (すなわ ち吸着及び吸収) させることで被分離物質に磁性を付与することもできる。 収着 剤としては、マグネタイト、セラミック多孔質体、ゼォライト多孔質体、活性炭、 プラスチック担体などが挙げられる。 収着剤を多孔質体とすることで高効率の吸 着 ·吸収が可能となる。
また、 本発明の超伝導磁気分離手段は、 磁気細線を磁場中に配置して高勾配磁 場を発生させる構成とすることもできる (クローズドフィルター方式)。廃液中の 磁性を帯びた被分離物質は、 この高勾配磁場の作用により磁気細線に吸着する。 このように磁場中に磁気細線を設ける構成により高勾配磁場を発生することがで きるので、 被分離物質に作用する磁気力を強化することができ、 より効率的な処 理が可能となる。
磁性付与手段と磁気分離手段の間に沈殿槽を設けて沈殿した被分離物質を廃水 から分離することもでき、 それにより分離効率をさらに上げることができる。
また、 本発明は、 クローズドフィルター方式において、 磁気細線等の磁性材料 から構成された磁気フィルター (「単位磁気フィルター」) を着脱自在に複数個積 層して少なくとも超伝導磁石の長手方向の長さ以上にした積層磁気フィルターを、 超伝導磁石のボア内に設けることもできる。 このような構成とすることにより、 超伝導磁石が励磁中 (すなわち磁場を発生中) においても、 下流側から清浄な単 位磁気フィルターを 1つずつ押し込むことによって、 被分離物質がより多く捕獲 される上流側の磁気フィルターを順に取り出し、 洗浄の後に再度下流側に戻すこ とが容易にできる。 この原理的な説明は上述した通りである。 このことにより、 磁気フィルターの洗诤のために磁気分離処理を中断することなく、 連続処理が可 能となる。
ところで、 従来の超伝導磁気分離では、 磁石内で捕獲した被分離物質を除去す るために、 励磁中の超伝導磁石を一且減磁して被分離物質を除去した後に再度励 磁していたので、 非常に効率が悪かった。 これは、 超伝導磁石の作動中は、 磁気 フィルターが超伝導電磁石が作る磁場中心に強力に捕捉され、 励磁中は磁気フィ ルターを超伝導電磁石のポア外に取り出すことが困難であったからである。 この ため、 超伝導磁石を一旦停止して、 磁気フィルターを取り出して洗浄して元に戻 すか、 磁石ポア内に置いたまま逆洗を行わざるをえなかった。 この欠点は、 本発 明の上記構成により解消された。
また、 本発明の廃水処理システムは、 超伝導磁石の励磁中に積層フィルターの 下流側から清浄な単位磁気フィルターを押し込んで積層フィルターの上流側の単 位磁気フィルターを取り出し、 洗浄し、 再度下流側に押し込むという一連の操作 を行うよう構成された移送■洗浄手段をさらに備えることもできる。 洗浄には、 空気吸引によりフィルター表面の付着物を吸い込む吸引洗浄法や高圧水等を当て て洗浄する噴射洗浄法や超音波洗浄法やバブル洗浄法など任意の洗浄法を適宜採 用でき、 これらを組み合わせて用いることもできる。
この移送■洗浄手段は、 好ましくは超音波洗浄装置を処理槽中に備え、 積層磁 気フィルターの上流側から取り出した単位磁気フィルターを処理槽中の洗浄装置 に移送し、 付着した収着剤を剥離して処理槽側に直接戻す構成とすることもでき る。 活性炭、 セラミック多孔質体、 セラミックやプラスチックの担体などの収着 剤を処理槽側に直接戻すことで、 効率よく収着剤を回収し再生して再利用するこ とができる。
収着剤を処理槽に直接戻す構成において、 収着剤として用いる微生物の付着し た担体は、 活性炭表面に微生物を付けた生物活性炭を採用することもできる。 生 物活性炭は、 被分離物質の吸着機能だけでなく生分解機能をも有するので、 処理 槽中にて有機物を分解し、 磁気分離と相俟って浄化性能を一層向上させ得る。 加 えて、 生物活性炭の生分解機能により、 活性炭表面の孔に詰まった有機物が分解 され、 活性炭が再生されるので、 活性炭の取り替え頻度を少なくできる。
また、 上記の積層磁気フィルターの代わりに、 2つの磁気フィルターを交互に 切り替えて使用すべく、 連結した一対の磁気フィルターを超伝導磁石のポアを通 つて長手方向に移動自在とし、 一方の磁気フィルターがポア内に位置して廃水処 理している間、 もう一方の磁気フィルターをポア外にて逆洗できる構成(「スィッ チバック型」 という) とすることもできる。 このような構成とすることで、 時間 的な無駄なく効率よく廃水処理ができ、 また上流側の単位磁気フィルターを取り 出して洗浄し下流側に戻す移送,洗浄手段を設ける必要もない。 また、 スィッチ バック型磁気フィルタ一は、 閉鎖的な容器内に磁気フィルターを固定しているの で、 O— 1 5 7等の細菌類や環境ホルモン等の毒性物質などを捕獲した場合には、 これらを散逸させることなく容器内で必要な処理をした後に取り出すことができ るので安全性に優れている。
(実施例)
実施例について図面を参照して説明する。
図 1は、 本発明による廃水処理システムの一実施例の概念図である。 工場等か らの廃水 1がまず濾過器 6で濾過されて磁性付与装置 2に送られる。 磁性付与装 置 2では、 磁性を帯びた収着剤 5を廃水に加えて撹拌することにより磁性収着剤 5に染料 ·顔料や接着剤などの有機成分等 (すなわち被分離物質) を収着させて 磁性を付与する。 なお、 磁性付与装置 2では、 収着剤 5を用いる代わりに、 直接 的に被分離物質をコロイド化学的担磁法ゃメ力ノケミカル的担磁法により担磁さ せることもできる。
次に、 磁性の付与された被分離物質を含んだ廃水は、 超伝導磁気分離装置 3に 送られ、 ソレノイド型超伝導磁石が作る高磁場強度、 高勾配磁場中を通過する。 その際、 ソレノィド型磁石の磁場中に磁気細線を配置しないオープンフィルター システムでは、磁性を帯びた被分離物質は磁石ボア内の管壁等に付着する。また、 磁場中に磁気細線を設けたクローズドフィルターシステムでは、 磁性を帯びた被 分離物質は磁気細線に付着する。 このようにして分離した被分離物質 4のうち、 磁性収着剤 5は回収し再生して再利用し、 残りは廃棄する。 一方、 分離した水は 下水に排水又はリサイクルする。
図 2は、 本発明による別の実施例を示し、 磁性付与装置 2と磁気分離装置 3と の間に沈殿槽 7を設けた点が図 1の実施例とは異なる。 沈殿槽 7では、 被分離物 質を沈殿させることにより水と被分離物質との分離を行う。
図 3は、 廃水における C O D上昇の原因物質の除去試験を本発明の廃水処理シ ステムで行った結果を示す。 原廃液中の C O D成分は約 1 5 0 m g Z lであり、 前段の濾過器による一次分離 (図 1の 6に相当) 後には約 7 O m g Z lになり、 担磁後の沈殿槽による二次分離後 (図 2の 7の後) には約 4 O m g Z lになり、 磁気分離後 (図 2の 3の後) には約 2 O m g Z 1 となっており、 本発明による廃 水処理システムの良好な除去性能を示している。
図 4は、 本発明の廃水処理システムで用いられる積層磁気フィルター 3 1と、 その積層磁気フィルター 3 1を構成する単位磁気フィルター 3 2の洗浄の様子を 示す。 積層磁気フィルター 3 1は、 複数の単位磁気フィルター 3 2を着脱自在に 積層して構成し、 その全長は少なくとも超伝導磁石 3 0の長手方向の長さ以上に する。後に詳細に説明するように、積層磁気フィルター 3 1は、廃水の流入側(上 流側) ほど被分離物質を多く捕獲するので、 下流側に単位磁気フィルター 3 2を 押し込むことによつて上流側の単位磁気フィルター 3 2を順次取り出して洗浄し、 下流側に戻してやる。 上流側にて単位磁気フィルター 3 2を取り出す際には、 例 えば磁石の長手方向に垂直な方向に押し上げる。 洗浄は、 バブル洗浄や超音波洗 浄ゃ噴射洗浄や吸引洗浄など適宜使用でき、 またこれらを適宜組合せて洗浄する こともできる。
また、 積層磁気フィルター 3 1の全長を超伝導磁石 3 0の長手方向の長さより も長くすることで、 超伝導磁石 3 0が励磁中でも、 下流側から清浄な単位磁気フ ィルター 3 2を押し込むことにより上流側の単位磁気フィルター 3 2を順次取り 出して洗浄し、 洗浄した後に下流側に戻すことが容易になる。 これは、 積層磁気 フィルターの長手方向の中心が、 超伝導磁石の長手方向の磁場センターに一致し て位置するのが最も安定であるという性質を利用したものである。 すなわち、 下 流側から単位磁気フィルターを 1つ押し込むことにより積層磁気フィルターが下 流側に長くなり、 その長手方向の中心が下流側にずれるので、 より安定な状態に なろうとして上流側に引き込まれるのである。 その結果、 上流側に単位磁気フィ ルターが押し出されることになり、 積層磁気フィルターから取り出すことが容易 になる。
図 5は、 積層磁気フィルター 3 1を構成する単位磁気フィルター 3 2の一例で ある。 磁性材からなる金網 3 4をフィルターケース 5 0に張り、 必要に応じてサ ポート 3 5で支持した構成をなす。 金網 3 4のメッシュ粗さ、 フィルターの径、 厚さなどは処理対象、 処理能力などを考慮して適宜選択し得る。 金網は張り替え 可能な構造とすることもでき、 また重ね張りすることもできる。
また、 金網 3 4のような磁性材は、 磁場中では磁力線の方向に沿って配置させ ようとする磁気力が働くので、 単独の単位磁気フィルターをソレノィド磁石のボ ァ中に配置すると、 軸方向に横倒しにする力が作用する。 そのため、 連続的に積 層した単位磁気フィルター 3 2間に隙間があると、 単位磁気フィルターを横倒し にする力が作用し、 密接な積層が妨げられる危険性がある。 このことを防止する ためには、 フィルターケース 5 0を磁性体にするか、 又は磁性体の棒を軸方向に 適所に適当量だけフィルターケース 5 0に取り付けて軸方向の安定性を増すとよ い。
図 6は、 本発明による積層磁気フィルター 3 1を用いた廃水処理システムにお いて、 処理槽 5 1中において活性炭や多孔質体などの収着剤 3 7を超音波洗浄装 置 3 6により単位磁気フィルター 3 2から剥離して槽中に直接戻す構成(「収着剤 保持型磁気フィルターシステム」 という) を示す。 収着剤 3 7を処理槽 5 1側に 直接戻すことにより、 例えば処理槽 5 1の底部に溜まった収着剤 3 7を回収し、 再生させて再利用することが容易になる。
この構成において、 収着剤として生物活性炭を用いると、 活性炭のもつ吸着機 能と、 活性炭粒子表面に形成した微生物膜による生分解機能の両方を利用して水 の浄化を行うことができるので、 少量の活性炭で効率的に有機物を除去できる。 活性炭表面の孔に詰まった有機物も生分解されて活性炭が再生されるので、 活性 炭の交換頻度が低減される (例えば 3年に 1回程度)。 このように、本発明による 積層磁気フィルターを用いた磁気分離と生物活性炭による生分解を組み合わせた 処理法を 「磁気分離型生物活性炭処理法」 ともいう。
一方、 通常の生物活性炭処理法では、 生物処理槽中の活性炭の流出を防ぐため に処理速度 (流速) をあまり大きくできない。 これに対して、 本発明による磁気 分離型生物活性炭処理法では、 生物処理槽からの浄水の出口に磁気分離装置を設 けることにより、 ほぼ 1 0〜2 0 c mZ秒の流速の処理能力が実現できる。 処理 槽の大きさは、 水の処理槽内での滞留時間が 1 0分程度となるような大きさとす る。 よって、 本発明による磁気分離型生物活性炭処理法は、 通常の生物活性炭処 理法に比べて大幅な処理速度の向上、 装置サイズの小型化 (例えば従来装置に比 ベ数十分の一程度) 及び低価格化が実現できる。
図 7は、 本発明によるスィッチバック型の磁気分離装置を示す。 非磁性又は弱 磁性の管状容器 3 9が仕切板 4 3により中央で仕切られ、 2つのチャンバ一 4 4、 4 5を形成している。 各チャンバ一 4 4、 4 5では、 分離壁 4 2により往路部 4 0と復路部 4 1とが形成される。 往路部 4 0にはそれぞれ磁気フィルター 3 8が 設けられる。 磁気フィルター 3 8の構造は、 単位磁気フィルターを積層した積層 型の磁気フィルタ一や一体構成型の磁気フィルターなどが適宜採用できる。 管状 容器 3 9全体は、 適当な駆動手段 (図示せず) により超伝導磁石 3 0のポア中を 矢印 Aで示す長手方向に移動させることができる。 各チャンバ一 4 4、 4 5は、 原廃水の流入口と処理済み廃水の流出口とを備え、 流入口から入った廃水は、 往 路部 4 0に配置された磁気フィルター 3 8により濾過され、 復路部 4 1を通って 流出口から出る。 適当なバルブ (図示せず) 操作により、 一方のチャンバ一への 原廃水の流入を止め、 もう一方のチャンバ一に流入させることができる。 また、 チャンバ一を磁場外に出した後に、 適当なバルブ (図示せず) 操作により、 流出 口から洗浄水を入れ、 復路部 4 1を介して往路部 4 0の磁気フィルター 3 8を逆 洗し、 洗浄後の汚泥水を流入口から排出することもできる。 磁気フィルター 3 8 の近くには、 洗浄能力を高めるバブリングエアーの供給管が設けられている。 スィツチバック型の磁気分離装置では、 使用中の磁気フィルターを洗浄する必 要が生じたら、駆動手段により磁気フィルターを収容した容器 3 9ごと移動させ、 超伝導磁石 3 0から引き出し、 もう一方の磁気フィルターを超伝導磁石のボア中 に設置して濾過を行う。 その間に、 使用した方の磁気フィルターの逆洗を行う。 このように、 2つの磁気フィルターを交互に切り替えて使用することができ、 一 方の磁気フィルターを用いて濾過を行っている間に、 他方の磁気フィルターの洗 浄を行うことができるので効率的である。 また、 磁気フィルター自体は閉鎖的な 容器内に設けられているので、 O— 1 5 7等の細菌類や環境ホルモン等の毒性の ある物質などをフィルタ一で捕獲した場合には、 必要な処理を行ってから取り出 すことができる。
図 8は、 本発明による積層磁気フィルターを用いて行った磁気分離実験の構成 を示す。 図 8 ( a ) に示すように、 1 3個の磁気フィルターセット 4 6 (流入側 から順に(1),(2), ■ · · , (13)で示す) を積層して積層磁気フィルター 3 1を構成 している。 各々の磁気フィルターセット 4 6は、 図 8 ( b ) に示すように、 4枚 の磁気フィルター 4 7から構成され、 各磁気フィルター 4 7の間には幅 1 c mの スぺーサ 4 8が設けられている。
(実験 1 ) '
超伝導磁石 3 0により 3 Tの磁場を発生させ、 上流側からマグネタイ ト (イセ タイト) 5 0 g混入した水 1 0 リ ッ トル (すなわち 5重量%の濃度) を流速 8 0 0 トン Z日 (8 c m/秒) にて流して濾過した。 濾過した後に、 磁場を落として 磁気フィルタ一力セットをそっと取り出してカセットに付着したマグネタイトの 量を測定した。 結果を表 1に示す。 表 1から分かるように、 上流側の磁気フィル ターカセットほど多くのマグネタイ トを捕獲しており、 カセット (1)と(2) でほ ぼ 7割のマグネタイトを回収できた。 カセッ ト 捕獲マゲネタイ 卜 (g ) 比率 (%)
(1) 18. 3456 36. 7
(2) 17. 4468 34. 9
(3) 3. 2045 6. 4
(4) 1. 3614 2. 7
(5) 0. 6354 1. 3
(6) 0. 3211 0. 6
(7) 0. 1432 0. 3
(8) 0. 0933 0. 2
(9) 0. 0710 0. 1
(10) 0. 0530 0. 1
(11) 0. 0359 0. 1
(12) 0. 0204 0. 0
(13) 0 0. 0
(計) - 41. 7599 83. 5
(実験 2 )
実験 1と同様に、 超伝導磁石により 3 Τの磁場を発生させ、 マグネタイ ト含有 水を流して濾過した。 濾過後に、 磁場を落とさずに下流側からカセットを 1つず つ計 7個入れ、 上流側のカセット (1)〜(7) を取り出し、 マグネタイトの量を測 定した。 結果を ¾ 2に示す。 表 2から分かるように、 カセット (1)〜(7) でのマ グネタイ トの捕獲量は、 実験 1とほぼ同じであり、 上流側のカセット (1)と(2) でほぼ 7割のマグネタイ トが回収できた。 この結果から、 超伝導磁石の励磁中で も、 磁性カセットに吸着したマグネタイトが離れて超伝導磁石の方に付着する となく良好に取り出せることが確認できた。
表 2
カセッ ト 捕獲マグネタイ ト (g) 比率 (%)
(1) 18.8518 37.7
\Δ) 18.00 ίο ο /.1
(3) 3.1032 6.2
(4) 1.3784 2.8
(5) 0.6388 1.3
(6) 0.2903 0.6
(7) 0.1609 0.3
(計) 42.9912 86.0

Claims

請求の範囲
1 . 廃水中に含まれる被分離物質に磁性を付与する磁性付与手段と、 磁性の付 与された被分離物質をソレノィド型超伝導磁石が発生する磁場で捕獲することに より被分離物質を廃水から分離する超伝導磁気分離手段とを備えた廃水処理シス テムにおいて、
前記磁性付与手段が、 磁性の与えられた多孔質体、 活性炭又は担体を収着剤と して用い、 被分離物質を収着させることにより被分離物質に磁性を付与すること を特徴とする廃水処理システム。
2 . 廃水中に含まれる被分離物質に磁性を付与する磁性付与手段と、 磁性の付 与された被分離物質をソレノィド型超伝導磁石が発生する磁場で捕獲することに より被分離物質を廃水から分離する超伝導磁気分離手段とを備えた廃水処理シス テムにおいて、
前記超伝導磁気分離手段が、 単位磁気フィルターを着脱自在に積層して構成し た積層磁気フィルターを超伝導磁石のボア内に備え、 この積層磁気フィルターの 長さが少なくとも超伝導磁石の長手方向の長さ以上あることを特徴とする廃水処 理システム。
3 . 超伝導磁石の励磁中に前記積層磁気フィルターの下流側 (清浄水側) に単 位磁気フィルターを押し込むことにより上流側 (汚水側) から単位磁気フィルタ 一を取り出し、 洗浄した後に再度下流側に戻すよう構成された移送 ·洗浄手段を さらに備える請求項 2に記載の廃水処理システム。
4 . 前記磁性付与手段が、 処理槽において廃水中の被分離物質を磁性の与えら れた収着剤に収着させることにより被分離物質に磁性を付与し、
前記処理槽中で前記磁気フィルターの前記洗浄を行って磁気フィルターに付着 した収着剤を剥離して該処理槽中に直接戻すことを特徴とする請求項 3に記載の 廃水処理システム。
5 . 前記収着剤が微生物の付着した担体であることを特徴とする微生物固定化 法による請求項 4に記載の廃水処理システム。
6 . 廃水中に含まれる被分離物質に磁性を付与する磁性付与手段と、 磁性の付 与された被分離物質をソレノィド型超伝導磁石が発生する磁場で捕獲することに より被分離物質を廃水から分離する超伝導磁気分離手段とを備えた廃水処理シス テムにおいて、
前記超伝導磁気分離手段が、 超伝導磁石のボアを通つて長手方向に移動自在な 連結した 1対の磁気フィルターを備え、 移動により磁気フィルターを交互に切り 替えて使用でき、 一方の磁気フィルターがボア内に位置して廃水処理している間 に、 もう一方の磁気フィルターをボア外にて逆洗できることを特徴とする廃水処 理システム。
PCT/JP2004/011586 2003-08-07 2004-08-05 超伝導磁気分離による廃水処理システム WO2005014486A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04771561A EP1683764A4 (en) 2003-08-07 2004-08-05 SYSTEM FOR TREATING SEWAGE-SEPARATED WATER USING A SUPERCONDUCTING MAGNET
JP2005513017A JP4597862B2 (ja) 2003-08-07 2004-08-05 超伝導磁気分離による廃水処理システム
AU2004263451A AU2004263451A1 (en) 2003-08-07 2004-08-05 Waste water treatment system by superconductive magentic separation
KR1020057001383A KR101125288B1 (ko) 2003-08-07 2004-08-05 초전도 자기 분리에 의한 폐수 처리 장치
US10/523,245 US7473356B2 (en) 2003-08-07 2004-08-05 Wastewater treatment system by superconducting magnetic separation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-288440 2003-08-07
JP2003288440 2003-08-07

Publications (1)

Publication Number Publication Date
WO2005014486A1 true WO2005014486A1 (ja) 2005-02-17

Family

ID=34131511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011586 WO2005014486A1 (ja) 2003-08-07 2004-08-05 超伝導磁気分離による廃水処理システム

Country Status (7)

Country Link
US (1) US7473356B2 (ja)
EP (1) EP1683764A4 (ja)
JP (1) JP4597862B2 (ja)
KR (1) KR101125288B1 (ja)
CN (1) CN100344548C (ja)
AU (1) AU2004263451A1 (ja)
WO (1) WO2005014486A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007006817A1 (es) 2005-07-12 2007-01-18 Centro De Investigación De Rotación Y Torque Aplicada, S.L. C.I.F. B83987073 Filtro para capturar emisiones contaminantes
WO2008072399A1 (ja) * 2006-12-12 2008-06-19 Sumiju Plant Engineering Co., Ltd. 磁気分離装置
JP2009072757A (ja) * 2007-09-20 2009-04-09 Southern Taiwan Univ Of Technology 単層磁性フィルム濾過装置
JP2011121031A (ja) * 2009-12-14 2011-06-23 Kobe Steel Ltd 水の物理処理用磁場発生装置
JP2011189257A (ja) * 2010-03-12 2011-09-29 Toshiba Corp 水処理システム
KR101188658B1 (ko) 2012-04-30 2012-10-09 청해이엔브이 주식회사 고주파 전자장을 이용한 오폐수 정화장치 및 그 정화방법
WO2015023573A3 (en) * 2013-08-13 2017-06-01 Advanced Green Technologies, Llc Device for treating chemical compositions and methods for use thereof
CN108467094A (zh) * 2018-05-08 2018-08-31 中科京投环境科技江苏有限公司 一种可连续运行的超导磁分离污水处理系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871096B2 (en) 2007-09-10 2014-10-28 Res Usa, Llc Magnetic separation combined with dynamic settling for fischer-tropsch processes
CN102115233B (zh) * 2011-03-07 2012-07-25 江苏旌凯中科超导高技术有限公司 超导磁体污水絮凝净化装置
CN102153173B (zh) * 2011-05-11 2012-09-05 中山市泰帝科技有限公司 一种电磁脉冲辅助脉冲电絮凝处理餐饮废水的装置及方法
CN102489104B (zh) * 2011-12-30 2013-09-11 魏伯卿 环磁叠加多级隧道顺磁梯度分离提浓装置
CN103240173B (zh) * 2012-02-08 2015-11-18 香港科技大学 磁力分离器及具有该磁力分离器的水处理系统
CN103121770B (zh) * 2013-01-17 2014-08-13 北京科技大学 一种利用超导hgms技术处理废弃物的分离提纯装置
WO2015044444A1 (en) 2013-09-30 2015-04-02 Mærsk Olie Og Gas A/S Water treatment suited for oil production wells
WO2015044446A1 (en) 2013-09-30 2015-04-02 Mærsk Olie Og Gas A/S Method and system for the recovery of oil, using water that has been treated using magnetic particles
CN105992808B (zh) 2013-09-30 2018-10-19 综合E&P丹麦股份有限公司 磁性纳米粒子用于耗尽油中的芳族化合物的用途
WO2015044445A1 (en) 2013-09-30 2015-04-02 Mærsk Olie Og Gas A/S Method and system for the enhanced recovery of oil, using water that has been depleted in ions using magnetic particles
CN103641215B (zh) * 2013-12-10 2015-09-23 北京科技大学 超导HGMS-负载Fe吸附耦合工艺处理重金属废水的方法
CN103693726B (zh) * 2013-12-10 2015-11-25 北京科技大学 超导hgms-活性炭耦合工艺处理重金属废水的方法
CN103641216B (zh) * 2013-12-10 2015-11-25 北京科技大学 超导hgms-nzvi耦合工艺处理重金属废水的方法
CN104478154B (zh) * 2014-11-28 2016-05-04 中国科学院理化技术研究所 车载式超导磁分离油田采出水处理系统
CN104609520B (zh) * 2015-01-27 2016-09-28 中国科学院理化技术研究所 一种自动化连续运行超导磁分离污水分离器
CN106277235B (zh) * 2016-10-07 2019-12-06 玉灵华科技有限公司 一种磁分离机构及金属离子分离方法
CN106277173A (zh) * 2016-10-13 2017-01-04 东华理工大学 一种羟基铁结合超导磁分离用于水中磷资源化的方法
CN106517470B (zh) * 2016-12-26 2023-09-22 兰州交通大学 一种用于水处理的水力双悬浮层流化床
JP6231240B1 (ja) * 2017-05-22 2017-11-15 鹿島建設株式会社 磁気分離装置及び磁気分離方法
CN109999997A (zh) * 2019-05-10 2019-07-12 佛山市万达业机械股份有限公司 一种磁选机
CN110665640A (zh) * 2019-10-15 2020-01-10 江苏旌凯中科超导高技术有限公司 超细粒钛铁矿物料预富集及精选工艺
CN111196649A (zh) * 2020-01-20 2020-05-26 浙江固雅环境装备有限公司 一种多层过滤器
CN111298730B (zh) * 2020-03-02 2021-09-24 江苏科技大学 一种磁性生物微胶囊、制备方法及其应用
CN113181872A (zh) * 2021-05-21 2021-07-30 大连交通大学 磁性纳米复合材料及其制备方法及废水处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537966A (en) * 1976-07-08 1978-01-24 Mitsubishi Steel Mfg Treating method of water containing magnetic particles
JPS6058216A (ja) * 1983-09-07 1985-04-04 Mitsubishi Electric Corp 磁気フイルタ装置
JPH07108292A (ja) * 1993-10-15 1995-04-25 Fuji Clean Kogyo Kk 流動床担体とその沈澱促進方法並びに担体回収方法
JPH10211428A (ja) * 1997-01-29 1998-08-11 Aramitsuku:Kk 吸着セラミック
JP2000117142A (ja) * 1998-10-19 2000-04-25 Toshiba Corp 超電導磁気分離システム
JP2001300507A (ja) * 2000-04-21 2001-10-30 Taisei Corp 土壌等中の有害化学物質の回収方法
JP2002028406A (ja) * 2000-07-19 2002-01-29 Nippon Steel Corp 複数の浄水ユニットからなる浄水装置及びその運転方法並びに浄水ユニット
JP2003001243A (ja) * 2001-06-04 2003-01-07 Japan Science & Technology Corp 環境ホルモン除去処理システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054513A (en) * 1973-07-10 1977-10-18 English Clays Lovering Pochin & Company Limited Magnetic separation, method and apparatus
DE19637711C2 (de) * 1995-09-19 2003-05-28 Hitachi Ltd Magnetabscheidervorrichtung sowie Vorrichtung zur Reinigung von Flüssigkeiten
JPH1177059A (ja) * 1997-08-29 1999-03-23 Toshiba Corp 下水処理システム
JP2000000573A (ja) * 1998-06-15 2000-01-07 Mitsubishi Electric Corp 浄化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537966A (en) * 1976-07-08 1978-01-24 Mitsubishi Steel Mfg Treating method of water containing magnetic particles
JPS6058216A (ja) * 1983-09-07 1985-04-04 Mitsubishi Electric Corp 磁気フイルタ装置
JPH07108292A (ja) * 1993-10-15 1995-04-25 Fuji Clean Kogyo Kk 流動床担体とその沈澱促進方法並びに担体回収方法
JPH10211428A (ja) * 1997-01-29 1998-08-11 Aramitsuku:Kk 吸着セラミック
JP2000117142A (ja) * 1998-10-19 2000-04-25 Toshiba Corp 超電導磁気分離システム
JP2001300507A (ja) * 2000-04-21 2001-10-30 Taisei Corp 土壌等中の有害化学物質の回収方法
JP2002028406A (ja) * 2000-07-19 2002-01-29 Nippon Steel Corp 複数の浄水ユニットからなる浄水装置及びその運転方法並びに浄水ユニット
JP2003001243A (ja) * 2001-06-04 2003-01-07 Japan Science & Technology Corp 環境ホルモン除去処理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1683764A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007006817A1 (es) 2005-07-12 2007-01-18 Centro De Investigación De Rotación Y Torque Aplicada, S.L. C.I.F. B83987073 Filtro para capturar emisiones contaminantes
WO2008072399A1 (ja) * 2006-12-12 2008-06-19 Sumiju Plant Engineering Co., Ltd. 磁気分離装置
JP5129155B2 (ja) * 2006-12-12 2013-01-23 住重プラントエンジニアリング株式会社 磁気分離装置
JP2009072757A (ja) * 2007-09-20 2009-04-09 Southern Taiwan Univ Of Technology 単層磁性フィルム濾過装置
JP2011121031A (ja) * 2009-12-14 2011-06-23 Kobe Steel Ltd 水の物理処理用磁場発生装置
JP2011189257A (ja) * 2010-03-12 2011-09-29 Toshiba Corp 水処理システム
KR101188658B1 (ko) 2012-04-30 2012-10-09 청해이엔브이 주식회사 고주파 전자장을 이용한 오폐수 정화장치 및 그 정화방법
WO2015023573A3 (en) * 2013-08-13 2017-06-01 Advanced Green Technologies, Llc Device for treating chemical compositions and methods for use thereof
CN108467094A (zh) * 2018-05-08 2018-08-31 中科京投环境科技江苏有限公司 一种可连续运行的超导磁分离污水处理系统

Also Published As

Publication number Publication date
CN100344548C (zh) 2007-10-24
US7473356B2 (en) 2009-01-06
KR20060024312A (ko) 2006-03-16
EP1683764A4 (en) 2010-02-17
KR101125288B1 (ko) 2012-03-26
US20060037914A1 (en) 2006-02-23
EP1683764A1 (en) 2006-07-26
JPWO2005014486A1 (ja) 2006-11-09
AU2004263451A1 (en) 2005-02-17
CN1697784A (zh) 2005-11-16
JP4597862B2 (ja) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4597862B2 (ja) 超伝導磁気分離による廃水処理システム
JP5160737B2 (ja) 磁性活性炭を用いた磁気分離廃水処理システム
KR101286044B1 (ko) 하폐수 고도처리장치 및 이를 이용한 하폐수 고도처리방법
US5466367A (en) Industrial waste water treatment
US10071927B2 (en) Apparatus, systems, and methods for fluid filtration
JP2010125361A (ja) 排水処理システム及び浄化システム
WO2014020762A1 (ja) 水処理装置
CN101274219A (zh) 一种有效延长膜使用寿命的中水处理工艺改进方法
JP2002273261A (ja) 膜磁気分離装置
US20080179256A1 (en) System and method for chemical-free metal particle removal from a liquid media
CN1772649A (zh) 处理难降解工业废水的膜生物反应器—反渗透联用装置
KR970001244A (ko) 자석과 오존을 이용한 물의 정화방법 및 정화장치
CN210367354U (zh) 一种水体多层级复合净化装置
CN103359826B (zh) 一种曝气生物滤池
KR100711259B1 (ko) 정화처리 장치
CN207276417U (zh) 一种陶瓷膜曝气和微正压臭氧膜再生水处理装置
CN106517420A (zh) 一种用于水体净化的磁膜构建方法及磁膜过滤装置
JP3334067B2 (ja) 磁気分離装置と磁気分離装置を備えた水処理装置
JP2001149761A (ja) 固液分離処理方法及び固液分離装置
KR100330040B1 (ko) 액체 방사물 여과장치 및 그 방법
JPH0975628A (ja) 水浄化装置
CN213388070U (zh) 一种ro反渗透纯水机
CN101560026A (zh) 生化尾水吸附法深度处理前的预处理方法
WO2001053212A1 (en) Method and device for sustaining a clean water supply
KR200240476Y1 (ko) 현상기 폐수 정화기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004771561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048005391

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057001383

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006037914

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10523245

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004263451

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 10523245

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004263451

Country of ref document: AU

Date of ref document: 20040805

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004263451

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020057001383

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005513017

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004771561

Country of ref document: EP