WO2005010055A1 - ラジカル重合体の製造方法及び微細化学反応装置 - Google Patents

ラジカル重合体の製造方法及び微細化学反応装置 Download PDF

Info

Publication number
WO2005010055A1
WO2005010055A1 PCT/JP2004/010562 JP2004010562W WO2005010055A1 WO 2005010055 A1 WO2005010055 A1 WO 2005010055A1 JP 2004010562 W JP2004010562 W JP 2004010562W WO 2005010055 A1 WO2005010055 A1 WO 2005010055A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
polymer
radical
temperature
polymerization
Prior art date
Application number
PCT/JP2004/010562
Other languages
English (en)
French (fr)
Inventor
Takeshi Iwasaki
Jun-Ichi Yoshida
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2005512040A priority Critical patent/JPWO2005010055A1/ja
Priority to EP04747925A priority patent/EP1650228A4/en
Priority to US10/565,652 priority patent/US7465771B2/en
Publication of WO2005010055A1 publication Critical patent/WO2005010055A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00085Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00869Microreactors placed in parallel, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/92Apparatus for use in addition polymerization processes

Definitions

  • the present invention relates to a method for producing a radical polymer and a microchemical reactor.
  • the present invention relates to a method for producing a radical polymer and a fine chemical reaction device. More specifically, the present invention uses a fine reaction tube having an inner diameter of 2 mm or less to carry out the polymerization of radically polymerizable monomers in a flow-through manner, and precisely controls the bright polymerization temperature to a predetermined temperature. By controlling the molecular weight distribution, the method of producing a narrow-radical polymer having a narrow molecular weight distribution in a short time and efficiently, and using highly available materials, The present invention relates to a microchemical reactor that can be manufactured without requiring additional technology. Background art
  • This microphone-mouth reactor generally has an internal structure of 1 ⁇ ! It refers to a device that performs reactions in micro-channels as small as about 1 mm, and is expected to have the potential to bring about a major change in the chemical industry.
  • the above microreactor can be synthesized from the organic synthesis surface, for example, (1) it can be synthesized in a very small amount, (2) it has a large surface area per unit volume (flow rate), and (3) it is extremely easy to control the temperature. Yes, (4) Efficient reaction at interface, (5) Reduction of time, cost, and environmental load. (6) Possibility of toxic and dangerous compounds because reaction in closed system is possible. (7) Small scale, capable of preventing contamination by closed system, (8) Efficient mixing, product separation and purification by utilizing laminar flow peculiar to microchannel It can be applied to
  • Examples of the chemical reaction using such a microreactor include a method for conducting a chemical reaction (for example, see Japanese Patent Application Laid-Open No. 2001-521816), production of aldols using a microstructured reaction system (for example, 2002-155007), Toro conversion in a static micromixer (for example, see Japanese Patent Application Laid-Open No. 2003-506340), a method for producing aryl boron and alkylboron compounds in a microreactor (for example, 2003-128677).
  • the polymerization reaction for example, under laminar flow conditions in a channel with a diameter of 1.27 mm, a polymerization reaction of ethylene in a caropressure system using a meta-mouth catalyst has been reported.
  • Radical polymerization is capable of polymerizing an extremely large number of monomers, and is an important technology widely used in industry as a means of producing various polymers.
  • a large amount of reaction heat is generated during the polymerization. Therefore, regardless of whether the reaction system is a batch system or a continuous system, mild reaction conditions are required to remove the reaction heat. The process is usually time-consuming and time-consuming, resulting in poor production efficiency.
  • the polymerization temperature in the reaction field is uneven due to the heat of reaction.
  • the reaction solution is unlikely to become laminar, so that there is a partial difference in the residence time, and as a result, the resulting polymer is of a polymer having various molecular weights.
  • the mixture was apt to be used.
  • microchemical reactors microreactors
  • advanced processing techniques such as photolithography, etching, and precision machining are generally required to produce microchannels.
  • photolithography etching
  • precision machining precision machining
  • the present invention provides a method for efficiently producing a radical polymer having a controlled molecular weight distribution or a narrow molecular weight distribution in a radical polymerization of a radical polymerizable monomer in a short time. It is another object of the present invention to provide a microchemical reaction device that can be manufactured by using easily available members without requiring advanced processing technology.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, by using a micro-reactor having a diameter less than a certain value as a reactor, the heat exchange efficiency S is extremely high, and the temperature is high. It is easy to control, the flow is dominated by laminar flow, the residence time can be strictly controlled, and a radical polymer having a desired molecular weight distribution can be obtained in a short time and efficiently, and the temperature can be controlled. It has been found that a device in which a plurality of fine circular tubes are arranged in parallel in a jacket through which a fluid can flow can be adapted to the purpose as a microchemical reaction device. The present invention has been completed based on powerful knowledge. That is, the present invention
  • a radical polymerization initiator and a radical polymerizable monomer are introduced into a reaction tube having an inner diameter of 2 mm or less, and a polymerization reaction is carried out in a uniform liquid state in the reaction tube in a flow manner.
  • a method for producing a radical polymer
  • the jacket having a structure in which the jacket is divided into a plurality of pieces along the length direction of the circular pipe, and the temperature control fluid can flow independently through each of the divided jackets.
  • the polymerization of the radical polymerizable monomer is carried out in a flowing manner, and the polymerization temperature is precisely controlled to a predetermined temperature.
  • a method for efficiently producing a radical polymer having a controlled molecular weight distribution or a narrow molecular weight distribution in a short time can be provided.
  • FIG. 1 is a schematic cross-sectional view of an example of a reactor for performing the method of the present invention
  • FIG. 2 is a schematic cross-sectional view of a different example of a reactor for performing the method of the present invention.
  • a microreactor having an inner diameter of 2 mm or less, preferably 1 mm or less, more preferably 10 to 500 x m is used as the reactor.
  • the length of the reactor is not particularly limited, but is usually from 0.01 to: L 0 m, preferably from 0.05 to 50 m, more preferably from 0.1 to: L 0 m. Range.
  • a radical cascade polymerization initiator and a radically polymerizable monomer are introduced into the fine reaction tube, and the polymerization reaction is carried out in a uniform liquid state in the reaction tube by a flow system.
  • the radical polymerizable monomer as a raw material may be any monomer capable of radical polymerization, and is not particularly limited, and various monomers can be used.
  • the monomer capable of radical polymerization include olefins such as ethylene, propylene, and isobutylene; unsaturated monocarboxylic acids such as atarilic acid and methacrylic acid; and unsaturated monomers such as maleic acid, fumaric acid, maleic anhydride, and itaconic acid.
  • a polymerization solvent can be used, if desired, in order to carry out the polymerization reaction in a homogeneous liquid state in the fine reaction tube.
  • the polymerization solvent is appropriately selected from aqueous solvents and various organic solvents depending on the type of the radical polymerizable monomer used.
  • the aqueous solvent include water, or water and an organic solvent miscible with water (organic acids such as formic acid, acetic acid, and propionic acid; esters such as methyl sulphate and ethyl acetate; acetone, methylinoethyl ketone, and getyl ketone).
  • ketones such as methylisobutyl ketone; alcohols such as methanol, ethanol and propanol; dimethyl sulfoxide, dimethinoleformamide and the like.
  • organic solvent examples include the above-mentioned water-miscible organic solvents; other esters, ketones, and alcohols; ethers such as getyl ether and tetrahydrofuran; hexane, cyclohexane, heptane, and otatan. And aliphatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; methylene chloride, dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, and benzene. And chlorinated hydrocarbons.
  • One of these organic solvents may be used for insects, or two or more of them may be used in combination.
  • the radical polymerization initiator is not particularly limited, and may be selected from known radical polymerization initiators conventionally used in radical polymerization, depending on the type of raw material radical polymerization 'I' raw monomer and polymerization solvent.
  • examples of such radical polymerization initiators include organic peroxides, azo compounds, disulphide compounds, and Dox-based initiators, persulfates and the like can be mentioned.
  • the polymerization solvent is an aqueous medium
  • a water-soluble organic peroxide, water, a soluble azo compound, a redox base opening agent, a persulfate, or the like is preferably used
  • the polymerization solvent is an organic solvent.
  • an oil-soluble organic peroxide and an oil-soluble azo compound are preferably used.
  • water-soluble organic peroxides examples include t-ptinolehydroperoxide, cumene hydroxide / oxide, disopropinolebenzene hydroxide / oxide, p-menthane hydranoloxide, and 2,5-dimethinole. Hexane-1,2,5-dihydroperoxide, 1,1,3,3-tetramethylhydroperoxide and the like.
  • water-soluble azo compounds examples include 2,2 'diamigeru 2,2'-azopropane-hydrochloride, 2,2'-diamidinyl-2,2'-azobutane'monohydrochloride, 2,2'diamidinyl 1,2′-azopentane-monohydrochloride, 2,2,2-azobis (2-methyl-4-ethylpyramino) butyronitrile ′ hydrochloride and the like.
  • Examples of the redox-based initiator include a combination of hydrogen peroxide and a reducing agent.
  • a reducing agent metal ions such as divalent iron ion, copper ion, zinc ion, covanolate ion, and vanadium ion, ascorbic acid, and reducing sugar are used.
  • the persulfate include ammonium persulfate and potassium persulfate.
  • One of these water-soluble radical polymerization initiators may be used for warworms, or two or more may be used in combination.
  • oil-soluble organic peroxides examples include dibenzoylperoxide, di-1,3,5,5-trimethinolehexanoylperoxide, and disilylperoxide such as dilauroynoleperoxide.
  • Peroxy dicarbonates such as oxides, diisopropyl propyl peroxy dicarbonate, di sec sec-butynolebe / resin xy dicarbonate, and di-2-ethynolehexinole lenoleoxy dicarbonate; Peroxyesters such as oxypivalate and t-butyl pentyl xineodedecanoate; or hexylsulfonylperoxide, acetylsulfonyl peroxide, and disuccinic acid peroxide.
  • oil-soluble diazo compounds examples include 2, 2'-azobis Isobutyronitrile, 2,2, -azobis-1-methylbutyronitrile, 2,2, -azobis (2,4-dimethinorevaleronitrile) and the like.
  • One of these oil-soluble radical polymerization initiators may be used alone, or two or more thereof may be used in combination.
  • the amount of the radical polymerization initiator used is appropriately selected according to the type of the radical polymerizable monomer and the radical polymerization initiator used as the raw materials, the desired molecular weight of the obtained polymer, and the like. Usually, the amount is selected from 0.0001 to 0.5 part by mass, preferably from 0.01 to 0.1 part by mass, per 100 parts by mass of the radical polymerizable monomer.
  • a chain transfer agent can be used if necessary.
  • the continuous transfer agent is not particularly limited as long as it does not inhibit the polymerization reaction and can regulate the molecular weight of the produced polymer, and is not particularly limited. Mercaptans and ⁇ -methylstyrene dimer are preferred. It is used well.
  • the mercaptans include, for example, 1-butanethiol, 2-butanethiol, 1-otatanthiol, 1-dodecanethiol, 2-methyl-2-heptanethiol, 2-methyl-2-heptanthiol , 2-methylinopropane-2-ol, mercaptoacetic acid and its esters, 3-mercaptopropionic acid and its esters, 2-mercaptoethanol and its esters, and the like.
  • One of these chain transfer agents may be used in a warworm, or two or more thereof may be used in combination.
  • reaction mode (1) a reaction mode in which a fine reaction tube is used as one reaction zone having a uniform temperature, and (2) a plurality of reaction zones in which the polymerization temperature can be controlled are provided in the micro reaction tube.
  • a reaction type in which the temperature of each reaction zone is controlled can be adopted.
  • a method of introducing a radical polymerization initiator and a radical polymerizable monomer into a fine reaction tube as a method of introducing a radical polymerization initiator and a radical polymerizable monomer into a fine reaction tube,
  • FIG. 1 is a schematic cross-sectional view of an example of a reaction apparatus for carrying out the method of the present invention.
  • the reaction apparatus 10 has a jacket 1 in which a plurality of fine reaction tubes 2 having an inner diameter of 2 mm or less are installed in parallel. It has a structure.
  • the raw material liquid (radical polymerization initiator, radically polymerizable monomer, and polymerization medium and chain transfer agent used as needed) is introduced from three inlets and polymerized through a plurality of fine reaction tubes 2. After the reaction, the polymerization liquid is discharged from the outlet 4.
  • a temperature control fluid hereinafter sometimes referred to as a heat medium
  • a heat medium is introduced from the inlet 5 of the jacket 1 and discharged from the outlet 6.
  • the temperature control of the reaction zone is easy, and the heat generated during the polymerization is generated. It is difficult to generate hot spots (local heating) during the reaction. Therefore, the temperature of all reaction zones can be kept uniform.
  • the temperature of the heating medium is controlled to be equal to or higher than the decomposition temperature of the polymerization initiator used.
  • the mode of (a) or the mode of (b) may be adopted as the mode of introducing the radical polymerization initiator and the radical polymerizable monomer. You may.
  • the raw material is mixed with the radical polymerization initiator, the radical polymerizable monomer, and the polymerization medium and chain transfer agent used as necessary, in advance, as a reaction. Introduce at inlet 3 of device 10.
  • the liquid containing the radical polymerization initiator and the liquid containing the radical polymerizable monomer are joined immediately before the inlet 3 and introduced into the inlet 3.
  • reaction mode of the above (2) a plurality of reaction zones capable of controlling the polymerization temperature are provided in a fine reaction tube, and by precisely controlling the temperature of each reaction zone, a polymer to be produced is desired. Can be controlled so as to have a molecular weight distribution state.
  • two reaction zones are provided in the fine reaction tube, the mode of the above (b) is adopted, and the temperature of the reaction zone on the side where the radical polymerization initiator and the radical polymerizable monomer are introduced is adjusted by the above-mentioned radical polymerization.
  • the temperature of the reaction zone on the polymerization solution outlet side is maintained lower than that of the reaction zone on the introduction side, and the rate of the radical polymerization initiator is maintained lower than that of the reaction zone on the introduction side.
  • two shears in the molecular weight distribution A polymer having a sharp peak can be obtained.
  • two reaction zones are provided in the fine reaction tube, the mode of (b) is adopted, and the temperature of the reaction zone on the side where the radical polymerization initiator and the radical polymerizable monomer are introduced is adjusted to the above-mentioned radical zone.
  • the temperature at which the radical polymerization initiator does not decompose refers to a temperature at which the decomposition rate of the radical polymerization initiator becomes about 1% or less.
  • FIG. 2 is a schematic cross-sectional view of a different example of a reactor for carrying out the method of the present invention, in which the reactor 20 is divided into two jackets 1 a and 1 b through a heat insulating part 7. Further, it has a structure in which a plurality of fine reaction tubes 2 having an inner diameter of 2 mm or less are installed in parallel.
  • the raw material liquid (radical polymerization initiator, radical polymerizable monomer, and polymerization medium and chain transfer agent used as needed) is introduced from the inlet 3 in the mode of (a) or (b), and a plurality of fine liquids are introduced.
  • the polymerization reaction is performed through the narrow reaction tube 2, and the polymerization liquid is discharged from the outlet 4.
  • the heat medium is introduced from the inlet 5a and discharged from the outlet 6a.
  • the heat medium is introduced from the inlet 5b and discharged from the outlet 6b.
  • the heating medium introduced into the jackets 1a and 1b is controlled at different temperatures.
  • the temperature of the heating medium introduced into the jacket 1a is set to a temperature at which the radical polymerization initiator to be used is decomposed, and the temperature of the heating medium introduced into the jacket lb is set to the reaction zone preceding the reaction zone. Set the temperature to be lower than the specified temperature.
  • the present invention also includes a jacket through which the temperature control fluid can flow, and a plurality of circular tubes having an inner diameter of 2 mm or less arranged in parallel in the jacket, and the temperature control fluid flows through the jacket.
  • a microchemical reaction device capable of controlling the temperature of the reaction in a plurality of circular tubes is provided.
  • a reactor having a structure as shown in FIG. 1 can be exemplified.
  • the microchemical reaction device is used for photolithography, It can be easily manufactured using a commercially available circular tube with an inner diameter of 2 mm or less without the need for advanced machining techniques such as cutting and precision machining.
  • As the material of the circular tube for example, various metals, alloys, glass, plastics and the like are used.
  • the jacket is divided into a plurality of sections along the length of the circular tube, and the temperature control fluid can flow independently through each of the divided jackets. May have a simple structure.
  • a reaction device having such a structure a reaction device having a structure as shown in FIG. 2 can be exemplified (in FIG. 2, the jacket is divided into two).
  • the jacket main body and the circular pipe have a detachable structure. This makes it possible to replace the pipe when clogging occurs inside the pipe or when changing the inner diameter of the pipe.
  • the shape, arrangement, number, etc. of the fine reaction tubes are not limited to those illustrated in FIGS. 1 and 2 as long as the effects of the present invention can be obtained.
  • ⁇ / not particularly restricted. The same applies to the shape of the jacket.
  • the radical polymerization initiator solution and methyl methacrylate were charged into separate syringe pumps under argon atmosphere, and they were combined using a three-way joint.Then, a reaction was performed using a stainless-steel 0.5 mm inner diameter. It was introduced into the tube. The length of the reaction tube is 10 The first 9 m is immersed in a constant temperature bath, the temperature of the constant temperature bath is set to 100 ° C, the remaining 1 m is immersed in an ice bath, and the polymerization solution is measured with a graduated cylinder at the outlet of the tube so that the flow rate can be measured. Can be collected.
  • the radical polymerization initiator ⁇ firewood night and methyl methacrylate were introduced into the reaction tube in equal amounts, and 9.8 ml of the polymerization solution was recovered in 3 minutes.
  • the solvent was distilled off from the recovered solution to obtain 0.4062 g of a solid containing a methyl methacrylate polymer.
  • the mass obtained by subtracting the mass of the circulated radical polymerization initiator from the mass of the obtained solid content and dividing by the mass of the circulated methyl methacrylate (calculated by the specific gravity of 0.945 g / milliliter) was calculated as the yield. However, it was 6.8%.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) were determined by gel permeation chromatography (GPC). Two columns of Shodex-804 and 3hodex K-805L are arranged in series, and a commercially available methyl methacrylate polymer is obtained by RI detector at 40 ° C, using a mouth opening form as a developing solvent. Using the sample as a standard sample, calibration was performed, and the sample was measured and analyzed.
  • Table 1 shows the reaction time, yield, number average molecular weight (Mn), and molecular weight distribution (Mw / Mn). The polymer had one peak.
  • Example 1 was repeated except that 5.4 milliliters of the polymerization solution was recovered in 3 minutes. 0.3577 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 1. The polymer had one peak.
  • Example 1 it carried out similarly to Example 13 except having collect
  • Example 4
  • Example 1 except that 2.2 milliliters of the polymerization solution was recovered in 6 minutes. The operation was performed in the same manner as in Example 1. 0.5213 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 1. The polymer had one peak.
  • Example 1 was carried out in the same manner as in Example 1 except that a polymerization solution of 2.1 milliliter was recovered in 12 minutes. 0.76999 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 1. The polymer had one peak.
  • Example 13 was carried out in the same manner as in Example 13 except that 2.6 milliliters of the polymerization solution was recovered in 17 minutes. 1.0655 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 1. The polymer had one peak.
  • Example U Using toluene and methyl methacrylate pretreated according to the method described here, 0.43 g of 2,2′-azobisisobutyronitrile per 30 milliliters of toluene, methacrylic acid A reaction solution mixed at a ratio of 30 milliliters of methyl was prepared under an argon atmosphere. Under an argon atmosphere, 15 milliliters of the reaction solution was sampled into a stainless steel sealable reaction vessel, immersed in a constant temperature bath at 100 ° C for 3 minutes to perform the polymerization reaction, and then immersed in an ice bath to perform the polymerization reaction. Stopped. The solvent was distilled off from the reaction solution taken out to obtain 0.5818 g of a solid containing a methyl methacrylate polymer. The results are shown in Table 1. The polymer had one peak.
  • Comparative Example 1 The procedure was performed in the same manner as in Comparative Example 1, except that the polymerization reaction time in a thermostat at 100 ° C. was changed to 5 minutes. There was obtained 1.46615 g of a solid containing a methyl methacrylate polymer. The results are shown in Table 1. The polymer had one peak.
  • Comparative Example 1 was carried out in the same manner as in Comparative Example 1 except that the polymerization reaction time in the constant temperature bath at 100 ° C. was changed to 7.5 minutes. 3.6198 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 1. The polymer had one peak. Comparative Example 4
  • Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that the polymerization reaction time in a constant temperature bath at 100 ° C. was changed to 10 minutes. 4.9344 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 1. The polymer had one peak.
  • Example 1 a radical polymerization initiator solution obtained by dissolving 0.3264 g of 2,2′-azobisisobutyronitrile per 100 milliliters of toluene and 21.2 milliliters of methyl methacrylate were added to 78.8 milliliters of toluene.
  • the procedure was carried out in the same manner as in Example 1 except that a monomer solution diluted in 1 was used to recover 26.5 ml of the polymerization solution in 15 minutes.
  • 0.1666 g of a solid containing a methyl methacrylate polymer was obtained.
  • the results are shown in Table 2.
  • the polymer had one peak.
  • Example 7 was carried out in the same manner as in Example 7, except that a polymerization solution of 10.0 milliliter was recovered in 29 minutes. 0.23555 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 2. The polymer had one peak.
  • Example 9 Example 9
  • Example 7 was carried out in the same manner as in Example 7 except that 9.8 milliliters of the polymerization solution was recovered in 43 minutes. 0.2970 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 2. The polymer had one peak.
  • Example 7 was carried out in the same manner as in Example 7, except that 5.0 milliliters of the polymerization solution was recovered in 29 minutes. 0.1754 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 2. The polymer had one peak.
  • Example 7 it carried out similarly to Example 7 except having collect
  • Example 7 was carried out in the same manner as in Example 7, except that a polymerization solution of 6.0 milliliters was recovered in 51 minutes. 0.2632 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 2. The polymer had one peak.
  • Comparative Example 1 a reaction solution obtained by mixing 53.6 milliliters of toluene with 0.0985 g of 2,2'-azobisisobutyronitrile and 6.4 milliliters of methylinomethacrylate was used. The procedure was performed in the same manner as in Comparative Example 1 except that the polymerization reaction time in the thermostat at 100 ° C. was 5 minutes. 0.1082 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 2. The polymer had one peak. Comparative Example 7
  • Comparative Example 6 was carried out in the same manner as in Comparative Example 6, except that the polymerization reaction time in a constant temperature bath at 100 ° C. was changed to 10 minutes. There were obtained 0.3287 g of a solid containing a methyl methacrylate polymer. The results are shown in Table 2.
  • Comparative Example 6 was carried out in the same manner as in Comparative Example 6, except that the polymerization reaction time in a thermostat at 100 ° C. was changed to 15 minutes. 0.518 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 2. The polymer had one peak.
  • Comparative Example 6 the procedure was performed in the same manner as in Comparative Example 6, except that the polymerization reaction time in a thermostat at 100 ° C. was changed to 20 minutes. 0.6307 g of a solid containing a methyl methacrylate polymer was obtained. The results are shown in Table 2. The polymer had one peak.
  • Example 1 a radical polymerization initiator solution prepared by dissolving 1.1461 g of 2,2′-azobisbisoptilonitrinole with respect to 100 milliliters of toluene was added. JP2004 / 010562
  • Example 2 The procedure was carried out in the same manner as in Example 1 except that n-butylyl acrylate was used instead of methyl acrylate and 2.4 ml of the polymerization solution was recovered in 2 minutes. There was obtained 0.7724 g of a solid containing n-butyl atalylate polymer. The yield was calculated assuming that the specific gravity of n-butyl acrylate was 0.894. Table 3 shows the results. In addition, the peak of the polymer was one.
  • Example 13 was carried out in the same manner as in Example 13 except that a polymerization solution of 5.2 milliliters was recovered in 6 minutes. 2.0974 g of a solid containing n-butyl acrylate polymer was obtained. Table 3 shows the results. The polymer had one peak.
  • Example 1 5
  • Example 13 was carried out in the same manner as in Example 13 except that 1.8 ml of the polymerization solution was recovered in 3 minutes. 0.69 g of a solid containing n-butyl acrylate polymer was obtained. Table 3 shows the results. The polymer had one peak.
  • Example 16
  • Example 13 was carried out in the same manner as in Example 13 except that 1.8 ml of the polymerization solution was recovered in 4 minutes. 0.7176 g of a solid containing n-butyl acrylate polymer was obtained. Table 3 shows the results. The polymer had one peak.
  • Example 17
  • Example 13 was carried out in the same manner as in Example 13 except that 1.8 ml of the polymerization solution was recovered in 5 minutes. 0 ⁇ 71 162 g of a solid containing n-butyl acrylate polymer was obtained. Table 3 shows the results. The polymer had one peak. Comparative Example 1 1
  • Comparative Example 1 was performed in the same manner as in Comparative Example 1, except that a reaction solution was used in which 0.32 38 g of 2,2′-azobisisobutyronitrile and 30 milliliter of n-butyl acrylate were mixed with 30 milliliter of toluene. Performed as in Example 1. 5.5781 g of a solid containing n-butyl acrylate polymer was obtained. Table 3 shows the results. The polymer had one peak. Comparative Example 12
  • Comparative Example 11 was carried out in the same manner as in Comparative Example 11, except that the polymerization reaction time in a constant temperature bath at 100 ° C. was changed to 3.5 minutes. 5.84 55 g of a solid containing n-butyl acrylate polymer was obtained. Table 3 shows the results. The polymer had only one peak.
  • Comparative Example 11 was carried out in the same manner as in Comparative Example 11, except that the polymerization reaction time in a constant temperature bath at 100 ° C. was changed to 4 minutes. 5.9772 g of a solid containing the n-butyl acrylate polymer was obtained. Table 3 shows the results. The polymer had one peak.
  • Example 13 a radical polymerization initiator solution in which 0.3264 g of 2,2′-azobisisobutyronitrile was dissolved in 100 ml of toluene and 26.1 milliliter of n-butyl acrylate were added to 73.3 ml of toluene.
  • Example 13 was carried out in the same manner as in Example 13 except that a polymerization solution of 15.2 milliliters was recovered in 13 minutes using a monomer solution diluted at 9 milliliters. 0.48686 g of a solid containing n-butyl acrylate polymer was obtained. The results are shown in Table 4.
  • Example 18 was carried out in the same manner as in Example 18, except that 19.8 milliliter of the polymerization solution was recovered in 23 minutes. 0.8 including n-butyl acrylate polymer 418 g of a solid were obtained. The results are shown in Table 4. The polymer had only one peak.
  • Example 18 was carried out in the same manner as in Example 18 except that 8.8 milliliters of the polymerization solution was recovered in 15 minutes. 0.467 g of a solid containing n-butyl acrylate polymer was obtained. The results are shown in Table 4. The polymer had only one peak.
  • Example 18 was carried out in the same manner as in Example 18 except that 5.3 ml of the polymerization solution was recovered in 15 minutes. 0.3704 g of a solid containing the n-butyl acrylate polymer was obtained. The results are shown in Table 4. The polymer had only one peak.
  • Example 18 was carried out in the same manner as in Example 18 except that 4.9 milliliters of the polymerization solution was recovered in 23 minutes. 0.376 lg of a solid containing n-butyl acrylate polymer was obtained. The results are shown in Table 4. The polymer had only one peak.
  • Example 18 was carried out in the same manner as in Example 18 except that a polymerization solution of 5.0 milliliters was recovered in 29 minutes. 0.43996 g of a solid containing n-butyl acrylate polymer was obtained. The results are shown in Table 4. The polymer had only one peak.
  • Comparative Example 1 the ratio of 2,2'-azobisisobutyronitrile 0.0985 g, n-ptynoleate talile 8.6 millilitre to 51.4 ml of toluene.
  • the reaction was carried out in the same manner as in Comparative Example 1 except that the polymerization reaction time in the thermostat at 100 ° C. was changed to 5 minutes using the reaction solution mixed in Step 1. 628 g of solid were obtained.
  • the results are shown in Table 4. The number of peaks for the polymer is one.
  • Comparative Example 14 The procedure was carried out in the same manner as in Comparative Example 14, except that the polymerization reaction time in a thermostat at 100 ° C. was 7 minutes. 0.872 g of a solid containing n-butyl acrylate polymer was obtained. The results are shown in Table 4. The polymer had one peak. Comparative Example 16
  • Comparative Example 14 was carried out in the same manner as in Comparative Example 14 except that the polymerization reaction time in the constant temperature bath at 100 ° C. was changed to 8 minutes. 0.98994 g of a solid containing the n-butyl acrylate polymer was obtained. Table 4 shows the results. The polymer had one peak. Comparative Example 1 7
  • Comparative Example 14 was carried out in the same manner as in Comparative Example 14 except that the polymerization reaction time in the constant temperature bath at 100 ° C. was changed to 10 minutes. 1.2662 g of a solid containing n-butyl acrylate polymer was obtained. The results are shown in Table 4. The polymer had one peak. Comparative Example 1 8 '
  • Comparative Example 14 was carried out in the same manner as in Comparative Example 14 except that the polymerization reaction time in the constant temperature bath at 100 ° C. was changed to 12 minutes. 1.270 g of a solid containing n-butyl acrylate polymer was obtained. The results are shown in Table 4. The polymer had one peak.
  • the polymerization initiator and the monomer were introduced into the fine reaction tube, and the polymerization reaction was carried out.
  • the resulting polymer had one peak in the molecular weight distribution. It can be seen that the peak is sharper than that of the corresponding comparative example.
  • 94 tubes with an inner diameter of 0.51 mm and a length of 60 cm are arranged in parallel, and the jacket is divided into 50 cm and 10 cm.
  • Polymerization of methyl methacrylate was carried out using a reactor that can be circulated (see Fig. 2).
  • a toluene solution of 2,2,1-azobisbisoptilotrile and methyl methacrylate prepared in the same manner as in Example 1 were charged into separate syringe pumps under an argon atmosphere, and these were filled using a three-way joint. And then introduced into the above reactor.
  • a heating medium of 100 ° C is circulated in the jacket on the 50 cm side, a refrigerant of 0 ° C is circulated in the jacket on the 100 cm side, and the reaction solution passes through the jacket of 100 ° C. After being cooled to 0 ° C., it was taken out.
  • Example 24 The reaction conditions used in Example 24 were the same as those in Examples 1 to 5 in which one channel was used.
  • the volume of the reaction part was 1.8 milliliters in Examples 1 to 5, and
  • the volume of the reaction section of the reactor used in step 4 is calculated to be 9.6 milliliters.
  • the reaction time was almost equal to that of Example 24, and a comparison of Example 2 showed that the yield was almost the same, and that there was almost no difference in the molecular weight and molecular weight distribution of the polymer. Therefore, by using the reactor used in Example 24, the productivity can be improved (approximately 5 times) as much as that of the single reactor in Examples 1 to 5 compared with the single reactor. Is shown. Industrial applicability
  • the polymerization of the radical polymerizable monomer is carried out in a flow-through manner using a fine reaction tube having an inner diameter of 2 mm or less, and the power polymerization temperature is precisely adjusted to a predetermined temperature.
  • a radical polymer having a controlled molecular weight distribution or a narrow molecular weight distribution can be efficiently produced in a short time.

Abstract

本発明は、ラジカル重合性単量体のラジカル重合において、分子量の分布状態が制御された、あるいは分子量分布の狭いラジカル重合体を、短時間で効率よく製造する方法、及び、簡単に製作可能な微細化学反応装置を提供することを目的とする。 すなわち本発明は、ラジカル重合開始剤とラジカル重合性単量体とを、内径が2mm以下の反応管に導入し、該反応管内において均一液状状態で流通形式により重合反応を行うラジカル重合体の製造方法、並びに、温度制御流体を流通させることが可能なジャケットと該ジャケット内に並列に配置された内径2mm以下の複数の円管を有し、前記ジャケットに温度制御流体を流通させることで複数の円管内における反応の温度を制御し得る微細化学反応装置により、上記目的を達成する。

Description

ラジカル重合体の製造方法及び微細化学反応装置 技術分野
本発明は、 ラジカル重合体の製造方法及 散細化学反応装置に関する。 さらに詳 しくは、 本発明は、 内径が 2 mm以下の微細反応管を用い、 ラジカル重合性単量体 の重合を流通形式により行レヽ、 カゝっ明重合温度を所定の温度に精密に制御することに より、 分子量の分布状態が制御された、 あ田る 、は分子量分布の狭レヽラジカル重合体 を短時間で効率よく製造する方法、 及び容易に入手可能な部材を用いて、 高度な加 ェ技術を必要とせずに製作可能な微細化学反応装置に関するものである。 背景技術
最近、 マイクロリアクターに対する関心が非常に高まってきている。 このマイク 口リアクターは、 一般に内部構造が 1 μ π!〜 1 mm程度の微細なマイクロチヤンネ ルの中で反応を行う装置を指し、 化学産業に大きな変革をもたらす可能性を有する ことが期待されている。
上記マイクロリアクターは、有機合成面から、例えば、 ( 1 )微小量での合成が可 能である、 (2 ) 単位体積 (流量) 当たりの表面積が大きい、 (3 ) 温度制御が極め て容易である、 (4 ) 界面での反応が効率よく起る、 (5 ) 時間、 コスト、 環境負荷 の低減が図れる、 (6 )密封系での反応が可能であるので、毒性、危険性のある化合 物が安全に合成できる、 (7 )小スケール、閉鎖系によるコンタミネーションの防御 が可能である、 (8 )マイクロチャンネルに特有の層流の活用により、効率的な混合、 生成物の分離、 精製に適用可能である、 などの特徴を有している。
また、工業的応用面においては、潜在的に、 (a )マイクロチャンネルの大きさを 変えずに数を増やすことにより (ナンバーリングアップ)、生産量を増大させること が可能である (従来、 実験室で得られた結果を工場に移管する場合に必要であった 中間試製のためのステップが省略される。) ため、 (b) 低コストで生産を早期にス タートすることが可能となり、 (C)実験結果を、そのまま素早く生産に移すことが 可能となる。 また、 (d)工業生産のためのプラントが小さくてすむ、 という利点も 有している。
このようなマイクロリアクターを用いた化学反応の例としては、 化学反応実施方 法(例えば、特表 2001— 521816号公報参照)、微細構造化反応システムを 使用するアルドール類の製造 (例えば、 特開 2002— 155007号公報参照)、 静止型マイクロミキサー内での-トロ化 (例えば、 特表 2003— 506340号 公報参照)、マイクロリアクタ一でのァリールホウ素及びアルキルホゥ素化合物の製 造法 (例えば、 特開 2003— 128677号公報参照) などが開示されている。 また、 重合反応については、 例えば直径 1. 27 mmの流路内にて、 層流条件下 で、 メタ口セン触媒を用いたカロ圧系におけるエチレンの重合反応が報告されている
(例えば、 「An a 1. Ch em.」、第 74卷、第 3112頁(2002年)参照)。 しかしながら、 この反応はメタ口セン触媒を用いる配位重合であり、 本発明に係る ラジカル重合とは根本的に異なる技術である。 さらに、 ラジカル重合性単量体と重 合開始剤を、 微細な流路を用いて混合するマイクロミキサ一により混合したのち、 重合を行うことで、 得られる重合体中の高分子量成分の生成が抑制され、 管型重合 反応器内の沈降物の形成が回避されるラジカル重合体の製造方法が開示されている
(例えば、 特表 2002— 512272号公報参照)。 しかしながら、 この技術は、 単量体と重合開始剤の混合を微細な空間内で行うもので、 重合反応を行う反応器に は、 直径が c mオーダーの管型反応器が用いられている。
ラジカル重合は、 極めて多くの単量体の重合が可能であり、 多様な重合体の生産 手段として、 産業上広く用いられている重要な技術である。 しかしながら、 このラ ジカル重合においては、 重合時に大きな反応熱が発生するため、 反応方式がバッチ 式であっても、 連続式であっても、 反応熱の除去のために、 温和な反応条件でゆつ くりと時間をかけて行われるのが常であり、 生産効率が悪いという問題があった。 また、 これまでの重合方法では、 反応熱のために、 反応場における重合温度が不均 一になりやすい上、 連続式の場合には反応液は層流になりにくいため、 部分的に滞 留時間に差が生じ、 その結果、 得られる重合体は、 種々の分子量をもつ重合体の混 合物になりやすいという問題もあった。
ところで、 微細化学反応装置 (マイクロリアクター) の製作においては、 一般に 微細流路の作製にフォトリソグラフィー、 エッチング、 精密機械加工といった高度 な加工技術が必要とされ、 したがって、 マイクロリアクターを用いた化学反応は、 簡便に実施することが困難であった。 発明の開示
本発明は、このような状況下で、ラジカル重合性単量体のラジカル重合において、 分子量の分布状態が制御された、 あるいは分子量分布の狭いラジカル重合体を、 短 時間で効率よく製造する方法、 及び容易に入手可能な部材を用いて、 高度な加工技 術を必要とせずに製作可能な微細化学反応装置を提供することを目的とするもので ある。
本発明者らは、 前記目的を達成するために鋭意研究を重ねた結果、 リアクターと して、 径がある値以下の微細反応管を用いることにより、 熱交換の効率力 S極めて高 く、 温度制御が容易であると共に、 流れが層流支配となり、 滞留時間を厳密に制御 することができ、 短時間で効率よく、 所望の分子量の分布状態を有するラジカル重 合体が得られること、及び温度制御流体を流通させることが可能なジャケット内に、 複数の微細な円管を並列に配置してなる装置が、 微細化学反応装置としてその目的 に適合し得ることを見出した。本発明は力かる知見に基づいて完成したものである。 すなわち、 本発明は、
( 1 ) ラジカル重合開始剤とラジカル重合性単量体とを、 内径が 2 mm以下の反応 管に導入し、 該反応管内において均一液状状態で流通形式により重合反応を行うこ とを特徴とするラジカル重合体の製造方法、
( 2 ) ラジカル重合開始剤とラジカル重合性単量体とを、 反応管への導入前に混合 し、 該反応管に導入する上記 ( 1 ) のラジカノレ重合体の製造方法。 (3) 反応管の内径が lmm以下である上記 (1) 又は (2) のラジカル重合体の 製造方法、
(4) 反応管に重合温度を制御し得る複数の反応帯域を設け、 各反応帯域の温度を 制御し、 生成する重合体の分子量の分布を制御する上記 (1) 〜 (3) のいずれか のラジカノレ重合体の製造方法、
(5) 反応管に 2つの反応帯域を設け、 ラジカル重合開始剤とラジカル重合性単量 体とを導入する側の反応帯域の温度を、 上記ラジカル重合開始剤が分解する温度に 保持すると共に、 重合液出口側の反応帯域の温度を、 該反応帯域の通過時間内に上 記ラジカル重合開始剤が実質的に分解しない温度に保持する上記 (4) のラジカル 重合体の製造方法、
( 6 ) 温度制御流体を流通させることが可能なジャケットと、 該ジャケット内に並 列に配置された内径 2 mm以下の複数の円管を有し、 前記ジャケットに温度制御流 体を流通させることにより、 複数の円管内における反応の温度を制御し得る微細化 学反応装置、
(7) ジャケットが、 円管の長さ方向に沿って複数に分割され、 かつ分割されたそ れぞれのジャケットに温度制御流体を独立して流通させることが可能な構造を有す る上記 (6) の微細化学反応装置、 及び
(8) ジャケット部本体と円管部分が着脱可能な構造を有する上記 (6)又は (7) の微細化学反応装置、
を提供するものである。
本発明によれば、 内径が 2 mm以下の微細反応管を用い、 ラジカル重合性単量体 の重合を流通形式により行レヽ、 カゝっ重合温度を所定の温度に精密に制御することに より、 分子量の分布状態が制御された、 あるいは分子量分布の狭いラジカル重合体 を短時間で効率よく製造する方法を提供することができる。
また、 本発明によれば、 容易に入手可能な部材を用いて、 高度な加工技術を必要 とせずに製作可能な微細化学反応装置を することができる。 図面の簡単な説明
図 1は、 本発明の方法を実施するための反応装置の一例の概略断面図であり、 図 2は、 本発明の方法を実施するための反応装置の異なる例の概略断面図である。 発明を実施するための最良の形態
本発明のラジカノレ重合体の製造方法においては、 リアクターとして、 内径が 2 m m以下の微細反応管、 好ましくは 1 mm以下、 より好ましくは 1 0 ~ 5 0 0 x mの マイクロリアクターが用いられる。 このリアクターの長さについては特に制限はな いが、通常 0 . 0 1〜: L 0 0 m、好ましくは 0 . 0 5〜 5 0 m、 より好ましくは 0. 1〜: L 0 m、 の範囲である。
本発明においては、 前記微細反応管に、 ラジカゾレ重合開始剤とラジカル重合性単 量体とを導入し、 該反応管内にぉレ、て均一液状状態で流通形式により重合反応を行 。
原料のラジカル重合性単量体としては、ラジカル重合可能な単量体であればよく、 特に制限されず、 様々な単量体を用いることができる。 このラジカル重合可能な単 量体としては、 例えばエチレン、 プロピレン、 イソプチレンなどのォレフィン類; アタリル酸、 メタタリ酸などの不飽和モノカルボン酸類;マレイン酸、 フマル酸、 無水マレイン酸、 イタコン酸などの不飽和ポリカルボン酸類及びその酸無水物類; アタリノレ酸メチル、 アタリル酸ェチル、 アタリル酸プチル、 アタリル酸 2—ェチル へキシル、 アタリノレ酸ドデシル、 アタリル酸 2—ヒドロキシェチル、 メタタリ酸メ チル、 メタタリ酸ェチル、 メタタリ酸プチル、 メタタリ酸 2—ェチルへキシル、 メ タクリ酸ドデシル、 メタタリ酸 2—ヒドロキシェチルなどの (メタ) アタリル酸ェ ステル類;アタリル酸ジメチルァミノェチル、 メタタリ酸ジメチルァミノェチル、 アタリル酸ジメチルァミノェチル塩酸塩、メタタリ酸ジメチノレアミノェチノレ塩酸塩、 アクリル酸ジメチルアミノエチル P—トルエンスルホン酸塩、 メタクリノレ酸ジメチ ルアミノエチル p—トルエンスルホン酸塩などの (メタ) アタリノレ酸ジアルキルァ ミノアルキル及びその付加塩;アクリルアミド、 メタクリルアミド、 N—メチロー ルアクリルアミ ド、 N, N—ジメチルアクリルアミ ド、 アクリルアミ ドー 2—メチ ルプロパンスルホン酸及びそのナトリゥム塩などのアクリルアミ ド系単量体;スチ レン、 α—メチルスチレン、 ρ—スチレンスルホン酸及ぴそのナトリウム塩、 カリ ゥム塩などのスチレン系単量体;その他ァリルァミン及びその付加塩、酢酸ビエル、 アクリロニトリル、 メタタリロニトリル、 Ν—ビュルピロリ ドン、 さらにはフッ化 ビュル、 フッ化ビニリデン、 テトラフルォロエチレンなどの含フッ素単量体等の油 溶性又は水溶性の単量体を挙げることができる。 これらの単量体は一種を戦虫で用 いてもよく、 二種以上を組み合わせて用いてもよい。
本発明においては、微細反応管内において均一液状状態で重合反応を行うために、 所望により重合溶媒を用いることができる。 この重合溶媒は使用するラジカル重合 性単量体の種類に応じて、 水性溶媒や各種の有機溶媒の中から適宜選択して用いら れる。 水性溶媒としては、 水、 又は水及びそれと混和性のある有機溶剤 (ギ酸、 酢 酸、 プロピオン酸などの有機酸類、 醉酸メチル、 酢酸ェチルなどのエステル類;ァ セトン、 メチノレエチルケトン、 ジェチルケトン、 メチルイソプチルケトンなどのケ トン類;メタノール、 エタノール、 プロパノールなどのアルコール類;ジメチルス ルホキシド、 ジメチノレホルムアミドなど) との混合物などを挙げることができる。
—方、 有機溶媒としては、 前記の水との混和性有機溶剤;その他のエステル類、 ケトン類、 アルコール類;ジェチルエーテル、 テトラヒドロフランなどのエーテル 類;へキサン、 シク口へキサン、 ヘプタン、 オタタンなどの脂肪族■脂環式炭化水 素類;ベンゼン、 トルエン、 キシレン、 ェチルベンゼンなどの芳香族炭化水素類; 塩化メチレン、 ジクロロェタン、 クロ口ホルム、 四塩化炭素、 クロ口ベンゼン、 ジ ク口口ベンゼンなどの塩素化炭化水素類等を挙げることができる。 これらの有機溶 剤は一種を與虫で用いてもよく、 二種以上を組み合わせて用いてもよい。
ラジカル重合開始剤としては、 特に制限はなく、 従来ラジカル重合において使用 されている公知のラジカル重合開始剤の中から、 原料のラジカル重合' I"生単量体や重 合溶媒の種類などに応じて適宣選択して用いることができる。 このようなラジカノレ 重合開始剤としては、 例えば有機過酸化物、 ァゾ化合物、 ジスルフイド化合物、 レ ドックス系開始剤、 過硫酸塩などが挙げられる。 一般的には、 重合溶媒が水性媒体 である場合には、 水溶性有機過酸化物、 水、溶性ァゾ化合物、 レドックス系開台剤、 過硫酸塩などが好ましく用いられ、 重合溶媒が有機溶媒である場合には、 油溶性有 機過酸化物及び油溶性ァゾ化合物などが好ましく用いられる。
上記水溶性有機過酸化物の例としては、 t—プチノレヒドロペルォキシド、 クメン ヒドロべ/レオキシド、 ジィソプロピノレベンゼンヒ ドロべ/レオキシド、 p—メンタン ヒドロぺノレオキシド、 2 , 5—ジメチノレへキサン一 2, 5—ジヒドロペスレオキシド、 1 , 1, 3, 3—テトラメチルヒドロペルォキシドなどが挙げられる。 また、 水溶 性ァゾ化合物の例としては、 2 , 2 ' ージァミジェルー 2 , 2 ' —ァゾプロパン- —塩酸塩、 2, 2 ' —ジアミジニルー 2, 2 ' —ァゾブタン '一塩酸塩、 2 , 2 ' ージアミジニル一2, 2 ' —ァゾペンタン -一塩酸塩、 2, 2, ーァゾビス (2— メチルー 4—ジェチルァミノ) ブチロニトリル'塩酸塩などが挙げられる。
レドックス系開始剤としては、 例えば過酸化水素と還元剤との糸且合わせなどを挙 げることができる。 この場合、 還元剤としては、 二価の鉄イオンや銅イオン、 亜鉛 イオン、 コバノレトイオン、 バナジウムイオンなどの金属イオン、 ァスコルビン酸、 還元糖などが用いられる。 過硫酸塩としては、 例えば過硫酸アンモユウム、 過硫酸 カリウムなどが挙げられる。
これらの水溶性ラジカル重合開始剤は一種を戦虫で用いてもよく、 二種以上を組 み合わせて用いてもよい。
一方、 油溶性有機過酸化物の例としては、 ジベンゾィルペルォキシド、 ジ一 3, 5 , 5—トリメチノレへキサノィルペルォキシド、 ジラウロイノレペルォキシドなどの ジァシルペルォキシド類、 ジィソプロピルペルォキシジカーボネート、 ジ一 s e c ーブチノレべ/レ才キシジカーボネート、 ジ一 2—ェチノレへキシノレぺノレオキシジカーボ ネートなどのペルォキシジカーボネート類; t一ブチルペルォキシピバレート、 t 一プチルベル才キシネオデカノエートなどのペルォキシエステル類;あるいはァセ チルシク口へキシルスルホニルペルォキシド、 ジサクシニックァシッドぺルォキシ ドなどが挙げられる。 また、 油溶 ¾Ξァゾ化合物の例としては、 2, 2 ' —ァゾビス イソブチロニトリノレ、 2, 2, ーァゾビス一 2—メチルブチロニトリル、 2 , 2, —ァゾビス (2, 4ージメチノレバレロ二トリ/レ) などが挙げられる。 これらの油溶 性ラジカル重合開始剤は一種を単独で用いてもよく、 二種以上を組み合わせて用い てもよい。
本発明においては、 前記ラジカル重合開始剤の使用量は、 用いる原料のラジカル 重合性単量体やラジカル重合開始剤の種類、 得られる重合体の所望分子量などに応 じて適宜選定されるが、 通常ラジカル重合性単量体 1 0 0質量部に対し、 0 . 0 0 0 1〜0 . 5質量部、 好ましくは 0 . 0 0 1〜0 . 1質量部の範囲で選定される。 本発明においては、 必要に応じ連鎖移動剤を用いることができる。 該連鎮移動剤 としては、 重合反応を阻害せず、 生成する重合体の分子量を調節し得るものであれ ばよく、 特に制限はないが、 メルカプタン類や α—メチルスチレン二量体などが好 ましく用いられる。 ここで、 メルカプタン類としては、 例えば、 1 _ブタンチォー ノレ、 2—ブタンチオール、 1一オタタンチオール、 1一ドデカンチォ一ノレ、 2—メ チルー 2—ヘプタンチオール、 2 _メチルー 2—ゥンデカンチオール、 2—メチノレ 一 2 _プロパンチオール、 メルカプト酢酸とそのエステル、 3—メルカプトプロピ オン酸とそのエステル、 2—メルカプトエタノールとそのエステルなどが挙げられ る。 これらの連鎖移動剤は、 一種を戰虫で用いてもよく、 二種以上を組み合わせて 用いてもよい。
本発明においては、反応形式として、 ( 1 )微細反応管を温度が均一な一つの反応 帯域とする反応形式、 及び (2 ) 該微細反応管に重合温度を制御し得る複数の反応 帯域を設け、各反応帯域の温度を制御する反応形式を採用することができる。また、 ラジカル重合開始剤とラジカル重合性単量体の微細反応管への導入様式として、
( a ) 予め調製されたラジカル重合開始剤とラジカル重合性単量体を含む原料液を 微細反応管に導入する様式、 及び (b ) ラジカル重合開始剤とラジカル重合性単量 体とを、 微細反応管への導入煎に混合し、 該微細反応管に導入する様式を採用する ことができる。
前記( 1 )の反応形式の場合、例えば図 1に示す反応装置を用いることができる。 図 1は、 本発明の方法を実施するための反応装置の一例の概略断面図であり、 反応 装置 1 0は、 ジャケット 1内に、 内径 2 mm以下の微細反応管 2が複数並列に設置 された構造を有している。 そして、 原料液 (ラジカル重合開始剤、 ラジカル重合性 単量体及び必要に応じて用いられる重合媒体や連鎖移動剤)は入口 3カゝら導入され、 複数の微細反応管 2内を通つて重合反応を行 ヽ、 重合液が出口 4から排出される。 一方、 温度制御流体 (以下、熱媒体と称すことがある。) がジャケット 1の入口 5力 ら導入され、 出口 6から排出される。
このような反応装置においては、 微細反応管を用いるため、 単位体積当たりの表 面積が大きいことから、 熱交換の効率が極めて高く、 反応帯域の温度制御が容易で あり、 また、 重合時の発熱反応に伴うホットスポット (局所加熱) ができにくい。 したがって、 全反応帯域の温度を均一に保持することができる。 なお、 上記熱媒体 の温度は、 使用する.重合開始剤の分解温度以上に制御される。
また、 このような反応装置を用いる場合、 ラジカル重合開始剤とラジカル重合性 単量体の導入様式として、前記 (a ) の様式を採用してもよいし、 (b ) の様式を採 用してもよい。 ( a ) の様式の場合は、原料 ί夜として、 ラジカル重合開始剤、 ラジカ ル重合性単量体及び必要に応じて用いられる重合媒体や連鎖移動剤を、 予め均質に 混合したものを、 反応装置 1 0の入口 3に導入する。 また、 (b ) の様式の場合は、 ラジカル重合開始剤含有液とラジカル重合性単量体含有液を、 前記入口 3の直前で 合流させて、 入口 3に導入する。
一方、 前記 (2 ) の反応形式においては、 微細反応管に重合温度を制御し得る複 数の反応帯域を設け、 各反応帯域の温度を精密に制御することにより、 生成する重 合体が、 所望の分子量の分布状態を有するように制御することができる。 例えば、 該微細反応管に 2つの反応帯域を設け、 前記 ( b ) の様式を採用し、 ラジカル重合 開始剤とラジカル重合性単量体とを導入する側の反応帯域の温度を、 上記ラジカル 重合開始剤が分解する温度に保持すると共に、 重合液出口側の反応帯域の温度を、 前記導入側の反応帯域の よりも低く保持し、 ラジカル重合開始剤の 率を導 入側の反応帯域よりも低く抑えることにより、 分子量分布において、 2つのシヤー プなピークをもつ重合体を得ることができる。 また、 該微細反応管に 2つの反応帯 域を設け、 前記 ( b ) の様式を採用し、 ラジカル重合開始剤とラジカル重合性単量 体とを導入する側の反応帯域の温度を、 上記ラジカル重合開始剤が分解する温度に 保持すると共に、 重合液出口側の反応帯域の' を、 該反応域の通過時間内に上記 ラジカル重合開始剤が実質的に分解しない温度に保持することにより、 実質的に 1 つのシャープなピークをもつ重合体を得ることができる。 なお、 ラジカル重合開始 剤が分解しない温度とは、 該ラジカノレ重合開始剤の分解率が 1 %程度以下となる温 度を指す。
図 2は、本発明の方法を実施するための反応装置の異なる例の概略断面図であり、 反応装置 2 0は、断熱部 7を介して二つに分割されたジャケット 1 a及び 1 b内に、 内径 2 mm以下の微細反応管 2が複数並列に設置された構造を有している。 原料液 (ラジカル重合開始剤、 ラジカル重合性単量体及び必要に応じて用いられる重合媒 体や連鎖移動剤) は、 (a ) 又は (b ) の様式により入口 3から導入され、複数の微 細反応管 2内を通って重合反応を行い、 重合液が出口 4から排出される。 一方、 ジ ャケット l aにおいては、 熱媒体が入口 5 aから導入されると共に、 出口 6 aから 排出される。 また、 ジャケット 1 bにおいては、 熱媒体が入口 5 bから導入される と共に、出口 6 bから排出される。ジャケット 1 a及び 1 bに導入される熱媒体は、 たがいに異なる温度に制御される。 例えばジャケット 1 aに導入される熱媒体の温 度は、 使用するラジカル重合開始剤が分解する温度に設定し、 ジャケット l bに導 入される熱媒体の温度は、 該反応帯域が前段の反応帯域よりも低い所定の温度にな るように設定する。
本発明はまた、 温度制御流体を流通させることが可能なジャケットと、 該ジャケ ット内に並列に配置された内径 2 mm以下の複数の円管を有し、 前記ジャケットに 温度制御流体を流通させることにより、 複数の円管内における反応の温度を制御し 得る微細化学反応装置を提供する。
このような微細化学反応装置としては、 編己図 1に示すような構造を有する反応 装置を例示することができる。 該微細化学反応装置は、 フォトリソグラフィー、 ェ ツチング、 精密機械加工といった高度な加工技術を要することなく、 市販品として 入手可能な内径 2 mm以下の円管を用いて容易に製作することができる。 円管の材 質としては、 例えば各種の金属や合金、 ガラス、 プラスチックなどが用いられる。 また、 本発明の微細化学反応装置は、 ジャケットが、 円管の長さ方向に沿って複 数に分割され、 かつ分割されたそれぞれのジャケットに温度制御流体を独立して流 通させることが可能な構造を有していてもよい。 このような構造の微細化学反応装 置としては、 前記図 2に示すような構造を有する反応装置を例示することができる (この図 2においては、 ジャケットは二つに分割されている。)。
さらに、 本発明の微細化学反応装置においては、 ジャケット本体と円管部分が着 脱可能な構造を有することが好ましい。 これにより、 円管内部で詰まりなどを生じ た際や、 円管の内径を変更する際に、 円管の交換が可能となる。
なお、 本発明の微細化学反応装置において、 微細反応管の管形状、 配置、 本数等 は、 図 1、 図 2に例示したものに限らず、 本発明の効果を奏することができるもの であれば特に制限されな ί/、。 ジャケットの形状等も同様である。 実施例
次に、 本発明を実施例により、 さらに詳細に説明するが、 本発明は、 これらの例 によってなんら限定されるものではなレ、。
実施例 1
トルエン 1 0 0ミリリットルに対して、 2 , 2 '一ァゾビスイソブチロニトリル 1 . 5 5 gを溶解し、 ラジカル重合開始剤溶液を調製した。 トルエンは、 脱水ダレ 一ドをァノレゴンで 3 0分以上バブリングしたものを用いた。メタクリル酸メチルは、 1モル Zリットル水酸化ナトリゥム水溶液で 3回、 蒸留水で 3回洗浄後、 硫酸ナト リウムで乾燥、 さらにアルゴンバブリングを 3 0分以上行ったものを用いた。 ラジ カル重合開始剤溶液、 メタクリル酸メチルをそれぞれ別々のシリンジポンプにアル ゴン雰囲気下で充填し、 それらを三方ジョイントを用いて合流させたのちに、 ステ ンレス製で内径が 0 . 5 mmの反応管に導入するようにした。 反応管は、 長さ 1 0 mで、 始めの 9 mを恒温槽に浸して恒温槽の を 100 °Cとし、 残りの 1 mを氷 浴に浸し、 管の出口では流れた流量が秤量できるようにメスシリンダ一で重合溶液 が回収できるようにした。
シリンジポンプによりラジカル重合開始剤 ί薪夜とメタクリル酸メチルそれぞれを 等量になるように反応管内に導入し、 3分間で 10. 8ミリリットルの重合溶液を 回収した。 回収溶液から溶媒を留去し、 メタクリル酸メチル重合体を含む 0. 40 62 gの固形物を得た。 得られた固形分の質量から、 流通させたラジカル重合開始 剤の質量を差し引き、 流通させたメタクリル酸メチルの質量 (比重 0. 945 g/ ミリリツトルで計算) で割った数値を収率として算出したところ、 6. 8%であつ た。
数平均分子量 (Mn) 及び重量平均分子量 (Mw) は、 ゲルパーミエーシヨンク 口マトグラフィー (GPC) 測定にて決定した。 Sh o d e x ー804しと3 ho d e x K— 805Lの 2本のカラムを直列に配置し、 40 °C、 展開溶媒にク 口口ホルムを用いて、 R I検出器にて市販のメタクリル酸メチル重合体を標準サン プルとしてキヤリブレーションを行レヽ、 試料を測定、 分析した。
反応時間、 収率、 数平均分子量 (Mn) 及び分子量分布 (Mw/Mn) を第 1表 に示す。 なお、 重合体のピークは 1つであった。
実施例 2
実施例 1におレ、て、 3分間で 5. 4ミリリツトルの重合溶液を回収した以外は、 実施例 1と同様に実施した。 メタクリル酸メチル重合体を含む 0. 3577 gの固 形物を得た。 結果を第 1表に示す。 なお、 重合体のピークは 1つであった。
実施例 3
実施例 1において、 6分間で 5. 3ミリリツトルの重合溶液を回収した以外は、 実施例 13と同様に実施した。 メタタリル酸メチル重合体を含む 0. 6897 gの 固形物を得た。 結果を第 1表に示す。 なお、 重合体のピークは 1つであった。 実施例 4
実施例 1において、 6分間で 2. 2ミリリツトルの重合溶液を回収した以外は、 実施例 1と同様に実施した。 メタクリル酸メチル重合体を含む 0 . 5 2 1 3 gの固 形物を得た。 結果を第 1表に示す。 なお、 重合体のピークは 1つであった。
実施例 5
実施例 1において、 1 2分間で 2 . 1ミリリツトルの重合溶液を回収した以外は、 実施例 1と同様に実施した。 メタタリル酸メチル重合体を含む 0 . 7 6 9 9 gの固 形物を得た。 結果を第 1表に示す。 なお、 重合体のピークは 1つであった。
実施例 6
実施例 1において、 1 7分間で 2. 6ミリリツトルの重合溶液を回収した以外は、 実施例 1 3と同様に実施した。 メタタリル酸メチル重合体を含む 1 · 0 5 6 5 gの 固形物を得た。 結果を第 1表に示す。 なお、 重合体のピークは 1つであった。
比較例 1
実施例 Uこ記載の方法で前処理を行ったトルエンとメタクリル酸メチルを用いて、 トルエン 3 0ミリリツトルに対して 2, 2 '—ァゾビスイソブチロニトリル 0 . 4 6 3 g、 メタクリル酸メチル 3 0ミリリツトルの比率で混合した反応溶液をァルゴ ン雰囲気下で調製した。 アルゴン雰囲気下で、 ステンレス製の密封可能な反応容器 に反応溶液 1 5ミリリツトル採取し、 1 0 0°Cの恒温槽に 3分間浸して重合反応を 行った後、 氷浴に浸して重合反応を停止させた。 取り出した反応溶液から溶媒を留 去し、 メタクリル酸メチル重合体を含む 0 · 5 8 1 8 gの固形物を得た。 結果を第 1表に示す。 なお、 重合体のピークは 1つであった。
比較例 2
比較例 1にお!/、て、 1 0 0 °Cの恒温槽での重合反応時間を 5分とした以外は、 比 較例 1と同様に実施した。 メタタリル酸メチル重合体を含む 1 . 4 6 1 5 gの固形 物を得た。 結果を第 1表に示す。 なお、 重合体のピークは 1つであった。
比較例 3
比較例 1において、 1 0 0 °Cの恒温槽での重合反応時間を 7 . 5分とした以外は、 比較例 1と同様に実施した。 メタタリル酸メチル重合体を含む 3 . 6 1 9 8 gの固 形物を得た。 結果を第 1表に示す。 なお、 重合体のピークは 1つであった。 比較例 4
比較例 1において、 100°Cの恒温槽での重合反応時間を 10分とした以外は、 比較例 1と同様に実施した。 メタクリル酸メチル重合体を含む 4. 9344gの固 形物を得た。 結果を第 1表に示す。 なお、 重合体のピークは 1つであった。
比較例 5
比較例 1におレ、て、 100 °Cの恒温槽での重合反応時間を 15分とした以外は、 比較例 1と同様に実施した。 メタクリル酸メチル重合体を含む 5. 5280 gの固 形物を得た。 結果を第 1表に示す。 なお、 重合体のピークは 1つであった。
Figure imgf000016_0001
実施例 7
実施例 1において、 トルエン 100ミリリツトルに対して、 2, 2 '—ァゾビス イソプチロニトリノレ 0. 3264gを溶解したラジカル重合開始剤溶液と、 メタク リノレ酸メチル 21. 2ミリリツトルをトルエン 78. 8ミリリツトルで希釈した単 量体溶液を用い、 15分間で 26. 5ミリリットルの重合溶液を回収した以外は、 実施例 1と同様に実施した。 メタクリノレ酸メチル重合体を含む 0. 1666 gの固 形物を得た。 結果を第 2表に示す。 なお、 重合体のピークは 1つであった。
実施例 8 実施例 7において、 2 9分間で 1 0. 0ミリリツトルの重合溶液を回収した以外 は、 実施例 7と同様に実施した。 メタタリル酸メチル重合体を含む 0. 2 3 5 5 g の固形物を得た。 結果を第 2表に示す。 なお、 重合体のピークは 1つであった。 実施例 9
実施例 7において、 4 3分間で 9. 8ミリリツトルの重合溶液を回収した以外は、 実施例 7と同様に実施した。 メタタリル酸メチル重合体を含む 0. 2 9 7 0 gの固 形物を得た。 結果を第 2表に示す。 なお、 重合体のピークは 1つであった。
実施例 1 0
実施例 7において、 2 9分間で 5. 0ミリリツトルの重合溶液を回収した以外は、 実施例 7と同様に実施した。 メタタリル酸メチル重合体を含む 0. 1 7 5 4 gの固 形物を得た。 結果を第 2表に示す。 なお、 重合体のピークは 1つであった。
実施例 1 1
実施例 7において、 4 8分間で 7. 1ミリリツトルの重合溶液を回収した以外は、 実施例 7と同様に実施した。 メタタリル酸メチル重合体を含む 0. 2 7 6 3 gの固 形物を得た。 結果を第 2表に示す。 なお、 重合体のピークは 1つであった。
実施例 1 2 '
実施例 7において、 5 1分間で 6. 0ミリリツトルの重合溶液を回収した以外は、 実施例 7と同様に実施した。 メタタリル酸メチル重合体を含む 0. 2 6 3 2 gの固 形物を得た。 結果を第 2表に示す。 なお、 重合体のピークは 1つであった。
比較例 6
比較例 1において、 トルエン 5 3. 6ミリリツトルに対して 2 , 2 '一ァゾビス イソブチロニトリノレ 0. 0 9 8 5 g、 メタクリル酸メチノレ 6 . 4ミリリットルの比 率で混合した反応溶液を用レヽ、 1 0 0 °Cの恒温槽での重合反応時間を 5分とした以 外は、 比較例 1と同様に実施した。 メタタリル酸メチル重合体を含む 0. 1 0 8 2 gの固形物を得た。 結果を第 2表に示す。 なお、 重合体のピークは 1つであった。 比較例 7
比較例 6において、 1 0 0°Cの恒温槽での重合反応時間を 7. 5分とした以外は、 10562
比較例 6と同様に実施した。 メタタリノレ酸メチル重合体を含む 0 . 2 4 1 8 gの固 形物を得た。 結果を第 2表に示す。 なお、 重合体のピークは 1つであった。
比較例 8
比較例 6におレ、て、 1 0 0 °Cの恒温槽での重合反応時間を 1 0分とした以外は、 比較例 6と同様に実施した。 メタタリル酸メチル重合体を含む 0 . 3 2 8 7 gの固 形物を得た。 結果を第 2表に示す。
比較例 9
比較例 6におレ、て、 1 0 0 °Cの恒温槽での重合反応時間を 1 5分とした以外は、 比較例 6と同様に実施した。 メタクリル酸メチル重合体を含む 0 . 5 0 1 8 gの固 形物を得た。 結果を第 2表に示す。 なお、 重合体のピークは 1つであった。
比較例 1 0
比較例 6にお!/、て、 1 0 0 °Cの恒温槽での重合反応時間を 2 0分とした以外は、 比較例 6と同様に実施した。 メタクリル酸メチル重合体を含む 0. 6 3 0 7 gの固 形物を得た。 結果を第 2表に示す。 なお、 重合体のピークは 1つであった。
2
Figure imgf000018_0001
実施例 1 3
実施例 1において、 トルエン 1 0 0ミリリツトルに対して、 2, 2 '一ァゾビス ィソプチロニトリノレ 1 . 1 4 6 1 gを溶解したラジカル重合開始剤溶液と、 メタク JP2004/010562
リル酸メチルに代えて n—プチルァタリレートを用い、 2分間で 2 . 4ミリリット ルの重合溶液を回収した以外は、 実施例 1と同様に実施した。 n _ブチルアタリレ 一ト重合体を含む 0 . 7 7 2 4 gの固形物を得た。 n—ブチルァクリレートの比重 は、 0 . 8 9 4として、 収率の算出を行った。 結果を第 3表に示す。 なお、 重合体 のピークは 1つであった。
実施例 1 4
実施例 1 3において、 6分間で 5 . 2ミリリツトルの重合溶液を回収した以外は、 実施例 1 3と同様に実施した。 n—プチルァクリレート重合体を含む 2 . 0 7 9 4 gの固形物を得た。 結果を第 3表に示す。 なお、 重合体のピークは 1つであった。 実施例 1 5
実施例 1 3において、 3分間で 1 . 8ミリリツトルの重合溶液を回収した以外は、 実施例 1 3と同様に実施した。 n—プチルァクリレート重合体を含む 0 · 6 9 0 9 gの固形物を得た。 結果を第 3表に示す。 なお、 重合体のピークは 1つであった。 実施例 1 6
実施例 1 3において、 4分間で 1 . 8ミリリツトルの重合溶液を回収した以外は、 実施例 1 3と同様に実施した。 n一プチルァクリレート重合体を含む 0 . 7 1 7 6 gの固形物を得た。 結果を第 3表に示す。 なお、 重合体のピークは 1つであった。 実施例 1 7
実施例 1 3において、 5分間で 1 . 8ミリリツトルの重合溶液を回収した以外は、 実施例 1 3と同様に実施した。 n—プチルァクリレート重合体を含む 0 · 7 1 6 2 gの固形物を得た。 結果を第 3表に示す。 なお、 重合体のピークは 1つであった。 比較例 1 1
比較例 1において、 トルエン 3 0ミリリツトルに対して 2, 2 '一ァゾビスィソ プチロニトリル 0 . 3 4 3 8 g、 nーブチルァクリレート 3 0ミリリツトルの比率 で混合した反応溶液を用いた以外は、 比較例 1と同様に実施した。 n—プチルァク リレート重合体を含む 5 . 5 7 8 1 gの固形物を得た。結果を第 3表に示す。なお、 重合体のピークは 1つであつた。 比較例 12
比較例 11におレ、て、 100 °Cの恒温槽での重合反応時間を 3. 5分とした以外 は、 比較例 11と同様に実施した。 n—プチルァクリレート重合体を含む 5. 84 55 gの固形物を得た。 結果を第 3表に示す。 なお、 重合体のピークは 1つであつ た。
比較例 13
比較例 11におレ、て、 100 °Cの恒温槽での重合反応時間を 4分とした以外は、 比較例 11と同様に実施した。 n—ブチルァクリレート重合体を含む 5. 9772 gの固形物を得た。 結果を第 3表に示す。 なお、 重合体のピークは 1つであった。
第 3表
Figure imgf000020_0001
実施例 18
実施例 13において、 トルエン 100ミリリットルに対して、 2, 2 '—ァゾビ スイソプチロニトリル 0. 3264 gを溶解したラジカル重合開始剤溶液と、 n— プチルァクリレート 26. 1ミリリツトルをトルエン 73. 9ミリリツトルで希釈 した単量体溶液を用い、 13分間で 15. 2ミリリツトルの重合溶液を回収した以 外は、 実施例 13と同様に実施した。 n—プチルァクリレー重合体を含む 0. 46 86 gの固形物を得た。 結果を第 4表に示す。
実施例 19
実施例 18において、 23分間で 19. 8ミリリツトルの重合溶液を回収した以 外は、 実施例 18と同様に実施した。 n—ブチルアタリレート重合体を含む 0. 8 4 1 8 gの固形物を得た。 結果を第 4表に示す。 なお、 重合体のピークは 1つであ つた。
実施例 2 0
実施例 1 8において、 1 5分間で 8 . 8ミリリツトルの重合溶液を回収した以外 は、 実施例 1 8と同様に実施した。 n—プチルァクリレート重合体を含む 0 · 4 0 6 7 gの固形物を得た。 結果を第 4表に示す。 なお、 重合体のピークは 1つであつ た。
実施例 2 1
実施例 1 8において、 1 5分間で 5 . 3ミリリツトルの重合溶液を回収した以外 は、 実施例 1 8と同様に実施した。 n—ブチルアタリレート重合体を含む 0 . 3 7 0 4 gの固形物を得た。 結果を第 4表に示す。 なお、 重合体のピークは 1つであつ た。
実施例 2 2
実施例 1 8において、 2 3分間で 4 . 9ミリリツトルの重合溶液を回収した以外 は、 実施例 1 8と同様に実施した。 n—プチルァクリレート重合体を含む 0 . 3 7 6 l gの固形物を得た。 結果を第 4表に示す。 なお、 重合体のピークは 1つであつ た。
実施例 2 3
実施例 1 8において、 2 9分間で 5 . 0ミリリツトルの重合溶液を回収した以外 は、 実施例 1 8と同様に実施した。 n—プチルァクリレート重合体を含む 0 . 4 3 9 6 gの固形物を得た。 結果を第 4表に示す。 なお、 重合体のピークは 1つであつ た。
比較例 1 4
比較例 1にお!/、て、 トルエン 5 1 . 4ミリリットルに対して 2, 2 '一ァゾビス イソプチロニトリノレ 0 . 0 9 8 5 g、 n—プチノレアタリレ^ "ト 8 . 6ミリリットノレ の比率で混合した反応溶液を用い、 1 0 0 °Cの恒温槽での重合反応時間を 5分とし た以外は、 比較例 1と同様に実施した。 n—プチ/レアクリレート重合体を含む 0 - 6 8 2 5 gの固形物を得た。 結果を第 4表に示す。 なお、 重合体のピークは 1つで あつ 7こ。
比較例 1 5
比較例 1 4にお!/、て、 1 0 0 °Cの恒温槽での重合反応時間を 7分とした以外は、 比較例 1 4と同様に実施した。 n—プチルァクリレート重合体を含む 0 · 8 7 2 0 gの固形物を得た。 結果を第 4表に示す。 なお、 重合体のピークは 1つであった。 比較例 1 6
比較例 1 4にお ヽて、 1 0 0 °Cの恒温槽での重合反応時間を 8分とした以外は、 比較例 1 4と同様に実施した。 n—プチルァクリレート重合体を含む 0. 9 8 9 4 gの固形物を得た。 結果を第4表に示す。 なお、 重合体のピークは 1つであった。 比較例 1 7
比較例 1 4において、 1 0 0 °Cの恒温槽での重合反応時間を 1 0分とした以外は、 比較例 1 4と同様に実施した。 n—プチルァクリレート重合体を含む 1 . 2 6 6 2 gの固形物を得た。 結果を第 4表に示す。 なお、 重合体のピークは 1つであった。 比較例 1 8 '
比較例 1 4において、 1 0 0 °Cの恒温槽での重合反応時間を 1 2分とした以外は、 比較例 1 4と同様に実施した。 n—プチルァクリレート重合体を含む 1 . 2 0 7 0 gの固形物を得た。 結果を第 4表に示す。 なお、 重合体のピークは 1つであった。
4
Figure imgf000023_0001
第 1表〜第 4表から明らかなように、 重合開始剤とモノマーを、 該微細反応管に 導入し、 重合反応を行うことにより、 生成した重合体は、 分子量分布において 1つ のピークを有し、 かつ対応する比較例のものに比べて、 該ピークがシャープである ことが分かる。
実施例 2 4
円管状のジャケット内に、 内径 0 . 5 1 mm、 長さ 6 0 c mのチューブが 9 4本 並列に配置され、 ジャケットは 5 0 c mと 1 0 c mに二分割されていて、 異なる熱 媒を流通させることができる反応装置 (図 2参照) を用いてメタクリル酸メチルの 重合^行った。
実施例 1と同様に準備した 2, 2, 一ァゾビスィソプチロェトリルのトルエン溶 液とメタタリル酸メチルをそれぞれ別々のシリンジポンプにアルゴン雰囲気下で充 填し、 それらを三方ジョイントを用いて合流させたのちに、 上記の反応装置に導入 するようにした。 5 0 c m側のジャケットには 1 0 0 °Cの熱媒を循環させ、 1 0 c m側のジャケットには 0 °Cの冷媒を循環させて、 反応溶液が 1 0 0 °Cのジャケット を経て、 0 °Cに冷却されたのちに取り出されるようにした。
シリンジポンプによりラジカル重合開始剤とメタタリル酸メチルをそれぞれ等量 になるように反応装置に導入し、 1分間で 8 . 4ミリリットルの重合溶液を回収し た。 回収溶液から溶媒を留去し、 メタタリル酸メチル重合体を含む 0 . 5 7 4 6 g の固形物を得た。実施例 1に記載したのと同じ計算で収率を算出したところ、 1 2 . 8 %であった。 数平均分子量 (M n ) 及び重量平均分子量 (Mw) は、 ゲルパーミエーションク 口マトグラフィー (G P C) 装置を用 V、て実施例 1と同じ条件で測定した。 数平均 分子量 (M n ) は 9 . 3 X 1 0 3及ぴ分子量分布 (Mw/Mn ) は 1 . 8 4であつ た。 なお、 重合体のピークは 1つであった。
実施例 2 4で実施した反応条件は、 1本の流路で実施した実施例 1〜 5と同じで あり、 反応部の体積は、 実施例 1〜 5が 1 . 8ミリリツトルで、 実施例 2 4で用レヽ た反応装置の反応部の体積が、 9 . 6ミリリツトノレと計算される。 実施例 2 4と反 応時間がほぼ等し 、実施例 2を比較すると、 収率はほぼ等しく、 ポリマーの分子量 及び分子量分布にもほとんど差異は認められないことがわかる。 したがって、 実施 例 2 4で用レ、た反応装置を用いることにより、 実施例 1〜 5での流路が 1本の反応 器より、 生産性をその 分 (約 5倍) 向上させることができることが示される。 産業上の利用可能性
本発明のラジカル重合体の製造方法によれば、 内径が 2 mm以下の微細反応管を 用い、 ラジカル重合性単量体の重合を流通形式により行い、 力つ重合温度を所定の 温度に精密に制御することにより、 分子量の分布状態が制御された、 あるいは分子 量分布の狭いラジカル重合体を短時間で効率よく製造することができる。
また、 本発明によれば、 容易に入手可能な部材を用いて、 高度な加工技術を必要 とせずに製作可能な微細化学反応装置を«することができる。

Claims

請 求 の 範 囲
1 . ラジカル重合開始剤とラジカル重合性単量体とを、 内径が 2 mm以下の反応 管に導入し、 該反応管にぉレ、て均一液状状態で流通形式により重合反応を行うこと を特徴とするラジカル重合体の製造方法。
2 . ラジカル重合開始剤とラジカル重合性単量体とを、 反応管への導入前に混合 し、 該反応管に導入する請求項 1記載のラジカル重合体の製造方法。
3 . 反応管の内径が 1 mm以下である請求項 1又は 2記載のラジカル重合体の製 造方法。
4 . 反応管に重合温度を制御し得る複数の反応帯域を設け、 各反応帯域の温度を 制御し、 生成する重合体の分子量の分布を制御する請求項 1〜 3の!/ヽずれかに記载 のラジカノレ重合体の製造方法。
5 . 反応管に 2つの反応帯域を設け、 ラジカル重合開始剤とラジカル重合性単量 体とを導入する側の反応帯域の温度を、 上記ラジカル重合開始剤が分解する に 保持すると共に、 重合液出口側の反応帯域の を、 該反応帯域の通過時間内に上 記ラジカル重合開始剤が実質的に分解しな ヽ温度に保持する請求項 4記載のラジカ ル重合体の製造方法。
6 . 温度制御流体を流通させることが可能なジャケットと、 該ジャケット内に並 列に配置された内径 2 mm以下の複数の円管を有し、 前記ジャケットに温度制御流 体を流通させることにより、 複数の円管内における反応の温度を制御し得る微細化 学反応装置。
7 . ジャケットが、 円管の長さ方向に沿って複数に分割され、 力つ分割されたそ れぞれのジャケットに温度制御流体を独立して流通させることが可能な構造を有す る請求項 6記載の微細化学反応装置。
8 . ジャケット部本体と円管部分が着脱可能な構造を有する請求項 6又は 7記載 の微細化学反応装置。
PCT/JP2004/010562 2003-07-25 2004-07-16 ラジカル重合体の製造方法及び微細化学反応装置 WO2005010055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005512040A JPWO2005010055A1 (ja) 2003-07-25 2004-07-16 ラジカル重合体の製造方法及び微細化学反応装置
EP04747925A EP1650228A4 (en) 2003-07-25 2004-07-16 PROCESS FOR PREPARING A RADICAL POLYMER AND MICROPROPERTATE FOR CHEMICAL REACTIONS
US10/565,652 US7465771B2 (en) 2003-07-25 2004-07-16 Process for producing radical polymer and microapparatus for chemical reaction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-201704 2003-07-25
JP2003201704 2003-07-25
JP2004-018543 2004-01-27
JP2004018543 2004-01-27

Publications (1)

Publication Number Publication Date
WO2005010055A1 true WO2005010055A1 (ja) 2005-02-03

Family

ID=34106841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010562 WO2005010055A1 (ja) 2003-07-25 2004-07-16 ラジカル重合体の製造方法及び微細化学反応装置

Country Status (6)

Country Link
US (1) US7465771B2 (ja)
EP (1) EP1650228A4 (ja)
JP (1) JPWO2005010055A1 (ja)
KR (1) KR20060058688A (ja)
TW (1) TW200504098A (ja)
WO (1) WO2005010055A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199767A (ja) * 2005-01-19 2006-08-03 Idemitsu Kosan Co Ltd ラジカル重合体の製造方法及び微細化学反応装置
JP2006219379A (ja) * 2005-02-08 2006-08-24 Mitsubishi Gas Chem Co Inc 過カルボン酸を含む溶液の製造方法
WO2007023097A1 (de) * 2005-08-24 2007-03-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP2008031419A (ja) * 2006-06-29 2008-02-14 Sanyo Chem Ind Ltd 高単分散微粒子の製造方法
JP2009215359A (ja) * 2008-03-07 2009-09-24 Mitsubishi Rayon Co Ltd 重合体の製造方法
JP2011012106A (ja) * 2009-06-30 2011-01-20 Dic Corp ラジカル重合体の製造方法
US8381798B2 (en) 2007-03-29 2013-02-26 Fujifilm Corporation Micro fluid device having piping to control fluid temperature
WO2016031752A1 (ja) * 2014-08-29 2016-03-03 国立研究開発法人海洋研究開発機構 ラジカル重合方法および重合反応装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984709A (zh) 2004-03-02 2007-06-20 维洛塞斯公司 微通道聚合反应器
US7795359B2 (en) * 2005-03-04 2010-09-14 Novartis Ag Continuous process for production of polymeric materials
EP2184103A1 (de) * 2008-11-11 2010-05-12 Onea Engineering Austria GmbH Modularer Reaktor
TWI425008B (zh) * 2011-04-27 2014-02-01 Univ Cheng Shiu 用以製備精準分子量之聚合物的方法
EP2570180A1 (en) * 2011-09-15 2013-03-20 Bayer MaterialScience AG Method for a continuous radical polymerization using microreactors
CN112830863A (zh) * 2021-01-04 2021-05-25 山东华夏神舟新材料有限公司 连续可控制备六氟丙烯二聚体/三聚体的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725908A (ja) * 1993-07-07 1995-01-27 Showa Highpolymer Co Ltd 連続重合方法および装置
JP2002512272A (ja) * 1998-04-17 2002-04-23 シーメンス・アクシヴァ・ゲーエムベーハー・ウント・コンパニー・カーゲー ポリマーの連続製造方法および同装置
JP2002544309A (ja) * 1999-05-06 2002-12-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ビーズポリマーの製造方法
JP2003200041A (ja) * 2001-10-24 2003-07-15 Commiss Energ Atom 様々な反応剤の順次的注入のための並列的同期注入のためのデバイス
JP2004197083A (ja) * 2002-12-06 2004-07-15 Soken Chem & Eng Co Ltd 着色球状粒子のマイクロチャンネル製造方法及びそれに用いるマイクロチャンネル式製造装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634450A1 (de) * 1996-08-26 1998-03-05 Basf Ag Vorrichtung zur kontinuierlichen Durchführung chemischer Reaktionen
DE10055758A1 (de) 2000-11-07 2002-05-16 Siemens Axiva Gmbh & Co Kg Verfahren zur Herstellung von Aldolen unter Verwendung eines mikrostrukturierten Reaktionssystems
US6639029B1 (en) * 2000-11-13 2003-10-28 Rohmax Additives Gmbh Process for continuous synthesis of polymer compositions as well as use of same
US7118917B2 (en) * 2001-03-07 2006-10-10 Symyx Technologies, Inc. Parallel flow reactor having improved thermal control
US7094379B2 (en) * 2001-10-24 2006-08-22 Commissariat A L'energie Atomique Device for parallel and synchronous injection for sequential injection of different reagents
DE10154045A1 (de) 2001-11-02 2003-05-22 Basf Coatings Ag Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten Monomeren
JP4062121B2 (ja) * 2003-02-21 2008-03-19 旭硝子株式会社 フルオロポリマーの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725908A (ja) * 1993-07-07 1995-01-27 Showa Highpolymer Co Ltd 連続重合方法および装置
JP2002512272A (ja) * 1998-04-17 2002-04-23 シーメンス・アクシヴァ・ゲーエムベーハー・ウント・コンパニー・カーゲー ポリマーの連続製造方法および同装置
JP2002544309A (ja) * 1999-05-06 2002-12-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ビーズポリマーの製造方法
JP2003200041A (ja) * 2001-10-24 2003-07-15 Commiss Energ Atom 様々な反応剤の順次的注入のための並列的同期注入のためのデバイス
JP2004197083A (ja) * 2002-12-06 2004-07-15 Soken Chem & Eng Co Ltd 着色球状粒子のマイクロチャンネル製造方法及びそれに用いるマイクロチャンネル式製造装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603371B2 (ja) * 2005-01-19 2010-12-22 出光興産株式会社 ラジカル重合体の製造方法及び微細化学反応装置
JP2006199767A (ja) * 2005-01-19 2006-08-03 Idemitsu Kosan Co Ltd ラジカル重合体の製造方法及び微細化学反応装置
JP2006219379A (ja) * 2005-02-08 2006-08-24 Mitsubishi Gas Chem Co Inc 過カルボン酸を含む溶液の製造方法
CN101242891B (zh) * 2005-08-24 2011-05-11 巴斯夫欧洲公司 生产吸水性聚合物颗粒的方法
JP2009506151A (ja) * 2005-08-24 2009-02-12 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子の製造方法
US7910675B2 (en) 2005-08-24 2011-03-22 Basf Se Method for producing water-absorbing polymer particles
WO2007023097A1 (de) * 2005-08-24 2007-03-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP2008031419A (ja) * 2006-06-29 2008-02-14 Sanyo Chem Ind Ltd 高単分散微粒子の製造方法
US8381798B2 (en) 2007-03-29 2013-02-26 Fujifilm Corporation Micro fluid device having piping to control fluid temperature
JP2009215359A (ja) * 2008-03-07 2009-09-24 Mitsubishi Rayon Co Ltd 重合体の製造方法
JP2011012106A (ja) * 2009-06-30 2011-01-20 Dic Corp ラジカル重合体の製造方法
WO2016031752A1 (ja) * 2014-08-29 2016-03-03 国立研究開発法人海洋研究開発機構 ラジカル重合方法および重合反応装置
JPWO2016031752A1 (ja) * 2014-08-29 2017-06-15 国立研究開発法人海洋研究開発機構 ラジカル重合方法および重合反応装置
US10442873B2 (en) 2014-08-29 2019-10-15 Japan Agency For Marine-Earth Science And Technology Radical polymerization method and polymerization reaction apparatus

Also Published As

Publication number Publication date
US20060235170A1 (en) 2006-10-19
TW200504098A (en) 2005-02-01
KR20060058688A (ko) 2006-05-30
EP1650228A4 (en) 2008-02-27
JPWO2005010055A1 (ja) 2006-09-07
EP1650228A1 (en) 2006-04-26
US7465771B2 (en) 2008-12-16

Similar Documents

Publication Publication Date Title
WO2005010055A1 (ja) ラジカル重合体の製造方法及び微細化学反応装置
Zaquen et al. Polymer synthesis in continuous flow reactors
Wilms et al. Microstructured Reactors for Polymer Synthesis: A Renaissance of Continuous Flow Processes for Tailor‐Made Macromolecules?
Tonhauser et al. Microflow technology in polymer synthesis
Nagasawa et al. Design of a new micromixer for instant mixing based on the collision of micro segments
JP4603371B2 (ja) ラジカル重合体の製造方法及び微細化学反応装置
Nagaki et al. Cation pool-initiated controlled/living polymerization using microsystems
Pennemann et al. Chemical microprocess technology—from laboratory-scale to production
JP5693598B2 (ja) 水性ポリアクリル酸溶液の製造方法
Parida et al. Coil flow inversion as a route to control polymerization in microreactors
JP6121963B2 (ja) ラジカル重合プロセスの制御を通じた制御の改善
Qiu et al. Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization
Song et al. Influence of mixing performance on polymerization of acrylamide in capillary microreactors
Bally et al. Homogeneous polymerization: benefits brought by microprocess technologies to the synthesis and production of polymers
EP3164422A1 (en) Synthesis of an acrylic polymer in flow reactor
Wang et al. Continuous flow photo-RAFT and light-PISA
Hohmann et al. Separation units and equipment for lab-scale process development
Mitic et al. Process intensification tools in the small‐scale pharmaceutical manufacturing of small molecules
Song et al. Process characteristics and rheological properties of free radical polymerization in microreactors
Yadav et al. Synthesis of water-borne polymer nanoparticles in a continuous microreactor
JPH11240904A (ja) ポリマーの連続的製造方法
Méndez-Portillo et al. Free-radical polymerization of styrene using a split-and-recombination (SAR) and multilamination microreactors
JP5214155B2 (ja) 水溶性重合体製造装置および水溶性重合体の連続的製造方法
JP2000212205A (ja) ポリマ―を製造するための連続方法における反応器表面のポリマ―付着物の減少
Okubo et al. Precise control of polymer particle properties using droplets in the microchannel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021445.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512040

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004747925

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067001407

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006235170

Country of ref document: US

Ref document number: 10565652

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004747925

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067001407

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10565652

Country of ref document: US