WO2016031752A1 - ラジカル重合方法および重合反応装置 - Google Patents

ラジカル重合方法および重合反応装置 Download PDF

Info

Publication number
WO2016031752A1
WO2016031752A1 PCT/JP2015/073677 JP2015073677W WO2016031752A1 WO 2016031752 A1 WO2016031752 A1 WO 2016031752A1 JP 2015073677 W JP2015073677 W JP 2015073677W WO 2016031752 A1 WO2016031752 A1 WO 2016031752A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
unit
heating
radical polymerization
cooling
Prior art date
Application number
PCT/JP2015/073677
Other languages
English (en)
French (fr)
Inventor
茂 出口
圭剛 木下
Original Assignee
国立研究開発法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人海洋研究開発機構 filed Critical 国立研究開発法人海洋研究開発機構
Priority to PCT/JP2015/073677 priority Critical patent/WO2016031752A1/ja
Priority to JP2016545515A priority patent/JP6598120B2/ja
Priority to EP15836898.5A priority patent/EP3187513B1/en
Priority to US15/507,283 priority patent/US10442873B2/en
Publication of WO2016031752A1 publication Critical patent/WO2016031752A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/34Per-compounds with one peroxy-radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1306Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids
    • G05D23/132Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element
    • G05D23/1333Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element measuring the temperature of incoming fluid

Definitions

  • the present invention relates to a radical polymerization method and a polymerization reaction apparatus.
  • the present invention relates to a method for producing a polymer having a relatively narrow molecular weight distribution by radical polymerization.
  • radical polymerization polymers such as styrene, ethylene, vinyl chloride, vinyl acetate, methyl methacrylate, acrylonitrile, acrylic acid, acrylamide, vinyl pyrrolidone, and tetrafluoroethylene are polymerized by polymerizing low molecules (monomers) that contain unsaturated bonds. Widely used for synthesis.
  • Radical polymerization is a chain reaction mainly consisting of three stages of initiation, growth and termination. A radical generated by cleaving the initiator with heat or light attacks a monomer having an unsaturated bond. The produced monomer radicals attack other monomers in a chain to grow a polymer chain, and finally stop by recombination or disproportionation between radicals or radical chain transfer.
  • Non-patent document 1 Macromolecules 2012, 45, 4015-4039
  • Non-Patent Document 2 Prog. Polym. Sci. 32 (2007) 93-146 The entire description of Non-Patent Documents 1 and 2 is hereby specifically incorporated by reference.
  • PLP Pulsed Laser Initiated Polymerization
  • PLP Pulsed Laser Initiated Polymerization
  • PLP is a technique used for analysis of reaction rate, and is performed on a very small reaction scale of about several milliliters in order to uniformly irradiate a laser, and is not suitable as an industrial production method.
  • the present invention provides a radical polymerization method capable of synthesizing a polymer having a relatively uniform molecular weight with a high conversion rate in a short reaction time, and can be used for various monomers in general, and an apparatus used in this method. For the purpose.
  • the inventors instantaneously heated the initiator / monomer mixed solution to a temperature higher than the boiling point of the solvent under pressure, thereby simultaneously cleaving the initiator present in the reaction solution to perform radical polymerization. I found that I can start. Furthermore, by performing this radical polymerization using a flow-type reactor, it was found that a polymer having a relatively narrow molecular weight distribution can be easily synthesized in a short time without using an expensive catalyst, and the present invention was completed. It was.
  • the present invention is as follows. [1] A method for producing a polymer by continuously or intermittently circulating a reaction liquid containing a monomer and a radical polymerization initiator in a flow path of a radical polymerization reaction apparatus, (1) The reaction liquid is caused to flow into a heating start part of the reaction apparatus, the flowed reaction liquid is heated to a predetermined temperature, and the radical polymerization initiator in the reaction liquid flowing into the heating start part is cleaved, Initiating radical polymerization of the monomer, (2) a step of proceeding radical polymerization of the monomer in the reaction solution, and (3) a step of cooling the reaction solution to obtain a polymer, Including In the step (1), the reaction liquid that has flowed into the heating start part at a predetermined temperature is heated by a radical polymerization initiator contained in a volume obtained by slicing the reaction liquid flowing into the heating start part over time.
  • the reaction liquid contains an organic solvent, the heating medium is an organic solvent heated to a boiling point or higher, and the reaction liquid and the heating medium are continuously supplied at a flow rate ratio that becomes a temperature equal to or higher than the boiling point of the organic solvent immediately after mixing.
  • the reaction liquid is heated to a predetermined temperature by flowing a reaction liquid containing a monomer and a radical polymerization initiator into a flow path of a heating start unit that is maintained and controlled at a predetermined temperature of the heating apparatus in the radical polymerization reaction apparatus.
  • the method according to [2] wherein the method is performed.
  • a radical polymerization reaction apparatus including a heat medium preparation unit 10, a heat medium-reaction liquid mixing unit 20, a cooling unit 30, and a reaction mixture recovery unit 40, which are in communication with each other through a flow path.
  • the heat medium production unit 10 includes a heat medium material storage unit 11 and a heat medium heating unit 12, (2)
  • the heat medium-reaction liquid mixing unit 20 includes a reaction liquid storage and supply unit 21, a mixing reaction unit 22, and a reaction residence unit 23.
  • the heat medium material storage unit 11 has a function of storing the heat medium material and supplying the heat medium material to the heat medium heating unit 12;
  • the heat medium heating unit 12 includes a flow path for circulating the heat medium material and a heating device for heating the flow path,
  • the apparatus according to [13].
  • the reaction solution storage and supply unit 21 has a function of storing the reaction solution and supplying the reaction solution to the mixed reaction unit 22;
  • the mixing reaction unit 22 merges and mixes the heat medium flow supplied from the heat medium heating unit 12 through the flow path and the reaction liquid flow supplied from the reaction liquid storage and supply unit 21 through the flow path. It has a function and has a structure in which the flow path is divided into three forks.
  • the apparatus according to [13] or [14].
  • the cooling medium storage and supply unit 31 has a function of storing the cooling medium and supplying the cooling medium to the cooling medium-reaction mixture mixing unit 32;
  • the cooling medium-reaction mixture mixing unit 32 combines the reaction mixture stream supplied from the reaction residence unit 23 via the flow path and the cooling medium flow supplied from the cooling medium storage and supply unit 31 via the flow path.
  • the cooling retention part 33 has a heat retaining or cooling function, [13]
  • the apparatus according to any one of [15].
  • a radical polymerization reaction including a heating reaction part 60 for heating and polymerization reaction of the reaction liquid, a cooling part 70 for cooling the reaction liquid after the heating reaction, and a recovery part 80 for collecting the reaction mixture, which are communicated by a flow path apparatus.
  • the heating reaction unit 60 includes a channel 61 for circulating the reaction solution and a heating unit 62 for heating the channel, (2) The apparatus according to [17], wherein the cooling unit 70 includes a channel 71 for circulating the reaction solution and a cooling unit 72 for cooling the channel.
  • a polymer having a relatively narrow molecular weight distribution can be easily synthesized in a relatively short reaction time without using an expensive catalyst.
  • the method of the present invention is applicable to radical polymerization reactions and has features such as high versatility.
  • mode (polymerization apparatus A) of the radical polymerization reaction apparatus of this invention is shown.
  • the flow velocity and temperature shown in the figure are the flow velocity in Example 1.
  • the flow rate and temperature conditions in Example 1 are shown.
  • polymerization apparatus A is shown.
  • polymerization apparatus A is shown.
  • Comparison of molecular weight distribution (Example 1, Comparative Example 1).
  • the molecular weight distribution of the polymer obtained in Examples 1, 2, and 3 is shown.
  • the relationship between the reaction temperature obtained in Example 4 and the polymerization conversion rate is shown.
  • Example 4 The relationship between the reaction temperature, molecular weight, and Mw / Mn obtained in Example 4 is shown.
  • polymerization apparatus B is shown.
  • the molecular weight distribution (150 degreeC and 200 degreeC) of the polymer obtained in Example 7 is shown.
  • the relationship between the flow rate of the reaction liquid obtained in Example 8 at a reaction temperature of 150 ° C. and the molecular weight distribution of the polymer is shown.
  • the relationship between the flow rate of the reaction liquid obtained in Example 8 at a reaction temperature of 200 ° C. and the molecular weight distribution of the polymer is shown.
  • the relationship between reaction temperature and polymerization conversion rate obtained in Example 10 is shown.
  • the relationship between the residence time in the heating reaction part and the polymerization conversion rate obtained in Example 11 is shown.
  • the present invention relates to a method for producing a polymer by continuously or intermittently flowing a reaction liquid containing a monomer and a radical polymerization initiator in a flow path of a radical polymerization reaction apparatus.
  • This method includes the following steps (1) to (3). (1) The reaction liquid is caused to flow into a heating start part of the reaction apparatus, the flowed reaction liquid is heated to a predetermined temperature, and the radical polymerization initiator in the reaction liquid flowing into the heating start part is cleaved, Initiating radical polymerization of the monomer, (2) a step of proceeding radical polymerization of the monomer in the reaction solution, and (3) a step of cooling the reaction solution to obtain a polymer.
  • the heating of the reaction liquid flowing into the heating start part at a predetermined temperature is a radical polymerization initiator contained in a volume obtained by slicing the reaction liquid flowing into the heating start part over time. Is a condition for simultaneous cleavage.
  • the simultaneous cleavage of the radical polymerization initiator contained in the unit volume is performed by simultaneously heating the radical polymerization initiator contained in the volume to a predetermined temperature in the radial direction of the cross section of the flow path. In other words, it means that heating of the reaction liquid in the radial direction of the cross section of the flow path is performed with almost no time difference between the central portion and the vicinity of the outer peripheral portion.
  • the volume of the reaction liquid flowing into the heating start portion sliced with time means the volume calculated from the cross-sectional area of the flow path and the length in the flow direction, which can approximate the heating conditions, and the heating conditions are
  • the length in the flow direction corresponding to a volume that can be approximated to be equivalent varies depending on the flow rate of the reaction solution. If the flow rate is fast, the volume that can be approximated to be equivalent to the heating condition is large if the cross-sectional area of the flow path is constant. Becomes smaller. For example, in the case of the apparatus used in the embodiment, since the diameter of the flow path is about 0.8 mm, the cross-sectional area is about 0.5 mm 2 , and the volume when the length in the flow direction is 1 mm is 0.5 mm 3.
  • radical polymerization initiators contained in a volume of about 0.5 mm 3 sliced with time are simultaneously cleaved are the same at the same time in the radius (about 0.4 mm) direction of the cross section of the channel. This is a condition for simultaneous cleavage.
  • Heating of the reaction liquid to a predetermined temperature that enables simultaneous cleavage of the radical polymerization initiator contained in the unit volume is performed by, for example, (Method A) using a heating medium at the heating start portion of the radical polymerization reaction apparatus. And continuously mixed under pressure.
  • (Method B) the heating of the reaction liquid to a predetermined temperature is performed by a heating start unit that is controlled to maintain the reaction liquid containing the monomer and the radical polymerization initiator at a predetermined temperature of the heating apparatus in the radical polymerization reaction apparatus. This can be done by flowing it into the flow path.
  • a radical polymerization reaction apparatus that can be used in these methods A and B will be described below.
  • the form of the radical polymerization reaction apparatus of the present invention is not particularly limited.
  • a flow-type apparatus is used in order to complete the reaction in a short time using instantaneous heating to a high temperature.
  • the conceptual diagram of the example of the polymerization reaction apparatus of this invention is shown to FIG.
  • a polymerization apparatus A shown in FIG. 1 is an apparatus that can be used in the above method A, and includes a heat medium preparation unit 10, a heat medium-reaction liquid mixing unit 20, a cooling unit 30, and a reaction mixture recovery unit 40. These are connected by a flow path.
  • the polymerization apparatus B is an apparatus having a simple configuration that supplies a reaction solution containing a monomer and an initiator to a heating unit preheated to a reaction temperature without using a heat medium.
  • the heat medium production unit 10 includes a heat medium material storage unit 11 and a heat medium heating unit 12.
  • the heat medium material storage unit 11 has a function of storing the heat medium material and supplying the heat medium material to the heat medium heating unit 12.
  • the heat medium raw material can be supplied using a plunger pump, a diaphragm pump, a syringe pump, or the like.
  • the heat medium heating unit 12 includes a flow path for circulating the heat medium material and a heating device for heating the flow path.
  • the heating device can be appropriately selected in consideration of the type of the heat medium material, but when the heat medium material is water, it can be an induction heating coil.
  • the heating means is not particularly limited, and an electric heater, a water bath, an oil bath, a molten salt, a Peltier device, a microwave, and the like can be appropriately selected and used.
  • the heat medium heating unit 12 communicates with the mixing reaction unit 22.
  • the heat medium-reaction liquid mixing unit 20 includes a reaction liquid storage and supply unit 21, a mixing reaction unit 22, and a reaction residence unit 23.
  • the mixing reaction part 22 corresponds to the heating start part in Method A.
  • the reaction solution storage and supply unit 21 has a function of storing the reaction solution and supplying the reaction solution to the mixed reaction unit 22.
  • the reaction solution can be supplied using a plunger pump, a diaphragm pump, a syringe pump, or the like.
  • the mixing reaction unit 22 has a function of joining and mixing the heat medium flow supplied from the heat medium heating unit 12 through the flow path and the reaction liquid flow supplied from the reaction liquid storage and supply unit 21 through the flow path.
  • Have The mixing reaction unit 22 may have any structure having a three-way flow path.
  • the first is a flow path from the heat medium heating unit 12 (referred to as flow path A), and the second is a reaction liquid storage.
  • the inner diameter or the cross-sectional area of each channel may be equal or different.
  • the sum of the cross-sectional areas of the channel A and the channel B and the cross-sectional area of the channel C may be equal.
  • each flow path constituting the three-prongs of the mixing reaction unit 22 is not particularly limited, and can be appropriately determined in consideration of the mixing state due to the merging of the reaction liquid and the heat medium.
  • the flow paths A and C communicate linearly, and the flow path B joins at an angle in the range of 10 ° to 170 °, preferably an angle in the range of 30 ° to 150 °.
  • the flow paths B and C communicate linearly, and the flow path A joins at an angle in the range of 10 ° to 170 °, preferably an angle in the range of 30 ° to 150 °. Can be.
  • the flow paths A to C may have a Y-shaped merge structure, and the angles of the flow paths A and B, the angles of the flow paths B and C, and the angles of the flow paths C and A are each independently 10 ° or more.
  • the angle may be in the range of 180 ° or less, preferably in the range of 30 ° to 160 °, more preferably in the range of 60 ° to 150 °.
  • FIG. 2 shows a drawing of the three-pronged portion of the apparatus used in the example. In this apparatus, the angle between the channels A and B is about 60 °, the angle between the channels B and C is about 150 °, and the angle between the channels C and A is about 150 °.
  • the mixing reaction section 22 having such a structure and supplying the heat medium flow and the reaction liquid flow to join them, they are mixed, and the reaction liquid rises to a predetermined reaction temperature within a short time. Be warmed.
  • the time for raising the temperature to the predetermined reaction temperature varies depending on the flow rates of the heat medium flow and the reaction liquid flow, and the structure of the mixing reaction unit 22, but is, for example, within 0.01 to 5 seconds, preferably The time is within 0.01 to 1 second. The shorter this time, the easier it is to obtain a uniform molecular weight of the polymer obtained by polymerization.
  • radical polymerization initiators contained in the volume of the reaction liquid flowing into the heating start part sliced with time are simultaneously cleaved.
  • the simultaneous cleavage of the radical polymerization initiator contained in the unit volume is performed by simultaneously heating the radical polymerization initiator contained in the volume to a predetermined temperature in the radial direction of the cross section of the flow path.
  • a temperature sensor inlet and a heater temperature sensor port are shown in the mixing reaction unit 22 shown in FIG. 2. These can be appropriately used for temperature control.
  • the reaction residence part 23 preferably has a heat retaining function, and can also have a heating function.
  • the residence time in the reaction residence part 23 varies depending on the capacity of the flow path of the reaction residence part 23, the flow rate of the heat medium flow and the reaction liquid flow, and can be, for example, in the range of 1 second to 10 minutes, or The range can be 1 to 120 seconds, 1 to 100 seconds, 1 to 60 seconds, 1 to 30 seconds, 1 to 20 seconds, 1 to 10 seconds.
  • the cooling unit 30 includes a cooling medium storage and supply unit 31, a cooling body-reaction mixture mixing unit 32, and a cooling residence unit 33.
  • the cooling medium storage and supply unit 31 has a function of storing the cooling medium and supplying the cooling medium to the cooling medium-reaction mixture mixing unit 32.
  • the cooling medium can be supplied using a plunger pump, a diaphragm pump, a syringe pump, or the like.
  • the cooling medium-reaction mixture mixing unit 32 combines the reaction mixture stream supplied from the reaction retention unit 23 via the flow path and the cooling medium flow supplied from the cooling medium storage and supply unit 31 via the flow path. Has the function of mixing.
  • the mixing unit 32 may be any as long as it has a structure in which the flow path is divided into three forks.
  • the first is a flow path (referred to as a flow path D) from the reaction residence part 23, and the second is storage and supply of a cooling medium.
  • a flow path (referred to as flow path E) from the part 31 and a third flow path (referred to as flow path F) to the cooling stay part 33.
  • the inner diameter or the cross-sectional area of each flow path may be equal or different.
  • the sum of the cross-sectional areas of the flow path D and the flow path E and the cross-sectional area of the flow path F may be equal.
  • each flow path that constitutes the three branches of the cooling medium-reaction mixture mixing section 32 is not particularly limited, and can be determined as appropriate in consideration of the mixing state of the reaction mixture and the cooling medium.
  • the flow paths D and F communicate linearly, and the flow path E joins at an angle in the range of 10 ° to 170 °, preferably an angle in the range of 30 ° to 150 °. Can be.
  • the flow paths E and F communicate linearly, and the flow path D joins at an angle in the range of 10 ° to 170 °, preferably an angle in the range of 30 ° to 150 °. Can be.
  • the flow paths D to F may have a Y-shaped merge structure, and the angles of the flow paths D and E, the angles of the flow paths E and F, and the angles of the flow paths F and D are each independently 10 ° or more,
  • the angle may be in the range of 180 ° or less, preferably in the range of 30 ° to 160 °, more preferably in the range of 60 ° to 150 °.
  • FIG. 3 shows a drawing of the three-pronged portion of the apparatus used in the example. In this apparatus, the angle between the channels D and F is about 90 °, the angle between the channels E and F is about 90 °, and the angle between the channels F and D is about 180 °.
  • the cooling unit 33 is communicated from the mixing unit 32 via the flow path F.
  • the cooling retention part 33 preferably has a heat retaining function, and can also have a cooling function.
  • the cooling means is not particularly limited, and water cooling, air cooling, a Peltier element, etc. can be appropriately selected and used.
  • the cooling medium-reaction mixture mixing section 32 shown in FIG. 3 has a temperature sensor inlet, which can be appropriately used for temperature control.
  • the heat medium producing unit 10, the heat medium-reaction liquid mixing unit 20, and the cooling unit 30 are connected by a flow path.
  • the cross-sectional shape and dimensions of each channel can be determined as appropriate.
  • the cross-sectional shape of each channel can be circular or elliptical, or polygonal (the number of corners can be between 3-20, for example, but is not intended to be limited thereto). Can be. Further, it may be a composite shape of a circle (including an ellipse) and a polygon.
  • the inner diameter can be in the range of 0.1 mm to 100 mm, preferably in the range of 0.1 to 10 mm. In the case of other shapes, it can be determined as appropriate according to the circular shape.
  • the outlet flow path from the cooling residence part 33 communicates with the reaction mixture recovery part 40.
  • a pressure reducing valve 41 may be provided as appropriate between the cooling residence part 33 and the reaction mixture recovery part 40.
  • the polymerization apparatus B includes a heating reaction unit 60 for heating and polymerizing the reaction solution, a cooling unit 70 for cooling the reaction solution after the heating reaction, and a reaction mixture collecting unit 80, which are communicated by a flow path. It is a radical polymerization reactor.
  • the polymerization apparatus B is an apparatus having a simple configuration that supplies a reaction solution containing a monomer and an initiator to a heating unit preheated to a reaction temperature without using a heat medium.
  • the heating reaction unit 60 includes a channel 61 for circulating the reaction solution and a heating unit 62 for heating the channel.
  • the reaction solution can be supplied using a plunger pump, a diaphragm pump, a syringe pump, or the like.
  • the heating unit 62 can be appropriately selected in consideration of the type of reaction solution, but can be an induction heating coil when the reaction solution contains water.
  • the heating means is not particularly limited, and an electric heater, a water bath, an oil bath, a molten salt, a Peltier device, a microwave, and the like can be appropriately selected and used.
  • the heating reaction unit 60 can incorporate a temperature sensor (not shown) for the purpose of measuring the temperature of the flow path 61 and controlling the heating of the heating unit 62.
  • the residence time in the heating reaction unit 60 varies depending on the flow path capacity of the heating reaction unit 60 and the flow rate of the reaction liquid flow. Further, the heating temperature and residence time in the heating reaction section 60 are determined according to the composition of the reaction solution (type and concentration of monomer, type and concentration of radical polymerization initiator), and the desired weight average molecular weight (Mw) of the polymer. / The number average molecular weight (Mn) can be appropriately determined according to the conversion rate of the monomer to a polymer.
  • the heating temperature in the heating reaction section 60 is, for example, in the range of 150 ° C.
  • the residence time can be, for example, in the range of 1 second to 10 minutes, or in the range of 1 to 240 seconds, The range can be 1 to 120 seconds, 1 to 100 seconds, 2 to 80 seconds, 3 to 60 seconds, 4 to 50 seconds.
  • the heating reaction section of the polymerization apparatus B can be the apparatus shown in FIG.
  • This heating reaction device 600 is a copper cylindrical heat conductor 603 in which a tube 601 of 1/16 inch stainless steel (SUS316, inner diameter of about 0.8 mm) is inserted in close contact with a cylindrical heater 602 at the center.
  • a heat insulating jacket 605 is provided on the outer peripheral side and both end surfaces of the wound tube 601, which is laid in a spiral groove 604 provided on the outer peripheral surface, wound in a spiral shape so as to be in close contact with the heat conductor.
  • a temperature sensor 606 is provided near the tube laying position of the copper cylindrical heat conductor.
  • radical polymerization initiators contained in the volume of the reaction liquid flowing into the heating start part sliced with time are simultaneously cleaved.
  • the simultaneous cleavage of the radical polymerization initiator contained in the unit volume is performed by simultaneously heating the radical polymerization initiator contained in the volume to a predetermined temperature in the radial direction of the cross section of the flow path.
  • the cooling unit 70 includes a channel 71 for circulating the reaction solution and a cooling unit 72 for cooling the channel.
  • the cooling unit 72 includes a cooling unit, and the cooling unit is not particularly limited, and water cooling, air cooling, a Peltier element, or the like can be appropriately selected and used.
  • the cooling unit 70 can incorporate a temperature sensor for the purpose of measuring the temperature of the flow path 71 and controlling the cooling of the cooling unit 72.
  • the heating reaction unit 60 and the cooling unit 70 are connected by a flow path.
  • the cross-sectional shape and dimensions of each channel can be determined as appropriate.
  • the cross-sectional shape of each channel can be circular or elliptical, or polygonal (the number of corners can be between 3-20, for example, but is not intended to be limited thereto). Can be. Further, it may be a composite shape of a circle (including an ellipse) and a polygon.
  • the cross-sectional dimension of each flow path is, for example, when the cross-sectional shape is circular, the inner diameter is in the range of 0.1 mm to 20 mm, preferably in the range of 0.1 to 10 mm, more preferably in the range of 0.1 to 5 mm.
  • the range is preferably 0.1 to 3 mm, more preferably 0.1 to 2 mm, and still more preferably 0.1 to 1 mm.
  • the outlet channel from the cooling unit 70 communicates with the reaction mixture recovery unit 80.
  • a pressure reducing valve 81 may be appropriately provided between the cooling unit 70 and the reaction mixture recovery unit 80.
  • the polymerization method of the present invention is a method in which a reaction liquid containing a monomer and a radical polymerization initiator is heated to radically polymerize the monomer, and the heating is performed by simultaneously cleaving radical polymerization initiators contained in the reaction liquid. Under the following conditions.
  • the monomer and radical polymerization initiator existing materials can be used as they are. Details will be described later.
  • Heating the reaction liquid flowing into the heating start part for the polymerization operation at a predetermined temperature is a condition that radical polymerization initiators contained in the volume of the reaction liquid flowing into the heating start part sliced with time are simultaneously cleaved. And The simultaneous cleavage of the radical polymerization initiator contained in the unit volume is performed by simultaneously heating the radical polymerization initiator contained in the volume to a predetermined temperature in the radial direction of the cross section of the flow path.
  • a heat medium raw material is prepared in the storage and supply unit 11, and a reaction liquid (including at least a monomer and a polymerization initiator, preferably further including a solvent) is prepared.
  • the storage and supply unit 21 is prepared, and the cooling medium is prepared in the storage and supply unit 31.
  • the heat medium heating unit 12 is set to a predetermined temperature, and the heat medium raw material, the reaction liquid, and the cooling medium are supplied to each flow path using a pump included in each supply unit.
  • the reaction liquid stream is mixed with the heat medium stream heated to a predetermined temperature in the mixing reaction unit 22 within a short time.
  • a mixed state is generated by the merging of the reaction liquid and the heat medium, and as a result, the heating of the reaction liquid in the radial direction of the cross section of the flow path It is done with almost no time difference. Furthermore, heating is maintained at a predetermined temperature in the reaction residence part 23 via the channel C.
  • the residence time in the reaction residence part 23 varies depending on the capacity of the flow path of the reaction residence part 23, the flow rate of the heat medium flow and the reaction liquid flow, but can be in the range of 1 second to 10 minutes, It can be in the range of ⁇ 120 seconds, in the range of 1-100 seconds, in the range of 1-60 seconds, in the range of 1-30 seconds, in the range of 1-20 seconds, and in the range of 1-10 seconds. Due to this rapid mixing and residence in the reaction residence part 23, radical polymerization initiators contained in the reaction solution are simultaneously cleaved, and the polymerization reaction is completed within a relatively short time depending on the flow rate.
  • the radical polymerization initiator is simultaneously cleaved and the polymerization reaction is completed within the residence time in the reaction residence portion 23, and the radical polymerization initiator is cleaved within 10 seconds, for example. It is preferable that the conditions be completed within 5 seconds, within 4 seconds, within 3 seconds, within 2 seconds, more preferably within 1 second, and most preferably within 0.5 seconds.
  • radical polymerization reaction proceeds all at once, and almost all of the monomers in the reaction solution are short-time.
  • the polymerization reaction is completed within a short time because the monomer is consumed in the polymerization reaction, and as a result, almost all of the monomer is consumed.
  • the polymerization reaction can be completed while passing through the reaction residence part 23.
  • the reaction mixture stream after passing through the reaction residence unit 23 is mixed in the cooling medium flow and the cooling medium flow supplied from the supply unit 31 in the cooling medium-reaction mixture mixing unit 32 and cooled to take out the polymerization reaction mixture. be able to.
  • the cooling in the cooling medium-reaction mixture mixing unit 32 is aimed at a temperature at which the polymerization reaction mixture can be taken out, and cooling by a method other than the combined mixing of the cooling medium flow can also be employed.
  • the flow rate of the reaction liquid and the heat medium supplied to the reaction residence part 23 and the flow rate ratio of the two materials are the design and scale of the polymerization apparatus, the type of the heat medium material, the reaction liquid and the cooling medium, the desired polymerization product, the heat It is appropriately determined in consideration of the set temperature of the medium heating unit 12 and the like.
  • the design and scale of the polymerization apparatus are, for example, the size and cross shape of each flow path of the reaction solution storage and supply unit 21, the size and cross shape of each flow path of the cooling body-reaction mixture mixing unit 32, and the break of each flow path. Area and length of each flow path.
  • the cross-sectional area of the flow path in the mixing reaction section 22 and the way of crossing the three flow paths A, B and C, the heat medium raw material and reaction supplied to the mixing reaction section 22 can affect the molecular weight distribution of the polymer.
  • the magnitude of the effect varies depending on the type of monomer and initiator, but can be adjusted as appropriate.
  • Heating for the polymerization operation is performed under conditions where radical polymerization initiators contained in the reaction solution are simultaneously cleaved.
  • a reaction liquid (containing at least a monomer and a polymerization initiator, preferably further containing a solvent) is prepared.
  • the heating reaction section 60 is set to a predetermined temperature and supplied to each flow path using a reaction liquid pump.
  • the cooling unit 70 is cooled under predetermined conditions.
  • the reaction liquid stream is heated to a predetermined temperature in the heating reaction section 60 and maintained at that temperature.
  • the residence time in the heating reaction unit 60 varies depending on the capacity of the flow path of the heating reaction unit 60, the flow rate of the heat medium flow and the reaction liquid flow, and can be, for example, in the range of 1 second to 10 minutes.
  • the range may be 1 to 240 seconds, 1 to 120 seconds, 1 to 100 seconds, 2 to 80 seconds, 3 to 60 seconds, 4 to 50 seconds.
  • the radical polymerization initiator contained in the reaction solution is simultaneously cleaved by rapid heating in the heating reaction section 60, and the polymerization reaction proceeds in the subsequent residence.
  • the radical polymerization initiator is preferably cleaved all at once, and the polymerization reaction is preferably completed, and the radical polymerization initiator is preferably cleaved within, for example, 10 seconds. It is appropriate that the condition is within 5 seconds, within 4 seconds, within 3 seconds, within 2 seconds, more preferably within 1 second, and most preferably within 0.5 seconds.
  • the radical polymerization reaction proceeds at the same time by heating the reaction liquid so that the radical polymerization initiator contained in the volume of the reaction liquid flowing into the heating start portion is sliced with time.
  • the radical polymerization initiator contained in the volume of the reaction liquid flowing into the heating start portion is sliced with time.
  • almost all of the monomer in the reaction solution is consumed in the polymerization reaction within a short time, and as a result, almost all of the monomer in the reaction solution volume sliced with time is cleaved at the same time, and the polymerization reaction starts and proceeds simultaneously. .
  • the polymerization reaction proceeds while passing through the heating reaction unit 60, and depending on the reaction temperature and the flow rate of the reaction solution, the polymerization reaction is completed before the reaction is completely completed. Sometimes. Alternatively, depending on the reaction temperature and the flow rate of the reaction solution, the polymerization reaction may be completed, and then the depolymerization of the polymer may proceed. In any case, the polymerization conversion rate is lower than the polymerization conversion rate when the polymerization reaction is completed.
  • the polymerization conversion rate can be appropriately adjusted by controlling the reaction temperature and the flow rate of the reaction solution, and further by selecting the composition of the reaction solution (monomer concentration, type of polymerization initiator).
  • the reaction mixture stream after passing through the heating reaction section 60 is cooled in the cooling section 70, and the polymerization reaction mixture can be taken out.
  • the cooling in the cooling unit 70 is aimed at a temperature at which the polymerization reaction mixture can be taken out, and cooling by a method in which the cooling medium flows are merged as in the polymerization apparatus A can also be adopted.
  • the monomer that can be polymerized in the present invention may have an unsaturated bond that can be polymerized by radical polymerization.
  • the target monomer include acrylic acid, acrylamide, N-isopropylacrylamide, vinyl pyrrolidone, styrene, methyl methacrylate, hydroxyethyl methacrylate, acrylonitrile, ethylene, propylene, and vinyl chloride.
  • the monomer polymerizable by the present invention is not intended to be limited to these exemplified substances.
  • the polymerization initiator used in the present invention may be any substance that can cleave and generate free radicals.
  • the initiator include peroxides such as potassium persulfate, hydrogen peroxide, and benzoyl peroxide, and azo compounds such as azobisisobutyronitrile.
  • a redox initiator can also be used as needed.
  • the initiator that can be used in the present invention is not intended to be limited to these exemplified substances.
  • the reaction solution has one or more monomers, one or more polymerization initiators, and optionally a solvent.
  • the solvent can be appropriately selected from those in which the monomer and the polymerization initiator are dissolved or dispersed.
  • the solvent can be water or an organic solvent, and examples of the organic solvent include hydrocarbons such as cyclohexane, alcohols such as ethanol, and aromatic compounds such as toluene.
  • the solvent may be a mixture of water and a water-soluble or water-compatible solvent (for example, a lower alcohol such as methanol and ethanol), or an emulsion of water and a hydrophobic organic solvent. In the case of an emulsion, a dispersant may be further contained.
  • the monomer concentration in the reaction solution can be appropriately determined depending on the type of monomer and the type of solvent, and can be, for example, in the range of 0.01 to 30 wt%.
  • the concentration of the polymerization initiator in the reaction solution can be appropriately determined depending on the type and concentration of the monomer, and can be, for example, in the range of 0.01 to 5 parts by mass with respect to the unit amount of monomer (100 parts by mass). .
  • these numerical ranges are exemplary, and a polymer having a desired molecular weight distribution can be produced depending on the types of monomers and initiators or reaction conditions even under conditions exceeding the exemplified ranges.
  • the same substance as the solvent used in the reaction liquid can be used.
  • a substance different from the solvent used in the reaction solution may be used depending on the type and conditions of the reaction.
  • the temperature at the time of merging the heat medium with the reaction liquid can be appropriately set according to the flow rate per unit time of the heat medium and the reaction liquid, the set reaction temperature, the type of monomer and initiator.
  • the heating temperature of the heating medium in the heating medium heating unit 12 is set to 200 ° C., combined with the reaction solution at room temperature, and further the heating medium-reaction solution mixing unit 20, and if necessary, the reaction residence By heating the part 23, the reaction temperature can be 200 ° C.
  • Each temperature can be controlled in consideration of the temperature and flow rate of the heat medium and the reaction liquid, the amount of heat generated by the polymerization reaction, and the heating and / or heat retention conditions of the heat medium-reaction liquid mixing section 20 and the reaction residence section 23.
  • reaction temperature and reaction pressure are appropriately determined depending on the reactivity of the monomer used and the initiator. Heating for the polymerization reaction is carried out under the condition that radical polymerization initiators contained in the reaction solution are simultaneously cleaved in order to obtain a polymer having a relatively uniform molecular weight (average molecular weight is narrow). When the temperature is too low, the polymerization reaction is not completed in a short time and the molecular weight becomes broad, and when the temperature is too high, depolymerization of the produced polymer to the monomer occurs. From such a viewpoint, the reaction temperature (heating temperature) used in the present invention is determined in consideration of the type of radical polymerization initiator.
  • the reaction temperature is T + 50. It can be in the range of from °C to T + 150 °C.
  • the radical polymerization initiator is potassium persulfate
  • the initiation temperature T is about 70 ° C.
  • the reaction temperature is in the range of 120 to 220 ° C. (T + 50 to T + 150 ° C.), preferably 150 to 200 ° C. (T + 80 to T + 130 ° C.). It is a range.
  • the reaction temperature is preferably from the boiling point of the solvent to 250 ° C., more preferably 200 ° C. or less.
  • the reaction is preferably performed at a temperature of 150 ° C. or higher and 200 ° C. or lower.
  • the reaction temperature here means the temperature in the mixing reaction part 22 of the polymerization apparatus. From the viewpoint of controlling the reaction, the temperature in the reaction residence part 23 is equivalent to the temperature in the mixing reaction part 22 or the outlet temperature, and the temperature in the reaction residence part 23 is within ⁇ 30 ° C. is there.
  • the reaction pressure may be higher than the vapor pressure of the solvent at the reaction temperature.
  • the reaction temperature and the reaction pressure mean the temperature and pressure in the mixing reaction unit 22 and the reaction residence unit 23 in the heat medium-reaction liquid mixing unit 20.
  • the temperature in the mixing reaction part 22 and the temperature in the flow path D at the outlet of the reaction residence part 23 were measured.
  • the reaction mixture flowing out from the reaction retention unit 23 is mixed and mixed with the cooling medium supplied from the cooling medium storage and supply unit 31 in the cooling body-reaction mixture mixing unit 32 and rapidly cooled. Mixing proceeds and cools to about room temperature.
  • the cooling medium a substance similar to the solvent used in the reaction solution can be used. However, a substance different from the solvent used in the reaction solution may be used depending on the type and conditions of the reaction.
  • the temperature at the time of merging the cooling medium with the reaction mixture can be appropriately set according to the flow rate of the cooling medium and the reaction mixture per unit time. For example, when the temperature of the cooling medium in the cooling medium storage and supply unit 31 is set to 20 ° C.
  • the cooling body-reaction mixture mixing unit The temperature at 32 can be, for example, in the range of 80-130 ° C.
  • the temperature of the reaction mixture can be brought to a temperature close to room temperature by further cooling the cooling residence part 33.
  • the reaction mixture that has passed through the cooling residence part 33 is appropriately recovered, and the polymer contained in the reaction mixture can be separated and recovered from the solvent by a conventional method.
  • a polymer having the following molecular weight distribution can be produced.
  • Mw / Mn can be 3 or less, preferably in the range of 1.5-3, or in the range of 2-3. However, it is not intended to be limited to this range, and is merely an example.
  • the reaction temperature and the reaction pressure mean the temperature and pressure in the heating reaction section 60.
  • measurement was performed using a temperature sensor 606 in the heating reaction section 600 shown in FIG.
  • the reaction mixture flowing out from the heating reaction section 60 (600) is quenched in the cooling section 70 and cooled to room temperature.
  • the reaction mixture that has passed through the cooling unit 70 is appropriately recovered, and the polymer contained in the reaction mixture can be separated and recovered from the solvent by a conventional method.
  • Mw / Mn can be 2.5 or less, preferably 1.5 to 2.5. However, it is not intended to be limited to this range, and is merely an example.
  • the polymerization conversion is determined by the following equation.
  • Example 1 Radical polymerization of acrylic acid (basic pattern) The polymerization was performed using the polymerization apparatus shown in FIG. An aqueous reaction solution (20 ° C) containing 10% by weight acrylic acid (Sigma-Aldrich) and 0.1% by weight potassium persulfate (Sigma-Aldrich) was mixed with hot water preheated to 200 ° C. did. The flow rate of the aqueous reaction solution was 2.5 mL / min, and the flow rate of hot water was 5 mL / min. The reaction solution was mixed with cold water (20 ° C.) 2.5 mL / min, cooled and recovered. The recovered reaction solution was evaporated to dryness, and the polymerization conversion measured by gravimetric method was 60.3%.
  • aqueous reaction solution (20 ° C) containing 10% by weight acrylic acid (Sigma-Aldrich) and 0.1% by weight potassium persulfate (Sigma-Aldrich) was mixed with hot water preheated to 200 ° C. did. The flow rate
  • the residue was redissolved in water and analyzed by size exclusion chromatography (apparatus: Prominence GPC series manufactured by Shimadzu Corporation, detector: differential refractive index meter RID-10A manufactured by the company, column: TSKgel GMPW XL manufactured by Tosoh Corporation). .
  • the results are shown in FIGS.
  • the obtained molecular weight was weight average molecular weight (Mw) 48100, number average molecular weight (Mn) 19300, molecular weight distribution (Mw / Mn) 2.49, and a polymer having a relatively uniform length was obtained.
  • the apparatus shown in FIG. 1 used in Example 1 is formed of a 1/16 inch stainless steel (SUS316, inner diameter of about 0.8 mm) tube in each flow path.
  • SUS316 1/16 inch stainless steel
  • Example 2 Radical polymerization of acrylic acid (raising molecular weight) The polymerization was performed using the polymerization apparatus shown in FIG. An aqueous solution containing 30 wt% acrylic acid (Sigma-Aldrich) and 0.01 wt% potassium persulfate (Sigma-Aldrich) was mixed with hot water preheated to 200 ° C. The recovered reaction solution was evaporated to dryness, and the polymerization conversion measured by gravimetric method was 21.7%.
  • the residue was redissolved in water and analyzed by size exclusion chromatography (apparatus: Prominence GPC series manufactured by Shimadzu Corporation, detector: differential refractive index meter RID-10A manufactured by the company, column: TSKgel GMPW XL manufactured by Tosoh Corporation). .
  • the results are shown in FIG.
  • the obtained molecular weight was a weight average molecular weight (Mw) 187000, a number average molecular weight (Mn) 53000, and a molecular weight distribution (Mw / Mn) 3.53, and a polymer having a relatively uniform length was obtained.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 3 Radical polymerization of acrylic acid (increase polymerization conversion) The polymerization was performed using the polymerization apparatus shown in FIG. An aqueous solution containing 10% by weight acrylic acid (Sigma-Aldrich) and 0.5% by weight potassium persulfate (Sigma-Aldrich) was mixed with hot water preheated to 200 ° C. The recovered reaction solution was evaporated to dryness, and the polymerization conversion measured by gravimetric method was 85.8%. The residue was redissolved in water and analyzed by size exclusion chromatography (apparatus: Prominence GPC series manufactured by Shimadzu Corporation, detector: differential refractive index meter RID-10A manufactured by the company, column: TSKgel GMPW XL manufactured by Tosoh Corporation).
  • the obtained molecular weight was a weight average molecular weight (Mw) 27700, a number average molecular weight (Mn) 7290, and a molecular weight distribution (Mw / Mn) 3.70, and a polymer having a relatively uniform length was obtained.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 4 (Relationship between reaction temperature and polymerization conversion rate, etc.) Except having changed reaction temperature (temperature of the preheated hot water), it superposed
  • the results are shown in FIG. Furthermore, the relationship between reaction temperature, molecular weight, and Mw / Mn is shown in FIG. From the results shown in FIG. 6, it can be seen that under the conditions shown in Example 1, the polymerization proceeds at a temperature of about 100 ° C. or higher, and a substantially constant polymerization conversion is obtained at a temperature of about 150 ° C. or higher. Further, from the results shown in FIG. 7, it is understood that Mw / Mn becomes substantially constant at a temperature of 200 ° C. or higher.
  • Comparative Example 1 Radical polymerization of acrylic acid (comparison with batch method) An aqueous solution containing 10% by weight acrylic acid (Sigma-Aldrich) and 0.1% by weight potassium persulfate (Sigma-Aldrich) was heated in a 70 ° C. water bath for 24 hours. The recovered reaction solution was evaporated to dryness, and the polymerization conversion measured by gravimetric method was 97.2%. The residue was redissolved in water and analyzed by size exclusion chromatography (apparatus: Prominence GPC series manufactured by Shimadzu Corporation, detector: differential refractive index meter RID-10A manufactured by the company, column: TSKgel GMPW XL manufactured by Tosoh Corporation). . The results are shown in FIG. The obtained molecular weight was weight average molecular weight (Mw) 482600, number average molecular weight (Mn) 67600, molecular weight distribution (Mw / Mn) 7.14, and the molecular length was uneven.
  • Mw weight
  • Reference Example 1 Radical polymerization of acrylic acid (when polymerization temperature is too low) The polymerization was performed using the polymerization apparatus shown in FIG. An aqueous solution containing 10 wt% acrylic acid (Sigma-Aldrich) and 0.1 wt% potassium persulfate (Sigma-Aldrich) was mixed with hot water preheated to 100 ° C. The recovered reaction solution was evaporated to dryness, and the polymerization conversion measured by gravimetric method was 8.0%. When the reaction temperature was low, the polymerization did not proceed.
  • the residue was redissolved in water and analyzed by size exclusion chromatography (apparatus: Prominence GPC series, manufactured by Shimadzu Corporation, detector: differential refractive index meter RID-10A manufactured by the company, column: TSKgel GMPW XL manufactured by Tosoh Corporation).
  • the molecular weight obtained in this way was weight average molecular weight (Mw) 1042000, number average molecular weight (Mn) 150000, and molecular weight distribution (Mw / Mn) 6.95.
  • Example 5 Radical polymerization of acrylamide (other monomer 1) The polymerization was performed using the polymerization apparatus shown in FIG. An aqueous solution containing 10% by weight of acrylamide (manufactured by Wako Pure Chemical Industries) and 0.1% by weight of potassium persulfate (manufactured by Sigma-Aldrich) was mixed with hot water preheated to 200 ° C. The recovered reaction solution was evaporated to dryness, and the polymerization conversion measured by gravimetric method was 54.1%.
  • acrylamide manufactured by Wako Pure Chemical Industries
  • potassium persulfate manufactured by Sigma-Aldrich
  • the residue was redissolved in water and analyzed by size exclusion chromatography (apparatus: Prominence GPC series, manufactured by Shimadzu Corporation, detector: differential refractive index meter RID-10A manufactured by the company, column: TSKgel GMPW XL manufactured by Tosoh Corporation).
  • the molecular weight obtained was a weight average molecular weight (Mw) 39600, a number average molecular weight (Mn) 11000, a molecular weight distribution (Mw / Mn) 3.60, and a polymer having a relatively uniform length was obtained. .
  • Example 6 Radical polymerization of methacrylic acid (other monomer 2) The polymerization was performed using the polymerization apparatus shown in FIG. An aqueous solution containing 10% by weight of methacrylic acid (manufactured by Wako Pure Chemical Industries) and 0.1% by weight of potassium persulfate (manufactured by Sigma-Aldrich) was mixed with hot water preheated to 200 ° C. The recovered reaction solution was evaporated to dryness, and the polymerization conversion measured by gravimetric method was 10.4%.
  • methacrylic acid manufactured by Wako Pure Chemical Industries
  • potassium persulfate manufactured by Sigma-Aldrich
  • the residue was redissolved in water and analyzed by size exclusion chromatography (apparatus: Prominence GPC series, manufactured by Shimadzu Corporation, detector: differential refractive index meter RID-10A manufactured by the company, column: TSKgel GMPW XL manufactured by Tosoh Corporation).
  • the molecular weight obtained was weight average molecular weight (Mw) 22500, number average molecular weight (Mn) 9040, molecular weight distribution (Mw / Mn) 2.49, and a polymer having a relatively uniform length was obtained. .
  • Example 7 Radical polymerization of acrylic acid (polymer synthesis with uniform molecular weight) The polymerization was carried out using a polymerization apparatus B shown in FIG.
  • the heating reaction section of the polymerization apparatus B is the apparatus shown in FIG.
  • the apparatus shown in FIG. 8-2 is as described above.
  • the tube 601 is a 1/16 inch stainless steel (SUS316, inner diameter of about 0.8 mm) tube, and has a length of 3 m.
  • the cooling tube is a similar 1/16 inch stainless steel tube.
  • the reaction solution flowing out from the heating reaction device was recovered by instantly cooling the reaction solution passing by immersing a part of the outlet side extension of the tube 601 in a cooling water bath to room temperature.
  • the collected reaction solution was evaporated to dryness to recover the polymer.
  • Table 1 shows the polymerization conversion determined by the gravimetric method. Residue (polymerized product) was redissolved in water, and size exclusion chromatography (apparatus: Prominence GPC series manufactured by Shimadzu Corporation, detector: differential refractive index meter RID-10A manufactured by the company, column: TSKgel GMPWXL manufactured by Tosoh Corporation) analyzed. The results are shown in Table 1 and FIG. In either case, a polymer having a uniform length (narrow molecular weight distribution) was obtained.
  • Example 8 Radical polymerization of acrylic acid (effect of flow rate) A polymer was obtained under the same conditions as in Example 7 except that the polymerization reaction temperature was 150 ° C. or 200 ° C., and the flow rate of the aqueous reaction solution was changed from 10 mL / min, and the molecular weight and molecular weight distribution were determined. The results are shown in FIG. 10 (150 ° C.) and FIG. 11 (200 ° C.). It can be seen that the molecular weight and molecular weight distribution change depending on the flow rate of the reaction solution aqueous solution, and that there is a flow rate of the reaction solution aqueous solution showing the minimum molecular weight distribution according to the reaction temperature.
  • the flow rate is, for example, 0.36 cm / sec for 0.1 mL / min (residence time in a 3 m tube: 840 seconds), and 3.6 cm / sec for 1 mL / min (residence time in a 3 m tube). : 84 seconds), 20 mL / min is 71.4 cm / sec (residence time in a 3 m tube: 4.2 seconds).
  • Example 9 Radical polymerization of acrylic acid (up conversion)
  • the polymerization was carried out using a polymerization apparatus B shown in FIG.
  • the heating reaction section of the polymerization apparatus B is the apparatus shown in FIG.
  • the preheated heating reaction apparatus was circulated.
  • the flow rate of the aqueous reaction solution was 2 mL / min.
  • the reaction solution was cooled in a cooling bath and collected.
  • the recovered reaction solution was evaporated to dryness, and the polymerization conversion measured by gravimetric method was 89.6%.
  • the residue was redissolved in water and analyzed by size exclusion chromatography (apparatus: Prominence GPC series manufactured by Shimadzu Corporation, detector: differential refractive index meter RID-10A manufactured by the company, column: TSKgel GMPWXL manufactured by Tosoh Corporation).
  • the results are shown in FIGS.
  • the obtained molecular weights were a weight average molecular weight (Mw) of 40000, a number average molecular weight (Mn) of 10020, and a molecular weight distribution (Mw / Mn) of 4.00, and a polymer having a relatively uniform length was obtained.
  • Example 10 Radical polymerization of acrylic acid (relationship between reaction temperature and polymerization conversion) The polymer was recovered under the same conditions as in Example 9 except that the polymerization reaction temperature was changed from 50 to 200 ° C. and the flow rate of the aqueous solution was changed between 0.2 mL / min and 15 mL / min. The polymerization conversion rate measured by the gravimetric method is shown in FIG.
  • Example 11 Radical polymerization of acrylic acid (Relationship between conversion rate and residence time)
  • the heating temperature of the heating reaction device is 150 ° C., 200 ° C. or 250 ° C.
  • the flow rate is changed between 0.2 mL / min to 15 mL / min, and when the heating temperature is 200 ° C.
  • the temperature was changed between 0.1 mL / min and 20 mL / min, and the heating temperature was 250 ° C., except that the temperature was changed between 0.2 mL / min and 10 mL / min.
  • the polymer was recovered.
  • the polymerization conversion rate measured by the gravimetric method is shown in FIG.
  • the polymerization reaction is almost completed at the initial stage (within 10 seconds) flowing into the heating reaction unit, whereas when the heating temperature is 150 ° C., It can be seen that the polymerization reaction proceeds even during 10 to 100 seconds after flowing into the heating reaction device.
  • the present invention is useful in fields related to radical polymerization.
  • the present invention is expected to be widely used for the synthesis of high molecular weight polymers by radical polymerization.
  • Heat medium production section 11 Heat medium raw material storage and supply section, 12 Heat medium heating section 20 Heat medium-reaction liquid mixing section 21 Reaction liquid storage and supply section 22 Mixing reaction section 23 Reaction residence section 30 Cooling section and recovery section 31 Cooling medium storage and supply section 32 Coolant-reaction mixture mixing section 33 Cooling residence part 40 Reaction mixture recovery part 60 Heating reaction part, 61 channel 62 heating unit 70 cooling unit 71 channel 80 reaction mixture recovery unit 81 pressure reducing valve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 本発明は、比較的分子量の揃った高分子を高い転化率で合成可能であり、かつ汎用的に様々なモノマーに利用可能なラジカル重合方法およびこの方法に用いる装置を提供する。 本発明は、モノマーとラジカル重合開始剤を含む反応液を、ラジカル重合反応装置の流路内を連続的又は断続的に流通させて、重合物を製造する方法に関する。前記加熱は、加熱開始部に流入した反応液の所定温度での加熱は、加熱開始部に流入する反応液を経時的にスライスした体積中に含まれるラジカル重合開始剤が一斉に開裂する条件(前記体積中に含まれるラジカル重合開始剤が流路の断面の半径方向において同時に所定温度に加熱される条件)とする。本発明は、熱媒体作製部10、熱媒体-反応液混合部20、冷却部30、及び反応混合物の回収部40を含み、これらが流路によって連絡しているラジカル重合反応装置に関する。本発明は、加熱反応部60、加冷却部70、及び反応混合物の回収部80を含み、これらが流路によって連絡しているラジカル重合反応装置に関する。

Description

ラジカル重合方法および重合反応装置
 本発明は、ラジカル重合方法および重合反応装置に関する。本発明は、ラジカル重合による分子量分布が比較的狭い高分子重合物の製造方法に関する。
関連出願の相互参照
 本出願は、2014年8月29日出願の日本特願2014-174688号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 高分子材料の年間消費量は2億6000万トン以上にのぼり、その半分がラジカル重合によって合成されている。ラジカル重合は、スチレン、エチレン、塩化ビニル、酢酸ビニル、メタクリル酸メチル、アクリロニトリル、アクリル酸、アクリルアミド、ビニルピロリドン、テトラフルオロエチレンなど、不飽和結合を含む低分子(モノマー)を重合して高分子を合成するために広く用いられている。ラジカル重合は、主に開始、生長、停止の3段階からなる連鎖反応である。熱や光などによって開始剤を開裂させて発生したラジカルが、不飽和結合を有するモノマーを攻撃する。生成したモノマーラジカルが連鎖的に他のモノマーを攻撃することによってポリマー鎖が生長し、最終的にはラジカル同士の再結合や不均化、またはラジカルの連鎖移動によって停止する。
非特許文献1:Macromolecules 2012, 45, 4015-4039
非特許文献2:Prog. Polym. Sci. 32 (2007) 93-146
非特許文献1及び2の全記載は、ここに特に開示として援用される。
 ラジカル重合では、短い反応時間で、高い転化率で、長さの揃った高分子を合成できることが理想である。しかしながら通常のラジカル重合では、特に得られる高分子の長さに大きな分布があることが特に大きな問題であった。これまでにもラジカル重合によって長さの揃った高分子を合成する方法としてリビングラジカル重合が開発され、反応機構の違いにより、Atom Transfer Radical-Polymerization(ATRP)、やReversible Addition-Fragmentation Chain-Transfer Polymerization(RAFT)など様々な方法が研究されてきた(非特許文献1および2)。しかしながらATRPは遷移金属触媒を利用するためコストが高く、かつ反応時間が長いなどの問題があり、RAFTには高価な連鎖移動剤が必要でコストが高いなどの問題がある。いずれの方法もモノマー種や反応温度などの違いにより、適切な触媒を逐一設計する必要があり、どの反応系にも普遍的に利用できるような触媒は存在しない。
 また、リビングラジカル重合とは別に、長さの揃った高分子を合成する方法として、レーザー光を断続的に照射し反応を制御するPulsed Laser initiated Polymerization(PLP)が開発されている。しかし、PLPは反応速度の解析に用いる手法であり、かつ、レーザーを均一に照射するために、数ミリリットル程度のごく小さな反応スケールで行われ、工業的な生産方法としては適していない。
 本発明は、短い反応時間で、比較的分子量の揃った高分子を高い転化率で合成可能であり、かつ汎用的に様々なモノマーに利用可能なラジカル重合方法およびこの方法に用いる装置を提供することを目的とする。
 発明者らは、開始剤とモノマーの混合溶液を、加圧下で溶媒の沸点以上の高温へと瞬間的に加熱することにより、反応溶液中に存在する開始剤を一斉に開裂させてラジカル重合を開始できることを見出した。さらにこのラジカル重合を、流通型の反応装置を用いて行うことで、分子量分布が比較的狭い高分子を、高価な触媒を用いること無く短時間で容易に合成できることを見出し、本発明を完成させた。
 本発明は、以下のとおりである。
[1]
モノマーとラジカル重合開始剤を含む反応液を、ラジカル重合反応装置の流路内を連続的又は断続的に流通させて、重合物を製造する方法であって、
(1)前記反応液を前記反応装置の加熱開始部に流入させて、流入した反応液を所定温度に加熱し、前記加熱開始部に流入した反応液中のラジカル重合開始剤を開裂させて、前記モノマーのラジカル重合を開始させる工程、
(2)前記反応液中の前記モノマーのラジカル重合を進行させる工程、及び
(3)前記反応液を冷却し、重合物を得る工程、
を含み、
前記工程(1)において、前記加熱開始部に流入した反応液の所定温度での加熱は、前記加熱開始部に流入する反応液を経時的にスライスした体積中に含まれるラジカル重合開始剤が一斉に開裂する条件とする前記方法。
[2]
前記単位体積中に含まれるラジカル重合開始剤の一斉開裂は、前記体積中に含まれるラジカル重合開始剤が流路の断面の半径方向において同時に所定温度に加熱されることで実施される、[1]に記載の方法。
[3]
前記反応液の所定温度への加熱は、前記反応液を前記加熱開始部において、加熱媒体と加圧下で連続的に混合することで行う、[2]に記載の方法。
[4]
前記反応液は水を含有し、前記加熱媒体は150℃以上に加熱した水であり、前記反応液と前記加熱媒体は、混合直後に100℃以上の温度となる流量比で連続的に混合される[3]に記載の方法。
[5]
前記反応液は有機溶媒を含有し、前記加熱媒体は沸点以上に加熱した有機溶媒であり、前記反応液と前記加熱媒体は、混合直後に前記有機溶媒の沸点以上の温度となる流量比で連続的に混合される[3]に記載の方法。
[6]
前記反応液の所定温度への加熱は、モノマーとラジカル重合開始剤を含む反応液を、前記ラジカル重合反応装置内の加熱装置の、所定温度に維持制御されている加熱開始部の流路に流入させることで行う、[2]に記載の方法。
[7]
前記反応液の流通は、熱伝導性材料からなり、内径が10mm以下である流路内を0.1mL/分以上の流速で行う、[6]に記載の方法。
[8]
前記加熱は、前記反応液の単位体積中に含まれるラジカル重合開始剤が1秒以内に開裂を完了する条件で行う[1]~[7]のいずれか一項に記載の方法。
[9]
前記所定加熱温度は、ラジカル重合開始剤の開始温度をT℃とした場合、T+50℃~T+150℃の範囲である[1]~[8]のいずれか一項に記載の方法。
[10]
重合物は、重量平均分子量(Mw)/数平均分子量(Mn)が3.0以下である、[1]~[9]のいずれか一項に記載の方法。
[11]
重合物は、重量平均分子量(Mw)/数平均分子量(Mn)が2.0以下である、[1]~[9]のいずれか一項に記載の方法。
[12]
熱媒体作製部10、熱媒体-反応液混合部20、冷却部30、及び反応混合物の回収部40を含み、これらが流路によって連絡しているラジカル重合反応装置。
[13]
(1)熱媒体作製部10は熱媒体原料貯蔵部11及び熱媒体加熱部12を含み、
(2)熱媒体-反応液混合部20は、反応液貯蔵及び供給部21、混合反応部22及び反応滞留部23を含み、
(3)冷却部30は、冷却媒体貯蔵及び供給部31、冷却体-反応混合物混合部32、及び冷却滞留部33を含む、[12]に記載の装置。
[14]
熱媒体作製部10において、
-熱媒体原料貯蔵部11は、熱媒体原料を貯蔵し、かつ熱媒体加熱部12に熱媒体原料を供給する機能を有し、
-熱媒体加熱部12は、熱媒体原料を流通させる流路とこの流路を加熱する加熱装置を含む、
[13]に記載の装置。
[15]
熱媒体-反応液混合部20において、
-反応液貯蔵及び供給部21は、反応液を貯蔵し、かつ混合反応部22に反応液を供給する機能を有し、
-混合反応部22は、熱媒体加熱部12から流路を経て供給される熱媒体流と、反応液貯蔵及び供給部21から流路を経て供給される反応液流とを合流して混合する機能を有し、流路が三股になった構造を有する、
[13]または[14]に記載の装置。
[16]
冷却部30において、
-冷却媒体貯蔵及び供給部31は、冷却媒体を貯蔵し、冷却媒体を冷却媒体-反応混合物混合部32に供給する機能を有し、
-冷却媒体-反応混合物混合部32は、反応滞留部23から流路を経て供給される反応混合物流と、冷却媒体貯蔵及び供給部31から流路を経て供給される冷却媒体流とを合流して混合する機能を有し、
-冷却滞留部33は、保温または冷却機能を有する、
[13]~[15]のいずれか一項に記載の装置。
[17]
反応液を加熱及び重合反応させるための加熱反応部60、加熱反応後の反応液を冷却する冷却部70、及び反応混合物の回収部80を含み、これらが流路によって連絡しているラジカル重合反応装置。
[18]
(1)加熱反応部60は、反応液を流通させるため流路61及びこの流路を加熱するための加熱部62を含み、
(2)冷却部70は、反応液を流通させるため流路71及びこの流路を冷却するための冷却部72を含む、[17]に記載の装置。
 本発明によれば、分子量分布が比較的狭い高分子重合物を、高価な触媒を用いること無く、比較的短い反応時間で、容易に合成できる。さらに本発明の方法は、ラジカル重合反応であれば適用可能であり、汎用性も高い等の特徴も有する。
本発明のラジカル重合反応装置の一態様(重合装置A)の概念図を示す。図中に示す流速及び温度は実施例1における流速である。 実施例1における流速及び温度条件を示す。 重合装置Aの流路A、BおよびCの三股部分の部分断面図面を示す。 重合装置Aの流路D、EおよびFの三股部分の部分断面図面を示す。 分子量分布の比較(実施例1、比較例1)。 実施例1、2、3で得られた高分子の分子量分布を示す。 実施例4で得られた反応温度と重合転化率の関係を示す。 実施例4で得られた反応温度と分子量およびMw/Mnの関係を示す。 本発明のラジカル重合反応装置の一態様(重合装置B)の概念図を示す。 重合装置Bの加熱反応部装置600の略断面説明図を示す。 実施例7で得られた重合物の分子量分布(150℃及び200℃)を示す。 実施例8で得られた、反応温度150℃における反応液の流速と重合物の分子量分布との関係を示す。 実施例8で得られた、反応温度200℃における反応液の流速と重合物の分子量分布との関係を示す。 実施例10で得られた、反応温度と重合転化率との関係を示す。 実施例11で得られた、加熱反応部での滞留時間と重合転化率との関係を示す。
<重合物の製造方法>
本発明は、モノマーとラジカル重合開始剤を含む反応液を、ラジカル重合反応装置の流路内を連続的又は断続的に流通させて、重合物を製造する方法に関する。この方法は、下記(1)~(3)の工程を含む。
(1)前記反応液を前記反応装置の加熱開始部に流入させて、流入した反応液を所定温度に加熱し、前記加熱開始部に流入した反応液中のラジカル重合開始剤を開裂させて、前記モノマーのラジカル重合を開始させる工程、
(2)前記反応液中の前記モノマーのラジカル重合を進行させる工程、及び
(3)前記反応液を冷却し、重合物を得る工程。
さらに前記工程(1)においては、前記加熱開始部に流入した反応液の所定温度での加熱は、前記加熱開始部に流入する反応液を経時的にスライスした体積中に含まれるラジカル重合開始剤が一斉に開裂する条件とする。この単位体積中に含まれるラジカル重合開始剤の一斉開裂は、前記体積中に含まれるラジカル重合開始剤が流路の断面の半径方向において同時に所定温度に加熱されることで実施される。換言すると、流路の断面の半径方向における反応液の加熱が、中心部と外周部近くとでほとんど時差がなく行われることを意味する。
尚、加熱開始部に流入する反応液の経時的にスライスした体積は、加熱条件が同等と近似できる、流路の断面積と流れ方向の長さから算出される体積を意味し、加熱条件が同等と近似できる体積に相当する流れ方向の長さは反応液の流速に応じて変化する。流速が速ければ、流路の断面積が一定の場合、加熱条件が同等と近似できる体積は大きくなり、流速が遅ければ、流路の断面積が一定の場合、加熱条件が同等と近似できる体積は小さくなる。例えば、実施例で用いる装置の場合、流路の直径は約0.8mmであるので、断面積は約0.5mmであり、流れ方向の長さを1mmでの体積は、0.5mmである。従って、経時的にスライスした約0.5mmの体積中に含まれるラジカル重合開始剤が一斉に開裂する条件とは、流路の断面の半径(約0.4mm)方向において同時に所定温度に加熱され、一斉に開裂する条件である。
前記単位体積中に含まれるラジカル重合開始剤の一斉開裂を可能とする、反応液の所定温度への加熱は、例えば、(方法A)反応液をラジカル重合反応装置の加熱開始部において、加熱媒体と加圧下で連続的に混合することで行うことができる。あるいは、(方法B)反応液の所定温度への加熱は、モノマーとラジカル重合開始剤を含む反応液を、ラジカル重合反応装置内の加熱装置の、所定温度に維持制御されている加熱開始部の流路に流入させることで行うことができる。これら方法A及びBに用いることができる、ラジカル重合反応装置について以下に説明する。
<ラジカル重合反応装置>
 本発明のラジカル重合反応装置は、形態には特に制限はない。本発明のラジカル重合反応においては、瞬間的な高温への加熱を用いて短時間で反応を終了させるために、流通型の装置とする。本発明の重合反応装置の例の概念図を図1及び8に示す。図1に示す重合装置Aは、上記方法Aに用いることができる装置であり、熱媒体作製部10、熱媒体-反応液混合部20、冷却部30、及び反応混合物の回収部40を含み、これらが流路によって連絡している。図8に示す重合装置Bは、上記方法Bに用いることができる装置であり、反応液を加熱及び重合反応させるための加熱反応部60、加熱反応後の反応液を冷却する冷却部70、及び反応混合物の回収部80を含み、これらが流路によって連絡しているラジカル重合反応装置である。重合装置Bは、熱媒体を用いることなく、モノマーと開始剤を含む反応溶液を反応温度に予熱した加熱部に供給する単純な構成の装置である。
<ラジカル重合反応装置A>
 熱媒体作製部10は熱媒体原料貯蔵部11及び熱媒体加熱部12を含む。
 熱媒体原料貯蔵部11は、熱媒体原料を貯蔵し、かつ熱媒体加熱部12に熱媒体原料を供給する機能を有する。熱媒体原料の供給は、プランジャーポンプ、ダイアフラム式ポンプ、シリンジポンプなどを用いて実施できる。熱媒体加熱部12は、熱媒体原料を流通させる流路とこの流路を加熱する加熱装置を含む。加熱装置は、熱媒体原料の種類も考慮して適宜選択できるが、熱媒体原料が水の場合、誘導加熱コイルであることができる。加熱の手段は特に限定されず、電気ヒーター、水浴、油浴、溶融塩、ペルチェ素子、マイクロ波などを適宜選択して利用することができる。熱媒体加熱部12は、混合反応部22に連絡する。
 熱媒体-反応液混合部20は、反応液貯蔵及び供給部21、混合反応部22及び反応滞留部23を含む。混合反応部22が方法Aにおける加熱開始部に相当する。反応液貯蔵及び供給部21は、反応液を貯蔵し、かつ混合反応部22に反応液を供給する機能を有する。反応液の供給は、プランジャーポンプ、ダイアフラム式ポンプ、シリンジポンプなどを用いて実施できる。混合反応部22は、熱媒体加熱部12から流路を経て供給される熱媒体流と、反応液貯蔵及び供給部21から流路を経て供給される反応液流とを合流して混合する機能を有する。混合反応部22は、流路が三股になった構造を有するものであれば良く、1つ目は熱媒体加熱部12からの流路(流路Aと呼ぶ)、2つ目は反応液貯蔵及び供給部21からの流路(流路Bと呼ぶ)、3つ目は反応滞留部23への流路(流路Cと呼ぶ)からなる。各流路の内径又は断面積は等しくても、異なっても良く、例えば、流路Aと流路Bの断面積の合計と流路Cの断面積が等しくてもよい。
 混合反応部22の三股を構成する各流路が形成する角度は、特に制限はなく、反応液と熱媒体との合流による混合状態等を考慮して適宜決定出来る。例えば、流路AおよびCは直線的に連通し、そこに、流路Bが10°以上、170°以下の範囲の角度、好ましくは、30°~150°の範囲の角度で合流する構造であることができる。同様に流路BおよびCが直線的に連通し、そこに、流路Aが10°以上、170°以下の範囲の角度、好ましくは、30°~150°の範囲の角度で合流する構造であることができる。あるいは、流路A~CがY字型に合流構造でも良く、流路AとBとの角度、流路BとCの角度、流路CとAの角度は、それぞれ独立に10°以上、180°以下の範囲、好ましくは30°~160°の範囲の角度、より好ましくは60°~150°の範囲の角度であることができる。図2に実施例で用いた装置の三股部分の図面を示す。この装置では、流路AとBとの角度は約60°、流路BとCの角度は約150°、流路CとAの角度は約150°である。このような構造を有する混合反応部22を用い、ここに熱媒体流と反応液流を供給し合流させることで、両者は混合し、短時間の内に反応液は、所定の反応温度に昇温される。所定の反応温度に昇温される時間は、熱媒体流と反応液流の流速、混合反応部22の構造によっても変動するが、例えば、0.01~5秒以内の時間であり、好ましくは0.01~1秒以内の時間である。この時間が短ければ短い程、重合により得られる重合体の分子量は揃ったものが得られる傾向がある。
本発明の方法では、加熱開始部に流入した反応液の所定温度での加熱は、加熱開始部に流入する反応液を経時的にスライスした体積中に含まれるラジカル重合開始剤が一斉に開裂する条件とする。この単位体積中に含まれるラジカル重合開始剤の一斉開裂は、前記体積中に含まれるラジカル重合開始剤が流路の断面の半径方向において同時に所定温度に加熱されることで実施される。上記重合装置Aを用いる場合、加熱開始部に相当する混合反応部22において、反応液と熱媒体との合流により混合状態が生じる。その結果、流路の断面の半径方向における反応液の加熱が、中心部と外周部近くとでほとんど時差がなく行われる。
尚、図2に示す混合反応部22には、温度センサー入口およびヒーター用温度センサー口が図示されている。これらは、温度制御に適宜利用できる。
 混合反応部22から流路Cを経て反応滞留部23に連絡する。反応滞留部23は、保温機能を有することが好ましく、加熱機能を有することもできる。反応滞留部23での滞留時間は、反応滞留部23の流路の容量と熱媒体流と反応液流の流速によって変動するが、例えば、1秒~10分の範囲とすることができ、あるいは、1~120秒の範囲、1~100秒の範囲、1~60秒の範囲、1~30秒の範囲、1~20秒の範囲、1~10秒の範囲とすることができる。
 冷却部30は、冷却媒体貯蔵及び供給部31、冷却体-反応混合物混合部32、及び冷却滞留部33を含む。冷却媒体貯蔵及び供給部31は、冷却媒体を貯蔵し、冷却媒体を冷却媒体-反応混合物混合部32に供給する機能を有する。冷却媒体の供給は、プランジャーポンプ、ダイアフラム式ポンプ、シリンジポンプなどを用いて実施できる。冷却媒体-反応混合物混合部32は、反応滞留部23から流路を経て供給される反応混合物流と、冷却媒体貯蔵及び供給部31から流路を経て供給される冷却媒体流とを合流して混合する機能を有する。混合部32は、流路が三股になった構造を有するものであれば良く、1つ目は反応滞留部23からの流路(流路Dと呼ぶ)、2つ目は冷却媒体貯蔵及び供給部31からの流路(流路Eと呼ぶ)、3つ目は冷却滞留部33への流路(流路Fと呼ぶ)からなる。各流路の内径又は断面積は等しくても、異なっても良く、例えば、流路Dと流路Eの断面積の合計と流路Fの断面積が等しくてもよい。
 冷却媒体-反応混合物混合部32の三股を構成する各流路が形成する角度は、特に制限はなく、反応混合物と冷却媒体との合流による混合状態等を考慮して適宜決定出来る。例えば、流路DおよびFは直線的に連通し、そこに、流路Eが10°以上、170°以下の範囲の角度、好ましくは、30°~150°の範囲の角度で合流する構造であることができる。同様に流路EおよびFが直線的に連通し、そこに、流路Dが10°以上、170°以下の範囲の角度、好ましくは、30°~150°の範囲の角度で合流する構造であることができる。あるいは、流路D~FがY字型に合流構造でも良く、流路DとEとの角度、流路EとFの角度、流路FとDの角度は、それぞれ独立に10°以上、180°以下の範囲、好ましくは30°~160°の範囲の角度、より好ましくは60°~150°の範囲の角度であることができる。図3に実施例で用いた装置の三股部分の図面を示す。この装置では、流路DとFとの角度は約90°、流路EとFの角度は約90°、流路FとDの角度は約180°である。混合部32から流路Fを経て冷却滞留部33に連絡する。冷却滞留部33は、保温機能を有することが好ましく、冷却機能を有することもできる。冷却手段は特に限定されず、水冷、空冷、ペルチェ素子などを適宜選択して利用することができる。尚、図3に示す冷却媒体-反応混合物混合部32には、温度センサー入口が図示され、温度制御に適宜利用できる。
 熱媒体作製部10、熱媒体-反応液混合部20および冷却部30は、流路によって連絡されている。各流路の断面形状や寸法は、適宜決定できる。各流路の断面形状は、円形または楕円形であることができ、あるいは多角形(角数は、例えば、3~20の間であることができるが、これに限定される意図ではない)であることができる。さらに円形(楕円形を含む)と多角形の複合形であることもできる。各流路の断面寸法は、例えば、断面形状が円形である場合、内径は0.1mm~100mmの範囲、好ましくは0.1~10mmの範囲であることができる。その他の形状の場合は、円形の場合に準じて適宜決定することができる。
 冷却滞留部33からの出口流路は、反応混合物の回収部40に連絡する。冷却滞留部33と反応混合物の回収部40の間には減圧弁41を適宜設けることもできる。
<ラジカル重合反応装置B>
重合装置Bは、反応液を加熱及び重合反応させるための加熱反応部60、加熱反応後の反応液を冷却する冷却部70、及び反応混合物の回収部80を含み、これらが流路によって連絡しているラジカル重合反応装置である。重合装置Bは、熱媒体を用いることなく、モノマーと開始剤を含む反応溶液を反応温度に予熱した加熱部に供給する単純な構成の装置である。
(1)加熱反応部60は、反応液を流通させるため流路61及びこの流路を加熱するための加熱部62を含む。
反応液の供給は、プランジャーポンプ、ダイアフラム式ポンプ、シリンジポンプなどを用いて実施できる。加熱部62は、反応液の種類も考慮して適宜選択できるが、反応液が水を含有する場合、誘導加熱コイルであることができる。加熱の手段は特に限定されず、電気ヒーター、水浴、油浴、溶融塩、ペルチェ素子、マイクロ波などを適宜選択して利用することができる。加熱反応部60は、流路61の温度を計測し、加熱部62の加熱を制御する目的で、温度センサー(図示せず)を内蔵することができる。
加熱反応部60では、工程(1)及び工程(2)が実施される。加熱反応部60での滞留時間は、加熱反応部60の流路の容量と反応液流の流速によって変動する。また、加熱反応部60での加熱温度及び滞留時間は、反応液の組成(モノマーの種類及び濃度、ラジカル重合開始剤の種類及び濃度)に応じて、重合物の所望の重量平均分子量(Mw)/数平均分子量(Mn)と、モノマーの重合物への転化率に応じて、適宜決定することができる。加熱反応部60での加熱温度は、例えば、150℃~250℃の範囲であり、滞留時間は、例えば、1秒~10分の範囲とすることができ、あるいは、1~240秒の範囲、1~120秒の範囲、1~100秒の範囲、2~80秒の範囲、3~60秒の範囲、4~50秒の範囲とすることができる。
この重合装置Bの加熱反応部は、図8-2に示す装置であることができる。この加熱反応部装置600は、1/16インチのステンレススチール(SUS316、内径約0.8mm)のチューブ601を、中心部に円筒状のヒーター602を密着挿入した銅製の円筒状の熱伝導体603の外周面に設けた螺旋状の溝604に敷設し、熱伝導体と密着するように螺旋状に巻き付け、巻き付けたチューブ601の外周側及び両端面に断熱ジャケット605を有する。また、銅製の円筒状の熱伝導体のチューブ敷設位置近くに温度センサー606を有する。
本発明の方法では、加熱開始部に流入した反応液の所定温度での加熱は、加熱開始部に流入する反応液を経時的にスライスした体積中に含まれるラジカル重合開始剤が一斉に開裂する条件とする。この単位体積中に含まれるラジカル重合開始剤の一斉開裂は、前記体積中に含まれるラジカル重合開始剤が流路の断面の半径方向において同時に所定温度に加熱されることで実施される。上記重合装置Bを用いる場合、加熱開始部に相当するチューブ601の加熱反応部への入り口付近において、反応液は急激に加熱され、かつチューブ601の直径は約0.8mmである。その結果、流路の断面の半径方向における反応液の加熱が、中心部と外周部近くとでほとんど時差がなく行われる。
(2)冷却部70は、反応液を流通させるため流路71及びこの流路を冷却するための冷却部72を含む。
冷却部72は、冷却手段を有し、冷却手段は特に限定されず、水冷、空冷、ペルチェ素子などを適宜選択して利用することができる。冷却部70は、流路71の温度を計測し、冷却部72の冷却を制御する目的で、温度センサーを内蔵することができる。
 加熱反応部60および冷却部70は、流路によって連絡されている。各流路の断面形状や寸法は、適宜決定できる。各流路の断面形状は、円形または楕円形であることができ、あるいは多角形(角数は、例えば、3~20の間であることができるが、これに限定される意図ではない)であることができる。さらに円形(楕円形を含む)と多角形の複合形であることもできる。各流路の断面寸法は、例えば、断面形状が円形である場合、内径は0.1mm~20mmの範囲、好ましくは0.1~10mmの範囲、より好ましくは0.1~5mmの範囲、さらに好ましくは0.1~3mmの範囲、一層好ましくは0.1~2mmの範囲、より一層好ましくは0.1~1mmの範囲である。流路の断面寸法が小さいほど、流路外部のヒーターから流路内の反応液への熱伝導は迅速に行われ、反応液中の重合開始剤の解裂が一斉に生じるので好ましい。その他の形状の場合は、円形の場合に準じて適宜決定することができる。
 冷却部70からの出口流路は、反応混合物の回収部80に連絡する。冷却部70と反応混合物の回収部80の間には減圧弁81を適宜設けることもできる。
<重合方法>
 本発明の重合方法は、モノマーとラジカル重合開始剤を含む反応液を加熱して前記モノマーをラジカル重合させる方法であって、前記加熱は、前記反応液に含まれるラジカル重合開始剤が一斉に開裂する条件下で行う。
 モノマーおよびラジカル重合開始剤は既存の材料をそのまま用いることができる。詳細は後述する。
<重合操作>
 重合操作のための加熱開始部に流入した反応液の所定温度での加熱は、加熱開始部に流入する反応液を経時的にスライスした体積中に含まれるラジカル重合開始剤が一斉に開裂する条件とする。この単位体積中に含まれるラジカル重合開始剤の一斉開裂は、前記体積中に含まれるラジカル重合開始剤が流路の断面の半径方向において同時に所定温度に加熱されることで実施される。
前記本発明のラジカル重合装置Aを用いる場合、操作開始前に、熱媒体原料を貯蔵及び供給部11に準備し、反応液(少なくともモノマー及び重合開始剤を含み、好ましくはさらに溶媒を含む)を貯蔵及び供給部21に準備し、冷却媒体を貯蔵及び供給部31に準備する。各材料が準備できたら、熱媒体加熱部12を所定温度に設定し、熱媒体原料、反応液及び冷却媒体を、それぞれの供給部が有するポンプを用いて各流路に供給する。前述のように、反応液流は、所定温度に加熱された熱媒体流と、混合反応部22において短時間の内に混合する。加熱開始部に相当する混合反応部22において、反応液と熱媒体との合流により混合状態が生じ、その結果、流路の断面の半径方向における反応液の加熱が、中心部と外周部近くとでほとんど時差がなく行われる。さらに流路Cを経て反応滞留部23において、所定温度に加熱を維持される。反応滞留部23での滞留時間は、反応滞留部23の流路の容量と熱媒体流と反応液流の流速によって変動するが、1秒~10分の範囲とすることができ、あるいは、1~120秒の範囲、1~100秒の範囲、1~60秒の範囲、1~30秒の範囲、1~20秒の範囲、1~10秒の範囲とすることができる。この急速な混合および反応滞留部23における滞留によって、反応液に含まれるラジカル重合開始剤が一斉に開裂し、流速にもよる比較的短時間の内に重合反応が完結する。但し、反応滞留部23における滞留時間内には、ラジカル重合開始剤が一斉に開裂し、重合反応が完結していることが好ましく、ラジカル重合開始剤の開裂は、例えば10秒以内に完了すること、好ましくは5秒以内、4秒以内、3秒以内、2秒以内、より好ましくは1秒以内、最も好ましくは0.5秒以内で完了する条件であることが適当である。本発明においては、反応液に含まれるラジカル重合開始剤が一斉に開裂するように反応液を加熱することで、一斉にラジカル重合反応が進行し、反応液中のモノマーはほぼ全量が短時間の内に重合反応に消費され、その結果、モノマーがほぼ全量消費されることで重合反応は短時間の内に完結する。反応温度を適切に設定することで、反応滞留部23を通過中に重合反応を完結させることができる。反応滞留部23通過後の反応混合物流は、冷却媒体-反応混合物混合部32において、冷却媒体貯蔵及び供給部31から供給される冷却媒体流を合流混合し、冷却して、重合反応混合物を取り出すことができる。冷却媒体-反応混合物混合部32における冷却は、重合反応混合物を取り出せる温度にする事が目的であり、冷却媒体流の合流混合以外の方法での冷却を採用することもできる。
 反応滞留部23に供給する反応液および熱媒体の流速や2つの材料の流速比は、重合装置のデザイン及び規模、熱媒体原料、反応液及び冷却媒体の種類や、所望の重合生成物、熱媒体加熱部12の設定温度等を考慮して適宜決定される。重合装置のデザイン及び規模は、例えば、反応液貯蔵及び供給部21の各流路の寸法や交差形状、冷却体-反応混合物混合部32の各流路の寸法や交差形状、各流路の断面積や各流路の長さである。
 本発明の重合装置及び重合操作においては、混合反応部22における流路の断面積及び3つの流路A、B、Cの交差の仕方、この混合反応部22に供給される熱媒体原料及び反応液の流速及び比率、さらには温度、特に混合直後の温度等が、重合体の分子量分布に影響を与え得る。影響の大小は、モノマーおよび開始剤の種類等により異なるが、適宜調整することができる。
重合操作のための加熱は、前記反応液に含まれるラジカル重合開始剤が一斉に開裂する条件下で行う。前記本発明のラジカル重合装置Bを用いる場合、
操作開始前に、反応液(少なくともモノマー及び重合開始剤を含み、好ましくはさらに溶媒を含む)を準備する。準備できたら、加熱反応部60を所定温度に設定し、反応液ポンプを用いて各流路に供給する。また、冷却部70を所定の条件で冷却しておく。反応液流は、加熱反応部60において所定温度に加熱され、かつその温度を維持される。加熱反応部60での滞留時間は、加熱反応部60の流路の容量と熱媒体流と反応液流の流速によって変動するが、例えば、1秒~10分の範囲とすることができ、あるいは、1~240秒の範囲、1~120秒の範囲、1~100秒の範囲、2~80秒の範囲、3~60秒の範囲、4~50秒の範囲とすることができる。加熱反応部60における急速な加熱により、反応液に含まれるラジカル重合開始剤が一斉に開裂し、その後の滞留において重合反応が進行する。
加熱反応部60における滞留時間内には、ラジカル重合開始剤が一斉に開裂し、重合反応が完結していることが好ましく、ラジカル重合開始剤の開裂は、例えば10秒以内に完了すること、好ましくは5秒以内、4秒以内、3秒以内、2秒以内、より好ましくは1秒以内、最も好ましくは0.5秒以内で完了する条件であることが適当である。
本発明においては、加熱開始部に流入する反応液を経時的にスライスした体積中に含まれるラジカル重合開始剤が一斉に開裂するように反応液を加熱することで、一斉にラジカル重合反応が進行し、反応液中のモノマーはほぼ全量が短時間の内に重合反応に消費され、その結果、経時的にスライスした反応液体積中のモノマーがほぼ全量同時に開裂し、同時に重合反応が開始進行する。
反応温度を適切に設定することで、加熱反応部60を通過中に重合反応は進行し、反応温度及び反応液の流速によっては、完全に反応が完結する前に加熱反応部60を通過し終わることもある。あるいは、反応温度及び反応液の流速によっては、重合反応が完結し、その後重合物の解重合が進行する場合もある。何れの場合も、重合転化率は、重合反応が完結した場合の重合転化率より低くなる。重合転化率は、反応温度及び反応液の流速をコントロールすること、さらには、反応液の組成(モノマーの濃度,重合開始剤の種類)を選択することで、適宜調整することができる。
加熱反応部60通過後の反応混合物流は、冷却部70において冷却され、重合反応混合物を取り出すことができる。冷却部70における冷却は、重合反応混合物を取り出せる温度にする事が目的であり、重合装置Aのように、冷却媒体流を合流させる方法での冷却を採用することもできる。
<モノマー>
 本発明において重合できるモノマーは、ラジカル重合によって重合可能な不飽和結合を有しておればよい。対象モノマーの例としては、例えば、アクリル酸、アクリルアミド、N-イソプロピルアクリルアミド、ビニルピロリドン、スチレン、メタクリル酸メチル、ヒドロキシエチルメタクリレート、アクリロニトリル、エチレン、プロピレン、塩化ビニルなどを挙げることができる。但し、本発明によって重合可能なモノマーは、これら例示された物質に限定される意図ではない。
<開始剤>
 本発明で用いる重合開始剤は、開裂して遊離ラジカルを発生させる物質であればよい。開始剤の例としては、過硫酸カリウム、過酸化水素水、過酸化ベンゾイルなどの過酸化物、アゾビスイソブチロニトリルなどのアゾ系化合物などを挙げることができる。また必要に応じてレドックス開始剤を用いることもできる。但し、本発明で使用可能な開始剤は、これら例示された物質に限定される意図ではない。
<反応液>
 反応液は、1種または2種以上のモノマー、1種または2種以上の重合開始剤および任意で溶媒を有する。溶媒は、モノマーおよび重合開始剤を溶解または分散でいる物から適宜選択できる。典型的には、溶媒は水または有機溶媒であることができ、有機溶媒としては、例えば、シクロヘキサンなど炭化水素類、エタノールなどアルコール類、トルエンなど芳香族化合物を挙げることができる。さらに、上記溶媒は、水と水溶性若しくは水相溶性溶媒(例えば、メタノール、エタノールなど低級アルコール)との混合物、あるいは水と疎水性有機溶媒とのエマルジョンであることもできる。エマルジョンの場合には、さらに分散剤を含有することもできる。反応液中のモノマー濃度は、モノマーの種類および溶媒の種類により適宜決定できるが、例えば、0.01~30wt%の範囲であることができる。反応液中の重合開始剤濃度は、モノマーの種類および濃度により適宜決定できるが、単位量のモノマー(100質量部)に対して、例えば、0.01~5質量部の範囲であることができる。但し、これらの数値範囲は例示であって、例示した範囲を超える条件でもモノマーや開始剤の種類あるいは反応条件により、所望の分子量分布を有する重合体を製造することはできる。
 熱媒体-反応液混合部20において反応液に合流混合される熱媒体は、反応液に用いられた溶媒と同様の物質を用いることができる。但し、反応の種類や条件によっては、反応液に用いられた溶媒とは異なる物質を用いることもできる。熱媒体の反応液との合流時の温度は、熱媒体および反応液の単位時間当たりの流量、設定反応温度、モノマーおよび開始剤の種類によって適宜設定できる。反応温度を200℃とする場合、熱媒体加熱部12での熱媒体の加熱温度を200℃とし、室温の反応液と合流させ、さらに熱媒体-反応液混合部20、さらには必要により反応滞留部23を加熱することで、反応温度を200℃とすることができる。各温度は、熱媒体および反応液の温度と流量、重合反応による発熱量および熱媒体-反応液混合部20および反応滞留部23の加熱及び/又は保温条件を考慮して制御することができる。
<反応条件>
 反応温度および反応圧力は用いるモノマーと開始剤の反応性によって適宜決定される。重合反応のための加熱は、分子量が比較的揃った(平均分子量の幅が狭い)重合物を得るためには、反応液に含まれるラジカル重合開始剤が一斉に開裂する条件下で行う。温度が低すぎると短時間では重合反応が完了せず分子量がブロードになり、また温度が高すぎると、生成した高分子のモノマーへの解重合が起こる。このような観点から本発明で用いる反応温度(加熱温度)は、ラジカル重合開始剤の種類を考慮して決定され、例えば、ラジカル重合開始剤の開始温度をT℃とした場合、反応温度はT+50℃~T+150℃の範囲とすることができる。ラジカル重合開始剤が過硫酸カリウムの場合、開始温度Tは約70℃であり、反応温度は120~220℃(T+50~T+150℃)の範囲、好ましくは150~200℃(T+80~T+130℃)の範囲である。また、使用する溶媒の沸点との関係からは、反応温度は、溶媒の沸点以上250℃以下、より望ましくは200℃以下で行うのがよい。溶媒として水を用いる場合には、150℃以上、200℃以下の温度で反応を行うことが好ましい。ここでの反応温度は、重合装置の混合反応部22における温度を意味する。反応滞留部23での温度は、混合反応部22における温度と同等または出口温度で、反応滞留部23での温度と±30℃以内の温度であることが、反応を制御するという観点から適当である。
 反応を行う圧力は反応温度における溶媒の蒸気圧以上であればよい。前記本発明の重合装置Aを用いる場合、反応温度および反応圧力は、熱媒体-反応液混合部20の内の、混合反応部22及び反応滞留部23における温度および圧力を意味する。実施例で用いた装置においては、混合反応部22における温度および反応滞留部23の出口の流路Dにおける温度を計測した。
 反応滞留部23から流出する反応混合物は、冷却体-反応混合物混合部32において、冷却媒体貯蔵及び供給部31から供給される冷却媒体と合流混合されて急冷し、さらに冷却滞留部33流通中に混合が進みほぼ室温に冷却される。冷却媒体は、反応液に用いられた溶媒と同様の物質を用いることができる。但し、反応の種類や条件によっては、反応液に用いられた溶媒とは異なる物質を用いることもできる。冷却媒体の反応混合物との合流時の温度は、冷却媒体および反応混合物の単位時間当たりの流量によって適宜設定できる。例えば、冷却媒体貯蔵及び供給部31での冷却媒体の温度を20℃とし、反応混合物との混合比率を適宜変更することで、180℃の反応混合物と合流させる場合、冷却体-反応混合物混合部32での温度を例えば、80~130℃の範囲とすることができる。反応混合物の温度は、さらに冷却滞留部33を冷却することで、室温付近の温度にすることができる。
 冷却滞留部33を通過した反応混合物は、適宜回収され、反応混合物に含まれる重合体は、溶媒から常法により分離、回収することができる。本発明の重合装置Aを用いる方法によれば、以下のような分子量分布が揃った重合体を製造することができる。例えば、Mw/Mnが、3以下、好ましくは1.5~3の範囲、または2~3の範囲であることができる。但し、この範囲に限定される意図ではなく、あくまでも例示である。
 前記本発明の重合装置Bを用いる場合、反応温度および反応圧力は、加熱反応部60における温度および圧力を意味する。実施例で用いた装置においては、図8-2に示す加熱反応部600における温度センサー606を用いて計測した。加熱反応部60(600)から流出する反応混合物は、冷却部70において急冷され、室温まで冷却される。冷却部70を通過した反応混合物は、適宜回収され、反応混合物に含まれる重合体は、溶媒から常法により分離、回収することができる。
 本発明の重合装置Bを用いる方法によれば、以下のような分子量分布が揃った重合体を製造することができる。例えば、Mw/Mnが、2.5以下、好ましくは1.5~2.5の範囲であることができる。但し、この範囲に限定される意図ではなく、あくまでも例示である。
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。
 実施例において、重合転化率は以下の式によって求める。
Figure JPOXMLDOC01-appb-M000001
**仕込み量から求まる、転化率100%の生成物濃度
Figure JPOXMLDOC01-appb-M000002
上記水溶液を図1-2に示す割合で流すと、最終的に流出するアクリル酸濃度は以下のとおりである。
Figure JPOXMLDOC01-appb-M000003
実施例1:アクリル酸のラジカル重合(基本パターン)
 図1に示す重合装置を用いて実施した。10重量%のアクリル酸(シグマ-アルドリッチ社製)と0.1重量%の過硫酸カリウム(シグマ-アルドリッチ社製)を含む反応用水溶液(20℃)を、200℃に予熱した熱水と混合した。反応液水溶液の流速は2.5mL/minとし、熱水の流速は5mL/minとした。反応溶液は冷水(20℃)2.5mL/minと混合して、冷却し、回収した。回収した反応溶液を蒸発乾固させ、重量法により測定した重合転化率は60.3%であった。残渣を水に再溶解し、サイズ排除クロマトグラフィー(装置:株式会社島津製作所製 Prominence GPCシリーズ、検出器:同社製示差屈折率計 RID-10A、カラム:東ソー株式会社製 TSKgel GMPWXL)で分析した。結果を図4および5に示す。得られた分子量は、重量平均分子量(Mw)48100、数平均分子量(Mn)19300、分子量分布(Mw/Mn)2.49であり、比較的長さの揃った高分子が得られていた。
尚、実施例1に用いた図1の装置は、各流路が1/16インチのステンレススチール(SUS316、内径約0.8mm)のチューブで構成される。
実施例2:アクリル酸のラジカル重合(分子量を上げる)
 図1に示す重合装置を用いて実施した。30重量%のアクリル酸(シグマ-アルドリッチ社製)と0.01重量%の過硫酸カリウム(シグマ-アルドリッチ社製)を含む水溶液を、200℃に予熱した熱水と混合した。回収した反応溶液を蒸発乾固させ、重量法により測定した重合転化率は21.7%であった。残渣を水に再溶解し、サイズ排除クロマトグラフィー(装置:株式会社島津製作所製 Prominence GPCシリーズ、検出器:同社製示差屈折率計 RID-10A、カラム:東ソー株式会社製 TSKgel GMPWXL)で分析した。結果を図5に示す。得られた分子量は、重量平均分子量(Mw)187000、数平均分子量(Mn)53000、分子量分布(Mw/Mn)3.53であり、比較的長さの揃った高分子が得られていた。
(※本実施例は、実施例1に示す基本パターンに対して、モノマー濃度を3倍上げ、開始剤濃度を1/10下げた。)
実施例3:アクリル酸のラジカル重合(重合転化率を上げる)
 図1に示す重合装置を用いて実施した。10重量%のアクリル酸(シグマ-アルドリッチ社製)と0.5重量%の過硫酸カリウム(シグマ-アルドリッチ社製)を含む水溶液を、200℃に予熱した熱水と混合した。回収した反応溶液を蒸発乾固させ、重量法により測定した重合転化率は85.8%であった。残渣を水に再溶解し、サイズ排除クロマトグラフィー(装置:株式会社島津製作所製 Prominence GPCシリーズ、検出器:同社製示差屈折率計 RID-10A、カラム:東ソー株式会社製 TSKgel GMPWXL)で分析した。結果を図5に示す。得られた分子量は、重量平均分子量(Mw)27700、数平均分子量(Mn)7290、分子量分布(Mw/Mn)3.70であり、比較的長さの揃った高分子が得られていた。
(※基本パターンに対して、開始剤濃度を5倍上げた。)
実施例4(反応温度と重合転化率等との関係)
 反応温度(予熱した熱水の温度)を変更した以外は、実施例1と同様の条件で重合を行い、得られた重合体の重合転化率を求めた。結果を図6に示す。さらに、反応温度と分子量およびMw/Mnの関係を図7に示す。図6に示す結果から、実施例1に示す条件では、重合は約100℃以上の温度で進行し、約150℃以上の温度でほぼ一定の重合転化率が得られることが分かる。さらに図7に示す結果からは、200℃以上の温度でMw/Mnはほぼ一定になることが分かる。
比較例1:アクリル酸のラジカル重合(バッチ法との比較)
 10重量%のアクリル酸(シグマ-アルドリッチ社製)と0.1重量%の過硫酸カリウム(シグマ-アルドリッチ社製)を含む水溶液を、70℃の湯浴にて24時間加熱した。回収した反応溶液を蒸発乾固させ、重量法により測定した重合転化率は97.2%であった。残渣を水に再溶解し、サイズ排除クロマトグラフィー(装置:株式会社島津製作所製 Prominence GPCシリーズ、検出器:同社製示差屈折率計 RID-10A、カラム:東ソー株式会社製 TSKgel GMPWXL)で分析した。結果を図4に示す。得られた分子量は、重量平均分子量(Mw)482600、数平均分子量(Mn)67600、分子量分布(Mw/Mn)7.14であり、分子の長さは不揃いであった。
参考例1:アクリル酸のラジカル重合(重合温度が低すぎる場合)
 図1に示す重合装置を用いて実施した。10重量%のアクリル酸(シグマ-アルドリッチ社製)と0.1重量%の過硫酸カリウム(シグマ-アルドリッチ社製)を含む水溶液を、100℃に予熱した熱水と混合した。回収した反応溶液を蒸発乾固させ、重量法により測定した重合転化率は8.0%であり、反応温度が低いと重合は進行しなかった。残渣を水に再溶解し、サイズ排除クロマトグラフィー(装置:株式会社島津製作所製 Prominence GPCシリーズ、検出器:同社製示差屈折率計 RID-10A、カラム:東ソー株式会社製 TSKgel GMPWXL)で分析して得られた分子量は、重量平均分子量(Mw)1042000、数平均分子量(Mn)150000、分子量分布(Mw/Mn)6.95であった。
実施例5:アクリルアミドのラジカル重合(他のモノマーその1)
 図1に示す重合装置を用いて実施した。10重量%のアクリルアミド(和光純薬社製)と0.1重量%の過硫酸カリウム(シグマ-アルドリッチ社製)を含む水溶液を、200℃に予熱した熱水と混合した。回収した反応溶液を蒸発乾固させ、重量法により測定した重合転化率は54.1%であった。残渣を水に再溶解し、サイズ排除クロマトグラフィー(装置:株式会社島津製作所製 Prominence GPCシリーズ、検出器:同社製示差屈折率計 RID-10A、カラム:東ソー株式会社製 TSKgel GMPWXL)で分析して得られた分子量は、重量平均分子量(Mw)39600、数平均分子量(Mn)11000、分子量分布(Mw/Mn)3.60であり、比較的長さの揃った高分子が得られていた。
実施例6:メタクリル酸のラジカル重合(他のモノマーその2)
 図1に示す重合装置を用いて実施した。10重量%のメタクリル酸(和光純薬社製)と0.1重量%の過硫酸カリウム(シグマ-アルドリッチ社製)を含む水溶液を、200℃に予熱した熱水と混合した。回収した反応溶液を蒸発乾固させ、重量法により測定した重合転化率は10.4%であった。残渣を水に再溶解し、サイズ排除クロマトグラフィー(装置:株式会社島津製作所製 Prominence GPCシリーズ、検出器:同社製示差屈折率計 RID-10A、カラム:東ソー株式会社製 TSKgel GMPWXL)で分析して得られた分子量は、重量平均分子量(Mw)22500、数平均分子量(Mn)9040、分子量分布(Mw/Mn)2.49であり、比較的長さの揃った高分子が得られていた。
実施例7:アクリル酸のラジカル重合(分子量の揃ったポリマー合成)
 図8-1に示す重合装置Bを用いて実施した。この重合装置Bの加熱反応部は、図8-2に示す装置である。図8-2に示す装置は前述のとおりである。チューブ601は、1/16インチのステンレススチール(SUS316、内径約0.8mm)のチューブであり、長さは3mである。冷却部のチューブも同様の1/16インチのステンレススチールチュープである。
3.3重量%のアクリル酸(シグマ-アルドリッチ社製)と0.2重量%の過硫酸カリウム(シグマ-アルドリッチ社製、開始温度:70℃)を含む水溶液(20℃)を、150℃又は200℃に予熱した上記図8-2に示す加熱反応部装置600中を流通させた。反応液水溶液の流速は10mL/minとした。尚、10mL/minは、0.167mL/sec、35.7cm/sec、3mのチュープでの滞留時間は8.4秒に相当する。加熱反応部装置から流出する反応溶液は、チューブ601の出口側延長部の一部を冷却水槽中に浸漬することで通過する反応液を瞬時に室温に冷却し、回収した。回収した反応溶液を蒸発乾固させ、重合物を回収した。重量法により求めた重合転化率を表1に示す。残渣(重合物)を水に再溶解し、サイズ排除クロマトグラフィー(装置:株式会社島津製作所製 Prominence GPCシリーズ、検出器:同社製示差屈折率計 RID-10A、カラム:東ソー株式会社製 TSKgelGMPWXL)で分析した。結果を表1及び図9に示す。何れの場合も長さの揃った(分子量分布が狭い)重合物が得られていた。
Figure JPOXMLDOC01-appb-T000004
実施例8:アクリル酸のラジカル重合(流速の影響)
重合反応温度を150℃又は200℃とし、反応液水溶液の流速を10mL/minから変化させた以外は実施例7と同様の条件で重合物を得て、分子量及び分子量分布を求めた。結果を図10(150℃)及び図11(200℃)に示す。反応液水溶液の流速により分子量及び分子量分布が変化し、反応温度に応じて最小の分子量分布を示す反応液水溶液の流速があることが分かる。尚、流速は、例えば、0.1mL/minは、0.36cm/sec(3mのチュープでの滞留時間:840秒)、1mL/minは、3.6cm/sec(3mのチュープでの滞留時間:84秒)、20mL/minは、71.4cm/sec(3mのチュープでの滞留時間:4.2秒)である。
実施例9:アクリル酸のラジカル重合(転化率アップ)
 図8-1に示す重合装置Bを用いて実施した。この重合装置Bの加熱反応部は図8-2に示す装置である。10重量%のアクリル酸(シグマ-アルドリッチ社製)と0.5重量%の過硫酸カリウム(シグマ-アルドリッチ社製、開始温度:70℃)を含む反応用水溶液(20℃)を、150℃に予熱した加熱反応部装置中を流通させた。反応液水溶液の流速は2mL/minとした。反応溶液は冷却槽にて冷却し、回収した。回収した反応溶液を蒸発乾固させ、重量法により測定した重合転化率は89.6%であった。残渣を水に再溶解し、サイズ排除クロマトグラフィー(装置:株式会社島津製作所製 Prominence GPCシリーズ、検出器:同社製示差屈折率計 RID-10A、カラム:東ソー株式会社製 TSKgel GMPWXL)で分析した。結果を図4および5に示す。得られた分子量は、重量平均分子量(Mw)40000、数平均分子量(Mn)10020、分子量分布(Mw/Mn)4.00であり、比較的長さの揃った高分子が得られていた。
実施例10:アクリル酸のラジカル重合(反応温度と重合転化率との関係)
 重合反応温度を50~200℃液水溶液の流速を0.2mL/min~15mL/minの間で変化させた以外は実施例9と同様の条件で、重合物を回収した。重量法により測定した重合転化率を図12に示す。
実施例11:アクリル酸のラジカル重合(転化率と滞留時間との関係)
 加熱反応部装置の加熱温度を150℃、200℃又は250℃とし、加熱温度150℃の場合は、流速を0.2mL/min~15mL/minの間で変化させ、加熱温度200℃の場合は、0.1mL/min~20mL/minの間で変化させ、加熱温度250℃の場合は、0.2mL/min~10mL/minの間で変化させた以外は実施例9と同様の条件で、重合物を回収した。重量法により測定した重合転化率を図13に示す。
 図13の結果から、加熱温度が150℃の場合は、加熱反応部装置での滞留時間(反応液水溶液の流速で変化)により、転化率の変化が比較的大きいが、加熱温度が200℃及び250℃の場合は、加熱反応部装置での滞留時間(反応液水溶液の流速で変化)による転化率の変化が比較的小さいことが分かる。加熱温度が200℃及び250℃の場合は、加熱反応部装置に流入した初期の段階(10秒以内)で重合反応がほぼ完結しているのに対して、加熱温度が150℃の場合は、加熱反応部装置に流入後、10秒から100秒の間でも重合反応が進行していることが分かる。
 本発明は、ラジカル重合が関係する分野に有用である。本発明は、ラジカル重合による高分子重合物の合成に広く利用されることが期待される。
10 熱媒体作製部
11 熱媒体原料貯蔵及び供給部、
12 熱媒体加熱部
20 熱媒体-反応液混合部
21 反応液貯蔵及び供給部
22 混合反応部
23 反応滞留部
30 冷却部及び回収部
31 冷却媒体貯蔵及び供給部
32 冷却体-反応混合物混合部
33 冷却滞留部
40 反応混合物の回収部
60 加熱反応部、
61 流路
62 加熱部
70 冷却部
71 流路
80 反応混合物の回収部
81 減圧弁

Claims (18)

  1. モノマーとラジカル重合開始剤を含む反応液を、ラジカル重合反応装置の流路内を連続的又は断続的に流通させて、重合物を製造する方法であって、
    (1)前記反応液を前記反応装置の加熱開始部に流入させて、流入した反応液を所定温度に加熱し、前記加熱開始部に流入した反応液中のラジカル重合開始剤を開裂させて、前記モノマーのラジカル重合を開始させる工程、
    (2)前記反応液中の前記モノマーのラジカル重合を進行させる工程、及び
    (3)前記反応液を冷却し、重合物を得る工程、
    を含み、
    前記工程(1)において、前記加熱開始部に流入した反応液の所定温度での加熱は、前記加熱開始部に流入する反応液を経時的にスライスした体積中に含まれるラジカル重合開始剤が一斉に開裂する条件とする前記方法。
  2. 前記単位体積中に含まれるラジカル重合開始剤の一斉開裂は、前記体積中に含まれるラジカル重合開始剤が流路の断面の半径方向において同時に所定温度に加熱されることで実施される、請求項1に記載の方法。
  3. 前記反応液の所定温度への加熱は、前記反応液を前記加熱開始部において、加熱媒体と加圧下で連続的に混合することで行う、請求項2に記載の方法。
  4. 前記反応液は水を含有し、前記加熱媒体は150℃以上に加熱した水であり、前記反応液と前記加熱媒体は、混合直後に100℃以上の温度となる流量比で連続的に混合される請求項3に記載の方法。
  5. 前記反応液は有機溶媒を含有し、前記加熱媒体は沸点以上に加熱した有機溶媒であり、前記反応液と前記加熱媒体は、混合直後に前記有機溶媒の沸点以上の温度となる流量比で連続的に混合される請求項3に記載の方法。
  6. 前記反応液の所定温度への加熱は、モノマーとラジカル重合開始剤を含む反応液を、前記ラジカル重合反応装置内の加熱装置の、所定温度に維持制御されている加熱開始部の流路に流入させることで行う、請求項2に記載の方法。
  7. 前記反応液の流通は、熱伝導性材料からなり、内径が10mm以下である流路内を0.1mL/分以上の流速で行う、請求項6に記載の方法。
  8. 前記加熱は、前記反応液の単位体積中に含まれるラジカル重合開始剤が1秒以内に開裂を完了する条件で行う請求項1~7のいずれか一項に記載の方法。
  9. 前記所定加熱温度は、ラジカル重合開始剤の開始温度をT℃とした場合、T+50℃~T+150℃の範囲である請求項1~8のいずれか一項に記載の方法。
  10. 重合物は、重量平均分子量(Mw)/数平均分子量(Mn)が3.0以下である、請求項1~9のいずれか一項に記載の方法。
  11. 重合物は、重量平均分子量(Mw)/数平均分子量(Mn)が2.0以下である、請求項1~9のいずれか一項に記載の方法。
  12. 熱媒体作製部10、熱媒体-反応液混合部20、冷却部30、及び反応混合物の回収部40を含み、これらが流路によって連絡しているラジカル重合反応装置。
  13. (1)熱媒体作製部10は熱媒体原料貯蔵部11及び熱媒体加熱部12を含み、
    (2)熱媒体-反応液混合部20は、反応液貯蔵及び供給部21、混合反応部22及び反応滞留部23を含み、
    (3)冷却部30は、冷却媒体貯蔵及び供給部31、冷却体-反応混合物混合部32、及び冷却滞留部33を含む、請求項12に記載の装置。
  14. 熱媒体作製部10において、
    -熱媒体原料貯蔵部11は、熱媒体原料を貯蔵し、かつ熱媒体加熱部12に熱媒体原料を供給する機能を有し、
    -熱媒体加熱部12は、熱媒体原料を流通させる流路とこの流路を加熱する加熱装置を含む、
    請求項13に記載の装置。
  15. 熱媒体-反応液混合部20において、
    -反応液貯蔵及び供給部21は、反応液を貯蔵し、かつ混合反応部22に反応液を供給する機能を有し、
    -混合反応部22は、熱媒体加熱部12から流路を経て供給される熱媒体流と、反応液貯蔵及び供給部21から流路を経て供給される反応液流とを合流して混合する機能を有し、流路が三股になった構造を有する、
    請求項13または14に記載の装置。
  16. 冷却部30において、
    -冷却媒体貯蔵及び供給部31は、冷却媒体を貯蔵し、冷却媒体を冷却媒体-反応混合物混合部32に供給する機能を有し、
    -冷却媒体-反応混合物混合部32は、反応滞留部23から流路を経て供給される反応混合物流と、冷却媒体貯蔵及び供給部31から流路を経て供給される冷却媒体流とを合流して混合する機能を有し、
    -冷却滞留部33は、保温または冷却機能を有する、
    請求項13~15のいずれか一項に記載の装置。
  17. 反応液を加熱及び重合反応させるための加熱反応部60、加熱反応後の反応液を冷却する冷却部70、及び反応混合物の回収部80を含み、これらが流路によって連絡しているラジカル重合反応装置。
  18. (1)加熱反応部60は、反応液を流通させるため流路61及びこの流路を加熱するための加熱部62を含み、
    (2)冷却部70は、反応液を流通させるため流路71及びこの流路を冷却するための冷却部72を含む、請求項17に記載の装置。
PCT/JP2015/073677 2014-08-29 2015-08-24 ラジカル重合方法および重合反応装置 WO2016031752A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/073677 WO2016031752A1 (ja) 2014-08-29 2015-08-24 ラジカル重合方法および重合反応装置
JP2016545515A JP6598120B2 (ja) 2014-08-29 2015-08-24 ラジカル重合方法および重合反応装置
EP15836898.5A EP3187513B1 (en) 2014-08-29 2015-08-24 Radical polymerization method and polymerization reaction apparatus
US15/507,283 US10442873B2 (en) 2014-08-29 2015-08-24 Radical polymerization method and polymerization reaction apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014174688 2014-08-29
JP2014-174688 2014-08-29
PCT/JP2015/073677 WO2016031752A1 (ja) 2014-08-29 2015-08-24 ラジカル重合方法および重合反応装置

Publications (1)

Publication Number Publication Date
WO2016031752A1 true WO2016031752A1 (ja) 2016-03-03

Family

ID=55399642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073677 WO2016031752A1 (ja) 2014-08-29 2015-08-24 ラジカル重合方法および重合反応装置

Country Status (4)

Country Link
US (1) US10442873B2 (ja)
EP (1) EP3187513B1 (ja)
JP (1) JP6598120B2 (ja)
WO (1) WO2016031752A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010055A1 (ja) * 2003-07-25 2005-02-03 Idemitsu Kosan Co., Ltd. ラジカル重合体の製造方法及び微細化学反応装置
JP2006199767A (ja) * 2005-01-19 2006-08-03 Idemitsu Kosan Co Ltd ラジカル重合体の製造方法及び微細化学反応装置
JP2007533798A (ja) * 2004-04-23 2007-11-22 クマチェヴァ、ユージニア 特定の粒径、形状、形態および組成を有するポリマー粒子の製造方法
JP2012107163A (ja) * 2010-11-19 2012-06-07 Dai Ichi Kogyo Seiyaku Co Ltd ラジカル共重合体の製法およびそれに用いる連続式マイクロ反応装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524180A1 (de) 1995-07-03 1997-01-09 Basf Ag Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymeren
DE19816886C2 (de) 1998-04-17 2001-06-07 Axiva Gmbh Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymerisaten
US6143833A (en) 1999-06-11 2000-11-07 Fina Technology, Inc. Method and apparatus for producing hips using continuous polybutadiene feed
EP2274339B1 (de) * 2008-05-02 2015-11-11 Basf Se Verfahren und vorrichtung zur kontinuierlichen herstellung von polymerisaten durch radikalische polymerisation
JP2012246388A (ja) 2011-05-27 2012-12-13 Dic Corp 含フッ素重合体の製造方法
EP2570180A1 (en) 2011-09-15 2013-03-20 Bayer MaterialScience AG Method for a continuous radical polymerization using microreactors
JP2014043538A (ja) 2012-08-29 2014-03-13 Nippon Shokubai Co Ltd 水溶性重合体の製造方法、および水溶性重合体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010055A1 (ja) * 2003-07-25 2005-02-03 Idemitsu Kosan Co., Ltd. ラジカル重合体の製造方法及び微細化学反応装置
JP2007533798A (ja) * 2004-04-23 2007-11-22 クマチェヴァ、ユージニア 特定の粒径、形状、形態および組成を有するポリマー粒子の製造方法
JP2006199767A (ja) * 2005-01-19 2006-08-03 Idemitsu Kosan Co Ltd ラジカル重合体の製造方法及び微細化学反応装置
JP2012107163A (ja) * 2010-11-19 2012-06-07 Dai Ichi Kogyo Seiyaku Co Ltd ラジカル共重合体の製法およびそれに用いる連続式マイクロ反応装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187513A4 *

Also Published As

Publication number Publication date
US10442873B2 (en) 2019-10-15
JP6598120B2 (ja) 2019-10-30
JPWO2016031752A1 (ja) 2017-06-15
EP3187513A4 (en) 2018-03-28
EP3187513B1 (en) 2019-09-25
US20170291964A1 (en) 2017-10-12
EP3187513A1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
Asua Emulsion polymerization: from fundamental mechanisms to process developments
Asandei et al. Mild-temperature Mn2 (CO) 10-photomediated controlled radical polymerization of vinylidene fluoride and synthesis of well-defined poly (vinylidene fluoride) block copolymers
Fantin et al. Electrochemical atom transfer radical polymerization in miniemulsion with a dual catalytic system
Li et al. PEO-based block copolymers and homopolymers as reactive surfactants for AGET ATRP of butyl acrylate in miniemulsion
CN107003220B (zh) 用于监测和控制聚合反应的系统和方法
Burns et al. Poly (acrylates) via SET-LRP in a continuous tubular reactor
Monteiro Nanoreactors for polymerizations and organic reactions
US9534062B2 (en) Synthesis of an acrylate polymer in flow reactor
Samanta et al. SET-LRP of hydrophobic and hydrophilic acrylates in tetrafluoropropanol
JP6225438B2 (ja) 重合体の製造方法
Gardiner et al. Continuous flow photo-initiated RAFT polymerisation using a tubular photochemical reactor
CN111148773B (zh) 改性聚四氟乙烯、成形物、拉伸多孔体的制造方法
Liu et al. Atom transfer radical polymerization as a tool for making poly (N-acryloylglycinamide) with molar mass independent UCST-type transitions in water and electrolytes
Li et al. Targeting copolymer composition distribution via model-based monomer feeding policy in semibatch RAFT mini-emulsion copolymerization of styrene and butyl acrylate
JP2017133039A (ja) 重合体の製造方法
Huang et al. Atom transfer radical polymerization of dimethyl (1-ethoxycarbonyl) vinyl phosphate and corresponding block copolymers
US10214599B2 (en) Method for the continuous production of anionic polymers using radicals
JPWO2005010055A1 (ja) ラジカル重合体の製造方法及び微細化学反応装置
Stefanichen Monteiro et al. Investigation of the Chain Transfer Agent Effect on the Polymerization of Vinylidene Fluoride
JP6598120B2 (ja) ラジカル重合方法および重合反応装置
Qi et al. Mechanistic aspects of sterically stabilized controlled radical inverse miniemulsion polymerization
JP4603371B2 (ja) ラジカル重合体の製造方法及び微細化学反応装置
Xu et al. Synthesis of Poly (N‐isopropylacrylamide)‐Block‐Poly (tert‐Butyl Methacrylate) Block Copolymer by Visible Light–Induced Metal‐Free Atom Transfer Polymerization
CN106512747B (zh) 一种阴离子型聚氯乙烯膜材料的绿色制备方法
Chen et al. Application of novel ionic liquids for reverse atom transfer radical polymerization of methacrylonitrile without any additional ligand

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15507283

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015836898

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836898

Country of ref document: EP