DE10154045A1 - Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten Monomeren - Google Patents
Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten MonomerenInfo
- Publication number
- DE10154045A1 DE10154045A1 DE2001154045 DE10154045A DE10154045A1 DE 10154045 A1 DE10154045 A1 DE 10154045A1 DE 2001154045 DE2001154045 DE 2001154045 DE 10154045 A DE10154045 A DE 10154045A DE 10154045 A1 DE10154045 A1 DE 10154045A1
- Authority
- DE
- Germany
- Prior art keywords
- microchannels
- fluids
- polymerization
- olefinically unsaturated
- polymers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00822—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00824—Ceramic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00831—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00858—Aspects relating to the size of the reactor
- B01J2219/0086—Dimensions of the flow channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00889—Mixing
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Verfahren zur Herstellung von (Co)Polymerisaten durch die (Co)Polymerisation von olefinisch ungesättigten Monomeren in einem Reaktionsgefäß, bei dem man DOLLAR A (A) mindestens ein Fluid, das mindestens ein olefinisch ungesättigtes Monomer enthält, und DOLLAR A (B) mindestens ein Fluid, das mindestens eine die (Co)Polymerisation auslösende Verbindung enthält, DOLLAR A vor ihrem Eintritt in das Reaktionsgefäß in einem Mikromischer miteinander vermischt, wobei man die Fluide (A) und (B) aus entgegengesetzter Richtung in ein integriertes System aus in einer Ebene nebeneinander liegenden, durch periodische Verformungen ihrer Wände in Längsrichtung ineinander greifenden Mikrokanälen für die Fluide (A) und (B) eindosiert, das sie räumlich getrennt voneinander in entgegengesetzter Richtung durchströmen und senkrecht zur Längsrichtung der Mikrokanäle verlassen, wodurch über den Austrittsstellen eine Strömung resultiert, die aus abwechselnd nebeneinander liegenden und ineinander greifenden Lamellen der Fluide (A) und (B) besteht und worin sich die Fluide (A) und (B) durch Diffusion miteinander vermischen; DOLLAR A sowie die Verwendung der hiermit hergestellten (Co)Polymerisate.
Description
- Die vorliegende Erfindung betrifft ein neues Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten Monomeren. Außerdem betrifft die vorliegende Erfindung die Verwendung der nach dem neuen Verfahren hergestellten (Co)Polymerisate als polymere Additive, Beschichtungsstoffe, Klebstoffe und Dichtungsmassen oder für die Herstellung von Beschichtungsstoffen, Klebstoffen, Dichtungsmassen, Folien und Formteilen.
- Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten Monomeren, bei denen ein Taylorreaktor als Reaktionsgefäß verwendet wird, dem die olefinisch ungesättigten Monomeren und die die (Co)Polymerisation auslösenden Verbindungen über ein Mischaggregat zugeführt werden, sind aus der deutschen Patentanmeldung DE 199 60 389 A1 bekannt. Als Mischaggregate können übliche und bekannte Vorrichtungen verwendet werden, die starke Scherfelder (vgl. die deutsche Patentanmeldung, Spalte 4, Zeile 55, bis Spalte 5, Zeile 13) oder vergleichsweise schwache Scherfelder (vgl. die deutsche Patentanmeldung, Spalte 5, Zeilen 14 bis 21) erzeugen. Die mit Hilfe des bekannten Verfahrens hergestellten (Co)Polymerisate von olefinisch ungesättigten Monomeren müssen aber hinsichtlich ihrer Uneinheitlichkeit des Molekulargewichts weiter verbessert werden.
- Aus der internationalen Patentanmeldung WO 97/17133 ist ein Verfahren zur kontinuierlichen Dispergierung von mindestens einem die disperse Phase bildenden Fluid A und mindestens einem die kontinuierliche Phase bildenden Fluid B bekannt. Die Fluide werden bei dem Verfahren einem Dispergierapparat zugeführt, worin sie in einem Dispergierraum aufeinander treffen. Zu diesem Zweck werden die Fluidströme A und B in einem Mikrostruktur-Dispergierapparat durch eine den Fluiden A und B jeweils zugeordnete Schar von Mikrokanälen in räumlich getrennte, strömende Fluidfäden zerteilt, die mit für das jeweilige Fluid gleichen Strömungsgeschwindigkeiten in den Dispergierraum austreten. Am Austritt ist jeweils ein Fluidstrahl der dispersen Phase einem Fluidstrahl der kontinuierlichen Phase unmittelbar benachbart, sodass jeweils ein in Partikel zerfallender Fluidstrahl der dispersen Phase von den benachbarten Fluidstrahlen der kontinuierlichen Phase eingehüllt wird. Der bekannte Mikromischer ist im wesentlichen auf die Herstellung von Dispersionen beschränkt. Ob - und wenn ja, inwieweit - er auch als Mischaggregat für die Herstellung von Mischungen geeignet ist, die aus olefinisch ungesättigten Monomeren und die (Co)Polymerisation auslösenden Verbindungen bestehen und die der (Co)Polymerisation in Masse oder in Lösung unterworfen werden sollen, ist nicht bekannt.
- Aus der europäischen Patentanmeldung EP 0 749 987 A1 ist ein Verfahren für die kontinuierliche anionische (Co)Polymerisation in Lösung bekannt. Dabei werden der Strom A, der die olefinisch ungesättigten Monomer enthält, und der Strom B, der die Initiatoren der anionischen Polymerisation enthält, jeweils in zwei Ströme geteilt, wonach die vier Ströme tangential einem Cyclon-Mikromischer zugeführt werden. Dabei wechseln die Einlassöffnungen einander in der Reihenfolge A/B/A/B ab. Das Verfahren ist auf die anionische (Co)Polymerisation zugeschnitten. Ob - und wenn ja, inwieweit - das bekannte Verfahren auf die kationische oder radikalische (Co)Polymerisation übertragen werden kann, ist nicht bekannt.
- Aufgabe der vorliegenden Erfindung ist es, ein neues Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten Monomeren zu finden, bei, dem man
- A) mindestens ein Fluid, das mindestens ein olefinisch ungesättigtes Monomer enthält, und
- B) mindestens ein Fluid, das mindestens eine die (Co)Polymerisation auslösende Verbindung enthält,
- Demgemäß wurde das neue Verfahren zur Herstellung von (Co)Polymerisaten durch die (Co)Polymerisation von olefinisch ungesättigten Monomeren in einem Reaktionsgefäß gefunden, bei dem man
- A) mindestens ein Fluid, das mindestens ein olefinisch ungesättigtes Monomer enthält, und
- B) mindestens ein Fluid, das mindestens eine die (Co)Polymerisation auslösende Verbindung enthält,
- Im folgenden wird das neue Verfahren zur Herstellung von (Co)Polymerisaten durch die (Co)Polymerisation von olefinisch ungesättigten Monomeren in einem Reaktionsgefäß der Kürze halber als "erfindungsgemäßes Verfahren" bezeichnet.
- Im Hinblick auf den Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, dass die Aufgabe, wie der vorliegenden Erfindung zugrundelag, mit Hilfe des erfindungsgemäßen Verfahrens gelöst werden konnte. Insbesondere war es überraschend, dass das erfindungsgemäße Verfahren für die kationische, anionische und radikalische (Co)Polymerisation hervorragend geeignet war und auch bei der radikalischen (Co)Polymerisation (Co)Polymerisate mit einer besonders engen Molekulargewichtsverteilung lieferte. Die mit Hilfe des neuen Verfahrens hergestellten (Co)Polymerisate eigneten sich vor allem als polymere Additive, Beschichtungsstoffe, Klebstoffe und Dichtungsmassen sowie für die Herstellung von Beschichtungsstoffen, Klebstoffen, Dichtungsmassen, Folien und Formteilen. Insbesondere eigneten sich die mit Hilfe des erfindungsgemäßen Verfahrens durch radikalische Copolymerisation hergestellten (Meth)Acrylatcopolymerisate hervorragend als feststoffreiche Beschichtungsstoffe, Klebstoffe und Dichtungsmassen oder für deren Herstellung.
- Bei dem erfindungsgemäßen Verfahren wird mindestens ein, insbesondere ein, Fluid (A), das mindestens ein olefinisch ungesättigtes Monomer enthält, und mindestens ein, insbesondere ein, Fluid (B), das mindestens eine die (Co)Polymerisation auslösende Verbindung enthält, aus entgegengesetzter Richtung in einem Mikromischer eindosiert. Die Dosierung kann mit Hilfe üblicher und bekannter Vorrichtungen, wie Dosierpumpen, erfolgen. Der Durchfluss kann mit Hilfe üblicher und bekannter Durchflussmesser überwacht und geregelt werden.
- Die Fluide (A) und (B) werden dabei in ein integriertes System aus in einer Ebene nebeneinander liegenden, durch periodische Verformungen ihrer Wände in Längsrichtung ineinander greifenden Mikrokanälen eindosiert. Die Fluide (A) und (B) durchströmen die Mikrokanäle getrennt voneinander in entgegengesetzter Richtung. Sie verlassen die Mikrokanäle senkrecht zu deren Längsrichtung.
- Dadurch entsteht über den Austrittsstellen eine Strömung, die aus abwechselnd nebeneinander liegenden und ineinander greifenden Lamellen der Fluide (A) und (B) besteht. In dieser Strömung können sich dann die Fluide (A) und (B) sehr rasch durch Diffusion miteinander vermischen.
- Vorzugsweise liegt die Verweilzeit der Fluide (A) und (B) in dem integrierten System aus Mikrokanälen bei 0,01 bis 10 ms. Vorzugsweise beträgt die Dauer der Durchmischung 5 bis 100 ms, insbesondere 10 bis 80 ms. Die Durchmischung kann bei 1 bis 100, insbesondere 1 bis 30 bar, durchgeführt werden.
- Vorzugsweise enthält das integrierte System jeweils 5 bis 100, bevorzugt 10 bis 50 und insbesondere 10 bis 20 Mikrokanäle für die Fluide (A) und (B), wobei die Anzahl der Mikrokanäle für die Fluide (A) = der Anzahl der Mikrokanäle für die Fluide (B).
- Vorzugsweise haben die Mikrokanäle, in Längsrichtung gesehen, ein schlitzförmiges Profil aus zwei Wänden und einem Boden. Vorzugsweise sind die Wände, in Längsrichtung gesehen, wellenförmig und/oder zickzackförmig verformt. Dadurch resultieren Mikrokanäle, die im wesentlichen mäanderförmig sind.
- Die Mikrokanäle sind vorzugsweise 750 µm bis 3 mm, insbesondere 1 bis 2 mm, lang. Ihre Breite liegt vorzugsweise bei 10 bis 100, insbesondere bei 20 bis 50 µm. Die Wandstärke der Mikrokanäle kann variieren, vorzugsweise entspricht die Wandstärke in etwa der Breite der Mikrokanäle.
- Die Mikrokanäle sind auf einem ebenen Substrat angeordnet und haftfest mit ihm verbunden. Die Mikrokanäle und das ebene Substrat können aus unterschiedlichen Materialien bestehen; vorzugsweise bestehen sie aus demselben Material. Bevorzugt bestehen sie aus Glas, Keramik oder Metall, bevorzugt aus Metall. Besonders bevorzugt wird das Metall aus der Gruppe, bestehend aus Edelstahl, Nickel, Kupfer und Silber, ausgewählt.
- Außer dem vorstehend beschriebenen integrierten System enthält der erfindungsgemäß zu verwendende Mikromischer übliche und bekannte Zuleitungen und Einlassungsvorrichtungen für die Fluide (A) und (B). Des weiteren umfasst er einen Ablauf mit einem geeigneten Anschluss an das Reaktionsgefäß. Das integrierte System ist in dem Mikromischer gelagert, so dass es nicht mechanisch deformiert werden kann. Die Wandstärke des Mikromischers, die Dichtungen und die Verbindungsstücke sind druckdicht ausgelegt. Außerdem kann der Mikromischer Vorrichtungen zum Heizen und/oder Kühlen der Fluide und übliche und bekannte mechanische, hydraulische, optische und elektronische Vorrichtungen zur Messung und Regelung des Drucks, der Temperatur, der Viskosität, der Durchflussmengen usw. umfassen.
- Die erfindungsgemäß zu verwendenden Mikromischer sind an sich bekannte Vorrichtungen und werden beispielsweise von der Firma IMM unter der Bezeichnung LIGA Micromixing System (Micromixer) vertrieben. Ihr Aufbau und ihre Funktionsweise wird beispielsweise in "Operating Manual LIGA Micromixing System (Micromixer)", August 1998, beschrieben.
- Im Rahmen des erfindungsgemäßen Verfahrens kann die (Co)Polymerisation kontinuierlich oder diskontinuierlich durchgeführt werden. Dabei können die olefnisch ungesättigten Monomeren kationisch, ionisch oder radikalisch, insbesondere radikalisch, (co)polymerisiert werden. Vorzugsweise wird die (Co)Polymerisation in Masse oder in Lösung durchgeführt.
- Bevorzugt wird das erfindungsgemäße Verfahren für die Copolymerisation angewandt. Erfindungsgemäß umfasst die Copolymerisation die statistische und alternierende Copolymerisation und die Blockmischpolymerisation und Pfropfmischpolymerisation. Es ist ein besonderer Vorteil des erfindungsgemäßen Verfahrens, dass die Blockmischpolymerisation und Pfropfmischpolymerisation besonders gezielt und sehr gut reproduzierbar durchgeführt werden können
- Der bei der (Co)Polymerisation angewandte Druck und die angewandten Temperaturen können breit variieren und richten sich im wesentlichen nach dem Dampfdruck und der Reaktivität der olefinisch ungesättigten Monomeren, dem Dampfdruck der gegebenenfalls verwendeten Lösemittel, den Zersetzungstemperaturen von Monomeren und Lösemitteln und der Depolymerisationstemperaturen der resultierenden (Co)Polymerisate. Vorzugsweise wird ein Druck von 1 bis 100 bar und eine Temperatur von -20 bis 250°C angewandt.
- Die olefinisch ungesättigten Monomere, die in dem Fluid (A) enthalten sind oder aus dem das Fluid (A) besteht, können den unterschiedlichsten Monomerklassen entstammen. Beispiele geeigneter Monomere werden im Detail in der deutschen Patentanmeldung DE 199 30 067 A1, Seite 4, Zeile 28, bis Seite 6, Zeile 27, oder in der deutschen Patentanmeldung DE 199 60 389 A1, Spalte 12, Zeile 18, bis Spalte 13, Zeile 9, beschrieben. Vorzugsweise handelt es sich bei mindestens einem der olefinisch ungesättigten Monomeren um ein (Meth)Acrylat. Bevorzugt wird das Eigenschaftsprofil der (Co)Polymerisate, insbesondere der Copolymerisate, hauptsächlich von den Monomeren aus der Klasse der (Meth)Acrylate bestimmt. Somit handelt es sich bei den besonders bevorzugten (Co)Polymerisaten, insbesondere Copolymerisaten, um (Meth)Acrylat(co)polymerisate, insbesondere (Meth)Acrylatcopolymerisate.
- (Meth)Acrylatcopolymerisate werden in den deutschen Patentanmeldungen DE 199 30 067 A1, DE 199 60 389 A1, DE 198 39 453 A1, Seite 4, Zeile 50, bis Seite 5, Zeile 54, DE 42 04 518 A1, Seite 3, Zeile 65, bis Seite 4, Zeile 43, DE 43 10 414 A1, Seite 2, Zeile 50, bis Seite 4, Zeile 41, DE 199 24 171 A1, Seite 5, Zeile 54, bis in Seite 7, Zeile 37, oder in DE 198 50 243 A1 im Detail beschrieben.
- Das Fluid (B) enthält mindestens eine die (Co)Polymerisation auslösende Verbindung. Die Auswahl dieser Verbindung richtet sich nach dem Reaktionsmechanismus, nach dem die (Co)Polymerisation, insbesondere Copolymerisation, ablaufen soll. Demgemäß handelt es sich bei der Verbindung um einen Initiator für die kationische Polymerisation, einen Initiator für die anionische Polymerisation, einen Initiator der für die radikalische Polymerisation, einen Photoinitiator, der die kationische, die anionische oder die radikalische, insbesondere die radikalische, Polymerisation initiieren kann, oder um ein thermisch aktivierbares olefinisch ungesättigtes Monomer.
- Beispiele für Initiatoren der kationischen Polymerisation sind Protonensäuren, wie Sulfonsäuren; Lewissäuren oder Friedel-Crafts-Katalysatoren, wie Bortrifluorid, Aluminiumtrichlorid, Titantetrachlorid, Zinntetrachlorid, Antimonpentachlorid sowie deren Gemische und Addukte mit Lewisbasen, wie Ether; und Carboniumionensalze, wie Triphenylcarbonium-hexachlorantimonat, - hexafluorantimonat und Hexafluorphosphat.
- Beispiele für Initiatoren der anionischen Polymerisation sind Kaliumamid, Butyllithium und Grignard-Reagenzien. Weitere Beispiele geeigneter Initiatoren der anionischen Polymerisation sind aus der europäischen Patentanmeldung EP 0 749 987 A1, Seite 4, Zeile 9, bis Seite 5, Zeile 39, bekannt.
- Beispiele für Initiatoren der radikalischen Polymerisation sind aus den deutschen Patentanmeldungen DE 199 30 067 A1, Seite 6, Zeilen 27 bis 35, und DE 199 60 389 A1, Spalte 13, Zeilen 10 bis 25, bekannt.
- Beispiele geeigneter Photoinitiatoren werden in Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seiten 444 bis 446, beschrieben.
- Ein Beispiel für ein thermisch aktivierbares olefinisch ungesättigtes Monomer ist Styrol.
- Darüber hinaus können die Fluide (A) und (B) noch organische Lösemittel und Zusatzstoffe enthalten, wie sie üblicherweise Reaktionsgemischen bei der (Co)Polymerisation zugesetzt werden. Beispiele geeigneter Zusatzstoffe sind Netzmittel, Entschäumer, Dispergatoren oder Molekulargewichtsregler.
- Das dem erfindungsgemäß zu verwendenden Mischer nachgeschaltete Reaktionsgefäß, in dem die (Co)Polymerisation, insbesondere die Copolymerisation, abläuft, ist vorzugsweise ein Rührkessel, ein Autoklav, eine Rührkesselkaskade, ein Extruder, ein Schlaufenreaktor, ein Rohrreaktor oder ein Taylorreaktor. Beispiele geeigneter Reaktionsgefäße werden in den Patentanmeldungen DE 197 09 465 A1, DE 197 09 476 A1, DE 28 48 906 A1, DE 195 24 182 A1, DE 198 28 742 A1, DE 199 60 389 A1, DE 196 28 143 A1, DE 196 28 142 A1, EP 0 554 783 A1, WO 95/27742, WO 82/02387 oder WO 98/02466 beschrieben.
- An dem Produktauslaß des Reaktionsgefäßes kann ein Druckhalteventil angeordnet sein, das den Druck im Reaktionsgefäß aufbaut und regelt und durch das die (Co)Polymerisate, insbesondere die Copolymerisate, kontinuierlich oder diskontinuierlich ausgetragen werden können. Der Druck kann aber auch durch das Aufpressen von Inertgas oder durch die Gasphase eines organischen Lösemittels aufgebaut werden.
- Dem Druckhalteventil oder dem Produktauslaß können Auffang- und Vorratsbehälter, Mischvorrichtungen, wie Vorrichtungen zur Schmelzeemulgierung, Kühlbänder zum Erzeugen von Granulat oder weitere Reaktoren nachgeschaltet sein.
- Die Reaktionsgefäße können mit einem Heiz- oder Kühlmantel ausgerüstet sein, sodass sie im Gleich- oder im Gegenstrom geheizt oder gekühlt werden können. Des weiteren können sie übliche und bekannte mechanische, hydraulische, optische und elektronische Mess- und Regelvorrichtungen, wie Temperaturfühler, Druckmesser, Durchflussmesser, optische oder elektronische Sensoren und Vorrichtungen zur Messung von Stoffkonzentrationen, Viskositäten und anderen physikalisch chemischen Größen enthalten, die ihre Messwerte an eine Datenverarbeitungsanlage weiterleiten, die den gesamten Ablauf des erfindungsgemäßen Verfahrens steuert.
- Vorzugsweise sind die Reaktionsgefäße druckdicht ausgelegt, sodass das Reaktionsmedium vorzugsweise unter einem Druck von 1 bis 100 bar stehen kann. Sie können aus den unterschiedlichsten Materialien bestehen, solange diese von den Edukten und den Reaktionsprodukten nicht angegriffen werden und höherem Druck standhalten. Vorzugsweise werden Metalle, vorzugsweise Stahl, insbesondere Edelstahl, verwendet.
- Das erfindungsgemäße Verfahren ist für die kationische, anionische und radikalische (Co)Polymerisation hervorragend geeignet und liefert auch bei der radikalischen (Co)Polymerisation (Co)Polymerisate mit einer besonders engen Molekulargewichtsverteilung. Außerdem werden auch bei der Verwendung höherer Mengen an hydroxylgruppenhaltigen olefinisch ungesättigten Monomeren gelteilchenfreie Copolymerisate erhalten.
- Die mit Hilfe des neuen Verfahrens hergestellten (Co)Polymerisate eignen sich vor allem als polymere Additive, wie Rheologiehilfsmittel oder Verdicker, Beschichtungsstoffe, Klebstoffe und Dichtungsmassen sowie für die Herstellung von Beschichtungsstoffen, Klebstoffen, Dichtungsmassen, Folien und Formteilen.
- Besonders gut eignen sich die mit Hilfe des erfindungsgemäßen Verfahrens durch radikalische Copolymerisation hergestellten (Meth)Acrylatcopolymerisate als feststoffreiche Beschichtungsstoffe, Klebstoffe und Dichtungsmassen oder für deren Herstellung.
- Die besonderen Vorteile des erfindungsgemäßen Verfahrens und der hiermit hergestellten (Meth)Acrylatcopolymerisate treten vor allem anhand der Beschichtungsstoffe zutage, die die betreffenden (Meth)Acrylatcopolymerisate als Bindemittel enthalten. Diese Beschichtungsstoffe sind je nach ihrer Zusammensetzung physikalisch trocknend oder werden thermisch, mit aktinischer Strahlung, insbesondere UV-Strahlung, oder durch Elektronenstrahlung, oder thermisch und mit aktinischer Strahlung gehärtet.
- Sie liegen als Pulverlacke, Pulverslurry-Lacke, in organischen Medien gelöste Lacke, wäßrige Lacke oder als im wesentlichen oder völlig lösemittel- und wasserfreie, flüssige Lacke (100%-Systeme) vor. Sie können Einkomponentensysteme oder Zwei- oder Mehrkomponentensysteme sein.
- Außerdem können sie Farb- und/oder Effektpigmente und sonstige übliche und bekannte lacktypische Zusatzstoffe enthalten. Sie werden als Bautenanstrichmittel für den Innen- und Außenbereich, als Lacke für Möbel, Türen, Fenster, Glashohlkörper, Coils, Container, weiße Ware und andere industrielle Anwendungen, als Automobillacke für die Erstausrüstung (OEM) oder als Autoreparaturlacke verwendet. Bei ihrer Verwendung auf dem Automobilsektor kommen sie als Elektrotauchlacke, Füller, Unidecklacke, Basislacke und Klarlacke in Betracht, die mit Vorteil für die Herstellung von farb- und/oder effektgebenden Mehrschichtlackierungen nach den üblichen und bekannten Nass-in-nass- Verfahren verwendet werden können.
- Für das Beispiel 1 und den Vergleichsversuch V1 wurde jeweils ein geeigneter Edelstahlreaktor, ausgerüstet mit Rührer, Rückflußkühler, einem Zulaufgefäß für die Monomeren und einem Zulaufgefäß für die Initiatorlösung, verwendet. Bei Beispiel 1 wurde zwischen die Zulaufgefäße und das Reaktionsgefäß ein Mikromischer LIGA Micromixing System (Micromixer) von IMM geschaltet.
- In den Reaktionsgefäßen wurde jeweils 30,4 Gewichtsteile Solventnaphta® eingewogen und auf 143°C erhitzt.
- Innerhalb von 4 Stunden und 45 Minuten wurde der Initiatorzulauf, jeweils bestehend aus 6,1 Gewichtsteilen tertiär-Butylperoxyethylhexanoat und 2,5 Gewichtsteilen Solventnaphta® gleichmäßig zudosiert.
- 15 Minuten nach dem Start des Initiatorzulaufs wurde mit dem Monomerzulauf begonnen. Der Monomerzulauf bestand jeweils aus 8,54 Gewichtsteilen Styrol, 18,3 Gewichtsteilen Ethylhexylmethacrylat, 7,32 Gewichtsteilen n- Butylmethacrylat, 7,32 Gewichtsteilen Hydroxyethylmethacrylat, 18,3 Gewichtsteilen Butandiol-1,4-monoacrylat und 1,22 Gewichtsteilen Acrylsäure und wurde während vier Stunden gleichmäßig zudosiert.
- Während der Zuläufe wurden die Reaktionstemperaturen bei 143°C gehalten. Nach der Beendigung der Zuläufe wurden noch während zwei Stunden nachpolymerisiert.
- Das in erfindungsgemäßer Verfahrensweise hergestellte Methacrylatcopolymerisat des Beispiels 1 wies einen Festkörpergehalt von 65,1 Gew.% (eine Stunde/130 °C), eine Säurezahl von 17,5 mg KOH/g und eine Viskosität (60prozentig in Solventnaphta®) von 2,5 dPas auf. Das mit Hilfe der Gelpermeationschromatographie mit Polystyrol als internem Standard gemessene zahlenmittlere Molekulargewicht lag bei 2.317 Dalton, das massenmittlere Molekulargewicht lag bei 5.130 Dalton, entsprechend einer Uneinheitlichkeit des Molekulargewichts von 2,21.
- Das in nicht erfindungsgemäßer Verfahrensweise hergestellte Methacrylatcopolymerisat des Vergleichsversuchs V1 wies einen Festkörpergehalt von 60,7 Gew.% (eine Stunde/130°C), eine Säurezahl von 16 mg KOH/g und eine Viskosität (60prozentig in Solventnaphta®) von 11 dPas auf. Das mit Hilfe der Gelpermeationschromatographie mit Polystyrol als internem Standard gemessene zahlenmittlere Molekulargewicht lag bei 2.994 Dalton, das massenmittlere Molekulargewicht lag bei 8.698 Dalton, entsprechend einer Uneinheitlichkeit des Molekulargewichts von 2,9.
- Somit wies das in erfindungsgemäßer Verfahrensweise hergestellte Methacrylatcopolymerisat des Beispiels 1 eine engere Molekulargewichtverteilung und eine niedrigere Viskosität auf als das Methacrylatcopolymerisat des Vergleichsversuchs V1 und war daher sehr viel besser als dieses als Bindemittel für Beschichtungsstoffe eines hohen Festkörpergehalts geeignet.
- Für das Beispiel 2 und den Vergleichsversuch V2 wurde jeweils ein geeigneter Edelstahlreaktor, ausgerüstet mit Rührer, Rückflußkühler, einem Zulaufgefäß für die Monomeren und einem Zulaufgefäß für die Initiatorlösung, verwendet. Bei Beispiel 2 wurde zwischen die Zulaufgefäße und das Reaktionsgefäß ein Mikromischer LIGA Micromixing System (Micromixer) von IMM geschaltet.
- Es wurde jeweils 31,1 Gewichtsteile Solventnaphta® vorgelegt und unter einem Druck von 4 bar auf 150°C erhitzt.
- Innerhalb von vier Stunden und 45 Minuten wurde der Initiatorzulauf, jeweils bestehend aus 2,85 Gewichtsteilen Ditertiärbutylperoxid und 2,6 Gewichtsteilen Solventnaphta®, gleichmäßig zudosiert.
- 15 Minuten nach dem Start des Initiatorzulaufs wurde mit dem Monomerzulauf begonnen. Der Monomerzulauf bestand jeweils aus 8,86 Gewichtsteilen Styrol, 19,04 Gewichtsteilen Ethylhexylmethacrylat 7,63 Gewichtsteilen n- Butylmethacrylat, 7,63 Gewichtsteilen Hydroxyethylmethacrylat, 19,04 Gewichtsteilen Butandiol-1,4-monoacrylat und 1,27 Gewichtsteilen Acrylsäure und wurde während vier Stunden gleichmäßig zudosiert.
- Während der Zuläufe wurden die Reaktionstemperaturen bei 150°C gehalten. Nach der Beendigung der Zuläufe wurde noch während zwei Stunden nachpolymerisiert.
- Das in erfindungsgemäßer Verfahrensweise hergestellte Methacrylatcopolymerisat des Beispiels 2 wies einen Festkörpergehalt von 63,4 Gew.% (eine Stunde/130 °C), eine Säurezahl von 15,4 mg KOH/g und eine Viskosität (original) von 7,6 dPas auf. Das mit Hilfe der Gelpermeationschromatographie mit Polystyrol als internem Standard gemessene zahlenmittlere Molekulargewicht lag bei 2.473 Dalton, das massenmittlere Molekulargewicht lag bei 6.385 Dalton, entsprechend einer Uneinheitlichkeit des Molekulargewichts von 2,58.
- Das in nicht erfindungsgemäßer Verfahrensweise hergestellte Methacrylatcopolymerisat des Vergleichsversuchs V2 wies einen Festkörpergehalt von 68,5 Gew.% (eine Stunde/130°C), eine Säurezahl von 15,1 mg KOH/g und eine Viskosität (original) von 67,2 dPas auf. Das mit Hilfe der Gelpermeationschromatographie mit Polystyrol als internem Standard gemessene zahlenmittlere Molekulargewicht lag bei 3.281 Dalton, das massenmittlere Molekulargewicht lag bei 13.897 Dalton, entsprechend einer Uneinheitlichkeit des Molekulargewichts von 4,2.
- Somit wies das in erfindungsgemäßer Verfahrensweise hergestellte Methacrylatcopolymerisat des Beispiels 2 eine engere Molekulargewichtverteilung und eine niedrigere Viskosität auf als das Methacrylatcopolymerisat des Vergleichsversuchs V2 und war daher sehr viel besser als dieses als Bindemittel für Beschichtungsstoffe eines hohen Festkörpergehalts geeignet.
Claims (19)
1. Verfahren zur Herstellung von (Co)Polymerisaten durch die
(Co)Polymerisation von olefinisch ungesättigten Monomeren in einem
Reaktionsgefäß, bei dem man
vor ihrem Eintritt in das Reaktionsgefäß in einem Mikromischer miteinander
vermischt, dadurch gekennzeichnet, dass die Fluide (A) und (B) aus
entgegengesetzter Richtung in ein integriertes System aus in einer Ebene
nebeneinander liegenden, durch periodische Verformungen ihrer Wände in
Längsrichtung ineinander greifenden Mikrokanälen für die Fluide (A) und
(B) eindosiert werden, das sie räumlich getrennt voneinander in
entgegengesetzter Richtung durchströmen und senkrecht zur
Längsrichtung der Mikrokanäle verlassen, wodurch über den Austrittsstellen
eine Strömung resultiert, die aus abwechselnd nebeneinander liegenden
und ineinander greifenden Lamellen der Fluide (A) und (B) besteht und
worin sich die Fluide (A) und (B) durch Diffusion miteinander vermischen.
A) mindestens ein Fluid, das mindestens ein olefinisch ungesättigtes
Monomer enthält, und
B) mindestens ein Fluid, das mindestens eine die (Co)Polymerisation
auslösende Verbindung enthält,
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das integrierte
System jeweils 5 bis 100 Mikrokanäle für die Fluide (A) und (B) enthält, mit
der Maßgabe, dass die Anzahl der Mikrokanäle für die Fluide (A) = der
Anzahl der Mikrokanäle für die Fluide (B).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das
integrierte System jeweils 10 bis 50 Mikrokanäle für die Fluide (A) und (B)
enthält.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,
dass die Mikrokanäle, in Längsrichtung gesehen, ein schlitzförmiges Profil
aus zwei Wänden und einem Boden haben.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Wände, in
Längsrichtung gesehen, wellenförmig und/oder zickzackförmig verformt
sind.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Wände
wellenförmig verformt sind.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,
dass die Mikrokanäle 750 µm bis 3 mm lang sind.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,
dass die Mikrokanäle 10 bis 100 µm breit sind.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Mikrokanäle
20 bis 50 µm breit sind.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet,
dass das integrierte System aus Glas, Keramik oder Metall besteht.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Metall aus
der Gruppe, bestehend aus Edelstahl, Nickel, Kupfer und Silber,
ausgewählt wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,
dass die (Co)Polymerisation kontinuierlich oder diskontinuierlich
durchgeführt wird.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet,
dass die olefinisch ungesättigten Monomeren kationisch, anionisch oder
radikalisch (co)polymerisiert werden.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die
(Co)Polymerisation in Masse oder in Lösung durchgeführt wird.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet,
dass mindestens eines der olefinisch ungesättigten Monomere ein
(Meth)Acrylat ist.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die
(Co)Polymerisate (Meth)Acrylat(co)polymerisate sind.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet,
dass die die (Co)Polymerisation auslösende Verbindung ein Initiator für die
kationische Polymerisation, ein Initiator für die anionische Polymerisation,
ein Initiator für die radikalische Polymerisation, ein Photoinitiator oder ein
thermisch aktivierbares olefinisch ungesättigtes Monomer ist.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet,
dass das Reaktionsgefäß ein Rührkessel, ein Autoklav, eine
Rührkesselkaskade, ein Extruder, ein Rohrreaktor, ein Schlaufenreaktor
oder ein Taylorreaktor ist.
19. Verwendung der gemäß einem der Ansprüche 1 bis 18 hergestellten
(Co)Polymerisate als polymere Additive, Beschichtungsstoffe, Klebstoffe
und Dichtungsmassen sowie zur Herstellung von Beschichtungsstoffen,
Klebstoffen, Dichtungsmassen, Formteilen und Folien.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2001154045 DE10154045A1 (de) | 2001-11-02 | 2001-11-02 | Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten Monomeren |
PCT/EP2002/011754 WO2003037501A1 (de) | 2001-11-02 | 2002-10-21 | Verfahren zur herstellung von (co)polymerisaten von olefinisch ungesättigten monomeren |
EP02777321A EP1439905A1 (de) | 2001-11-02 | 2002-10-21 | Verfahren zur herstellung von (co)polymerisaten von olefinisch ungesättigten monomeren |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2001154045 DE10154045A1 (de) | 2001-11-02 | 2001-11-02 | Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten Monomeren |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10154045A1 true DE10154045A1 (de) | 2003-05-22 |
Family
ID=7704516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2001154045 Ceased DE10154045A1 (de) | 2001-11-02 | 2001-11-02 | Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten Monomeren |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1439905A1 (de) |
DE (1) | DE10154045A1 (de) |
WO (1) | WO2003037501A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4527384B2 (ja) | 2002-12-06 | 2010-08-18 | 綜研化学株式会社 | マイクロチャンネルを用いた着色球状粒子の製造方法、およびその製造方法に用いるマイクロチャンネル式製造装置 |
US7465771B2 (en) | 2003-07-25 | 2008-12-16 | Idemitsu Kosan Co., Ltd. | Process for producing radical polymer and microapparatus for chemical reaction |
CN102274711A (zh) | 2004-03-02 | 2011-12-14 | 维洛塞斯公司 | 微通道聚合反应器 |
EP2274339B1 (de) | 2008-05-02 | 2015-11-11 | Basf Se | Verfahren und vorrichtung zur kontinuierlichen herstellung von polymerisaten durch radikalische polymerisation |
CN111690089B (zh) * | 2020-06-17 | 2021-02-26 | 苏州建兴化学科技有限公司 | 高固含耐侯和外观的丙烯酸树脂 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19541265A1 (de) * | 1995-11-06 | 1997-05-07 | Bayer Ag | Verfahren zur Herstellung von Dispersionen und zur Durchführung chemischer Reaktionen mit disperser Phase |
DE19816886C2 (de) * | 1998-04-17 | 2001-06-07 | Axiva Gmbh | Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymerisaten |
DE19850243A1 (de) * | 1998-10-31 | 2000-05-11 | Basf Coatings Ag | Flüssige Stoffgemische und (Co)Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von reaktiven Mehrstoffmischungen |
DE19920794A1 (de) * | 1999-05-06 | 2000-11-09 | Merck Patent Gmbh | Verfahren zur Herstellung von Perlpolymerisaten |
DE19925184A1 (de) * | 1999-05-26 | 2000-11-30 | Schering Ag | Kontinuierliches Verfahren zur Herstellung von morphologisch einheitlichen Mikro- und Nanopartikeln mittels Mikromischer sowie nach diesem Verfahren hergestellte Partikel |
-
2001
- 2001-11-02 DE DE2001154045 patent/DE10154045A1/de not_active Ceased
-
2002
- 2002-10-21 EP EP02777321A patent/EP1439905A1/de not_active Withdrawn
- 2002-10-21 WO PCT/EP2002/011754 patent/WO2003037501A1/de not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
WO2003037501A1 (de) | 2003-05-08 |
EP1439905A1 (de) | 2004-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2274339B1 (de) | Verfahren und vorrichtung zur kontinuierlichen herstellung von polymerisaten durch radikalische polymerisation | |
EP2496611B1 (de) | Verfahren zur herstellung von wässrigen polyacrylsäurelösungen | |
DE69811035T2 (de) | Verfahren zur kontinuierlichen Polymerisation unter Mikrovermischung reaktiver Fluide | |
DE19816886C2 (de) | Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymerisaten | |
WO1998012229A1 (de) | Verfahren zur herstellung von methylmethacrylat-polymeren in einem kreislaufreaktor | |
EP0752270A2 (de) | Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymeren | |
EP1098697A1 (de) | TAYLORREAKTOR FÜR STOFFUMWANDLUNGEN, BEI DEREN VERLAUF EINE ÄNDERUNG DER VISKOSITÄT $g(n) DES REAKTIONSMEDIUMS EINTRITT | |
EP0752269A2 (de) | Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymeren | |
DE10054114A1 (de) | Verfahren zur Herstellung von Pulverlackzusammensetzungen | |
EP0519266B1 (de) | Verfahren zur Herstellung von Vinylpolymeren | |
DE10154045A1 (de) | Verfahren zur Herstellung von (Co)Polymerisaten von olefinisch ungesättigten Monomeren | |
DE10149015B4 (de) | Verfahren zur kontinuierlichen Polymerisation in Masse und Taylorreaktor für seine Durchführung | |
DE19960389B4 (de) | Verfahren zur Polymerisation olefinisch ungesättigter Monomere mittels eines Taylorreaktors | |
DE102004001599A1 (de) | Verfahren zur Herstellung von Schmelzpolymerisaten im Rohrreaktor | |
DE69020272T2 (de) | Polymerisationsverfahren und Reaktoren. | |
WO2008135211A1 (de) | Kontinuierliches polymerisationsverfahren zur erzeugung von polymeren mit enger molmassenverteilung und taylor-couette-reaktor für seine durchführung | |
WO1996016992A1 (de) | Verfahren zur herstellung von emulsionspolymerisaten | |
WO1999045033A1 (de) | Verfahren zur kontinuierlichen herstellung von polymerdispersionen duch wässrige emulsionspolymerisation | |
DE10313762A1 (de) | Verfahren zur Herstellung von Pulverlacken und Vorrichtung für seine Durchführung | |
WO1999044737A1 (de) | Verfahren zur kontinuierlichen herstellung von polymerdispersionen durch wässrige emulsionspolymerisation | |
DE3244989A1 (de) | Verfahren zur herstellung von pulverfoermigen polymerisaten und deren verwendung | |
DE4240983A1 (de) | Verfahren zur Herstellung von Vinyl-Copolymeren | |
DD240379A1 (de) | Verfahren und vorrichtung zur kontinuierlichen herstellung von polymerisaten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8131 | Rejection |