WO2005009586A1 - 凝集剤、その製造方法及びその凝集剤を用いた凝集方法 - Google Patents

凝集剤、その製造方法及びその凝集剤を用いた凝集方法 Download PDF

Info

Publication number
WO2005009586A1
WO2005009586A1 PCT/JP2003/013513 JP0313513W WO2005009586A1 WO 2005009586 A1 WO2005009586 A1 WO 2005009586A1 JP 0313513 W JP0313513 W JP 0313513W WO 2005009586 A1 WO2005009586 A1 WO 2005009586A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
acid
flocculant
producing
suspension
Prior art date
Application number
PCT/JP2003/013513
Other languages
English (en)
French (fr)
Inventor
Keiichiro Asaoka
Hidetake Nerome
Original Assignee
Keiichiro Asaoka
Hidetake Nerome
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keiichiro Asaoka, Hidetake Nerome filed Critical Keiichiro Asaoka
Priority to MXPA06000950A priority Critical patent/MXPA06000950A/es
Priority to JP2005504589A priority patent/JP3769010B2/ja
Priority to EP03817659A priority patent/EP1666115B1/en
Priority to US10/565,786 priority patent/US7666916B2/en
Priority to CNB2003801103908A priority patent/CN100406093C/zh
Priority to AU2003277514A priority patent/AU2003277514A1/en
Priority to KR1020067001693A priority patent/KR100741157B1/ko
Publication of WO2005009586A1 publication Critical patent/WO2005009586A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents

Definitions

  • the present invention relates to an aggregating agent for aggregating a suspension in a suspension, a method for producing the same, and an aggregating method using the aggregating agent.
  • coagulants require pH adjustment during water treatment, which not only complicates the water treatment, but also raises concerns about the safety of water after the treatment. Further, the sulfate band has a problem that a sufficient coagulation effect cannot be obtained when the treated water is at a low temperature.
  • Patent Document 2 Japanese Patent No. 2759853
  • Patent Document 3 Japanese Patent No. 2732067
  • Patent Document 4 Japanese Patent Publication No. 4-79796
  • the present invention provides a coagulant comprising a silicon sol which gels by dilution and coagulates a suspension with gelation in order to solve the above problems.
  • the silicon sol is obtained by mixing a silicon-containing substance and an alkaline substance and heat-treating the mixture at a temperature equal to or lower than the thermal melting point of the silicon-containing substance.
  • An object of the present invention is to provide a flocculant obtained by dissolving a silicon-containing solute imparting solubility in an acid solvent.
  • the present invention provides the coagulant according to claim 2, wherein the alkaline substance is made of calcium carbonate or lime.
  • the present invention provides the coagulant according to claim 2 or 3, wherein the acid solvent comprises a dilute hydrochloric acid.
  • the present invention also provides the flocculant according to any one of claims 2 to 4, wherein the acid solvent is one or more gelling inhibitors selected from the group consisting of acetic acid, ammonium acetate, and ammonium chloride.
  • the acid solvent is one or more gelling inhibitors selected from the group consisting of acetic acid, ammonium acetate, and ammonium chloride.
  • the present invention provides a flocculant comprising:
  • the present invention also provides the coagulant according to any one of claims 2 to 5, wherein the silicon-containing substance contains iron or aluminum.
  • the present invention also provides a flocculant according to any one of claims 1 to 6, wherein the flocculant has a pH value of 2 to 3.
  • the present invention provides a silicon-containing solute generating means for mixing a silicon-containing substance and an alkaline substance, and heat-treating the silicon-containing substance at a temperature equal to or lower than the thermal melting point to produce an acid-soluble silicon-containing solute;
  • the present invention provides a method for producing a coagulant comprising: an acid solvent generating means for generating a solvent; and a silicon sol generating means for generating a silicon sol by dissolving the silicon-containing solute in the acid solvent.
  • the present invention provides the method for producing a flocculant according to claim 8, wherein the alkali
  • An object of the present invention is to provide a method for producing a flocculant in which the conductive substance comprises calcium carbonate or lime.
  • the present invention provides the method for producing a flocculant according to claim 8 or 9, wherein the acid solvent generating means comprises means for diluting hydrochloric acid to generate an acid solvent. Things.
  • the present invention provides the method for producing a flocculant according to any one of claims 8 to 10, wherein the acid solvent generating means comprises: an acetic acid, an ammonium acetate, and an ammonium chloride in the acid solution.
  • An object of the present invention is to provide a method for producing a flocculant comprising means for mixing one or more selected gelation inhibitors.
  • the present invention provides the method for producing a flocculant according to any one of claims 8 to 11, further comprising a filtration means for filtering the silicon sol to remove undissolved suspended matter. Is provided.
  • the present invention provides the method for producing a flocculant according to any one of claims 8 to 12, further comprising a granulating means for adding gypsum to the silicon sol to form an undissolved suspension. It is intended to provide a method for producing a coagulant added thereto.
  • the present invention provides the method for producing a flocculant according to any one of claims 8 to 13, wherein iron or aluminum is added to the silicon sol to adjust the pH value of the silicon sol.
  • An object of the present invention is to provide a method for producing a flocculant to which a value adjusting means is added.
  • the present invention provides an aggregating method for aggregating a suspension by mixing the aggregating agent according to any one of claims 1 to 7 into a suspension.
  • the present invention provides a coagulation method according to claim 15, wherein a means for further mixing an alkaline substance with the suspension is added.
  • the flocculant according to the present invention comprises a silicon sol that gels upon dilution and agglomerates a suspension with the gelation.
  • the silicon sol is a mixture of a silicon-containing substance and an alkaline substance, and is a silicon-containing substance. Heat treatment at a temperature below the melting point of Is dissolved in an acid solvent.
  • the silicon-containing substance is made of natural earth or rock containing a silicon compound such as silicon dioxide (Si 2 ), or a processed product containing them.
  • the silicon-containing substance preferably contains iron or aluminum.
  • Table 1 high content of silicon dioxide, iron oxide (F e Os) and aluminum oxide (A l 2 ⁇ 3) Ibu unit clay containing (Okimatoi Prefecture Ibu unit local earth) It is more preferable to use.
  • the silicon-containing substance contains iron or aluminum, ultra-fine particles and dye particles (0.01) that cannot be caught by ordinary flocculants due to the reduction of small amounts of iron or aluminum dissolved at the same time as silicon dissolution. / zm or less) is taken into the silicon gel, flocculated and aggregated.
  • Alkaline substances are used to convert silicon-containing substances into acid-soluble substances.
  • calcium carbonate (C a C ⁇ 3 ) or lime is mixed with silicon-containing substances as an alkaline substance and heat-treated, the silicon-containing substances are generated.
  • the solute becomes powdery, and the solubility in acid solvents is improved.
  • the heat treatment is performed at an arbitrary temperature equal to or lower than the thermal melting point of the silicon-containing substance, since the heat treatment is performed at a temperature higher than the thermal melting point of the silicon-containing substance, which results in a glassy state and becomes insoluble.
  • the silicon-containing material is Ibube Shirato
  • it may be at any temperature below the thermal melting point of Ibube Shirato, about 1300 ° C, and is close to the thermal melting point of 1150 to 1250 ° C.
  • Heat treatment is more preferred.
  • the preferred temperature of the heat treatment depends on the type of the silicon-containing material.
  • Various acid solutions such as hydrochloric acid or sulfuric acid can be used as the acid solvent.
  • hydrochloric acid has a high solubility of calcium, since neutralize the calcium chloride (C a C l 2) is next safe non-toxic, be used in acid solvent hydrochloric acid preferable. Also, since the solubility of silicon with respect to the acid concentration is constant and the density of silicon sol dispersed in the liquid volume can maintain the sol state only in a certain water void, hydrochloric acid was diluted as an acid solvent. It is preferable to use diluted hydrochloric acid, and particularly to use diluted hydrochloric acid diluted 3 to 7 times. On the other hand, when the acid concentration of the acid solvent is high, the dissolution of silicon is fast, but the gel tends to gel because the sol cannot maintain a stable density.
  • the acid solvent is acetic acid (C 2 H 4 ⁇ 2), acetic acid Anmoniumu (CH 3 COONH 4), containing one or more gelling inhibitor selected from the group consisting of chloride Anmoniumu (A 1 C 1 3) It is preferred that By using acetic acid as a gelling inhibitor, the gelling of silicon sol can be suppressed by adjusting the dropping amount of acetic acid by the pH buffering action of acetic acid and the astringency of sols and colloids. As in the case of acetic acid, the gelation of the silicon sol can be suppressed by a mixed acid obtained by adding ammonium acetate or ammonium chloride to dilute hydrochloric acid.
  • the pH value of the flocculant according to the present invention is preferably adjusted to 2 to 3.
  • the coagulant has a greater effect on coagulation as the acidity becomes stronger.
  • the treatment of turbid water containing acidic soil such as red soil requires pH adjustment to the turbid water. It is preferable that the adjustment be made to be 3 or more.
  • a possible gelation of the silicon sol from p H 3 has been confirmed by experiments, since the reduced iron and Arumye ⁇ beam at p H 4 or higher occurs, flocculant is adjusted to be less than P H 3 It is preferred.
  • the silicon sol becomes pH3 or higher and gels, and the suspension can be flocculated.
  • the suspension undergoes a flocculation reaction at pH 4 or higher, and the water quality safety standards (pH 6 to 8) are large, strong and heavy, and the best effects can be obtained.
  • the suspension is acidic water, caustic soda (NaOH), calcium carbonate (CaC)
  • the suspension to be treated contains organic substances or has a low concentration
  • a means for further mixing calcium carbonate into the suspension, the floc that is light and takes time to settle can be carbonated. It can be aggregated with calcium as its core and sedimented in a short time.
  • the method for producing a flocculant according to the present invention comprises: a silicon-containing solute generating means for mixing a silicon-containing substance and an alkaline substance, and heat-treating the mixture at a temperature equal to or lower than the thermal melting point of the silicon-containing substance to produce an acid-soluble silicon-containing solute. And an acid solvent generating means for generating a solvent comprising an acid solution, and a silicon sol generating means for dissolving the silicon-containing solute in the acid solvent to generate a silicon sol.
  • Ibu portion clay is a high content natural product of the oxidation Aruminiu beam (A 1 2 ⁇ 3) and silicon dioxide (S io 2), as the alkaline substance, calcium carbonate (C a C 0 2 ) was used.
  • Ibube clay is dried and ground to about 200 mesh.
  • the Chichibu limestone mainly composed of calcium carbonate is ground to about 200 mesh.
  • the crushed Ibube Shirato and the Chichibu limestone are uniformly mixed at a weight ratio of 3: 7, and baked at 122 ° C in an electric furnace until it becomes powdery.
  • the mixture of Ibube Shirato and Chichibu limestone is baked, a part of the mixture becomes massive, but as it cools, it expands naturally due to the expansion of calcium, producing a white powdery silicon-containing solute.
  • the means for producing an acid solvent is a means for producing an acid solvent by diluting hydrochloric acid.
  • Dilute hydrochloric acid (HC 1) 5 times to make 6.6% dilute hydrochloric acid.
  • the acid solvent generating means has means for mixing one or more gelling inhibitors selected from the group consisting of acetic acid, ammonium acetate, and ammonium chloride into the acid solution.
  • one or more gelling inhibitors selected from the group consisting of acetic acid, ammonium acetate, and ammonium chloride into the acid solution.
  • a silicon-containing solute 85 g is added to 1 liter of the acid solvent, and the mixture is stirred with a stirrer for 12 hours to be dissolved.
  • the temperature rises to 39 ° C due to the heat of the reaction, and the suspension of the powdery solute no longer changes in 5 hours, and dissolves into a saturated solution of the silicon sol.
  • Cool while stirring as it is, and in 7 hours decrease to the same temperature as room temperature, and judge that the dissolution reaction is completed. No particles are found in the solution and a bright yellow suspension is formed.
  • a filtering means for filtering the silicon sol to remove the undissolved suspension and a granulating means for adding gypsum to the silicon sol to agglomerate the undissolved suspension are added. And the undissolved suspension in the silicon sol is filtered.
  • gypsum in the silicon sol (C a S_ ⁇ 4) 1 0 g was charged, about 2 0 minutes (time occurring the setting reaction of gypsum) was stirred mixing, the undissolved particulate uptake Aggregate. Thereafter, when the silicon sol is filtered using a coffee dripper filter paper, a yellow transparent acidic silicon sol saturated solution of pHI.8 can be obtained, and no liquid is observed in the filter paper after about 2 hours of filtration. On the other hand, if filtration is performed without mixing gypsum, filtration cannot be performed completely even in 24 hours, and the liquid remains in the filter paper.
  • gypsum has the ability to solidify even in an acidic solution, takes in undissolved fine particles that cause clogging of filter paper, and aggregates them. This is because water gaps are created, and gypsum has little effect on the pH of the flocculant.
  • iron or aluminum is added to the silicon sol by a pH value adjusting means to adjust the pH value of the silicon sol. 100 g of an iron nail is put into the above-mentioned yellow and transparent acidic silicon sol saturated solution having a pH of 1.8, and when the pH reaches 2.6 in about 10 hours, the reaction is completed and filtered.
  • Table 2 shows the flocculation test results of turbid water containing red soil (acid soil) as an inorganic suspension.
  • the turbidity of the turbid water was adjusted to 20,000 p, and the turbid water was diluted to prepare turbid water samples whose turbidity was adjusted (1-1 in Table 2).
  • Example 2 Take 1 liter of turbid water sample of each turbidity into a beaker and stir with a stirrer. Then, the flocculant produced in Example 1 was weighed and added dropwise, and the stirring time was measured. After the stirring time had elapsed, the mixture was transferred to a graduated cylinder to complete the stirring. The resting time was measured, and after the resting time, the amount of sedimented floc was measured on the scale of the graduated cylinder, calculated as a percentage of the amount of suspension, and the supernatant water was measured with a 30 cm transparometer to determine the degree of transparency (cm ) Was measured and converted to turbidity (ppm) using a conversion table.
  • cm degree of transparency
  • ppm turbidity
  • the turbidity of the supernatant water after coagulation treatment was 20 p or less for all turbid water samples. Therefore, it is possible to agglomerate the suspension from a high concentration (20,000 ppm) to a low concentration (20 ppm or less). On the other hand, when the suspension had a low concentration, the resting time was increased because the floc was small and the sedimentation took time.
  • Table 3 shows the results of the aggregation test of turbid water containing blue powder as an organic suspension.
  • Turbid water was collected from the pond where blue powder was generated, and the turbidity was measured to be 700 p.
  • a turbid water sample was prepared by diluting the turbid water and adjusting the turbidity (1 to 9 in Table 3).
  • One liter of a turbid water sample of each turbidity was placed in a beaker, and 0.5 g of calcium carbonate as a weight and coagulation nuclei was added with stirring with a stirrer to accelerate the sedimentation of flocs. Then, the flocculant produced in Example 1 is weighed and added dropwise, and the stirring time is measured.
  • the mixture is transferred to a measuring cylinder to complete the stirring. And Measure the resting time, and after the elapse of rest, measure the amount of sedimentation floc on the graduated cylinder scale, calculate the percentage of the suspension amount, and measure the transparency (cm) of the supernatant water with a 30 cm transparency meter. It was converted to turbidity (ppm) using a conversion table.
  • the turbidity of the supernatant water after coagulation treatment was less than 20 ppm for all turbid water samples. Therefore, even in the case of an organic suspension, it is possible to aggregate the suspension from a high concentration (700 ppm) to a low concentration (20 ppm or less).
  • Table 4 shows the coagulation test results of raw water from livestock sewage as an organic suspension. 5 ml of the flocculant produced in Example 1 was added to 1 L of the raw water of the livestock sewage shown in Table 4, and the mixture was stirred for about 1 minute and then left still for 30 minutes. What collected the supernatant is treated water. Raw water and treated water were measured at the Okibashi Prefectural Environmental Science Center. Nine items were measured using the analytical methods shown in Table 5 and compared.
  • the amount of suspended solids in the measurement items was 450 Omg ZL in the raw water, but after water treatment it was drastically reduced to 22 mg / L, and the wastewater standard could be achieved with one water treatment . Also, some livestock sewage wastewater under severe conditions was used as the organic matter suspension in the tests, so some of the items did not meet the effluent standards. It has been improved, and it is possible to achieve drainage standards by repeatedly performing water treatment with this flocculant, or by pretreatment with another flocculant and combining it with a flocculant.
  • Industrial potential According to the coagulant of the present invention, it has a structure composed of a silicon sol that gels by dilution and coagulates a suspension with the gelation, thereby coagulating in a suspension such as water or wastewater. Since the silicon sol wraps the suspended solids in the suspension and gels when the coagulant is diluted by adding the agent, the silicon sol can be agglomerated. There is an effect that simple, safe and prompt treatment of suspensions such as water and wastewater is
  • Water treatment facilities (simple facilities or emergency water supply facilities in case of disaster), sewage sewage treatment plants, compost wastewater treatment facilities, parks, golf course ponds (agricultural water supply ponds), dams and other Blue flour countermeasures, aquaculture drainage, self-pollution countermeasures, swine raising, poultry farm barn drainage, slaughterhouse meat processing facility drainage, marine product processing plant drainage, meal-related rice cooking centers, dairy factories, bread noodle manufacturing factories, hotels '' restaurants Large-scale restaurants, brewery drainage, tofu manufacturing, large-scale cleaning factories, hospital drainage, environment in resort areas—preservation facilities, dyeing factory drainage, paper mill drainage, pool and bath water recycling, miso soy sauce Production wastewater.
  • the silicon sol is prepared by mixing a silicon-containing substance and an alkaline substance and heat-treating the mixture at a temperature equal to or lower than the thermal melting point of the silicon-containing substance to improve acid solubility. Since the silicon-containing solute provided has a configuration in which the silicon-containing solute is dissolved in an acid solvent, the silicon-containing solute has acid solubility. Therefore, the silicon-containing solute is easily dissolved in the acid solvent to be stable. This has the effect of producing silicon sol.
  • the solubility in an acid solvent is improved.
  • Hydrochloric acid has a high solubility in calcium, and when neutralized, becomes calcium chloride (CaCl 2 ), which is effective in producing a safe and non-toxic flocculant.
  • the present invention provides the coagulant according to any one of claims 2 to 4, wherein the acid solvent is one or more gels selected from the group consisting of acetic acid, ammonium acetate, and ammonium chloride.
  • the acid solvent is one or more gels selected from the group consisting of acetic acid, ammonium acetate, and ammonium chloride.
  • the present invention provides the coagulant according to any one of claims 2 to 5, wherein the silicon-containing substance has a configuration containing iron or aluminum, so that the iron or aluminum is converted to an acid solvent by silicon.
  • the reducing action of iron or aluminum brings about an effect that fine particles and dye particles which cannot be captured by the normal coagulant are taken into the gel, flocculated and coagulated.
  • the present invention provides the flocculant according to any one of claims 1 to 6, wherein the pH value is 2 to 3 so that the sol state of the silicon sol is obtained when the pH index is 3 or less.
  • the pH index is 2 to 3 so that the sol state of the silicon sol is obtained when the pH index is 3 or less.
  • a silicon-containing substance and an alkaline substance are mixed, and heat-treated at a temperature equal to or lower than the thermal melting point of the silicon-containing substance to produce an acid-soluble silicon-containing solute.
  • coagulants are used in suspensions such as water and wastewater. When added, the coagulant is diluted, and the silicon sol wraps around the suspension in the suspension and gels, and can coagulate, so that the suspension can be treated simply and safely. There is.
  • the silicon-containing solute is in a powder form by having the alkaline substance having a configuration of calcium carbonate or lime, the acid solvent is used. Has the effect of improving the solubility of
  • the acid solvent generating means has a structure comprising means for diluting hydrochloric acid to generate an acid solvent, and thereby the hydrochloric acid concentration is reduced. Since the solubility of silicon in water is constant, decreasing the concentration of hydrochloric acid in the acid solvent also lowers the sol density dispersed in the solution, and the silicon sol has a stable density with constant water voids. State can be maintained. Also, hydrochloric acid is highly soluble calcium, an effect that can generate a coagulant safety nontoxic because the neutralization becomes calcium chloride (C a C 1 2).
  • the present invention provides the method for producing a flocculant according to any one of claims 8 to 10, wherein the acid solvent generating means comprises: acetic acid, ammonium acetate, ammonium chloride in the acid solution.
  • the acid solvent generating means comprises: acetic acid, ammonium acetate, ammonium chloride in the acid solution.
  • the present invention provides the method for producing a flocculant according to any one of claims 8 to 11, wherein a filtration means for filtering the silicon sol to remove undissolved suspension is added.
  • the present invention provides the method for producing a flocculant according to any one of claims 8 to 12, wherein gypsum is added to the silicon sol to aggregate the undissolved suspension.
  • gypsum is added to the silicon sol to aggregate the undissolved suspension.
  • the present invention provides the method for producing a flocculant according to any one of claims 8 to 13, wherein iron or aluminum is added to the silicon sol to adjust the ⁇ H value of the silicon sol.
  • the PH value can be adjusted using iron or aluminum, which can incorporate pigment particles or fine particles into the gel by a reducing action, and the sol state of the silicon sol
  • the pH index By adjusting the pH index to a value of 3 or less, and preferably to around pH 3, it is possible to treat a suspension having a higher acidity.
  • the harmless claim 1 made of silicon is mixed with the suspension according to any one of claims 1 to 7, whereby the suspension is aggregated to form a suspension. Is it possible to mix the coagulant in water or sewage treatment plants, industrial water and other water suspensions, and to coagulate the suspension in the suspension to quickly coagulate? Therefore, there is an effect that the suspension can be easily and safely processed at any place.
  • the present invention provides the coagulation method according to claim 15, wherein the suspension further comprises a means for mixing an alkaline substance with the suspension, whereby the suspension has a high acidity.
  • the silicon sol can be neutralized and the suspension can be agglomerated as the silicon sol gels.
  • the use of powder such as calcium carbonate or lime as an alkaline substance can be used for low-concentration suspensions that have small flocs and require time for sedimentation, and for suspensions that contain organic substances that require light floc and require time for sedimentation.
  • carbon dioxide powder or lime is used as a nucleus for coagulation, whereby sedimentation can be quickly and quickly effected.
  • the present invention can maintain the silicon sol state for a certain period of time (1 year or more) in an acidic state (near pH 3), and loses the balance of stability of the sol state by dilution when a coagulant is used.
  • an acidic state near pH 3
  • a flocculant that wraps suspended fine particles in water with a gel and converges to form a floc that can be separated from water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Silicon Compounds (AREA)

Abstract

上水処理場、下水処理場、工業排水などの用水や排水等の懸濁液を簡易、安全かつ迅速に処理することができる凝集剤、その製造方法及びその凝集剤を用いた凝集方法を提供する。希釈することによってゲル化し、ゲル化に伴って懸濁物を凝集する珪素ゾルからなる凝集剤。

Description

明 細 書 凝集剤、 その製造方法及びその凝集剤を用いた凝集方法 技術分野
本発明は、 懸濁液中の懸濁物を凝集する凝集剤、 その製造方法及びその凝集剤 を用いた凝集方法に関する。 背景技術
従来、 各種の用水や排水から懸濁物を取り除くために、 凝集剤を用水や排水中 に投入して懸濁物を凝集 ·沈降させて処理する水処理方法が行なわれており、 水 処理のための凝集剤としては、 ポリアクリルアミ ド、 硫酸バンド等が使用されて いた。
これらの凝集剤は、 水処理時に; pHの調整が必要であり、 水処理が煩雑になる のみならず、 処理後の水の安全性に懸念があった。 また、 硫酸バンドは、 処理水 が低温の場合に充分な凝集効果が得られないという問題があった。
これらの問題を解決でき、 無毒安全で凝集効果の高い凝集剤として、 珪素を溶 解した珪素ゾルからなる凝集剤は様々なものが知られている (特許文献 1乃至 4 参照)。
【特許文献 1】 特開 2003— 38908号公報
【特許文献 2】 特許 2759853号公報
【特許文献 3】 特許 2732067号公報
【特許文献 4】 特公平 4一 75796号公報
しかし、 珪素ゾルは、 長期間安定したゾル状態を維持することが困難であり、 一般的な珪素溶液である珪酸ソーダ (H4S i〇4) は、 アルカリ性にして電位に よってゾル状態を安定せる必要がある。 また、 特許文献 1乃至 4に記載の凝集剤 のように、 強酸又は強アルカリ性にして珪素ゾルのゾル状態を維持するものは、 処理後の水の P H値に懸念が生じると共に、 珪素ゾルの中和によるゲル化が不十 分となり、 処理水の p Hの調整が必要であるという課題があった。 発明の開示
本発明は、 上記課題を解決するために、 希釈することによってゲル化し、 ゲル 化に伴つて懸濁物を凝集する珪素ゾルからなる凝集剤を提供するものである。 また、 本発明は、 請求項 1に記載の凝集剤において、 前記珪素ゾルは、 珪素含 有物質とアル力リ性物質を混合して珪素含有物質の熱融解点以下の温度で熱処理 して酸溶解性を与えてなる珪素含有溶質を、 酸溶媒に溶解してなる凝集剤を提供 するものである。
また、 本発明は、 請求項 2に記載の凝集剤において、 前記アルカリ性物質が炭 酸カルシウム又は石灰からなる凝集剤を提供するものである。
また、 本発明は、 請求項 2又は 3に記載の凝集剤において、 前記酸溶媒が希塩 酸からなる凝集剤を提供するものである。
また、 本発明は、 請求項 2乃至 4のいずれかに記載の凝集剤において、 前記酸 溶媒が、 酢酸、 酢酸アンモ-ゥム、 塩化アンモニゥムの群から選ばれる 1又は 2 以上のゲル化抑止剤を含有してなる凝集剤を提供するものである。
また、 本発明は、 請求項 2乃至 5のいずれかに記載の凝集剤において、 前記珪 素含有物質が鉄又はアルミニウムを含有してなる凝集剤を提供するものである。 また、 本発明は、 請求項 1乃至 6のいずれかに記載の凝集剤において、 p H値 が 2〜 3である凝集剤を提供するものである。
また、 本発明は、 珪素含有物質とアルカリ性物質を混合し、 珪素含有物質の熱 融解点以下の温度で熱処理して酸溶解性の珪素含有溶質を生成する珪素含有溶質 生成手段と、 酸溶液からなる溶媒を生成する酸溶媒生成手段と、 前記酸溶媒に前 記珪素含有溶質を溶解させて珪素ゾルを生成する珪素ゾル生成手段とからなる凝 集剤の製造方法を提供するものである。
また、 本発明は、 請求項 8に記載の凝集剤の製造方法において、 前記アルカリ 性物質が炭酸カルシウム又は石灰からなる凝集剤の製造方法を提供するものであ る。
また、 本発明は、 請求項 8又は 9に記載の凝集剤の製造方法において、 前記酸 溶媒生成手段が、 塩酸を希釈して酸溶媒を生成する手段からなる凝集剤の製造方 法を提供するものである。
また、 本発明は、 請求項 8乃至 1 0のいずれかに記載の凝集剤の製造方法にお いて、 前記酸溶媒生成手段が、 前記酸溶液に、 酢酸、 酢酸アンモニゥム、 塩化ァ ンモニゥムの群から選ばれる 1又は 2以上のゲル化抑止剤を混合する手段を含有 する凝集剤の製造方法を提供するものである。
また、 本発明は、 請求項 8乃至 1 1のいずれかに記載の凝集剤の製造方法にお いて、 前記珪素ゾルを濾過して未溶解懸濁物を取り除く濾過手段を付加してなる 凝集剤の製造方法を提供するものである。
また、 本発明は、 請求項 8乃至 1 2のいずれかに記載の凝集剤の製造方法にお いて、 前記珪素ゾルに石膏を加えて未溶解懸濁物を団粒化させる団粒化手段を付 加してなる凝集剤の製造方法を提供するものである。
また、 本発明は、 請求項 8乃至 1 3のいずれかに記載の凝集剤の製造方法にお いて、 前記珪素ゾルに、 鉄又はアルミニウムを加えて珪素ゾルの p H値を調整す る ρ H値調整手段を付加してなる凝集剤の製造方法を提供するものである。 また、 本発明は、 請求項 1乃至 7のいずれかに記載の凝集剤を懸濁液に混合し て懸濁物を凝集する凝集方法を提供するものである。
また、 本発明は、 請求項 1 5に記載の凝集方法において、 懸濁液に更にアル力 リ性物質を混合する手段を付加してなる凝集方法を提供するものである。 発明を実施するための最良の形態
本発明に係る凝集剤は、 希釈することによってゲル化し、 ゲル化に伴って懸濁 物を凝集する珪素ゾルからなり、 この珪素ゾルは、 珪素含有物質とアルカリ性物 質を混合して珪素含有物質の熱融解点以下の温度で熱処理して酸溶解性を与えて なる珪素含有溶質を、 酸溶媒に溶解してある。
珪素含有物質は、 二酸化珪素 (S i〇2) 等の珪素化合物を含有する天然の土 類若しくは岩石、 又はそれらを含む加工製品からなる。 また、 珪素含有物質は、 鉄又はアルミニウムを含有しているものが好ましい。 表 1に示すように、 二酸化 珪素の含有率が高く、 酸化鉄 (F e Os) 及び酸化アルミニウム (A l 23) を 含有する伊武部白土 (沖纏県伊武部地方の土類) を用いることがより好ましい。 珪素含有物質が、 鉄又はアルミニウムを含有することにより、 珪素溶解と同時に 溶解される微量の鉄又はアルミニゥムの還元作用により、 通常の凝集剤では捕ら えられない超微粒子、 色素粒子 (0. 0 1 /zm以下) は珪素ゲルに取り込まれ、 フロック化して凝集する。
また、 珪素含有物質としては、 入手の容易な普通セメントを用いることも可能 でのる。
【表 1】
Figure imgf000005_0001
アルカリ性物質は、珪素含有物質を酸溶解性に変えるために用いるものであり、 アルカリ性物質として炭酸カルシウム (C a C〇3) 又は石灰を珪素含有物質に 混ぜ合わせて熱処理すると、 生成される珪素含有溶質がパウダー状となり、 酸溶 媒への溶解性が向上する。
また、 熱処理は、 珪素含有物質の熱融解点以上の温度で行うとガラス状となり 難溶解性になることから、 珪素含有物質の熱融解点以下の任意の温度で行う。 珪 素含有物質が伊武部白土の場合には、 伊武部白土の熱融解点である約 1 300°C 以下の任意の温度でよく、 熱融解点に近い 1 1 50〜 1 2 50°Cで熱処理するこ とがより好ましい。 この好適な熱処理の温度は、 珪素含有物質の種類によって異 なる。 酸溶媒には、 塩酸又は硫酸等の種々の酸溶液を用いることができる。 上記アル カリ性物質が炭酸カルシウムの場合には、 塩酸はカルシウムの溶解性が高く、 中 和すると塩化カルシウム (C a C l 2) となり安全無毒であるから、 酸溶媒に塩 酸を用いることが好ましい。 また、 酸濃度に対する珪素の溶解度は一定であり、 液体容積に分散する珪素ゾル密度も一定の水空隙の中でしかゾル状態の安定を保 つことができないことから、 酸溶媒として塩酸を希釈した希塩酸を用い、 特に、 3倍〜 7倍に希釈した希塩酸を用いることが好ましい。 一方、 酸溶媒の酸濃度が 高い場合には、 珪素の溶解は早いが、 ゾルの安定密度を保つことができないため にゲル化し易くなる。
また、 酸溶媒は、 酢酸 (C2H42)、 酢酸アンモニゥム (CH3COONH4)、 塩化アンモニゥム (A 1 C 13) の群から選ばれる 1又は 2以上のゲル化抑止剤 を含有してあることが好ましい。 ゲル化抑止剤として酢酸を用いることにより、 酢酸の p H緩衝作用とゾル、 コロイドの収斂性によって、 酢酸の滴加量を調整し て珪素ゾルのゲル化を抑止することができる。 酢酸アンモニゥム又は塩化アンモ 二ゥムを希塩酸に加えた混酸によっても、 酢酸と同様に珪素ゾルのゲル化を抑止 することができる。
また、本発明に係る凝集剤は、 p H値が 2〜 3に調整してあることが好ましレ、。 凝集剤は、 酸性度が強いほど凝集処理に影響を及ぼし、 特に赤土のような酸性土 壌を含んだ濁水の処理には、 濁水に対する pH調整が必要となるために、 凝集剤 は p H 2以上 3以下になるように調整することが好ましい。 また、 実験によって p H 3より珪素ゾルのゲル化が確認されたことと、 p H 4以上で鉄及びアルミェ ゥムの還元が起こることから、 凝集剤は P H 3以下になるように調整することが 好ましい。
この凝集剤を懸濁液に投入し、 混ぜ合わせることにより、 珪素ゾルは pH3以 上になりゲル化し、 懸濁物を凝集することができる。 凝集剤投入後の懸濁液は、 p H4以上で凝集反応が起き、 水質安全基準 (p H6〜8) において、 フロック が大きく、 強く、 重くなり、 最も良い効果を得ることができる。 懸濁液が酸性水の場合は、 苛性ソーダ (N a O H)、 炭酸カルシウム (C a C
O a )又は石灰等のアルカリ性物質で中和を行なうことにより同様の凝集となる。 なお、 アルカリ性土壌又は有機物を含んだ濁水の場合は、 酸性の凝集剤によって 中和されるので; H調整の必要はない。
また、 処理対象の懸濁液が有機物を含む場合や低濃度の場合には、 懸濁液に更 に炭酸カルシウムを混合する手段を付加することにより、 軽くて沈降に時間を要 するフロックを炭酸カルシウムを核にして凝集させて、 短時間で沈降させること ができる。
次に、 上記凝集剤の製造方法を実施例に基づいて説明する。
本発明に係る凝集剤の製造方法は、 珪素含有物質とアルカリ性物質を混合し、 珪素含有物質の熱融解点以下の温度で熱処理して酸溶解性の珪素含有溶質を生成 する珪素含有溶質生成手段と、酸溶液からなる溶媒を生成する酸溶媒生成手段と、 前記酸溶媒に前記珪素含有溶質を溶解させて珪素ゾルを生成する珪素ゾル生成手 段とからなる。
(実施例 1 )
実施例では、 珪素含有物質として、 二酸化珪素 (S i o 2) と酸化アルミニゥ ム(A 1 23 ) の高含有天然物である伊武部白土を用い、アルカリ性物質として、 炭酸カルシウム (C a C 0 2) を用いた。
[珪素含有溶質生成手段]
先ず、 伊武部白土を乾燥し、 2 0 0メッシュ程度に粉碎する。 また、 炭酸カル シゥムを主成分とする秩父系石灰岩を 2 0 0メッシュ程度に粉砕する。 そして、 粉砕した伊武部白土と秩父系石灰岩を重量比 3 : 7の割合で均一に混ぜ合わせ、 電気炉内で 1 2 2 9 °Cで粉末状になるまで焼く。 伊武部白土と秩父系石灰岩の混 合物を焼くと、 一部は塊状となるが、 冷却に伴ってカルシウムの膨張作用により 自然崩壊して白色パゥダー状の珪素含有溶質が生成される。
[酸溶媒生成手段]
酸溶媒生成手段は、 塩酸を希釈して酸溶媒を生成する手段からなり、 3 3 %濃 度の塩酸 (H C 1 ) を 5倍に希釈して、 6 . 6 %濃度の希塩酸を作る。
また、 酸溶媒生成手段は、 前記酸溶液に、 酢酸、 酢酸アンモニゥム、 塩化アン モニゥムの群から選ばれる 1又は 2以上のゲル化抑止剤を混合する手段を有し、 本実施例では、 6 . 6 %濃度の希塩酸 1リツトルに、 ゲル化抑止剤として 9 9 % 濃度の酢酸 (C 2 H 4 0 2 ) 2 5 C Cを滴加し、 撹拌して酸溶媒を生成する。 希塩 酸に酢酸を加えた混酸で珪素を溶解すると、 ゾル状態の安定期間を長く保つこと ができる。
[珪素ゾル生成手段]
この酸溶媒 1リットルに、 珪素含有溶質 8 5 gを投入し、 スターラーで 1 2時 間撹拌して溶解する。 酸溶媒に珪素含有溶質を投入すると、 反応熱によって 3 9 °Cまで上昇し、 5時間でパウダー状溶質の懸濁の変化はなくなり、 溶解飽和して 珪素ゾルの飽和溶液となる。 そのまま撹拌しながら冷却し、 7時間で室温と同じ 温度に下がり、 溶解反応終了と判断する。 溶液中に粒子は見られず、 山吹色の懸 濁液となる。
そして、本実施例は、珪素ゾルを濾過して未溶解懸濁物を取り除く濾過手段と、 珪素ゾルに石膏を加えて未溶解懸濁物を団粒化させる団粒化手段を付加してあ り、 珪素ゾル中の未溶解懸濁物を濾過する。
濾過を容易にするために、 珪素ゾル中に石膏 (C a S〇4 ) 1 0 gを投入し、 約 2 0分間 (石膏の固化反応の起きる時間) 撹拌し混ぜ合わせ、 未溶解微粒子を 取り込み団粒化させる。 その後、 コーヒードリッパ濾紙を使用して珪素ゾルを濾 過すると、 黄色透明な p H I . 8の酸性珪素ゾル飽和溶液を得ることができ、 約 2時間の濾過で濾紙中に液は認められない。 一方、 石膏を混ぜずに濾過すると、 2 4時間かけても完全に濾過することができず、 濾紙中に液が残る。
珪素ゾルに石膏を混ぜたのは、 濾過性向上のためで、 その作用は石膏は酸性溶 液中でも固化能力があり、 濾紙の目詰まりの原因となる未溶解微粒子を取り込み 団粒化させ、 通水間隙を造るためであり、 また、 石膏は凝集剤の p Hへの影響が 少ないからである。 さらに、 pH値調整手段によって、 珪素ゾルに、 鉄又はアルミニウムを加えて 珪素ゾルの p H値を調整する。 上記の黄色透明で p H 1. 8の酸性珪素ゾル飽和 溶液に、 鉄釘 100 gを投入し、 約 1 0時間で p H 2. 6になったところで終了 し濾過する。 珪素ゾルへの鉄の溶解量は微量であるから、 鉄釘の投入量は少なく て良いが、 反応時間を早めるために多めに投入している。 処理の結果、 pH2. 6の無色に近い薄黄色の透明な液となった。 pHの調整は、 鉄の塩素反応によつ て水素を発生し、 2価の鉄イオン (F e 2+) が生成され、 そのとき、 塩酸 (HC 1 ) の塩素 (C 1 ) を消耗することにより、 ; pH値が上昇することを利用したも のである。 なお、 鉄釘に替えてアルミニウムを投入することによつても同様の結 果を生ずるが、 実施例では安全性の高い鉄を使用した。
以上の工程によって得られた珪素ゾルの酸性飽和溶液を使用して、 無機物懸濁 液及び有機物懸濁液中の懸濁物の凝集試験を行った。
【表 2】
Figure imgf000009_0001
表 2は、 無機物懸濁液として、 赤土 (酸性土) を含む濁水の凝集試験結果を示 す。 濁水の濁度を 20, 000 p に調整し、 この濁水を希釈して濁度を調整 した濁水サンプルを用意した (表 2の 1〜1 1)。
各濁度の濁水サンプル 1リットルをビーカーに取り、 スターラーで撹拌しなが ら上記実施例 1で製造した凝集剤を計量して滴加し、 撹拌時間を計り、 撹拌時間 経過後、 メスシリンダーに移して撹拌終了とする。 そして、 静止時間を計り、 静 止時間経過後、 沈降フロック量をメスシリンダーの目盛で計り、 懸濁液量に対す る百分率で求め、 上澄水を 3 0 c mの透視度計で透視度 (c m ) を計り、 換算表 により濁度 (p p m ) に換算した。
表 2に示すように、 全ての濁水サンプルについて、 凝集処理後の上澄水の濁度 が 2 0 p 以下になった。 従って、 懸濁液の処理濃度幅は、 高濃度 (2 0, 0 0 0 p p m) のものから低濃度 (2 0 p p m以下) のものまで懸濁物を凝集する ことが可能である。 伹し、 懸濁液が低濃度の場合には、 フロックが小さく沈降に 時間を要するために、 静止時間を長く した。
【表 3】
Figure imgf000010_0001
表 3は、 有機物懸濁液として、 青粉を含む濁水の凝集試験結果を示す。 青粉の 発生している池から濁水を採取し、 濁度を測定すると 7 0 0 p であった。 こ の濁水を希釈して濁度を調整した濁水サンプルを用意した (表 3の 1〜 9 )。 各濁度の濁水サンプル 1リットルをビーカーに取り、 フロックの沈降を早める ために、 重りと凝集核としての炭酸カルシウム 0 . 5 gをスターラーで撹拌しな がら投入した。 そそて、 上記実施例 1で製造した凝集剤を計量して滴加し、 撹拌 時間を計り、撹拌時間経過後、メスシリンダーに移して撹拌終了とする。そして、 静止時間を計り、 静止時^経過後、 沈降フロック量をメスシリンダーの目盛で計 り、 懸濁液量に対する百分率で求め、 上澄水を 3 0 c mの透視度計で透視度 (c m) を計り、 換算表により濁度 (p p m) に換算した。
表 3に示すように、 全ての濁水サンプルについて、 凝集処理後の上澄水の濁度 が 2 0 p p m以下になった。 従って、 有機物懸濁液の場合でも、 高濃度 (7 0 0 p p m) 'のものから低濃度 (2 0 p p m以下) のものまで懸濁物を凝集すること が可能である。
また、 濁水中に炭酸カルシウムを投入しない場合には、 凝集フロックが軽く水 中を浮遊して沈降しないが、 水とは分離していることから、 濾過することにより 濾液の濁度は 2 0 p p m以下になる。
本発明に係る凝集剤は、 単独で使用して上記の効果を得ることができるが、 他 の凝集剤の前処理、 凝集起剤として組み合わせると、 微量で更に高い能力を発揮 することができる。
P T/JP2003/013513
- 11
【表 4】
分析試験結果表
Figure imgf000012_0001
【表 5 】 分 析 方 法
No 2003-00535 - A01
Figure imgf000013_0001
表 4は、 有機物懸濁液として、 畜舎排水の原水の凝集試験結果を示す。 表 4に 示す畜舎排水の原水 1 Lに、 上記実施例 1で製造した凝集剤 5 m 1を投入しなが ら 1分程度攪拌し、 3 0分間静止した。 その上澄液を採取したものが処理水であ る。 原水と処理水は、 財団法人沖縛県環境科学センターにおいて測定を行い、 9 項目について表 5に示す分析方法で測定し比較した。
測定項目中の浮遊物質量は、 原水には 4 5 0 O m g Z L存在したが、 水処理後 は 2 2 m g / Lに激減し、 1回の水処理で排水基準を達成することができた。 ま た、 試験には有機物懸濁液としては過酷な条件の畜舎排水を使用したことから、 一部項目について排水基準を達成していないものもあるが、 原水に対して処理水 では数値が大きく改善しており、 本凝集剤による水処理を繰り返し行ったり、 他 の凝集剤の前処理、 凝集起剤として組み合わせたりすることにより、 排水基準を 達成することは可能である。 産業上の利用の可能性 本発明に係る凝集剤によれば、 希釈することによってゲル化し、 ゲル化に伴つ て懸濁物を凝集する珪素ゾルからなる構成を有することにより、 用水や排水等の 懸濁液中に凝集剤を入れて凝集剤が希釈されることによって珪素ゾルが懸濁液中 の懸濁物を包み込んでゲル化し、 凝集することができるから、 上水処理場、 下水 処理場、 工業排水などの用水や排水等の懸濁液を簡易、 安全かつ迅速に処理する ことができる効果がある。
処理対象としては、 上水場 (簡易施設又は災害時の非常用給水設備)、 下水汚 水処理場、 コンポストの排水処理施設、 公園、 ゴルフ場の池 (農業用給水池)、 ダムなど夏場の青粉対策、 水産養殖場の排水、 自家汚染対策、 養豚、 養鶏の畜舎 排水、 屠殺場畜肉加工施設排水、 水産物加工場排水、 給食関連炊飯センター、 乳 製品工場、 パンめん製造工場、 ホテル ' レストランなど大型飲食店、 酒造排水、 豆腐製造業、 大型クリーニング工場、 病院排水、 リゾート地域の環境—保持施設、 染物工場排水、 製紙工場排水、 プール、 浴場の水のリサイクル、 味噌 '醤油■ ビ —ルの製造排水等がある。
また、 本発明は、 請求項 1に記載の凝集剤において、 前記珪素ゾルは、 珪素含 有物質とアルカリ性物質を混合して珪素含有物質の熱融解点以下の温度で熱処理 して酸溶解性を与えてなる珪素含有溶質を、 酸溶媒に溶解してなる構成を有する ことにより、 この珪素含有溶質は酸溶解性を具備するから、 この珪素含有溶質は 容易に酸溶媒に溶解することによって安定した珪素ゾルを生成することができる 効果がある。
また、 本発明は、 請求項 2に記載の凝集剤において、 前記アルカリ性物質が炭 酸カルシウム又は石灰からなる構成を有することにより、 珪素含有溶質がパゥダ 一状となるから、 酸溶媒への溶解性を向上させることができる効果がある。 また、 本発明は、 請求項 2又は 3に記載の凝集剤において、 前記酸溶媒が希塩 酸からなる構成を有することにより、 塩酸濃度に対する珪素の溶解度は一定であ るから、 酸溶媒の塩酸濃度を下げることによつて溶液中に分散するゾル密度も疎 となり、 珪素ゾルは一定の水空隙を有する安定密度となるから、 安定したゾル状 態を保つことができる。 また、 塩酸はカルシウムの溶解性が高く、 中和すると塩 化カルシウム (C a C l 2 ) になるから安全無毒の凝集剤を生成することができ る効果がある。
また、 本発明は、 請求項 2乃至 4のいずれかに記載の凝集剤において、 前記酸 溶媒が、 酢酸、 酢酸アンモ-ゥム、 塩化アンモ-ゥムの群から選ばれる 1又は 2 以上のゲル化抑止剤を含有してなる構成を有することにより、 ゲル化抑止剤によ つて珪素ゾルのゲル化を抑止して安定したゾル状態を長期間維持することができ る効果がある。
また、 本発明は、 請求項 2乃至 5のいずれかに記載の凝集剤において、 前記珪 素含有物質が鉄又はアルミニウムを含有してなる構成を有することにより、 鉄又 はアルミニウムが酸溶媒に珪素と共に溶解され、 凝集剤の使用時に、 この鉄又は アルミニウムの還元作用によって、 通常の凝集剤では捕らえることができない微 粒子 ·色素粒子をゲルに取り込み、 フロック化して凝集することができる効果が ある。
また、 本発明は、 請求項 1乃至 6のいずれかに記載の凝集剤において、 p H値 が 2〜 3である構成を有することにより、 p H指数が数値で 3以下において珪素 ゾルのゾル状態を保つことができ、 p H指数が数値で 2以上としたことによって、 酸性の懸濁液を処理する際に p H調整を不要又は軽減することができる。従って、 好ましくは: H 3付近にすることによって、 より酸性度の強い懸濁液を処理する ことができる効果がある。
また、 本発明に係る凝集剤の製造方法によれば、 珪素含有物質とアルカリ性物 質を混合し、 珪素含有物質の熱融解点以下の温度で熱処理して酸溶解性の珪素含 有溶質を生成する珪素含有溶質生成手段と、 酸溶液からなる溶媒を生成する酸溶 媒生成手段と、 前記酸溶媒に前記珪素含有溶質を溶解させて珪素ゾルを生成する 珪素ゾル生成手段とからなる構成を有することにより、 珪素含有溶質は酸溶解性 を具備するから、 珪素含有溶質を容易に酸溶媒に溶解させることによつて安定し た珪素ゾルを生成することができる。 また、 凝集剤を用水や排水等の懸濁液中に 入れると、 凝集剤が希釈されることによって珪素ゾルが懸濁液中の懸濁物を包み 込んでゲル化し、 凝集することができるから、 簡易かつ安全に懸濁液を処理する ことができる効果がある。
また、 本発明は、 請求項 8に記載の凝集剤の製造方法において、 前記アルカリ 性物質が炭酸カルシウム又は石灰からなる構成を有することにより、 珪素含有溶 質がパウダー状となるから、 酸溶媒への溶解性を向上させることができる効果が め
また、 本発明は、 請求項 8又は 9に記載の凝集剤の製造方法において、 前記酸 溶媒生成手段が、 塩酸を希釈して酸溶媒を生成する手段からなる構成を有するこ とにより、 塩酸濃度に対する珪素の溶解度は一定であるから、 酸溶媒の塩酸濃度 を下げることによつて溶液中に分散するゾル密度も疎となり、 珪素ゾルは一定の 水空隙を有する安定密度となるから、 安定したゾル状態を保つことができる。 ま た、塩酸はカルシウムの溶解性が高く、 中和すると塩化カルシウム (C a C 1 2 ) になるから安全無毒の凝集剤を生成することができる効果がある。
また、 本発明は、 請求項 8乃至 1 0のいずれかに記載の凝集剤の製造方法にお いて、 前記酸溶媒生成手段が、 前記酸溶液に、 酢酸、 酢酸アンモ-ゥム、 塩化ァ ンモニゥムの群から選ばれる 1又は 2以上のゲル化抑止剤を混合する手段を含有 する構成を有することにより、 ゲル化抑止剤によつて珪素ゾルのゲル化を抑止し て安定したゾル状態を長期間維持することができる効果がある。
また、 本発明は、 請求項 8乃至 1 1のいずれかに記載の凝集剤の製造方法にお いて、 前記珪素ゾルを濾過して未溶解懸濁物を取り除く濾過手段を付加してなる 構成を有することにより、 珪素ゾル中の未溶解懸濁物を取り除き、 珪素ゾルの酸 性飽和溶液を生成することができる効果がある。
また、 本発明は、 請求項 8乃至 1 2のいずれかに記載の凝集剤の製造方法にお いて、 前記珪素ゾルに石膏を加えて未'溶解懸濁物を団粒化させる団粒化手段を付 加してなる構成を有することにより、 石膏の固化能力によって濾紙の目詰まりの 原因となる未溶解微粒子を取り込み団粒化させ、 通水間隙を造って濾過性を向上 させることができる効果がある。
また、 本発明は、 請求項 8乃至 1 3のいずれかに記載の凝集剤の製造方法にお いて、 前記珪素ゾルに、 鉄又はアルミニウムを加えて珪素ゾルの ρ H値を調整す る p H値調整手段を付加してなる構成を有することにより、 還元作用によって色 素粒子とか微粒子をゲルに取り込むことができる鉄又はアルミニウムを用いて P H値を調整することができると共に、 珪素ゾルのゾル状態を保つことができる p H指数の数値で 3以下において、好ましくは p H 3付近に調整することによって、 より酸性度の強い懸濁液を処理することができる効果がある。
また、 本発明に係る凝集方法によれば、 珪素からなる無害な請求項 1乃至 7の いずれかに記載の凝集剤を懸濁液に混合して懸濁物を凝集する構成を有すること により、 上水処理場、 下水処理場、 工業排水などの用水や排水等の懸濁液中に凝 集剤を混合して、 懸濁液中の懸濁物を包み込んで迅速に凝集することができるか ら、 簡易かつ安全にどのような場所でも懸濁液を処理することができる効果があ る。
また、 本発明は、 請求項 1 5に記載の凝集方法において、 懸濁液に更にアル力 リ性物質を混合する手段を付加してなる構成を有することにより、 懸濁液の酸性 度が強い場合でも珪素ゾルを中和して、 珪素ゾルのゲル化に伴って懸濁物を凝集 することができる。 また、 アルカリ性物質として炭酸カルシウムや石灰等の粉末 を使用することにより、 フロックが小さく沈降に時間を要する低濃度懸濁液の場 合や、 フロックが軽く沈降に時間を要する有機物を含む懸濁液の場合に、 炭酸力 ルシゥムや石灰等の粉末を核にして凝集させることによつて短時間で迅速に沈降 させることができる効果がある。
なお、 本発明は、 酸性 (p H 3近く) で一定期間 (1年以上) 珪素ゾル状態を 維持することができ、 凝集剤を使用時の希釈によって、 ゾル状態の安定のバラン スを失い、 珪素ゾル溶液のゲルに変化する特性を活用し、 水中の懸濁微粒子をゲ ルで包み収斂により、 フロック化し水と分離することができる凝集剤を提供する ものである。

Claims

請 求 の 範 囲
1 . 希釈することによってゲル化し、 ゲル化に伴って懸濁物を凝集する珪素ゾル からなる凝集剤。
2 . 請求項 1に記載の凝集剤において、 前記珪素ゾルは、 珪素含有物質とアル力 リ性物質を混合して珪素含有物質の熱融解点以下の温度で熱処理して酸溶解性を 与えてなる珪素含有溶質を、 酸溶媒に溶解してなる凝集剤。
3 . 請求項 2に記載の凝集剤において、 前記アルカリ性物質が炭酸カルシウム又 は石灰からなる凝集剤。
4 . 請求項 2又は 3に記載の凝集剤において、 前記酸溶媒が希塩酸からなる凝集 剤。
5 . 請求項 2乃至 4のいずれかに記載の凝集剤において、 前記酸溶媒が、 酢酸、 酢酸アンモニゥム、 塩化アンモニゥムの群から選ばれる 1又は 2以上のゲル化抑 止剤を含有してなる凝集剤。
6 . 請求項 2乃至 5のいずれかに記載の凝集剤において、 前記珪素含有物質が鉄 又はアルミニウムを含有してなる凝集剤。
7 . 請求項 1乃至 6のいずれかに記載の凝集剤において、 p H値が 2〜3である 凝集剤。
8 . 珪素含有物質とアルカリ性物質を混合し、 珪素含有物質の熱融解点以下の温 度で熱処理して酸溶解性の珪素含有溶質を生成する珪素含有溶質生成手段と、 酸 溶液からなる溶媒を生成する酸溶媒生成手段と、 前記酸溶媒に前記珪素含有溶質 を溶解させて珪素ゾルを生成する珪素ゾル生成手段とからなる凝集剤の製造方 法。
9 . 請求項 8に記載の凝集剤の製造方法において、 前記アルカリ性物質が炭酸力 ルシゥム又は石灰からなる凝集剤の製造方法。
1 0 . 請求項 8又は 9に記載の凝集剤の製造方法において、 前記酸溶媒生成手段 力、 塩酸を希釈して酸溶媒を生成する手段からなる凝集剤の製造方法。
1 1 . 請求項 8乃至 1 0のいずれかに記載の凝集剤の製造方法において、 前記酸 溶媒生成手段が、 前記酸溶液に、 酢酸、 酢酸アンモニゥム、 塩化アンモニゥムの 群から選ばれる 1又は 2以上のゲル化抑止剤を混合する手段を含有する凝集剤の 製造方法。
1 2 . 請求項 8乃至 1 1のいずれかに記載の凝集剤の製造方法において、 前記珪 素ゾルを濾過して未溶解懸濁物を取り除く濾過手段を付加してなる凝集剤の製造 方法。
1 3 . 請求項 8乃至 1 2のいずれかに記載の凝集剤の製造方法において、 前記珪 素ゾルに石膏を加えて未溶解懸濁物を団粒化させる団粒化手段を付加してなる凝 集剤の製造方法。
1 4 . 請求項 8乃至 1 3のいずれかに記載の凝集剤の製造方法において、 前記珪 素ゾルに、 鉄又はアルミニウムを加えて珪素ゾルの p H値を調整する p H値調整 手段を付加してなる凝集剤の製造方法。
1 5 . 請求項 1乃至 7のいずれかに記載の凝集剤を懸濁液に混合して懸濁物を凝 集する凝集方法。
1 6 . 請求項 1 5に記載の凝集方法において、 懸濁液に更にアルカリ性物質を混 合する手段を付加してなる凝集方法。
PCT/JP2003/013513 2003-07-25 2003-10-23 凝集剤、その製造方法及びその凝集剤を用いた凝集方法 WO2005009586A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MXPA06000950A MXPA06000950A (es) 2003-07-25 2003-10-23 Floculante, metodo de fabricacion para el mismo y metodo de floculacion usando floculante.
JP2005504589A JP3769010B2 (ja) 2003-07-25 2003-10-23 凝集剤、その製造方法及びその凝集剤を用いた凝集方法
EP03817659A EP1666115B1 (en) 2003-07-25 2003-10-23 Coagulant, process for producing the same, and method of coagulation with the coagulant
US10/565,786 US7666916B2 (en) 2003-07-25 2003-10-23 Flocculant, manufacturing method therefor, and flocculation method using the flocculant
CNB2003801103908A CN100406093C (zh) 2003-07-25 2003-10-23 凝结剂、其制备方法及使用该凝结剂的凝结方法
AU2003277514A AU2003277514A1 (en) 2003-07-25 2003-10-23 Coagulant, process for producing the same, and method of coagulation with the coagulant
KR1020067001693A KR100741157B1 (ko) 2003-07-25 2003-10-23 응집제, 그의 제조방법 및 그 응집제를 이용한 응집방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003/279531 2003-07-25
JP2003279531 2003-07-25

Publications (1)

Publication Number Publication Date
WO2005009586A1 true WO2005009586A1 (ja) 2005-02-03

Family

ID=34100820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013513 WO2005009586A1 (ja) 2003-07-25 2003-10-23 凝集剤、その製造方法及びその凝集剤を用いた凝集方法

Country Status (9)

Country Link
US (1) US7666916B2 (ja)
EP (1) EP1666115B1 (ja)
JP (1) JP3769010B2 (ja)
KR (1) KR100741157B1 (ja)
CN (1) CN100406093C (ja)
AU (1) AU2003277514A1 (ja)
MX (1) MXPA06000950A (ja)
TW (1) TWI281461B (ja)
WO (1) WO2005009586A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111129A1 (ja) * 2007-03-14 2008-09-18 Keiichiro Asaoka 有機性排水処理装置
WO2010049971A1 (ja) * 2008-10-29 2010-05-06 Asaoka Keiichiro 有機性排水処理装置及び有機性排水処理方法
JP2010521296A (ja) * 2007-03-21 2010-06-24 オムヤ・デイベロツプメント・アー・ゲー 内分泌撹乱化合物を除去するための方法
WO2013062117A1 (ja) * 2011-10-27 2013-05-02 Asaoka Keiichiro 油分離方法、その方法に用いられる油水分離剤及び油分離装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY146172A (en) * 2010-08-02 2012-07-13 Macro Growth Sdn Bhd Flocculating agent for waste water treatment and method of using thereof
CN103011357A (zh) * 2012-11-27 2013-04-03 常州大学 一种家用绿色保健净水剂
CN112194232B (zh) * 2020-10-22 2022-08-16 神美科技有限公司 一种聚合乙酸铝-氯化铝絮凝剂及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157107A (ja) * 1989-11-15 1991-07-05 Tsutomu Nishimura シリカ系凝集液及びその製造方法
JPH06233904A (ja) * 1993-02-10 1994-08-23 Mitsui Zosen Eng Kk シリカ系凝集液原料の溶解方法、シリカ系凝集液の製造方法及び装置
JPH1157740A (ja) * 1997-08-25 1999-03-02 Ebara Corp 水の凝集処理方法
JP2000093705A (ja) * 1998-07-23 2000-04-04 Ebara Corp 活性シリカ、その製造方法及び保存方法
JP2001104711A (ja) * 1999-10-05 2001-04-17 Taiheiyo Cement Corp 凝集剤
JP2001322810A (ja) * 2000-05-15 2001-11-20 Asahi Organic Chem Ind Co Ltd 重合ケイ酸溶液の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650193A (en) * 1947-09-23 1953-08-25 Infilco Inc Method of preventing flotation of floc
US3876442A (en) * 1973-08-27 1975-04-08 Kerr Mc Gee Chem Corp Process of treating titanium dioxide pigment
DE2947932A1 (de) * 1979-11-28 1981-06-04 Feldmann Chemie Kg, 8034 Germering Fluessiges, waessriges anorganisches flockungsmittel
JPS63130189A (ja) * 1986-11-21 1988-06-02 Suido Kiko Kk 水処理方法及び水処理用凝集剤
JP2732067B2 (ja) 1988-05-12 1998-03-25 水道機工株式会社 水処理用凝集剤
JPH03293003A (ja) * 1990-04-11 1991-12-24 Nippon Steel Corp シリカ凝集剤熟成期間の短縮方法
JP2716848B2 (ja) 1990-07-17 1998-02-18 新日本製鐵株式会社 低水素系被覆アーク溶接棒
JP2759853B2 (ja) 1990-10-01 1998-05-28 水道機工株式会社 水処理用凝集剤及びその製造方法
CN1091393A (zh) * 1994-01-13 1994-08-31 沈阳化工学院 用水淬渣或飞灰生产硅酸系絮凝剂的方法
WO1996013459A1 (en) * 1994-10-31 1996-05-09 Kodak-Pathe New polymeric conductive alumino-silicate material, element comprising said material, and process for preparing it
JP2001032810A (ja) * 1999-07-23 2001-02-06 Sasaki Giken:Kk 樹脂ロッドの製造方法
YU35300A (sh) * 2000-06-06 2002-12-10 Mileta PERIŠIĆ POSTUPAK ZA PREČIŠĆAVANJE VODE SA HUMINSKIM MATERIJAMA U VODU ZA PIĆE, SA UNAPREĐENJEM FAZE KOAGULACIJE PRIMENOM NEORGANSKIH POLIMERA AL I SiO2 U KONTROLISANOJ PH OBLASTI
JP4014896B2 (ja) 2001-05-25 2007-11-28 株式会社トクヤマ 水処理用凝集剤の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157107A (ja) * 1989-11-15 1991-07-05 Tsutomu Nishimura シリカ系凝集液及びその製造方法
JPH06233904A (ja) * 1993-02-10 1994-08-23 Mitsui Zosen Eng Kk シリカ系凝集液原料の溶解方法、シリカ系凝集液の製造方法及び装置
JPH1157740A (ja) * 1997-08-25 1999-03-02 Ebara Corp 水の凝集処理方法
JP2000093705A (ja) * 1998-07-23 2000-04-04 Ebara Corp 活性シリカ、その製造方法及び保存方法
JP2001104711A (ja) * 1999-10-05 2001-04-17 Taiheiyo Cement Corp 凝集剤
JP2001322810A (ja) * 2000-05-15 2001-11-20 Asahi Organic Chem Ind Co Ltd 重合ケイ酸溶液の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111129A1 (ja) * 2007-03-14 2008-09-18 Keiichiro Asaoka 有機性排水処理装置
JP2010521296A (ja) * 2007-03-21 2010-06-24 オムヤ・デイベロツプメント・アー・ゲー 内分泌撹乱化合物を除去するための方法
KR101419090B1 (ko) 2007-03-21 2014-07-16 옴야 인터내셔널 아게 내분비계 교란 물질의 제거 방법
WO2010049971A1 (ja) * 2008-10-29 2010-05-06 Asaoka Keiichiro 有機性排水処理装置及び有機性排水処理方法
WO2013062117A1 (ja) * 2011-10-27 2013-05-02 Asaoka Keiichiro 油分離方法、その方法に用いられる油水分離剤及び油分離装置
JP5610498B2 (ja) * 2011-10-27 2014-10-22 敬一郎 浅岡 油分離方法、その方法に用いられる油水分離剤及び油分離装置

Also Published As

Publication number Publication date
TWI281461B (en) 2007-05-21
TW200503967A (en) 2005-02-01
KR20060034717A (ko) 2006-04-24
EP1666115A4 (en) 2008-07-23
JPWO2005009586A1 (ja) 2006-09-07
KR100741157B1 (ko) 2007-07-20
MXPA06000950A (es) 2006-05-04
US20060183808A1 (en) 2006-08-17
AU2003277514A1 (en) 2005-02-14
JP3769010B2 (ja) 2006-04-19
EP1666115A1 (en) 2006-06-07
US7666916B2 (en) 2010-02-23
CN100406093C (zh) 2008-07-30
CN1802195A (zh) 2006-07-12
EP1666115B1 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN105984929B (zh) 一种聚硅酸铝锌复合絮凝剂及其应用
CN105084501B (zh) 利用植物冬青制备生物助凝剂及其制备方法
JP2007209886A (ja) フッ素除去剤、それを用いたフッ素含有排水の処理方法及びその処理装置
WO2005009586A1 (ja) 凝集剤、その製造方法及びその凝集剤を用いた凝集方法
CN109534471A (zh) 一种絮凝剂及其制备方法和应用
CN105439319B (zh) 一种焚烧废水的处理方法
JP2001347104A (ja) 粉末状浄化処理剤および上水および排水の浄化処理方法
JP2004154726A (ja) 排水処理用凝集剤
JP2006297189A (ja) 凝集沈殿組成物及びこれを用いた汚水浄化方法
JP2007061749A (ja) セメント含有廃液の処理方法
CN106698627A (zh) 蛭石改性絮凝剂提升pac电中和及沉降性能的方法和应用
CN107399797B (zh) 一种草木灰-火山灰天然絮凝剂及其制备方法和用途
JP7253741B2 (ja) セメント濁水の浄化方法、およびセメント濁水の浄化システム
JP2007130545A (ja) 排水処理方法及び排水処理装置
CN107986415A (zh) 一种污泥分离配方及其制备方法
CN109809541A (zh) 一种聚合硅酸铝铁絮凝剂及制备方法
JP3520112B2 (ja) 水処理方法
JP3225266B2 (ja) 藻類含有水の処理方法
KR20150075406A (ko) 난분해성 유기물을 함유한 산업폐수처리용 무기질 복합 응집제 조성물과 이의 제조 및 이를 이용한 산업폐수 처리방법
CN106186234A (zh) 一种工业废水复合絮凝剂及其制备方法
JP2005288211A (ja) 粉末凝集剤
CN106186246A (zh) 一种处理工业废水的絮凝剂及其制作方法
CN111977767A (zh) 黄原胶和阿拉伯胶混合作为水处理助凝剂的应用方法
CN104402146B (zh) 一种降低污水中磷含量的处理方法
JP2004305941A (ja) 凝集処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200380110390.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005504589

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 33/MUMNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12006500142

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2003817659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/000950

Country of ref document: MX

Ref document number: 1020067001693

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006183808

Country of ref document: US

Ref document number: 10565786

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003817659

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10565786

Country of ref document: US