WO2005006506A1 - 窒化物半導体レーザ素子及びそれを用いたレーザー装置 - Google Patents

窒化物半導体レーザ素子及びそれを用いたレーザー装置 Download PDF

Info

Publication number
WO2005006506A1
WO2005006506A1 PCT/JP2004/009852 JP2004009852W WO2005006506A1 WO 2005006506 A1 WO2005006506 A1 WO 2005006506A1 JP 2004009852 W JP2004009852 W JP 2004009852W WO 2005006506 A1 WO2005006506 A1 WO 2005006506A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
protective film
laser device
semiconductor laser
face protective
Prior art date
Application number
PCT/JP2004/009852
Other languages
English (en)
French (fr)
Inventor
Hiroaki Matsumura
Masanao Ochiai
Original Assignee
Nichia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corporation filed Critical Nichia Corporation
Priority to US10/563,811 priority Critical patent/US7609737B2/en
Priority to EP04747320.2A priority patent/EP1650841B1/en
Publication of WO2005006506A1 publication Critical patent/WO2005006506A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the present invention relates to a semiconductor laser device in which a dielectric protective film is formed on an end face of a semiconductor layer using a nitride semiconductor, and more particularly to a high-power semiconductor laser device using a nitride semiconductor substrate. is there.
  • Specific compositions of the semiconductor device include GaN, A1N, or InN, or a III-V group nitride semiconductor including AlGaN-based, InGaN-based, and AlInGaN-based mixed crystals thereof.
  • Nitride semiconductor devices emit light in a wide wavelength range from a relatively short wavelength ultraviolet region to a visible light region including red, and have a semiconductor laser diode (LD) and a light emitting diode (LED). ) Is widely used as a material for such materials. In recent years, miniaturization, long life, high reliability, and high output have been promoted, and they are mainly used for electronic devices such as personal computers and DVDs, medical devices, processing devices, and light sources for optical fiber communication. I have.
  • LD semiconductor laser diode
  • LED light emitting diode
  • Such a nitride semiconductor device mainly includes a buffer layer, an n-type contact layer, an anti-crack layer, an n-type clad layer, an n-type optical guide layer, an active layer, a p-type electron confinement layer, It has a laminated structure in which a p-type light guide layer, a p-type cladding layer, a p-type contact layer, and the like are sequentially laminated.
  • a stripe-shaped waveguide region is formed by forming a stripe-shaped ridge by etching or forming a current constriction layer.
  • An n- side electrode and a p-side electrode are provided on the n-type contact layer and the p-type contact layer, respectively, and light is emitted from the active layer by energization. Further, a cavity surface is formed at both end surfaces of the waveguide region with a predetermined cavity length, and laser light is emitted from the cavity surface.
  • an insulating protective film or the like is formed, thereby protecting the semiconductor layer from the outside air and providing a reflectance difference between the emission side and the rear side.
  • the output can be improved by using a protective film having a higher reflectance than the protective film on the emission side as the protective film on the rear side.
  • a semiconductor laser device having a protective film having a large difference in reflectance between the rear side and the emission side Waveguide region force Leaked light (stray light) is emitted from the rear side and is emitted from the end face on the exit side.
  • noise may occur in the far field pattern (FFP) due to the stray light, which may result in a non-Gaussian distribution.
  • an opaque film made of a metal film or the like can be formed so as to cover the end face of the substrate.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-280663
  • an opaque film is to be provided on a part of the emission-side resonance surface, it is necessary to increase the number of steps such as a mask forming step.
  • a wafer is divided into bars and an end face protective film is formed on the end face of the bar laser, it is difficult to form a mask with high positional accuracy itself. It is even more difficult to control the area.
  • a metal material is used as the opaque film, there is a problem that if the controllability of positional accuracy is low, a short circuit may be caused.
  • the adhesion between the opaque film and the semiconductor layer or another protective film may be reduced depending on the material due to a difference in thermal expansion coefficient between the metal material and the semiconductor layer. Problems such as easy peeling occur.
  • the present invention suppresses the deterioration of the FFP due to stray light emitted from the emission-side end face, obtains good beam characteristics, reduces erroneous operations during element driving, and has excellent life characteristics. It is an object of the present invention to provide a nitride semiconductor laser device.
  • the nitride semiconductor laser device of the present invention includes a nitride semiconductor substrate and a nitride semiconductor layer formed by stacking an n-type semiconductor layer, an active layer, and a p-type semiconductor layer thereon.
  • a nitride semiconductor laser device having a laser light waveguide region and end face protective films on both end surfaces substantially perpendicular to the waveguide region, wherein the nitride semiconductor substrate absorbs light emitted by an active layer, It has an excitation region that emits excitation light having a wavelength longer than the emission wavelength, and the end face protective film is characterized by having a high reflectance with respect to the emission wavelength from the excitation light.
  • the emission wavelength of the nitride semiconductor laser device is ⁇
  • the wavelength of the excitation light is
  • the end face protective film is an exDex protective film in which the reflectance is larger at ⁇ than at ⁇ . That is, the wavelength of the excitation light of the substrate is larger than the reflectance of the laser light wavelength ⁇ .
  • the wavelength of the excitation light; I is a high-reflectance end face protective film for the excitation light having a higher ex-reflectance. Furthermore, the laser light wavelength ⁇
  • the emitted light is a region (active layer and guide layer) sandwiched between cladding layers having a lower refractive index than the active layer in the vertical direction (direction substantially perpendicular to the lamination surface). It is confined in a stripe shape in the lateral direction (the direction parallel to the lamination plane) so as to correspond to the current injection region.
  • a striped waveguide region is formed. However, light leaks from the waveguide region to other regions.
  • the high reflectivity is about 50% -100%, preferably 70-100%
  • the low reflectivity is a protective film of a gallium nitride-based compound semiconductor. It can be used in the range of about 18% or less of the reflectance at the end face without cracks.
  • the nitride semiconductor laser device according to claim 2 of the present invention is characterized in that the end face protective film is provided on both the emission end face and the rear end face.
  • the outgoing light and the reflected light (light from the rear end face) facing the cavity a part of the light from these laser elements is a detector (photodetector). Irradiated to PD. Then, the output of each light is detected by the detector, and the driving of the laser element is controlled based on the information. Therefore, it is only necessary that the excitation light component, which is a noise component, be eliminated in this PD.As described above, it is preferable that at least the protective films are provided on both end faces of the resonator so that the noise component can be eliminated. .
  • the protection film is also provided on the end face of the laser element different from the end face of the cavity, for example, on the side face and bottom face in the direction along the cavity direction, so that the excitation light component from the element is almost completely eliminated. Because it can be eliminated, there is no excitation light in the laser device, and the detection sensitivity of PD can be improved.
  • the detector is disposed at a position irradiated with the emitted light and the reflected light (light from the rear end surface), and thus the end surface of the resonator, particularly the PD, detects the light. The effect is exhibited by providing at least the high-reflectance protective film on the end face side from which light is emitted. Furthermore, if protective films are provided on both end faces of the resonator, which is the main emission port of light with high light intensity and density, most of the noise components emitted from the laser element can be removed, so that further preferable.
  • the nitride semiconductor laser device according to claim 3 of the present invention is characterized in that the end face protective film has a low reflectance with respect to the emission wavelength from the active layer.
  • the nitride semiconductor laser device according to claim 4 of the present invention is characterized in that the end face protective film has a single-layer or multilayer structure.
  • the end face protective film With such a configuration, it is possible to adjust the end face protective film to have a desired reflectance.
  • the end face protective film it is necessary to select not only the reflectivity, the refractive index, or the transmittance but also the material that takes into account the thermal expansion coefficient, stress, etc. And can be used as an end face protective film having more excellent functions.
  • the nitride semiconductor laser device of the present invention includes a nitride semiconductor substrate and a nitride semiconductor layer in which an n-type semiconductor layer, an active layer, and a p-type semiconductor layer are stacked thereon.
  • Nitride semiconductor laser device having a stripe-shaped laser light waveguide region in a nitride semiconductor layer and having an emission-side end surface protective film and an opposite rear-side end surface protective film on an end surface substantially perpendicular to the waveguide region.
  • the nitride semiconductor substrate has an excitation region that absorbs light emitted from the active layer and emits excitation light having a wavelength longer than the emission wavelength, and the rear end face protective film has a wavelength of the excitation light.
  • Fig. 4 shows the spectral sensitivity curve of Si, which is a general photodiode (PD). The peak of sensitivity is in the infrared region, and long-wavelength light emission can be easily recognized.
  • the wavelength is relatively short, such as a laser device using a nitride semiconductor, and has an emission wavelength around 390-420 nm, for example, the light is absorbed and excitation light having a wavelength around 550-6OO nm is emitted.
  • the sensitivity of the PD is nearly three times higher. In this case, even if the light is not laser light, the light can be easily recognized. If the light emitted from the rear side is stray light, which is a weak light with the same wavelength as the laser light that is not the excitation light, the sensitivity of the PD is the same as the laser light, so the stray light greatly affects the sensitivity of the PD None.
  • the excitation light is emitted from both the output side force and the rear side by forming the end face protective film having high reflectivity and high reflectance with respect to the excitation light by absorbing the stray light to generate the excitation light. It is possible to obtain excellent laser element characteristics by suppressing the above.
  • the first end face protective film and / or the third end face protective film have a low reflectance with respect to an emission wavelength from the active layer. Have And features.
  • the emission-side end face protective film has a fourth end face protective film having a high reflectance with respect to an emission wavelength from the active layer.
  • the first end face protective film, the second end face protective film, the third end face protective film, and the fourth end face protective film are each It has a single-layer or multilayer structure.
  • the nitride semiconductor laser device according to claim 9 of the present invention is characterized in that the first end face protective film and the second end face protective film are laminated so as to at least partially overlap.
  • the nitride semiconductor laser device according to claim 10 of the present invention is characterized in that the third end face protective film and the fourth end face protective film are laminated so as to at least partially overlap.
  • the first end face protective film and the second end face protective film have different emission wavelengths for reflection, the first end face protective film and the second end face protective film must maintain a high reflectance with respect to light of a desired wavelength even when they are laminated. Can be. The same applies to the third end face protective film and the fourth end face protective film.
  • the nitride semiconductor laser device according to claim 11 of the present invention is characterized in that the second end face protective film is formed in contact with the semiconductor layer. Further, the nitride semiconductor laser device according to claim 12 of the present invention is characterized in that the fourth end face protective film is formed in contact with the semiconductor layer.
  • the excitation light has a longer wavelength than the emission wavelength from the active layer, and therefore has a lower energy, and is a light that is excited by stray light that has leaked out of the waveguide region.
  • the light density is lower than that of the laser light. Therefore, by providing an end face protective film having a high reflectivity to the light emitted from the active layer so as to be in contact with the semiconductor layer, deterioration of the end face protective film against the excitation light can be suppressed, and laser light with a stable mode can be emitted. Obtainable.
  • the nitride semiconductor laser device is characterized in that the excitation region has a lower dislocation density than the peripheral region.
  • the excitation region has a lower dislocation density than the peripheral region.
  • a nitride semiconductor substrate having a region with a low dislocation density and a region with a high dislocation density.
  • the low region functions as an excitation region, converts the stray light propagating through the substrate into light, and converts it into excitation light that can be controlled by the end face protective film.
  • stray light emitted from the laser element can be prevented.
  • the nitride semiconductor laser device according to claim 14 of the present invention is characterized in that the excitation region has a higher impurity concentration than the peripheral region.
  • the above-described configurations and effects can be obtained by making the high region function as an excitation region. .
  • the nitride semiconductor laser device according to claim 15 of the present invention is characterized in that the impurity is at least one of H, ⁇ , C, and Si.
  • the nitride semiconductor laser device according to claim 16 of the present invention is characterized in that the emission wavelength from the active layer is 390 420 nm.
  • the nitride semiconductor laser device according to claim 17 of the present invention is characterized in that the wavelength of the excitation light is 550 to 600 nm.
  • the nitride semiconductor laser device is characterized in that the excitation region is formed in a stripe shape substantially parallel to the waveguide region.
  • the above-described high impurity concentration region and low dislocation density region in the substrate plane are used as the excitation region
  • the stripe direction is set as the stripe shape
  • the stripe direction of the ridge stripe is used as the waveguide. That is, they are provided substantially in parallel.
  • the provision in parallel makes it possible to use the stripe-shaped waveguide region as a generation source and convert the light that has permeated vertically and horizontally into light that is converted into excitation light. Are substantially parallel to each other, the above-described light conversion and excitation light generation are suitably performed.
  • a nitride semiconductor laser device is characterized in that the waveguide region is formed above the excitation region.
  • the waveguide region of the semiconductor layer is formed as an excitation region such that the high impurity concentration region and the low dislocation density region in the substrate surface described above at least partially overlap the region in the substrate surface. It is provided.
  • the waveguide region is provided so that almost the entire surface thereof is covered with the excitation region.
  • the ridge is preferably formed in an excitation region wider than the ridge stripe so as to overlap the stripe-shaped ridge in the substrate plane.
  • the nitride semiconductor laser device according to claim 20 of the present invention is characterized in that the waveguide region is formed in a region separated from the excitation region.
  • the structure is such that the excitation region and the waveguide region of the laser device structure on the substrate are separated from each other in the plane of the substrate.
  • the excitation region and the waveguide region are formed in a stripe shape.
  • the stripes are provided substantially parallel to each other with their longitudinal directions being substantially the same.
  • a laser device includes the nitride semiconductor laser element and a PD (photodiode) that is a detector for detecting the laser light, and the PD is divided by the PD.
  • the light sensitivity is characterized in that the excitation light wavelength; I is larger than the laser light wavelength.
  • a laser device in addition to a CAN type laser device in which a laser device chip and a PD chip are mounted on respective mounting portions and connected to each electrode terminal of the laser device with a wire or the like,
  • a laser device such as a laser chip having an integrated structure in which a laser element chip, a PD chip, and an electric circuit for driving them and supplying external terminals are mounted at a high density.
  • a laser coupler there is a stack element in which a laser element chip and a PD chip are stacked and mounted, and the laser element side and the PD chip side are mounted on another mounting substrate or base.
  • the laser element is not limited to one equipped with only one kind of the nitride semiconductor laser element, and may include a second laser element that emits laser light of another wavelength. That is, a plurality of laser elements and a multi-wavelength laser device are used.
  • the invention's effect The nitride semiconductor laser device of the present invention absorbs stray light in the substrate to prevent the laser light from being mixed with the stray light and thereby deteriorating the FFP, and absorbs the stray light to generate excitation light.
  • an end face protective film having high reflectivity so that the excitation light is not emitted to the outside, more stable laser light can be obtained.
  • an end face protective film having a high reflectivity so that excitation light having a wavelength longer than the emission wavelength of the active layer does not cause the detector to malfunction, it can be driven with good controllability.
  • a semiconductor laser device having excellent reliability can be obtained.
  • FIG. 1 (a) Schematic perspective view for explaining a semiconductor laser device of the present invention. (B) Cross-sectional view taken along line bb ′ of FIG. 1 (a). (C) c-c ′ of FIG. 1 (a). Sectional view
  • FIG. 2 is a graph showing the transmittance of the end face protective film according to the embodiment of the present invention.
  • FIG. 3 is a graph showing the transmittance of the end face protective film according to the embodiment of the present invention.
  • the nitride semiconductor laser device of the present invention is not limited to the element structure shown in the embodiment.
  • the nitride semiconductor laser device of the present invention uses a nitride semiconductor substrate having an excitation region that absorbs light emitted from the active layer and emits excitation light having a wavelength longer than the emission wavelength.
  • the light (stray light) leaking from the waveguide region is suppressed from being emitted to the outside. Thereby, good device characteristics can be obtained.
  • FIG. 1 shows a configuration of a nitride semiconductor device according to an embodiment of the present invention.
  • an n-type nitride semiconductor layer 102 On a nitride semiconductor substrate 101, an n-type nitride semiconductor layer 102, an active layer 104, and a p-type
  • the ridge can be formed by removing a part of the p-type nitride semiconductor layer by means such as etching or the like, whereby an effective refractive index type waveguide can be formed.
  • the ridge may be formed by etching a part of the region from the p-type nitride semiconductor layer to the n-type nitride semiconductor layer to form a refractive index type waveguide or to form a ridge by selective growth. May be.
  • the ridge is not limited to a normal mesa shape in which the stripe width becomes smaller as the width of the bottom side is wider and approaches the upper surface, but may be a reverse mesa shape in which the stripe width becomes smaller as it approaches the ridge bottom. It may be a stripe having a side surface perpendicular to the shape, or a shape in which these are combined. Further, the stripe-shaped waveguides do not need to have substantially the same width. Also, a carrier type laser element in which a semiconductor layer is regrown on the ridge surface or on both sides of the ridge after forming such a ridge may be used. Further, a gain-guided waveguide having no ridge may be used.
  • a first insulating film 109 is formed from the side surface of the ridge and the upper surface of the continuous p-type nitride semiconductor layer to the ridge.
  • a p-side ohmic electrode 105 is provided on the upper surface of the ridge and the upper surface of the first insulating film, and an n-side electrode 107 is provided on the back surface of the nitride semiconductor substrate.
  • a second insulating film 108 covering the side surface of the semiconductor layer is provided so as to be continuous up to the upper portion of the first insulating film.
  • a p-side pad electrode 106 in contact with the second insulating film and the p-side ohmic electrode.
  • Examples of the composition of the substrate to be used include GaN, A1N, or InN, or an AlGaN-based, InGaN-based, or AlInGaN-based mixed crystal thereof. These substrates are: It can be manufactured by such a method.
  • the nitride semiconductor as a substrate is formed by growing a nitride semiconductor to a thickness of 100 ⁇ ⁇ or more on a heterogeneous substrate by, for example, a halide vapor phase epitaxy (hereinafter, HVPE) method, and then removing the heterogeneous substrate. It forms by doing.
  • HVPE halide vapor phase epitaxy
  • the surface from which the heterogeneous substrate has been removed is a nitride semiconductor.
  • the inclined surface other than the surface is formed by dry etching, wet etching, or chemical mechanical polishing (hereinafter, referred to as CMP). Furthermore, if the nitride semiconductor has a half-width of (0002) diffraction X-ray rocking curve by biaxial crystallization of less than 3 minutes, and more preferably less than 2 minutes, the nitride semiconductor can be removed in the step of removing a heterogeneous substrate. In addition, it is possible to obtain a nitride semiconductor of 100 ⁇ m or more, which damages the nitride semiconductor while maintaining good crystallinity. Thereafter, a new nitride semiconductor device is formed on the (0001) plane of the nitride semiconductor. A first electrode is formed on the back surface of the nitride semiconductor.
  • the nitride semiconductor has a general formula of InAlGaN (0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ 1, 0 ⁇ X + Y
  • the nitride semiconductor is a buffer a 1—a represented by Al Ga N (0.01 ⁇ a ⁇ 0.5).
  • the growth temperature of the buffer layer is set to a low temperature of 800 ° C. or less, whereby dislocations and pits on the nitride semiconductor can be reduced.
  • MOCVD metal organic chemical vapor deposition
  • an AlGaN (0 ⁇ X ⁇ 1) layer is further grown by lateral overgrowth (ELO). I'm sorry. What is this ELO method?
  • the threading dislocations are bent by growing a nitride semiconductor in the lateral direction, and the threading dislocations are further converged to reduce threading dislocations on the surface and improve crystallinity.
  • a GaAs substrate or sapphire as a growth substrate for growing a nitride semiconductor substrate Substrate, SiC substrate, Si substrate, spinel substrate, NdGaO substrate, ZnO substrate, GaP substrate, Ga
  • Various substrates such as an N substrate can be used.
  • the dislocation density (defect density) and the like correspond to the shape of the growth starting point.
  • the substrate can be non-uniform in position.
  • a region having a non-uniform impurity concentration is also formed so as to correspond to the above-described dislocation density distribution, which is preferably grown while being doped with impurities.
  • the distribution state of the low dislocation density region as described above can be selected depending on the shape of the growth starting point. However, since the laser light waveguide region is formed in a stripe shape, the stripe shape is correspondingly formed. It is preferable to form a growth starting point at the bottom.
  • a region having a low dislocation density and excellent crystallinity By growing the nitride semiconductor layer from the growth starting point periodically arranged in a stripe shape, a region having a low dislocation density and excellent crystallinity, and conversely, a region having many dislocations and poor crystallinity
  • the region (dislocation bundle) can be a nitride semiconductor substrate formed periodically. These dislocation bundles cannot be said to have good crystallinity of a layer grown over the nitride semiconductor layer.
  • the operating region such as the waveguide region is formed in a region other than the dislocation bundle because the operating region such as the waveguide region is easily adversely affected when the device is driven.For example, as shown in FIG. By adjusting the position so as to be near the position, deterioration of the element characteristics can be suppressed.
  • an n-electrode can be provided on the back surface of the substrate as shown in FIG. If an insulating or low-conductive substrate is used, an n-electrode is provided on the same surface as the p-electrode.
  • the thickness of the nitride semiconductor substrate is about ⁇ in consideration of the strength during handling and the like.
  • the nitride semiconductor substrate grown on the growth substrate has a region grown by lateral growth, and the dislocation density or the crystal characteristic becomes less uniform in the plane. Regions having different impurity concentrations are formed. In particular, a region having a low dislocation density is more likely to absorb an emission wavelength from the active layer than a region having a high dislocation density, and thus becomes an excitation region.
  • the excitation region depends on the type of growth substrate used and the growth conditions of the nitride semiconductor layer (temperature, gas flow rate, pressure, The state of formation differs depending on the type and concentration of impurities, etc.).
  • the exciting region 112 can be formed. These can be selected in a preferred form depending on the purpose and application. The shape and distribution of the excitation region of such a substrate depend on the type of the substrate and the growth conditions.
  • such an excitation region is formed in a stripe shape so as to correspond to the waveguide region of the laser light, specifically, so that the excitation region, the waveguide region, and the ridge stripe overlap in the plane of the substrate. Is preferred.
  • a good laser light waveguide region can be obtained.
  • Forming the excitation region at a position corresponding to the waveguide region improves the efficiency of absorbing stray light. Therefore, it is preferable to provide the excitation region near the waveguide region. However, if the absorption is too large, the threshold may be lowered.In such a case, the excitation region, the waveguide region, and the ridge are located at positions where the excitation region force is also separated. The stripes are provided apart and the grown nitride semiconductor can form a waveguide region.
  • the excitation region only needs to absorb the wavelength of light emitted from the active layer and emit the excitation light thereby, and therefore, specifically, the excitation region is compared with some other regions. It is only necessary to be able to obtain strong excitation light by the method described above.
  • a method such as ion implantation in a later step is used. Can form an excitation region.
  • the end face protective film has a high reflectance with respect to the emission wavelength of the excitation region.
  • This end face protective film may have a single layer structure or a multilayer structure.
  • Waveguide area force Since the excitation light is generated by absorbing the leaked stray light, the intensity is lower than that of the laser light emitted from the waveguide area to the outside. Therefore, it is preferable to set the reflectance so as not to hinder the emission of the laser light.
  • the laser light is hardly reflected because of the different wavelengths, but it may be absorbed depending on the material, and it may be slightly Therefore, it is preferable to reduce the film thickness.
  • an end face protective film for the wavelength of the laser light that is not limited to the end face protective film only for the wavelength of the excitation light as the end face protective film
  • Power S can.
  • a protective film having a high reflectivity for the excitation light is used as the first end face protective film
  • a protective film having a high reflectivity for the emission wavelength of the waveguide region is used as the second protective film.
  • An end face protective film Among the protective films provided on the end face on the emission side, a protective film having a high reflectivity for the excitation light is used as a third end face protective film, and a protective film having a high reflectivity for the emission wavelength in the waveguide region is used. 4 to be the end face protective film.
  • Either of the first and second end face protective films may be in contact with the semiconductor layer, but preferably, the first and second end face protective films are provided so that the second end face protective film is in contact with the semiconductor layer. Thereby, the deterioration of the first end face protection film can be suppressed.
  • the film thickness is set so as to have a high reflectance with respect to the wavelength of the excitation light, and is provided on the entire end face on the emission side. It may be provided only in the region where the excitation light is emitted to the outside, but by providing it on the end face of the laser light emitting part, it can function as a protective film that prevents the semiconductor layer such as the active layer from being exposed to the outside air. it can. Since the excitation light and the laser light have different wavelengths, it is difficult to block the laser light.
  • the excitation region of the substrate is preferably covered so as to cover the excitation region on the end face of the substrate. It is preferable to provide a protective film so as to cover the waveguide region on the end surface of the element structure including the active layer.
  • a fourth end face protective film in addition to the third end face protective film can be provided on the end face on the emission side.
  • the fourth end face protective film so as to be in contact with the semiconductor layer, the deterioration of the third end face protective film due to the laser light having high optical density can be suppressed.
  • laser light can be emitted efficiently and the threshold value can be reduced. The excitation light is transmitted without being reflected by the fourth protective film, is reflected by the first protective film, and is not emitted to the outside.
  • the material for the end face protective film include conductor materials such as Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, B, Ti, and the like. Conversion of oxides, nitrides, fluorides, etc. Any of the compounds can be used. These may be used alone or in combination as a compound or as a multilayer film. Preferable materials are materials using Si, Mg, Al, Hf, Zr, Y, and Ga. Further, A1N, AlGaN, BN, or the like can be used as the semiconductor material. As the insulator material, compounds such as oxides, nitrides, and fluorides of Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, and B can be used.
  • Preferred materials for the first to fourth end face protective films include, for example, the following combinations.
  • Second end face protective film (rear end face protective film for light emission from active layer)
  • C Third end face protective film (emission side end face protective film for excitation light)
  • an electrode material of the p-side ohmic electrode provided in the p-type nitride semiconductor layer a material having high ohmic properties and adhesion to the p-type nitride semiconductor layer can be selected.
  • a material having high ohmic properties and adhesion to the p-type nitride semiconductor layer can be selected.
  • Co, Fe, Cr, Al, Cu, Au, W, Mo, Ta, Ag, Pt, Pd, Rh, Ir, Ru, ⁇ s and And oxides and nitrides thereof, and a single layer, an alloy, or a multilayer film thereof can be used.
  • at least one selected from Ni, Co, Fe, Cu, Au, and Al, and oxides and nitrides thereof are used.
  • the p-side ohmic electrode can achieve good ohmic properties by heat treatment.
  • the heat treatment temperature is preferably 350 ° C to 1200 ° C, more preferably 400 ° C to 750. C, particularly preferably 500 ° C to 650 ° C.
  • the electrode material of the p-side pad electrode includes Ni, Co, Fe, Ti, Cu, Au, W, Zr, Mo, Ta, Ag, Pt, Pd, Rh, Ir, Ru, Os and these. And a single layer, an alloy, or a multi-layer film thereof.
  • the uppermost layer is preferably made of Au because it connects wires and the like. It is preferable to use a material having a relatively high melting point that functions as a diffusion preventing layer as a lower layer so that the Au does not diffuse.
  • Ti, Pt, W, Ta, Mo, TiN and the like can be mentioned, and particularly preferable material is Ti.
  • the total thickness is preferably in the range of 3000 A to 20000 A, more preferably 7000 A to 13000 A.
  • the n-electrode provided on the n-type nitride semiconductor layer is preferably provided on the back surface of the substrate. Alternatively, it may be formed on a surface exposed by etching or the like. Further, it can be provided on the n-type contact layer.
  • the ohmic electrode and the pad electrode may be formed in the same step or in different steps. Further, depending on the material, the heat treatment can be omitted.
  • n-side ohmic electrode a material having high ohmic properties and adhesion to the n-type nitride semiconductor layer can be selected. Specifically, Ni, Co, Fe, Ti, Cu, Au, W , V, Zr, Mo, Ta, Al, Ag, Pt, Pd, Rh, Ir, Ru, Os, etc., and a single layer, an alloy, or a multilayer film thereof can be used. Preferably, it has a multilayer structure in which Ti and Al are sequentially laminated. After forming the n-side ohmic electrode, it may be preferable to perform a heat treatment depending on the material in order to improve the ohmic property with the semiconductor layer.
  • the film thickness of the n-side ohmic electrode is preferably 100A to 30,000A, preferably 3000A to 15,000A, and more preferably 5000A to 10,000A. By forming within this range, the contact resistance is low, and the electrode can be used, which is preferable.
  • the electrode materials of the n-side pad electrode include Ni, Co, Fe, Ti, Cu, Au, W, Zr, Mo, Ta, Al, Ag, Pt, Pd, Rh, Ir, Ru, and Os. And the like, and a single layer, an alloy, or a multilayer film thereof can be used.
  • a multilayer film is used, and the uppermost layer is preferably made of Au because a wire or the like is connected thereto.
  • a material having a relatively high melting point which functions as a diffusion preventing layer as a lower layer so that the Au does not diffuse.
  • a material having a relatively high melting point which functions as a diffusion preventing layer for example, Ti, Pt, W, Mo, TiN and the like can be mentioned.
  • the total thickness is preferably from 3000A to 20000A, more preferably from 7000A to 13000A.
  • the n-side electrode is formed continuously without providing the ohmic electrode and the pad electrode as described above, and has both functions. That is, the n-side electrode is an ohmic electrode that is in ohmic contact with the semiconductor layer.
  • an n-electrode that also serves as an extraction electrode (pad electrode) for forming a wire can be used. This is because it is relatively easy to make ohmic contact with the n-type semiconductor layer compared to the p-side electrode, and because it is a region slightly separated from the waveguide region, there is no need to consider optical characteristics much. This is because the degree of freedom of the material is large.
  • the film thickness of such an n-electrode is preferably from 3000A to 20000A as a total film thickness, and more preferably from 7 OOOA to 13000A.
  • Preferred combinations include Ti / Al, Hf / Al, Ti / Pt / Au, Ti / Mo / Pt / Au, Ti / Mo / Ti / Pt / Au, Ti / W / Pt / Au, Mo / Pt / Au, Mo / Ti / Pt / Au, W / Pt / Au, V / Pt / Au, V / Mo / Pt / Au, V / W / Pt / Au, Cr / Pt / Au, Cr / Mo / Pt / Au, Cr / W / Pt / Au and the like.
  • the first insulating film is provided to limit the current injection region to the upper surface of the ridge. However, since the first insulating film is provided close to the waveguide region, it also acts on light confinement efficiency. Therefore, a preferable film thickness can be selected depending on the insulating film material used.
  • the first insulating film can be formed so as to have substantially the same width as the nitride semiconductor layer.
  • the first insulating film formed before the p-side ohmic electrode is heat-treated together with the heat treatment of the ohmic electrode. The heat treatment increases the strength of the film (atomic level bonding force within the film) and the bonding strength at the interface with the semiconductor layer as compared to the simply deposited film.
  • Such a first insulating film is formed, particularly, at the end of the upper surface of the semiconductor layer on which the second insulating film is formed. By forming up to, the adhesion of the second insulating film can also be improved.
  • the p-side pad electrode can be formed so as not to be in contact with the second insulating film.
  • heat is applied to the p-side pad electrode.
  • the volume increases due to thermal expansion, which makes it easier to flow out in the lateral direction of the device (the end direction of the p-type semiconductor layer).
  • the electrode material is liable to flow out in the lateral direction. Therefore, by separating the electrode material from the second insulating film, it is possible to prevent the electrode material of the p-side pad electrode from flowing out in the side direction and causing a short circuit.
  • the material of the first insulating film is an oxide containing at least one element selected from the group consisting of Si, Ti, V, Zr, Nb, Hf, and Ta, SiN, BN, SiC, A1N, AlGaN Of these, it is desirable to form at least one of them. Among them, it is particularly preferable to use oxides of Zr, Hf, Si, BN, A1N, and AlGaN.
  • the thickness of the first insulating film is specifically in the range of 10A to 10,000A, preferably in the range of 100A to 5000A. This is because if it is less than 10 A, it is difficult to secure sufficient insulation during the formation of the electrode, and if it is more than 10,000 A, the uniformity of the protective film will be lost and a good insulating film will not be obtained. It is. In addition, by being in the preferable range, a uniform film having a good refractive index difference with the ridge is formed on the side surface of the ridge.
  • the second insulating film can be provided on the entire surface of the p-side ohmic electrode except for the upper portion of the ridge, and is provided so as to be continuous also on the side end surfaces of the p-type semiconductor layer and the active layer exposed by the etching.
  • Preferred materials include oxides containing at least one element selected from the group consisting of Si, Ti, V, Zr, Nb, Hf, and Ta, and at least one of SiN, BN, SiC, A1N, and AlGaN.
  • a particularly preferable material is a single-layer film or a multi-layer film of SiO 2, Al 2 O 3, Zr 2, TiO or the like.
  • the pair of resonator surfaces provided on the end face can be formed by cleavage or etching.
  • the substrate or the semiconductor layer has cleavage, and an excellent mirror surface can be easily obtained by using the cleavage.
  • the resonator surface can be formed by etching, in which case the n-electrode formation surface is exposed. By performing these steps at the same time, the number of steps can be reduced. Also, it can be formed simultaneously with the formation of the ridge. As described above, in order to obtain a resonator surface that is superior to the force that can reduce the number of steps by forming the layers at the same time as each step, it is preferable to provide another step.
  • the end surface (the emission side or the reflection side) is provided with the high reflection (second (4) An edge protection film is provided, and as described later, the substrate is cleaved into a bar shape, and the high reflection film for excitation light (the second layer) is formed so as to cover the exposed substrate edge and the etched edge. 1, 3) End face A protective film can be formed. In this manner, different film structures (number of layers, end faces for laser light and excitation light, and end faces of substrate for excitation light) can be made different between the etching end face and the substrate end face.
  • the device structures of the n-type nitride semiconductor layer, the active layer, and the p-type nitride semiconductor layer constituting the nitride semiconductor layer are not particularly limited, and may be various. Can be used.
  • a device structure for example, a laser device structure described in an embodiment to be described later can be used, and the present invention can be applied to other laser structures.
  • Specific examples of the nitride semiconductor include nitride semiconductors such as GaN, A1N, and InN, and group III-V nitride semiconductors that are mixed crystals of these, and those containing P and the like. Can be used.
  • Nitride semiconductor growth is known for growing nitride semiconductors such as MOVP E, MOCVD (metal organic chemical vapor deposition), HVPE (halide vapor phase epitaxy), and MBE (molecular beam vapor phase epitaxy). All known methods can be applied.
  • MOVP E metal organic chemical vapor deposition
  • HVPE halide vapor phase epitaxy
  • MBE molecular beam vapor phase epitaxy
  • a heterogeneous substrate made of sapphire having a 2-inch C-plane as a main surface is set in a MOCVD reactor, and the temperature is set to 500.
  • C trimethylgallium (TMG), ammonia (NH)
  • a buffer layer made of GaN is grown to a thickness of 200A.
  • a GaN underlayer is grown at 2.5 ⁇ .
  • move to HVPE reaction vessel GaN, a nitride semiconductor 1, is grown at 500 / im using Ga metal, HC1 gas, and ammonia as raw materials.
  • sapphire is exfoliated by excimer laser irradiation
  • CMP is performed to form a nitride semiconductor having a thickness of 450 ⁇ m.
  • n-type contact layer made of Si-doped n_AlGaN was formed to a thickness of 3.5 ⁇ m.
  • the thickness of the n-type contact layer may be 230 zm.
  • nitride semiconductor substrate When the nitride semiconductor substrate is used as a conductive substrate and the growth substrate is removed later and an n-electrode is formed on the back surface of the substrate, an n-type clad described below is formed on the nitride semiconductor substrate. It can also be laminated from a metal layer.
  • n-type cladding layer made of the total film thickness 1.
  • 1 beta m of the multilayer film by laminating a layer A and the layer B by repeating this operation each 11 0 times alternately (superlattice structure).
  • the mixed crystal ratio of A1 in undoped AlGaN is in the range of 0.02 or more and 0.3 or less, a refractive index difference functioning as a clad layer can be sufficiently provided. It can also be formed.
  • an n-type optical guide layer made of undoped GaN is grown to a thickness of 0.15 zm using TMG and ammonia as source gases.
  • This layer may be doped with n-type impurities.
  • the temperature was set to 800 ° C., and TMI (trimethyl indium), TMG and ammonia were used as raw materials, silane gas was used as impurity gas, and Si-doped InGaN was used.
  • the wall layer is grown to a thickness of 140A.
  • the silane gas is stopped and undoped In Ga A well layer of N is grown to a thickness of 70A. Repeat this operation twice, and finally
  • a barrier layer of InGaN is grown to a thickness of 140A to a total thickness of 560A.
  • a multiple quantum well (MQW) active layer is grown.
  • a p-type electron confinement layer made of N is grown to a thickness of 70A.
  • a p-type optical guide layer made of undoped GaN is grown to a thickness of 0.15 zm using TMG and ammonia as source gases.
  • This p-type optical guide layer may be doped with Mg, a force that grows undoped.
  • a B layer made of Mg-doped GaN is grown to a thickness of 80 A. This process is repeated 28 times, and the A layer and the B layer are alternately laminated to grow a ⁇ -type cladding layer composed of a multilayer film (superlattice structure) having a total film thickness of 0.45 ⁇ .
  • the ⁇ -type cladding layer is made of a superlattice in which at least one includes a nitride semiconductor layer containing A1 and nitride semiconductor layers with different band gap energies are formed, any one of the layers is heavily doped with impurities. Then, the so-called modulation doping tends to improve the crystallinity, but both may be doped in the same manner.
  • a ⁇ -type contact layer made of Mg-doped GaN is grown at a thickness of 150 A on the ⁇ -type cladding layer at 1050 ° C.
  • the p-type contact layer is p-type InAlGaN (x ⁇ 0, y ⁇ 0, x x y 1— x— y
  • the wafer is annealed at 700 ° C in a nitrogen atmosphere in a reaction vessel to further reduce the resistance of the p-type layer.
  • the wafer is Remove from the container and form a protective film of SiO on the surface of the uppermost p-type contact layer.
  • the resonator surface may be formed by etching. Also, as shown in Embodiment 3, when the n-electrode is provided on the back surface of the substrate, the surface on which the n-electrode is formed becomes unnecessary. Can be omitted.
  • a protective film made of Si oxide (mainly Si ⁇ ) was formed on almost the entire surface of the uppermost p-type contact layer by a CVD apparatus.
  • a mask of a predetermined shape is formed on the protective film by photolithography technology, and a stripe-shaped Si oxide is etched by etching with CHF gas using RIE equipment.
  • a protective film is formed. Using this Si oxide protective film as a mask,
  • the semiconductor layer is etched to form a ridge stripe above the active layer.
  • the width of the ridge is set to 1.6 ⁇ ⁇ ⁇ .
  • a first insulating film made of ZrO was formed on the surface of the p-type semiconductor layer.
  • This first insulating film may be provided on the entire surface of the semiconductor layer by masking the surface on which the n-side ohmic electrode is formed. Further, a portion or a portion where an insulating film is not formed can be provided so that the film is easily divided later.
  • the wafer is heat-treated at 600 ° C.
  • Is formed as a first insulating film after the first insulating film is formed, a heat treatment is performed at a temperature of 300 ° C. or higher, preferably 400 ° C. or higher, and a nitride semiconductor decomposition temperature (1200 ° C.) or lower. It is possible to stabilize the film material.
  • the SiO mask is used when device processing is mainly performed using SiO as a mask in a step after the formation of the first insulating film.
  • the heat treatment step of the first insulating film can be omitted depending on the material and the process of the first insulating film, and the process order and the like can be appropriately selected, such as being performed simultaneously with the heat treatment of the ohmic electrode. be able to.
  • the substrate was immersed in a buffered solution to dissolve and remove the SiO formed on the upper surface of the ridge stripe.
  • the Zr ⁇ on the tact layer (and also on the n-type contact layer) is removed. This allows the ridge
  • the surface is exposed, and the sides of the ridge are covered with ZrO.
  • a p-side ohmic electrode is formed by sputtering on the outermost surface of the ridge on the p-type contact layer and on the first insulating film.
  • This p-side ohmic electrode uses Ni / Au (100A / l 500A).
  • An n-side ohmic electrode is also formed on the upper surface of the n-type contact layer.
  • the n-side ohmic electrode is made of Ti / A1 (200A / 5500A), and is formed in a stripe shape parallel to the ridge and about the same length. After forming these electrodes, heat treatment is performed at 600 ° C. in a mixed atmosphere of oxygen and nitrogen.
  • a resist is formed to cover the entire surface of the p-side ohmic electrode on the ridge and a part of the upper part of the n-side ohmic electrode.
  • a second insulating film made of SiO force is formed on almost the entire surface,
  • a second protective film is formed in which the entire upper surface of the p-side ohmic electrode and a part of the n-side ohmic electrode are exposed.
  • the second insulating film and the p-side ohmic electrode may be formed so as to be separated from each other, or may be formed so as to partially overlap each other.
  • the first and second insulating films and electrodes should not be formed in a striped area having a width of about 10 / m across the division position. Let's do it.
  • the second insulating film is provided so as to cover the entire surface excluding the upper portions of the p-side and n-side ohmic electrodes.
  • Preferred materials include oxides containing at least one element selected from the group consisting of Si, Ti, V, Zr, Nb, Hf, and Ta, and at least one of SiN, BN, SiC, A1N, and AlGaN.
  • SiO silicon oxide
  • Examples thereof include a single-layer film or a multilayer film of 1 Z, ZrO, Ti ⁇ , and the like.
  • a pad electrode is formed so as to cover the ohmic electrode.
  • the second insulating film so as to cover the second insulating film.
  • the ⁇ -side pad electrode is laminated in the order of NiZTi / Au (1000A / 1000A / 800A).
  • the n-side pad electrode is formed of NiZTi / Au (1000AZ1000A / 8000A) from below. These pad electrodes are in contact with the p-side ohmic electrode and the n-side ohmic electrode via the second insulating film in stripes, respectively. Yes.
  • the substrate was polished and adjusted to a film thickness of about 100 ⁇ m.
  • a scribe groove was formed on the back surface of the substrate, and the substrate was bar-shaped by breaking from the nitride semiconductor layer side and cleaving. Laser.
  • the cleavage plane of the nitride semiconductor layer is the M-plane of the nitride semiconductor.
  • This surface is defined as a resonator surface.
  • An end face protective film is provided on the resonator surface formed as described above using a sputtering apparatus such as an ECR sputtering apparatus.
  • a sputtering apparatus such as an ECR sputtering apparatus.
  • SiO (917A) On the emission-side end face, (SiO (917A)
  • I can. 6 pairs of ZrO (440A) + (SiO (917A) / Zr ⁇ (605A))
  • a first protective film is provided. These film thicknesses are such that the emission wavelength from the active layer is 400 nm, and the excitation light absorbed and emitted at 550 nm is 550 nm, and the wavelength (e) is / 4n (n is the refractive index). It is set to.
  • the transmittance of the end face protective film provided in such a setting is shown in the graph.
  • the transmittance on the emission side is shown in Fig. 3, and the transmittance on the rear side is shown in Fig. 2. On both the emission side and the rear side, the transmittance in the wavelength range of the excitation light is low, so that it is difficult to emit the light to the outside.
  • a groove is formed by scribing so as to be substantially parallel to the ridge stripe, and the bar is cut at the groove to obtain the semiconductor laser device of the present invention.
  • a mechanical or physical scribe using a blade such as a force cutter, an optical or thermal scribe using a YAG laser or the like can be used.
  • the optimum scribe direction can be selected in various ways depending on the shape of the element from the semiconductor layer side or the substrate side, the type of the substrate, and the like.
  • the nitride semiconductor laser device obtained as described above has an excitation region on almost the entire surface of the nitride semiconductor substrate. This is because the difference in dislocation density becomes extremely large. This is due to the fact that the region where the excitation light intensity is locally high does not exist. In addition, it can continuously oscillate at an oscillation wavelength of 405 nm at room temperature with a threshold current density of 2.5 kA / cm 2 and a high output of 60 mW. By reducing the irradiation of excitation light to the detector provided on the rear side, the laser can be driven with good control, and the laser light emitted from the emission side end face has good noise (concavity and convexity). have.
  • Example 2 the emission-side end face was formed as a third end face protective film by using Al 2 O 3 (1800A) / (Si ⁇ ).
  • the surface has a second pair of 6 pairs of Zr ⁇ (440A) + (SiO (667A) / Ti ⁇ (370 A)).
  • a protective film is provided.
  • a first protective film composed of 6 pairs of 2 2 2 is provided.
  • the thickness of these layers is set to ⁇ / 4 ⁇ ( ⁇ is set to 400 nm for the emission wavelength of the active layer and 550 nm for the excitation light emitted by absorbing the wavelength. (Refractive index).
  • An ⁇ electrode is provided on the back surface of the nitride semiconductor substrate.
  • the material of the ⁇ electrode is V / Pt / Au (150 A / 2000 A / 3300 A). After providing the n-electrode, no heat treatment is performed. Except for the above, the procedure is the same as in Example 1 to obtain the nitride semiconductor laser device of the present invention.
  • the nitride semiconductor laser device obtained in this manner has an excitation region in almost the entire region of the substrate as in Embodiment 1, and has weak excitation light.
  • the threshold current density is 2.5kA. It can continuously oscillate at 405nm at high output of 60mW. By reducing the irradiation of the excitation light to the detector provided on the rear side, it is possible to control the driving force S. In addition, the laser light emitted from the emission end face has less noise (unevenness) Has FFP.
  • Example 3 a substrate obtained as follows is used as a nitride semiconductor substrate.
  • a GaAs substrate is used as a growth substrate.
  • a protective film made of striped SiO parallel to the M-plane of the nitride semiconductor is formed on the upper surface of the substrate, and the facet surface is exposed using this as a seed.
  • a nitride semiconductor substrate having a thickness of about 300 / m is obtained.
  • the nitride semiconductor substrate obtained in this manner has a low dislocation density region in a stripe shape and a dislocation region.
  • the low dislocation density region is an excitation region, which absorbs an emission wavelength (405 nm) from the active layer with conduction and has excitation light (560 nm).
  • the n-electrode is formed on the back surface of the nitride semiconductor substrate, but before the ridge is formed, etching is performed so as to expose the n-type semiconductor layer.
  • the growth state of the n-type semiconductor layer-p-type semiconductor layer formed above the dislocation bundle having poor crystallinity is different from that of the peripheral portion. For this reason, the film thickness is thinner than the peripheral portion. In such a region, it is considered that the formation of the pn junction is not sufficient. Therefore, by removing the n-type semiconductor layer and the p-type semiconductor layer in a range slightly wider than the width of the stripe-shaped dislocation bundle by etching, it is possible to suppress a decrease in device function.
  • a nitride semiconductor laser device of the present invention is obtained in the same manner as in Example 1, except that a third end face protective film is provided. Also in Example 3, the thickness of the third end face protective film was set to 400 nm for the emission wavelength from the active layer and 550 nm for the excitation light absorbed by absorbing the wavelength, as in Example 1. The wavelength ( ⁇ ) is set so that ⁇ / 4 ⁇ ( ⁇ is the refractive index).
  • the nitride semiconductor laser device thus obtained is capable of continuously oscillating with a threshold current density of 2.5 kA / cm 2 and a high output of 60 mW and an oscillation wavelength of 405 nm at room temperature. By reducing the irradiation of the excitation light to the detector provided on the rear side, the laser can be driven with good control and the laser light emitted from the end face of the emission side has good FFP with little noise (unevenness). I have it.
  • the present invention is applicable to all devices to which laser elements can be applied, for example, CD players, MD players, various game machines, DVD players, backbone lines such as telephone lines and submarine cables, optical communication systems, laser scalpels, and laser treatment.
  • Equipment medical equipment such as laser acupressure machine, printing machine such as laser beam printer and display, various measuring instruments, laser level, laser length measuring machine, laser sensing gun such as laser speed gun, laser thermometer, laser It can be used in various fields such as electric power transportation.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 窒化物半導体レーザ素子は、窒化物半導体基板と、その上にn型半導体層、活性層及びp型半導体層が積層されてなる窒化物半導体層を備え、該窒化物半導体層にストライプ状のレーザ光の導波路領域を有すると共に、その導波路領域と略垂直な両端面に端面保護膜を有する。この窒化物半導体レーザ素子は、窒化物半導体基板が、活性層からの発光を吸収し、その発光波長よりも長波長の励起光を発光する励起領域を有し、端面保護膜は、励起領域からの発光波長に対して高反射率を有する。これによって誤作動が少なく、また、良好なFFPを有する窒化物半導体レーザ素子が提供される。

Description

明 細 書
窒化物半導体レーザ素子及びそれを用いたレーザ装置
技術分野
[0001] 本発明は、窒化物半導体を用いた半導体層の端面に誘電体保護膜が形成された 半導体レーザ素子に関し、特に、窒化物半導体基板を用いた高出力の半導体レー ザ素子に関するものである。半導体素子の具体的な組成としては、 GaN、 A1N、若し くは InN、又はこれらの混晶である AlGaN系、 InGaN系、 AlInGaN系を含む III—V 族窒化物半導体が挙げられる。
背景技術
[0002] 窒化物半導体素子は、比較的短波長の紫外線領域から赤色を含む可視光領域ま での広い波長領域の発光を有しており、半導体レーザダイオード (LD)や発光ダイォ ード (LED)などを構成する材料として広く用いられている。近年は、小型化、長寿命 ィ匕、高信頼性、かつ高出力化が進み、主にパーソナルコンピュータ、 DVDなどの電 子機器、医療機器、加工機器や光ファイバ通信の光源などに利用されている。
[0003] このような窒化物半導体素子は、主としてサファイア基板上にバッファ層、 n型コンタ タト層、クラック防止層、 n型クラッド層、 n型光ガイド層、活性層、 p型電子閉じ込め層 、 p型光ガイド層、 p型クラッド層、 p型コンタクト層などが順に積層された積層構造体 力 なつている。また、エッチングによりストライプ状のリッジを形成したり、あるいは、 電流狭窄層を形成したりすることによりストライプ状の導波路領域が形成されている。 n型コンタクト層と p型コンタクト層にはそれぞれ n側電極、 p側電極が設けられ、通電 により活性層から発光させているものである。さらに所定の共振器長で導波路領域の 両端面に共振器面が形成されており、この共振器面からレーザ光が放出される。
[0004] このような共振器面には、絶縁性の保護膜などが形成されており、これによつて半 導体層を外気から保護すると共に、出射側とリア側との反射率差を設けている。リア 側の保護膜は、出射側の保護膜に比して反射率の高い保護膜とすることで出力を向 上させることができる。
[0005] また、リア側と出射側との反射率差の大きい保護膜を有する半導体レーザ素子は、 導波路領域力 漏れだす光 (迷光)がリア側から放出されにくぐ出射側の端面から 放出されるようになる。そのため、その迷光によってファーフィールドパターン (FFP) にノイズ(凹凸)が生じ、非ガウス分布になってしまう場合がある。これらの迷光が外部 に放出されるのを防ぐために、基板の端面などを被覆するように金属膜などからなる 不透明膜を形成することができる。
特許文献 1:特開 2002 - 280663号公報
発明の開示
発明が解決しょうとする課題
[0006] し力 ながら、出射側共振面の一部に不透明膜を設けようとすると、そのためにマス ク形成工程などの工程を増やす必要がある。特に、ウェハをバー状に分割し、その バー状レーザの端面に端面保護膜を形成する場合は、位置精度よくマスクを形成す ること自体が困難であるので、そのマスクによって端面保護膜の形成領域を制御する のはさらに困難である。特に不透明膜として金属材料を用いる場合は、位置精度の 制御性が低いと短絡の原因となるなどの問題がある。また、不透明膜を広い領域に 渡って形成させると、金属材料と半導体層との熱膨張係数差によって、材料によって は不透明膜と半導体層、あるいは他の保護膜等との密着性が低下して剥がれやすく なるなどの問題が生じる。
[0007] そこで、本発明は、出射側端面から放出される迷光による FFPの悪化を抑制して、 良好なビーム特性が得られ、かつ、素子駆動時において誤動作が少なぐまた、寿命 特性に優れた窒化物半導体レーザ素子を提供することを目的とする。
課題を解決するための手段
[0008] 上記問題を解決するために、本発明者らは鋭意検討した結果、レーザ光と迷光を、 レーザ素子の端面膜がそれらを区別して制御可能なものとして、該端面膜でそれを 高度に制御すること、すなわち、レーザ素子の LD光は効率よく取り出し、他方迷光 成分は効率よく閉じこめて、放出させないようにする 2つの機能を同時に満たせるレ 一ザ素子が得られることを見出し、本発明を成すに至った。本発明の窒化物半導体 レーザ素子は、窒化物半導体基板と、その上に n型半導体層、活性層及び p型半導 体層が積層されてなる窒化物半導体層を備え、該窒化物半導体層にストライプ状の レーザ光の導波路領域を有すると共に、その導波路領域と略垂直な両端面に端面 保護膜を有する窒化物半導体レーザ素子であって、窒化物半導体基板は、活性層 力 の発光を吸収し、その発光波長よりも長波長の励起光を発光する励起領域を有 し、端面保護膜は、励起光からの発光波長に対して高反射率を有することを特徴と する。具体的には、窒化物半導体レーザ素子の発光波長を λ 、前記励起光の波
D
長を; I とすると、前記端面保護膜は、その反射率が、 λ よりも λ の方が大きくなる ex D ex 保護膜である。すなわち、レーザ光波長 λ の反射率よりも、基板の励起光波長
LD λ ex の反射率が高くなる端面保護膜を用いることである。従って、励起光波長; I の方が ex 高い反射率の励起光用の高反射率端面保護膜である。さらには、レーザ光波長 λ
D
に対しては、保護膜の透過率が、励起光波長 λ より高くなる端面保護膜であること ex
で、レーザ光を効率的に取り出すことと、励起光を効率的に遮断することの両方が達 成でき好ましい。
[0009] 活性層力 発光される光は、縦方向(積層面に対して略垂直な方向)においては活 性層よりも屈折率の低いクラッド層に挟まれた領域 (活性層及びガイド層)内に閉じ込 められ、また、横方向(積層面に対して水平な方向)においては、電流注入領域と対 応するようストライプ状に閉じ込められている。このように活性層からの光が閉じ込め られた領域に共振器面を形成することで、ストライプ状の導波路領域が形成されてい る。しかし、導波路領域内から、それ以外の領域にも光は漏れ出している。本願では 、このような導波路領域力 漏れ出した光 (迷光)を透過しないような不透明膜を設け るのではなぐ迷光を異なる波長に変換してその変換された波長に対して高反射率 の端面保護膜を形成させることで、レーザ光にノイズが混ざるのを抑制している。本 発明において、具体的には、高反射率としては、約 50%— 100%の反射率であり、 好ましくは 70 100%であり、低反射率としては、窒化ガリウム系化合物半導体の保 護膜の無い端面における反射率の約 18%、及びそれ以下の範囲で用いることがで きる。
[0010] 本発明の請求項 2に記載の窒化物半導体レーザ素子は、端面保護膜は、出射側 端面とリア側端面の両方に設けられていることを特徴とする。
[0011] このような構成とすることで、迷光が外部に放出されるのを、効率よく抑制することが できる。具体的には、共振器方向、出射光及びそれに対向する反射光(リア側端面 からの光)の光路上、その一部にそれらのレーザ素子からの光が検出器(光検出器) である PDに照射される。そして、該検出器で各光の出力などを検出して、その情報 に基づいてレーザ素子の駆動を制御する。そのため、この PDにおいて雑音成分で ある励起光成分が排除されていればよくなり、上記の通り、共振器の両端面に少なく とも上記保護膜が設けられることで、その雑音成分除去を達成でき好ましい。更に好 ましくは、共振器端面とは異なるレーザ素子端面、例えば共振器方向に沿う方向の 側面、底面においても、上記保護膜が設けられることで、素子からの励起光成分をほ ぼ完全に排除できるためレーザ装置内に励起光がなくなり、 PDの検出感度精度を 高めることができる。しかし、上述したように、レーザ装置において、検出器は、出射 光、反射光(リア側端面からの光)で照射される位置に配されているため、この共振器 端面、特に PDが検出する光が出射する端面側に少なくとも、上記高反射率保護膜 が設けられることでその効果を奏する。さらに、光強度、密度の大きな光の主な出射 口となる共振器の両端面に保護膜が設けられると、レーザ素子から放出される全体 の雑音成分の内、ほとんどの部分を除去できるためさらに好ましい。
[0012] 本発明の請求項 3に記載の窒化物半導体レーザ素子は、端面保護膜は、活性層 からの発光波長に対して、低反射率を有することを特徴とする。
[0013] このような構成とすることで、レーザ光が発振可能で、且つ、迷光を吸収して励起さ れた励起光の外部への放出を抑制可能な端面保護膜とすることができる。
[0014] 本発明の請求項 4に記載の窒化物半導体レーザ素子は、端面保護膜は、単層又 は多層構造であることを特徴とする。
[0015] このような構成とすることで、所望の反射率の端面保護膜となるように調整すること ができる。端面保護膜は、反射率や屈折率、或いは透過率を考慮するだけでなぐ 熱膨張係数や応力等も考慮して材料を選択する必要があるが、多層構造とすること で種々の組み合わせを選択することができ、より優れた機能を有する端面保護膜とす ること力 Sできる。
[0016] また、本発明の窒化物半導体レーザ素子は、窒化物半導体基板と、その上に n型 半導体層、活性層及び p型半導体層が積層されてなる窒化物半導体層を備え、該窒 化物半導体層にストライプ状のレーザ光の導波路領域を有すると共に、その導波路 領域と略垂直な端面に、出射側端面保護膜及びその反対のリア側端面保護膜を有 する窒化物半導体レーザ素子であって、窒化物半導体基板は、活性層からの発光 を吸収し、その発光波長よりも長波長の励起光を発光する励起領域を有し、リア側端 面保護膜は、励起光の波長に対して高反射率を有する第 1の端面保護膜と、活性層 力 の発光波長に対して高反射率を有する第 2の端面保護膜とを備え、出射側端面 保護膜は、励起光の波長に対して高反射率を有する第 3の端面保護膜を備えてなる ことを特徴とする。具体的には、レーザ光波長 λ 、励起光波長 λ の反射率におい
D ex
て、励起光側が大きくなる第 1 , 3の端面保護膜と、レーザ光側が大きくなる第 2の端 面保護膜とを有する構造であり、すなわち、各端面保護膜に、それぞれレーザ光の 反射、励起光の反射に優れた保護膜を設けることで、それぞれの膜に機能分離させ た端面保護膜の組合せである。
[0017] このような構成とすることで、リア側から励起光が外部に放出されるのを抑制すること ができるので、リア側に検出器 (フォトダイオード)を設けて駆動制御する場合等の誤 作動を抑制することができる。特に、活性層からの発光波長よりも励起光の発光波長 が長いので、弱い光でも認識し易くなる。図 4は一般的なフォトダイオード(PD)であ る Siの分光感度曲線であるが、感度のピークが赤外領域にあり、長波長の発光を認 識し易い。そのため、窒化物半導体を用いたレーザ素子のように、波長が比較的短く 、例えば 390— 420nm付近の発光波長を有する場合、その光を吸収して、 550— 6 OOnm付近の波長の励起光を発光する場合、 PDの感度は 3倍近くまで高くなる。そう なると、例えレーザ光ではない弱い光であっても認識しやすくなる。リア側から放出さ れる光が、励起光ではなぐレーザ光と同じ波長の弱い光である迷光の場合、 PDの 感度についてはレーザ光と同じであるため、迷光によって PDの感度に大きく影響与 えることはない。本発明では、迷光を吸収させて励起光とし、その励起光に対して高 レ、反射率の端面保護膜を形成することで、出射側力ももリア側からも励起光が放出さ れるのを抑制して、優れたレーザ素子特性を得ることができる。
[0018] 本発明の請求項 6に記載の窒化物半導体レーザ素子は、第 1の端面保護膜及び /又は第 3の端面保護膜は、活性層からの発光波長に対して、低反射率を有するこ とを特徴とする。
[0019] このような構成とすることで、レーザ光が第 1及び第 3の端面保護膜によって反射率 が低下するのを抑制し、閾値を低下させることができる。
[0020] 本発明の請求項 7に記載の窒化物半導体レーザ素子は、出射側端面保護膜は、 活性層からに発光波長に対して高反射率を有する第 4の端面保護膜を有することを 特徴とする。また、本発明の請求項 8に記載の窒化物半導体レーザ素子は、第 1の 端面保護膜、第 2の端面保護膜、第 3の端面保護膜、第 4の端面保護膜は、それぞ れ単層又は多層構造であることを特徴とする。
[0021] このような構成とすることで、出射側とリア側の反射率を所望の値に調整し易くなり、 用途に応じた反射率を得ることができる。
[0022] 本発明の請求項 9に記載の窒化物半導体レーザ素子は、第 1の端面保護膜と、第 2の端面保護膜は、少なくとも一部が重なるよう積層されていることを特徴とする。また 、本発明の請求項 10に記載の窒化物半導体レーザ素子は、第 3の端面保護膜と、 第 4の端面保護膜は、少なくとも一部が重なるよう積層されていることを特徴とする。
[0023] 第 1の端面保護膜と第 2の端面保護膜は、それぞれ反射する発光波長が異なるた め、積層させたとしても、それぞれ目的の波長の光に対して高反射率を保持すること ができる。第 3の端面保護膜と第 4の端面保護膜についても同様である。
[0024] 本発明の請求項 11に記載の窒化物半導体レーザ素子は、第 2の端面保護膜は、 半導体層に接して形成されていることを特徴とする。また、本発明の請求項 12に記 載の窒化物半導体レーザ素子は、第 4の端面保護膜は、前記半導体層に接して形 成されてレヽることを特徴とする。
[0025] 励起光は、活性層からの発光波長よりも長波長であるため、エネルギー的にも低く 、また、導波路領域力 漏れだした迷光によって励起された光であるため、導波路領 域のレーザ光に比して、光密度も低い。そのため、活性層からの発光に対して高反 射率の端面保護膜を半導体層に接するように設けることで、励起光に対する端面保 護膜の劣化を抑制するとともに、モードの安定したレーザ光を得ることができる。
[0026] 本発明の請求項 13に記載の窒化物半導体レーザ素子は、励起領域は、その周辺 領域に比して転位密度が低いことを特徴とする。具体的には、基板面内において、 転位密度が低い領域と高い領域とを有する窒化物半導体基板で、その低い領域を 励起領域として機能させ、基板を伝搬する迷光を光変換して、上記端面保護膜で制 御可能な励起光として、レーザ素子から放出される迷光を防ぐことができる。
[0027] 本発明の請求項 14に記載の窒化物半導体レーザ素子は、励起領域は、その周辺 領域に比して不純物濃度が高いことを特徴とする。具体的には、基板面内において 、不純物濃度が低い領域と高い領域とを有する窒化物半導体基板で、その高い領 域を励起領域として機能させることで、上記各構成、効果を引き出すことができる。
[0028] 本発明の請求項 15に記載の窒化物半導体レーザ素子は、不純物は、 H、〇、 C、 S iのうちの少なくとも一種であることを特徴とする。
[0029] 本発明の請求項 16に記載の窒化物半導体レーザ素子は、活性層からの発光波長 は、 390 420nmであることを特徴とする。
[0030] 本発明の請求項 17に記載の窒化物半導体レーザ素子は、励起光の波長は、 550 一 600nmであることを特徴とする。
[0031] 本発明の請求項 18に記載の窒化物半導体レーザ素子は、励起領域は、導波路領 域と略平行なストライプ状に形成されていることを特徴とする。具体的には、励起領域 として、上述した基板面内における高不純物濃度領域、低転位密度領域を、ストライ プ形状として、該ストライプ方向と、導波路として、そのリッジストライプのストライプ方 向とを、ほぼ平行に設けることである。このように、平行に設けることは、ストライプ状の 導波路領域を発生源として、その縦方向、横方向にしみ出した光が励起光に変換さ れる光となるため、導波路領域、励起領域を互いにほぼ平行とすることで、上述した 光変換、励起光生成が好適に成される。
[0032] 本発明の請求項 19に記載の窒化物半導体レーザ素子は、導波路領域は、励起領 域の上方に形成されていることを特徴とする。具体的には、励起領域として、上述し た基板面内における高不純物濃度領域、低転位密度領域が、基板面内において、 その領域と少なくとも一部で重なり合うように、半導体層の導波路領域を設けるもので ある。好ましくは、導波路領域のほぼ全面が励起領域に覆われるように設けることで ある。全面レーザ素子構造力 Sリッジ導波路である場合には、ストライプ状のリッジに基 板面内で重なるように、好ましくはそのリッジストライプよりも幅広な励起領域で、リッジ を覆うように設けることで、効率的な励起光生成、迷光の光変換が可能となる。
[0033] 本発明の請求項 20に記載の窒化物半導体レーザ素子は、導波路領域は、励起領 域から離間する領域に形成されていることを特徴とする。具体的には、基板面内にお いて、励起領域と基板上のレーザ素子構造の導波路領域とが離れて設けられた構 造であり、例えば、励起領域、導波路領域とがストライプ状である場合に、該ストライ プがその長手方向をほぼ同じにして、互いにほぼ平行して、設けられる構造がある。
[0034] 本発明の請求項 21に記載のレーザ装置は、上記窒化物半導体レーザ素子と、そ のレーザ光を検出する検出器である PD (フォトダイオード)とを有して、その PDの分 光感度が、レーザ光波長え より励起光波長; I の方が大きいことを特徴としている。
D ex
すなわち、 [ λ の感度] < [ λ の感度]の分光感度を揺するフォトダイオードを、検
D ex
出器として備えたレーザ装置であり、励起光に対して感度の高レ、 PDを用いたレーザ 装置において、上記端面保護膜による励起光封じ込め機能が好適に作用して、僅か な励起光の漏れでも LD駆動に深刻な影響を及ぼすレーザ装置であっても、高精度 で LD駆動を制御可能とできる。これは、通常フォトダイオードとして用いられる Si半 導体では、ワイドバンドギャップの窒化物半導体レーザ素子の波長域に、感度良好 な PDではないため、その PDを検出器に用いたレーザ装置では、窒化物半導体レー ザ素子を高精度に制御することを困難なものとしていたが、これを解決できる。また、 具体的なレーザ装置としては、レーザ素子チップと PDチップとをそれぞれの実装部 に実装して、レーザ装置が有する各電極端子に、ワイヤなどで接続した CANタイプ のレーザ素子装置の他に、レーザ素子チップ、 PDチップ、それらを駆動させ、外部 端子を供給する電気回路を、高密度に実装した集積構造のレーザ'力ブラなどのレ 一ザ装置がある。レーザ'カプラでは、レーザ素子チップと PDチップとが積層されて 実装されたスタック素子とし、レーザ素子側、 PDチップ側を更に別の実装基板、基体 に実装したものなどがある。このとき、レーザ素子は、上記窒化物半導体レーザ素子 の 1種類だけが搭載されたものに限らず、他の波長のレーザ光を出射する第 2のレー ザ素子などを有していても良ぐすなわち複数のレーザ素子、多波長のレーザ装置と することちでさる。
発明の効果 [0035] 本発明の窒化物半導体レーザ素子は、基板内で迷光を吸収させることでレーザ光 に迷光が混ざって FFPを悪化させるのを抑制するとともに、その迷光を吸収して励起 光を発生させてその励起光を外部に放出されないよう高反射率の端面保護膜を形 成することで、より安定したレーザ光とすることができる。また、リア側においても、活性 層力 の発光波長より長波長の励起光が検出器を誤作動させないように高反射率の 端面保護膜を形成することで、制御性よく駆動させることができ、信頼性に優れた半 導体レーザ素子とすることができる。
図面の簡単な説明
[0036] [図 1] (a)本発明の半導体レーザ素子を説明する模式斜視図 (b)図 1 (a)の b— b'断面図 (c)図 1(a)の c一 c'断面図
[図 2]本発明の実施の形態の端面保護膜の透過率を示すグラフ
[図 3]本発明の実施の形態の端面保護膜の透過率を示すグラフ
[図 4]フォトダイオードの分光感度曲線
符号の説明
[0037] 101· ··窒化物半導体基板
102· •·η型窒化物半導体層
103· •·ρ型窒化物半導体層
104· ··活性層
105· •·ρ側ォーミック電極
106· •·ρ側パッド電極
107· •·η側電極
108· ··第 2の絶縁膜
109· ··第 1の絶縁膜
110· ··端面保護膜
111· • ·転位束
112· ··低転位密度領域
発明を実施するための最良の形態
[0038] 以下、本発明について説明するが、本発明の窒化物半導体レーザ素子は、実施の 形態に示された素子構造に限定されるものではない。
[0039] 本発明の窒化物半導体レーザ素子は、活性層からの発光を吸収し、その発光波長 よりも長波長の励起光を発光する励起領域を有する窒化物半導体基板を用いること で、レーザ光の導波路領域から漏れ出す光(迷光)が、外部に放出されるのを抑制す るものである。これによつて、良好な素子特性とすることができる。
[0040] 図 1は、本発明の実施の形態に係る窒化物半導体素子の構成を表すものであって 、窒化物半導体基板 101上に、 n型窒化物半導体層 102、活性層 104、 p型窒化物 半導体層 103が積層され、 p型窒化物半導体層にストライプ状のリッジが設けられた 窒化物半導体レーザ素子である。リッジは、 p型窒化物半導体層の一部をエッチング 等の手段により除去することで形成することができ、これにより実効屈折率型の導波 路を形成することができる。また、リッジとしては、 p型窒化物半導体層から n型窒化物 半導体層までの一部をエッチングすることで形成して、屈折率型の導波路としてもよ ぐ又は、選択成長によりリッジを形成してもよい。リッジは、底面側の幅が広く上面に 近づくに従ってストライプ幅が小さくなる順メサ形状に限らず、逆にリッジ底面に近づ くにつれてストライプの幅が小さくなる逆メサ形状でもよぐまた、積層面に垂直な側 面を有するストライプであってもよぐこれらが組み合わされた形状でもよい。また、スト ライプ状の導波路は、その幅がほぼ同じである必要はない。また、このようなリッジを 形成した後にリッジ表面やリッジ両脇に半導体層を再成長させた坦め込み型のレー ザ素子であってもよい。また、リッジを有しない利得導波型の導波路としてもよい。
[0041] リッジの側面及びそのリッジから連続する p型窒化物半導体層の上面にかけて第 1 の絶縁膜 109が形成されている。リッジ上面及び第 1の絶縁膜の上面には p側ォーミ ック電極 105が、また、窒化物半導体基板の裏面には n側電極 107が設けられている 。また、半導体層の側面を被覆する第 2の絶縁膜 108が、第 1の絶縁膜の上部にまで 連続するよう設けられている。 p型窒化物半導体層の上部には、第 2の絶縁膜及び p 側ォーミック電極と接する p側パッド電極 106が設けられている。
(窒化物半導体基板)
[0042] 用いられる基板の組成としては、 GaN、 A1N、若しくは InN、又はこれらの混晶であ る AlGaN系、 InGaN系、 AlInGaN系をあげることができる。これらの基板は、次のよ うな方法で作製することができる。
[0043] 基板となる前記窒化物半導体は、例えばハライド気相成長法(以下、 HVPE法)に より異種基板上に窒化物半導体を 100 μ ΐη以上に厚膜成長させ、その後異種基板 を除去することによって形成する。ここで、異種基板を除去した面は窒化物半導体の 00011
面であって、
、0001)
面以外の傾斜面はドライエッチングやウエットエッチング、ケミカルメカニカルポリッシ ュ(以下、 CMPという。 )によって形成される。さらに、前記窒化物半導体の 2軸結晶 法による(0002)回折 X線ロッキングカーブの半値幅が 3分以内、さらに望ましくは 2 分以内の窒化物半導体とすれば、異種基板を除去する工程においても、窒化物半 導体にダメージを与えにくぐ 100 μ m以上の窒化物半導体を良好な結晶性を保つ たまま得ること力 Sできる。その後、前記窒化物半導体の(0001)面上に新規な窒化物 半導体素子を作製する。また、窒化物半導体の裏面には第 1の電極が形成されてい る。
[0044] 前記窒化物半導体は、一般式 In Al Ga N (0≤X≤1、 0≤Y≤1、 0≤X+Y
X Υ 1-Χ-Υ
≤1)である。前記窒化物半導体は Al Ga N (0. 01≤a≤0. 5)で示されるバッファ a 1— a
層を介して異種基板上に形成されるのが好ましい。結晶性を向上させるためである。 該バッファ層の成長温度としては、 800°C以下の低温成長とし、これにより、窒化物 半導体上の転位やピットを低減させることができる。有機金属気相成長法 (以下、 M OCVD法)で前記異種基板上にバッファ層を成長後、更にラテラルオーバーグロウス 法(ELO法)により Al Ga N (0≤X≤ 1)層を成長させてもよレ、。この ELO法とは窒
1—
化物半導体を横方向成長させることで貫通転位を曲げて、更には該貫通転位同士 を収束させることにより表面上の貫通転位を低減させ結晶性を向上させるものである
[0045] 窒化物半導体基板を成長させるための成長基板として GaAs基板又はサファイア 基板、 SiC基板、 Si基板、スピネル基板、 NdGaO基板、 ZnO基板、 GaP基板、 Ga
3
N基板等種々の基板を用いることができる。
[0046] 上記のように横方向成長を伴う成長方法によって窒化物半導体層を成長させ、そ れを基板とすることで、転位密度 (欠陥密度)等が、成長起点の形状に対応するよう な位置で不均一となる基板とすることができる。また、不純物をドープしながら成長さ せるのが好ましぐ上記転位密度の分布状態に対応するように不純物濃度の不均一 領域も形成させる。
[0047] 上記のような低転位密度領域は、成長起点の形状によってその分布状態を選択す る事ができるが、レーザ光の導波路領域をストライプ状に形成するので、それに対応 してストライプ状に成長起点を形成するのが好ましい。そして、ストライプ状に周期的 に配列された成長起点から窒化物半導体層を成長させることで、転位密度が低く結 晶性に優れた領域と、それとは逆に、転位が多ぐ結晶性が悪い領域 (転位束)とが、 周期的に形成された窒化物半導体基板とすることができる。この転位束は、その上に 窒化物半導体層を成長しにくぐ成長された層の結晶性もよいとはいえない。そのた め、素子駆動時に悪影響を与えやすいので、導波路領域などの動作領域は、転位 束以外の領域に形成させるのが好ましぐ例えば、図 1 (b)に示すように、素子の分割 位置近傍になるように調整することで、素子特性の悪化を抑制することができる。
[0048] また、窒化物半導体基板は、不純物をドープするなどして導電性とすることで、図 1 に示すように、基板裏面側に n電極を設けることができる。また、絶縁性もしくは低導 電性の基板でもよぐその場合は、 p電極と同一面側に n電極を設ける。また、窒化物 半導体基板の膜厚としては、ハンドリング時の強度等を考慮して、約 ΙΟΟ μ ΐη程度あ れは'よレ、。
(励起領域)
[0049] 上記のように成長基板上に成長される窒化物半導体基板は、横方向成長によって 成長される領域を有しており、結晶の特性が面内で均一にはなりにくぐ転位密度や 不純物濃度が、異なる領域が形成される。特に、転位密度が低い領域は、高い領域 に比して活性層からの発光波長を吸収しやすいため、励起領域となる。励起領域は 、用いる成長基板の種類や、窒化物半導体層の成長条件 (温度、ガス流量、圧力、 不純物の種類及び濃度等)等によって、形成された状態が異なる。そのため、励起領 域と非励起領域との境界があまりなぐほぼ全面にわたって弱い励起光を有する励起 領域とすることもできるし、図 1 (b)に示すように局所的に強い励起光を有するような 励起領域 112を形成させることができる。これらは、 目的や用途に応じて好ましい形 態を選択することができ、このような基板の励起領域の形状、分布は、上記基板の種 類、成長条件に依存する。
[0050] また、このような励起領域は、レーザ光の導波路領域と対応するように、具体的には 基板面内で励起領域と導波路領域、リッジストライプが重なり合うように、ストライプ状 に形成するのが好ましい。
[0051] また、このような励起領域の上に成長される窒化物半導体層に導波路領域を形成 することで、良好なレーザ光の導波路領域を得ることができる。励起領域を導波路領 域と対応するような位置となるように形成することで、迷光の吸収効率が向上するの で、導波路領域近傍に設けるのが好ましい。ただし、吸収があまり多いと、閾値低下 の原因となる場合があるので、そのような場合は、励起領域力も離間する位置に、具 体的には基板面内で励起領域と導波路領域、リッジストライプが離れて設けられ、成 長された窒化物半導体に導波路領域を形成させることができる。また、励起領域は、 活性層からの発光波長を吸収し、かつ、それによつて励起光を発光可能であればよ いので、具体的には、励起領域がそれ以外の一部領域に比して強い励起光を得るこ とができればよいので、上記のような窒化物半導体基板の成長方法によって転位密 度や不純物の調整によって形成させることのほかに、後工程でイオンを注入するなど の方法で励起領域を形成することもできる。
(端面保護膜)
[0052] 本発明において、端面保護膜は、励起領域力 の発光波長に対して高反射率を有 するものである。この端面保護膜は、単層構造でもよぐ或いは多層構造でもよい。導 波路領域力 漏れ出した迷光を吸収して発生する励起光であるため、導波路領域か ら外部に出射されるレーザ光に比して、強度は低い。そのため、レーザ光の出射の 妨げにならない程度の反射率とするのが好ましい。波長が異なるためレーザ光は反 射されにくいが、材料によっては吸収されることもあり、また、透過するといつても多少 のロスを生じるため、膜厚は薄くするのが好ましい。
[0053] 端面保護膜として、励起光の波長に対しての端面保護膜だけでなぐレーザ光の 波長に対しての端面保護膜も合わせて設けることで、より効率よくレーザ光を出射さ せること力 Sできる。リア側端面に設ける保護膜のうち、励起光に対して高反射率の保 護膜を第 1の端面保護膜とし、導波路領域の発光波長に対して高反射率の保護膜を 第 2の端面保護膜とする。また、出射側の端面に設ける保護膜のうち、励起光に対し て高反射率の保護膜を第 3の端面保護膜とし、導波路領域の発光波長に対して高 反射率の保護膜を第 4の端面保護膜とする。
[0054] 第 1及び第 2の端面保護膜は、どちらが半導体層に接していてもよいが、好ましくは 、第 2の端面保護膜が半導体層に接するように設ける。これによつて、第 1の端面保 護膜の劣化を抑制することができる。
[0055] 出射側の端面に第 3の端面保護膜のみを設ける場合は、励起光の波長に対して高 反射率となるよう膜厚を設定し、それを出射側端面の全面に設ける。励起光が外部 に放出される領域のみに設けることでもよいが、レーザ光出射部の端面に設けること で、活性層等の半導体層が外気に曝されるのを防ぐ保護膜として機能させることがで きる。励起光とレーザ光とは波長が異なるので、レーザ光を遮られにくい。具体的に は、上述したように励起領域と導波路領域とが対応する場合には、基板端面の励起 領域を覆うように、更に好ましくは基板とその上の素子構造において、それぞれ基板 の励起領域と、活性層を含む素子構造端面の導波路領域とを覆うように、保護膜を 設けることが好ましい。
[0056] また、出射側の端面に、第 3の端面保護膜に加えて第 4の端面保護膜を設けること ができる。この場合、第 4の端面保護膜を半導体層と接するように設けることで、光密 度の高いレーザ光によって第 3の端面保護膜が劣化するのを抑制できる。また、出射 側にも保護膜を設けて反射率を調整することで、レーザ光を効率よく出射させること ができ、閾値を低下させることが可能となる。励起光は、第 4の保護膜で反射されず に透過し、第 1の保護膜で反射され、外部には放出されない。
[0057] 端面保護膜の具体的な材料としては、導体材料としては、 Si、 Mg、 Al、 Hf、 Nb、 Z r、 Sc、 Ta、 Ga、 Zn、 Y、 B、 Ti、更にはこれらの酸化物、窒化物、フッ化物などの化 合物から選ばれたいずれかを用いることができる。これらは、単独で用いてもよいし、 複数を組み合わせた化合物或いは多層膜として用いてもょレ、。好ましレ、材料としては Si、 Mg、 Al、 Hf、 Zr、 Y、 Gaを用いた材料である。また、また、半導体材料としては A1N、 AlGaN、 BNなどを用いることができる。絶縁体材料としては Si、 Mg、 Al、 Hf、 Nb、 Zr、 Sc、 Ta、 Ga、 Zn、 Y、 Bの酸化物、窒化物、フッ化物等などの化合物を用 レ、ることができる。
[0058] 第 1一第 4の端面保護膜の好ましい材料としては、例えば、以下のような組み合わ せをあげること力 Sできる。
[0059] A:第 1の端面保護膜 (励起光に対するリア側端面保護膜)
GaN/ZrO + (SiO /ZrO )の 1ペア
2 2 一 3ペア
2
GaN/TiO + (SiO /TiO )の 1ペア
2 2 2 一 3ペア
[0060] B :第 2の端面保護膜 (活性層からの発光に対するリア側端面保護膜)
GaN/ZrO + (SiO /ZrO )の 3ペア
2 2 2 一 6ペア
GaN/TiO + (SiO /TiO )の 3ペア
2 2 2 一 6ペア
[0061] C :第 3の端面保護膜 (励起光に対する出射側端面保護膜)
GaN/ (SiO /Nb O )の 1ペア
2 5 一 2ペア
2
GaN/ (Al O /Nb O )の 1ペア
2 3 2 5 一 2ペア
GaN/ (Al O /TiO )の 1ペア
2 3 2 一 2ペア
GaN/Al O + (SiO /Nb O )の 1ペア
2 3 2 2 5 一 3ペア
[0062] D :第 4の端面保護膜 (活性層からの発光に対する出射側端面保護膜)
GaN/ZrO + (SiO /ZrO )の 1ペア
2 2 2 一 3ペア
GaN/TiO + (SiO /TiO )の 1ペア
2 2 2 一 3ペア
[0063] 上記の組み合わせで、それぞれ波長に応じた膜厚とすることで、優れた特性を有す るレーザ素子とすることができる。
(電極)
[0064] p型窒化物半導体層に設けられる p側ォーミック電極の電極材料としては、 p型窒化 物半導体層とォーミック性及び密着性が高い材料を選択することができ、具体的に は、 Ni、 Co、 Fe、 Cr、 Al、 Cu、 Au、 W、 Mo、 Ta、 Ag、 Pt、 Pd、 Rh、 Ir、 Ru、〇s及 びこれらの酸化物、窒化物等があげられ、これらの単層、合金、或いは多層膜を用い ること力 Sできる。好ましくは、 Ni、 Co、 Fe、 Cu、 Au、 Alから選択される少なくとも 1種、 及びこれらの酸化物、窒化物等である。
[0065] p側ォーミック電極は熱処理によって良好なォーミック性を実現できる。熱処理温度 としては、 350°C 1200°Cの温度範囲とするのが好ましぐ更に好ましくは 400°C 750。Cで、特に好ましくは 500°C 650°Cである。
[0066] また、 p側パッド電極の電極材料としては、 Ni、 Co、 Fe、 Ti、 Cu、 Au、 W、 Zr、 Mo 、 Ta、 Ag、 Pt、 Pd、 Rh、 Ir、 Ru、 Os及びこれらの酸化物、窒化物等があげられ、こ れらの単層、合金、或いは多層膜を用いることができる。最上層はワイヤ等を接続さ せるので Auを用いるのが好ましい。そして、この Auが拡散しないようにその下層には 拡散防止層として機能する比較的高融点の材料を用いるのが好ましい。例えば、 Ti 、 Pt、 W、 Ta、 Mo、 TiN等が挙げられ、特に好ましい材料としては Tiが挙げられる。 膜厚としては、総膜厚として 3000 A— 20000 Aが好ましぐ更に好ましくは 7000 A 一 13000 Aの範囲である。
[0067] n型窒化物半導体層に設けられる n電極は、窒化物半導体基板が導電性である場 合は、その基板の裏面に設けるのが好ましい。或いは、エッチング等で露出させた面 に形成させてもよい。また、 n型コンタクト層に設けることもできる。 p電極と同一面側に 設ける場合は、ォーミック電極とパッド電極とを、同一工程で形成してもよぐ或いは 別工程で形成してもよい。また、材料によっては熱処理を省略することもできる。
[0068] n側ォーミック電極としては、 n型窒化物半導体層とォーミック性及び密着性が高い 材料を選択することができ、具体的には、 Ni、 Co、 Fe、 Ti、 Cu、 Au、 W、 V、 Zr、 Mo 、 Ta、 Al、 Ag、 Pt、 Pd、 Rh、 Ir、 Ru、 Os等があげられ、これらの単層、合金、或いは 多層膜を用いることができる。好ましくは、 Ti、 Alを順に積層した多層構造である。 n 側ォーミック電極形成後は、半導体層とのォーミック性を良くするために、材料によつ ては熱処理を行うことが好ましい場合がある。また、 n側ォーミック電極の膜厚としては 、糸忿膜厚として 100A 30000A程度力 S好ましく、更に 3000A— 15000A程度力 S 好ましぐ特に好ましくは 5000A 10000Aである。この範囲内で形成することで、 接触抵抗の低レ、電極とすることができるので好ましレ、。 [0069] また、 n側パッド電極の電極材料としては、 Ni、 Co、 Fe、 Ti、 Cu、 Au、 W、 Zr、 Mo 、 Ta、 Al、 Ag、 Pt、 Pd、 Rh、 Ir、 Ru、 Os等があげられ、これらの単層、合金、或いは 多層膜を用いることができる。好ましくは多層膜とし、最上層はワイヤ等を接続させる ので Auを用いるのが好ましい。そして、この Auが拡散しないようにその下層には拡 散防止層として機能する比較的高融点の材料を用いるのが好ましい。例えば、 Ti、 P t、 W、 Mo、 TiN等が挙げられる。膜厚としては、総膜厚として 3000A— 20000Aが 好ましく、更に好ましくは 7000A 13000 Aの範囲である。
[0070] n側電極は、上記のようにォーミック電極とパッド電極とを別工程で設けるのではな ぐ連続して形成して両方の機能を兼ねる、すなわち、半導体層とォーミック接触する ォーミック電極で、且つ、ワイヤを形成させる取り出し電極 (パッド電極)とを兼用する n電極とすることもできる。これは、 p側電極に比して n型半導体層とのォーミック接触 が比較的容易であり、しかも、導波路領域からやや離間する領域であるため、光学特 性をあまり考慮する必要がないため材料の自由度が大きいためである。このような n 電極の膜厚としては、総膜厚として 3000A— 20000Aが好ましぐ更に好ましくは 7 OOOA— 13000Aの範囲である。好ましい組み合わせとしては、 Ti/Al、 Hf/Al、 Ti/Pt/Au, Ti/Mo/Pt/Au, Ti/Mo/Ti/Pt/Au, Ti/W/Pt/Au, Ti /W/Ti/Pt/Au, Mo/Pt/Au、 Mo/Ti/Pt/Au、 W/Pt/Au, V/Pt/ Au、 V/Mo/Pt/Au、 V/W/Pt/Au, Cr/Pt/Au、 Cr/Mo/Pt/Au, C r/W/Pt/Au等をあげることができる。基板裏面に n電極を形成させる場合、 Au /Snを用いてボンディングさせることで、電流を流すことができる。
[0071] 第 1の絶縁膜は、電流の注入領域をリッジ上面に限定するために設けているもので あるが、導波路領域に近接して設けられているため光の閉じ込め効率にも作用する ものであるので、用いる絶縁膜材料によって好ましい膜厚を選択することができる。第 1の絶縁膜は、窒化物半導体層とほぼ同一幅となるように形成させることもできる。 p 側ォーミック電極よりも前に形成される第 1の絶縁膜は、ォーミック電極の熱処理時に 、共に熱処理される。熱処理されることで、単に堆積された膜に比して膜の強度 (膜 内の原子レベルでの結合力)が増し、半導体層との界面における接合強度も向上す る。そのような第 1の絶縁膜を、特に第 2の絶縁膜が形成される半導体層上面の端部 にまで形成することで、第 2の絶縁膜の密着性も向上させることができる。
[0072] また、 p側パッド電極は、第 2の絶縁膜と接しないように形成することもできる。特に、 ジャンクションダウンで用いる場合、 p側パッド電極に熱が加わるが、その際に、熱膨 張によって体積が大きくなつて素子の側面方向(p型半導体層の端方向)に流出し易 くなる。また、熱だけでなぐ圧力も加わるので、それによつても電極材料が側面方向 に流出しやすくなる。そのため第 2の絶縁膜と離間させるようにすることで、 p側パッド 電極の電極材料が側面方向に流出して短絡が生じるのを防ぐことができる。
[0073] 第 1の絶縁膜の材料としては Si、 Ti、 V、 Zr、 Nb、 Hf、 Taよりなる群から選択された 少なくとも一種の元素を含む酸化物、 SiN、 BN、 SiC、 A1N、 AlGaNの内の少なくと も一種で形成することが望ましぐその中でも Zr、 Hf、 Siの酸化物、 BN、 A1N、 AlGa Nを用いることが特に好ましレ、。
[0074] また、第 1の絶縁膜の膜厚としては、具体的には、 10A以上 10000A以下の範囲 、好ましくは 100A以上 5000A以下の範囲とすることである。なぜなら、 10A以下で あると、電極の形成時に、十分な絶縁性を確保することが困難で、 10000A以上で あると、力えって保護膜の均一性が失われ、良好な絶縁膜とならないからである。ま た、前記好ましい範囲にあることで、リッジ側面において、リッジとの間に良好な屈折 率差を有する均一な膜が形成される。
[0075] 第 2の絶縁膜は、 p側ォーミック電極の、リッジ上部を除く全面に設けることができ、 エッチングによって露出された p型半導体層及び活性層の側部端面にも連続するよう に設けるのが好ましい。好ましい材料としては、 Si、 Ti、 V、 Zr、 Nb、 Hf、 Taよりなる 群力 選択された少なくとも一種の元素を含む酸化物、 SiN、 BN、 SiC、 A1N、 AlGa Nの内の少なくとも一種で形成することが望ましぐその中でも特に好ましい材料とし て、 SiO 、 Al O、 Zr〇、 TiOなどの単層膜または多層膜を挙げることができる。
2 2 3 2 2
[0076] また、上記リッジのストライプ方向を共振器方向とするために、端面に設けられてい る一対の共振器面は、劈開又はエッチング等によって形成することができる。劈開で 形成させる場合は、基板や半導体層が劈開性を有していることが好ましぐその劈開 性を利用すると優れた鏡面を容易に得ることができる。また、劈開性がなくても、エツ チングによって共振器面を形成させることができ、この場合は n電極形成面を露出さ せる際に同時に行うことで、少ない工程で得ることができる。また、リッジ形成と同時に 形成することもできる。このように各工程と同時に形成させることで工程を少なくするこ とができる力 より優れた共振器面を得るためには、別工程を設けるのがよい。
[0077] 具体的には、共振器面をエッチング端面とした場合には、例えば、エッチング端面 を形成した後に、その端面(出射側、反射側)に、レーザ光用の高反射の (第 2, 4)端 面保護膜を設けて、後述するように、基板を劈開してウェハをバー状として、露出した 基板端面と前記エッチング端面とを覆うように励起光用の高反射膜の(第 1, 3)端面 保護膜を形成することができる。このように、エッチング端面と、基板端面とで、異なる 膜構造 (層数、端面がレーザ光用と励起光用、基板端面が励起光用)とすることがで きる。
実施例 1
[0078] 以下、実施例を説明するが、本発明において、窒化物半導体層を構成する n型窒 化物半導体層、活性層、 p型窒化物半導体層のデバイス構造としては特に限定され ず、種々の層構造を用いることができる。デバイスの構造としては、例えば後述の実 施例に記載されているレーザのデバイス構造が挙げられる力 他のレーザ構造につ いても適用できる。窒化物半導体の具体的な例としては、 GaN、 A1N、若しくは InN などの窒化物半導体や、これらの混晶である ΠΙ— V族窒化物半導体、更には、これら に P等が含まれるもの等を用いることができる。窒化物半導体の成長は、 MOVP E、 MOCVD (有機金属化学気相成長法)、 HVPE (ハライド気相成長法)、 MBE ( 分子線気相成長法)等、窒化物半導体を成長させるのに知られている全ての方法を 適用できる。
(窒化物半導体基板)
[0079] まず、 2インチ、 C面を主面とするサファイアよりなる異種基板を MOCVD反応容器 内にセットし、温度を 500。Cにして、トリメチルガリウム (TMG)、アンモニア(NH )を
3 用レ、、 GaNよりなるバッファ層を 200 Aの膜厚で成長させる。さらに、温度を 1000°C 以上にして GaNより成る下地層を 2. 5 μ ΐηで成長させる。その後、 HVPE反応容器 に移動する。原料に Gaメタルと HC1ガス、アンモニアを用いて窒化物半導体 1である GaNを 500 /i mで成長させる。次に、サファイアのみをエキシマレーザー照射で剥離 し、 CMPを行レ、膜厚 450 μ mの窒化物半導体を形成する。
(n型コンタクト層)
[0080] 続いて 1050°Cで、同じく原料ガスに TMG、アンモニアガス、不純物ガスにシランガ スを用レ、、 Siドープの n_Al Ga Nよりなる n型コンタクト層を 3. 5 μ mの膜厚で
0. 02 0. 98
成長させる。この n型コンタクト層の膜厚は 2 30 z mであればよい。
(クラック防止層)
[0081] 次に、 TMG、 TMI (トリメチルインジウム)、アンモニアを用レ、、温度を 800。Cにして Siドープの n— In Ga Nよりなるクラック防止層を 0. 15 μ mの膜厚で成長させる
0. 05 0. 95
[0082] なお、窒化物半導体基板を導電性の基板とし、成長用基板を後で除去し、基板の 裏面側に n電極を形成する場合は、窒化物半導体基板上に以下に述べる n型クラッ ド層から積層させることもできる。
(n型クラッド層)
[0083] 次に、温度を 1050°Cにして、原料ガスに TMA (トリメチルアルミニウム)、 TMG及 びアンモニアを用い、アンドープの Al Ga Nよりなる A層と、 Siをドープした Ga
0. 05 0. 095
Nよりなる B層をそれぞれ 50 Aの膜厚で成長させる。そして、この操作をそれぞれ 11 0回繰り返して A層と B層を交互に積層して総膜厚 1. 1 β mの多層膜 (超格子構造) よりなる n型クラッド層を成長させる。この時、アンドープ AlGaNの A1の混晶比として は、 0. 02以上 0. 3以下の範囲であれば、十分にクラッド層として機能する屈折率差 を設けることができ、また単一膜構造で形成することもできる。
(n型光ガイド層)
[0084] 次に、同様の温度で原料ガスに TMG及びアンモニアを用い、アンドープの GaNよ りなる n型光ガイド層を 0. 15 z mの膜厚で成長させる。この層は、 n型不純物をドー プさせてもよレ、。
(活性層)
[0085] 次に、温度を 800°Cにして、原料に TMI (トリメチルインジウム)、 TMG及びアンモ ユアを用レ、、不純物ガスとしてシランガスを用レ、、 Siドープの In Ga Nよりなる障
0. 02 0. 98 壁層を 140 Aの膜厚で成長させる。続いてシランガスを止め、アンドープの In Ga Nよりなる井戸層を 70Aの膜厚で成長させる。この操作を 2回繰り返し、最後に Siド
9
ープの In Ga Nよりなる障壁層を 140Aの膜厚で成長させて総膜厚 560 Aの
0. 02 0. 98
多重量子井戸構造 (MQW)の活性層を成長させる。
(P型電子閉じ込め層)
[0086] 同様の温度で、 N雰囲気中で、 Mgドープの Al Ga Nよりなる p型電子閉じ込
2 0. 25 0. 75
め層を 30 Aの膜厚で成長させる。次いで、 H雰囲気中で、 Mgドープの Al Ga
2 0. 25 0. 7
Nよりなる p型電子閉じ込め層を 70Aの膜厚で成長させる。
5
(Ρ型光ガイド層)
[0087] 次に、温度を 1050°Cにして、原料ガスに TMG及びアンモニアを用い、アンドープ の GaNよりなる p型光ガイド層を 0. 15 z mの膜厚で成長させる。この p型光ガイド層 はアンドープとして成長させる力 Mgをドープさせてもよレ、。
(p型クラッド層)
[0088] 続いて、アンドープの Al Ga Nよりなる A層を 8θΑの膜厚で成長させ、その上
0. 08 0. 92
に Mgドープの GaNよりなる B層を 80 Aの膜厚で成長させる。これを 28回繰り返して A層と B層とを交互に積層させて、総膜厚 0. 45 μ ΐηの多層膜 (超格子構造)よりなる ρ型クラッド層を成長させる。 ρ型クラッド層は少なくとも一方が A1を含む窒化物半導 体層を含み、互いにバンドギャップエネルギーが異なる窒化物半導体層を積層した 超格子で作製した場合、不純物はいずれも一方の層に多くドープして、いわゆる変 調ドープを行うと結晶性がよくなる傾向にあるが、両方に同じようにドープさせてもよ レ、。
(ρ型コンタクト層)
[0089] 最後に 1050°Cで ρ型クラッド層の上に Mgドープの GaNよりなる ρ型コンタクト層を 1 50 Aの膜厚で成長させる。 p型コンタクト層は p型の In Al Ga N (x≤0、 y≤0、 x x y 1— x— y
+y≤l)で構成することができ、好ましくは Mgをドープした GaNとすれば p電極と最 も好ましいォーミック接触が得られる。反応終了後、反応容器内において窒素雰囲 気中でウェハを 700°Cでアニーリングして、 p型層を更に低抵抗化する。
(n型層露出)
[0090] 以上のようにして窒化物半導体を成長させて積層構造体を形成した後、ウェハを反 応容器から取り出し、最上層の p型コンタクト層の表面に SiOよりなる保護膜を形成し
2
て RIE (反応性イオンエッチング)を用いて C1ガスによりエッチングし、 n型コンタクト
2
層の表面を露出させる。また、このとき、エッチングにより共振器面を形成させてもよく 、また実施例 3に示すように、基板の裏面に n電極を設ける場合には、 n電極の形成 面が不要となり、この工程も省略できる。
(リッジ形成)
[0091] 次に、ストライプ状の導波路領域を形成するために、最上層の p型コンタクト層のほ ぼ全面に CVD装置により、 Si酸化物(主として Si〇)よりなる保護膜を 0. の膜
2
厚で形成した後、フォトリソグラフィ技術により保護膜の上に所定の形状のマスクを形 成し、 RIE装置により CHFガスを用いたエッチングによりストライプ状の Si酸化物か
3
らなる保護膜を形成する。この Si酸化物の保護膜をマスクとして SiClガスを用いて
4
半導体層をエッチングして、活性層よりも上にリッジストライプが形成される。このとき、 リッジの幅は 1 · 6 μ ΐηとなるようにする。
(第 1の絶縁膜)
[0092] SiOマスクを形成させた状態で、 p型半導体層表面に ZrOよりなる第 1の絶縁膜を
2 2
膜厚約 550Aで形成する。この第 1の絶縁膜は、 n側のォーミック電極形成面をマス クして半導体層の全面に設けてもよい。また、後に分割され易いように絶縁膜を形成 させなレ、部分を設けることもできる。
[0093] 第 1の絶縁膜形成後、ウェハを 600°Cで熱処理する。このように、 SiO以外の材料
2
を第 1の絶縁膜として形成する場合、第 1の絶縁膜形成後に、 300°C以上、好ましく は 400°C以上、窒化物半導体の分解温度以下(1200°C)で熱処理することにより、 絶縁膜材料を安定化させるコトができる。特に、第 1の絶縁膜形成後の工程において 、主として SiOをマスクとして用いてデバイス加工を施すような場合は、その SiOマ
2 2 スクを後で除去する際に用いるマスク溶解材料に対して溶解しにくくすることができる 。この第 1の絶縁膜の熱処理工程は、第 1の絶縁膜の材料や工程等によっては省略 することもできるし、また、ォーミック電極の熱処理と同時に行うなど、工程順序等に ついても適宜選択することができる。熱処理後、バッファード液に浸漬して、リッジスト ライプの上面に形成した SiOを溶解除去し、リフトオフ法により Si〇と共に、 p型コン タクト層上(更には n型コンタクト層上)にある Zr〇を除去する。これにより、リッジの上
2
面は露出され、リッジの側面は ZrOで覆われた構造となる。
2
(ォーミック電極)
[0094] 次に、 p型コンタクト層上のリッジ最表面及び第 1の絶縁膜上に p側ォーミック電極を スパッタにより形成させる。この p側ォーミック電極は、 Ni/Au (100A/l 500A)を 用いる。また、 n型コンタクト層上面にも n側ォーミック電極を形成させる。 n側ォーミツ ク電極は Ti/A1 (200A/5500A)からなり、リッジと平行で、かつ、同程度の長さの ストライプ状に形成されている。これら電極形成後、酸素と窒素の混合雰囲気中で、 6 00°Cで熱処理する。
(第 2の絶縁膜)
[0095] 次いで、リッジ上の p側ォーミック電極の全面と、 n側ォーミック電極の上部の一部を 覆うレジストを形成する。次いで、 SiO力 なる第 2の絶縁膜を、ほぼ全面に形成し、
2
リフトオフすることで、 p側ォーミック電極の上面全面と n側ォーミック電極の一部が露 出された第 2の保護膜が形成される。第 2の絶縁膜と p側ォーミック電極とは離間する ように形成してもよぐまた、一部が重なるように形成されていてもよい。また、後の分 割を考慮して、分割位置を挟んで幅 10 / m程度のストライプ状の範囲には、第 1及 び第 2の絶縁膜や電極を形成しなレ、ようにしてぉレ、てもよレ、。
[0096] 第 2の絶縁膜は、 p側及び n側のォーミック電極上部を除く全面に渡るように設ける ものである。好ましい材料としては、 Si、 Ti、 V、 Zr、 Nb、 Hf、 Taよりなる群から選択さ れた少なくとも一種の元素を含む酸化物、 SiN、 BN、 SiC、 A1N、 AlGaNの内の少 なくとも一種で形成することが望ましぐその中でも特に好ましい材料として、 SiO 、 A
2
1〇、 ZrO、 Ti〇などの単層膜または多層膜を挙げることができる。
2 3 2 2
(パッド電極)
[0097] 次に、上記のォーミック電極を覆うようにパッド電極を形成する。このとき、第 2の絶 縁膜を覆うように形成させるのが好ましレ、。 ρ側パッド電極は、 NiZTi/Au (1000A /1000A/800A)の順に積層される。また、 n側パッド電極は、下から NiZTi/A u(1000AZl000A/8000A)で形成される。これらパッド電極は、第 2の絶縁膜 を介して p側ォーミック電極及び n側ォーミック電極にそれぞれストライプ状に接して いる。
(劈開及び共振器面形成)
[0098] 次いで、基板を研磨して約 100 μ mの膜厚になるよう調整後、基板裏面にスクライ ブ溝を形成し、窒化物半導体層側からブレーキングして、劈開することでバー状のレ 一ザとする。窒化物半導体層の劈開面は、窒化物半導体の M面
Figure imgf000026_0001
となっており、この面を共振器面とする。
(端面保護膜形成)
[0099] 上記のように形成された共振器面には、 ECRスパッタ装置等のスパッタ装置を用い て端面保護膜を設ける。出射側端面には、第 3の端面保護膜として、 (SiO (917A)
2
/Nb〇 (550 A) )の 2ペアからなる第 3の端面保護膜を設ける。リア側端面には、 Z
2 5
r〇 (440A) + (SiO (667A) /Zr〇 (440 A) )の 6ペアからなる第 2の保護膜を設
2 2 2
ける。その上にさらに ZrO (440A) + (SiO (917A) /Zr〇 (605A) )の 6ペアか
2 2 2
らなる第 1の保護膜を設ける。これらの膜厚は、活性層からの発光波長を 400nm、そ の波長を吸収して発光される励起光を 550nmとしてその波長(え )に対してえ /4n ( nは屈折率)となるように設定したものである。このような設定で設けられた端面保護 膜の透過率をグラフに示す。出射側の透過率を図 3に、また、リア側の透過率を図 2 に示す。出射側、リア側とも、励起光の波長域の透過率が低くなつており、外部に放 出されにくくしている。
[0100] 最後に、リッジストライプと略平行になるようにスクライブにより溝を形成し、その溝部 でバーを切断して本発明の半導体レーザ素子を得る。スクライブの方法としては、力 ッタ一等の刃を用いた機械的又は物理的スクライブや、 YAGレーザなどを用いた光 学的又は熱的スクライブ等を用いることができる。また、スクライブの方向は、半導体 層側からでもあるいは基板側からでもよぐ素子の形状や、基板の種類等によって最 適な方法を種々選択することができる。
[0101] 上記のようにして得られる窒化物半導体レーザ素子は、窒化物半導体基板のほぼ 全面に励起領域を有している。これは、転位密度の差が極端に大きくならなりように 成長させているためであり、そのために局部的に励起光強度の高い領域が存在して いない。また、室温において閾値電流密度 2. 5kA/cm2、 60mWの高出力におい て発振波長 405nmの連続発振可能なものである。リア側に設けた検出器に励起光 が照射されるのを低減することで、制御よく駆動させることができるとともに、出射側端 面から放出されるレーザ光はノイズ(凹凸)が少なく良好な FFPを有している。
実施例 2
[0102] 実施例 2は、出射側端面には、第 3の端面保護膜として、 Al O (1800A) / (Si〇
2 3 2
(917A) /Nb〇 (550 A) )の 3ペアからなる第 3の端面保護膜を設ける。リア側端
2 5
面には、 Zr〇 (440A) + (SiO (667A) /Ti〇 (370 A) )の 6ペアからなる第 2の
2 2 2
保護膜を設ける。その上にさらに ZrO (440A) + (SiO (917A) /TiO (509A) )
2 2 2 の 6ペアからなる第 1の保護膜を設ける。これらの膜厚は、実施例 1と同様に、活性層 力 の発光波長を 400nm、その波長を吸収して発光される励起光を 550nmとして その波長(え)に対して λ /4η (ηは屈折率)となるように設定したものである。また、 η 電極を窒化物半導体基板の裏面に設ける。 η電極の材料としては、 V/Pt/Au (15 0 A/2000 A/3300 A)で設ける。 n電極を設けた後は、熱処理を行わない。上記 以外については実施例 1と同様に行レ、、本発明の窒化物半導体レーザ素子を得る。 このようにして得られる窒化物半導体レーザ素子は、実施例 1と同様に励起領域を基 板のほぼ全領域に備え、弱い励起光を有する。室温において閾値電流密度 2. 5kA 60mWの高出力において発振波長 405nmの連続発振可能なものである。 リア側に設けた検出器に励起光が照射されるのを低減することで、制御よく駆動させ ること力 Sできるとともに、出射側端面から放出されるレーザ光はノイズ(凹凸)が少なく 良好な FFPを有している。
実施例 3
[0103] 実施例 3においては、窒化物半導体基板として、以下のようにして得られる基板を 用いる。成長基板として、 GaAs基板を用いる。基板上面に、窒化物半導体の M面と 平行なストライプ状の SiOよりなる保護膜を形成し、これを種としてファセット面が表
2
出するように成長させる。これによつて、膜厚約 300 / mの窒化物半導体基板を得る 。このようにして得られる窒化物半導体基板は、ストライプ状に低転位密度領域と、転 位束を有する窒化物半導体基板であって、リッジを低転位密度領域の上部に形成さ せる。低転位密度領域は励起領域であって、導通と共に活性層からの発光波長 (40 5nm)を吸収して、励起光(560nm)を有する。実施例 3では、 n電極を窒化物半導 体基板の裏面に形成させているが、リッジ形成前には n型半導体層を露出するように エッチングを行う。特に、結晶性の悪い転位束の上部に形成されている n型半導体層 一 p型半導体層は、成長状態がその周辺部と異なっている。そのため、膜厚も周辺部 に比して薄くなつている。そのような領域では、 pnジャンクションの形成が十分ではな レ、と考えられる。そのため、ストライプ状の転位束の幅よりもやや広い範囲の n型半導 体層一 p型半導体層をエッチングによって除去することで、素子機能の低下を抑制 すること力 Sできる。また、出射側端面に (Al O (823A) /TiO (509 A) )の 2ペアか
2 3 2
らなる第 3の端面保護膜を設ける以外は、実施例 1と同様に行い、本発明の窒化物 半導体レーザ素子を得る。尚、実施例 3においても、第 3の端面保護膜の膜厚は、実 施例 1と同様に、活性層からの発光波長を 400nm、その波長を吸収して発光される 励起光を 550nmとしてその波長( λ )に対して λ /4η (ηは屈折率)となるように設定 したものである。このようにして得られる窒化物半導体レーザ素子は、室温において 閾値電流密度 2. 5kA/cm2、 60mWの高出力において発振波長 405nmの連続発 振可能なものである。リア側に設けた検出器に励起光が照射されるのを低減すること で、制御よく駆動させることができるとともに、出射側端面から放出されるレーザ光は ノイズ(凹凸)が少なく良好な FFPを有してレ、る。
産業上の利用可能性
本発明は、レーザ素子を応用することができる全てのデバイス、例えば、 CDプレー ャ、 MDプレーヤ、各種ゲーム機器、 DVDプレーヤ、電話回線や海底ケーブル等の 基幹ライン'光通信システム、レーザメス、レーザ治療器、レーザ指圧機等の医療機 器、レーザビームプリンタ、ディスプレイ等の印刷機、各種測定器、レーザ水準器、レ 一ザ測長機、レーザスピードガン、レーザ温度計等の光センシング機器、レーザ電力 輸送等の種々の分野において利用することができる。

Claims

請求の範囲
[1] 窒化物半導体基板と、その上に n型半導体層、活性層及び p型半導体層が積層さ れてなる窒化物半導体層を備え、該窒化物半導体層にストライプ状のレーザ光の導 波路領域を有すると共に、その導波路領域と略垂直な両端面に端面保護膜を有す る窒化物半導体レーザ素子であって、
前記窒化物半導体基板は、前記活性層からの発光を吸収し、その発光波長よりも 長波長の励起光を発光する励起領域を有し、
前記端面保護膜は、前記励起領域からの発光波長に対して高反射率を有すること を特徴とする窒化物半導体レーザ素子。
[2] 前記端面保護膜は、出射側端面と、リア側端面の両方に設けられている請求項 1 記載の窒化物半導体レーザ素子。
[3] 前記端面保護膜は、前記活性層からの発光波長に対して、低反射率を有する請求 項 1記載の窒化物半導体レーザ素子。
[4] 前記端面保護膜は、単層又は多層構造である請求項 1乃至請求項 3記載の窒化 物半導体レーザ素子。
[5] 窒化物半導体基板と、その上に n型半導体層、活性層及び p型半導体層が積層さ れてなる窒化物半導体層を備え、該窒化物半導体層にストライプ状のレーザ光の導 波路領域を有すると共に、その導波路領域と略垂直な端面に、出射側端面保護膜 及びその反対のリア側端面保護膜を有する窒化物半導体レーザ素子であって、 前記窒化物半導体基板は、前記活性層からの発光を吸収し、その発光波長よりも 長波長の励起光を発光する励起領域を有し、
前記リア側端面保護膜は、前記励起光の波長に対して高反射率を有する第 1の端 面保護膜と、前記活性層からの発光波長に対して高反射率を有する第 2の端面保護 膜とを備え、
前記出射側端面保護膜は、前記励起光の波長に対して高反射率を有する第 3の 端面保護膜を備えてなることを特徴とする窒化物半導体レーザ素子。
[6] 前記第 1の端面保護膜及び/又は前記第 3の端面保護膜は、前記活性層からの 発光波長に対して、低反射率を有する請求項 5記載の窒化物半導体レーザ素子。
[7] 前記出射側端面保護膜は、前記活性層からに発光波長に対して高反射率を有す る第 4の端面保護膜を有する請求項 5又は請求項 6記載の窒化物半導体レーザ素子
[8] 前記第 1の端面保護膜、第 2の端面保護膜、第 3の端面保護膜、第 4の端面保護膜 は、それぞれ単層又は多層構造である請求項 5乃至請求項 7記載の窒化物半導体 レーザ素子。
[9] 前記第 1の端面保護膜と、前記第 2の端面保護膜は、少なくとも一部が重なるよう積 層されている請求項 5乃至請求項 8記載の窒化物半導体素子。
[10] 前記第 3の端面保護膜と、前記第 4の端面保護膜は、少なくとも一部が重なるよう積 層されている請求項 8記載の窒化物半導体レーザ素子。
[11] 前記第 2の端面保護膜は、前記半導体層に接して形成されている請求項 5又は請 求項 6記載の窒化物半導体レーザ素子。
[12] 前記第 4の端面保護膜は、前記半導体層に接して形成されてレ、る請求項 7記載の 窒化物半導体レーザ素子。
[13] 前記励起領域は、その周辺領域に比して転位密度が低い請求項 1乃至請求項 12 記載の窒化物半導体レーザ素子。
[14] 前記励起領域は、その周辺領域に比して不純物濃度が高い請求項 1乃至請求項 1
3記載の窒化物半導体レーザ素子。
[15] 前記不純物は、 H、 0、 C、 Siのうちの少なくとも一種である請求項 14記載の窒化物 半導体レーザ素子。
[16] 前記活性層からの発光波長は、 390— 420nmである請求項 1乃至請求項 15記載 の窒化物半導体レーザ素子。
[17] 前記励起光の波長は、 550 600nmである請求項 1乃至請求項 16記載の窒化物 半導体レーザ素子。
[18] 前記励起領域は、前記導波路領域と略平行なストライプ状に形成されている請求 項 1乃至請求項 17記載の窒化物半導体レーザ素子。
[19] 前記導波路領域は、前記励起領域の上方に形成されている請求項 1乃至請求項 1
8記載の窒化物半導体レーザ素子。
[20] 前記導波路領域は、前記励起領域から離間する領域に形成されている請求項 1乃 至請求項 19記載の窒化物半導体レーザ素子。
[21] 請求項 1乃至 20記載の窒化物半導体レーザ素子と、該窒化物半導体レーザ素子 の発光を検出する検出器と、が搭載されたレーザ装置であって、該検出器の分光感 度は、前記窒化物半導体レーザ素子の発光波長; I よりも、前記励起光 λ が大き
LD ex いレーザ装置。
PCT/JP2004/009852 2003-07-10 2004-07-09 窒化物半導体レーザ素子及びそれを用いたレーザー装置 WO2005006506A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/563,811 US7609737B2 (en) 2003-07-10 2004-07-09 Nitride semiconductor laser element
EP04747320.2A EP1650841B1 (en) 2003-07-10 2004-07-09 Nitride semiconductor laser element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003273123 2003-07-10
JP2003-273123 2003-07-10

Publications (1)

Publication Number Publication Date
WO2005006506A1 true WO2005006506A1 (ja) 2005-01-20

Family

ID=34056005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009852 WO2005006506A1 (ja) 2003-07-10 2004-07-09 窒化物半導体レーザ素子及びそれを用いたレーザー装置

Country Status (4)

Country Link
US (1) US7609737B2 (ja)
EP (1) EP1650841B1 (ja)
TW (1) TW200505063A (ja)
WO (1) WO2005006506A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019313A (ja) * 2005-07-08 2007-01-25 Seiko Epson Corp 光素子および光モジュール
KR100661602B1 (ko) * 2005-12-09 2006-12-26 삼성전기주식회사 수직 구조 질화갈륨계 led 소자의 제조방법
EP1981093A4 (en) 2006-01-20 2011-10-05 Panasonic Corp LIGHT-EMITTING SEMICONDUCTOR ELEMENT, GROUP III NITRIDE SEMICONDUCTOR SUBSTRATE AND METHOD FOR PRODUCING SUCH A GROUP III NITRIDE SEMICONDUCTOR SUBSTRATE
EP1883141B1 (de) * 2006-07-27 2017-05-24 OSRAM Opto Semiconductors GmbH LD oder LED mit Übergitter-Mantelschicht
PL1883119T3 (pl) * 2006-07-27 2016-04-29 Osram Opto Semiconductors Gmbh Półprzewodnikowa struktura warstwowa z supersiecią
EP1883140B1 (de) * 2006-07-27 2013-02-27 OSRAM Opto Semiconductors GmbH LD oder LED mit Übergitter-Mantelschicht und Dotierungsgradienten
EP1906461B1 (de) 2006-09-26 2020-03-18 OSRAM Opto Semiconductors GmbH Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102006054069A1 (de) * 2006-09-26 2008-03-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement
JP2008235804A (ja) * 2007-03-23 2008-10-02 Rohm Co Ltd 発光素子
US8410510B2 (en) * 2007-07-03 2013-04-02 Nichia Corporation Semiconductor light emitting device and method for fabricating the same
US7928463B2 (en) * 2008-01-11 2011-04-19 Industrial Technology Research Institute Light emitting device
US7906786B2 (en) * 2008-01-11 2011-03-15 Industrial Technology Research Institute Light emitting device
US8536614B2 (en) 2008-01-11 2013-09-17 Industrial Technology Research Institute Nitride semiconductor light emitting device with magnetic film
JP4966283B2 (ja) * 2008-10-14 2012-07-04 シャープ株式会社 半導体レーザ装置およびその製造方法
JP5504618B2 (ja) * 2008-12-03 2014-05-28 豊田合成株式会社 Iii族窒化物半導体発光素子及びその製造方法
US9012253B2 (en) * 2009-12-16 2015-04-21 Micron Technology, Inc. Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods
US9515447B2 (en) 2011-02-18 2016-12-06 Ball State Innovation Corporation Titanium-doped amorphous aluminum nitride microlaser device and method for making and using same
WO2015047341A1 (en) * 2013-09-27 2015-04-02 Intel Corporation Non-planar semiconductor devices having multi-layered compliant substrates
US10644210B2 (en) * 2016-04-01 2020-05-05 Nichia Corporation Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US11909172B2 (en) * 2020-01-08 2024-02-20 Asahi Kasei Kabushiki Kaisha Method for manufacturing optical device and optical device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191171A (ja) * 1995-01-12 1996-07-23 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JPH11154770A (ja) * 1997-11-21 1999-06-08 Oki Electric Ind Co Ltd 集積型半導体光素子およびその製造方法
EP0949731A2 (en) 1998-04-06 1999-10-13 Matsushita Electronics Corporation Nitride semiconductor laser device
JP2000196199A (ja) * 1998-12-24 2000-07-14 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JP2002076518A (ja) * 2000-08-30 2002-03-15 Sony Corp 半導体レーザおよび半導体素子並びにそれらの製造方法
JP2002100830A (ja) * 2000-07-18 2002-04-05 Nichia Chem Ind Ltd 窒化ガリウム系発光素子
JP2002280663A (ja) 2001-03-15 2002-09-27 Sony Corp 半導体レーザ素子及び光集積デバイス
JP2002314198A (ja) * 2001-04-13 2002-10-25 Sony Corp 半導体レーザ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893390A (ja) * 1981-11-30 1983-06-03 Fujitsu Ltd 光半導体装置
US5247536A (en) * 1990-07-25 1993-09-21 Kabushiki Kaisha Toshiba Semiconductor laser distributed feedback laser including mode interrupt means
US6057565A (en) * 1996-09-26 2000-05-02 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a non-stoichiometric compound layer and manufacturing method thereof
US7212556B1 (en) * 1999-02-17 2007-05-01 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device optical disk apparatus and optical integrated unit
US6693935B2 (en) * 2000-06-20 2004-02-17 Sony Corporation Semiconductor laser
US6586762B2 (en) * 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
US7113472B2 (en) * 2001-03-28 2006-09-26 Matsushita Electric Industrial Co., Ltd. Optical head including an active polymer film for switching voltage during recording and reproducing processes
US6773504B2 (en) * 2001-04-12 2004-08-10 Sumitomo Electric Industries, Ltd. Oxygen doping method to gallium nitride single crystal substrate and oxygen-doped N-type gallium nitride freestanding single crystal substrate
JP3826825B2 (ja) 2001-04-12 2006-09-27 住友電気工業株式会社 窒化ガリウム結晶への酸素ドーピング方法と酸素ドープされたn型窒化ガリウム単結晶基板
JP4948720B2 (ja) 2001-08-29 2012-06-06 シャープ株式会社 窒素化合物半導体積層物、発光素子、光ピックアップシステム、および窒素化合物半導体積層物の製造方法。
JP3910041B2 (ja) 2001-10-29 2007-04-25 シャープ株式会社 窒化物半導体レーザ素子及びこれを備えた半導体光学装置
WO2003038957A1 (en) * 2001-10-29 2003-05-08 Sharp Kabushiki Kaisha Nitride semiconductor device, its manufacturing method, and semiconductor optical apparatus
JP3910043B2 (ja) 2001-10-29 2007-04-25 シャープ株式会社 窒化物半導体レーザ素子、その製造方法および半導体光学装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191171A (ja) * 1995-01-12 1996-07-23 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JPH11154770A (ja) * 1997-11-21 1999-06-08 Oki Electric Ind Co Ltd 集積型半導体光素子およびその製造方法
EP0949731A2 (en) 1998-04-06 1999-10-13 Matsushita Electronics Corporation Nitride semiconductor laser device
JP2000196199A (ja) * 1998-12-24 2000-07-14 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JP2002100830A (ja) * 2000-07-18 2002-04-05 Nichia Chem Ind Ltd 窒化ガリウム系発光素子
JP2002076518A (ja) * 2000-08-30 2002-03-15 Sony Corp 半導体レーザおよび半導体素子並びにそれらの製造方法
JP2002280663A (ja) 2001-03-15 2002-09-27 Sony Corp 半導体レーザ素子及び光集積デバイス
JP2002314198A (ja) * 2001-04-13 2002-10-25 Sony Corp 半導体レーザ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1650841A4

Also Published As

Publication number Publication date
EP1650841A4 (en) 2006-10-11
TWI350594B (ja) 2011-10-11
EP1650841B1 (en) 2014-12-31
TW200505063A (en) 2005-02-01
EP1650841A1 (en) 2006-04-26
US7609737B2 (en) 2009-10-27
US20060256825A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP4370911B2 (ja) 半導体レーザ素子
US7149233B2 (en) Semiconductor laser device and its manufacturing method
JP4547933B2 (ja) 窒化物半導体素子
EP1650841B1 (en) Nitride semiconductor laser element
JP4696522B2 (ja) 半導体レーザ素子
WO2001095446A1 (fr) Dispositif de laser a semi-conducteur et son procede de fabrication
WO2003036771A1 (fr) Laser a semi-conducteurs a base de nitrure et procede de production de ce laser
JP4529372B2 (ja) 半導体レーザ素子
JP4665394B2 (ja) 窒化物半導体レーザ素子
JP4457549B2 (ja) 窒化物半導体レーザ素子及びその製造方法
JP4100013B2 (ja) 窒化物半導体レーザ素子及びその製造方法
JP4457417B2 (ja) 窒化物半導体レーザ素子
JP5010096B2 (ja) 窒化物半導体レーザ素子及びそれを用いたld装置
JP5735216B2 (ja) 窒化物半導体レーザ素子
JP2005101483A (ja) リッジ導波路型半導体レーザ
JP3264163B2 (ja) 窒化物半導体レーザ素子
JP4370904B2 (ja) 半導体レーザ素子
JP4626143B2 (ja) 半導体レーザ素子の製造方法及び半導体レーザ素子
JP2003101141A (ja) 多層膜反射層およびそれを用いた窒化ガリウム系発光素子
JP2005101536A (ja) 窒化物半導体レーザ素子
JP3772651B2 (ja) 窒化物半導体レーザ素子
JP2002270967A (ja) 半導体レーザ素子
JPH10303493A (ja) 窒化物半導体レーザ素子
JP2002237661A (ja) 窒化物半導体レーザ素子
JP2004281431A (ja) 窒化物半導体レーザ素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004747320

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004747320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006256825

Country of ref document: US

Ref document number: 10563811

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10563811

Country of ref document: US