WO2005005830A1 - Pompe a liquide et procede de pompage d'un liquide dont un gaz peut s'echapper de la solution - Google Patents

Pompe a liquide et procede de pompage d'un liquide dont un gaz peut s'echapper de la solution Download PDF

Info

Publication number
WO2005005830A1
WO2005005830A1 PCT/EP2003/007190 EP0307190W WO2005005830A1 WO 2005005830 A1 WO2005005830 A1 WO 2005005830A1 EP 0307190 W EP0307190 W EP 0307190W WO 2005005830 A1 WO2005005830 A1 WO 2005005830A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
liquid
valve
inlet
valve chamber
Prior art date
Application number
PCT/EP2003/007190
Other languages
English (en)
Inventor
Leslie James Warren
Original Assignee
Leslie James Warren
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leslie James Warren filed Critical Leslie James Warren
Priority to AU2003246384A priority Critical patent/AU2003246384A1/en
Priority to US10/555,828 priority patent/US20060216177A1/en
Priority to PCT/EP2003/007190 priority patent/WO2005005830A1/fr
Priority to EP04015611A priority patent/EP1493922B1/fr
Priority to PT04015611T priority patent/PT1493922E/pt
Priority to AT04015611T priority patent/ATE316612T1/de
Priority to DE602004000344T priority patent/DE602004000344T2/de
Priority to SI200430022T priority patent/SI1493922T1/sl
Priority to PL04015611T priority patent/PL1493922T3/pl
Priority to ES04015611T priority patent/ES2257719T3/es
Priority to DK04015611T priority patent/DK1493922T3/da
Publication of WO2005005830A1 publication Critical patent/WO2005005830A1/fr
Priority to HK05102414A priority patent/HK1069198A1/xx

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/06Venting

Definitions

  • This invention relates generally to pumps for pumping a liquid from a source with a temperature and pressure near its liquidus or containing entrained or dissolved gas.
  • the invention relates to the apparatus and methods suitable for either mobile or stationary liquid reciprocating pumping systems whose liquid source is at a temperature and pressure close to its liquidus.
  • Liquid carbon dioxide (CO 2 ) is an example of this type of liquid source. Liquids having dissolved or entrained gas, may also be pumped using the current invention.
  • the unswept volume is that volume of liquid remaining in the pumping chamber at the end of the power stroke of the pump.
  • the present invention reduces the unswept volume to a minimum by fitting the inlet valves at an angle which allows delivery of the liquid from the inlet valves directly into the pumping chamber.
  • the unswept residual liquid tends to vaporize when subjected to depressiirization during the intake stroke, a phenomena known as cavitation which can cause excessive wear on the internal pump components and will reduce the efficiency of the pump.
  • Cavitation occurs when vapor bubbles are formed as a result of the lowered pressure of the liquid as it is drawn into the suction of the pump during the intake stroke.
  • Some pumps reduce the liquid's pressure below the vapor pressure of the liquid at the existing temperature, causing it to vaporize. In the extreme situation, the pump can become filled with vapor and may be unable to pump. More importantly, the vapor bubbles will violently recondense into liquid form as the pressure is increased during the liquid's travel during the power stroke of the pump. The pressure pulse from the implosion of the vapor bubble attacks adjacent materials. The effects of cavitation may also combine with corrosion further increasing the speed of wear of the pump materials. In some cases, the original protective layers provided on the pump materials will be destroyed, rendering the exposed metal surface permanently activated for chemical attack.
  • the pump is oriented to allow liquid flowing into the compression chamber by the natural tendency of liquid to flow downward and residual vapor to leave the compression chamber, and return to the supply tank, by the natural tendency of vapor to flow upward.
  • the location of the large smooth inlet line at the top of the pump encourages any vapor to escape and be piped back to the supply tank.
  • the flow of vapor back to the supply tank is also encouraged by the conduit leading back, at a positive slope, to the supply tank. This principle will also apply to liquids where dissolved gas can come out of solution or where gas is entrained.
  • the inlet chamber located above the inlet valve reduces cavitation because this chamber prepares a new discrete volume of inlet liquid while the current discrete volume is being power-stroked out of the compression chamber. This is flirthered by setting the inlet valves in angled pockets that encourage and facilitate the buoyancy and upward movement of any released bubbles back to the top of the inlet line during the power stroke.
  • the current invention discourages cavitation because the unswept volume, as discussed above, is minimized. This is critical to the efficiency of the pump as well as reduction of the adverse effects of cavitation because this residual liquid tends to vaporize when subjected to depressurization during the intake stroke.
  • the present invention increases the pumping efficiency of liquids whose liquid source is at a temperature and pressure close to its liquidus, or liquids with entrained or dissolved gas, referred to as a vapor in several ways.
  • the pump is oriented to allow liquid flowing into the compression chamber by the natural tendency of liquid to flow downward and residual vapor to return to the supply tank, by the natural tendency of vapor to flow upward.
  • the location of the large smooth inlet line at the top of the pump encourages any vapor to escape and be piped back to the supply tank.
  • the flow of vapor back to the supply tank is also encouraged by the vapor outlet and conduit leading back, at a positive slope, to the supply tank.
  • the vapor outlet can be slightly higher than the liquid inlet to improve the
  • the inlet chamber located above the inlet valve reduces cavitation because this chamber prepares a new discrete volume of inlet liquid while the current discrete volume is being power-stroked out of the compression chamber. This is furthered by setting the inlet valves in angled pockets which encourages and facilitates the release of any released vapor bubbles back to the top of the inlet line duiing the power stroke.
  • the current invention discourages cavitation because the unswept volume is minimized. This is critical to the efficiency of the pump as well as reduction of the adverse effects of cavitation because this residual liquid tends to vaporize when subjected to depressurization during the intake stroke. The effects of liquid compressibility are reduced with reduced unswept volume.
  • An object and advantage of the invention is to provide an improved apparatus and method of pumping liquids that removes vapor from the pump and returns the vapor to the supply tank in a more efficient manner.
  • Another object and advantage of the invention allows the pumping of liquids whose liquid source is at a temperature and pressure close to its liquidus or has entrained gas or gas coming out of solution.
  • An object and advantage of the invention is to provide an apparatus and method of pumping liquids that decreases the unswept volume of the pump.
  • Figure 1 is a front view of the pumping system, showing inlet and outlet lines, the supply tank and the driving means.
  • Figure 2 is a perspective view of the pump.
  • Figure 3 is a front view of the pump with arrows indicating fluid direction.
  • Figure 4 is a side cross sectional view of the pump as it aspirates fluid into the compression chamber.
  • Figure 5 is a side cross sectional view of the pump as it pumps fluid out of the compression chamber.
  • Figure 1 illustrates a preferred pumping system using the inventive pump.
  • the pump 10 shown in detail in Figures 2 to 5, is in fluid communication with a downwardly declining inlet conduit 14 which is connected to the bottom of a supply tank 12, an upwardly inclining vapor release conduit 16 which communicates with the top of the supply tank 12.
  • the supply tank 12 is shown in Figure 1 with a level of liquid 13 contained therein. Since the liquid is held near its liquidus, vapor bubbles will tend to form in the liquid when either the temperature rises beyond the liquid's liquidus or the pressure decreases below the liquidus.
  • the inlet conduit 14 is preferably connected at the bottom of the supply tank 12 and the vapor release conduit 16 in fluid communication with the supply tank 12, preferably connected at the top of the supply tank 12.
  • an automatic vent valve can replace the vapor release conduit 16 when the gas can be safely and economically vented to atmosphere or alternative vessel.
  • the inlet conduit 14 is further preferably downwardly declining in slope and the gas release conduit 16 preferably upwardly inclining. This configuration facilitates the natural tendency of liquid to flow downwardly and vapor upwardly.
  • the fluid in the supply tank 12 is primarily liquid under vapor, however the liquid may contain some vapor bubbles, with the vapor bubbles being more
  • the inlet conduit 14, communicating with the bottom of the supply tank 12, is generally composed of liquid but some vapor bubbles may move into the downwardly declining inlet conduit 14. Further, as the liquid progresses down the inlet conduit 14, additional vapor bubbles may form due to increased temperature or decreased pressure.
  • the vapor release conduit 16 is shown in Figure 1 to be filled with a liquid and vapor mixture to the level of liquid contained in the supply tank 12. A fluid equilibrium level 19 is shown across the vapor release conduit 16 and the fluid level 13 in the supply tank. The vapor release conduit 16 contains vapor above the fluid equilibrium level 19.
  • the pump 10 is drivingly connected to a drive means, e.g., an electric motor 11. Actuation of the pump 10 by the motor 11 will result in liquid being drawn from the bottom of the supply tank 12 into the pump 10 with the liquid ultimately being pumped out of the pump 10 through a liquid outlet conduit 18. Any vapor released inside the pump 10 will tend, as a result of the invention, to be released into the upwardly inclined vapor outlet conduit 16, thus preventing the bubbles from moving through the internal valved chambers of the pump 10. Thus, cavitation is minimized and volumetric efficiency maximized.
  • a drive means e.g., an electric motor 11.
  • the pump 10 is comprised of a crankcase assembly 20 and a manifold 26.
  • a crankshaft 22 is disposed through the crankcase assembly 20 and, as illustrated in Figure 1, is drivingly connected to an electric motor 11 or the equivalent.
  • the downwardly declined liquid-vapor inlet conduit 14, shown in Figure 1 is connected to the pump 10 via the inlet pipe stub 30 and inlet flange 32.
  • the upwardly inclined vapor release conduit 16 is connected to the pump 10 via the vapor outlet pipe stub 36 and vapor outlet flange 38.
  • the vapor outlet pipe 36 can be slightly higher than the liquid inlet pipe 30, either by design or by tilting the pump.
  • the liquid outlet conduit 18 is connected to the pump 10 via the liquid outlet pipe stub 78 and the liquid outlet flange 80.
  • the arrows in Figures 1 and 3 indicate the direction of flow of the fluid when the pump is operational.
  • the vapor release conduit 16 is of sufficient diameter to allow the buoyant vapor to percolate upwardly.
  • Figure 4 illustrates a cross section of the manifold 26 and crankcase assembly 20.
  • An upper inlet chamber 40 is in fluid communication with a valve chamber 42 that is configured in an angled pocket.
  • the first upper end of the valve chamber 44 is preferably higher with
  • the second lower end of the valve chamber 44 is in valved fluid communication with the compression chamber 62.
  • An inlet valve 52 controls the flow of liquid from the valve chamber 42 into the compression chamber 62.
  • the inlet valve 52 consists preferably of a valve seat 50, a spring retainer 54, a valve spring 56 and a valve plug 58.
  • the inlet valve 52 is biased in the closed position by the valve spring 56.
  • a displacement element shown as a plunger 24, an alternate embodiment may be a piston, is in communication with the compression chamber 62 and is drivingly connected to the crankshaft 22 which is, in turn, driven by the motor 11.
  • the plunger 24 moves backward in a suction stroke to draw liquid into the compression chamber 62 and forward in a power stroke to push liquid out of the compression chamber 62.
  • the preferred embodiment provides a valve chamber 42 volume that is greater than the volume vacated by the plunger 24 after completing a full suction stroke in the compression chamber 62.
  • the lower portion of the compression chamber 62 is in valved fluid communication with the liquid outlet chamber 76.
  • the outlet valve 66 consists preferably of a valve seat 68, a spring retainer 70, a valve spring 72 and a valve plug 74.
  • Figure 4 shows the valve spring 72 partially cut away to expose the liquid outlet chamber 76.
  • the outlet valve 66 is biased in the closed position by the valve spring 72.
  • the preferred embodiment includes three sets of valve chambers 42, inlet valves 50, compression chambers 62, plungers 24 and outlet valves 66. It is understood that any number of these components may be employed depending on the particular requirements.
  • the liquid resident in the upper inlet chamber 40 and in the valve chambers 42 is prepared by the invention design by allowing time for any released vapor bubbles to move upwardly. The natural tendency for vapor to move upward is facilitated by the angling of the valve chamber 42.
  • the preferred embodiment further includes a substantially smooth upper surface 48 within the valve chamber 42 to allow the
  • FIG. 4 illustrates the plunger 24 moving backward in a suction stroke.
  • the compression cylinder pressure is reduced. This pressure drop actuates the inlet valve 52, causing the valve 52 to compress the valve spring 56 against the spring retainer 54, creating a valved liquid inlet aperture 60.
  • the liquid flows through the inlet aperture 60 into the compression chamber 62, which is empty on the initial stroke, primarily from the valve chamber 42, and to some extent the upper inlet chamber 40.
  • the crankshaft 22 then causes the plunger 24 to push forward in a power stroke, increasing the pressure on the liquid in the compression chamber 62.
  • This pressure causes the inlet valve 50 to remain closed, but forces the outlet valve 66 to compress the outlet valve spring 72 creating a valved liquid outlet aperture 64.
  • the liquid is forced out of the compression chamber 62 through the liquid outlet aperture 64 and into the liquid outlet chamber 76.
  • the liquid flows out of the pump 10 and into the liquid outlet conduit 18.
  • the liquid that is in contact with the valve chamber 42 has time to allow any released vapor bubbles to flow upwardly which will occur since the bubbles are lighter than the liquid.
  • the upwardly angled valve chamber 42 then facilitates the escape of the bubbles into the upper inlet chamber 40.
  • the natural flow of the bubbles will be upward and toward the region of least pressure. Since the flow will be sustained from the downwardly declining liquid inlet conduit 14 that connects with the bottom of supply tank 12 there will be a natural tendency for the bubbles to move to the upwardly inclining gas outlet conduit 16 which connects with the tank
  • the angling of the valve chamber 42 also reduces cavitation by reducing the unswept volume of the compression chamber 62.
  • the unswept volume is the volume of liquid remaining in the compression chamber 62 when the plunger 24 is at the end of its power stroke. Vaporization of the liquid remaining unswept in the compression chamber 62 when subjected to depressurization during the suction stroke results in cavitation and reduces the efficiency of the pump 10.
  • the present invention places the valved liquid inlet aperture 60 as near to the plunger as possible by angling the second end of the valve chamber 46 downwardly with respect to the first end of the valve chamber 44. As seen in Figure 5, the valved inlet aperture 60 is configured so that it is immediately adjacent to the fully extended plunger 24. Thus, the incoming liquid is placed directly into the compression chamber 62 with as little intervening space as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

La présente invention augmente l'efficacité de pompage lors de pompage de liquides dont la source est à une température et à une pression proches du liquidus ou ayant entraîner ou un gaz s'échappant de la solution, que l'on nomme vapeur, de différentes manières, d'abord la pompe vise à permettre l'écoulement d'un liquide dans une chambre de compression par la tendance naturelle du liquide à s'écouler vers le bas et à permettre le retour de la vapeur résiduelle vers le réservoir d'approvisionnement selon la tendance naturelle de la vapeur à s'écouler vers le haut. L'emplacement de la ligne d'entrée lisse et large en haut de la pompe facilite l'évacuation de la vapeur et sa reconduite vers le réservoir d'approvisionnement. L'écoulement de vapeur en retour dans le réservoir d'approvisionnement est également favorisé par les sorties de vapeur et les conduites de retour, suivant une inclinaison positive, en direction du réservoir d'approvisionnement. Deuxièmement, la chambre d'entrée surplombant la vanne d'entrée réduit la cavitation parce que cette chambre prépare un nouveau volume discret de liquide d'admission alors que le volume discret actuel est propulsé hors de la chambre de compression. C'est en définissant les vannes d'entrée dans des poches angulaires que l'on facilite et encourage la libération de toute bulle de vapeur en retour vers le haut de la ligne d'entrée pendant la combustion. Finalement, l'invention empêche la cavitation du fait que le volume non engendré est réduit. Ceci est d'une importance toute spéciale en termes d'efficacité de la pompe ainsi que de réduction des effets secondaires de la cavitation étant donné que ce liquide résiduel tend à se vaporiser lorsqu'il est soumis à dépressurisation pendant la course d'admission.
PCT/EP2003/007190 2003-07-04 2003-07-04 Pompe a liquide et procede de pompage d'un liquide dont un gaz peut s'echapper de la solution WO2005005830A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2003246384A AU2003246384A1 (en) 2003-07-04 2003-07-04 Liquid pump and method for pumping a liquid that may have gas coming out of solution
US10/555,828 US20060216177A1 (en) 2003-07-04 2003-07-04 Liquid pump and method for pumping a liquid that may have gas coming out of solution
PCT/EP2003/007190 WO2005005830A1 (fr) 2003-07-04 2003-07-04 Pompe a liquide et procede de pompage d'un liquide dont un gaz peut s'echapper de la solution
AT04015611T ATE316612T1 (de) 2003-07-04 2004-07-02 Flüssigkeitspumpe und verfahren zum fördern einer flüssigkeit bei welcher ein gelöstes gas aus der lösung entweichen kann
PT04015611T PT1493922E (pt) 2003-07-04 2004-07-02 Tubo de permutador de calor estruturado de ambos os lados, bem como processo para o seu fabrico
EP04015611A EP1493922B1 (fr) 2003-07-04 2004-07-02 Pompe pour liquides et méthode pour pomper un liquide contenant un gaz dissous pouvant échaper de la solution
DE602004000344T DE602004000344T2 (de) 2003-07-04 2004-07-02 Flüssigkeitspumpe und Verfahren zum Fördern einer Flüssigkeit bei welcher ein gelöstes Gas aus der Lösung entweichen kann
SI200430022T SI1493922T1 (sl) 2003-07-04 2004-07-02 Tekocinska crpalka in postopek crpanja tekocine, ki lahko vsebuje plin,ki izhaja iz raztopine
PL04015611T PL1493922T3 (pl) 2003-07-04 2004-07-02 Pompa do cieczy i sposób pompowania cieczy mogącej zawierać gaz wydzielający się z roztworu
ES04015611T ES2257719T3 (es) 2003-07-04 2004-07-02 Bomba para liquidos y metodo para el bombeo de un liquido que puede contener un gas desprendido de la solucion.
DK04015611T DK1493922T3 (da) 2003-07-04 2004-07-02 Væskepumpe og fremgangsmåde til pumpning af en væske, som kan have en gas, der kommer ud af oplösningen
HK05102414A HK1069198A1 (en) 2003-07-04 2005-04-21 Liquid pump and method for pumping a liquid that may have gas coming out of solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2003/007190 WO2005005830A1 (fr) 2003-07-04 2003-07-04 Pompe a liquide et procede de pompage d'un liquide dont un gaz peut s'echapper de la solution

Publications (1)

Publication Number Publication Date
WO2005005830A1 true WO2005005830A1 (fr) 2005-01-20

Family

ID=34042659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/007190 WO2005005830A1 (fr) 2003-07-04 2003-07-04 Pompe a liquide et procede de pompage d'un liquide dont un gaz peut s'echapper de la solution

Country Status (12)

Country Link
US (1) US20060216177A1 (fr)
EP (1) EP1493922B1 (fr)
AT (1) ATE316612T1 (fr)
AU (1) AU2003246384A1 (fr)
DE (1) DE602004000344T2 (fr)
DK (1) DK1493922T3 (fr)
ES (1) ES2257719T3 (fr)
HK (1) HK1069198A1 (fr)
PL (1) PL1493922T3 (fr)
PT (1) PT1493922E (fr)
SI (1) SI1493922T1 (fr)
WO (1) WO2005005830A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278443B2 (en) 2004-12-16 2007-10-09 Diversified Dynamics Corporation Pulsation causing valve for a plural piston pump
US7290561B2 (en) 2004-12-16 2007-11-06 Diversified Dynamics Corporation Pulsation causing valve for a plural piston pump
WO2008005114A1 (fr) 2006-06-29 2008-01-10 Caterpillar Inc. Pompe hydraulique commandée par étranglement d'admission avec dispositif d'évitement des dégâts dus à la cavitation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2565943C1 (ru) * 2014-08-05 2015-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Машина объемного действия
BR112017007471B1 (pt) * 2014-10-13 2022-09-06 Alfa S.R.L. Bomba de deslocamento positivo e grupo de bombeamento para produtos fluidos e método para o uso dos mesmos
CA3007302C (fr) * 2015-12-10 2022-04-12 A.H.M.S., Inc. Ensemble extremite de fluide d'une pompe alternative

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181473A (en) * 1961-06-19 1965-05-04 Air Reduction High-pressure, cavitation free piston pumps
US4239460A (en) * 1977-10-19 1980-12-16 Socsil S.A. Cryogenic pump for liquid gases
US6015270A (en) * 1996-04-30 2000-01-18 Air Conditioning Technologies Linear compressor or pump with integral motor
US6227818B1 (en) * 1994-03-11 2001-05-08 Wilson Greatbatch Ltd. Low power electromagnetic pump

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2824759A (en) * 1955-10-31 1958-02-25 Borg Warner Liquid cooled seal
US2847149A (en) * 1956-08-17 1958-08-12 Symington Wayne Corp Air eliminating device
FR1479513A (fr) * 1966-03-24 1967-05-05 Compresseurs A Membrane Corbli Perfectionnements aux compresseurs et pompes à membrane
US3602613A (en) * 1969-09-25 1971-08-31 Duriron Co High pressure pump
US3600101A (en) * 1969-12-22 1971-08-17 Decatur Pump Co Compact high temperature pump
GB1365226A (en) * 1972-05-30 1974-08-29 Weston Co Ltd Charles Seal mechanisms
US3930756A (en) * 1974-01-14 1976-01-06 Cat Pumps Corporation Metering pulse pump
AT341284B (de) * 1975-04-25 1978-01-25 Hoerbiger Fluidtechnik Kg Vorrichtung zum steuern von schmiereinrichtungen
US4038983A (en) * 1976-01-26 1977-08-02 Baxter Travenol Laboratories, Inc. Fluid infusion pump
US4140118A (en) * 1977-03-09 1979-02-20 Andros Incorporated Cassette chamber for intravenous delivery system
US4142524A (en) * 1977-06-02 1979-03-06 Andros Incorporated Cassette for intravenous delivery system
DE2910611A1 (de) * 1979-03-17 1980-09-18 Bosch Gmbh Robert Hydraulikanlage
JPS55160172A (en) * 1979-05-31 1980-12-12 Toshiba Corp Shaft seal for hydraulic machine
DE2937459C3 (de) * 1979-09-15 1982-03-04 Woma-Apparatebau Wolfgang Maasberg & Co Gmbh, 4100 Duisburg Dichtungsanordnung für eine Kolbenpumpe
DE2949424A1 (de) * 1979-12-08 1981-06-11 Wabco Steuerungstechnik GmbH & Co, 3000 Hannover Betaetigungseinrichtung fuer wegeventile
DE3521772A1 (de) * 1985-06-19 1987-01-02 Stihl Maschf Andreas Verfahren zum einspritzen von kraftstoff bei zweitaktmotoren und vorrichtung zur durchfuehrung des verfahrens
US4714199A (en) * 1986-05-09 1987-12-22 Heath Allan B Liquid atomizing nozzle for spray apparatus
DE3721698A1 (de) * 1987-07-01 1989-01-19 Hauhinco Maschf Radialkolbenpumpe fuer die foerderung von wasser
US4785842A (en) * 1987-08-07 1988-11-22 Johnson Jr Ayres W Resettable vibration-actuated emergency shutoff mechanism
US4900039A (en) * 1988-07-27 1990-02-13 The Pullman Company Twin face seal
JPH0636364Y2 (ja) * 1989-12-26 1994-09-21 イーグル工業株式会社 スラリーシールのクエンチング機構
US5249812A (en) * 1990-03-12 1993-10-05 John Crane Inc. Barrier seal systems
US5026259A (en) * 1990-07-09 1991-06-25 The United States Of America As Represented By The United States Department Of Energy Miniaturized pressurization system
US5143515A (en) * 1990-08-09 1992-09-01 Bw/Ip International, Inc. Pump with seal purge heater
JPH06204157A (ja) * 1992-12-25 1994-07-22 Tokyo Electron Tohoku Ltd 縦型熱処理装置
US5431546A (en) * 1993-08-23 1995-07-11 Liquid Carbonic Corporation Apparatus for intermittent transfer of fluid having vapor trap seal and vapor escape means
DE59600061D1 (de) * 1995-03-03 1998-02-05 Cryopump Ag Pumpe zum Pumpen eines verflüssigtes Gas aufweisenden Fluids und Einrichtung mit einer Pumpe
US5580225A (en) * 1995-07-27 1996-12-03 Pettibone Corporation Pulsation causing check valve assembly for a plural piston pump system
US6045334A (en) * 1996-03-20 2000-04-04 Hypro Corporation Valve disabler for use in high pressure pipe cleaning applications
JPH1172014A (ja) * 1997-06-24 1999-03-16 Unisia Jecs Corp 燃料加圧用ポンプ
FR2765635B1 (fr) * 1997-07-07 1999-09-03 Sagem Pompe d'injection directe de combustible pour moteur a allumage commande et systeme d'injection comportant une telle pompe
US6158972A (en) * 1999-03-16 2000-12-12 Federal-Mogul World Wide, Inc. Two stage pulse pump
US6705432B2 (en) * 2001-11-09 2004-03-16 Lincoln Industrial Corporation Lubricant injection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181473A (en) * 1961-06-19 1965-05-04 Air Reduction High-pressure, cavitation free piston pumps
US4239460A (en) * 1977-10-19 1980-12-16 Socsil S.A. Cryogenic pump for liquid gases
US6227818B1 (en) * 1994-03-11 2001-05-08 Wilson Greatbatch Ltd. Low power electromagnetic pump
US6015270A (en) * 1996-04-30 2000-01-18 Air Conditioning Technologies Linear compressor or pump with integral motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278443B2 (en) 2004-12-16 2007-10-09 Diversified Dynamics Corporation Pulsation causing valve for a plural piston pump
US7290561B2 (en) 2004-12-16 2007-11-06 Diversified Dynamics Corporation Pulsation causing valve for a plural piston pump
WO2008005114A1 (fr) 2006-06-29 2008-01-10 Caterpillar Inc. Pompe hydraulique commandée par étranglement d'admission avec dispositif d'évitement des dégâts dus à la cavitation
US7857605B2 (en) 2006-06-29 2010-12-28 Caterpillar Inc Inlet throttle controlled liquid pump with cavitation damage avoidance feature
US8202064B2 (en) 2006-06-29 2012-06-19 Caterpillar Inc. Inlet throttle controlled liquid pump with cavitation damage avoidance feature

Also Published As

Publication number Publication date
PL1493922T3 (pl) 2006-06-30
HK1069198A1 (en) 2005-05-13
DE602004000344D1 (de) 2006-04-13
AU2003246384A1 (en) 2005-01-28
ATE316612T1 (de) 2006-02-15
DK1493922T3 (da) 2006-05-29
ES2257719T3 (es) 2006-08-01
EP1493922A1 (fr) 2005-01-05
PT1493922E (pt) 2006-06-30
EP1493922B1 (fr) 2006-01-25
US20060216177A1 (en) 2006-09-28
DE602004000344T2 (de) 2006-11-16
SI1493922T1 (sl) 2006-06-30

Similar Documents

Publication Publication Date Title
US6699019B2 (en) Reciprocating windmill pumping system
JP2877751B2 (ja) 冷凍剤ポンプ
EP1236605A3 (fr) Vanne d'arrêt de remplissage et système de ventilation pour réservoire à carburant
CA2510230A1 (fr) Compresseur a gaz ultra haute pression sans espace nuisible
WO2004074629B1 (fr) Compresseur sous-marin
EP1493922B1 (fr) Pompe pour liquides et méthode pour pomper un liquide contenant un gaz dissous pouvant échaper de la solution
US5096391A (en) In-tank fuel reservoir with integral fill pump
CN1063729C (zh) 具有除气装置和总成一体的蒸气回收功能的液体泵
US5431546A (en) Apparatus for intermittent transfer of fluid having vapor trap seal and vapor escape means
US6820861B2 (en) Bottle jack apparatus and method
EP0018648A1 (fr) Pompe à fluides disposée à l'intérieur d'un récipient pour liquides
GB2028921A (en) Fuel-supply Arrangement
KR100815155B1 (ko) 가스연료차량용 연료공급장치
CN116557249A (zh) 一种直排式恒压排液乳化液泵
US4787832A (en) Automatic air vent device for fluid pump of internal combustion engine
US5307848A (en) Non-aerating tank filling nozzle with automatic shutoff
KR100746893B1 (ko) 가스연료차량용 연료공급장치의 리턴밸브
EP0233959A1 (fr) Procédé pour comprimer des gaz
RU2178832C1 (ru) Устройство для перекачки многофазных жидкостей
JP4335391B2 (ja) 気化器の始動装置
RU2095628C1 (ru) Погружной диафрагменный электронасос
RU13072U1 (ru) Пневматический глубинный насос замещения
KR20240098618A (ko) 양수펌프
RU38854U1 (ru) Мембранный гидроприводной дозировочный насос
US3277632A (en) Vapor separating mechanism

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006216177

Country of ref document: US

Ref document number: 10555828

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10555828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP