WO2005000942A1 - 青色発光ポリマー、その製造方法およびそれを利用した発光素子 - Google Patents

青色発光ポリマー、その製造方法およびそれを利用した発光素子 Download PDF

Info

Publication number
WO2005000942A1
WO2005000942A1 PCT/JP2004/008872 JP2004008872W WO2005000942A1 WO 2005000942 A1 WO2005000942 A1 WO 2005000942A1 JP 2004008872 W JP2004008872 W JP 2004008872W WO 2005000942 A1 WO2005000942 A1 WO 2005000942A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
carbon atoms
light emitting
light
Prior art date
Application number
PCT/JP2004/008872
Other languages
English (en)
French (fr)
Inventor
Tadao Nakaya
Tatsuro Ishitobi
Michiaki Tobita
Tomoyuki Saikawa
Original Assignee
Hirose Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose Engineering Co., Ltd. filed Critical Hirose Engineering Co., Ltd.
Priority to EP04746341A priority Critical patent/EP1642920A1/en
Priority to US10/562,934 priority patent/US20060152144A1/en
Publication of WO2005000942A1 publication Critical patent/WO2005000942A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/08Polyhydrazides; Polytriazoles; Polyaminotriazoles; Polyoxadiazoles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1475Heterocyclic containing nitrogen and oxygen as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof

Definitions

  • the present invention relates to a blue light emitting polymer, a method for producing the same and a light emitting device using the same.
  • the present invention relates to a blue light-emitting polymer, a method for producing the same, and a light-emitting device using the same, and more particularly, to a blue light-emitting device capable of emitting blue light with high luminance and a long light-emitting time when energy is applied.
  • the present invention relates to a light emitting polymer, a method for producing the same, and a light emitting device using the same.
  • organic light-emitting devices also referred to as organic EL devices.
  • an organic light-emitting device using a low-molecular-weight light-emitting organic compound has a manufacturing step of a vapor deposition step or a polymer-film forming step of applying a polymer solution containing a low-molecular-weight light-emitting organic compound to form a polymer film. is necessary.
  • the polymer film forming step is simpler than the vapor deposition step.
  • An object of the present invention is to provide a blue light-emitting polymer that can ensure high light emission luminance, realize light emission for a long time, and has excellent durability, a method for producing the same, and a light-emitting element using the same. Is to do.
  • a first means for solving the above-mentioned problem is a blue light-emitting polymer comprising a repeating unit represented by the following general formula (1). [0007] [Formula 1]
  • Ar 1 and Ar 2 each represent a group represented by the following general formulas (2) to (5).
  • Z represents a single bond or a group represented by the following formula (6)
  • Ar 1 and Ar 2 may be the same or different from each other.
  • R 1 represents a hydrogen atom, an alkyl group having 110 carbon atoms, an alkoxy group having 115 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • N represents an integer of 1 to 4.
  • R 2 and R 3 represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 5 represents an alkoxy group or an aryl group having 6 to 14 carbon atoms.
  • R 2 and R 3 may be the same or different from each other.
  • m is an integer of 1 or 2, and has the same meaning as described above.
  • R 5 and R 6 represent a hydrogen atom, an alkyl group having 11 to 10 carbon atoms, an alkoxy group having 115 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • R 5 and R 6, yo be different even identical to each other les.
  • m and n have the same meaning as described above.
  • R 7 and is a hydrogen atom, an alkyl group having 1 one 10 carbon atoms, an alkoxy group or Ariru group with carbon number 6 to 14 of 1 one 5 carbon atoms.
  • the R 7 and May be the same as or different from each other, and in the formula, n has the same meaning as described above.
  • R 1Q represents a hydrogen atom or an alkyl group having 11 to 10 carbon atoms.
  • the R 1Qs may be the same or different from each other.
  • the second means is to use a compound obtained by a dehydrohalogenation reaction between an aromatic cyclic compound represented by the following formula (7) and an aromatic halogen compound represented by the following formula (8):
  • the above general formula (1) characterized in that a dicarboxylic acid compound represented by the following formula (9) obtained by hydrolyzing a compound obtained by chilling and then oxidizing is reacted with a hydrazinium salt to perform polycondensation.
  • This is a method for producing a blue light-emitting polymer comprising a repeating unit represented by 1).
  • a third means is represented by the following formula (11) obtained by acetylating a fluorene compound represented by the following formula (10) and then hydrolyzing the compound obtained by oxidation.
  • R 1U represents a hydrogen atom or an alkyl group having 11 to 10 carbon atoms.
  • the Rs may be the same or different from each other.
  • a fourth means is a light emitting device comprising a light emitting layer containing a blue light emitting polymer comprising a repeating unit represented by the general formula (1) between a pair of electrodes. .
  • the invention's effect [0029] According to the present invention, it is possible to provide a blue light-emitting polymer capable of securing high light emission luminance and realizing light emission for a long time, a method for producing the same, and a light-emitting element using the same.
  • FIG. 1 is an explanatory diagram showing a light-emitting element as an example according to the present invention.
  • FIG. 2 is an explanatory view showing a light emitting element as another example according to the present invention.
  • FIG. 3 is an explanatory view showing a light emitting element as another example according to the present invention.
  • FIG. 4 is an explanatory view showing a light emitting element as still another example according to the present invention.
  • FIG. 5 is an NMR spectrum chart of a crystal obtained by a dehydrohalogenation reaction in Example 1.
  • FIG. 6 is an IR total chart of crystals obtained by a dehydrohalogenation reaction in Example 1.
  • FIG. 7 is an NMR spectrum chart of a crystal obtained by acetylation in Example 1.
  • FIG. 8 is an IR spectrum chart of a crystal obtained by acetylation in Example 1.
  • FIG. 9 is an NMR spectrum chart of a crystal obtained by hydrolysis in Example 1.
  • FIG. 10 is an IR spectrum chart of a crystal obtained by hydrolysis in Example 1.
  • FIG. 11 is an NMR spectrum chart of a thin film obtained by a polycondensation reaction in Example 1.
  • FIG. 12 is an IR spectrum chart of a thin film obtained by a polycondensation reaction in Example 1.
  • FIG. 13 is a spectrum chart showing a fluorescence spectrum of the polymer obtained in Example 1.
  • FIG. 14 is an IR spectrum chart of a thin film obtained by a polycondensation reaction in Example 2.
  • FIG. 15 is a spectrum chart showing a fluorescence spectrum of the polymer obtained in Example 2.
  • A, B blue light-emitting element, 1 substrate, 2 transparent electrode, 3 light-emitting layer, 4 electrode layer Best mode for carrying out the invention
  • the blue light-emitting polymer according to the present invention has a structure represented by the following general formula (1).
  • the blue light-emitting polymer includes an oxadiazole ring, a methylene group, Formed from Ar 2 and Z.
  • the Ar 2 is configured to bind to said Okisajiazoru ring through a methylene group which bonds to Ar 1. Further, Ar 1 is bonded to a carbon atom of an oxaziazole ring in another repeating unit.
  • Ar 1 and Ar 2 are represented by any of the following general formulas (2) to (5), and may be the same as or different from Ar 1 and Ar 2 .
  • Examples of the Ar 1 and Ar 2 include groups represented by the following general formula (2).
  • the group represented by the general formula (2) has a benzene ring, and one of the carbon atoms at the para position of the benzene ring is bonded to a carbon atom of the oxaziazole ring, and the other is a methylene group. Bond with the carbon atom of Other carbon atoms of the benzene ring are bonded to R 1 .
  • R 1 is hydrogen atom, an alkyl group having 1 one 10 carbon atoms, was or alkoxy group having 1 one 5 carbon shows a Ariru group having 6 14 carbon atoms.
  • Examples of the C1-C10 alkyl group include a methynole group, an ethyl group, a propyl group, an isopropyl group, an n_butyl group, an isobutyl group, a sec-butyl group, a tert_butyl group, and an n-pentyl group.
  • It has 115 carbon atoms, preferably 113 carbon atoms such as n_butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, sec-pentyl group, tert-pentyl group, etc. Preferred are all alkyl groups.
  • the alkyl group having 11 to 10 carbon atoms may be a group having a fluorine atom instead of a hydrogen atom, that is, a fluorine atom-containing alkyl group.
  • an alkyl group having 11 to 13 fluorine atoms is preferable.
  • examples thereof include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, and a fluoroethyl group.
  • the alkoxy group having 115 carbon atoms includes an ethoxy group, a methoxy group, and a propoxy group. And isopropoxyl, butoxy, isobutoxy, s-butoxy, t-butoxy and pentoxy groups.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group, a tolyl group, a naphthyl group, a biphenyl group, and an anthryl group.
  • R 1 in which the benzene ring has may shall apply in groups different even with the same group to one another.
  • n an integer of 1 to 4.
  • Examples of Ar 1 and Ar 2 include groups represented by the following general formula (3).
  • the group represented by the general formula (3) has a naphthalene ring, and one of the carbon atoms at the 1- and 4-positions of the naphthalene ring is bonded to a carbon atom of the oxaziazole ring, and the other is Bonds to carbon atom of methylene group.
  • the other carbon atom of the naphthalene ring is bonded to R 2 or four R 3 .
  • R 2 and R 3 represents a hydrogen atom, an alkyl group having 1 one 10 carbon atoms, Ariru groups alkoxy groups or carbon atoms 6 to 14 of 1 one 5 carbon atoms.
  • alkyl group, alkoxy group and aryl group are as described above.
  • naphthalene ring has is good even group different even for the same group together les.
  • m represents an integer of 1 or 2, and is as described above.
  • Examples of Ar 1 and Ar 2 include groups represented by the following general formula (4).
  • the group represented by the general formula (4) has an anthracene ring, and one of the carbon atoms at the 1- and 4-positions of the anthracene ring is bonded to a carbon atom of the oxaziazole ring, and the other is Bonds to carbon atom of methylene group.
  • the other carbon atoms of the anthracene ring are bonded to R 4 , R 5 or R 6 .
  • R 4 , R 5 and R 6 represent a hydrogen atom, an alkyl group having 11 to 10 carbon atoms, an alkoxy group having 115 carbon atoms or an aryl group having 614 carbon atoms.
  • alkyl group, alkoxy group and aryl group are as described above.
  • Two R 4 and R 5 and four R 6 of the anthracene ring may be the same or different from each other.
  • Examples of Ar 1 and Ar 2 include groups represented by the following general formula (5). [0062] [Formula 16]
  • the group represented by the general formula (5) has an anthracene ring, and one of the carbon atoms at the 5- and 10-positions of the anthracene ring is bonded to a carbon atom of an oxaziazole ring, and the other is Bonds to carbon atom of methylene group. Further, the other carbon atoms of the anthracene ring are bonded to R 7 or R 8 .
  • R 7 and R 8 each represent a hydrogen atom, an alkyl group having 11 to 10 carbon atoms, an alkoxy group having 15 to 15 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
  • alkyl group, alkoxy group and aryl group are as described above.
  • the two R 7 and R 8 of the anthracene ring may be the same group or different groups.
  • Z in the formula (1) represents a single bond or a group represented by the following formula (6).
  • the group represented by the formula (6) is composed of a fluorene and an oxadiazole ring.
  • the 2-position carbon atom in the fluorene is bonded to a carbon atom in the oxaziazole ring, and the 7-position carbon atom is bonded to a carbon atom in Ar 2 in the formula (1). Further, a carbon atom different from the carbon atom bonded to the fluorene in the oxadiazole ring is bonded to Ar 1 in another repeating unit.
  • R 1Q in the above formula (6) represents a hydrogen atom or an alkyl group having 11 to 10 carbon atoms.
  • Examples of the C1-C10 alkyl group include a methynole group, an ethyl group, a propyl group, an isopropyl group, an n_butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group.
  • Alkyl having 115 carbon atoms, preferably 113 carbon atoms such as n_butyl group, isobutyl group, sec-butyl group, tert_butyl group, n-pentyl group, sec-pentyl group, tert-pentyl group, etc. Groups are preferred.
  • the alkyl group having 11 to 10 carbon atoms may have a fluorine atom instead of a hydrogen atom.
  • an alkyl group having a fluorine atom having 13 to 13 carbon atoms is preferable.
  • a fluoromethyl group, a difluoromethinole group and a trifluoro group L-methyl group fluoroethyl group, 1,1-difluoroethyl group, 1,2-difluoroethyl group, 1,1,1-trifluoroethyl group, 1,1,2-trifluoroethyl group, 1,2, 2-Trifluoroethyl, 1,1,2,2-tetrafluoroethyl, 1,1,2,2,2-pentafluoroethyl, 1-fluoropropyl, 2-fluoropropyl, 1,1 -Difluoropropyl group, 1,2-difluoropropyl group, 1,3-difluoropropyl group, 2,2-di
  • the blue light emitting polymer according to the present invention has an average molecular weight of 10,000 to 500,000, and particularly preferably 20000 to 300,000.
  • the repeating unit represented by the general formula (1) has an oxaziazo-norre ring having a large ⁇ electron cloud
  • the ⁇ electron cloud in the repeating unit has a higher density
  • blue light emission is facilitated by a small amount of energy because of stabilization.
  • the blue light-emitting polymer according to the present invention is characterized by having a repeating unit having a structure in which the groups represented by Ar 1 and Ar 2 are bonded to the carbon of the oxadiazole ring having a large ⁇ electron cloud. Since the blue light-emitting polymer has a repeating unit having an aromatic ring and an oxadiazole ring in the main chain, it is chemically stable and exhibits the specificity of not deteriorating even under severe use conditions.
  • the blue light-emitting polymer according to the present invention can be produced as follows.
  • Ar 1 in the formula (7) has the same meaning as described above.
  • Ar 2 in the formula (8) has the same meaning as described above, and X represents a halogen atom.
  • halogen atom include a chlorine atom, a fluorine atom, a bromine atom, an iodine atom and the like, and a chlorine atom is preferable.
  • Examples of the aromatic cyclic compound include benzene, toluene, 0-dimethylbenzene, m-dimethylinobenzene, p-dimethylinobenzene, 0-getylbenzene, m-jetinolebenzene, p-methylethylbenzene. , Naphthalene, 1,2-dimethylnaphthalene, 1,3-dimethylnaphthalene, 1,4-dimethylnaphthalene, 1,2-dimethylnaphthalene, 1,3-dimethylnaphthalene, 1,4-dimethylnaphthalene, anthracene And the like.
  • aromatic halogen compound examples include benzyl chloride, 1-chloromethylnaphthalene, 2_chloromethylnaphthalene, 1_chloromethylanthracene, 2_chloromethylanthracene, and 5-chloromethylanthracene. Loromethylanthracene, benzyl bromide, 1-bromomethylnaphthalene, 2-bromomethylnanthracene, etc.
  • the solvent examples include inorganic solvents such as hydrochloric acid, sulfuric acid, and nitric acid, and ethanol, methanol, acetic acid, acetic anhydride, dimethyl ether, dimethyl ether, acetone, phthalic acid, phthalanoic anhydride, n-hexane, benzene, toluene, and pyridine. , Tetrahydrofuran, DMF, DMAC and the like.
  • a catalyst may be used.
  • Examples of the catalyst include iron, zinc, nickel, copper, platinum, aluminum oxide, and aluminum chloride.
  • the reaction temperature is preferably 80-100 ° C, more preferably 85-95 ° C.
  • R 11 in [0092] Formula (13) represents an alkyl group having 1 one 5 carbon atoms.
  • Examples of the alkyl group having 115 carbon atoms include a methynole group, an ethyl group, a propyl group, an isopropyline group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group. And a sec-pentyl group and a tert-pentyl group. Among them, an alkyl group having 13 to 13 carbon atoms is preferable.
  • X in the above formula (13) represents a halogen atom, and examples of the halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
  • acetyl halide compound examples include acetyl chloride, propionyl chloride, butyryl chloride, hyisobutyryl chloride, acetyl bromide, propionyl bromide, putyryl bromide, and isobutyryl bromide.
  • Examples of the solvent include inorganic solvents such as carbon sulfide and carbon disulfide, ethanol, methanol, acetic anhydride, phthalic anhydride, getyl ether, dimethyl ether, acetone, benzene, toluene, pyridine, tetrahydrofuran, DMF, DMAC and the like.
  • organic solvents such as carbon sulfide and carbon disulfide, ethanol, methanol, acetic anhydride, phthalic anhydride, getyl ether, dimethyl ether, acetone, benzene, toluene, pyridine, tetrahydrofuran, DMF, DMAC and the like.
  • a catalyst can be used.
  • Examples of the catalyst include aluminum chloride, antimony chloride, lead chloride, titanium chloride, bismuth chloride, zinc chloride and the like.
  • the reaction temperature is preferably 20 to 50 ° C, and more preferably 30 to 40 ° C.
  • the solvent examples include non-polar solvents such as benzene, carbon tetrachloride, hexane, getyl ether, and dimethyl ether; and polar solvents such as methanol, ethanol, pyridine, tetrahydrofuran, DMF, and DMAC. .
  • the solvent used in the oxidation reaction is preferably the same as the solvent used in the acylidani reaction. When the solvent is the same, an oxidizing agent is added to the reaction product liquid generated by the acylation reaction, and the reaction is oxidized by heating. This is because the reaction can be performed immediately.
  • Examples of the oxidizing agent include sodium hypochlorite, potassium hypochlorite and the like.
  • the reaction temperature is preferably 40 to 80 ° C., and particularly preferably 60 to 70 ° C.
  • M represents an element derived from the oxidizing agent, and is capable of raising sodium and potassium.
  • Examples of the acid include hydrochloric acid, sulfuric acid, and nitric acid, and examples of the alkali include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, and ammonia.
  • Examples of the dehydrating agent include sulfuric acid, zinc chloride, phosphoric anhydride, boric acid, oxalic acid, and polyphosphoric acid.
  • the reaction temperature may be 100 to 150 ° C, and particularly preferably 110 to 130 ° C.
  • the blue light-emitting polymer according to the present invention can also be produced as follows.
  • R 1Q in the formula (10) represents a hydrogen atom or an alkyl group having 1 10 carbon atoms, preferably 115 carbon atoms, more preferably 113 carbon atoms, and the alkyl group is It is as follows.
  • R 11 in [0122] represents a hydrogen atom or an alkyl group having a carbon number 1 one 5.
  • Examples of the alkyl group having 115 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyline group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n_pentyl group. And a sec-pentyl group and a tert-pentyl group. Among them, an alkyl group having 13 to 13 carbon atoms is preferable.
  • X in the formula (13) represents a halogen atom
  • examples of the halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • examples of the acetyl halide compound include acetyl chloride, propionyl chloride, butyryl chloride, hyisobutyryl chloride, acetyl bromide, propionyl bromide, butyryl bromide, and isobutyryl bromide. It is a salted ash compound, and more preferably a chlorinated acryl compound having an acyl group of 13 to 13 carbon atoms.
  • Examples of the solvent include inorganic solvents such as carbon sulfide and carbon disulfide, and ethanol, methanol, acetic anhydride, phthalic anhydride, getyl ether, dimethyl ether, acetone, benzene, toluene, pyridine, tetrahydrofuran, and DMF. And organic solvents such as DMAC.
  • a catalyst can be used.
  • Examples of the catalyst include aluminum chloride, antimony chloride, lead chloride, titanium chloride, bismuth chloride, zinc chloride and the like.
  • the reaction temperature is preferably 20 to 50 ° C., and particularly preferably 30 to 40 ° C.
  • Examples of the solvent include nonpolar solvents such as benzene, carbon tetrachloride, hexane, getyl ether, and dimethyl ether; and polar solvents such as methanol, ethanol, pyridine, tetrahydrofuran, DMF, and DMAC. .
  • nonpolar solvents such as benzene, carbon tetrachloride, hexane, getyl ether, and dimethyl ether
  • polar solvents such as methanol, ethanol, pyridine, tetrahydrofuran, DMF, and DMAC.
  • Examples of the oxidizing agent include sodium hypochlorite, potassium hypochlorite, and the like.
  • the reaction temperature is preferably from 40 to 80 ° C., and particularly preferably from 60 to 70 ° C.
  • M represents an element derived from the oxidizing agent, and is capable of raising sodium and potassium.
  • Examples of the acid include hydrochloric acid, sulfuric acid, and nitric acid.
  • Examples of the alkali include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, and ammonia.
  • the polycarboxylic acid compound, the hydrazinium salt and the dehydrating agent are heated to cause a polycondensation reaction.
  • Examples of the dehydrating agent include sulfuric acid, zinc chloride, phosphoric anhydride, boric acid, oxalic acid, and polyphosphoric acid.
  • hydrazinium salt examples include hydrazine hydrochloride, hydrazine sulfate, hydrazine nitrate and the like.
  • the reaction temperature may be 100 to 150 ° C, and particularly preferably 110 to 130 ° C. [0146] By this reaction, the blue light-emitting polymer represented by the formula (1) according to the present invention can be obtained.
  • FIG. 1 is an explanatory diagram showing a cross-sectional structure of a light emitting device that is also a single-layer organic EL device.
  • the light emitting device A is formed by laminating a light emitting layer 3 containing a light emitting material and an electrode layer 4 in this order on a substrate 1 on which a transparent electrode 2 is formed.
  • the transparent electrode 2 and the electrode layer When a current is applied to 4, light is emitted in white.
  • the total content and each content ratio of the blue light-emitting polymer, red light-emitting compound, and green light-emitting compound according to the present invention, which are contained in the light-emitting layer 3 for emitting white light depend on the type of each light-emitting compound. It differs depending on the type, and specifically, is appropriately determined according to the type of each light emitting compound.
  • the light emitting layer 3 preferably contains the blue light emitting polymer according to the present invention. Further, if it is intended to emit light of any color other than white and blue with this light emitting device, the total content and content of the blue light emitting polymer, the red light emitting compound, and the green light emitting compound according to the present invention, It is good to change each content ratio appropriately. For example, in order for a light emitting device using the blue light emitting polymer according to the present invention to emit white light, the mixing ratio of the blue light emitting polymer, the red light emitting compound, and the green light emitting compound in the light emitting layer is usually 5 to 5% by weight. 200: 10-100: 50-20000, preferably ⁇ 10-100: 50-500: 100-10000.
  • red light-emitting compound a Nile red-based red light-emitting compound represented by the following formula (18) is preferable. [0151] [Formula 30]
  • Examples of the green light emitting compound include a coumarin green light emitting compound, an indophenol green light emitting compound, and an indigo green light emitting compound. Among them, the coumarin green light emitting compound represented by the following formula (19) is given. Luminescent compounds are preferred.
  • the light-emitting element A is mounted on a wall surface or a ceiling, for example, and is mounted on a wall surface or a ceiling. And the like. That is, this light emitting element is It can be used as a surface light source instead of a point light source such as a conventional light source such as a fluorescent lamp or a light bulb. In particular, it is possible to illuminate and illuminate a wall surface, a ceiling surface, or a floor surface of a living room, an office room, a vehicle room, or the like as a surface light source using the light emitting element according to the present invention. .
  • the light emitting element A can be used as a backlight for a display screen of a computer, a display screen of a mobile phone, a numeric display screen of a cash register, and the like.
  • the light-emitting element A can be used as various light sources such as direct lighting and indirect lighting, and can be made to emit light at night and has good visibility, such as advertising devices, traffic lights, and road signs. It can also be used for devices and light sources such as light-emitting boards.
  • the light emitting element A since the light emitting element A has a blue light emitting polymer having a specific chemical structure in the light emitting layer, its light emitting life is long. Therefore, the light emitting element A can be used as a light source that emits light for a long time.
  • the light-emitting layer in the light-emitting element A contains the blue light-emitting polymer according to the present invention and does not contain the red light-emitting compound and the green light-emitting compound, the light-emitting layer has Element A emits bright blue light.
  • this light-emitting element A is formed into a tubular substrate 1 formed by laminating a transparent electrode 2, a light-emitting layer 3 and an electrode layer 4 in this order on the inner surface side of the substrate 1 in a tubular shape. can do . Since the light emitting element A does not use mercury, it can be used as an environmentally friendly light source instead of a conventional fluorescent lamp using mercury.
  • the substrate 1 a known substrate can be used as long as the transparent electrode 2 can be formed on the surface thereof.
  • the substrate 1 include a glass substrate, a plastic sheet, a ceramic, and a metal plate whose surface is processed to be insulative, such as forming an insulating paint layer on the surface.
  • the light emitting element containing the red light emitting compound, the green light emitting compound, and the blue light emitting polymer according to the present invention in the light emitting layer irradiates the opposite side of the substrate 1 with white light.
  • the substrate 1 is transparent, it is a double-sided illumination device capable of irradiating white light from the surface of the light emitting element on the substrate 1 side and the opposite surface.
  • the transparent electrode 2 has a large work function and is transparent. Various materials can be employed as long as they can function as anodes and inject holes into the light emitting layer 3. Specifically, the transparent electrode 2 is composed of IT ⁇ , In O, SnO, Zn ⁇ , Cd
  • It can be formed of an inorganic transparent conductive material such as O or a compound thereof, or a conductive high molecular material such as polyaniline.
  • the transparent electrode 2 is formed on the substrate 1 by chemical vapor deposition, spray pyrolysis, vacuum evaporation, electron beam evaporation, sputtering, ion beam sputtering, ion plating, ion assisting, or the like. It can be formed by an evaporation method or another method.
  • the electrodes formed on the substrate do not need to be transparent electrodes.
  • the light emitting layer 3 contains the blue light emitting polymer according to the present invention when emitting blue light, and contains the red light emitting compound, the green light emitting compound and the blue light emitting polymer according to the present invention when emitting white light.
  • the blue light emitting polymer according to the present invention, or the red light emitting compound, the green light emitting compound, and the blue light emitting polymer according to the present invention can be formed on the transparent electrode 2.
  • Examples of a method for forming a blue light-emitting polymer on the transparent electrode 2 include a method in which the blue light-emitting polymer is dissolved in an appropriate solvent and applied to a transparent electrode.
  • Examples of the coating method include a spinner method and a brush coating method.
  • the thickness of the light emitting layer 3 is usually 30 to 500 nm, preferably 100 to 300 nm. If the thickness of the light-emitting layer 3 is too small, the amount of emitted light may be insufficient. If the thickness of the light-emitting layer 3 is too large, the driving voltage may be too high, which is not preferable. In some cases, it may lack flexibility when it is formed into a curved body or an annular body.
  • the electrode layer 4 is made of a material having a small work function, and can be formed of a single metal or a metal alloy such as MgAg, an aluminum alloy, or calcium metal.
  • a preferred electrode layer 4 is an alloy electrode of aluminum and a small amount of lithium.
  • the electrode layer 4 can be easily formed, for example, on the surface including the light emitting layer 3 formed on the substrate 1 by a vapor deposition technique.
  • a layer is interposed.
  • the material that can form the buffer layer include alkali metal compounds such as lithium fluoride, alkaline earth metal compounds such as magnesium fluoride, oxides such as aluminum oxide, and the like. -Biscarbazolebiphenyl (Cz-TPD).
  • m_MTDATA 4,4,4,4, tris (3-methylphenylphenylamino) triphenyl) Amine
  • phthalocyanine polyaniline
  • polythiophene derivatives and inorganic oxides such as molybdenum oxide, ruthenium oxide, vanadium oxide, and lithium fluoride.
  • FIG. 2 is an explanatory diagram showing a cross section of a multilayer organic EL device which is a light emitting device.
  • the light emitting element B was provided on the surface of the substrate 1 with the transparent electrode 2 and the hole transport layer.
  • the light emitting layers 3a and 3b, the electron transport layer 6 and the electrode layer 4 are laminated in this order.
  • the substrate 1, the transparent electrode 2, and the electrode layer 4 are the same as those in the light emitting element A shown in FIG.
  • the light-emitting layer in light-emitting element B shown in Fig. 2 includes light-emitting layer 3a and light-emitting layer 3b, and light-emitting layer 3a is a vapor-deposited film formed by vapor-depositing a light-emitting compound.
  • the light emitting layer 3b is a layer having a function as a host material.
  • Examples of the hole transporting substance contained in the hole transporting layer 5 include triphenylamine-based compounds such as N, N'-diphenyl-N, N, -di (m-tolyl) -benzidine (TPD) and Examples include ⁇ _NPD, hydrazone-based compounds, stilbene-based compounds, heterocyclic compounds, and ⁇ -electron-based star-burst hole transport materials.
  • the electron transporting substance contained in the electron transporting layer 6 for example, 2_ (4_tert_butylphenyl) -5_ (4-biphenyl) -1,3,4 —Oxadiazole derivatives such as oxadiazole and 2,5_bis (1-naphthyl 3,4-oxadiazole) and 2,5_bis (5′_tert-butynole_2′_benzoxazolyl) thiophene
  • quinolinol aluminum complex A metal complex-based material such as a compound (Alq3) and a benzoquinolinol beryllium complex (Bebq2) can also be suitably used.
  • the electron transport layer 6 contains Alq3.
  • each layer is the same as in a conventionally known multilayer organic EL device.
  • Light-emitting element B shown in FIG. 2 operates and emits light similarly to light-emitting element A shown in FIG.
  • the light emitting element B shown in FIG. 2 has the same use as the light emitting element A shown in FIG.
  • FIG. 3 shows a third example of the light emitting device according to the present invention.
  • FIG. 3 is an explanatory diagram showing a cross section of a light emitting device which is a multilayer organic EL device.
  • the light emitting device C shown in FIG. 3 has a structure in which a transparent electrode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 8, and an electrode layer 4 are laminated in this order on the surface of a substrate 1.
  • Light-emitting element C shown in Fig. 3 is the same as light-emitting element B described above.
  • FIG. 4 shows another example of the light emitting element.
  • the light-emitting device D shown in FIG. 4 is formed by laminating a substrate 1, an electrode 2, a hole transport layer 5, a light-emitting layer 3, and an electrode layer 4 in this order.
  • a hole transport layer containing a hole transport material is provided between an anode, which is a transparent electrode, and a cathode, which is an electrode layer, formed on a substrate.
  • a two-layer organic low-molecular-weight light-emitting device e.g., a hole-transporting layer, a guest dye between an anode and a cathode formed by laminating the blue light-emitting polymer-containing electron-transporting light-emitting layer according to the present invention.
  • a two-layer dye-doped light-emitting device comprising a blue light-emitting polymer according to the present invention and a light-emitting layer containing a host dye
  • a hole-transporting material containing a hole-transporting substance between an anode and a cathode.
  • Two-layer organic light-emitting device e.g., between an anode and a cathode in which a layer and an electron-transporting light-emitting layer formed by co-evaporating the blue light-emitting polymer according to the present invention and an electron-transporting substance are laminated.
  • a hole transport layer, and blue according to the present invention as a guest dye.
  • a three-layer organic light-emitting device in which a red light-emitting polymer-containing light-emitting layer and an electron transport layer are laminated can be mentioned.
  • rubrene is preferably contained as a sensitizer, Preferably, rubrene and Alq3 are contained.
  • the blue light emitting device using the blue light emitting polymer according to the present invention, or the white light emitting device using the red light emitting compound, the green light emitting compound and the blue light emitting polymer according to the present invention are, for example, generally DC-driven organic EL devices. It can also be used as a pulse drive type organic EL device and an AC drive type organic EL device.
  • a 2-L three-neck flask was charged with 100 g of naphthalene, 148.14 g of benzyl chloride and 40.82 g of zinc.
  • the solution in the flask was heated to 90 ° C. in a water bath, and reacted for 1.5 hours with stirring.
  • the solution was ice-cooled, extracted and separated four times using benzene (the amount of benzene used per time was 375 ml), washed four times with water, and filtered.
  • the solid obtained by filtration was dissolved in 2 L of benzene, and the solution was vacuum distilled at 80 ° C. for 1 hour using an evaporator. After distillation, ethanol was added to the concentrated solution, and the solution was further heated to 60 ° C. and allowed to cool, and then the solution was filtered to obtain 62.38 g of white crystals.
  • Fig. 5 shows an NMR spectrum chart of the obtained crystal
  • Fig. 6 shows an IR spectrum chart.
  • the obtained crystal was identified as a compound having a structure represented by the following formula (20).
  • FIG. 7 shows an NMR spectrum chart of the obtained crystal
  • FIG. 8 shows an IR spectrum chart thereof.
  • the obtained crystal was identified as a compound having a structure represented by the following formula (21).
  • Fig. 9 shows an NMR spectrum chart of the obtained crystal
  • Fig. 10 shows an IR spectrum chart thereof.
  • the obtained crystal was identified as a dicarboxylic acid compound having a structure represented by the following formula (22).
  • FIG. 11 shows an NMR spectrum chart of the obtained thin film
  • FIG. 12 shows an IR spectrum chart thereof. From this, the obtained thin film was identified as a polymer having a structure represented by the following formula (23). [0196] [Formula 35]
  • the obtained thin film was loaded on an F-4500 type spectrofluorometer manufactured by Hitachi, Ltd., and the fluorescence spectrum was measured under the following conditions.
  • FIG. 13 shows the obtained fluorescence spectrum.
  • FIG. 13 shows that the thin film obtained in this example exhibited a peak force S at 400 to 500 nm, indicating that this thin film emitted blue light.
  • Fig. 14 shows an IR spectrum chart of the obtained thin film. From this, the obtained thin film was identified as a polymer having a structure represented by the following formula (26).
  • a sample solution was prepared by dissolving the obtained thin film lOOmg in DMAC5ml. This sample solution was loaded on a F-4500 spectrofluorometer manufactured by Hitachi, Ltd., and the fluorescence spectrum was measured under the same conditions as in Example 1.
  • FIG. 15 shows the obtained fluorescence spectrum.
  • the thin film obtained in this example showed a peak at 400 to 450 nm, indicating that this thin film emitted blue light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Luminescent Compositions (AREA)

Description

明 細 書
青色発光ポリマー、その製造方法およびそれを利用した発光素子 技術分野
[0001] 本発明は、青色発光ポリマー、その製造方法およびそれを利用した発光素子に関 し、さらに詳しくは、エネルギーを加えると高輝度でかつ長い発光時間で青色光を発 することができる青色発光ポリマー、その製造方法及びそれを利用した発光素子に 関する。
^景技術
[0002] 従来、有機発光素子 (有機 EL素子とも称されている。)に利用可能な発光性有機 化合物として、種々の低分子発光有機化合物が提案されている。
[0003] 低分子発光有機化合物を有機 EL素子に利用するためには、低分子発光有機化 合物を蒸着すること、及びポリマー等の固定物質中に低分子発光有機化合物を分 散させることのいずれかをしなければならない。したがって、低分子発光有機化合物 を利用する有機発光素子は、その製造工程として蒸着工程又は低分子発光有機化 合物を含有する高分子溶液を塗布して高分子膜を形成する高分子膜形成工程が必 要である。一般的には蒸着工程より高分子膜形成工程のほうが、簡易である。
[0004] ところで、青色発光が可能で、しかも発光時間を長くすることができ、さらに、耐久性 に優れた発光ポリマーは、未だ開発されてレ、なレ、のが現状である。
発明の開示
発明が解決しょうとする課題
[0005] この発明の目的は、高い発光輝度を確保でき、長時間にわたる発光を実現すること ができ、なおかつ耐久性に優れた青色発光ポリマー、その製造方法およびそれを利 用した発光素子を提供することにある。
課題を解決するための手段
[0006] 前記課題を解決するための第一の手段は、以下の一般式(1 )で示される繰り返し 単位からなることを特徴とする青色発光ポリマーである。 [0007] [化 1]
Figure imgf000004_0001
[0008] (ただし、式中、 Ar1および Ar2は、以下の一般式(2)—(5)で示される基を示す。また 、 Zは、単結合または以下の式(6)で示される基を示す。 Ar1および Ar2は、互いに同 一であっても相違していてもよレ、。 )
[0009] [化 2]
Figure imgf000004_0002
[0010] (ただし、式中、 R1は、水素原子、炭素数 1一 10のアルキル基、炭素数 1一 5のアルコ キシ基または炭素数 6— 14のァリール基を示す。また、式中、 nは、 1一 4の整数を示 す。)
[0011] [化 3]
Figure imgf000004_0003
[0012] (ただし、式中、 R2および R3は、水素原子、炭素数 1一 10のアルキル基、炭素数 1、 5のアルコキシ基または炭素数 6— 14のァリール基を示す。前記 R2および R3は、互 いに同一であっても相違していてもよい。また、式中、 mは、 1または 2の整数を、 ま 、前記と同様の意味を示す。 )
[0013] [化 4]
Figure imgf000005_0001
[0014] (ただし、式中、
Figure imgf000005_0002
R5および R6は、水素原子、炭素数 1一 10のアルキル基、炭素数 1一 5のアルコキシ基または炭素数 6— 14のァリール基を示す。前記 、 R5および R6 は、互いに同一であっても相違していてもよレ、。また、式中、 mおよび nは、前記と同 様の意味を示す。 )
[0015] [化 5]
Figure imgf000005_0003
[0016] (ただし、式中、 R7および は、水素原子、炭素数 1一 10のアルキル基、炭素数 1一 5のアルコキシ基または炭素数 6— 14のァリール基を示す。前記 R7および は、互 いに同一であっても相違していてもよい。また、式中、 nは、前記と同様の意味を示す
。 ) [0017] [化 6]
(6》
Figure imgf000006_0001
[0018] (ただし、式中 R1Qは、水素原子または炭素数 1一 10のアルキル基を示す。前記 R1Q は、互いに同一であっても相違していてもよレ、。 )
第二の手段は、以下の式(7)で示される芳香族環式化合物と以下の式 (8)で示さ れる芳香族ハロゲン化合物とを脱ハロゲン化水素反応して得られる化合物を、ァセ チル化し、次いで、酸化して得た化合物を加水分解して得られる以下の式(9)で示さ れるジカルボン酸化合物とヒドラジニゥム塩とを反応させて重縮合させることを特徴と する前記一般式(1)で示される繰り返し単位からなる青色発光ポリマーの製造方法 である。
[0019] [化 7]
H— Ar 1 IL廳 (7)
[0020] (ただし、式中、 Ar1は、前記第一の手段 1におけるのと同様の意味を示す。)
[0021] [化 8]
H— Ar2— Ch X (8)
[0022] (ただし、式中、 Ar2は、前記第一の手段におけるのと同様の意味を示し、 Xは、ハロ ゲン原子を示す。 ) [0023] [化 9]
HOOC― Ar — CH2― Ar2— COOH
(9)
[0024] 第三の手段は、以下の式(10)で示されるフルオレン化合物をァセチル化し、次い で、酸化して得た化合物を加水分解して得られる以下の式(11)で示される化合物と 前記式(9)で示される化合物とを、ヒドラジニゥム塩の存在下で反応させて縮重合さ せて得ることを特徴とする前記一般式(1)に記載の青色発光ポリマーの製造方法で める。
[0025] [化 10]
Figure imgf000007_0001
10
[0026] (ただし、式中 R1Uは、水素原子または炭素数 1一 10のアルキル基を示す。前記 R は、互いに同一であっても相違していてもよレ、。 )
[0027] [化 11]
Figure imgf000007_0002
[0028] 第四の手段は、一対の電極間に、前記一般式(1)で示される繰り返し単位からなる 青色発光ポリマーを含有する発光層を有してなることを特徴とする発光素子である。 発明の効果 [0029] 本発明により、高い発光輝度を確保でき、長時間にわたる発光を実現することがで きる青色発光ポリマー、その製造方法およびそれを利用した発光素子を提供すること ができる。
図面の簡単な説明
[0030] [図 1]図 1は、この発明に係る一例としての発光素子を示す説明図である。
[図 2]図 2は、この発明に係る他の例としての発光素子を示す説明図である。
[図 3]図 3は、この発明に係るその他の例としての発光素子を示す説明図である。
[図 4]図 4は、この発明に係る更に他の例としての発光素子を示す説明図である。
[図 5]図 5は、実施例 1における脱ハロゲン化水素反応で得られた結晶の NMRスぺク トノレチャートである。
[図 6]図 6は、実施例 1における脱ハロゲン化水素反応で得られた結晶の IRスぺタト ルチャートである。
[図 7]図 7は、実施例 1におけるァセチルイ匕して得られた結晶の NMRスペクトルチヤ ートである。
[図 8]図 8は、実施例 1におけるァセチルイ匕して得られた結晶の IRスペクトルチャート である。
[図 9]図 9は、実施例 1における加水分解して得られた結晶の NMRスペクトルチヤ一 トである。
[図 10]図 10は、実施例 1における加水分解して得られた結晶の IRスペクトルチャート である。
[図 11]図 11は、実施例 1における重縮合反応で得られた薄膜の NMRスペクトルチヤ ートである。
[図 12]図 12は、実施例 1における重縮合反応で得られた薄膜の IRスペクトルチャート である。
[図 13]図 13は、実施例 1で得られたポリマーの蛍光スペクトルを示すスペクトルチヤ ートである。
[図 14]図 14は、実施例 2における重縮合反応で得られた薄膜の IRスペクトルチャート である。 [図 15]図 15は、実施例 2で得られたポリマーの蛍光スペクトルを示すスペクトルチヤ ートである。
符号の説明
[0031] A, B,〇···青色発光素子、 1···基板、 2···透明電極、 3···発光層、 4···電極層 発明を実施するための最良の形態
[0032] 本発明に係る青色発光ポリマーは、以下の一般式(1)で示される構造を有する。
[0033] [化 12]
Ar (1)
Figure imgf000009_0001
[0034] 前記青色発光ポリマーは、ォキサジァゾール環、メチレン基、
Figure imgf000009_0002
Ar2および Zから 形成される。
[0035] 前記ォキサジァゾール環が有する二つ炭素原子のうち、一方は、前記 Ar2と結合し 、他方は、 Zを介し、他の繰り返し単位中の Ar1と結合する。
[0036] 前記 Ar2は、前記ォキサジァゾール環と結合するとともに、メチレン基を介し、 Ar1と 結合する。また、前記 Ar1は、他の繰り返し単位中のォキサジァゾール環が有する炭 素原子と結合する。前記 Ar1および Ar2は、以下の一般式(2)—(5)のいずれかで示 され、前記 Ar1および Ar2とは、互いに同一であっても相違していてもよい。
[0037] 前記 Ar1および Ar2としては、以下の一般式(2)で示される基を挙げることができる。
[0038] [化 13]
Figure imgf000010_0001
[0039] 一般式(2)で示される基は、ベンゼン環を有し、このベンゼン環のパラ位の炭素原 子のうち、一方は、ォキサジァゾール環の炭素原子と結合し、他方は、メチレン基の 炭素原子と結合する。また、ベンゼン環のその他の炭素原子は、 R1と結合する。
[0040] 前記 R1は、水素原子、炭素数 1一 10のアルキル基、炭素数 1一 5のアルコキシ基ま たは炭素数 6 14のァリール基を示す。
[0041] 前記炭素数 1一 10のアルキル基としては、メチノレ基、ェチル基、プロピル基、イソプ 口ピル基、 n_ブチル基、イソブチル基、 sec-ブチル基、 tert_ブチル基、 n-ペンチル基 、 sec-ペンチル基、 tert-ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノニル 基、デシノレ基等を挙げることができ、中でも、メチノレ基、ェチル基、プロピル基、イソプ 口ピル基、 n_ブチル基、イソブチル基、 sec-ブチル基、 tert-ブチル基、 n-ペンチル基 、 sec-ペンチル基、 tert-ペンチル基等の 1一 5個の、好ましくは 1一 3個の炭素を有す るアルキル基が好ましい。
[0042] また、前記炭素数 1一 10のアルキル基は、水素原子に代えてフッ素原子を有する 基、即ちフッ素原子含有アルキル基であってもよい。
[0043] 前記炭素数 1一 10のフッ素原子含有アルキル基としては、炭素数 1一 3個のフッ素 原子を有するアルキル基が好ましぐ例えば、フルォロメチル基、ジフルォロメチル基 、トリフルォロメチル基、フルォロェチル基、 1,1-ジフルォロェチル基、 1,2-ジフルォロ ェチル基、 1,1,1-トリフルォロェチル基、 1,1, 2-トリフルォロェチル基、 1,2,2-トリフルォ 口ェチル基、 1, 1,2,2—テトラフルォロェチル基、 1,1,2,2,2—ペンタフルォロェチル基 、 1-フルォロプロピル基、 2-フルォロプロピル基、 1, 1-ジフルォロプロピル基、 1,2-ジ フルォロプロピル基、 1,3 -ジフルォロプロピル基、 2, 2-ジフルォロプロピル基、 1,1,1 -ト リフルォロプロピル基、 1, 1,2-トリフルォロプロピル基、 1,2, 3-トリフルォロプロピル基、
1,2,2-トリフルォロプロピル基、 1,3,3-トリフルォロプロピル基等を挙げることができる、 前記炭素数 1一 5のアルコキシ基としては、エトキシ基、メトキシ基、プロポキシ基、ィ ソプロボキシル基、ブトキシ基、イソブトキシ基、 s -ブトキシ基、 t -ブトキシ基、ペントキ シ基等を挙げることができる。
[0044] 前記炭素数 6— 14のァリール基としては、フエ二ル基、トリル基、ナフチル基、ビフエ 二リル基、アントリル基等を挙げることができる。
[0045] 前記ベンゼン環が有する四つの R1は、互いに同一の基であっても相違した基であ つてもよい。
[0046] なお、前記式(2)における nは、 1一 4の整数を示す。
[0047] 前記 Ar1および Ar2としては、以下の一般式(3)で示される基を挙げることができる。
Figure imgf000011_0002
Figure imgf000011_0001
[0049] 一般式(3)で示される基は、ナフタレン環を有し、このナフタレン環の 1位および 4位 の炭素原子のうち、一方は、ォキサジァゾール環の炭素原子と結合し、他方は、メチ レン基の炭素原子と結合する。また、ナフタレン環のその他の炭素原子は、 R2または 四つの R3と結合する。
[0050] 前記 R2および R3は、水素原子、炭素数 1一 10のアルキル基、炭素数 1一 5のアル コキシ基または炭素数 6— 14のァリール基を示す。
[0051] 前記アルキル基、アルコキシ基およびァリール基は前記のとおりである。
[0052] 前記ナフタレン環が有する二つの R2および四つの R3は、互いに同一の基であって も相違した基であってもよレ、。 [0053] なお、前記式(3)における mは、 1または 2の整数を示し、 ま、前記のとおりである
[0054] 前記 Ar1および Ar2としては、以下の一般式 (4)で示される基を挙げることができる。
[0055] [化 15]
Figure imgf000012_0001
[0056] 一般式(4)で示される基は、アントラセン環を有し、このアントラセン環の 1位および 4位の炭素原子のうち、一方は、ォキサジァゾール環の炭素原子と結合し、他方は、 メチレン基の炭素原子と結合する。また、前記アントラセン環のその他の炭素原子は 、 R4、 R5または R6と結合する。
[0057] 前記 R4、 R5および R6は、水素原子、炭素数 1一 10のアルキル基、炭素数 1一 5の アルコキシ基または炭素数 6 14のァリール基を示す。
[0058] 前記アルキル基、アルコキシ基およびァリール基は前記のとおりである。
[0059] 前記アントラセン環が有する二つの R4および R5ならびに四つの R6は、互いに同一 の基であっても相違した基であってもよレ、。
[0060] なお、前記式(4)における mおよび nは、前記のとおりである。
[0061] 前記 Ar1および Ar2としては、以下の一般式(5)で示される基を挙げることができる。 [0062] [化 16]
Figure imgf000013_0001
[0063] 一般式(5)で示される基は、アントラセン環を有し、このアントラセン環の 5位および 10位の炭素原子のうち、一方は、ォキサジァゾール環の炭素原子と結合し、他方は 、メチレン基の炭素原子と結合する。また、前記アントラセン環のその他の炭素原子 は、 R7または R8と結合する。
[0064] 前記 R7および R8は、水素原子、炭素数 1一 10のアルキル基、炭素数 1一 5のアル コキシ基または炭素数 6— 14のァリール基を示す。
[0065] 前記アルキル基、アルコキシ基およびァリール基は、前記のとおりである。
[0066] 前記アントラセン環が有する二つの R7および R8は、互いに同一の基であっても相 違した基であってもよい。
[0067] なお、前記式(4)における mおよび nは、前記のとおりである。
[0068] 前記式(1)における Zは、単結合または以下の式(6)で示される基を表す。
[0069] [化 17]
(6》
Figure imgf000013_0002
[0070] 前記式(6)で示される基は、フルオレンとォキサジァゾール環とからなる [0071] 前記フルオレンにおける 2位の炭素原子力 前記ォキサジァゾール環中の炭素原 子と結合し、 7位の炭素原子が、前記式(1)における Ar2中の炭素原子と結合する。 また、前記ォキサジァゾール環中の、前記フルオレンと結合する炭素原子と異なる炭 素原子が、他の繰り返し単位中の Ar1と結合する。
[0072] 前記式(6)における R1Qは、水素原子または炭素数 1一 10のアルキル基を示す。
[0073] 前記炭素数 1一 10のアルキル基としては、メチノレ基、ェチル基、プロピル基、イソプ 口ピル基、 n_ブチル基、イソブチル基、 sec-ブチル基、 tert-ブチル基、 n -ペンチル基 、 sec-ペンチル基、 tert-ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノニル 基、デシノレ基等を挙げることができ、中でも、メチノレ基、ェチル基、プロピル基、イソプ 口ピル基、 n_ブチル基、イソブチル基、 sec-ブチル基、 tert_ブチル基、 n -ペンチル基 、 sec-ペンチル基、 tert-ペンチル基等の 1一 5個の、好ましくは 1一 3の炭素を有する アルキル基が好ましい。
[0074] また、前記炭素数 1一 10のアルキル基は、水素原子に代えてフッ素原子を有する ことちできる。
[0075] フッ素原子を有してなる前記炭素数 1一 10のアルキル基としては、炭素数 1一 3個 のフッ素原子を有するアルキル基が好ましぐ例えば、フルォロメチル基、ジフルォロ メチノレ基、トリフルォロメチル基、フルォロェチル基、 1,1-ジフルォロェチル基、 1,2-ジ フルォロェチル基、 1,1,1-トリフルォロェチル基、 1,1,2-トリフルォロェチル基、 1,2,2- トリフルォロェチル基、 1, 1,2,2—テトラフルォロェチル基、 1,1,2,2,2—ペンタフルォロ ェチル基、 1-フルォロプロピル基、 2-フルォロプロピル基、 1,1-ジフルォロプロピル基 、 1,2-ジフルォロプロピル基、 1,3-ジフルォロプロピル基、 2,2-ジフルォロプロピル基 、 1,1,1_トリフルォロプロピル基、 1, 1,2-トリフルォロプロピル基、 1,2,3_トリフルォロプロ ピノレ基、 1,2,2_トリフルォロプロピル基、 1,3,3-トリフルォロプロピル基等を挙げること ができる
本発明に係る青色発光ポリマーは、その平均分子量が、 10000— 500000、特に 20000— 300000であるの力 S好ましレヽ。
[0076] 一般式(1)で示される繰り返し単位は、大きな π電子雲を持つォキサジァゾ-ノレ環 を有していることから、繰り返し単位において、 π電子雲は、その密度が高くなり、より 安定化するので、僅かのエネルギーにより青色発光が容易になるものと推察される。 この発明に係る青色発光ポリマーは、大きな π電子雲を持つォキサジァゾール環の 炭素に Ar1および Ar2で示される基が結合した構造の繰り返し単位を有することに特 徴付けられる。この青色発光ポリマーは、主鎖中に芳香環とォキサジァゾール環とを 有した繰り返し単位を有するので、化学的に安定となり、過酷な使用条件下において も、劣化しないという特異性を発揮する。
[0077] 本発明に係る青色発光ポリマーは、次のようにして製造することができる。
[0078] すなわち、出発物質である以下の式(7)で示される芳香族環式化合物と以下の式( 8)で示される芳香族ハロゲン化合物とを溶媒中で加熱することにより脱ハロゲン化水 素反応をさせる。
[0079] [化 18]
H— Ar — H - - - (7)
[0080] 前記式(7)における Ar1は、前記と同様の意味を示す。
[0081] [化 19]
Figure imgf000015_0001
[0082] 前記式(8)における Ar2は、前記と同様の意味を示し、また、 Xは、ハロゲン原子を 示す。前記ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子等 を挙げることができ、好ましいのは塩素原子である。
[0083] 前記芳香族環式化合物としては、ベンゼン、トルエン、 0-ジメチルベンゼン、 m-ジメ チノレベンゼン、 p-ジメチノレベンゼン、 0-ジェチルベンゼン、 m-ジェチノレベンゼン、 p -ジェチルベンゼン、ナフタレン、 1,2-ジメチルナフタレン、 1,3-ジメチルナフタレン、 1,4-ジメチルナフタレン、 1,2_ジェチルナフタレン、 1,3-ジェチルナフタレン、 1,4-ジ ェチルナフタレン、アントラセン等を挙げることができる。
[0084] 前記芳香族ハロゲン化合物としては、塩化ベンジル、 1-クロロメチルナフタレン、 2_ クロロメチルナフタレン、 1_クロロメチルアントラセン、 2_クロロメチルアントラセン、 5 -ク ロロメチルアントラセン、臭化ベンジル、 1-ブロモメチルナフタレン、 2-ブロモメチルナ ントラセン等を挙げることができる
前記溶媒としては、塩酸、硫酸、硝酸等の無機溶媒またはエタノール、メタノーノレ、 酢酸、無水酢酸、ジメチルエーテル、ジェチルエーテル、アセトン、フタル酸、無水フ タノレ酸、 n -へキサン、ベンゼン、トルエン、ピリジン、テトラヒドロフラン、 DMF、 DMA C等の有機溶媒を挙げることができる。
[0085] なお、この反応においては、触媒を用いてもよい。
[0086] 前記触媒としては、鉄、亜鉛、ニッケル、銅、白金、酸化アルミニウム、塩化アルミ二 ゥム等を挙げることができる。
[0087] 前記反応温度は、 80— 100°Cであればよぐ特に、 85 95°Cであるのが好ましい
[0088] 前記脱ハロゲン化水素反応により、以下の式(12)で示される化合物を得ることがで きる。
[0089] [化 20]
!_! 『1 ^H ^^.v H 1 》
[0090] 前記式(12)で示される化合物と以下の式(13)で示されるハロゲン化ァシル化合 物とを、溶媒中で加熱することによりァセチル化反応させる。
[0091] [化 21]
R 11 1 O X ( 13)
[0092] 前記式(13)における R11は、炭素数 1一 5のアルキル基を示す。
[0093] 前記炭素数 1一 5のアルキル基としては、メチノレ基、ェチル基、プロピル基、イソプロ ピノレ基、 n-ブチル基、イソブチル基、 sec-ブチル基、 tert-ブチル基、 n-ペンチル基、 sec-ペンチル基、 tert-ペンチル基等を挙げることができ、なかでも、炭素数 1一 3のァ ルキル基が好ましい。 [0094] 前記式(13)における Xは、ハロゲン原子を示し、ハロゲン原子としては、塩素原子 、フッ素原子、臭素原子、ヨウ素原子等を挙げることができ、好ましいのは塩素原子で める。
[0095] 前記ハロゲン化ァシル化合物としては、塩化ァセチル、塩化プロピオニル、塩化ブ チリル、塩ィヒイソプチリル、臭化ァセチル、臭化プロピオニル、臭化プチリル、臭化ィ ソブチリル等を挙げることができる。
[0096] 前記溶媒としては、硫化炭素、二硫化炭素等の無機溶媒、エタノール、メタノーノレ、 無水酢酸、無水フタル酸、ジェチルエーテル、ジメチルエーテル、アセトン、ベンゼン 、トルエン、ピリジン、テトラヒドロフラン、 DMF、 DMAC等の有機溶媒を挙げることが できる。
[0097] この反応では、触媒を用いることができる。
[0098] 前記触媒としては、塩化アルミニウム、塩ィ匕アンチモン、塩化鉛、塩化チタン、塩ィ匕 ビスマス、塩化亜鉛等を挙げることができる。
[0099] 前記反応温度は、 20— 50°Cであればよぐ特に、 30— 40°Cであるのが好ましい。
[0100] ァセチル化反応することにより、以下の式(14)で示される化合物を得ることができる
[0101] [化 22]
R lCO— Ar1— CH2— Ar 一 CORU
- - - 1 4.
[0102] 次いで、前記式(14)で示される化合物と酸化剤とを溶媒中で加熱することにより、 酸化反応をさせる。
[0103] 前記溶媒としては、ベンゼン、四塩化炭素、へキサン、ジェチルエーテル、ジメチル エーテル等の無極性溶媒、メタノール、エタノール、ピリジン、テトラヒドロフラン、 DM F、 DMAC等の極性溶媒を挙げることができる。この酸化反応を行うときの溶媒は、 前記ァシルイ匕反応を行うときの溶媒と同じであるのがこのましい。溶媒が同じであると ァシル化反応を行って生じた反応生成液に酸化剤を投入し、加熱することにより酸化 反応を直ちに行うことができるからである。
[0104] 前記酸化剤としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム等を挙げることが できる。
[0105] 前記反応温度は、 40— 80°Cであればよぐ特に、 60 70°Cであるのが好ましい。
[0106] この反応により、以下の式(15)で示されるカルボ二ルイ匕合物を得ることができる。
[0107] [化 23] a j 美 漏 # |_|、 A _ 2. f^ tkM
1 5》
[0108] 前記式(15)における Mは、前記酸化剤由来の元素を示し、ナトリウム、カリウムを挙 げ'ること力 Sできる。
[0109] 前記式(15)で示される化合物を酸またはアルカリの存在下で加水分解させること により、以下の式(9)で示されるジカルボン酸化合物を得ることができる。
[0110] [化 24]
HOOC― Ar1— CH2― Ar2— COOH
•'■(9)
[0111] 前記酸としては、塩酸、硫酸、硝酸等を挙げることができ、前記アルカリとしては、水 酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、アンモニア 等を挙げることができる。
[0112] 次いで、前記ジカルボン酸化合物、ヒドラジニゥム塩および脱水剤を加熱することに より、重縮合反応をさせる。
[0113] 前記脱水剤としては、硫酸、塩化亜鉛、無水リン酸、ホウ酸、シユウ酸、ポリリン酸等 を挙げることができる。
[0114] 前記ヒドラジニゥム塩としては、塩酸ヒドラジン、硫酸ヒドラジン、硝酸ヒドラジン等を 挙げること力 Sできる。 [0115] 前記反応温度は、 100— 150°Cであればよく、特に、 110— 130°Cであるのが好ま しい。
[0116] この反応により、本発明に係る前記式(1)で示される青色発光ポリマーを得ることが できる。
[0117] また、本発明に係る青色発光ポリマーは、次のようにして製造することもできる。
[0118] 以下の式(10)で支援されるフルオレンと以下の式(13)で示されるハロゲン化ァシ ル化合物とを、溶媒中で加熱することによりァセチル化反応させる。
[0119] [化 25]
Figure imgf000019_0001
[0120] 前記式(10)における R1Qは、水素原子または炭素数 1一 10、好ましくは炭素数 1一 5 、さらに好ましくは炭素数 1一 3のアルキル基を示し、前記アルキル基は、前記のとお りである。
[0121] [化 26]
1 1
R CO A ( 13)
[0122] 前記式(13)における R11は、水素原子または炭素数 1一 5のアルキル基を示す。
[0123] 前記炭素数 1一 5のアルキル基としては、メチル基、ェチル基、プロピル基、イソプロ ピノレ基、 n-ブチル基、イソブチル基、 sec-ブチル基、 tert-ブチル基、 n_ペンチル基、 sec-ペンチル基、 tert-ペンチル基等を挙げることができ、なかでも、炭素数 1一 3のァ ルキル基が好ましい。
[0124] 前記式(13)における Xは、ハロゲン原子を示し、ハロゲン原子としては、塩素原子 、フッ素原子、臭素原子、ヨウ素原子等を挙げることができ、好ましいのは塩素原子で める。 [0125] 前記ハロゲン化ァシル化合物としては、塩化ァセチル、塩化プロピオニル、塩化ブ チリル、塩ィヒイソプチリル、臭化ァセチル、臭化プロピオニル、臭化プチリル、臭化ィ ソブチリル等を挙げることができ、好ましいのは塩ィ匕アシノレ化合物であり、さらに好ま しレヽのはァシル基の炭素数が 1一 3である塩化ァシル化合物である。
[0126] 前記溶媒としては、硫化炭素、二硫化炭素等の無機溶媒またはエタノール、メタノ ール、無水酢酸、無水フタル酸、ジェチルエーテル、ジメチルエーテル、アセトン、ベ ンゼン、トルエン、ピリジン、テトラヒドロフラン、 DMF、 DMAC等の有機溶媒を挙げる こと力 Sできる。
[0127] この反応では、触媒を用いることができる。
[0128] 前記触媒としては、塩化アルミニウム、塩ィ匕アンチモン、塩化鉛、塩化チタン、塩ィ匕 ビスマス、塩化亜鉛等を挙げることができる。
[0129] 前記反応温度は、 20— 50°Cであればよぐ特に、 30 40°Cであるのが好ましい。
[0130] ァセチル化反応することにより、以下の式(16)で示される化合物を得ることができる
[0131] [化 27]
Figure imgf000020_0001
[0132] 次いで、前記式(16)で示される化合物と酸化剤とを溶媒中で加熱することにより、 酸化反応をさせる。
[0133] 前記溶媒としては、ベンゼン、四塩化炭素、へキサン、ジェチルエーテル、ジメチル エーテル等の無極性溶媒、メタノーノレ、エタノール、ピリジン、テトラヒドロフラン、 DM F、 DMAC等の極性溶媒を挙げることができる。
[0134] 前記酸化剤としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム等を挙げることが できる。
[0135] 前記反応温度は、 40— 80°Cであればよぐ特に、 60 70°Cであるのが好ましい。 [0136] この反応により、以下の式(17)で示されるカルボ二ルイ匕合物を得ることができる c [0137] [化 28]
Figure imgf000021_0001
[0138] 前記式(17)における Mは、前記酸化剤由来の元素を示し、ナトリウム、カリウムを挙 げ'ること力 Sできる。
[0139] 前記式(17)で示される化合物を酸またはアルカリの存在下で加水分解させること により、以下の式(11)で示されるジカルボン酸化合物を得ることができる。
[0140] [化 29]
Figure imgf000021_0002
[0141] 前記酸としては、塩酸、硫酸、硝酸等を挙げることができ、前記アルカリとしては、水 酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、アンモニア 等を挙げることができる。
[0142] 次いで、前記ジカルボン酸化合物、ヒドラジニゥム塩および脱水剤を加熱することに より、重縮合反応をさせる。
[0143] 前記脱水剤としては、硫酸、塩化亜鉛、無水リン酸、ホウ酸、シユウ酸、ポリリン酸等 を挙げることができる。
[0144] 前記ヒドラジニゥム塩としては、塩酸ヒドラジン、硫酸ヒドラジン、硝酸ヒドラジン等を 挙げ'ること力 Sできる。
[0145] 前記反応温度は、 100— 150°Cであればよく、特に、 110 130°Cであるのが好ま しい。 [0146] この反応により、本発明に係る前記式(1)で示される青色発光ポリマーを得ることが できる。
[0147] 以下にこの発明に係る青色発光ポリマーを用いた発光素子について説明する。
[0148] 図 1は、一層型有機 EL素子でもある発光素子の断面構造を示す説明図である。図 1に示されるように、この発光素子 Aは、透明電極 2を形成した基板 1上に、発光材料 を含有する発光層 3及び電極層 4をこの順に積層して成る。
[0149] 図 1に示される発光素子は、その発光層 3にこの発明に係る青色発光ポリマー、赤 色発光化合物、及び緑色発光化合物をバランス良く含有していると、透明電極 2及 び電極層 4に電流を通電すると、白色に発光する。 白色発光させるためにこの発光 層 3に含有されるところの、この発明に係る青色発光ポリマー、赤色発光化合物、及 び緑色発光化合物の全含有量及び各含有量比は、各発光化合物の種類に応じて 相違し、具体的には各発光化合物の種類に応じて適宜に決定される。またこの発光 素子を青色に発光させることを企図するのであれば、この発光層 3にはこの発明に係 る青色発光ポリマーを含有させるのがよい。また、この発光素子で白色及び青色以 外の任意の色の光を発光させることを企図するのであれば、この発明に係る青色発 光ポリマー、赤色発光化合物、及び緑色発光化合物の全含有量及び各含有量比を 適宜に変更するのがよい。例えば、この発明に係る青色発光ポリマーを用いた発光 素子を白色に発光させるには、発光層における青色発光ポリマーと赤色発光化合物 と緑色発光化合物との配合割合は、通常、重量比で、 5— 200 : 10— 100 : 50— 200 00であり、好まし <は 10— 100 : 50— 500 : 100— 10000である。
[0150] 前記赤色発光化合物としては、以下の式(18)で示されるナイルレッド系赤色発光 化合物が好適である。 [0151] [化 30]
Figure imgf000023_0001
[0152] 前記緑色発光化合物としては、クマリン系緑色発光化合物、インドフエノール系緑 色発光化合物及びインジゴ系緑色発光化合物を挙げることができ、なかでも、以下 の式(19)で示されるクマリン系緑色発光化合物が好適である。
[0153] [化 31]
Figure imgf000023_0002
[0154] 発光は、前記透明電極 2と前記電極層 4との間に電界が印加されると、電極層 4側 力 電子が注入され、透明電極 2から正孔が注入され、更に電子が発光層 3におい て正孔と再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを 光として放出する現象である。
[0155] 図 1に示される発光素子 Aは、その全体形状を大面積の平面形状にすると、例えば 壁面、あるいは天井に装着して、大面積壁面白色発光素子、及び大面積天井面白 色発光素子等の面状発光照明装置とすることができる。つまり、この発光素子は、従 来の蛍光灯のような線光源あるいは電球と言った点光源に代えて面光源として利用 されること力 Sできる。特に、居住のための室内、事務用の室内、車両室内等の壁面、 天井面、あるいは床面を、この発明に係る発光素子を使用して面光源として発光な レ、し照明することができる。さらに、この発光素子 Aをコンピュータにおける表示画面 、携帯電話における表示画面、金銭登録機における数字表示画面等のバックライト に使用することができる。その他、この発光素子 Aは、直接照明、間接照明等の様々 の光源として使用されることができ、また、夜間に発光させることができて視認性が良 好である広告装置、信号機、道路標識装置及び発光掲示板等の光源に使用される こともできる。しかも、この発光素子 Aは、特定の化学構造を有する青色発光ポリマー を発光層に有するので、発光寿命が長い。したがって、この発光素子 Aにより発光が 長寿命である光源とすることができる。
[0156] 上述したことから理解されるように、発光素子 Aにおける発光層に、この発明に係る 青色発光ポリマーが含有されていて、赤色発光化合物及び緑色発光化合物が含有 されていないときには、この発光素子 Aは鮮やかな青色に発光する。
[0157] また、この発光素子 Aを、筒状に形成された基板 1と、その基板 1の内面側に透明 電極 2、発光層 3及び電極層 4をこの順に積層してなる管状発光体とすることができる 。この発光素子 Aは、水銀を使用していないので、従来の水銀を使用する蛍光灯に 代替して環境に優しい光源とすることができる。
[0158] 基板 1としては、透明電極 2をその表面に形成することができる限り、公知の基板を 採用すること力できる。この基板 1として、例えばガラス基板、プラスチックシート、セラ ミック、表面に絶縁塗料層を形成する等の、表面を絶縁性に加工してなる金属板等 を挙げることができる。
[0159] この基板 1が不透明であるときには、発光層に、赤色発光化合物、緑色発光化合物 及びこの発明に係る青色発光ポリマーを含有する発光素子は、基板 1とは反対側に 白色光を照射することができる片面照明装置である。また、この基板 1が透明であると きには、発光素子の基板 1側及びその反対側の面から、白色光を照射することができ る両面照明装置である。
[0160] 前記透明電極 2としては、仕事関数が大きくて透明であり、電圧を印加することによ り陽極として作用して前記発光層 3にホールを注入することができる限り様々の素材 を採用することができる。具体的には、透明電極 2は、 IT〇、 In O、 SnO、 Zn〇、 Cd
O等、及びそれらの化合物等の無機透明導電材料、及びポリア二リン等の導電性高 分子材料等で形成することができる。
[0161] この透明電極 2は、前記基板 1上に、化学気相成長法、スプレーパイロリシス、真空 蒸着法、電子ビーム蒸着法、スパッタ法、イオンビームスパッタ法、イオンプレーティ ング法、イオンアシスト蒸着法、その他の方法により形成されることができる。
[0162] なお、基板が不透明部材で形成されるときには、基板上に形成される電極は透明 電極である必要はない。
[0163] 発光層 3は、青色を発光させるときにはこの発明に係る青色発光ポリマーを含有し、 また、白色を発光させるときには赤色発光化合物、緑色発光化合物及びこの発明に 係る青色発光ポリマーを含有する層であり、また、この発明に係る青色発光ポリマー 、又は赤色発光化合物、緑色発光化合物及びこの発明に係る青色発光ポリマーを 前記透明電極 2上に形成することができる。
[0164] 青色発光ポリマーを前記透明電極 2上に形成する方法としては、この青色発光ポリ マーを適宜の溶媒に溶解して透明電極状に塗布する方法を挙げることができる。塗 布法としては、スピナ一法、刷毛塗り法等を挙げることができる。
[0165] 前記発光層 3の厚みは、通常 30— 500nm、好ましくは 100— 300nmである。発光 層 3の厚みが薄すぎると発光光量が不足することがあり、発光層 3の厚みが大きすぎ ると、駆動電圧が高くなりすぎて好ましくないことがあり、また、面状体、管状体、湾曲 体、環状体とするときの柔軟性に欠けることがある。
[0166] 前記電極層 4は、仕事関数の小さな物質が採用され、例えば、 MgAg、アルミニゥ ム合金、金属カルシウム等の、金属単体又は金属の合金で形成されることができる。 好適な電極層 4はアルミニウムと少量のリチウムとの合金電極である。この電極層 4は 、例えば基板 1の上に形成された前記発光層 3を含む表面に、蒸着技術により、容易 に形成することができる。
[0167] 塗布法を採用して発光層を形成するにしても、電極層と発光層との間に、
層を介装するのが好ましい。 [0168] 前記バッファ層を形成することのできる材料として、例えば、フッ化リチウム等のアル カリ金属化合物、フッ化マグネシウム等のアルカリ土類金属化合物、酸化アルミユウ ム等の酸化物、 4, 4,-ビスカルバゾールビフエニル(Cz-TPD)を挙げることができ る。また、例えば ITO等の陽極と有機層との間に形成されるバッファ層を形成する材 料として、例えば m_MTDATA (4, 4,, 4,しトリス(3—メチルフエユルフェニルァミノ )トリフエニルァミン)、フタロシアニン、ポリア二リン、ポリチオフヱン誘導体、無機酸化 物例えば酸化モリブデン、酸化ルテニウム、酸化バナジウム、フッ化リチウムを挙げる こと力 Sできる。これらのバッファ層は、その材料を適切に選択することにより、発光素子 である有機 EL素子の駆動電圧を低下させることができ、発光の量子効率を改善する ことができ、発光輝度の向上を達成することができる。
[0169] 次に、この発明に係る発光素子の第 2の例を図に示す。図 2は、発光素子である多 層型有機 EL素子の断面を示す説明図である。
[0170] 図 2に示すように、この発光素子 Bは、基板 1の表面に、透明電極 2、ホール輸送層
5、発光層 3a, 3b、電子輸送層 6及び電極層 4をこの順に積層してなる。
[0171] 基板 1、透明電極 2、及び電極層 4については、図 1に示された発光素子 Aにおけ るのと、同様である。
[0172] 図 2に示される発光素子 Bにおける発光層は発光層 3a及び発光層 3bよりなり、発 光層 3aは発光化合物を蒸着してなる蒸着膜である。発光層 3bは、ホスト材料的な機 能を有する層である。
[0173] 前記ホール輸送層 5に含まれるホール輸送物質としては、トリフエニルァミン系化合 物例えば N, N'—ジフエニル -N, N,—ジ(m-トリル)—ベンジジン(TPD)、及び α _ NPD等、ヒドラゾン系化合物、スチルベン系化合物、複素環系化合物、 π電子系ス ターバースト正孔輸送物質等を挙げることができる。
[0174] 前記電子輸送層 6に含まれる電子輸送物質としては、前記電子輸送性物質として は、例えば、 2_ (4_tert_ブチルフエ二ル)— 5_ (4—ビフエ二ル)— 1 , 3, 4—ォキサジ ァゾール等のォキサジァゾール誘導体及び 2, 5_ビス(1—ナフチル 3, 4—ォキ サジァゾール、並びに 2, 5_ビス(5 '_tert—ブチノレ _2' _ベンゾキサゾリル)チオフヱ ン等を挙げること力 Sできる。また、電子輸送性物質として、例えばキノリノールアルミ錯 体 (Alq3)、ベンゾキノリノールベリリウム錯体(Bebq2)等の金属錯体系材料を好適 に使用することもできる。
[0175] 図 2における発光素子 Bでは、電子輸送層 6は Alq3を含有する。
[0176] 各層の厚みは、従来から公知の多層型有機 EL素子におけるのと同様である。
[0177] 図 2に示される発光素子 Bは、図 1に示される発光素子 Aと同様に作用し、発光する
。したがって、図 2に示される発光素子 Bは、図 1に示される発光素子 Aと同様の用途 を有する。
[0178] 図 3に、この発明に係る発光素子の第 3の例を示す。図 3は、多層型有機 EL素子 である発光素子の断面を示す説明図である。
[0179] 図 3に示される発光素子 Cは、基板 1の表面に、透明電極 2、ホール輸送層 5、発光 層 3、電子輸送層 8及び電極層 4をこの順に積層してなる。
[0180] この図 3に示す発光素子 Cは前記発光素子 Bと同様である。
[0181] 図 4に発光素子の他の例を示す。この図 4に示す発光素子 Dは、基板 1、電極 2、ホ ール輸送層 5、発光層 3及び電極層 4をこの順に積層してなる。
[0182] 前記図 1一 4に示される発光素子の外に、基板上に形成された透明電極である陽 極と電極層である陰極との間に、ホール輸送性物質を含有するホール輸送層と、こ の発明に係る青色発光ポリマー含有の電子輸送性発光層とを積層して成る二層型 有機低分子発光素子 (例えば、陽極と陰極との間に、ホール輸送層と、ゲスト色素と してこの発明に係る青色発光ポリマー及びホスト色素を含有する発光層とを積層して 成る二層型色素ドープ型発光素子)、陽極と陰極との間に、ホール輸送性物質を含 有するホール輸送層と、この発明に係る青色発光ポリマーと電子輸送性物質とを共 蒸着してなる電子輸送性発光層とを積層して成る二層型有機発光素子 (例えば、陽 極と陰極との間に、ホール輸送層と、ゲスト色素としてこの発明に係る青色発光ポリマ 一及びホスト色素とを含有する電子輸送性発光層とを積層して成る二層型色素ドー プ型有機発光素子)、陽極と陰極との間に、ホール輸送層、この発明に係る青赤色 発光ポリマー含有の発光層及び電子輸送層を積層して成る三層型有機発光素子を 挙げ'ること力 Sできる。
[0183] 前記発光層中には、増感剤としてルブレンが含有されているのが好ましぐ特に、 ルブレンと Alq3とが含有されているのが好ましい。
[0184] この発明に係る青色発光ポリマーを利用した青色発光素子、又は赤色発光化合物 、緑色発光化合物及びこの発明に係る青色発光ポリマーを利用した白色発光素子 は、例えば一般に直流駆動型の有機 EL素子として使用することができ、また、パル ス駆動型の有機 EL素子及び交流駆動型の有機 EL素子としても使用することができ る。
実施例
[0185] (実施例 1)青色発光ポリマーの合成
<脱ハロゲン化水素反応 >
2L三ッロフラスコに、ナフタレン 100g、塩化べンジル 148· 14gおよび亜鉛 40. 82 gを入れた。この三ッロフラスコ内の溶液を、ウォーターバスで 90°Cに加熱し、攪拌し ながら 1. 5時間反応させた。反応終了後、溶液を氷冷し、ベンゼンを用いて抽出分 離を 4回行い(1回当りのベンゼン使用量は、 375mlであった。)、水洗を 4回行った 後、濾過した。次いで、濾過して得られた固形状物を 2Lのベンゼンに溶解させ、この 溶液をエバポレーターを用いて、 80°Cで 1時間、真空蒸留した。蒸留後、濃縮液に エタノールを加え、さらに、 60°Cに加熱、放冷後、この溶液を濾過して、白色の結晶 6 2.38gを得た。
[0186] 得られた結晶の NMRスペクトルチャートを図 5に、 IRスペクトルチャートを図 6に示 す。これより、得られた結晶は、以下の式(20)で示される構造を有する化合物である と同定した。
[0187] [化 32]
Figure imgf000029_0001
[0188]
1L三ッロフラスコに、脱ハロゲン化水素反応で得られた化合物 32. 55g、塩化ァセ チノレ 116. 35g、塩ィ匕ァノレミニゥム 197. 7gおよび二硫ィ匕炭素 167mlを人れた。この 三ッロフラスコ内の溶液を、ウォーターバスで 35°Cに加熱し、攪拌しながら 2. 5時間 反応させた。反応終了後、溶液を放冷し、この溶液にクロ口ホルムを加え、抽出分離 を 3回行い(1回当りのクロ口ホルム使用量は、 80mlであった。)、水洗を 4回行った後 、溶媒を留去し、乾燥させて固形物を得た。この固形物を 75mlのジォキサンに溶解 させ、濾過した。さらに、濾過して得られた固形物をジォキサンおよび石油エーテル の混合溶媒に溶解させた後、乾固させて、黄色の結晶 26. 77gを得た。
[0189] 得られた結晶の NMRスペクトルチャートを図 7に、 IRスペクトルチャートを図 8に示 す。これより、得られた結晶は、以下の式(21)で表される構造を有する化合物である と同定した。
[0190] [化 33]
Figure imgf000029_0002
[0191] <酸化 ·加水分解 >
2L三ッロフラスコに、ァセチル化して得られた化合物 26. 77gおよびメタノーノレ 40 Omlを入れた。この三ッロフラスコ内の溶液を、ウォーターバスで 65°Cまで、段階的 に加熱し、さらに、加熱中に 0. 7mol/Lの次亜塩素酸ナトリウム水溶液を少量ずつ 添加し (総添加量は、 500mlであった。)、攪拌しながら 65°Cで 2時間反応させた。反 応終了後、溶液を放冷した。放冷後、濾過し、得られた固形物を、水洗し、さらに、 25 Omlのメタノールで洗浄した後、乾燥させて白色の結晶 21. 44gを得た。
[0192] 得られた結晶の NMRスペクトルチャートを図 9に、 IRスペクトルチャートを図 10に 示す。これより、得られた結晶は、以下の式(22)で表される構造を有するジカルボン 酸化合物であると同定した。
[0193] [化 34]
••(22》
Figure imgf000030_0001
[0194] <重縮合>
2L三ッロフラスコに、酸化'加水分解して得られたジカルボン酸化合物 3. Og、ポリ りん酸 49gおよび硫酸ヒドラジン 1. 27gを入れた。この三ッロフラスコ内の溶液を、ォ ィルバスで 120°Cに加熱し、攪拌しながら 6. 5時間反応させた。反応終了後、溶液を 氷冷し、その後、 DMACでソックスレー抽出を行った。次いで、得られた濃縮液を濾 過、乾固して、曳糸性を有する薄膜を得た。
[0195] 得られた薄膜の NMRスペクトルチャートを図 11に、 IRスペクトルチャートを図 12に 示す。これより、得られた薄膜は、以下の式(23)で表される構造を有するポリマーで あると同定した。 [0196] [化 35]
Figure imgf000031_0001
[0197] 得られた薄膜を、 日立製作所製の F - 4500型分光蛍光光度計に装填して、以下の 条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルを図 13に示す。
[0198] 測定条件
測定モード 波長スキャン
励起波長 doonm
蛍光開始波長 380應
蛍光終了波長 700nm
スキャンスピード 2400nm/分
励起側スリット 5. Onm
蛍光側スリット 2. 5nm
ホトマル電圧 700V
図 13から、この実施例で得られた薄膜は、 400 500nmにピーク力 S現れたこと力 ら、この薄膜は、青色を発光することが判った。
[0199] (実施例 2)青色発光ポリマーの合成
ぐ重縮合 >
2L三ッロフラスコに、実施例 1における式(22)で示されるジカルボン酸化合物 1. Og、下記式(25)で示される市販のフルオレン化合物 0. 92g、硫酸ヒドラジン 0. 84g およびポリリン酸 60gを入れた。 [0200] [化 36]
Figure imgf000032_0001
[0201] この三ッロフラスコ内の溶液を、オイルバスで 107°Cに加熱し、攪拌しながら 48時 間反応させた。反応終了後、溶液を pH9の水中に流し落とし、生成した固体のうち白 色固体のみを濾過により取り出した。得られた白色固体を DMAC (N, N—ジメチル ァセトアミド) 150mlに溶解させた溶液を、 180°Cで 12時間かけて加熱還流した。還 流後、放冷、濾過し、得られた濾液を真空加熱させ、薄膜を得た。
[0202] 得られた薄膜の IRスペクトルチャートを図 14に示す。これより、得られた薄膜は、以 下の式(26)で表される構造を有するポリマーであると同定した。
[0203] [化 37]
丄 ·■·■■■■ /
ノ CH2
Figure imgf000032_0002
(26)
[0204] また、得られた薄膜 lOOmgを DMAC5mlに溶解させて試料液を調製した。この試 料液を日立製作所製の F— 4500型分光蛍光光度計に装填して、実施例 1と同じ条 件にて蛍光スペクトルを測定した。得られた蛍光スペクトルを図 15に示す。
[0205] 図 15から、この実施例で得られた薄膜は、 400— 450nmにピークが現れたことか ら、この薄膜は、青色を発光することが判った。
産業上の利用可能性
[0206] 本発明により、高い発光輝度を確保でき、長時間にわたる発光を実現することがで きる青色発光ポリマー、その製造方法およびそれを利用した発光素子を提供すること
ZL OO/tOOZdr/∑Jd ひ 6000/S00Z OAV

Claims

請求の範囲
[1] 以下の一般式(1)で示される繰り返し単位からなることを特徴とする青色発光ポリマ [化 1]
- - - (1 )
Figure imgf000034_0001
(ただし、式中、 Ar1および Ar2は、以下の一般式(2)—(5)で示される基を示す。また 、 Zは、単結合または以下の式(6)で示される基を示す。 Ar1および Ar2は、互いに同 一であっても相違していてもよレ、。 )
[化 2]
Figure imgf000034_0002
(ただし、式中、 R1は、水素原子、炭素数 1一 10のアルキル基、炭素数 1一 5のアルコ キシ基または炭素数 6— 14のァリール基を示す。また、式中、 nは、 1一 4の整数を示 す。)
[化 3]
Figure imgf000035_0001
(ただし、式中、 R2および R3は、水素原子、炭素数 1一 10のアルキル基、炭素数 1一 5のアルコキシ基または炭素数 6— 14のァリール基を示す。前記 R2および R3は、互 いに同一であっても相違していてもよレ、。また、式中、 mは、 1または 2の整数を、 nは 、前記と同様の意味を示す。 )
[化 4]
Figure imgf000035_0002
(ただし、式中、
Figure imgf000035_0003
R5および R。は、水素原子、炭素数 1一 10のアルキル基、炭素数 1一 5のアルコキシ基または炭素数 6— 14のァリール基を示す。前記 、 R5および R6 は、互いに同一であっても相違していてもよレ、。また、式中、 mおよび nは、前記と同 様の意味を示す。 )
[化 5]
Figure imgf000036_0001
(ただし、式中、 R7および R8は、水素原子、炭素数 1 10のアルキル基、炭素数 1 5のアルコキシ基または炭素数 6— 14のァリール基を示す。前記 R7および R8は、互 いに同一であっても相違していてもよい。また、式中、 nは、前記と同様の意味を示す
。)
[化 6]
Figure imgf000036_0003
(6》
Figure imgf000036_0002
(ただし、式中 R1Qは、水素原子または炭素数 1 10のアルキル基を示す。前記 R1Q は、互いに同一であっても相違していてもよレ、。 )
[2] 以下の式 (7)で示される芳香族環式化合物と以下の式 (8)で示される芳香族ハロゲ ン化合物とを脱ハロゲン化水素反応して得られる化合物を、ァセチル化し、次いで、 酸化して得た化合物を加水分解して得られる以下の式(9)で示されるジカルボン酸 化合物とヒドラジニゥム塩とを反応させて重縮合させることを特徴とする前記一般式( 1)で示される繰り返し単位からなる青色発光ポリマーの製造方法。
[化 7]
H Ar 1 (7) (ただし、式中、 Ar1は、前記請求項 1におけるのと同様の意味を示す。)
[化 8]
H™ Ar4"— CHgX (e)
(ただし、式中、 Ar2は、前記請求項 1におけるのと同様の意味を示し、 Xは、ハロゲン 原子を示す。 )
[化 9]
HOOC― Ar1— CH2― Ar2— COOH
(9)
[3] 以下の式(10)で示されるフルオレン化合物をァセチルイ匕し、次いで、酸化して得た 化合物を加水分解して得られる以下の式(11)で示される化合物と前記式(9)で示さ れる化合物とを、ヒドラジニゥム塩の存在下で反応させて縮重合させることを特徴とす る前記一般式(1)に記載の青色発光ポリマーの製造方法。
[化 10]
Figure imgf000037_0001
(ただし、式中 R1Qは、水素原子または炭素数 1一 10のアルキル基を示す。前記 R1Q は、互いに同一であっても相違していてもよレ、。 )
[化 11]
Figure imgf000038_0001
[4] 一対の電極間に、前記一般式(1)で示される繰り返し単位からなる青色発光ポリマ を含有する発光層を有してなることを特徴とする発光素子。
PCT/JP2004/008872 2003-06-30 2004-06-24 青色発光ポリマー、その製造方法およびそれを利用した発光素子 WO2005000942A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04746341A EP1642920A1 (en) 2003-06-30 2004-06-24 Blue light emitting polymer, method for producing same, and light emitting device utilizing same
US10/562,934 US20060152144A1 (en) 2003-06-30 2004-06-24 Blue light emitting polymer, method for producing same, and light emitting device utilizing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-188390 2003-06-30
JP2003188390A JP2005023154A (ja) 2003-06-30 2003-06-30 青色発光ポリマー、その製造方法およびそれを利用した発光素子

Publications (1)

Publication Number Publication Date
WO2005000942A1 true WO2005000942A1 (ja) 2005-01-06

Family

ID=33549747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008872 WO2005000942A1 (ja) 2003-06-30 2004-06-24 青色発光ポリマー、その製造方法およびそれを利用した発光素子

Country Status (7)

Country Link
US (1) US20060152144A1 (ja)
EP (1) EP1642920A1 (ja)
JP (1) JP2005023154A (ja)
KR (1) KR20060024446A (ja)
CN (1) CN1802403A (ja)
TW (1) TW200504178A (ja)
WO (1) WO2005000942A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164708A (ja) 2004-12-06 2006-06-22 Semiconductor Energy Lab Co Ltd 電子機器および発光装置
JPWO2006092964A1 (ja) * 2005-03-03 2008-08-07 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス照明装置
WO2006115131A1 (ja) * 2005-04-19 2006-11-02 Hirose Engineering Co., Ltd. 発光性重合体、発光性重合体の製造方法、及び発光素子
KR100619287B1 (ko) * 2006-01-09 2006-09-01 이승엽 고배율 발포체용 조성물 및 이를 이용한 경량 발포체
DE102008009068A1 (de) 2008-02-13 2009-08-27 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren zur Herstellung eines Polyoxadiazol-Polymers
DE102008027499A1 (de) * 2008-06-10 2009-12-17 Gkss-Forschungszentrum Geesthacht Gmbh Herstellung von Kompositen aus Polyoxadiazol-Polymeren
JP4775865B2 (ja) * 2009-01-14 2011-09-21 東芝モバイルディスプレイ株式会社 有機el表示装置及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148281A (ja) * 1994-09-19 1996-06-07 Mitsui Petrochem Ind Ltd 有機薄膜電界発光素子およびその製造方法
JPH11124573A (ja) * 1997-08-12 1999-05-11 Samsung Display Devices Co Ltd 発光ダイオード用有機電気発光高分子
JPH11228692A (ja) * 1998-02-10 1999-08-24 Jsr Corp ポリオキサジアゾール誘導体及びその製造方法、並びに有機エレクトロルミネッセンス素子
WO2001077203A2 (en) * 2000-04-11 2001-10-18 Dupont Displays, Inc. Soluble poly(aryl-oxadiazole) conjugated polymers
JP2002524596A (ja) * 1998-09-03 2002-08-06 フラウンホーファー−ゲゼルシャフト・ツァー・フュールデルンク・ダー・アンゲヴァンテン・フォルシュンク・エー.ファウ. 光学装置用の芳香族ポリ(1,3,4−ヘテロジアゾール)
JP2003064003A (ja) * 2001-05-22 2003-03-05 Korea Inst Of Science & Technology 官能基を含有したフルオレン系化合物及びその重合体並びにそれらを利用したel素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143433A (en) * 1994-09-14 2000-11-07 Mitsui Chemicals, Inc. Organic electroluminescent device and process for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148281A (ja) * 1994-09-19 1996-06-07 Mitsui Petrochem Ind Ltd 有機薄膜電界発光素子およびその製造方法
JPH11124573A (ja) * 1997-08-12 1999-05-11 Samsung Display Devices Co Ltd 発光ダイオード用有機電気発光高分子
JPH11228692A (ja) * 1998-02-10 1999-08-24 Jsr Corp ポリオキサジアゾール誘導体及びその製造方法、並びに有機エレクトロルミネッセンス素子
JP2002524596A (ja) * 1998-09-03 2002-08-06 フラウンホーファー−ゲゼルシャフト・ツァー・フュールデルンク・ダー・アンゲヴァンテン・フォルシュンク・エー.ファウ. 光学装置用の芳香族ポリ(1,3,4−ヘテロジアゾール)
WO2001077203A2 (en) * 2000-04-11 2001-10-18 Dupont Displays, Inc. Soluble poly(aryl-oxadiazole) conjugated polymers
JP2003064003A (ja) * 2001-05-22 2003-03-05 Korea Inst Of Science & Technology 官能基を含有したフルオレン系化合物及びその重合体並びにそれらを利用したel素子

Also Published As

Publication number Publication date
CN1802403A (zh) 2006-07-12
US20060152144A1 (en) 2006-07-13
TW200504178A (en) 2005-02-01
JP2005023154A (ja) 2005-01-27
KR20060024446A (ko) 2006-03-16
EP1642920A1 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
KR20050029712A (ko) 발광 화합물 및 발광 소자
WO2005000942A1 (ja) 青色発光ポリマー、その製造方法およびそれを利用した発光素子
WO2006043539A1 (ja) 発光化合物、発光高分子化合物、および発光素子
WO2004083194A1 (ja) 青色発光化合物、その製造方法及びそれを利用した発光素子
TW200302264A (en) Luminescent compound emitting white light, and illuminator and organic el element emitting white light
US20040234814A1 (en) Blue light-emitting compounds, blue light-emitting polymers, processes of preparing the blue light-emitting compounds and luminescent element including the blue light-emitting polymers
WO2005000847A1 (ja) 白色発光化合物、その製造方法、及び白色発光素子
KR20050040773A (ko) 백색 발광 화합물, 그것의 제조 방법 및 그것을 이용한발광 소자
EP1475372A1 (en) Nile red type compound emitting red light, process for producing the same, and luminescent element utilizing the same
JP2005154404A (ja) 青色発光化合物、青色発光ポリマー、青色発光化合物の製造方法および青色発光ポリマーを利用した発光素子
JP2006008628A (ja) 青色発光化合物及び発光素子
JP2004035447A (ja) フッ化アルキル基含有スチルベン系青色発光化合物及び発光素子
JP3798985B2 (ja) 単一化合物による白色発光照明装置及び白色発光有機el素子
JP2004149433A (ja) 白色有機蛍光化合物
US20060252933A1 (en) Nile red light-emitting compound, method for producing nile red light-emitting compound, and light-emitting device
JP2005097129A (ja) 赤色発光化合物、赤色発光ポリマー、赤色発光化合物の製造方法およびそれらを利用した発光素子
JPWO2004039866A1 (ja) 発光性ポリマー及び発光素子
JP2004018400A (ja) ナイルレッド系赤色発光化合物、その製造方法及びそれを利用した発光素子
JPWO2003076390A1 (ja) 黄色発光化合物、その製造方法、黄色発光素子及び白色発光素子
KR19990030829A (ko) 발광 고분자 및 이 발광 고분자를 발색재료로서 채용하고 있는 표시소자
WO2003106391A1 (ja) 青色発光化合物、フッ化アルキル基含有スチルベン系青色発光化合物、及び発光素子
WO2006001239A1 (ja) 白色発光化合物、白色発光高分子化合物、それらの製造方法及び発光素子
JP2004018401A (ja) 青色発光化合物及び発光素子
JP2005132743A (ja) 赤色発光化合物、赤色発光ポリマーおよびこれらを利用した発光素子
CN1382674A (zh) 芳香稠环化合物、发光元件材料和使用该材料的发光元件

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048159347

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057025186

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006152144

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10562934

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004746341

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057025186

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004746341

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004746341

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10562934

Country of ref document: US