WO2006115131A1 - 発光性重合体、発光性重合体の製造方法、及び発光素子 - Google Patents

発光性重合体、発光性重合体の製造方法、及び発光素子 Download PDF

Info

Publication number
WO2006115131A1
WO2006115131A1 PCT/JP2006/308156 JP2006308156W WO2006115131A1 WO 2006115131 A1 WO2006115131 A1 WO 2006115131A1 JP 2006308156 W JP2006308156 W JP 2006308156W WO 2006115131 A1 WO2006115131 A1 WO 2006115131A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polymer
repeating unit
group
represented
Prior art date
Application number
PCT/JP2006/308156
Other languages
English (en)
French (fr)
Inventor
Tadao Nakaya
Ryoji Matsumoto
Michiaki Tobita
Takashi Ushijima
Atsushi Ikeda
Mitukura Sato
Kazushi Shiren
Sinta Morokoshi
Original Assignee
Hirose Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose Engineering Co., Ltd. filed Critical Hirose Engineering Co., Ltd.
Publication of WO2006115131A1 publication Critical patent/WO2006115131A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/08Polyhydrazides; Polytriazoles; Polyaminotriazoles; Polyoxadiazoles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • Luminescent polymer a method for producing luminescent polymer, and light emitting device
  • the present invention relates to a light-emitting polymer, a method for producing a light-emitting polymer, and a light-emitting element, and more specifically, a light-emitting polymer that is easy to process and a light-emitting polymer that emits light of desired light.
  • the present invention relates to a method for producing a light-emitting polymer that can be easily produced, and a light-emitting element in which a light-emitting layer containing the light-emitting polymer is provided between a pair of electrodes.
  • An organic EL element has a light emitting layer, an electron transport layer, and a hole transport layer, and causes a light emitting substance to emit light by energy generated by recombination of electrons and holes injected from an electrode.
  • Non-Patent Document 1 (Non-Patent Document 1).
  • Non-Patent Document 1 Nihon Jitsugyo Publishing Co., Ltd., March 1st, 2004, 6th edition, “All about organic EL” (P. 170)
  • the low-molecular-weight luminescent material has a problem that it is inferior in workability because it is processed by a method such as vapor deposition, solvent, and coating after processing. .
  • vapor deposition is usually performed by heating a luminescent material to a vapor under high vacuum and solidifying and fixing the vapor of the luminescent material at a predetermined site. Therefore, the vapor deposition operation is extremely large, equipped with a vacuum exhaust device that realizes a high vacuum, a high-temperature heating device that heats the luminescent material, and a device that solidifies the luminescent material vapor on the electrode surface formed on the substrate. A vapor deposition apparatus is required.
  • a polymer-based luminescent substance there is a polybulur rubazole-based polymer.
  • This polyvinyl carbazole polymer has a problem that it has conductivity or semiconductivity but is easily deteriorated.
  • the polymer-based luminescent substance has a problem that the film forming property is lowered and the luminescent color changes with time. Designing a polymer structure so that it has good semiconductivity degrades the film-forming property, and trying to improve the film-forming property reduces the semiconductor property. is there.
  • This invention is easy to process, and can easily produce a light-emitting polymer that emits light with high purity and high brightness, and a light-emitting polymer that emits light of a desired color with excellent film forming properties.
  • Another object of the present invention is to provide a method for producing a light-emitting polymer, and a light-emitting element in which a light-emitting layer containing the light-emitting polymer is provided between a pair of electrodes.
  • Claim 1 is a repeating unit represented by the following formula (1A), or at least one selected from a group force comprising the following (formula 1A) and the repeating units represented by the following formulas (1B) to (1N) and (1Q) A light-emitting polymer having a repeating unit in the main chain.
  • each of the two R 1 is an alkyl group having 1 to 15 carbon atoms. /.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 2 bonded on the benzene ring is any one of 1 to 4.
  • the plurality of R 2 may be the same or different.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 2 bonded on the naphthalene ring is any one of 1-6.
  • the plurality of R 2 may be the same or different! /.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 2 bonded on the pyrene ring is 1-8, which is a deviation.
  • the plurality of R 2 may be the same or different.
  • R 2 represents a hydrogen atom or an alkylphenol group.
  • the alkyl group in the alkylphenol group has 1 to 10 carbon atoms, and the alkyl group in the alkylphenol group has 1 to 5 carbon atoms.
  • R 3 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 3 bonded on the benzene ring is 1-5.
  • R 4 is a hydrogen atom, a phenyl group, a naphthyl group, or an anthryl group that may be substituted by an alkyl group having 1 to 10 carbon atoms.
  • R 1 is a hydrogen atom or alkyl having 1 to 10 carbon atoms.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 2 is an aryl group that may be substituted with an alkyl group.
  • Claim 2 is obtained by reacting a dicarboxylic acid compound and a hydrazine compound represented by the following formula (2A), or represented by the following formulas (2A) and (2B) to (2N) and (2Q).
  • a method for producing a light-emitting polymer comprising reacting a dicarboxylic acid compound containing at least one selected from the group consisting of compounds and a hydrazine compound.
  • each of two R 1 s is an alkyl group having 1 to 15 carbon atoms. /.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 2 bonded on the benzene ring is any one of 1 to 4.
  • the plurality of R 2 may be the same or different.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 2 bonded on the naphthalene ring is any one of 1-6.
  • the plurality of R 2 may be the same or different! /.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 2 bonded on the pyrene ring is 1-8, which is a deviation.
  • the plurality of R 2 may be the same or different.
  • R 2 represents a hydrogen atom or an alkylphenol group.
  • the alkyl group in the alkylphenol group has 1 to 10 carbon atoms, and the alkyl group in the alkylphenol group has 1 to 5 carbon atoms.
  • R 3 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 3 bonded on the benzene ring is 1-5.
  • R 4 is a hydrogen atom, a phenyl group, a naphthyl group, or an anthryl group that may be substituted by an alkyl group having 1 to 10 carbon atoms.
  • R 1 is a hydrogen atom or alkyl having 1 to 10 carbons.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 2 is an aryl group that may be substituted with an alkyl group.
  • a third aspect is a light emitting device comprising a light emitting layer containing the light emitting polymer according to the first aspect provided between a pair of electrodes.
  • the light-emitting polymer according to the present invention includes an oxadiazole ring and a fluorene skeleton, benzene skeleton, naphthalene skeleton, pyrene skeleton, force rubazole skeleton, dipyridine skeleton, thiophene skeleton, di ( Phenylamine)
  • a benzene skeleton, a quinacridone skeleton, a benzothiadiazole skeleton, a pyridine skeleton, a phenoxazine skeleton, and a diphenylarylamine skeleton group group power is selected.
  • the polymer having these skeletons can determine the emission color by selecting the type of the skeleton. For example,
  • the polymer having a repeating unit represented by the formula (1 A), the formula (1N) and the formula (1L) and the polymer having a repeating unit represented by the formula (1F) have a strong tendency to emit blue light.
  • the polymer having a repeating unit represented by the formula (1A), the formula (1N) and the formula (1L), and the polymer having a repeating unit represented by the formula (1A) and the formula (1D) are: Marine blue or Near this, it emits blue light.
  • Polymers having repeating units such as those represented by formula (1A), formula (1L), formula (II) and formula (1E) tend to emit white or blue light.
  • the di (phenolamino) benzene skeleton contained in the repeating unit represented by the formula (II) and the quinacridone skeleton contained in the repeating unit represented by the formula (1J) are overlapped.
  • the coalescence is a strong tendency for the coalescence to emit white light.
  • the pyrene skeleton contained in the repeating unit represented by the formula (1E) has a strong tendency to cause the polymer to emit yellow light or white light depending on the amount contained in the polymer main chain. When this pyrene skeleton is contained in the polymer main chain, the emission luminance is increased.
  • the present invention provides a polymer that selectively emits light such as blue light emission, bluish white light emission, warm white light emission, yellow light emission, and green light emission.
  • the light-emitting polymer according to the present invention contains an oxazazole ring in each repeating unit. This oxadiazole ring is electron withdrawing.
  • the repeating units represented by the formulas (1A) to (: LN) and the formula (1Q) are themselves asymmetric.
  • a light-emitting polymer characterized in that a main chain is formed as a continuum of asymmetric repeating units has a remarkable light-emitting property due to an electron bias on the main chain.
  • the reactivity of the fluorene skeleton contained in the repeating unit represented by the formula (1A) is increased by the substituted R 1 and, as a result, the molecular weight of the resulting polymer is increased. Therefore, according to the present invention, by having the repeating unit represented by the formula (1A), it is possible to provide a light emitting polymer having a high molecular weight as high as 100,000.
  • a polymer having a repeating unit represented by the formula (1C) the emission luminance tends to increase as the content of the repeating unit represented by the formula (1A) increases.
  • the light-emitting polymer according to the present invention is also characterized in that the polymer main chain has a conjugated double bond.
  • the polymer main chain has a conjugated double bond.
  • a polymer having a conjugated double bond in the main chain is easily deteriorated, and such a polymer has a conjugated double bond. It has a high molecular weight and is chemically stable and hardly deteriorated. Therefore, according to the present invention, it is possible to provide a light-emitting polymer suitable as a raw material for producing a light-emitting element having a long light-emitting lifetime and a large light-emitting area.
  • the light-emitting polymer according to the present invention also has high solubility in a general-purpose solvent such as chloroform, while having a high molecular weight. Therefore, this light-emitting polymer can be easily formed into a thin film by dissolving it in a general-purpose solvent, for example, by a casting method or the like. Therefore, a light emitting element capable of emitting light can be easily formed by sandwiching the thin film between electrodes.
  • the light-emitting polymer according to the present invention can be easily processed into a film, for example, by a general polymer molding method. Therefore, when this light emitting polymer film is used, a light emitting device can be easily produced.
  • a dicarboxylic acid compound represented by the formula (2A) is reacted with a hydrazine compound, or a dicarboxylic acid represented by the formula (2A) is used.
  • a dicarboxylic acid compound containing at least one selected from the group consisting of an acid compound and the compounds represented by the formulas (2B) to (2N) and (2Q) is reacted with a hydrazine compound.
  • a hydrazine compound for example, a reaction to form a hydrazine sulfate power oxadiazole ring and a polycondensation reaction occur, so that the luminescent polymer can be shortened from a specific raw material in one reaction. Can be manufactured.
  • a dicarboxylic acid that undergoes a polycondensation reaction with a hydrazine compound One or two or more kinds of compounds can be used, whereby a light-emitting polymer having plural kinds of repeating units can be obtained.
  • the properties of the polymer, such as the emission color can be changed.
  • FIG. 1 is a cross-sectional view schematically showing an example of a light emitting device of the present invention.
  • FIG. 2 is an NMR spectrum chart of the polymer in Example 1.
  • FIG. 3 is an IR ⁇ vector chart of the polymer in Example 1.
  • FIG. 4 is a fluorescence spectrum chart of the polymer in Example 1.
  • FIG. 5 is an NMR spectrum chart of the polymer in Example 2.
  • FIG. 6 is an IR ⁇ vector chart of the polymer in Example 2.
  • FIG. 7 is a fluorescence spectrum chart of the polymer in Example 2.
  • FIG. 8 is an NMR spectrum chart of the polymer in Example 3.
  • FIG. 9 is an IR ⁇ vector chart of the polymer in Example 3.
  • FIG. 10 is a fluorescence spectrum chart of the polymer in Example 3.
  • FIG. 11 is an NMR vector chart of the polymer in Example 4.
  • FIG. 12 is an IR ⁇ vector chart of the polymer in Example 4.
  • FIG. 13 is a fluorescence spectrum chart of the polymer in Example 4.
  • FIG. 14 is a NMR vector chart of the polymer in Example 5.
  • FIG. 15 is an IR ⁇ vector chart of the polymer in Example 5.
  • FIG. 16 is a fluorescence spectrum chart of the polymer in Example 5.
  • FIG. 17 is a NMR vector chart of the polymer in Example 6.
  • FIG. 18 is an IR ⁇ vector chart of the polymer in Example 6.
  • FIG. 19 is a fluorescence spectrum chart of the polymer in Example 6.
  • FIG. 20 is a NMR vector chart of the polymer in Example 7.
  • FIG. 21 is an IR ⁇ vector chart of the polymer in Example 7.
  • FIG. 22 is a fluorescence spectrum chart of the polymer in Example 7.
  • FIG. 23 is an NMR vector chart of the polymer in Example 8.
  • FIG. 24 is an IR ⁇ vector chart of the polymer in Example 8.
  • FIG. 25 is a fluorescence spectrum chart of the polymer in Example 8.
  • FIG. 26 is an NMR vector chart of the polymer in Example 9.
  • FIG. 27 is an IR ⁇ vector chart of the polymer in Example 9.
  • FIG. 28 is a fluorescence spectrum chart of the polymer in Example 9.
  • FIG. 29 is an NMR vector chart of the polymer in Example 10.
  • FIG. 30 is an IR ⁇ vector chart of the polymer in Example 10.
  • FIG. 31 is a fluorescence spectrum chart of the polymer in Example 10.
  • FIG. 32 is an NMR vector chart of the polymer in Example 11.
  • FIG. 33 is an IR ⁇ vector chart of the polymer in Example 11.
  • FIG. 34 is a fluorescence spectrum chart of the polymer in Example 11.
  • FIG. 35 is an NMR vector chart of the polymer in Example 12.
  • FIG. 36 is an IR ⁇ vector chart of the polymer in Example 12.
  • FIG. 37 is a fluorescence spectrum chart of the polymer in Example 12.
  • FIG. 38 is an XY chromaticity diagram of the light-emitting element in Example 13.
  • FIG. 39 is a graph showing the relationship between the voltage and brightness of the light emitting device in Example 13.
  • FIG. 40 is an EL spectrum chart of the light-emitting element in Example 13.
  • FIG. 41 is an NMR vector chart of the polymer in Example 14.
  • FIG. 42 is an IR ⁇ vector chart of the polymer in Example 14.
  • FIG. 43 is a fluorescence spectrum chart of the polymer in Example 14.
  • FIG. 44 is a NMR vector chart of the polymer in Example 15.
  • FIG. 45 is an IR ⁇ vector chart of the polymer in Example 15.
  • FIG. 46 is a fluorescence spectrum chart of the polymer in Example 15.
  • FIG. 47 is a NMR vector chart of the polymer in Example 16.
  • FIG. 48 is an IR ⁇ vector chart of the polymer in Example 16.
  • FIG. 49 is a fluorescence spectrum chart of the polymer in Example 16.
  • FIG. 50 is an NMR vector chart of the polymer in Example 17.
  • FIG. 51 is an IR ⁇ vector chart of the polymer in Example 17.
  • FIG. 52 is a fluorescence spectrum chart of the polymer in Example 17.
  • FIG. 53 is an NMR vector chart of the polymer in Example 18.
  • FIG. 54 is an IR vector chart of the polymer in Example 18.
  • FIG. 55 is a fluorescence spectrum chart of the polymer in Example 18.
  • FIG. 56 is an NMR vector chart of the polymer in Example 19.
  • FIG. 57 is an IR vector vector chart of the polymer in Example 19.
  • FIG. 58 is a fluorescence spectrum chart of the polymer in Example 19.
  • FIG. 59 is an NMR vector chart of the polymer in Example 20.
  • FIG. 60 is an IR vector vector chart of the polymer in Example 20.
  • FIG. 61 is a fluorescence spectrum chart of the polymer in Example 20.
  • FIG. 62 is an NMR vector chart of the polymer in Example 21.
  • FIG. 63 is an IR vector vector chart of the polymer in Example 21.
  • FIG. 64 is a fluorescence spectrum chart of the polymer in Example 21.
  • FIG. 65 is a fluorescence spectrum chart of the polymer in Example 22.
  • FIG. 66 is a fluorescence spectrum chart of the polymer in Example 23.
  • FIG. 67 is an NMR vector chart of the polymer in Example 24.
  • FIG. 68 is an IR vector vector chart of the polymer in Example 24.
  • FIG. 69 is a fluorescence spectrum chart of the polymer in Example 24.
  • FIG. 69A is an emission spectrum chart of the polymer.
  • FIG. 70 is a fluorescence spectrum chart of the polymer in Example 25.
  • FIG. 71 is a fluorescence spectrum chart of the polymer in Example 26.
  • FIG. 72 is an NMR chart of the polymer in Example 27.
  • FIG. 73 is a NMR vector chart of the polymer in Example 28.
  • FIG. 74 is an IR vector vector chart of the polymer in Example 28.
  • FIG. 75 is a fluorescence spectrum chart of the polymer in Example 28.
  • FIG. 76 is an emission spectrum chart of various polymers.
  • FIG. 77 is an NMR vector chart of the polymer in Example 29.
  • FIG. 78 is an IR vector vector chart of the polymer in Example 29.
  • FIG. 79 is a fluorescence spectrum chart of the polymer in Example 29.
  • FIG. 80 is an NMR vector chart of the polymer in Example 30.
  • FIG. 81 is an IR vector vector chart of the polymer in Example 30.
  • FIG. 82 is a fluorescence spectrum chart of the polymer in Example 30.
  • FIG. 83 is an NMR vector chart of the polymer in Example 31.
  • FIG. 84 is an IR vector chart of the polymer in Example 31.
  • FIG. 85 is a fluorescence spectrum chart of the polymer in Example 31.
  • FIG. 86 is an NMR vector chart of the polymer in Example 32.
  • FIG. 87 is an IR vector vector chart of the polymer in Example 32.
  • FIG. 88 is a fluorescence spectrum chart of the polymer in Example 32.
  • FIG. 89 is an NMR vector chart of the polymer in Example 33.
  • FIG. 90 is an IR vector vector chart of the polymer in Example 33.
  • FIG. 91 is a fluorescence spectrum chart of the polymer in Example 33.
  • FIG. 92 is an NMR vector chart of the polymer in Example 34.
  • FIG. 93 is an IR vector vector chart of the polymer in Example 34.
  • FIG. 94 is a fluorescence spectrum chart of the polymer in Example 34. Explanation of symbols
  • a polymer comprising a repeating unit represented by the following formula (1 A):
  • the main chain has a repeating unit composed of a repeating unit represented by the following formula (1A) and a repeating unit represented by the following formulas (1B) to (: LH), and one kind of repeating unit selected.
  • the polymer can emit blue light and may be referred to as blue light-emitting polymer (1) below.
  • a polymer having a repeating unit represented by the formula (1A), a repeating unit represented by the formula (1N), and a repeating unit represented by the formula (1L) is marine blue or a mixture thereof. Emits light blue.
  • White light emission, blue light emission with a strong blue light emission or blue light emission is possible, and it may be referred to as a white light emitting polymer or a blue light emitting polymer depending on the emission color.
  • each of the two R 1 is an alkyl group having 1 to 15 carbon atoms and may be the same or different.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 2 bonded on the benzene ring is any one of 1 to 4.
  • the plurality of R 2 may be the same or different.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 2 bonded on the naphthalene ring is any one of 1-6.
  • the plurality of R 2 may be the same or different! /.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 2 bonded on the pyrene ring is 1-8, which is a deviation.
  • the plurality of R 2 may be the same or different.
  • R 2 represents a hydrogen atom or an alkylphenol group.
  • the alkyl group in the alkylphenol group has 1 to 10 carbon atoms, and the alkyl group in the alkylphenol group has 1 to 5 carbon atoms.
  • R 3 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 3 bonded on the benzene ring is 1-5.
  • R 4 is a hydrogen atom, a phenyl group, a naphthyl group, or an anthryl group that may be substituted by an alkyl group having 1 to 10 carbon atoms.
  • R 1 is a hydrogen atom or an alkyl having 1 to 10 carbon atoms.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 2 is an aryl group that may be substituted with an alkyl group.
  • R 1 in the formula (1A) is an alkyl group
  • the alkyl group preferably has 1 to 13 carbon atoms, particularly 1 to 10 carbon atoms.
  • R 2 in the above formulas (1B) to (1E) is an alkyl group
  • the alkyl group preferably has 1 to 8 carbon atoms, particularly 1 to 5 carbon atoms.
  • R 2 in the formula (1F) is an alkylphenol group
  • examples of the alkyl group in the alkylphenol group include alkyl groups having 1 to 15 carbon atoms.
  • the two R 1 are preferably the same.
  • the plurality of R 2 are preferably the same! /.
  • the alkyl group represented by R 1 in the formula (1A) for example, a methyl group, Echiru group, propyl group, butyl group, a pentyl group, a hexyl group, a heptyl group, Okuchiru group, nonyl group, Examples include decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group and the like.
  • Examples of the alkyl group represented by R 2 and R 3 in Formula (1B) to Formula (1E) include, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group Etc.
  • the light-emitting polymer according to the present invention for example, a blue light-emitting polymer, or a white light-emitting polymer can be used in a general-purpose solvent such as black mouth form and a solvent such as toluene. Easily dissolves. Therefore, the blue light-emitting polymer and the white light-emitting polymer can be easily formed by a casting method using a solvent.
  • the alkyl group represented by R 2 in the formulas (1B) to (: LE) and the alkyl group represented by R 2 in the above (1F) include a methyl group, an ethyl group, propyl Group, butyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and the like.
  • the first bond bonded to the carbon of the oxadiazole ring and the remaining second bond are bonded to any position of the benzene ring. It may be.
  • R 2 may be bonded to any position of the benzene ring.
  • a plurality of R 2 bonded on the benzene ring may be the same or different, but are preferably the same.
  • a repeating unit represented by the following formula (1A-1) is preferable.
  • R 1 in the formula (1A-1) improves the solubility of the luminescent polymer in the solvent. .
  • a repeating unit represented by the following formula (1B-1) is preferable.
  • the repeating unit represented by the formula (1B-1) is contained in the main chain of the luminescent polymer, the solubility of the luminescent polymer in the solvent is improved by R 2 in the formula (1B-1). .
  • a repeating unit represented by the following formula (1C1) is preferable.
  • the solubility of the light emitting polymer in the solvent is improved by R 2 in the formula (1C 1).
  • a repeating unit represented by the following formula (ID-1) is preferred.
  • R 2 in the formula (1D-1) improves the solubility of the luminescent polymer in the solvent. To do.
  • a repeating unit represented by the following formula (1E-1) is preferable.
  • the repeating unit represented by the formula (1E-1) is contained in the main chain of the luminescent polymer, the solubility of the luminescent polymer in the solvent is improved by R 2 in the formula (1E-1). .
  • a repeating unit represented by the following formula (1F-1) is preferred.
  • the solvent of the light emitting polymer is represented by R 2 in the formula (1F-1). Solubility is improved.
  • repeating units represented by the formula (1G) a repeating unit represented by the following formula (1G-1) is preferable.
  • the mol% of the repeating unit represented by the formula (1A) with respect to all repeating units in the main chain of (1) is usually 5090.
  • the light-emitting polymer containing the repeating unit represented by the formula (1A) and other repeating units in the main chain emits blue light with particularly high luminance.
  • the blue light emitting polymer (1) is produced by reacting a dicarboxylic acid compound represented by the following formula (2A) with a hydrazine compound, or by reacting the dicarboxylic acid represented by the formula (2A).
  • the basic principle is to react a dicarboxylic acid compound and a hydrazine compound containing one kind selected from the group consisting of the compound represented by the formula (2B) (2H).
  • R 2 is the same as R 2 in the formula (1B).
  • R 2 is the same as R 2 in the formula (1C) and the formula (1D).
  • R 2 is the same as R 2 in the formula (1E).
  • R 2 is the same as R 2 in the formula (1F).
  • the first carboxyl group and the remaining second carboxyl group may be bonded to any position of the benzene ring.
  • the first carboxyl group and the remaining second carboxyl group may be bonded to any position of the pyridine ring.
  • a dicarboxylic acid compound represented by the following formula (2A-1) is preferred!
  • dicarboxylic acid compounds represented by the formula (2B) a dicarboxylic acid compound represented by the following formula (2B-1) is preferred, and 2,5-dialkylterephthalic acid is particularly preferred.
  • dicarboxylic acid compounds represented by the formula (2C) a dicarboxylic acid compound represented by the following formula (2C-1) is preferred! /.
  • dicarboxylic acid compounds represented by the formula (2D) a dicarboxylic acid compound represented by the following formula (2D-1) is preferred! /.
  • dicarboxylic acid compounds represented by the formula (2F) a dicarboxylic acid compound represented by the following formula (2F-1) is preferred!
  • dicarponic acid compounds represented by the formula (2G) a dicarboxylic acid compound represented by the following formula (2G-1) is preferred! /.
  • m is a positive number
  • m, m, m, m, m, m, and m are all 0 and a positive number.
  • Examples of the hydrazine compound include hydrazine sulfate, hydrazine, hydrazine diacetic acid, and hydrazine hydrochloride. Of these, hydrazine and hydrazine sulfate are preferred. Examples of hydrazine sulfate include (N H) SO and NH NH ⁇ ⁇ SO.
  • NH NH ⁇ ⁇ SO is more preferable.
  • the heating temperature at the time of the reaction between the dicarboxylic acid compound and the hydrazine compound in the method for producing the blue light-emitting polymer (1) is preferably 80 to 170 ° C, for example.
  • the light-emitting polymer according to the present invention has a main chain consisting of a repeating unit represented by the formula (1A), and also represented by the formula (1A).
  • a main chain consisting of a repeating unit and a group of repeating units selected from the formula (1B) to the formula (1N) and (1Q) blue light emission, yellow light emission, green light emission or Emits white light.
  • the structure in the main chain that realizes blue light emission is represented by the above formulas (1A), (IB), (1C), (IF), and (1 N).
  • a light-emitting polymer having a repeating unit represented by the formula (IN) has a skeleton similar to aNPD in the main chain, and thus has a substitute action for aNPD.
  • examples of the structure in the main chain of the light-emitting polymer capable of emitting white light include the repeating units represented by formulas (II) and (1J).
  • the light emitting polymer capable of emitting white light according to the present invention has a structure capable of emitting white light, a structure capable of emitting blue light, and a structure capable of emitting yellow light in some cases in the main chain. .
  • the repeating unit capable of emitting yellow light shows the tendency of white light emission when the amount shown in (IE) is small in the main chain.
  • the content of the repeating unit represented by the formula (1E) in the main chain is 10 mol% or less, Preferably it is 3 mol% or less.
  • a main chain comprising a repeating unit represented by the formula (1A), a repeating unit represented by the formula (1C), a repeating unit represented by the formula (II) and a repeating unit represented by Z or the formula (1G).
  • Examples thereof include a light-emitting polymer (3).
  • repeating unit represented by the formula (II) focusing on adjacent repeating units, as shown in the following formula (11a), it has a point-symmetric structure (C2h), and the oxaziazoline ring High brightness due to presence in the molecular chain, presence of a bias of electrons flowing from two directions toward the benzene ring adjacent to the oxadiazoline ring, and inclusion of the repeating unit represented by the formula (1A) in the main chain White light emission or blue light emission. Therefore, in the following, this light emitting polymer may be referred to as a white light emitting polymer or a blue light emitting polymer.
  • This white light-emitting polymer or blue light-emitting polymer is also characterized in that double bonds are conjugated.
  • the conventional conjugated polymer is inferior in film-forming property and easily deteriorates with time, but this white light-emitting polymer or blue light-emitting polymer is a conjugated polymer. The degree of deterioration over time is small.
  • R 3 in the structural formula represented by the formula (II) or the formula (11a) is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the number of R 3 bonded to the benzene ring is 1-5.
  • R 4 may be substituted with a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and is a phenyl group, a naphthyl group, or an anthryl group.
  • repeating units represented by the formula (1A) that form the main chain of the light-emitting polymers (2) and (3) suitable repeating units are as described above, and represented by the formula (II).
  • preferred repeating units are those represented by formula (11-1) and formula (11-2), and among the repeating units represented by formula (1C), the preferred repeating units are those already described.
  • preferred repeating units are as described above.
  • the content of the repeating unit represented by the formula (1A) in the light emitting polymers (2) and (3) is 60 to 90 mol%, and the content of the repeating unit represented by the formula (II) is 5 to It is preferable that the content of the repeating unit represented by the formula (1 C) and Z or the formula (1G) is 5 to 20 mol%. The medium strength of these content ranges is also 100 mol% in total.
  • the content of each repeating unit is selected so that
  • the light-emitting polymers (2) and (3) are dialkyls represented by the above (2A).
  • a boronic acid compound preferably a dicarboxylic acid compound represented by the formula (2A-1) and a dicarboxylic acid compound represented by the following formula (21), preferably a formula (21-1) or ( 21-2) a dicarboxylic acid compound represented by formula (2C), preferably a dicarboxylic acid compound represented by formula (2C-1), and Z or formula (2G ),
  • a dicarboxylic acid compound represented by the formula (2G-1) and the hydrazine compound are reacted under heating.
  • reaction conditions are as described above for the synthesis reaction conditions of the blue light-emitting polymer (1).
  • Preferred white light-emitting polymers according to the present invention include a repeating unit represented by the formula (1A), a repeating unit represented by the formula (1E), a repeating unit represented by the formula (1C), a compound represented by the formula ( 1D), a repeating unit represented by formula (II), a repeating unit represented by formula (1K), a repeating unit represented by formula (1L), and a repeating unit represented by formula (1M).
  • Examples thereof include a polymer (6) having a main chain composed of the formula (1A), the formula (1M), and the formula (1G).
  • repeating units represented by the formula (1A), formula (1E), formula (1C), formula (1D) and formula (II) constituting the main chain of the polymer (4) preferred repeating units Is represented by Formula (1A-1), Formula (IE-1), Formula (1C1), Formula (ID-1), and Formula (II1).
  • the content of the repeating unit represented by the formula (1A) in the white light-emitting polymer (4) is 60 to 90 mol%, and the content of the repeating unit represented by the formula (1E) is 5 to 30 mol. %,
  • the content of repeating units represented by formula (1C), formula (1D), formula (11), formula (1K), formula (1L) and formula (1M) is preferably 5 to 20 mol%.
  • the content of each repeating unit is selected so that the medium strength of these content ranges is also 100 mol% in total.
  • the white light-emitting polymer (4) in the present invention includes a dicarboxylic acid compound represented by the above (2A), preferably a dicarboxylic acid compound represented by the above formula (2A-1), and the following formula: A dicarboxylic acid compound represented by (2E), preferably a dicarboxylic acid compound represented by formula (2E-1), and a dicarboxylic acid compound represented by formula (2C), preferably formula (2C-1 ), A dicarboxylic acid compound represented by the formula (2D), preferably a dicarboxylic acid compound represented by the formula (2D-1), a dicarboxylic acid represented by the formula (21) Compound, preferably dicarboxylic acid compound represented by formula (21-1) or formula (21-2), dicarboxylic acid compound represented by formula (2K), dicarboxylic acid compound represented by formula (2L) And a group force consisting of a dicarboxylic acid compound represented by the formula (2M) It can be produced by reacting a carboxylic acid compound with the following formula: A
  • reaction conditions are as described above for the synthesis reaction conditions for the blue light-emitting compound (1).
  • repeating units represented by the formula (1A), formula (1C) and formula (1J) constituting the main chain of the polymer (5) a repeating unit represented by the formula (1A-1);
  • the repeating unit represented by the formula (1C-1) and the following formula (1J1) is preferred.
  • the content of the content of the repeating unit represented by the formula (1 A) in the light-emitting polymer (5) is 60 to 90 mole 0/0, the repeating unit represented by the formula (1C) 5-30 mole 0/0, the formula (1 J) in the content of the repeating unit is shown from 5 to 20 mole 0/0, and even preferable tool force in these content ranges in total so as to be 100 mol%
  • the content of each repeating unit is selected.
  • the reaction conditions are as described above for the synthesis reaction conditions of the blue luminescent compound (1).
  • the repeating unit represented by the formula (1J) is a dicarboxylic acid compound represented by the formula (2J), and the repeating unit represented by the formula (1J-1) is a dicarbonyl represented by the formula (2J-1). Introduced by an acid compound.
  • the content of the repeating unit represented by the formula (1A) is 60 to 90 mol%
  • the content of the repeating unit represented by the formula (1M) is 5 to 30 mol%
  • the content of the repeating unit represented by the formula (1G) is preferably 5 to 20 mol%.
  • the content of each repeating unit is selected so that the medium strength of the range is also 100 mol% in total.
  • reaction conditions are as described above for the synthesis reaction conditions for the blue light-emitting compound (1).
  • the dicarboxylic acid giving the repeating unit represented by the formula (1M-1) is represented by the following formula (2M-1).
  • a suitable blue light-emitting polymer (7) As a suitable blue light-emitting polymer (7) according to the present invention, a repeating unit represented by the formula (1A), a repeating unit represented by the formula (1N), a repeating unit represented by the formula (1L), There may be mentioned polymers having This blue light-emitting polymer (7) emits light in marine blue or a bright blue color close to it.
  • the formula (1N) indicating the repeating unit in the blue light-emitting polymer (7) has a structure similar to ⁇ -NPD in the main chain, and thus enables blue light emission.
  • the blue light-emitting polymer (7) includes a dicarboxylic acid compound represented by the above (2), preferably a dicarboxylic acid compound represented by the above formula (2-1), A dicarboxylic acid compound represented by the following formula (2 ⁇ ), preferably a dicarboxylic acid compound in which R 2 has an aromatic group such as a phenol group, a naphthyl group, an anthryl group, or a pyrenyl group in the formula (2 ⁇ ); It can be produced by reacting the dicarboxylic acid compound represented by the formula (2L) with heating.
  • each repeating unit in the light-emitting polymer (7) is 30 to 60 molar content of units repeatedly formula (2A) 0/0, the formula (1N) 5 to 30 mole% content of the repeating unit is preferably from 5 to 60 mol% content of the repeating unit represented by the formula (1L), to 100 mole 0/0 also forces among these content ranges in total Thus, the content of each repeating unit is selected.
  • the reaction conditions for synthesizing this luminescent polymer (7) are as described above for the synthesis reaction conditions for the blue luminescent compound (1).
  • the light-emitting polymer according to the present invention is at least one kind selected from the repeating unit represented by the formula (1A) and the group power composed of the formulas (1B) to (1N) and (1Q).
  • the repeating unit represented by the formula (1A) is at least one kind selected from the repeating unit represented by the formula (1A) and the group power composed of the formulas (1B) to (1N) and (1Q).
  • the light-emitting polymer according to the present invention has an alkyl group in an aromatic ring having a conjugated double bond such as a fluorene skeleton, a general-purpose solvent such as toluene, acetone, black mouth form, and trichloroethane.
  • a general-purpose solvent such as toluene, acetone, black mouth form, and trichloroethane.
  • This blue light-emitting polymer can be easily formed into a thin film by dissolving it in a solvent, for example, by a casting method or the like. Therefore, by sandwiching the thin film between electrodes, a light emitting element capable of emitting light of a color corresponding to the type of repeating unit is formed.
  • the light-emitting polymer according to the present invention can be easily processed into a film, for example, by a general polymer molding method. Therefore, when this light emitting polymer film is used, a light emitting device can be easily produced.
  • FIG. 1 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
  • the light-emitting element 1 includes a transparent substrate 2, an anode 3, a hole injection layer 4, a hole transport layer 5, a light-emitting layer 6, an electron transport layer 7, an electron injection layer 8, and a cathode 9 stacked in that order. It is made up of. [0150] Each layer constituting the light-emitting element 1 is formed on a transparent substrate 2, and examples of the transparent substrate 2 include a glass substrate, a plastic substrate, and a silicon substrate.
  • anode 3 various materials can be adopted as long as the work function is large and transparent.
  • ITO indium tin oxide
  • InO InO
  • SnO SnO
  • ZnO ZnO
  • CdO CdO
  • a conductive polymer material such as polyaline. This non-uniformity in the thickness of the anode 3 affects the film thickness of the light emitting layer, so that smoothness is required.
  • the anode 3 is formed on the transparent substrate 2 by chemical vapor deposition, spray pyrolysis, vacuum deposition, electron beam deposition, sputtering, ion beam sputtering, ion plating, ion assist. It can be formed by a method such as vapor deposition.
  • the hole injection layer 4 may be a triphenylamine compound, for example, N, N'-diphenyl-N, N, -di (m-tolyl) monobenzidine (TPD), (a- Hydrazone compounds such as NPD), stilbene compounds such as stilbenebis [N- (1 naphthyl) N phenol] benzidine compounds, heterocyclic compounds, ⁇ -electron starburst hole transport materials, etc. Mention may be made of the layers formed.
  • TPD N, N'-diphenyl-N, N, -di (m-tolyl) monobenzidine
  • NPD a- Hydrazone compounds
  • stilbene compounds such as stilbenebis [N- (1 naphthyl) N phenol] benzidine compounds
  • heterocyclic compounds ⁇ -electron starburst hole transport materials, etc. Mention may be made of the layers formed.
  • the hole transport layer 5 is formed of a known material.
  • the hole transport layer 5 can be formed by, for example, a spin casting method, a coating method, a dip method or the like without using a vapor deposition method.
  • the light emitting layer 6 is a layer containing a light emitting polymer according to the present invention.
  • the light emitting layer 6 can be formed by a coating method such as spin casting, coating or dipping.
  • the light emitting layer 6 can contain a fluorescent compound corresponding to the light emission characteristics.
  • the electron transport layer 7 is formed of a known material.
  • the electron transport layer 7 can be formed by, for example, a spin casting method, a coating method, a dip method, or the like without using a vapor deposition method.
  • Examples of the electron injection layer 8 include 2,5 bis (1 naphthyl) -1,3,4 oxadiazole (BND), 2- (4-tert-butylphenol) -5- (4 biphenol- Ril) — 1,3,4-oxadiazole derivatives, such as 2,3 bis (5,1 tert-butyl)
  • Examples include layers that also form forces such as metal complexes such as til-1,2, benzoxazolyl) thiophene, tris (8-quinolinolato) aluminum complex (A lq3), and benzoquinolinol beryllium complex (Bebq2).
  • the electron injection layer 8 can be formed by a vapor deposition method, a coating method, such as a spin casting method, a coating method, or a dipping method.
  • the cathode 9 employs a substance having a small work function, and can be formed of, for example, a single metal such as Mg, Ag, an aluminum alloy, or calcium metal, or a metal alloy.
  • a preferred cathode is an alloy electrode of aluminum and a small amount of lithium.
  • the cathode 9 is formed on the surface of each layer formed on the transparent substrate 2 by chemical vapor deposition, spray pyrolysis, vacuum deposition, electron beam deposition, sputtering, ion beam sputtering, ion plating. It can form by methods, such as a method and an ion-assisted vapor deposition method.
  • the light-emitting element 1 having such a layer structure, holes are injected from the anode 3 into the hole injection layer 4 through the hole transport layer 5 by passing an electric current. In this case, electrons are injected toward the light emitting layer 6 containing the light emitting compound. In the light emitting layer 6, electrons and holes are combined to excite the phosphor (light emitting compound) of the light emitting layer 6, and when this excited state returns to its original state, light is emitted and energy is released.
  • the thickness of the light-emitting element 1 is usually 0.1 to 0.
  • the light emitting device is not limited to the light emitting device having the layer configuration shown in FIG. 1, and includes an applied voltage polarity variable structure type EL device, a temperature stable type multilayer EL device, and the like.
  • the light-emitting polymer is also used for an electron injecting and transporting layer as an electron transporting layer or a hole injecting and transporting layer as a hole transporting layer.
  • the contents put into the three-necked flask are heated in an oil bath at 85 ° C for 2 hours, then heated at 120 ° C for 20 hours, and then heated at 170 ° C for 20 hours. did.
  • the heated contents were put into ice water.
  • the solid content was separated by filtering the contents put into ice water with Nutsche. The separated solid was washed with methanol and dried by using a vacuum pump to obtain 20 g of solid.
  • the obtained solid content was a polymer having a repeating unit shown on the right side of the formula (100) based on the NMR vector shown in FIG. 2 and the IR chart shown in FIG.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • the contents of the three-necked flask were heated in an oil bath at 120 ° C for 1 hour, and then heated at 140 ° C for 1 hour. After the contents of the three-necked flask were cooled to room temperature, they were heated again at 140 ° C for 1 hour. Thereafter, 2.892 g (0.0222 mol) of hydrazine sulfate was charged into the three-necked flask. After charging the hydrazine sulfate, the contents of the three-necked flask were heated at 85 ° C. for 2 hours, and then heated at 100 ° C. for 12 hours.
  • the obtained solid content was determined by the repeating unit represented by the formula (110A) and the formula (110B).
  • the indicated repeating unit was identified as a polymer having a 3: 1 ratio in the main chain.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG. [0182] Measurement conditions
  • the three-necked flask was heated with the oil bath at 120 ° C for 1 hour in an oil bath. Thereafter, the contents of the three-necked flask were allowed to cool, and then again heated at 85 ° C for 2 hours, and then heated at 120 ° C for 48 hours.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This trial The liquid material was loaded into an F-4500 spectrofluorometer manufactured by Hitachi, Ltd., and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • the obtained solid content was obtained by NMR ⁇ vector shown in Fig. 23 and IR chart shown in Fig. 24.
  • the polymer was identified as a polymer having a repeating unit represented by the formula (170A) and a repeating unit represented by the formula (170E) in the main chain at a ratio of 4: 1.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • the obtained solid content was obtained from the NMR ⁇ vector shown in FIG. 26 and the IR chart shown in FIG. ) was identified as a polymer having 4: 1Z1: 1Z2 in the main chain.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • the contents put into the flask are heated in an oil bath at 85 ° C for 2 hours in a nitrogen atmosphere, then heated at 90 ° C for 144 hours, and then the heated contents are removed. Put into a cooled DMAC.
  • the solid content was separated by filtering the contents put into the DMAC with Nutsche. The separated solid was washed with methanol and dried by using a vacuum pump to obtain 12 g of solid.
  • the identified white light-emitting conjugated polymer was dissolved in black mouth form to prepare a sample solution. This sample solution is loaded into a Hitachi F-4500 spectrofluorometer. The fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • the obtained solid content was determined from the NMR ⁇ vector shown in Fig. 32 and the IR chart and raw material usage rate shown in Fig. 33, the repeating unit represented by formula (200A), and the formula (2001). ) And a repeating unit represented by the formula (200C) at a molar ratio of 8: 1: 1 in the main chain.
  • a sample solution was prepared by dissolving the identified white light-emitting conjugated polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • the obtained solid content was determined from the NMR ⁇ vector shown in Fig. 35 and the IR chart shown in Fig. 36, from the repeating unit (210A), the repeating unit (210G) and the repeating unit (2101). ) In the main chain at a molar ratio of 8: 1: 1, that is, a white light-emitting conjugated polymer.
  • a sample solution was prepared by dissolving the identified white light-emitting conjugated polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • White light-emitting conjugated polymer obtained in Example 12 6.
  • Omg and a sensitizer represented by the following formula (10) 4.
  • Omg and black mouth form 1.
  • White light-emitting conjugated system obtained by dissolving in 1 mL A polymer-containing black mouth form solution was prepared.
  • This white light-emitting conjugated polymer-containing black mouth form solution is sufficiently uniform by irradiating ultrasonic waves for 20 minutes with an ultrasonic cleaner (US-2, manufactured by SND Corporation). It was. On the other hand, an ITO substrate (50 ⁇ 50 mm, Sanyo Vacuum Industries Co., Ltd.) was ultrasonically cleaned with acetone for 10 minutes, then ultrasonically cleaned with 2-propanol for 10 minutes, and blown with nitrogen to dry. Then, 30 seconds with UV irradiation equipment (EM D excimer, wavelength 172nm) Washed with UV irradiation for a while.
  • EM D excimer wavelength 172nm
  • a hole transport agent (Baytron PVPCH8000) was applied to the surface of this ITO substrate by spin coating (Mikasa Co., Ltd., 1H—D7, rotation speed: 3500 rpm) and dried at 130 ° C for 10 minutes. As a result, a hole transport layer having a thickness of lOOnm was formed.
  • the white light-emitting conjugated polymer prepared on the hole transport layer on the ITO substrate using a spin coater (Mikasa Co., Ltd., 1H-D7, rotation speed: 1500 rpm).
  • a light-emitting layer was formed by adding dropwise the spin-containing form solution containing spin coating and spin coating.
  • a substrate with a light-emitting layer formed to a thickness of 50 nm is dried in a thermostatic bath at 50 ° C for 30 minutes, and then a vacuum evaporation system (Daia Vacuum Engineering Co., Ltd., VDS-M2-46 type) in Cs2C03 layer (thickness: 2 nm) and an aluminum layer (thickness: 220.
  • a vacuum evaporation system (Daia Vacuum Engineering Co., Ltd., VDS-M2-46 type) in Cs2C03 layer (thickness: 2 nm) and an aluminum layer (thickness: 220.
  • FIG. 38 shows an XY chromaticity diagram of white light emission of this light emitting element
  • FIG. 39 shows a relationship between voltage and luminance
  • FIG. 40 shows an EL spectrum.
  • the obtained solid content was determined from the NMR ⁇ vector shown in Fig. 41 and the IR chart shown in Fig. 42, from the repeating unit (220A), the repeating unit (220G) and the repeating unit (2201). ) In the main chain at a molar ratio of 8: 1: 1.
  • a sample solution was prepared by dissolving the identified white light-emitting conjugated polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • the solid content obtained was determined from the NMR ⁇ vector shown in Fig. 44 and the IR chart shown in Fig. 45, from the repeating unit (230A), the repeating unit (230C), and the repeating unit (230K). ) And the repeating unit (230E) in the main chain at a molar ratio of 4: 1Z2: 1Z2.
  • the obtained solid content was obtained by NMR ⁇ vector shown in Fig. 47 and IR chart shown in Fig. 48.
  • a sample solution was prepared by dissolving the identified white light-emitting conjugated polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • the obtained solid content was obtained from the NMR ⁇ vector shown in Fig. 50 and the IR chart shown in Fig. 51 from the repeating unit (260A), the repeating unit (260G), and the repeating unit (260E). ) was confirmed to be a white light-emitting conjugated polymer having a molar ratio of 4: 1Z2: 1Z2 in the main chain.
  • a sample solution was prepared by dissolving the identified white light-emitting conjugated polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer. The fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • the obtained solid content was determined from the NMR ⁇ vector shown in Fig. 53 and the IR chart shown in Fig. 54, from the repeating unit (270A), the repeating unit (270D), and the repeating unit (270E ) Was confirmed to be a white light-emitting conjugated polymer having a molar ratio of 4: 2/3: 1Z3 in the main chain.
  • a sample solution was prepared by dissolving the identified white light-emitting conjugated polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • the obtained solid content was determined from the NMR vector shown in Fig. 56 and the IR chart shown in Fig. 57 from the repeating unit (280A), the repeating unit (280M), and the repeating unit ( 280G) was identified as a white light-emitting conjugated polymer having a molar ratio of 4: 1Z2: 1Z2 in the main chain.
  • a sample solution was prepared by dissolving the identified white light-emitting conjugated polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG. 8
  • This polymer contains the repeating unit represented by (310A) and the repeating unit represented by (310B) in the main chain in a molar ratio of 2: 1.
  • the polymer synthesized in Example 2 contains a repeating unit represented by (11 OA) and a repeating unit represented by (110B) in the main chain at a molar ratio of 3: 1.
  • the main chain contains a repeating unit represented by the formula (310A) (same as formula (110A)) and a repeating unit represented by the formula (310B) (same as formula (110B)) in a molar ratio of 4: 1.
  • the obtained solid content was determined from the NMR ⁇ vector shown in Fig. 62 and the IR chart shown in Fig. 63, from the repeating unit (320A), the repeating unit (320N) represented by the formula (320), The repeating unit (320L) was identified as a blue light-emitting conjugated polymer having a molar ratio of 4: 1/3: 2Z3 in the main chain.
  • Excitation light source He—Cd laser (325 nm line: 0. OlmW)
  • Excitation spot size lmm ⁇
  • Excitation light source Semiconductor laser excitation YAG laser 3rd high frequency (355nm)
  • Pulse width 5 ns
  • excitation intensity 0.1 ⁇ ⁇ / ⁇ 2
  • Detection system Photon counting sensitivity streak camera system (Hamamatsu Photonics Co., Ltd.)
  • the repeating unit (320A), the repeating unit (320N) and the repeating unit (320L) represented by the formula (320) are mixed at a molar ratio of 4: 1/2: 1/2.
  • a blue light-emitting conjugated polymer in the main chain was synthesized.
  • the fluorescence spectrum of this blue light-emitting conjugated polymer was measured in the same manner as in Example 21.
  • the resulting fluorescence spectrum chart is shown in FIG.
  • the fluorescence spectrum of this blue light-emitting conjugated polymer was measured in the same manner as in Example 21, and the resulting fluorescence spectrum chart is shown in FIG.
  • 2,7-Naphthalene dicarboxylic acid nolevonic acid 1.0 g (4.63 X 10 _3 mol), polyphosphoric acid 20 g, and methanesulfonic acid 200 g were added.
  • the polyphosphoric acid and methanesulfonic acid placed in the flask were in a mass ratio of 1:10.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • Blue light-emitting conjugated polymer having repeating unit (330A) represented by formula (330) and repeating unit (330D) in the main chain in a molar ratio of 3: 1 as in Example 24 was synthesized.
  • the fluorescence spectrum of this blue light-emitting conjugated polymer was measured in the same manner as in Example 24, and the obtained fluorescence spectrum chart is shown in FIG.
  • Blue light-emitting conjugated polymer having repeating unit (330A) represented by formula (330) and repeating unit (330D) in the main chain in the molar ratio of 2: 1 as in Example 24 was synthesized.
  • the fluorescence spectrum of this blue light-emitting conjugated polymer is shown in Example 2 above. Measured in the same manner as in FIG. 4, and the obtained fluorescence spectrum chart is shown in FIG.
  • This 4,7 dicanoleboxy 2, 1,3 Benzothiadiazolinole 0.3g and fluorenedicarboxylic acid compound in formula 350 7.67g and 1,4-dicarboxynaphthalene 0.58g and 1,6 dicarboxyl Pyrene (0.056 g) and hydrazine sulfate (3.14 g) were heated in a nitrogen atmosphere at 85 ° C for 2 hours in the presence of 20 g of polyphosphoric acid and 200 g of methanesulfonic acid, and then reacted for 3 days while heating to 90 ° C. It was.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • This polymer was a compound that emitted yellow light.
  • Example 27 4,7 dicanolevoxy 2,1,3 Benzothiadiazolinole 0.56 g and fluorenedicarboxylic acid compound (2,7 dihydroxy-9,9-dioctylfluorein) in formula 340 4.78 g And hydrazine sulfate 1.95 g, polyphosphoric acid lOg and methanesulphonic acid lOOg The same procedure as in Example 27 was performed, except that 4.78 g of olein, 1.64 g of hydrazine sulfate, 10 g of polyphosphoric acid, and lOOg of methanesulfonic acid were used.
  • the obtained polymer has a repeating unit (formula 340A) and a repeating unit (formula 340K) in the formula (340) at a molar ratio of 95: 5 from the NMR chart (FIG. 77) and the IR chart (FIG. 78). It was confirmed.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • This polymer was a compound that emitted yellow light.
  • Example 27 4,7 dicanolevoxy 2,1,3 Benzothiadiazolinole 0.56 g and fluorenedicarboxylic acid compound (2,7 dihydroxy-9,9-dioctylfluorein) in formula 340 4.78 g And hydrazine sulfate 1.95 g, polyphosphoric acid 10 g and methane sulphonic acid 100 g instead of coconut, 4, 7 dicanoloxy 2, 1, 3 Benzothia asolia nore 0.
  • the obtained polymer was obtained from the repeating unit (formula 360A), the repeating unit (formula 360K) and the repeating unit (formula (Formula (360)) 360 E)) in a molar ratio of 80:10:10.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This trial The liquid material was loaded into an F-4500 spectrofluorometer manufactured by Hitachi, Ltd., and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • this polymer was a compound that emitted yellow light.
  • the obtained polymer was obtained from the repeating unit (Formula 370A), the repeating unit (Formula 370C) and the repeating unit (Formula (370) 370 E)) at a molar ratio of 4: 2/3: 1Z3.
  • a sample solution was prepared by dissolving the identified polymer in DMAC. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • This polymer was a compound emitting green light.
  • a sample solution was prepared by dissolving the identified polymer in DMAC. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • This polymer was a compound that emitted green light.
  • Example 33 The same procedure as in Example 33 was performed, except that 0.3 g of 1,6-dicanoloxypyrene was used instead of 0.3 g of 2,5-dicanolevoxypyridine in Example 21, and formula (390) The indicated reaction was performed.
  • a sample solution was prepared by dissolving the identified polymer in DMAC. This sample solution was loaded on a Hitachi F-4500 spectrofluorometer and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • This polymer was a compound emitting green light.
  • the mixture was heated to 90 ° C and refluxed at that temperature for 3 days. After completion of the reflux, the contents of the flask were poured into ice water to precipitate a yellow solid. The yellow solid was separated by filtration, and the separated yellow solid was washed with water, methanol and acetone in this order, followed by ultrasonic washing.
  • the yellow solid after washing was dissolved in black mouth form to obtain a black mouth form solution.
  • This black mouth The form solution was added dropwise to methanol to form a precipitate in methanol.
  • the precipitate was separated by filtration, and the precipitate was again dissolved in black mouth form to obtain a black mouth form solution.
  • the black mouth form solution was added dropwise to methanol to form a precipitate in methanol.
  • the precipitate was filtered off and dried.
  • the dried solid was purified by silica gel column chromatography using black mouth form. As a result, a yellow transparent film was obtained.
  • this yellow transparent film-like product is represented by the repeating unit represented by the formula 400A, the repeating unit represented by the formula 400Q, and the repeating unit represented by the formula 400E.
  • the repeating unit represented by the formula 400A was represented by the repeating unit represented by the formula 400A, the repeating unit represented by the formula 400Q, and the repeating unit represented by the formula 400E.
  • a sample solution was prepared by dissolving the identified polymer in black mouth form. This sample solution was loaded into a Hitachi F-4500 spectrofluorometer and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • This polymer was a compound that emitted yellow light.

Abstract

繰り返し単位を選択することにより種々の発光が可能な発光性重合体、その製造方法及び前記発光性重合体を使用した発光素子。オキサジアゾール環とこのオキサジアゾール環に隣接するところの、フルオレン骨格、ベンゼン骨格、ナフタレン骨格、ピレン骨格、カルバゾール骨格、ジピリジン骨格、チオフェン骨格、ジ(フェニルアミノ)ベンゼン骨格、キナクリドン骨格、ベンゾチアジアゾール骨格、ピリジン骨格、及びフェノキサジン骨格等からなる群から選択される骨格を有する繰り返し単位からなる発光性重合体、これら骨格を有するジカルボン酸とヒドラジン化合物とを反応させる発光性重合体の製造方法、この発光性重合体を使用する発光素子。

Description

明 細 書
発光性重合体、発光性重合体の製造方法、及び発光素子
技術分野
[0001] この発明は、発光性重合体、発光性重合体の製造方法、及び発光素子に関し、更 に詳しくは、加工が容易である発光性重合体及び所望の光に発光する発光性重合 体を容易に製造することのできる発光性重合体の製造方法、並びに一対の電極間 に、前記発光性重合体を含有する発光層を設けてなる発光素子に関する。
背景技術
[0002] 有機 EL素子は、発光層、電子輸送層及びホール輸送層を有し、電極から注入され た電子とホールとが再結合することによって生じるエネルギーにより発光物質を発光 させる。
[0003] このような発光物質の開発が進んでいるが、主に低分子系の化合物を中心になさ れてき
た (非特許文献 1)。
[0004] 非特許文献 1:日本実業出版社、 2004年 3月 1日第 6刷発行、「有機 ELのすベて」 ( P. 170)
[0005] し力しながら、低分子系の発光物質は、加工する際に、蒸着、溶媒へ溶解した後、 塗布等の方法によって、加工されるので、加工性に劣るという問題点があった。
[0006] 例えば、蒸着は、通常高真空下に発光物質を加熱して蒸気にし、発光物質の蒸気 を所定の部位に固化定着させることにより行われる。したがって、蒸着操作には、高 真空を実現する真空排気装置、発光物質を加熱させる高温加熱装置、基板上に形 成した電極表面に発光物質蒸気を固化させるための装置等を備えた、極めて大型 の蒸着装置が必要である。
[0007] このような大型で、複雑な装置構成を有する蒸着装置の使用は、有機 EL素子製造 における一つのネックとなって!/、る。
[0008] また、溶媒へ溶解させた後、塗布する方法においては、溶媒を選択することが困難 であると!/ヽぅ問題点が生ずる。 [0009] 一方、低分子系の発光化合物におけるような前記問題点の少ない発光物質として 高分子系の発光物質が提案されている。
[0010] 高分子系の発光物質としてポリビュル力ルバゾール系高分子がある。このポリビ- ルカルバゾール系高分子は、導電性乃至半導体性を有するものの劣化しやす 、と 言う問題点がある。また、高分子系の発光物質は主鎖中の共役系二重結合の数が 増大すると、製膜性が低下するとともに、経時的に発光色が変化してしまうと言う問題 点がある。良好な半導体性を有するように高分子の構造を設計すると製膜性が劣化 し、製膜性を向上させようとすると半導体性が低下すると言うように高分子系の発光 物質特有の問題点がある。
発明の開示
発明が解決しょうとする課題
[0011] この発明は、加工が容易であり、しかも高純度で高輝度で発光する発光性重合体 及び製膜性に優れ、所望の色に発光する発光性重合体を容易に製造することので きる発光性重合体の製造方法、並びに一対の電極間に、前記発光性重合体を含有 する発光層を設けてなる発光素子を提供することを目的とする。
課題を解決するための手段
[0012] この発明の前記課題を解決する手段として、
請求項 1は、下記式(1A)で示される繰り返し単位、又は下記 (式 1A)と下記式(1B) 〜(1N)及び(1Q)で示される繰り返し単位よりなる群力も選択される少なくとも一種 の繰り返し単位とを主鎖中に有することを特徴とする発光性重合体である。
[0013] [化 1]
Figure imgf000004_0001
[0014] [化 2]
剛 [9100]
Figure imgf000005_0001
Figure imgf000005_0002
Figure imgf000005_0003
Figure imgf000006_0001
[0017] [但し、式(1A)中、 2個の R1それぞれは、炭素数 1〜15のアルキル基であり、同一 であってもネ目違して!/、てもよ!/、。
[0018] 式(1B)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。ベンゼン環上 に結合する R2の数は 1〜4のいずれかである。ベンゼン環上に複数の R2が結合する 場合、複数の R2は同一であっても相違していてもよい。
[0019] 式(1C)及び式(1D)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。
ナフタレン環上に結合する R2の数は 1〜6のいずれかである。ナフタレン環上に複数 の R2が結合する場合、複数の R2は同一であっても相違して 、てもよ!/、。
[0020] 式(1E)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。ピレン環上に 結合する R2の数は 1〜8の 、ずれかである。ピレン環上に複数の R2が結合する場合
、複数の R2は同一であっても相違していてもよい。
[0021] 式(1F)中、 R2は、水素原子又はアルキルフエ-ル基である。アルキルフエ-ル基 におけるアルキル基は炭素数 1〜10のいずれかであり、アルキルフエ-ル基におけ るアルキル基の数は 1〜5のいずれかである。
[0022] 式(II)中、 R3は、水素原子又は炭素数 1〜10のアルキル基である。ベンゼン環上 に結合する R3の数は 1〜5のいずれかである。ベンゼン環上に複数の R3が結合する 場合、複数の R3は同一であっても相違していてもよい。 R4は、水素原子、又は炭素 数 1〜10のアルキル基が置換してもよいフエ-ル基、ナフチル基、若しくはアントリル 基である。
[0023] 式(1J)中、 R1は、水素原子又は炭素数 1〜10のアルキルである。
[0024] 式(1M)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。 [0025] 式(IN)中、 R2はアルキル基が置換してもよいァリール基である。
前記課題を解決するための他の手段として、
請求項 2は、下記式(2A)で示されるジカルボン酸ィ匕合物とヒドラジンィ匕合物とを反応 させ、又は下記式(2A)と(2B)〜(2N)及び(2Q)で示される化合物よりなる群から 選択される少なくとも一種を含むジカルボン酸ィ匕合物とヒドラジンィ匕合物とを反応させ ることを特徴とする発光性重合体の製造方法である。
[0026] [化 5]
Figure imgf000007_0001
Figure imgf000007_0002
ΗΟΟΟ C00H
Figure imgf000007_0003
(2G) (2Η)
[0027] [ィ匕 6]
Figure imgf000008_0001
、 一 " CO OH
[2 HO— CO
K) -S-"
(2 M)
[0028] [化 7]
Figure imgf000008_0002
[0029] [ィ匕 8] ( 2 Q )
Figure imgf000009_0001
[0030] [但し、式(2Α)中、 2個の R1それぞれは、炭素数 1〜15のアルキル基であり、同一 であってもネ目違して!/、てもよ!/、。
[0031] 式(2Β)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。ベンゼン環上 に結合する R2の数は 1〜4のいずれかである。ベンゼン環上に複数の R2が結合する 場合、複数の R2は同一であっても相違していてもよい。
[0032] 式(2C)及び式(2D)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。
ナフタレン環上に結合する R2の数は 1〜6のいずれかである。ナフタレン環上に複数 の R2が結合する場合、複数の R2は同一であっても相違して 、てもよ!/、。
[0033] 式(2Ε)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。ピレン環上に 結合する R2の数は 1〜8の 、ずれかである。ピレン環上に複数の R2が結合する場合
、複数の R2は同一であっても相違していてもよい。
式(1F)中、 R2は、水素原子又はアルキルフエ-ル基である。アルキルフエ-ル基 におけるアルキル基は炭素数 1〜10のいずれかであり、アルキルフエ-ル基におけ るアルキル基の数は 1〜5のいずれかである。
[0034] 式(II)中、 R3は、水素原子又は炭素数 1〜10のアルキル基である。ベンゼン環上 に結合する R3の数は 1〜5のいずれかである。ベンゼン環上に複数の R3が結合する 場合、複数の R3は同一であっても相違していてもよい。 R4は、水素原子、又は炭素 数 1〜10のアルキル基が置換してもよいフエ-ル基、ナフチル基、若しくはアントリル 基である。
[0035] 式(2J)中、 R1は、水素原子又は炭素数 1〜10のアルキルである。
式(2Μ)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。 式(2N)中、 R2はアルキル基が置換してもよいァリール基である。 ] 前記課題を解決するための更に他の手段として、
請求項 3は、一対の電極間に、前記請求項 1に記載の発光性重合体を含有する発 光層を設けてなることを特徴とする発光素子である。
発明の効果
[0036] この発明に係る発光性重合体は、ォキサジァゾール環とこのォキサジァゾール環に 隣接するところの、フルオレン骨格、ベンゼン骨格、ナフタレン骨格、ピレン骨格、力 ルバゾール骨格、ジピリジン骨格、チオフ ン骨格、ジ(フ ニルァミノ)ベンゼン骨格 、キナクリドン骨格、ベンゾチアジアゾール骨格、ピリジン骨格、フエノキサジン骨格、 及びジフエニルァリールァミン骨格力 なる群力 選択される骨格とで、大きな輝度で 発光をする。
[0037] これらの骨格を有する重合体は、骨格の種類を選択することにより、発光色が決定 付けられる。例えば、
式(1A)で示される繰り返し単位を有する重合体、
式( 1 A)及び式( 1B)で示される繰り返し単位を有する重合体、
式( 1 A)及び式( 1C)で示される繰り返し単位を有する重合体、
式(1A)及び式(1D)で示される繰り返し単位を有する重合体、
式( 1 A)及び式( 1E)で示される繰り返し単位を有する重合体、
式( 1 A)及び式( 1F)で示される繰り返し単位を有する重合体、
式( 1 A)及び式( 1G)で示される繰り返し単位を有する重合体、
式( 1 A)及び式( 1H)で示される繰り返し単位を有する重合体、
式( 1 A)及び式(II)で示される繰り返し単位を有する重合体、
式( 1 A)、式( 1C)及び式( 1G)で示される繰り返し単位を有する重合体、 式( 1 A)、式( 1C)及び式(II)で示される繰り返し単位を有する重合体、
式( 1 A)、式( 1N)及び式( 1L)で示される繰り返し単位を有する重合体、 式(1F)で示される繰り返し単位を有する重合体は、青色に発光する傾向が強い。
[0038] 特に、式(1A)、式(1N)及び式(1L)で示される繰り返し単位を有する重合体、及 び式(1A)及び式(1D)で示される繰り返し単位を有する重合体は、マリンブルー又 はこれに近 、青色発光を呈する。
[0039] 式(1A)、式(II)及び式(1G)で示される繰り返し単位を有する重合体、
式( 1 A)、式( 1C)及び式( 1J)で示される繰り返し単位を有する重合体、
式( 1 A)、式( 1E)及び式( 1D)で示される繰り返し単位を有する重合体、
式( 1 A)、式( 1E)及び式( 1G)で示される繰り返し単位を有する重合体、
式( 1 A)、式( 1M)及び式( 1G)で示される繰り返し単位を有する重合体、 式( 1 A)、式( 1C)及び式( 1E)で示される繰り返し単位を有する重合体、
式(1A)、式(1C)、式(1K)及び式(1E)で示される繰り返し単位を有する重合体、 式(1A)、式(1C)、式(II)及び式(1E)で示される繰り返し単位を有する重合体、 式(1A)、式(1L)、式(II)及び式(1E)で示される繰り返し単位を有する重合体 は白色又は青色に発光する傾向が強い。
[0040] また、別の見方をすると、式(II)で示される繰り返し単位に含まれるジ (フエ-ルアミ ノ)ベンゼン骨格、及び式(1J)で示される繰り返し単位に含まれるキナクリドン骨格は 重合体を白色に発光させる傾向が強い。また、式(1E)で示される繰り返し単位に含 まれるピレン骨格は、重合体主鎖中に含まれる量に応じて重合体を黄色に発光させ 、又白色に発光させる傾向が強ぐまた、このピレン骨格は重合体主鎖に含まれてい ると発光輝度を大きくする。
[0041] 故に、式(1A)で示される繰り返し単位と、式(1B)〜式(1N)及び式(1Q)で示され る繰り返し単位力 成る群力 選択される繰り返し単位とを組み合わせることにより、 青色発光、青みのある白色発光、暖色系の白色発光、黄色発光、緑色発光等の発 光を選択的に行う重合体が、この発明により提供される。
[0042] この発明に係る発光性重合体は、各繰り返し単位にォキサジァゾ一ル環を含んで いる。このォキサジァゾール環は、電子吸引性である。前記式(1A)〜(: LN)及び式( 1Q)で示される繰り返し単位は、それ自身非対称である。非対称の繰り返し単位の 連続体として主鎖が形成されていることに特長つけられる発光性重合体は、主鎖上 での電子の偏りが生じて発光性が顕著になる。
[0043] また、式(1A)で示される繰り返し単位に含まれるフルオレン骨格は、置換している R1により反応性が大きくなり、その結果として得られる重合体の分子量が大きくなる。 したがって、この発明によると、式(1A)で示される繰り返し単位を有することにより、 1 00, 000にも達する高分子量の発光性重合体を提供することができる。式(1A)で示 される繰り返し単位と、式(1B)〜式(1N)及び(2Q)で示される繰り返し単位力 成る 群から選択される繰り返し単位とを有する重合体、特に式( 1 A)及び式( 1C)で示さ れる繰り返し単位を有する重合体にあっては、式(1A)で示される繰り返し単位の含 有量が増大すると発光輝度が上昇する傾向を示す。
[0044] この発明に係る発光性重合体は、重合体主鎖が共役二重結合をして 、ることも一 つの特長である。つまり、共役二重結合を主鎖中に有する重合体は劣化し易いと今 まで考えられ、またその様な重合体であったところ、この発明に係る発光性重合体は 、共役二重結合を有すると共に高分子量でありながら化学的に安定で劣化しにくい。 したがって、この発明によると、発光寿命の長い、し力も発光大面積にすることのでき る発光素子を製造する原料として好適な発光性重合体を、提供することができる。
[0045] この発明に係る発光性重合体はまた、高分子量でありながら、汎用の溶媒例えばク ロロホルム等に対する溶解性が良好である。したがって、この発光性重合体は、汎用 の溶媒に溶解することによる、例えば、キャスト法等により容易に、薄膜に形成される ことができる。したがって、この薄膜を電極で挟み込むことにより、発光可能な発光素 子が容易に形成される。
[0046] また、この発明に係る発光性重合体は、一般的な高分子の成形加工法により、例え ば、フィルムへの加工が容易である。したがって、この発光性重合体のフィルムを利 用すると、発光素子を容易に製造することができる。
[0047] また、発光性重合体の製造方法にお!、ては、前記式(2A)で示されるジカルボン酸 化合物とヒドラジンィ匕合物とを反応させ、又は前記式(2A)で示されるジカルボン酸 化合物及び前記式(2B)〜式(2N)及び(2Q)で示される化合物よりなる群力も選択 される少なくとも一種を含むジカルボン酸ィ匕合物とヒドラジンィ匕合物とを反応させる。 この反応の際、ヒドラジンィ匕合物、例えば硫酸ヒドラジン力 ォキサジァゾ ル環を生 成する反応及び重縮合反応が起こるので、 1回の反応で、特定の原料から発光性重 合体を短!、反応工程で製造することができる。
[0048] さらに、この発明の方法によると、ヒドラジンィ匕合物と重縮合反応するジカルボン酸 化合物の種類を一又は二種類以上にすることができ、これによつて複数種の繰り返し 単位を有する発光性重合体を得ることができる。し力も選択された繰り返し単位(1A) 〜(1N)に応じて、重合体の特性例えば発光色等を変えることができる。
図面の簡単な説明
[図 1]図 1は、この発明の発光素子の一例を模式的に示す断面図である。
[図 2]図 2は、実施例 1における重合体の NMRスペクトルチャートである。
[図 3]図 3は、実施例 1における重合体の IR ^ベクトルチャートである。
[図 4]図 4は、実施例 1における重合体の蛍光スペクトルチャートである。
[図 5]図 5は、実施例 2における重合体の NMRスペクトルチャートである。
[図 6]図 6は、実施例 2における重合体の IR ^ベクトルチャートである。
[図 7]図 7は、実施例 2における重合体の蛍光スペクトルチャートである。
[図 8]図 8は、実施例 3における重合体の NMRスペクトルチャートである。
[図 9]図 9は、実施例 3における重合体の IR ^ベクトルチャートである。
[図 10]図 10は、実施例 3における重合体の蛍光スペクトルチャートである。
[図 11]図 11は、実施例 4における重合体の NMR ^ベクトルチャートである。
[図 12]図 12は、実施例 4における重合体の IR ^ベクトルチャートである。
[図 13]図 13は、実施例 4における重合体の蛍光スペクトルチャートである。
[図 14]図 14は、実施例 5における重合体の NMR ^ベクトルチャートである。
[図 15]図 15は、実施例 5における重合体の IR ^ベクトルチャートである。
[図 16]図 16は、実施例 5における重合体の蛍光スペクトルチャートである。
[図 17]図 17は、実施例 6における重合体の NMR ^ベクトルチャートである。
[図 18]図 18は、実施例 6における重合体の IR ^ベクトルチャートである。
[図 19]図 19は、実施例 6における重合体の蛍光スペクトルチャートである。
[図 20]図 20は、実施例 7における重合体の NMR ^ベクトルチャートである。
[図 21]図 21は、実施例 7における重合体の IR ^ベクトルチャートである。
[図 22]図 22は、実施例 7における重合体の蛍光スペクトルチャートである。
[図 23]図 23は、実施例 8における重合体の NMR ^ベクトルチャートである。
[図 24]図 24は、実施例 8における重合体の IR ^ベクトルチャートである。 圆 25図 25は、実施例 8における重合体の蛍光スペクトルチャートである。
圆 26:図 26は、実施例 9における重合体の NMR ^ベクトルチャートである。
[027図 27は、実施例 9における重合体の IR ^ベクトルチャートである。
圆 28:図 28は、実施例 9における重合体の蛍光スペクトルチャートである。
圆 29:図 29は、実施例 10における重合体の NMR ^ベクトルチャートである。 圆 30:図 30は、実施例 10における重合体の IR ^ベクトルチャートである。
圆 31図 31は、実施例 10における重合体の蛍光スペクトルチャートである。
[図 32図 32は、実施例 11における重合体の NMR ^ベクトルチャートである。 圆 33図 33は、実施例 11における重合体の IR ^ベクトルチャートである。
[図 34:図 34は、実施例 11における重合体の蛍光スペクトルチャートである。
圆 35図 35は、実施例 12における重合体の NMR ^ベクトルチャートである。 圆 36:図 36は、実施例 12における重合体の IR ^ベクトルチャートである。
圆 37図 37は、実施例 12における重合体の蛍光スペクトルチャートである。
圆 38:図 38は、実施例 13における発光素子の XY色度図である。
圆 39:図 39は、実施例 13における発光素子の電圧及び輝度とノ関係を示すグラフ である
[図 40:図 40は、実施例 13における発光素子の ELスペクトルチャートである。
[図 41図 41は、実施例 14における重合体の NMR ^ベクトルチャートである。
[図 42図 42は、実施例 14における重合体の IR ^ベクトルチャートである。
[図 43図 43は、実施例 14における重合体の蛍光スペクトルチャートである。
[図 44:図 44は、実施例 15における重合体の NMR ^ベクトルチャートである。
[図 45図 45は、実施例 15における重合体の IR ^ベクトルチャートである。
[図 46:図 46は、実施例 15における重合体の蛍光スペクトルチャートである。
[図 47:図 47は、実施例 16における重合体の NMR ^ベクトルチャートである。
[図 48:図 48は、実施例 16における重合体の IR ^ベクトルチャートである。
[図 49:図 49は、実施例 16における重合体の蛍光スペクトルチャートである。
圆 50:図 50は、実施例 17における重合体の NMR ^ベクトルチャートである。
[図 51図 51は、実施例 17における重合体の IR ^ベクトルチャートである。 [図 52]図 52は、実施例 17における重合体の蛍光スペクトルチャートである。
[図 53]図 53は、実施例 18における重合体の NMR ^ベクトルチャートである [図 54]図 54は、実施例 18における重合体の IR ^ベクトルチャートである。
[図 55]図 55は、実施例 18における重合体の蛍光スペクトルチャートである。
[図 56]図 56は、実施例 19における重合体の NMR ^ベクトルチャートである [図 57]図 57は、実施例 19における重合体の IR ^ベクトルチャートである。
[図 58]図 58は、実施例 19における重合体の蛍光スペクトルチャートである。
[図 59]図 59は、実施例 20における重合体の NMR ^ベクトルチャートである [図 60]図 60は、実施例 20における重合体の IR ^ベクトルチャートである。
[図 61]図 61は、実施例 20における重合体の蛍光スペクトルチャートである。
[図 62]図 62は、実施例 21における重合体の NMR ^ベクトルチャートである [図 63]図 63は、実施例 21における重合体の IR ^ベクトルチャートである。
[図 64]図 64は、実施例 21における重合体の蛍光スペクトルチャートである。
[図 65]図 65は、実施例 22における重合体の蛍光スペクトルチャートである。
[図 66]図 66は、実施例 23における重合体の蛍光スペクトルチャートである。
[図 67]図 67は、実施例 24における重合体の NMR ^ベクトルチャートである [図 68]図 68は、実施例 24における重合体の IR ^ベクトルチャートである。
[図 69]図 69は、実施例 24における重合体の蛍光スペクトルチャートである。
[図 69A]図 69Aは、重合体の発光スペクトルチャートである。
[図 70]図 70は、実施例 25における重合体の蛍光スペクトルチャートである。
[図 71]図 71は、実施例 26における重合体の蛍光スペクトルチャートである。
[図 72]図 72は、実施例 27における重合体の NMRチャートである。
[図 73]図 73は、実施例 28における重合体の NMR ^ベクトルチャートである [図 74]図 74は、実施例 28における重合体の IR ^ベクトルチャートである。
[図 75]図 75は、実施例 28における重合体の蛍光スペクトルチャートである。
[図 76]図 76は、各種重合体の発光スペクトルチャートである。
[図 77]図 77は、実施例 29における重合体の NMR ^ベクトルチャートである [図 78]図 78は、実施例 29における重合体の IR ^ベクトルチャートである。 [図 79]図 79は、実施例 29における重合体の蛍光スペクトルチャートである。
[図 80]図 80は、実施例 30における重合体の NMR ^ベクトルチャートである [図 81]図 81は、実施例 30における重合体の IR ^ベクトルチャートである。
[図 82]図 82は、実施例 30における重合体の蛍光スペクトルチャートである。
[図 83]図 83は、実施例 31における重合体の NMR ^ベクトルチャートである [図 84]図 84は、実施例 31における重合体の IR ^ベクトルチャートである。
[図 85]図 85は、実施例 31における重合体の蛍光スペクトルチャートである。
[図 86]図 86は、実施例 32における重合体の NMR ^ベクトルチャートである [図 87]図 87は、実施例 32における重合体の IR ^ベクトルチャートである。
[図 88]図 88は、実施例 32における重合体の蛍光スペクトルチャートである。
[図 89]図 89は、実施例 33における重合体の NMR ^ベクトルチャートである [図 90]図 90は、実施例 33における重合体の IR ^ベクトルチャートである。
[図 91]図 91は、実施例 33における重合体の蛍光スペクトルチャートである。
[図 92]図 92は、実施例 34における重合体の NMR ^ベクトルチャートである [図 93]図 93は、実施例 34における重合体の IR ^ベクトルチャートである。
[図 94]図 94は、実施例 34における重合体の蛍光スペクトルチャートである。 符号の説明
1 発光素子
2 透明基板
3 陽極
4 正孔注入層
5 正孔輸送層
6 発光層
7 電子輸送層
8 電子注入層
9 陰極
発明を実施するための最良の形態
この発明に係る発光性重合体の中でも、 下記式(1 A)で示される繰り返し単位から成る重合体、
以下の式(1A)で示される繰り返し単位と以下の式(1B)〜(: LH)で示される繰り返し 単位よりなる群力 選択される一種の繰り返し単位とからなる繰り返し単位を主鎖中 に有する重合体は、青色発光が可能であり、以下において青色発光性重合体(1)と 称されることがある。
[0052] また、式(1A)で示される繰り返し単位と式(1N)で示される繰り返し単位と式(1L) で示される繰り返し単位とを有する重合体等は、マリンブルー若しくはそれに近 ヽ鮮 やかな青色に発光する。
[0053] また、式(1A)で示される繰り返し単位と式(1C)で示される繰り返し単位と式(1E) 及び Z又は式(U)で示される繰り返し単位とを有する重合体、
式( 1 A)で示される繰り返し単位と式( 1G)で示される繰り返し単位と式(II)及び Z 又は式(1M)で示される繰り返し単位とを有する重合体、
式(1A)で示される繰り返し単位と式(1E)で示される繰り返し単位と式(1D)で示さ れる繰り返し単位とを有する重合体、
式( 1A)で示される繰り返し単位と式( 1C)で示される繰り返し単位と式( 1E)で示さ れる繰り返し単位と式(II)及び Z又は式(1K)で示される繰り返し単位とを有する重 合体、
及び式( 1 A)で示される繰り返し単位と式( 1L)で示される繰り返し単位と式(II)で示 される繰り返し単位と式(1E)で示される繰り返し単位とを有する重合体等は、 白色発光、青みが力つた白色発光又は青色発光が可能であり、その発光色に応じて 白色発光性重合体又は青色発光性重合体と称されることがある。
[0054] [化 9]
Figure imgf000018_0001
[0055] [化 10]
Figure imgf000019_0001
G)
Figure imgf000019_0002
{ 1 M)
[0056] [化 11]
Figure imgf000019_0003
[0057] [化 12]
Figure imgf000020_0001
[0058] [但し、式(1A)中、 2個の R1それぞれは、炭素数 1〜15のアルキル基であり、同一で あってもネ目違して ヽてもよ ヽ。
[0059] 先ず式( 1 A)〜式( 1H)で示される繰り返し単位を含む発光性重合体につ!、て説 明する。
式(1B)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。ベンゼン環上 に結合する R2の数は 1〜4のいずれかである。ベンゼン環上に複数の R2が結合する 場合、複数の R2は同一であっても相違していてもよい。
[0060] 式(1C)及び式(1D)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。
ナフタレン環上に結合する R2の数は 1〜6のいずれかである。ナフタレン環上に複数 の R2が結合する場合、複数の R2は同一であっても相違して 、てもよ!/、。
[0061] 式(1E)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。ピレン環上に 結合する R2の数は 1〜8の 、ずれかである。ピレン環上に複数の R2が結合する場合 、複数の R2は同一であっても相違していてもよい。
[0062] 式(1F)中、 R2は、水素原子又はアルキルフエ-ル基である。アルキルフエ-ル基 におけるアルキル基は炭素数 1〜10のいずれかであり、アルキルフエ-ル基におけ るアルキル基の数は 1〜5のいずれかである。
[0063] 式(II)中、 R3は、水素原子又は炭素数 1〜10のアルキル基である。ベンゼン環上 に結合する R3の数は 1〜5のいずれかである。ベンゼン環上に複数の R3が結合する 場合、複数の R3は同一であっても相違していてもよい。 R4は、水素原子、又は炭素 数 1〜10のアルキル基が置換してもよいフエ-ル基、ナフチル基、若しくはアントリル 基である。 式(1J)中、 R1は、水素原子又は炭素数 1〜10のアルキルである。
式(1M)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。
式(1N)中、 R2はアルキル基が置換してもよいァリール基である。 ]
前記式(1A)における R1がアルキル基である場合に、アルキル基の好適な炭素数 は 1〜13であり、特に 1〜10である。
[0064] 前記式(1B)〜(1E)における R2がアルキル基である場合に、そのアルキル基の好 適な炭素数は、 1〜8であり、特に 1〜5である。前記式(1F)における R2がアルキルフ ェ-ル基である場合に、そのアルキルフエ-ル基におけるアルキル基としては炭素数 1〜15のアルキル基が挙げられる。式(1A)におけるフルォレイン骨格中の窒素原子 に結合する 2個の R1がアルキル基である場合、それら 2個の R1は同一であるのが好 ましい。同様に、式(1B)〜(: LE)におけるベンゼン環に結合する複数の R2がアルキ ル基である場合、それら複数の R2は同一であるのが好まし!/、。
[0065] 前記式(1A)における R1で示されるアルキル基としては、例えば、メチル基、ェチル 基、プロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノニ ル基、デシル基、ゥンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデ シル基等を挙げることができる。式(1B)〜式(1E)における R2及び R3で示されるアル キル基としては、例えば、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、 へキシル基、ヘプチル基、ォクチル基等を挙げることができる。このようなアルキル基 が芳香環に結合していると、この発明に係る発光性重合体例えば青色発光性重合 体、白色発光性重合体は、汎用溶媒例えばクロ口ホルム、及びトルエン等の溶媒に 容易に溶解する。したがって、この青色発光性重合体、及び白色発光性重合体は、 溶媒を用いたキャスト法等により容易に製膜されることができる。
[0066] 前記式(1B)〜(: LE)における R2で示されるアルキル基、及び前記(1F)における R 2で示されるアルキルフ -ル基におけるアルキル基としては、メチル基、ェチル基、 プロピル基、ブチル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基 等を挙げることができる。
[0067] 前記式(1A)〜(: LH)において、ォキサジァゾ—ル環の炭素と結合する第 1の結合 手と、残りの第 2の結合手とは、ベンゼン環のいずれの位置に結合していてもよい。ま た、前記式(1C)、 (ID)及び(IE)において、 R2は、ベンゼン環のいずれの位置に 結合して 、てもよ 、。ベンゼン環上に結合する複数の R2は同一であっても相違して いてもよいが、同一であるのが好ましい。
[0068] 前記式(1A)で示される繰り返し単位の中でも、下記式(1A— 1)で示される繰り返 し単位が好ましい。発光性重合体の主鎖にこの式(1A— 1)で示される繰り返し単位 が含有されていると、式(1A— 1)中の R1により発光性重合体の溶媒に対する溶解性 が向上する。
[0069] [化 13]
Figure imgf000022_0001
[0070] 前記式(1B)で示される繰り返し単位の中でも、下記式(1B— 1)で示される繰り返 し単位が好ましい。発光性重合体の主鎖にこの式(1B— 1)で示される繰り返し単位 が含有されていると、式(1B— 1)中の R2により発光性重合体の溶媒に対する溶解性 が向上する。
[0071] [化 14]
Figure imgf000022_0002
[0072] 前記式(1C)で示される繰り返し単位の中でも、下記式(1C 1)で示される繰り返 し単位が好ましい。発光性重合体の主鎖にこの式(1C 1)で示される繰り返し単位 が含有されていると、式(1C 1)中の R2により発光性重合体の溶媒に対する溶解性 が向上する。
[0073] [化 15] (ic- 1)
Figure imgf000023_0001
[0074] 前記式(ID)で示される繰り返し単位の中でも、下記式(ID— 1)で示される繰り返 し単位が好ま 、。発光性重合体の主鎖にこの式( 1 D— 1 )で示される繰り返し単位 が含有されていると、式(1D— 1)中の R2により発光性重合体の溶媒に対する溶解性 が向上する。
[0075] [化 16]
Figure imgf000023_0002
[0076] 前記式(IE)に含まれる繰り返し単位の中でも、下記式(1E— 1)で示される繰り返 し単位が好ましい。発光性重合体の主鎖にこの式(1E— 1)で示される繰り返し単位 が含有されていると、式(1E— 1)中の R2により発光性重合体の溶媒に対する溶解性 が向上する。
[0077] [化 17]
Figure imgf000023_0003
前記式(IF)で示される繰り返し単位の中でも、下記式(1F— 1)で示される繰り返 し単位が好ま 、。この発明に係る発光性重合体の主鎖にこの式(IF— 1)で示され る繰り返し単位が含有されていると、式(1F— 1)中の R2により発光性重合体の溶媒 に対する溶解性が向上する。
[化 18]
Figure imgf000024_0001
[0080] 前記式(1G)で示される繰り返し単位の中でも、下記式(1G—1)で示される繰り返 し単位が好ましい。
[0081] [化 19]
Figure imgf000024_0002
[0082] 主鎖が式(1 A)で示される繰り返し単位と式(IB)〜(: LH)で示される繰り返し単位 よりなる群力 選択される一種の繰り返し単位とからなる青色発光性重合体(1)の主 鎖における全繰り返し単位に対する、前記式(1A)で示される繰り返し単位のモル% は、通常 50 90である。
[0083] このようなモル%で、式(1A)で示される繰り返し単位と他の繰り返し単位とを主鎖 中に含有する発光性重合体は、特に高輝度で青色に発光する。
[0084] 青色発光性重合体(1)の製造方法は、下記式(2A)で示されるジカルボン酸ィ匕合 物とヒドラジンィ匕合物とを反応させること、又は式(2A)で示されるジカルボン酸ィ匕合 物と式(2B) (2H)で示される化合物よりなる群力 選択される一種を含むジカルボ ン酸ィ匕合物とヒドラジンィ匕合物とを反応させることを基本とする。
[0085] [化 20]
Figure imgf000025_0001
Figure imgf000025_0002
Figure imgf000025_0003
2G)
[0086] 但し、式(2A)中、 2個の R1それぞれは、前記式(1A)における 2個の R1と同様であ る。
[0087] 式(2B)中、 R2は、前記式(1B)における R2と同様である。
[0088] 式(2C)及び式(2D)中、 R2は、式(1C)及び式(1D)における R2と同様である。
[0089] 式(2E)中、 R2は、前記式(1E)における R2と同様である。
[0090] 式(2F)中、 R2は、前記式(1F)における R2と同様である。
[0091] 前記式(2A)〜(2F)において、第 1のカルボキシル基と、残りの第 2のカルボキシ ル基とは、ベンゼン環のいずれの位置に結合していてもよい。前記式(2G)において 、第 1のカルボキシル基と、残りの第 2のカルボキシル基とは、ピリジン環のいずれの 位置に結合していてもよい。 [0092] 前記式(2A)で示されるジカルボン酸ィ匕合物の中でも、下記式(2A— 1)で示される ジカルボン酸化合物が好まし!/、。
[0093] [化 21]
Rl R1 画 H( J ( :) cooii :2A- 1)
[0094] 前記式(2B)で示されるジカルボン酸ィ匕合物の中でも、下記式(2B— 1)で示される ジカルボン酸化合物が好ましぐ特に 2, 5—ジアルキルテレフタル酸が好ましい。
[0095] [化 22]
Figure imgf000026_0001
[0096] 前記式(2C)で示されるジカルボン酸ィ匕合物の中でも、下記式(2C— 1)で示される ジカルボン酸化合物が好まし!/、。
[0097] [化 23]
Figure imgf000026_0002
[0098] 前記式(2D)で示されるジカルボン酸ィ匕合物の中でも、下記式(2D— 1)で示される ジカルボン酸化合物が好まし!/、。
[0099] [化 24]
Figure imgf000027_0001
[0100] 前記式(2E)で示されるジカルボン酸ィ匕合物の中でも、下記式(2E— 1)で示される ジカルボン酸化合物が好まし!/、。
[0101] [化 25]
Figure imgf000027_0002
[0102] 前記式(2F)で示されるジカルボン酸ィ匕合物の中でも、下記式(2F— 1)で示される ジカルボン酸化合物が好まし!/、。
[0103] [化 26]
Figure imgf000027_0003
[0104] 前記式(2G)で示されるジカルポン酸ィ匕合物の中でも、下記式(2G— 1)で示される ジカルボン酸化合物が好まし!/、。
[0105] [化 27]
H O- (2G 1)
Figure imgf000027_0004
[0106] この発明に係る青色発光性重合体(1)の製造方法において、 m モルの式(2A)で
A
示されるジカルボン酸化合物と、 mモルの式(2B)で示されるジカルボン酸化合物と
B
、mモルの式(2C)で示されるジカルボン酸化合物と、 m モルの式(2D)で示される
C D
ジカルボン酸化合物と、 mモルの式(2E)で示されるジカルボン酸化合物と、 mモ
E F
ルの式(2F)で示されるジカルボン酸化合物と、 mモルの式(2G)で示されるジカル
G
ボン酸化合物と、 m モルの式(2H)で示されるジカルボン酸化合物と、(m +m +
H A B
m +m +m +m +m +m )モルのヒドラジン化合物とを反応させる。
C D E F G H
[0107] 但し、 m は正数であり、 m、 m、 m、 m、 m、 m及び m はいずれも 0及び正数
A B C D E F G H
力 選択される数であるが少なくとも一つは正数である。
[0108] また、ヒドラジンィ匕合物としては、硫酸ヒドラジン、ヒドラジン、ヒドラジン二酢酸、塩酸 ヒドラジン等を挙げることができる。この中でも、ヒドラジン及び硫酸ヒドラジンが好まし い。硫酸ヒドラジンとしては、(N H ) SO及び NH NH ·Η SOを挙げることができ
2 5 2 4 2 2 2 4
る。硫酸ヒドラジンの中でも、 NH NH ·Η SOがより好ましい。
2 2 2 4
[0109] その他、脱水縮合反応を有利に進めるためにポリリン酸及びメタンスルホン酸を使 用することも好まし ヽ。
[0110] 青色発光性重合体(1)の製造方法におけるジカルボン酸ィ匕合物とヒドラジンィ匕合 物との反応時の加熱温度は、例えば、 80〜170°Cであることが好ましい。
[0111] 以上に説明したように、この発明に係る発光性重合体は、式(1A)で示される繰り返 し単位カゝらなる主鎖を有する場合、また、式(1A)で示される繰り返し単位と式(1B) 〜式(1N)及び(1Q)より成る群力も選択される一種の繰り返し単位とからなる主鎖を 有する場合、その組合せに応じて青色発光、黄色発光、緑色発光又は白色発光す る。青色発光を実現する主鎖中の構造は前記式(1A)、 (IB) , (1C)、(IF)及び(1 N)で示される。特に式(IN)で示される繰り返し単位を有する発光性重合体は、主 鎖中に a NPDと類似する骨格を有するので a NPDの代替作用を有する。
[0112] 一方、白色発光可能な発光性重合体における主鎖中の構造として式(II)及び(1J )で示される繰り返し単位を挙げることができる。この発明に係る白色発光可能な発光 性重合体は、一分子内に白色発光可能な構造と、青色発光可能な構造と、場合によ つては更に黄色発光可能な構造とを主鎖中に有する。 [0113] 黄色発光可能な繰り返し単位は前記(IE)で示される力 その主鎖に含まれる量が 少な 、と白色発光の傾向を示す。式( 1E)で示される繰り返し単位を主鎖中に有する 白色発光可能な発光性重合体を得るときには、前記式(1E)で示される繰り返し単位 の主鎖中の含有量は 10モル%以下、好ましくは 3モル%以下である。
[0114] 青色発光可能な発光性重合体として、
式(1A)で示される繰り返し単位と、式(II)で示される繰り返し単位とからなる主鎖を 有する発光性重合体 (2)、及び
式(1A)で示される繰り返し単位と、式(1C)で示される繰り返し単位と、式(II)で示 される繰り返し単位及び Z又は式(1G)で示される繰り返し単位とから成る主鎖を有 する発光性重合体 (3)を挙げることができる。
[0115] 式(II)で示される繰り返し単位につき、隣接する繰り返し単位同士に着目すると、 以下の式(11a)に示されるように、点対称 (C2h)の構造を有すること、ォキサジァゾリ ン環が分子鎖中に存在すること、このォキサジァゾリン環に隣接するベンゼン環に向 かって二方向から流れ込む電子の偏りが存在すること、式(1A)で示される繰り返し 単位を主鎖中に含むことにより高輝度の白色発光又は青色発光を実現する。したが つて、以下においては、この発光性重合体を白色発光性重合体又は青色発光性重 合体と称することがある。この白色発光性重合体又は青色発光性重合体は、また、二 重結合が共役していることも一つの特長である。従来の共役系高分子は膜形成性に 劣り、また、経時的に劣化し易かったが、この白色発光性重合体又は青色発光性重 合体は、共役系高分子であるにも力かわらず、経時的な劣化の程度が小さい。
[0116] [化 28]
Figure imgf000030_0001
[0117] 前記式(II)又は式(11a)で示される構造式中の R3は、水素原子又は炭素数 1〜1 0のアルキル基である。ベンゼン環上に結合する R3の数は 1〜5のいずれかである。 ベンゼン環上に複数の R3が結合する場合、複数の R3は相違していても良いが同一 であるのが好ましい。 R4は、水素原子、又は炭素数 1〜10のアルキル基が置換して Vヽても良 、フエ-ル基、ナフチル基若しくはアントリル基である。
[0118] 前記発光性重合体(2)及び(3)の主鎖を形成する式(1A)で示される繰り返し単位 の中でも好適な繰り返し単位は既述の通りであり、式(II)で示される繰り返し単位の 中でも好適な繰り返し単位は式(11—1)及び式(11— 2)で示される繰り返し単位であ り、式(1C)で示される繰り返し単位の中でも好適な繰り返し単位は既述の通りであり 、式(1G)で示される繰り返し単位の中でも好適な繰り返し単位は既述の通りである。
[0119] [化 29]
Figure imgf000031_0001
[0120] [化 30]
Figure imgf000031_0002
[0121] 前記発光性重合体(2)及び(3)における式(1A)で示される繰り返し単位の含有量 は 60〜90モル%、式(II)で示される繰り返し単位の含有量は 5〜20モル%、式(1 C)及び Z又は式(1G)で示される繰り返し単位の含有量は 5〜20モル%であるのが 好ましぐこれらの含有量範囲の中力も合計で 100モル%になるように各繰り返し単 位の含有量が選択される。
[0122] この発明における前記発光性重合体(2)及び(3)は、前記(2A)で示されるジカル ボン酸化合物、好ましくは前記式(2A— 1)で示されるジカルボン酸ィ匕合物と、以下 の式(21)で示されるジカルボン酸ィ匕合物、好ましくは式(21— 1)又は(21— 2)で示さ れるジカルボン酸ィ匕合物と、式(2C)で示されるジカルボン酸ィ匕合物、好ましくは式( 2C— 1)で示されるジカルボン酸化合物、及び Z又は式(2G)で示されるジカルボン 酸化合物、好ましくは式(2G— 1)で示されるジカルボン酸ィ匕合物と、前記ヒドラジン 化合物とを、加熱下に反応させることにより、製造されることができる。
[0123] 反応条件については青色発光性重合体(1)の合成反応条件に関して既述したと おりである。
[0124] [化 31]
Figure imgf000032_0001
[0125] [化 32]
Figure imgf000033_0001
[0126] [化 33]
Figure imgf000033_0002
[0127] この発明に係る好適な白色発光性重合体として、式(1A)で示される繰り返し単位 と、式(1E)で示される繰り返し単位と、式(1C)で示される繰り返し単位、式(1D)で 示される繰り返し単位、式(II)で示される繰り返し単位、式(1K)で示される繰り返し 単位、式(1L)で示される繰り返し単位、及び式(1M)で示される繰り返し単位よりな る群力 選択される少なくとも一種の繰り返し単位とからなる主鎖を有する発光性重 合体 (4)、 式( 1 A)、式( 1C)、式( 1J)からなる主鎖を有する重合体 (5)、
式(1A)、式(1M)、式(1G)から成る主鎖を有する重合体 (6)等を挙げることができ る。
[0128] 前記重合体 (4)の主鎖を構成する式(1A)、式(1E)、式(1C)、式(1D)、式(II) で示される繰り返し単位の中でも好適な繰り返し単位は式(1A— 1)、式(IE— 1)、 式(1C 1)、式(ID— 1)、式(II 1)で示される。
[0129] 前記白色発光性重合体 (4)における式(1A)で示される繰り返し単位の含有量は 6 0〜90モル%、式(1E)で示される繰り返し単位の含有量は 5〜30モル%、式(1C) 、式(1D)、式(11)、式(1K)、式(1L)及び式(1M)で示される繰り返し単位の含有 量は 5〜20モル%であるのが好ましぐこれらの含有量範囲の中力も合計で 100モ ル%〖こなるように各繰り返し単位の含有量が選択される。
[0130] この発明における白色発光性重合体 (4)は、前記(2A)で示されるジカルボン酸ィ匕 合物、好ましくは前記式(2A— 1)で示されるジカルボン酸化合物と、以下の式(2E) で示されるジカルボン酸ィ匕合物、好ましくは式(2E— 1)で示されるジカルボン酸ィ匕合 物と、式(2C)で示されるジカルボン酸化合物、好ましくは式(2C— 1)で示されるジカ ルボン酸化合物、式(2D)で示されるジカルボン酸ィ匕合物、好ましくは式(2D— 1)で 示されるジカルボン酸ィ匕合物、式(21)で示されるジカルボン酸ィ匕合物、好ましくは式 (21- 1)又は式(21— 2)で示されるジカルボン酸化合物と、式(2K)で示されるジカ ルボン酸化合物、式(2L)で示されるジカルボン酸化合物及び式(2M)で示されるジ カルボン酸ィ匕合物よりなる群力 選択される少なくとも一種のジカルボン酸ィ匕合物と、 前記ヒドラジンィ匕合物とを、加熱下に反応させることにより、製造されることができる。
[0131] 反応条件については青色発光性ィ匕合物(1)の合成反応条件に関して既述したと おりである。
[0132] 前記重合体(5)の主鎖を構成する式(1A)、式(1C)及び式(1J)で示される繰り返 し単位の中でも式(1A— 1)で示される繰り返し単位、式(1C— 1)及び以下の式(1J 1)で示される繰り返し単位が好ま 、。
[0133] [化 34]
Figure imgf000035_0001
(U-1)
[0134] 前記発光性重合体(5)における式(1 A)で示される繰り返し単位の含有量は 60〜 90モル0 /0、式(1C)で示される繰り返し単位の含有量は 5〜30モル0 /0、式(1J)で示 される繰り返し単位の含有量は 5〜20モル0 /0であるのが好ましぐこれらの含有量範 囲の中力も合計で 100モル%になるように各繰り返し単位の含有量が選択される。
[0135] 反応条件については青色発光性ィ匕合物(1)の合成反応条件に関して既述したと おりである。なお、式(1J)で示される繰り返し単位は、式(2J)で示されるジカルボン 酸化合物により、また式(1J-1)で示される繰り返し単位は、式(2J-1)で示されるジカ ルボン酸化合物により、導入される。
[0136] 前記発光性重合体 (6)の主鎖を構成する式(1A)、式(1M)、及び式(1G)で示さ れる繰り返し単位の中でも式(1A— 1)、式(1M— 1)及び式(1G— 1)で示される繰り 返し単位が好ましい。
[0137] [化 35]
Figure imgf000035_0002
( 1 M - 1 )
[0138] 前記発光性重合体 (6)における式(1A)で示される繰り返し単位の含有量は 60〜 90モル%、式(1M)で示される繰り返し単位の含有量は 5〜30モル%、式(1G)で 示される繰り返し単位の含有量は 5〜20モル%であるのが好ましぐこれらの含有量 範囲の中力も合計で 100モル%になるように各繰り返し単位の含有量が選択される。
[0139] 反応条件については青色発光性ィ匕合物(1)の合成反応条件に関して既述したと おりである。なお、式(1M— 1)で示される繰り返し単位を与えるジカルボン酸は、以 下の式(2M— 1)で示される。
[0140] [化 36]
Figure imgf000036_0001
( 2 Μ— 1 )
[0141] この発明に係る好適な青色発光性重合体 (7)として、式( 1 A)で示される繰り返し 単位と式(1N)で示される繰り返し単位と式(1L)で示される繰り返し単位とを有する 重合体を挙げることができる。この青色発光性重合体 (7)は、マリンブルー若しくはそ れに近い鮮やかな青色に発光する。この青色発光性重合体(7)における繰り返し単 位を示す式(1N)は、主鎖中に α— NPD類似の構造を有するので、青色発光を可 能にする。
[0142] 前記青色発光性重合体(7)は、前記(2Α)で示されるジカルボン酸ィ匕合物、好まし くは前記式(2Α— 1)で示されるジカルボン酸ィ匕合物と、以下の式(2Ν)で示されるジ カルボン酸化合物、好ましくは式(2Ν)において R2がフエ-ル基、ナフチル基、アント リル基、ピレニル基等の芳香族基を有するジカルボン酸化合物と、式(2L)で示され るジカルボン酸ィ匕合物とを、加熱下に反応させることにより、製造されることができる。
[0143] [化 37]
Figure imgf000037_0001
[0144] 前記発光性重合体(7)における各繰り返し単位の含有量は、式(2A)で示される繰 り返し単位の含有量が 30〜60モル0 /0、式(1N)で示される繰り返し単位の含有量が 5〜30モル%、式(1L)で示される繰り返し単位の含有量が 5〜60モル%が好ましく 、これらの含有量範囲の中力も合計で 100モル0 /0になるように各繰り返し単位の含有 量が選択される。この発光性重合体 (7)を合成する反応条件にっ 、ては青色発光性 化合物(1)の合成反応条件に関して既述したとおりである。
[0145] 以上要するに、この発明に係る発光性重合体は、式(1A)で示される繰り返し単位 と、式(1B)〜式(1N)及び(1Q)から成る群力も選択される少なくとも一種の繰り返し 単位とを主鎖中に有することにより、青色発光、青みが力つた白色発光、暖色系の白 色発光、緑色発光及び黄色発光等の光を発することができる。
[0146] さらに、この発明に係る発光性重合体は、フルオレン骨格等の共役二重結合を有 する芳香環中にアルキル基を有すると、トルエン、アセトン、クロ口ホルム、トリクロロェ タン等の汎用溶媒に対する溶解性が良好である。したがって、この青色発光性重合 体は、溶媒に溶解することによる、例えば、キャスト法等により容易に、薄膜に形成さ れることができる。したがって、この薄膜を電極で挟み込むことにより、繰り返し単位の 種類に応じた色の発光が可能な発光素子が形成される。
[0147] また、この発明に係る発光性重合体は、一般的な高分子の成形加工法により、例え ば、フィルムへの加工が容易である。したがって、この発光性重合体のフィルムを利 用すると、発光素子を容易に製造することができる。
[0148] この発明の発光素子を、図面に基づいて説明する。図 1は、この発明の発光素子の 一例を模式的に示す断面である。
[0149] 発光素子 1は、透明基板 2、陽極 3、正孔注入層 4、正孔輸送層 5、発光層 6、電子 輸送層 7、電子注入層 8、および陰極 9が、その順に積層されて成っている。 [0150] 発光素子 1を構成する各層は、透明基板 2上に形成され、この透明基板 2としては、 例えば、ガラス基板、プラスチック基板、シリコン基板等を挙げることができる。
[0151] 前記陽極 3としては、仕事関数が大きぐ透明である限り、種々の材料を採用するこ とができる。例えば、インジウムチンオキサイド (ITO)、 In O 、 SnO 、 ZnO、 CdOなど
2 3 2
、またはポリア-リンなどの導電性高分子材料などにより形成することができる。この 陽極 3の厚さの不均一は、発光層の膜厚に影響を与えるため、平滑性が要求される
[0152] この陽極 3は、前記透明基板 2上に、化学気相成長法、スプレーパイロリシス、真空 蒸着法、電子ビーム蒸着法、スパッタ法、イオンビームスパッタ法、イオンプレーティ ング法、イオンアシスト蒸着法等の方法により形成することができる。
[0153] 前記正孔注入層 4としては、トリフエニルァミン系化合物、例えば、 N, N'—ジフエ- ルー N, N,ージ(m—トリル)一べンジジン(TPD)、 ( a—NPD)など、ヒドラゾン系化 合物、スチルベンビス〔N—(1 ナフチル) N フエ-ル〕ベンジジンン系化合物等 のスチルベン系化合物、複素環系化合物、 π電子系スターバースト正孔輸送物質な ど力 形成される層を挙げることができる。
[0154] 発光素子 1においては、前記正孔輸送層 5が、公知の材料によって形成されている 。この正孔輸送層 5は、蒸着法によることなぐ例えば、スピンキャスト法、コート法又 はディップ法等により形成することができる。
[0155] 前記発光層 6は、この発明に係る発光性重合体を含有する層である。この発光層 6 は、塗布法、例えば、スピンキャスト法、コート法またはディップ法などにより形成する ことができる。この発光層 6は発光特性に応じた蛍光発光化合物を含有することがで きる。
[0156] 発光素子 1においては、前記電子輸送層 7が、公知の材料によって形成されている 。この電子輸送層 7は、蒸着法によることなぐ例えば、スピンキャスト法、コート法又 はディップ法等により形成することができる。
[0157] 前記電子注入層 8としては、例えば、 2, 5 ビス(1 ナフチル)—1, 3, 4 ォキサ ジァゾール(BND)、 2- (4— tert ブチルフエ-ル)—5— (4 ビフエ-リル)— 1, 3, 4ーォキサジァゾール等のォキサジァゾール誘導体、 2, 5 ビス(5, 一 tert ブ チル一 2,一ベンゾキサゾリル)チォフェン、トリス(8—キノリノラト)アルミニウム錯体 (A lq3)、ベンゾキノリノールベリリウム錯体 (Bebq2)などの金属錯体系材料など力も形 成される層を挙げることができる。この電子注入層 8は、蒸着法、塗布法、例えば、ス ピンキャスト法、コート法又はディップ法などにより形成することができる。
[0158] また、前記陰極 9は、仕事関数の小さい物質が採用され、例えば、 Mg、 Ag、アルミ -ゥム合金、金属カルシウムなどの金属単体または金属の合金で形成することができ る。好適な陰極は、アルミニウムと少量のリチウムとの合金電極である。この陰極 9は、 例えば、透明基板 2の上に形成された各層の表面に、化学気相成長法、スプレーパ イロリシス、真空蒸着法、電子ビーム蒸着法、スパッタ法、イオンビームスパッタ法、ィ オンプレーティング法、イオンアシスト蒸着法等の方法により形成することができる。
[0159] このような層構成を有する発光素子 1は、電流を流すことによって、陽極 3から正孔 輸送層 5を介して正孔注入層 4に正孔 (ホール)が注入され、陰極 9からは、発光化合 物を含有する発光層 6に向けて電子が注入される。この発光層 6においては、電子と ホールとが結合して、エネルギーが発光層 6の蛍光体 (発光化合物)を励起し、この励 起状態が元に戻るときに発光してエネルギーを放出する。発光素子 1の厚さは、通常 、 0. 1〜0. である。
[0160] この発明に係る発光素子は、図 1に示される層構成を有する発光素子に限られず、 印加電圧極性可変構造型 EL素子、温度安定型多層 EL素子等を含む。なお、前記 発光性重合体は、電子輸送層として電子注入輸送層、又はホール輸送層としてホー ル注入輸送層にも用いられる。
実施例
[0161] 以下、実施例を挙げて、この発明をさらに具体的に説明する力 この実施例によつ て、この発明はなんら限定されることはない。
[0162] (実施例 1)
以下の式(100)に示されるような反応を行った。
[0163] [化 38]
Figure imgf000040_0001
Figure imgf000040_0002
[0164] 具体的には、 3つ口フラスコに、式(100)の左辺に示されるフルオレン化合物 20g
(0. 042mol)と、硫酸ヒドラジン 6. 54g (0. 0504mol)と、ポリリン酸 20gと、メタン スルホン酸 200gとを入れた。なお、フラスコに入れられたポリリン酸及びメタンスル ホン酸は、質量比で 1: 10であった。
[0165] 3つ口フラスコに、投入してなる内容物をオイルバスで、 85°Cで 2時間加熱し、その 後、 120°Cで 20時間加熱し、その後、 170°Cで 20時間加熱した。加熱後の内容物を 氷水に投入した。氷水に投入された内容物をヌッチェで濾過することにより固形分を 分離した。分離された固形分をメタノールで洗浄し、真空ポンプを使用することにより 乾燥させて、固形分 20gを得た。
[0166] 得られた固形分は、図 2に示される NMR ^ベクトル、及び図 3に示される IRチャート から、式(100)の右辺に示される繰り返し単位を有する重合体であった。
[0167] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 4に示した。
[0168] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 380nm 蛍光終了波長 700nm
スキャンスピード 2400nm/分
励起側スリット 5. Onm
蛍光側スリット 2. 5nm
(実施例 2)
以下の式(110)に示されるような反応を行った
[0169] [化 39]
3 S04
Figure imgf000041_0001
:110)
[0170] 具体的には、 3つ口フラスコに、式(110)の左辺に示されるフルオレン化合物 6.
62g (0. O138mol)と、式(110)の左辺に示されるジカノレボン酸ィ匕合物 1. Og (0. 0 046mol)と、ポリリン酸 21. 5gと、メタンスノレホン酸 215gとを人れた。なお、フラス コ内に入れたポリリン酸及びメタンスルホン酸は、質量比で 1: 10であった。
[0171] 3つ口フラスコの内容物をオイルバスで、 120°Cで 1時間加熱し、その後、 140°Cで 1時間加熱した。 3つ口フラスコの内容物を常温に冷却した後、再度 140°Cで 1時間 加熱した。その後、 3つ口フラスコに、硫酸ヒドラジン 2. 892g (0. 0222mol)を投入 した。この硫酸ヒドラジンの投入後、 3つ口フラスコの内容物を 85°Cで 2時間加熱し、 その後、 100°Cで 12時間加熱した。
[0172] 加熱後の内容物を氷水に投入した。氷水に投入された内容物をヌッチ で濾過し た。濾過により得られた固形分をメタノールで洗浄し、真空ポンプを使用することによ り乾燥させて、固形分 7gを得た。
[0173] 得られた固形分は、図 5に示される NMR ^ベクトル、及び図 6に示される IRチャート 及び原料の使用割合から、式(110A)で示される繰り返し単位と、式(110B)で示さ れる繰り返し単位とを 3 : 1の割合で主鎖中に有する重合体と同定した。
[0174] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 7に示した。
[0175] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 3)
以下の式(120)に示されるような反応を行った。
[0176] [化 40]
4誦 ( ) 誦 + NH H2 * H2SO
Figure imgf000043_0001
Figure imgf000043_0002
(120A) (120D)
(120)
[0177] 具体的には、 3つ口フラスコに、式(120)の左辺に示されるフルオレン化合物 8.
78g (0. 0184mol)と、硫酸ヒドラジン 3. 59g (0. 0276mol)と、式(120)の左辺に 示されるジカノレボン酸ィ匕合物 1. 0g (0. 0046mol)と、ポリリン酸 15gと、メタンスノレ ホン酸 150gとを入れた。なお、フラスコに入れられたポリリン酸及びメタンスルホン 酸は、質量比で 1: 10であった。
[0178] 3つ口フラスコに、投入してなる内容物をオイルバスで、 120°Cで 1時間加熱し、そ の後、 140°Cで 1時間加熱した。 3つ口フラスコの内容物を放冷した後、再度 85°Cで 2. 5時間加熱し、その後、 120°Cで 1時間加熱し、 110°Cで 14時間加熱した。
[0179] 加熱後の内容物を氷水に投入した。氷水に投入された内容物をヌッチ で濾過し て固形分を分離した。この固形分をメタノールで洗浄し、真空ポンプを使用すること により乾燥させて、固形分 9gを得た。
[0180] 得られた固形分は、図 8に示される NMR ^ベクトル、及び図 9に示される IRチャート から、式(120A)で示される繰り返し単位と、式(120B)で示される繰り返し単位とを 4 : 1の割合で主鎖中に有する重合体と同定した。
[0181] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 10に示した。 [0182] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 4)
以下の式(130)に示されるような反応を行った。
[0183] [化 41]
Figure imgf000044_0001
(1 30)
[0184] 具体的には、 3つ口フラスコに、式(130)の左辺に示されるフルオレン化合物 9.
84g (0. 0206mol)と、硫酸ヒドラジン 3. 21g (0. 0206mol)と、式(130)の左辺に 示されるジカルボン酸化合物(2, 5—ジメチルテレフタル酸) 1. Og (0. 00515mol )と、ポリリン酸 15gと、メタンスルホン酸 150gとを入れた。なお、フラスコに入れら れたポリリン酸及びメタンスルホン酸は、質量比で 1: 10であった。
[0185] 3つ口フラスコに、投入してなる内容物をオイルバスで、 120°Cで 1時間加熱し、そ の後、 3つ口フラスコの内容物を放冷した後、再度 85°Cで 2時間加熱し、その後、 12 0°Cで 48時間加熱した。
[0186] 加熱後の内容物を氷水に投入した。氷水に投入された内容物をヌッチ で濾過し て固形分を分離した。この固形分をメタノールで洗浄し、真空ポンプを使用すること により乾燥させて、固形分 10gを得た。
[0187] 得られた固形分は、図 11に示される NMR ^ベクトル、及び図 12に示される IRチヤ ートから、式(130A)で示される繰り返し単位と、式(130B)で示される繰り返し単位 とを 4 : 1の割合で主鎖中に有する重合体と同定した。
[0188] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 13に示した。
[0189] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 5)
以下の式(140)に示されるような反応を行った。
[0190] [化 42]
Figure imgf000046_0001
( 1 4 0 )
[0191] 具体的には、 3つ口フラスコに、式(140)の左辺に示されるフルオレン化合物 5.
5g (0. 0152mol)と、式(140)の右辺に示されるカルバゾールジカルボン酸化合物 0. 45g (0. 0013mol)と、ポリリン酸 12gと、メタンスノレホン酸 120gとを人れた。 なお、フラスコに入れられたポリリン酸及びメタンスルホン酸は、質量比で 1 : 10であつ た。
[0192] 3つ口フラスコに投入してなる内容物をオイルバスで、 120°Cで 1時間加熱し、その 後、冷却してから 1時間後に硫酸ヒドラジン 1. 8g (0. 0423mol)をフラスコ内に投 入し、その後 85°Cで 2時間加熱し、さらに 110°Cで 33時間加熱した。
[0193] 加熱後の内容物を氷水に投入した。氷水に投入された内容物をヌッチ で濾過し て固形分を分離した。この固形分を水及びメタノールで洗浄し、真空ポンプで減圧乾 燥させて、固形分 7gを得た。
[0194] 得られた固形分は、図 14に示される NMR ^ベクトル、及び図 15に示される IRチヤ ートから、式(140A)で示される繰り返し単位と、式(140F)で示される繰り返し単位 とを 4 : 1の割合で主鎖中に有する重合体と同定した。
[0195] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 16に示した。
[0196] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 6)
以下の式(150)に示されるような反応を行った。
[0197] [化 43]
し 8¾? Cs¾7
4 H00C OHO>C00H + HO- co + 5 NH2NH ¾S04
Figure imgf000047_0001
Figure imgf000047_0002
(150 A) (150G)
( 150)
[0198] 具体的には、 3つ口フラスコに、式(150)の左辺に示されるフルオレン化合物 7.
82g (0. 0164mol)と、式(150)の中央に示されるジピリジルジカルボン酸化合物 1 g (0. 0041mol)と、ポリリン酸 17gと、メタンスノレホン酸 170gとを人れた。
[0199] 3つ口フラスコに投入してなる内容物をオイルバスで、 110°Cで 1時間加熱し、その 後、冷却してから 1時間後に硫酸ヒドラジン 3. 2g (0. 0246mol)をフラスコ内に投 入し、その後 110°Cで 2時間加熱し、さらに 110°Cで 41時間加熱した。
[0200] 加熱後の内容物を氷水に投入した。氷水に投入された内容物をヌッチ で濾過し て固形分を分離した。この固形分を水及びメタノールで洗浄し、真空ポンプで減圧乾 燥させて、固形分 9. 2gを得た。
[0201] 得られた固形分は、図 17に示される NMR ^ベクトル、及び図 18に示される IRチヤ ートから、式(150A)で示される繰り返し単位と、式(150G)で示される繰り返し単位 とを 4 : 1の割合で主鎖中に有する重合体と同定した。
[0202] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 19に示した。
[0203] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 7)
以下の式(160)に示されるような反応を行った。
[0204] [化 44] CgHn CgJHi?
4 H00C O Q>cooh + H 0c 0— - cooH + 顯 2 ½ '¾S04
Figure imgf000049_0001
160A) (160H)
(160)
[0205] 具体的には、 3つ口フラスコに、式(160)の左辺に示されるフルオレン化合物 5.
54g (0. 0116mol)と、式(160)の中央に示されるチォフェンジカルボン酸化合物 0. 5g (0. 0029mol)と、硫酸ヒドラジン 2. 27g (0. 0175mol)と、ポリリン酸 12gと 、メタンスノレホン酸 120gとを入れた。
[0206] 3つ口フラスコに投入してなる内容物をオイルバスで、 85°Cで 48時間力!]熱し、その 後、 1時間後にフラスコの内容物を DMACに投入した。生成した固形分を濾過し、濾 過して得られた固形分を水及びメタノールで洗浄し、真空ポンプで減圧乾燥させて、 固形分 6. 2gを得た。
[0207] 得られた固形分は、図 20に示される NMR ^ベクトル、及び図 21に示される IRチヤ ートから、式(160A)で示される繰り返し単位と、式(160H)で示される繰り返し単位 とを 4 : 1の割合で主鎖中に有する重合体と同定した。
[0208] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 22に示した。
[0209] 測定条件
測定モード 波長スキャン
励起波長 365nm 蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 8)
以下の式(170)に示されるような反応を行った
[化 45]
4 S04
Figure imgf000050_0001
(170)
[0211] 具体的には、 3つ口フラスコに、式(170)の左辺に示されるフルオレン化合物 6.
81g (0. 0143mol)と、式(170)の中央に示されるピレンジカルボン酸化合物 lg (0 . O0357mol)と、硫酸ヒドラジン 2. 7846g (0. 02142mol)と、ポリリン酸 16gと、 メタンスノレホン酸 160gとを入れた。
[0212] 3つ口フラスコに投入してなる内容物をオイルバスで、 85°Cで 2時間加熱し、その後 、 90°Cで 81. 5時間加熱し、その後にフラスコの内容物を DMACに投入した。生成 した固形分を濾過し、濾過して得られた固形分を水及びメタノールで洗浄し、真空ポ ンプで減圧乾燥させて、固形分 9. 2gを得た。
[0213] 得られた固形分は、図 23に示される NMR ^ベクトル、及び図 24に示される IRチヤ ートから、式(170A)で示される繰り返し単位と、式(170E)で示される繰り返し単位 とを 4 : 1の割合で主鎖中に有する重合体と同定した。
[0214] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 25に示した。
[0215] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 9)
以下の式(180)に示されるような反応を行った。
[0216] [化 46]
4
Figure imgf000051_0001
(180G) (180) [0217] 具体的には、 3つ口フラスコに、式(180)の左辺に示されるフルオレン化合物 8.
78g (0. 0178mol)と、式(180)の中央に示されるピレンジカルボン酸化合物 0. 5 65 (0. 0023 lmol)と、ナフタレンジ力ノレボン酸 0. 5g (0. 0023モノレ)と、硫酸ヒドラ ジン 3. 5876g (0. 0276mol)と、ポリリン酸 20gと、メタンスノレホン酸 200gとを人 れた。
[0218] 3つ口フラスコに投入してなる内容物をオイルバスで、 85°Cで 3時間加熱し、その後 、 90°Cで 39時間加熱し、その後にフラスコの内容物を DMACに投入した。生成した 固形分を濾過し、濾過して得られた固形分を水及びメタノールで洗浄し、真空ポンプ で減圧乾燥させて、固形分 10gを得た。
[0219] 得られた固形分は、図 26に示される NMR ^ベクトル、及び図 27に示される IRチヤ ートから、式(180A)で示される繰り返し単位と、式(180C)及び式(180G)で示され る繰り返し単位とを 4 : 1Z1: 1Z2の割合で主鎖中に有する重合体と同定した。
[0220] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 28に示した。
[0221] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 10)
以下の式(190)に示されるような反応を行った。
[0222] [化 47]
Figure imgf000053_0001
(1901) 90 )
[0223] 三ッロフラスコに、上記式(190)におけるフルオレン骨格含有のジカルボン酸化合 物 8. 82g (0. 0185モノレ)と、上記式(190)におけるジ(2, 5—ジメチノレフエ二ノレアミ ノ)テレフタノレ酸 2g (0. 00462モノレ)と、硫酸ヒドラジン 3. 6g (0. 277モノレ)と、ポリリ ン酸 20gと、メタンスノレホン酸 200gとを人れた。
[0224] 三ッロフラスコに投入してなる内容物をオイルバスで、窒素雰囲気下に 85°Cで 2時 間加熱し、その後、 90°Cで 144時間加熱し、その後、加熱後の内容物を冷却された DMACに投入した。 DMACに投入された内容物をヌッチェで濾過することにより固 形分を分離した。分離された固形分をメタノールで洗浄し、真空ポンプを使用するこ とにより乾燥させて、固形分 12gを得た。
[0225] 得られた固形分は、図 29に示される NMR ^ベクトル、及び図 30に示される IRチヤ ートから、式(190A)及び式(1901)にて示される繰り返し単位を 4 : 1のモル比で有 する重合体であると確認した。
[0226] なお、同定された前記白色発光共役系高分子をクロ口ホルムに溶解して試料液を 調製した。この試料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して 、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 3 1に示した。
測定条件
測定モード 波長スキャン
励起波長 dodnm
蛍光開始波長 350nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 11)
以下の式(200)に示されるような反応を行った
[0228] [化 48]
Figure imgf000054_0001
(200)
[0229] 三ッ口フラスコに、前記式(200)にお!/、て示されるフルオレン骨格含有のジカルボ ン酸化合物 8. 78g (0. 0184モル)と、前記式(200)において示されるジ(2, 5—ジ メチルフエ-ルァミノ)テレフタル酸 lg (0. 0023モル)と、前記式(200)において示さ れるナフタレンジカルボン酸化合物 0. 5g (0. 0023モル)と、ポリリン酸 20gと、メタン スルホン酸 200gとを入れた。
[0230] 三ッロフラスコの内容物をオイルバスで、窒素雰囲気下に 85°Cで 1時間加熱し、そ の後、硫酸ヒドラジン 3. 59g (0. 0276モル)を三ッロフラスコ内に投入し、ついで三 ッロフラスコの内容物を 85°Cで 96時間加熱した。三ッロフラスコの内容物を冷却し た DMACに投入した後に、 DMACと投入された三ッロフラスコ内容物との混合物を ヌッチェで濾過した。濾過により得られた固形分を水及びメタノールで順次に洗浄し、 真空ポンプを使用することにより乾燥させて、固形分 l lgを得た。
[0231] 得られた固形分は、図 32に示される NMR ^ベクトル、及び図 33に示される IRチヤ ート及び原料の使用割合から、式(200A)で示される繰り返し単位と、式(2001)で 示される繰り返し単位と、式(200C)で示される繰り返し単位とを 8 : 1: 1のモル比の 割合で主鎖中に有する重合体であると確認した。
[0232] なお、同定された前記白色発光共役系高分子をクロ口ホルムに溶解して試料液を 調製した。この試料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して 、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 3 4に示した。
[0233] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 350nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 12)
以下の式(210)に示されるような反応を行った。
[0234] [化 49]
Figure imgf000056_0001
〈2101) (210)
[0235] 三ッロフラスコに、前記式(210)において示されるフルオレン骨格含有のジカルボ ン酸化合物 7. 82g (0. 0164モル)と、前記式(210)において示されるジピリジン骨 格含有のジカルボン酸化合物 0. 5 (0. 002モル)と、前記式(210)において示され るジ(2, 5—ジメチルフエ-ルァミノ)テレフタル酸 0. 89g (0. 0021モル)と、ポリリン 酸 20gと、メタンスノレホン酸 200gとを人れた。
[0236] 三ッロフラスコの内容物をオイルバスで、窒素雰囲気下に 85°Cで 1時間加熱し、そ の後、硫酸ヒドラジン 3. 189g (0. 0245モル)を三ッロフラスコ内に投入し、ついで 三ッロフラスコの内容物を 85°Cで 2時間、次いで 90°Cで 104時間加熱した。三ッロ フラスコの内容物を冷却した DMACに投入した後に、 DMACと投入された三ッロフ ラスコ内容物との混合物をヌッチェで濾過した。濾過により得られた固形分を水及び メタノールで順次に洗浄し、真空ポンプを使用することにより乾燥させて、固形分 9g を得た。
[0237] 得られた固形分は、図 35に示される NMR ^ベクトル、及び図 36に示される IRチヤ ートから、前記繰り返し単位(210A)、前記繰り返し単位(210G)及び前記繰り返し 単位(2101)を 8 : 1: 1のモル比の割合で主鎖中に有する重合体つまり白色発光共役 系高分子と確認した。 [0238] なお、同定された前記白色発光共役系高分子をクロ口ホルムに溶解して試料液を 調製した。この試料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して 、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 3 7に示した。
[0239] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 13)
前記実施例 12で得られた白色発光共役系高分子 6. Omgと以下の式( 10)で示さ れる増感剤 4. Omgとをクロ口ホルム 1. lmLに溶解してなる白色発光共役系高分子 含有クロ口ホルム溶液を調製した。
[化 50]
Figure imgf000057_0001
[0241] この白色発光共役系高分子含有クロ口ホルム溶液は、超音波洗浄器((株)エスェ ヌディ製、 US— 2)で超音波を 20分間照射することにより、十分に均一なものにされ た。一方、 ITO基板 (50 X 50mm、三容真空工業 (株)製)をアセトンで 10分間超音 波洗浄した後に 2—プロパノールで 10分間超音波洗浄し、窒素でブローして乾燥さ せた。その後に、 UV照射装置((株)ェム'ディ'エキシマ製、波長 172nm)で 30秒 間 uvを照射して洗浄した。
[0242] この ITO基板の表面に、ホール輸送剤 (Baytron PVPCH8000)をスピンコート法(ミ カサ (株)製、 1H— D7、回転速度: 3500rpm)により塗工し、 130°Cで 10分乾燥す ることにより、厚み lOOnmのホール輸送層を形成した。
[0243] 次いで、スピンコータ(ミカサ(株)製、 1H— D7、回転数: 1500rpm)を用いて、 IT O基板上の前記ホール輸送層上に、調製しておいた前記白色発光共役系高分子含 有クロ口ホルム溶液を滴下し、スピンコートして発光層を製膜した。膜厚 50nmに製膜 された発光層を有する基板を、 50°Cの恒温槽中で 30分乾燥させた後に、真空蒸着 装置(大亜真空技研 (株)製、 VDS— M2— 46型)で Cs2C03層(厚み: 2nm)及び その上にアルミニウム層(厚み: 220. 9nm)を、 4 X 10— 6Torrで蒸着し、力べして発光 素子を製作した。この発光素子につき (株)トプコン製の分光放射計 SR— 3にて輝度 及び色度を測定した。
[0244] この発光素子の白色発光についての XY色度図を図 38に、電圧と輝度との関係を 図 39に、 ELスペクトルを図 40に示した。
[0245] (実施例 14)
以下の式(220)に示されるような反応を行った。
[0246] [化 51]
Figure imgf000059_0001
(2201) (220>
[0247] 三ッ口フラスコに、前記式(220)にお!/、て示されるフルオレン骨格含有のジカルボ ン酸化合物 7. 82g (0. 0164モル)と、前記式(220)において示されるジピリジン骨 格含有のジカルボン酸化合物 0. 5 (0. 002モル)と、前記式(220)において示され るジ(4—へキシルフエ-ルァミノ)テレフタル酸 1. lgと、ポリリン酸 20gと、メタンスル ホン酸 200gとを入れた。
[0248] 三ッロフラスコの内容物をオイルバスで、窒素雰囲気下に 85°Cで 1時間加熱し、そ の後、硫酸ヒドラジン 2. 55gを三ッロフラスコ内に投入し、ついで三ッロフラスコの内 容物を 85°Cで 2時間、次いで 90°Cで 58時間加熱した。三ッロフラスコの内容物を冷 却した DMACに投入した後に、 DMACと投入された三ッロフラスコ内容物との混合 物をヌッチ で濾過した。濾過により得られた固形分を水及びメタノールで順次に洗 浄し、真空ポンプを使用することにより乾燥させて、固形分 9. lgを得た。
[0249] 得られた固形分は、図 41に示される NMR ^ベクトル、及び図 42に示される IRチヤ ートから、前記繰り返し単位(220A)、前記繰り返し単位(220G)及び前記繰り返し 単位 (2201)を 8 : 1: 1のモル比の割合で主鎖中に有する白色発光共役系高分子と 確認した。 [0250] なお、同定された前記白色発光共役系高分子をクロ口ホルムに溶解して試料液を 調製した。この試料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して 、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 4 3に示した。
[0251] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 350nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 15)
以下の式(240)に示されるような反応を行った。
[0252] [化 52]
Figure imgf000060_0001
三ッロフラスコに、前記式(240)において示されるフルオレン骨格含有のジカルボ ン酸化合物 4. 255g (0. 00892モル)と、前記式(240)において示されるナフタレン 骨格含有のジカルボン酸化合物 0. 24g (l. 115 X 10—3モル)と、前記式(240)に おいて示されるキナクリドン骨格を有するジカルボン酸化合物 0. 446g (l. 115 X 10 _3モル)と、ポリリン酸 12gと、メタンスルホン酸 120gとを入れた。 [0254] 三ッロフラスコの内容物をオイルバスで、窒素雰囲気下に 90°Cで 2時間加熱し、そ の後、硫酸ヒドラジン 1. 739g (0. 0134モル)を三ッロフラスコ内に投入し、ついで 三ッロフラスコの内容物を 90°Cで 86時間加熱した。三ッロフラスコの内容物を冷却 した DM ACに投入した後に、 DMACと投入された三ッロフラスコ内容物との混合物 をヌッチ で濾過した。濾過により得られた固形分を水及びメタノールで順次に洗浄 し、真空ポンプを使用することにより乾燥させて、固形分 6. Ogを得た。
[0255] 得られた固形分は、図 44に示される NMR ^ベクトル、及び図 45に示される IRチヤ ートから、前記繰り返し単位(230A)、前記繰り返し単位(230C)、前記繰り返し単位 (230K)及び前記繰り返し単位(230E)を 4 : 1Z2: 1Z2のモル比の割合で主鎖中 に有する白色発光共役系高分子と確認した。
[0256] なお、同定された前記白色発光共役系高分子をクロ口ホルムに溶解して試料液を 調製した。この試料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して 、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 4 6に示した。
[0257] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 16)
以下の式(250)に示されるような反応を行った。
[0258] [化 53]
Figure imgf000062_0001
' 0 )
[0259] 三ッ口フラスコに、前記式(250)にお!/、て示されるフルオレン骨格含有のジカルボ ン酸化合物 10. 88g (0. 0288モル)と、前記式(250)において示されるナフタレン 骨格含有のジカルボン酸化合物 0. 820g (0. 0038モル)と、前記式(250)において 示されるジ(N—フエ-ルー N—トリル)テレフタル酸 1. 0g (l. 9 X 10—3モル)と、硫 酸ヒド、ラジン 4. 446g (0. 0342モノレ)と、ポリリン酸 26gと、メタンスノレホン酸 260gとを 入れた。
[0260] 三ッロフラスコの内容物をオイルバスで、窒素雰囲気下に 90°Cで 89時間加熱した 。三ッロフラスコの内容物を冷却した DMACに投入した後に、 DMACと投入された 三ッ口フラスコ内容物との混合物をヌッチェで濾過した。濾過により得られた固形分 を水及びメタノールで順次に洗浄し、真空ポンプを使用することにより乾燥させて、固 形分 12gを得た。
[0261] 得られた固形分は、図 47に示される NMR ^ベクトル、及び図 48に示される IRチヤ ートから、前記繰り返し単位(250A)、前記繰り返し単位(250C)、前記繰り返し単位 (2501)及び前記繰り返し単位 (250E)を 4: 2/3: 1/3: 1/20のモル比の割合で 主鎖中に有する白色発光共役系高分子と確認した。
[0262] なお、同定された前記白色発光共役系高分子をクロ口ホルムに溶解して試料液を 調製した。この試料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して 、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 4 9に示した。
[0263] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 17)
以下の式(260)に示されるような反応を行った。
[0264] [化 54]
C- -COCH
5 曙 ¾r S04
Figure imgf000064_0001
Figure imgf000064_0002
(280E)
[0265] 三ッ口フラスコに、前記式(260)にお!/、て示されるフルオレン骨格含有のジカルボ ン酸化合物 10. 914g (0.02288モル)と、前記式(260)において示されるピレン骨 格含有のジカルボン酸化合物 0. 8g (0. 00286モル)と、前記式(260)において示 されるジピリジル骨格を有するジカルボン酸 0. 697g (0. 00286モル)と、硫酸ヒドラ ジン 4. 461g (0. 0343モノレ)と、ポリリン酸 32. 5gと、メタンスノレホン酸 325gとを人れ た。
[0266] 三ッロフラスコの内容物をオイルバスで、窒素雰囲気下に 85°Cで 2時間加熱し、次 いで 90°Cで 86時間加熱した。三ッロフラスコの内容物を冷却した DMACに投入し た後に、 DMACと投入された三ッ口フラスコ内容物との混合物をヌッチェで濾過した 。濾過により得られた固形分を水及びメタノールで順次に洗浄し、真空ポンプを使用 すること〖こより乾燥させて、固形分 12.1gを得た。
[0267] 得られた固形分は、図 50に示される NMR ^ベクトル、及び図 51に示される IRチヤ ートから、前記繰り返し単位(260A)、前記繰り返し単位(260G)、前記繰り返し単位 (260E)を 4 : 1Z2: 1Z2のモル比の割合で主鎖中に有する白色発光共役系高分 子と確認した。
[0268] なお、同定された前記白色発光共役系高分子をクロ口ホルムに溶解して試料液を 調製した。この試料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して 、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 5 2に示した。
測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 350應
蛍光終了波長 700應
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 18)
以下の式(270)に示されるような反応を行った c
[化 55]
Figure imgf000065_0001
(270) 三ッロフラスコに、前記式(270)において示されるフルオレン骨格含有のジカルボ ン酸化合物 6. 12g (0.01283モル)と、前記式(270)において示されるピレン骨格 含有のジカルボン酸化合物 0. 3g (0. 0011モル)と、前記式(270)において示され るナフタレン骨格を有するジカルボン酸 0. 463g (0. 00107モル)と、硫酸ヒドラジン 2. 501g (0. 0192モノレ)と、ポリリン酸 16gと、メタンスノレホン酸 160gとを人れた。
[0272] 三ッロフラスコの内容物をオイルバスで、窒素雰囲気下に 85°Cで 2時間加熱し、次 いで 90°Cで 78時間加熱した。三ッロフラスコの内容物を冷却した DMACに投入し た後に、 DMACと投入された三ッ口フラスコ内容物との混合物をヌッチェで濾過した 。濾過により得られた固形分を水及びメタノールで順次に洗浄し、真空ポンプを使用 すること〖こより乾燥させて、固形分 6. 8gを得た。
[0273] 得られた固形分は、図 53に示される NMR ^ベクトル、及び図 54に示される IRチヤ ートから、前記繰り返し単位(270A)、前記繰り返し単位(270D)、前記繰り返し単位 (270E)を 4: 2/3: 1Z3のモル比の割合で主鎖中に有する白色発光共役系高分 子と確認した。
[0274] なお、同定された前記白色発光共役系高分子をクロ口ホルムに溶解して試料液を 調製した。この試料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して 、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 5 5に示した。
[0275] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 350nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 19)
以下の式(280)に示されるような反応を行った。
[0276] [化 56]
Figure imgf000067_0001
'¾S04
Figure imgf000067_0002
[0277] 三ッ口フラスコに、前記式(280)にお!/、て示されるフルオレン骨格含有のジカルボ ン酸化合物 7. 823g (0. 0164モル)と、前記式(280)において示されるフエノキサジ ン骨格含有のジカルボン酸化合物 0. 617g (0. 00205モル)と、前記式(280)にお いて示されるジピリジル骨格を有するジカルボン酸 0. 5g (0. 00205モル)と、ポリリン 酸 20gと、メタンスノレホン酸 200gとを人れた。
[0278] 三ッロフラスコの内容物をオイルバスで、窒素雰囲気下に 85°Cで 1時間加熱し、次 いで内容物を冷却して力も硫酸ヒドラジン 3. 2g (0. 02462モル)をフラスコ内に投入 して 85°Cに 2時間加熱し、その後に 90°Cで 92時間加熱した。三ッロフラスコの内容 物を冷却した DMACに投入した後に、 DMACと投入された三ッロフラスコ内容物と の混合物をヌッチ で濾過した。濾過により得られた固形分を水及びメタノールで順 次に洗浄し、真空ポンプを使用することにより乾燥させて、固形分 8. lgを得た。
[0279] 得られた固形分は、図 56に示される NMR ^ベクトル、及び図 57に示される IRチヤ ートから、前記繰り返し単位(280A)、前記繰り返し単位(280M)、前記繰り返し単 位(280G)を 4: 1Z2: 1Z2のモル比の割合で主鎖中に有する白色発光共役系高 分子と確認した。
[0280] なお、同定された前記白色発光共役系高分子をクロ口ホルムに溶解して試料液を 調製した。この試料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して 、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 5 8に した。
測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 350讓
蛍光終了波長 700讓
スキャンスピード 1200nmZ分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
(実施例 20)
以下の式(310)に示されるような反応を行った。
[化 57]
HOOC OVCOOH
2 HOOC- )VC00H + 2N ' H2S04
Figure imgf000068_0001
(310) 前記実施例 2における式(110)の左辺におけるフルオレンィ匕合物 6. 62gの代わり に同じフルオレンィ匕合物 8. 83gを使用し、前記実施例 2における式(110)における ジカルボン酸化合物 1. 0gの代わりに同じジカルボン酸ィ匕合物 2. 0gを使用し、ポリリ ン酸 21. 5gの代わりに 23gを使用し、メタンスルホン酸 215gの代わりに 230gを使用 した外は前記実施例 2におけるのと同様に反応させて、反応生成物を前記実施例 2 におけるのと同様に処理して式(310A)及び式(310B)で示される繰り返し単位を有 する重合体を得た。この重合体の NMR ^ベクトルを図 59に、 IRスペクトルを図 60に 示した。また、この重合体の蛍光スペクトルを前記実施例 2と同様にして測定した。こ の重合体の蛍光スペクトルを図 61に示した。
[0284] この重合体は前記(310A)で示される繰り返し単位と(310B)で示される繰り返し 単位とを 2 : 1のモル比で主鎖に含有する。前記実施例 2で合成された重合体は(11 OA)で示される繰り返し単位と(110B)で示される繰り返し単位とを 3: 1のモル比で 主鎖に含有する。また、式(310A) (式(110A)と同じ)で示される繰り返し単位と式( 310B) (式(110B)と同じ)で示される繰り返し単位とを 4: 1のモル比で主鎖に含有 する重合体を合成したところ、式(310A)で示される繰り返し単位の主鎖に含まれる 含有量が多くなると重合体の発光輝度の上昇することが、観察された。
[0285] (実施例 21)
以下の式(320)に示されるような反応を行った。
[0286] [化 58]
HOOC AyCOOH
HOOC
Figure imgf000069_0001
5 NH2N¾ ' ¾S04
Figure imgf000069_0002
( 3 2 O N) 3 2 0
[0287] 三ッロフラスコに、前記式(320)において示されるフルオレン骨格含有のジカルボ ン酸化合物 3· 162g (6. 63 X 10—3モル)と、前記式(320)において示される 4 4 —ジ(N N— 1—ナフチル— 3—カルボキシフエニル)アミノビフエニル(ビフエニル骨 格含有のジカルボン酸化合物) 0. 2g (5. 525 X 10 モル)と、前記式(320)におい て示され 2, 5—ジカノレボキシピリジン 0. 185g (l. 105 X 10—3モノレ)と、ポリリン酸 8g と、メタンスルホン酸 80gとを入れた。なお、三者のモル比を前記式(320)に示した。
[0288] 三ッロフラスコにさらに硫酸ヒドラジン 1. 3gを入れ、三口フラスコの内容物をオイル バスで、窒素雰囲気下に 85°Cで 100時間加熱した。三ッロフラスコの内容物を冷却 した DM ACに投入した後に、 DMACと投入された三ッロフラスコ内容物との混合物 をヌッチ で濾過した。濾過により得られた固形分を水及びメタノールで順次に洗浄 し、真空ポンプを使用することにより乾燥させて、固形分 4. 2gを得た。
[0289] 得られた固形分は、図 62に示される NMR ^ベクトル、及び図 63に示される IRチヤ ートから、式(320)に示される繰り返し単位(320A)、繰り返し単位(320N)、繰り返 し単位 (320L)を 4: 1/3: 2Z3のモル比の割合で主鎖中に有する青色発光共役系 高分子と確認した。
[0290] なお、同定された前記青色発光共役系高分子をクロ口ホルムに溶解して試料液を 調製した。この試料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して 、以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 6 4に示した。
[0291] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 380nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 2. 5nm
蛍光側スリット 2. 5nm
また、この青色系発光共役高分子の発光スペクトルを以下の条件にて測定し、得ら れた発光スペクトルを図 69Aにおける P— 4で示した。
[0292] <発光スペクトル >
励起光源: He— Cdレーザー(325nm線: 0. OlmW) 励起スポットサイズ: lmm φ
(発光効率に応じて、励起強度を変化させた。励起強度条件は図 69Αに記 載)
分光器: 32cmシングル分光器(Jovin- Yvon社: HR- 320)
測定波長分解能: 2. 5mm
測定温度:室温
<発光時間減衰プロファイル (発光寿命) >
励起光源:半導体レーザー励起 YAGレーザー第 3高周波(355nm)
パルス幅: 5ns、励起強度: 0. 1 ^ΐ/οπι2
検出系:光子計数感度ストリークカメラシステム (浜松ホトニタス (株))
測定波長分解能: 1. Onm、システム時間分解能: 2. 5ns
測定温度:室温
図 69Aにおいて P— 4で示される発光スペクトルは参照資料である Alq3の発光ス ベクトルよりも大きな発光強度で観測され、この実施例 21に係る青色系発光共役高 分子は発光が極めて高効率であると評価できた。
[0293] (実施例 22)
前記実施例 21におけるのと同様にして式(320)に示される繰り返し単位 (320A)、 繰り返し単位 (320N)、繰り返し単位 (320L)を 4: 1/2: 1/2のモル比の割合で主 鎖中に有する青色発光共役系高分子を合成した。この青色発光共役系高分子の蛍 光スペクトルを前記実施例 21と同様にして測定し、得られた蛍光スペクトルチャート を図 65に示した。
[0294] また、この青色系発光共役高分子の発光スペクトルを前記実施例 21と同様の条件 にて測定し、得られた発光スペクトルを図 69Aにおける P— 3で示した。
[0295] 図 69Aにおいて P— 3で示される発光スペクトルは参照資料である Alq3の発光ス ベクトルよりも大きな発光強度で観測され、この実施例 22に係る青色系発光共役高 分子は発光が極めて高効率であると評価できた。
[0296] (実施例 23)
前記実施例 21におけるのと同様にして式(320)に示される繰り返し単位 (320A)、 繰り返し単位 (320N)、繰り返し単位 (320L)を 4: 2/3: 1/3のモル比の割合で主 鎖中に有する青色発光共役系高分子を合成した。この青色発光共役系高分子の蛍 光スペクトルを前記実施例 21と同様にして測定し、得られた蛍光スペクトルチャート を図 66に示した。
[0297] (実施例 24)
以下の式(330)に示されるような反応を行った。
[0298] [化 59]
Figure imgf000072_0001
Figure imgf000072_0002
;330A) ;330D)
330
[0299] 具体的には、 3つ口フラスコに、式(330)の左辺に示されるフルオレン化合物 8.
83g (l . 852 X 10_2mol)と、硫酸ヒドラジン 3. 61gと、式(330)の左辺に示される
2, 7—ナフタレンジ力ノレボン酸 1. 0g (4. 63 X 10_3mol)と、ポリリン酸 20gと、メタン スルホン酸 200gとを入れた。なお、フラスコに入れられたポリリン酸及びメタンスルホ ン酸は、質量比で 1: 10であった。
[0300] 3つ口フラスコに投入してなる内容物を、オイルバスで 85°Cで 2時間加熱し、その後
、 90°Cで 85時間加熱した。
[0301] 加熱後の内容物を氷水に投入した。氷水に投入された内容物をヌッチ で濾過し て固形分を分離した。この固形分をメタノールで洗浄し、真空ポンプを使用すること により乾燥させて、固形分 10. lgを得た。 [0302] 得られた固形分は、図 67に示される NMR ^ベクトル、及び図 68に示される IRチヤ ートから、式(330A)で示される繰り返し単位と、式(330D)で示される繰り返し単位 とを 4 : 1の割合で主鎖中に有する重合体と同定した。
[0303] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 69に示した。
[0304] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 380nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 2. 5nm
蛍光側スリット 2. 5nm
また、この重合体の発光スペクトルを前記実施例 21におけるのと同様の条件にて 測定し、得られた発光スペクトルを図 69Aにおける P— 1で示した。
[0305] 図 69Aにおいて P— 1で示される発光スペクトルは参照資料である Alq3の発光ス ベクトルよりも大きな発光強度で観測され、この実施例 24に係る重合体は発光が極 めて高効率であると評価できた。
[0306] (実施例 25)
前記実施例 24におけるのと同様にして式(330)に示される繰り返し単位(330A)、 及び繰り返し単位(330D)を 3: 1のモル比の割合で主鎖中に有する青色発光共役 系高分子を合成した。この青色発光共役系高分子の蛍光スペクトルを前記実施例 2 4と同様にして測定し、得られた蛍光スペクトルチャートを図 70に示した。
[0307] (実施例 26)
前記実施例 24におけるのと同様にして式(330)に示される繰り返し単位(330A)、 及び繰り返し単位(330D)を 2 : 1のモル比の割合で主鎖中に有する青色発光共役 系高分子を合成した。この青色発光共役系高分子の蛍光スペクトルを前記実施例 2 4と同様にして測定し、得られた蛍光スペクトルチャートを図 71に示した
[0308] (実施例 27)
以下の式(340)に示されるような反応を行った。
[0309] [化 60]
OOn + 5 N¾NH2 ' ,H2S04
Figure imgf000074_0001
Figure imgf000074_0002
[0310] 4, 7 ジカノレボキシ 2, 1, 3 べ ールは、以下の反応式(341) に従って製造した。
[0311] [化 61]
Figure imgf000074_0003
( 3 4 1 )
2, 1, 3 ベンゾチアジアゾリール 25gを 48%臭化水素水 60mLに懸濁し、得られ た懸濁液を 120°Cに加熱することにより前記 2, 1, 3 ベンゾチアジアゾリールを溶 解した。次いで、その温度下でそのべンゾチアジアゾリール臭化水素水溶液に臭素 88gを滴下し、その後に 130°Cに加熱しながら臭素化反応を行った。反応が終了し た後に、反応容器内に生成した白色沈澱を濾別し、この白色沈澱を水洗し、さらにァ セトンで洗浄して 4, 7 ジブ口モー 2, 1, 3 べンゾチアジアゾリールを得た。この 4, 7 ジブ口モー 2, 1, 3 べンゾチアジアゾリール 54gとシアン化銅 50gとを DMF中 で 150°Cで 6時間反応させた。反応終了後に、反応生成液を氷水中に投入し、生成 した沈殿物を濾別し、この沈殿物にエチレンジァミンをカ卩え、次いでクロ口ホルム抽出 を行った。クロ口ホルム抽出液を活性炭で脱色し、クロ口ベンゼンで再結晶することに より、 4, 7 ジシァノー 2, 1, 3 べンゾチアジアゾリ一ノレを得た。この 4, 7 ジシァノ - 2, 1, 3 ベンゾチアジアゾリール 10gを o ジクロロベンゼン 500mLに懸濁し、さ らに 75%硫酸 38gを添加し、 150°Cで 2時間、次いで 190°Cで 1時間の反応を行つ た。反応終了後に、デカンテーシヨンにより大半の o ジクロ口ベンゼンを除去し、氷 を添カ卩し、濾過し、水及びアセトンによる洗浄を行った。得られる固体を DMAcに溶 解し、固形の不純物を除去し、等量のメタノールを添加し、メタノール不溶解物を除 去して力 エバポレートにより溶媒の大半を除去し、氷冷した後にアセトンで洗浄し、 得られる固体をメタノールにて抽出し、濃縮乾固し、最後にアセトンで洗浄してから乾 燥して 4, 7 ジカルボキシ— 2, 1, 3 ベンゾチアジアゾリール 5gを得た。
[0313] この 4, 7 ジカノレボキシ 2, 1, 3 べンゾチアジアゾリ一ノレ 0. 56gと式 340にお けるフノレ才レンジ力ノレボン酸ィ匕合物 4. 78gと硫酸ヒド、ラジン 1. 95gとをポリリン酸 10g 及びメタンスルホン酸 100gの存在下に、窒素雰囲気下に 90°Cに加熱しながら 3日 間反応させた。
[0314] 得られた反応生成物を氷水中に投入し、分離した固形物を濾別し、濾別した固形 物を水洗し、メタノール、 DMAc及びエーテルで洗浄した。洗浄後の固形物をクロ口 ホルムに溶解し、得られるクロ口ホルム溶液をメタノールに滴下し、メタノール中に生 成する固形物を濾別し、濾別した固形物をメタノール及びエーテルで順次に洗浄し て力 乾燥することにより精製した。精製された固形物の NMRチャート(図 72)から、 この固形物は式(340)における繰り返し単位 (式(340A) )と繰り返し単に(式(340 K) )を、モル比 4: 1で有する重合体であると同定した。
[0315] (実施例 28)
以下の式(350)に示されるような反応を行った。
[0316] [化 62]
Figure imgf000076_0001
( 3 5 0 )
[0317] この 4, 7 ジカノレボキシ 2, 1, 3 べンゾチアジアゾリ一ノレ 0. 3gと式 350におけ るフルオレンジカルボン酸化合物 7. 67gと 1, 4ージカルボキシナフタレン 0. 58gと 1 , 6 ジカルボキシピレン 0. 056gと硫酸ヒドラジン 3. 14gとをポリリン酸 20g及びメタ ンスルホン酸 200gの存在下に、窒素雰囲気下に 85°Cで 2時間加熱し、次いで 90°C に加熱しながら 3日間反応させた。
[0318] 得られた反応生成物を氷水中に投入し、分離した固形物を濾別し、濾別した固形 物を水洗し、メタノール、 DMAc及びエーテルで洗浄した。洗浄後の固形物をクロ口 ホルムに溶解し、得られるクロ口ホルム溶液をメタノールに滴下し、メタノール中に生 成する固形物を濾別し、濾別した固形物をメタノール及びエーテルで順次に洗浄し て力 乾燥することにより精製した。精製された固形物の NMRチャート(図 73)及び I Rチャート (図 74)から、この固形物は式(350)における繰り返し単位(350A)、 (350 C)、 (350K)、 (35(^)をモル比4 : 273 : 273 : 1 20で有する重合体でぁると同 し 7こ。
[0319] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 75に示した。
[0320] 測定条件
測定モード 波長スキャン 励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
また、この重合体の発光スペクトルを前記実施例 21におけるのと同様の条件にて 測定し、得られた発光スペクトルを図 76における P— 8で示した。この重合体は黄色 に発光する化合物であった。
[0321] (実施例 29)
前記実施例 27における、 4, 7 ジカノレボキシ 2, 1, 3 べンゾチアジアゾリ一ノレ 0. 56gと式 340におけるフルオレンジカルボン酸化合物(2, 7 ジヒドロキシ—9, 9 —ジォクチルフルォレイン) 4. 78gと硫酸ヒドラジン 1. 95gとポリリン酸 lOgとメタンス ノレホン酸 lOOgとの代わり〖こ、 4, 7 ジカノレボキシ 2, 1, 3 べンゾチアジアゾリ一 ル 0. 12gと 2, 7 ジヒドロキシ 9, 9ージォクチルフルォレイン 4. 78gと硫酸ヒドラ ジン 1. 64gとポリリン酸 10gとメタンスルホン酸 lOOgとを使用する他は、前記実施例 2 7と同様に実施した。得られた重合体は、 NMRチャート(図 77)、及び IRチャート(図 78)から、式(340)における繰り返し単位 (式 340A)と繰り返し単位 (式 340K)とを モル比 95: 5で有することを確認した。
[0322] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 79に示した。
[0323] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 380nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分 励起側スリット 2. 5nm
蛍光側スリット 2. 5nm
また、この重合体の発光スペクトルを前記実施例 21におけるのと同様の条件にて 測定し、得られた発光スペクトルを図 76における P— 10で示した。この重合体は黄色 に発光する化合物であった。
[0324] (実施例 30)
前記実施例 27における、 4, 7 ジカノレボキシ 2, 1, 3 べンゾチアジアゾリ一ノレ 0. 56gと式 340におけるフルオレンジカルボン酸化合物(2, 7 ジヒドロキシ—9, 9 —ジォクチルフルォレイン) 4. 78gと硫酸ヒドラジン 1. 95gとポリリン酸 10gとメタンス ノレホン酸 100gとの代わり〖こ、 4, 7 ジカノレボキシ 2, 1, 3 べンゾチアジアゾリ一 ノレ 0. 28gと 2, 7 ジヒド、口キシー 9, 9 ジ才クチノレフノレ才レイン 4. 78gと 1, 6 ジカ ルボキシピレン 0. 36gと硫酸ヒドラジン 1. 95gとポリリン酸 10gとメタンスルホン酸 100 gとを使用する他は、前記実施例 27と同様に実施して、式(360)で示される反応を 行った。
[0325] [化 63]
H00C - -C00H + N¾N¾ '¾S
Figure imgf000078_0001
0 (モル比 1 0 0 -lt)
3 0 (モル比) )
Figure imgf000078_0002
( 3 Θ O A ) ( 3 β 0 ) ( 3 6 0 Ε )
( 3 6 0 )
[0326] 得られた重合体は、 NMRチャート(図 80)、及び IRチャート(図 81)から、式(360) における繰り返し単位 (式 360A)と繰り返し単位 (式 360K)と繰り返し単位 (式(360 E) )とをモル比 80: 10: 10で有することを確認した。
[0327] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 82に示した。
[0328] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 380nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 2. 5nm
蛍光側スリット 2. 5nm
また、この重合体の発光スペクトルを前記実施例 21におけるのと同様の条件にて 測定し、得られた発光スペクトルを図 76における P— 11で示した。この重合体は黄色 に発光する化合物であった。
[0329] (実施例 31)
式(370)で示される反応を行った。
[0330] [化 64]
Figure imgf000079_0001
三ッロフラスコに、前記式(370)において示されるフルオレン骨格含有のジカルボ ン酸化合物 8. 185g (0. 01716モル)と、前記式(300)において示されるナフタレン 骨格含有のジカルボン酸化合物 0. 617g (0. 002856モル)と、前記式(370)にお 、て示されピレン骨格含有のジカノレボン酸 0. 4g (0. 001429モノレ)と、ポリリン酸 20 gと、メタンスルホン酸 200gとを入れた。
[0332] 三ッロフラスコの内容物をオイルバスで、窒素雰囲気下に 85°Cで 1時間加熱し、次 いで内容物を冷却してから硫酸ヒドラジン 3. 346g (0. 02574モル)をフラスコ内に 投入して 85°Cに 2時間加熱し、その後に 90°Cで 74時間加熱した。三ッロフラスコの 内容物を冷却した DMACに投入した後に、 DMACと投入された三ッロフラスコ内容 物との混合物をヌッチヱで濾過した。濾過により得られた固形分を水及びメタノール で順次に洗浄し、真空ポンプを使用することにより乾燥させて、固形分 10. lgを得た
[0333] 得られた重合体は、 NMRチャート(図 83)、及び IRチャート(図 84)から、式(370) における繰り返し単位 (式 370A)と繰り返し単位 (式 370C)と繰り返し単位 (式(370 E) )とをモル比 4: 2/3: 1Z3で有することを確認した。
[0334] なお、同定された前記重合体を DMACに溶解して試料液を調製した。この試料液 を、 日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて蛍光 スペクトルを測定した。得られた蛍光スペクトルチャートを図 85に示した。
[0335] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
また、この重合体の発光スペクトルを前記実施例 21におけるのと同様の条件にて 測定し、得られた発光スペクトルを図 69Aにおける P— 5で示した。この重合体は緑 色に発光する化合物であった。
[0336] (実施例 32)
実施 f列 28〖こおけるよう〖こ、 4, 7 ジカノレボキシ 2, 1, 3 べンゾチアジアゾリ一ノレ 0. 3gと 2, 7 ジカノレボキシ 9, 9 ジ才クチノレフノレ才レン 7. 67gと 1, 4ージカノレボ キシナフタレン 0. 58gと 1, 6—ジカノレボキシピレン 0. 056gと硫酸ヒド、ラジン 3. 14gと をポリリン酸 20g及びメタンスルホン酸 200gの存在下に、窒素雰囲気下に 85°Cで 2 時間加熱し、次いで 90°Cに加熱しながら 3日間反応させる代わりに、 1, 4ージカルボ キシ— 2, 4—ジ(フエ-ルトリルァミノ)ベンゼン 1. Ogと 2, 7—ジカルボキシ— 9, 9— ジ才クチノレフノレ才レン 10. 88gと 1, 4ージカノレボキシナフタレン 0. 820gと 1, 6—ジ カノレボキシピレン 0. 08gと硫酸ヒドラジン 4. 446gとをポリリン酸 26g及びメタンスノレホ ン酸 260gの存在下に、窒素雰囲気下に 90°Cに加熱しながら 4日間反応させた他は 、前記実施例 28と同様に実施して、式(380)に示す反応を行った。
[0337] [化 65]
c」. - C00H
Figure imgf000081_0001
[0338] 得られた重合体は、 NMRチャート(図 86)、及び IRチャート(図 87)から、式(380) における繰り返し単位 (式 380A)と繰り返し単位 (式 380C)と繰り返し単位 (式 3801) と繰り返し単位 (式 380E)とをモル比 4: 2/3: 1/3: 1Z20で有することを確認した
[0339] なお、同定された前記重合体を DMACに溶解して試料液を調製した。この試料液 を、 日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて蛍光 スペクトルを測定した。得られた蛍光スペクトルチャートを図 88に示した。
[0340] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
また、この重合体の発光スペクトルを前記実施例 21におけるのと同様の条件にて 測定し、得られた発光スペクトルを図 76における P— 7で示した。この重合体は緑色 に発光する化合物であった。
[0341] (実施例 33)
前記実施例 21における 2, 5—ジカノレボキシピリジン 0. 3gの代わりに 1, 6—ジカノレ ボキシピレン 0. 3gを用いたほかは前記実施例 33と同様に実施して、式(390)に示 す反応を行った。
[0342] [化 66]
Figure imgf000083_0001
、\
Figure imgf000083_0002
0 ) 得られた重合体は、 NMRチャート(図 89)、及び IRチャート(図 90)から、式(390) における繰り返し単位 (式 390A)と繰り返し単位 (式 390L)と繰り返し単位 (式 3801) と繰り返し単位 (式 380E)とをモル比 4: 2/3: 1/3: 1Z20で有することを確認した
[0344] なお、同定された前記重合体を DMACに溶解して試料液を調製した。この試料液 を、日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて蛍光 スペクトルを測定した。得られた蛍光スペクトルチャートを図 91に示した。
[0345] 測定条件
測定モード 波長スキャン
励起波長 dodnm
蛍光開始波長 400nm
蛍光終了波長 700nm スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
また、この重合体の発光スペクトルを前記実施例 21におけるのと同様の条件にて 測定し、得られた発光スペクトルを図 69Aにおける P— 6で示した。この重合体は緑 色に発光する化合物であった。
[0346] (実施例 34)
以下の反応式 (400)で示される反応が進行するように、以下の操作を行った。
[0347] [化 67]
4膽 c NH2NH H2S04
Figure imgf000084_0001
Figure imgf000084_0002
( 4 O 0 A) ( 4 O O Q)
( 4 0 0 )
[0348] 200mLの三口フラスコに、 2, 7—ジカルボキシ一 9, 9—ジォクチルフルオレン 5.
7g (l. 23 X 10—2モノレ)と 2, 5—カノレボキジァゾ一ノレ 0. 5g (2. 45 X 10_3モノレ)と 1, 6—ジカルボキシピレン 0. 17g (6. 12 Χ 10—4モル)とポリリン酸 13. 9gとメタンスルホ ン酸 130gとを収容し、撹拌しながら 30分間窒素置換をした。次いでそのまま撹拌を 継続し、フラスコの内容物を 85°Cに昇温し、 85°Cになったところでフラスコ内に硫酸 ヒドラジン 2. 4g (l. 85 X 10—2モル)をカ卩えた。その後に 90°Cに加熱し、その温度の ままで 3日間還流を行った。還流を終了してから、そのフラスコの内容物を氷水に投 入すると、黄色固形物が析出した。この黄色固形物を濾別し、分離した黄色固形物 を水、メタノール及びアセトンでこの順に洗浄し、その後に超音波洗浄を行った。
[0349] 洗浄後の黄色固形物をクロ口ホルムに溶解してクロ口ホルム溶液を得た。このクロ口 ホルム溶液をメタノールに滴下してメタノール中に沈殿物を生成させた。この沈殿物 を濾別し、再度この沈殿物をクロ口ホルムに溶解してクロ口ホルム溶液を得、このクロ 口ホルム溶液をメタノールに滴下してメタノール中に沈澱物を生成させた。この沈澱 物を濾別し、乾燥した。乾燥後の固形物をクロ口ホルムでシリカゲルカラムクロマトダラ フィ一にて精製した。その結果、黄色透明フィルム状物を得た。
[0350] この黄色透明フィルム状物は、その NMRチャート(図 92)及び IRチャート(図 93) から、式 400Aで示される繰り返し単位と式 400Qで示される繰り返し単位と式 400E で示される繰り返し単位とをモル比 20: 4: 1で有する重合体であると同定した。
[0351] なお、同定された前記重合体をクロ口ホルムに溶解して試料液を調製した。この試 料液を、 日立製作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて 蛍光スペクトルを測定した。得られた蛍光スペクトルチャートを図 94に示した。
[0352] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 350nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
また、この重合体の発光スペクトルを前記実施例 21におけるのと同様の条件にて 測定し、得られた発光スペクトルを図 76における P— 9で示した。この重合体は黄色 に発光する化合物であった。

Claims

請求の範囲
下記式(1 A)で示される繰り返し単位、又は下記 (式 1A)と下記式(1B)〜(1N)及 び(1Q)で示される繰り返し単位よりなる群力 選択される少なくとも一種の繰り返し 単位とを主鎖中に有することを特徴とする発光性重合体。
[化 1]
Figure imgf000086_0001
(IF)
[化 2]
Figure imgf000087_0001
G)
Figure imgf000087_0002
{ 1 M)
[化 3]
Figure imgf000087_0003
[化 4]
Figure imgf000088_0001
[但し、式(1A)中、 2個の R1それぞれは、炭素数 1〜15のアルキル基であり、同一で あってもネ目違して ヽてもよ ヽ。
式(1B)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。ベンゼン環上 に結合する R2の数は 1〜4のいずれかである。ベンゼン環上に複数の R2が結合する 場合、複数の R2は同一であっても相違していてもよい。
式(1C)及び式(1D)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。 ナフタレン環上に結合する R2の数は 1〜6のいずれかである。ナフタレン環上に複数 の R2が結合する場合、複数の R2は同一であっても相違して 、てもよ!/、。
式(1E)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。ピレン環上に 結合する R2の数は 1〜8の 、ずれかである。ピレン環上に複数の R2が結合する場合 、複数の R2は同一であっても相違していてもよい。
式(1F)中、 R2は、水素原子又はアルキルフエ-ル基である。アルキルフエ-ル基 におけるアルキル基は炭素数 1〜10のいずれかであり、アルキルフエ-ル基におけ るアルキル基の数は 1〜5のいずれかである。
式(II)中、 R3は、水素原子又は炭素数 1〜10のアルキル基である。ベンゼン環上 に結合する R3の数は 1〜5のいずれかである。ベンゼン環上に複数の R3が結合する 場合、複数の R3は同一であっても相違していてもよい。 R4は、水素原子、又は炭素 数 1〜10のアルキル基が置換してもよいフエ-ル基、ナフチル基、若しくはアントリル 基である。
式(1J)中、 R1は、水素原子又は炭素数 1〜10のアルキルである。
式(1M)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。 式(IN)中、 R2はアルキル基が置換してもよいァリール基である。 ]
下記式(2A)で示されるジカルボン酸ィ匕合物とヒドラジンィ匕合物とを反応させ、又は 下記式(2A)と(2B)〜(2N)及び(2Q)で示される化合物よりなる群から選択される 少なくとも一種を含むジカルボン酸ィ匕合物とヒドラジンィ匕合物とを反応させることを特 徴とする発光性重合体の製造方法。
[化 5]
Figure imgf000089_0001
[化 6]
Figure imgf000090_0001
、 一 " CO OH
[2 HO— CO
K) -S-"
(2 M)
Figure imgf000090_0002
[化 8] ( 2 Q )
Figure imgf000091_0001
[但し、式(2Α)中、 2個の R1それぞれは、炭素数 1〜15のアルキル基であり、同一で あってもネ目違して ヽてもよ ヽ。
式(2Β)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。ベンゼン環上 に結合する R2の数は 1〜4のいずれかである。ベンゼン環上に複数の R2が結合する 場合、複数の R2は同一であっても相違していてもよい。
式(2C)及び式(2D)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。 ナフタレン環上に結合する R2の数は 1〜6のいずれかである。ナフタレン環上に複数 の R2が結合する場合、複数の R2は同一であっても相違して 、てもよ!/、。
式(2Ε)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。ピレン環上に 結合する R2の数は 1〜8の 、ずれかである。ピレン環上に複数の R2が結合する場合 、複数の R2は同一であっても相違していてもよい。 ]
式(1F)中、 R2は、水素原子又はアルキルフエ-ル基である。アルキルフエ-ル基 におけるアルキル基は炭素数 1〜10のいずれかであり、アルキルフエ-ル基におけ るアルキル基の数は 1〜5のいずれかである。
式(II)中、 R3は、水素原子又は炭素数 1〜10のアルキル基である。ベンゼン環上 に結合する R3の数は 1〜5のいずれかである。ベンゼン環上に複数の R3が結合する 場合、複数の R3は同一であっても相違していてもよい。 R4は、水素原子、又は炭素 数 1〜10のアルキル基が置換してもよいフエ-ル基、ナフチル基、若しくはアントリル 基である。
式(2J)中、 R1は、水素原子又は炭素数 1〜10のアルキルである。
式(2Μ)中、 R2は、水素原子又は炭素数 1〜10のアルキル基である。 式(2N)中、 R2はアルキル基が置換してもよいァリール基である。 ]
一対の電極間に、前記請求項 1に記載の発光性重合体を含有する発光層を設け てなることを特徴とする発光素子。
PCT/JP2006/308156 2005-04-19 2006-04-18 発光性重合体、発光性重合体の製造方法、及び発光素子 WO2006115131A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005121486 2005-04-19
JP2005-121486 2005-04-19
JP2005-181310 2005-06-21
JP2005181310 2005-06-21
JP2005-301047 2005-10-14
JP2005301047 2005-10-14
JP2006075327 2006-03-17
JP2006-075327 2006-03-17

Publications (1)

Publication Number Publication Date
WO2006115131A1 true WO2006115131A1 (ja) 2006-11-02

Family

ID=37214752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308156 WO2006115131A1 (ja) 2005-04-19 2006-04-18 発光性重合体、発光性重合体の製造方法、及び発光素子

Country Status (2)

Country Link
TW (1) TW200643143A (ja)
WO (1) WO2006115131A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104850A (ja) * 2014-10-16 2016-06-09 大阪ガスケミカル株式会社 ピレン骨格を有する発光性重合体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178990A (ja) * 1991-12-27 1993-07-20 Nippon Petrochem Co Ltd 有機導電性高分子
JP2000273171A (ja) * 1999-03-26 2000-10-03 Jsr Corp オキサジアゾール誘導体ポリマーの製造方法
JP2003064003A (ja) * 2001-05-22 2003-03-05 Korea Inst Of Science & Technology 官能基を含有したフルオレン系化合物及びその重合体並びにそれらを利用したel素子
JP2003530476A (ja) * 2000-04-11 2003-10-14 デュポン ディスプレイズ インコーポレイテッド 可溶性ポリ(フルオレン−オキサジアゾール)共役ポリマー
WO2004039866A1 (ja) * 2002-10-29 2004-05-13 Hirose Engineering Co., Ltd. 発光性ポリマー及び発光素子
JP2005023154A (ja) * 2003-06-30 2005-01-27 Hirose Engineering Co Ltd 青色発光ポリマー、その製造方法およびそれを利用した発光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178990A (ja) * 1991-12-27 1993-07-20 Nippon Petrochem Co Ltd 有機導電性高分子
JP2000273171A (ja) * 1999-03-26 2000-10-03 Jsr Corp オキサジアゾール誘導体ポリマーの製造方法
JP2003530476A (ja) * 2000-04-11 2003-10-14 デュポン ディスプレイズ インコーポレイテッド 可溶性ポリ(フルオレン−オキサジアゾール)共役ポリマー
JP2003064003A (ja) * 2001-05-22 2003-03-05 Korea Inst Of Science & Technology 官能基を含有したフルオレン系化合物及びその重合体並びにそれらを利用したel素子
WO2004039866A1 (ja) * 2002-10-29 2004-05-13 Hirose Engineering Co., Ltd. 発光性ポリマー及び発光素子
JP2005023154A (ja) * 2003-06-30 2005-01-27 Hirose Engineering Co Ltd 青色発光ポリマー、その製造方法およびそれを利用した発光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104850A (ja) * 2014-10-16 2016-06-09 大阪ガスケミカル株式会社 ピレン骨格を有する発光性重合体

Also Published As

Publication number Publication date
TW200643143A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
JP3643433B2 (ja) トリフェニルアミン含有ポリエーテルケトン、その製法およびそれを用いた有機el素子
JP2005528508A (ja) 燐光性および発光共役ポリマー、並びに電界発光アセンブリへのその使用方法
JP2001098054A (ja) Dpp含有共役ポリマ−及びエレクトロルミネセンス装置
JP4977032B2 (ja) スルホ基を含有する高分子化合物、および該化合物を含有する有機電界発光素子
JP2003530476A (ja) 可溶性ポリ(フルオレン−オキサジアゾール)共役ポリマー
WO2005042621A1 (ja) 電荷輸送性化合物、電荷輸送性材料、電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
WO2013058160A1 (ja) 化合物
EP2321377A1 (en) Pyrrole compounds and organic photoelectric device including the same
JP2003221579A (ja) 有機発光材料
JP2008266425A (ja) スルホ基含有環状高分子化合物、その製造法及びその用途
JP2003257669A (ja) 有機電界発光素子
WO2006115131A1 (ja) 発光性重合体、発光性重合体の製造方法、及び発光素子
JP2019508423A (ja) 化合物、組成物及び有機発光デバイス
JP2003017262A (ja) 絶縁材料によってel層の成膜欠陥が被覆されたel素子とその製造方法
JP2007194338A (ja) 有機電界発光素子およびその製造方法
WO2003062237A1 (fr) Compose emettant la lumiere blanche, dispositif d&#39;eclairage emettant la lumiere blanche et dispositif el organique emettant la lumiere blanche
JP2007194338A5 (ja)
JP4956885B2 (ja) 有機電界発光素子
JP2007099723A (ja) 白色有機蛍光化合物及び発光素子
KR20060024446A (ko) 청색 발광 폴리머, 그 제조 방법 및 이를 이용한 발광 소자
JP2014197573A (ja) 有機電界発光素子用材料およびそれを用いた有機電界発光素子
JP2005235645A (ja) 有機電界発光素子
JPH11236446A (ja) ポリオキサジアゾール誘導体及びその製造方法、並びに有機エレクトロルミネッセンス素子
JP2015115405A (ja) 有機電界発光素子用重合体、及び、有機電界発光素子
JP2005235646A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP