WO2005000930A1 - Wasserverdünnbare polyurethandispersionen - Google Patents

Wasserverdünnbare polyurethandispersionen Download PDF

Info

Publication number
WO2005000930A1
WO2005000930A1 PCT/EP2004/006689 EP2004006689W WO2005000930A1 WO 2005000930 A1 WO2005000930 A1 WO 2005000930A1 EP 2004006689 W EP2004006689 W EP 2004006689W WO 2005000930 A1 WO2005000930 A1 WO 2005000930A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
polyols
groups
polyurethane dispersions
dispersions according
Prior art date
Application number
PCT/EP2004/006689
Other languages
English (en)
French (fr)
Inventor
Markus Schafheutle
Anton Arzt
Julius Burkl
Gudrun Garber
Rudolf Jedlicka
Gerlinde Petritsch
Jörg Wango
Renate Pittermann
Original Assignee
Cytec Surface Specialties Austria Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cytec Surface Specialties Austria Gmbh filed Critical Cytec Surface Specialties Austria Gmbh
Priority to CA2527023A priority Critical patent/CA2527023C/en
Priority to EP04740125A priority patent/EP1641855A1/de
Priority to US10/561,257 priority patent/US7345109B2/en
Priority to JP2006516012A priority patent/JP4567679B2/ja
Publication of WO2005000930A1 publication Critical patent/WO2005000930A1/de
Priority to ZA2005/10371A priority patent/ZA200510371B/en
Priority to NO20060448A priority patent/NO20060448L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates

Definitions

  • the invention relates to water-dilutable polyurethane dispersions.
  • the invention further relates to their production and their use as paint binders for the production of coatings which have improved hydrolysis stability.
  • polyester-polyurethane dispersions are used here as binders.
  • the object is therefore to provide a binder for aqueous coating compositions
  • the invention therefore relates to water-thinnable polyurethane dispersions containing building blocks derived from multifunctional isocyanates A, polyols B with a moderate molar mass M n of at least 400 g / mol, optionally low molecular weight polyols C with M n below 400 g / mol, compounds D, which have at least two groups reactive toward isocyanate groups and at least one group susceptible to the formation of amons, low molecular weight polyols E which carry no further reactive groups with respect to isocyanate groups, compounds G which are monofunctional with isocyanates.
  • CONFIRMATION COPY or contain active hydrogen of different reactivity and are different from the compounds E, and optionally compounds H which are different from B, C, D, E and G and contain at least two groups reactive with isocyanate groups.
  • the polyols B contain at least a mass fraction of 85% of polycarbonate polyols 1, preferably at least 90%, and in particular at least 95%. It is particularly preferred to use exclusively polycarbonate polyols B1 for the synthesis of the water-dilutable polyurethane dispersion according to the invention.
  • the isocyanates A are at least difunctional and can be selected from aromatic and aliphatic linear, cyclic or branched isocyanates, in particular diisocyanates. If aromatic isocyanates are used, they are preferably used in a mixture with the aliphatic isocyanates mentioned. The proportion of aromatic isocyanates should preferably be chosen so that the number of isocyanate groups introduced into the mixture by these is at least 5% less than the number of isocyanate groups remaining after the first stage in the prepolymer produced. Diisocyanates are preferred, and up to 5% of their mass can be replaced by trifunctional or higher-functional isocyanates.
  • the diisocyanates preferably have the formula Q (NCO) 2 , Q being a hydrocarbon radical having 4 to 40 carbon atoms, in particular 4 to 20 carbon atoms, and preferably an aliphatic hydrocarbon radical having 4 to 12 carbon atoms, a cycloaliphatic hydrocarbon radical 6 to 15 carbon atoms, an aromatic hydrocarbon radical having 6 to 15 carbon atoms or an araliphatic hydrocarbon radical having 7 to 15 carbon atoms.
  • Q being a hydrocarbon radical having 4 to 40 carbon atoms, in particular 4 to 20 carbon atoms, and preferably an aliphatic hydrocarbon radical having 4 to 12 carbon atoms, a cycloaliphatic hydrocarbon radical 6 to 15 carbon atoms, an aromatic hydrocarbon radical having 6 to 15 carbon atoms or an araliphatic hydrocarbon radical having 7 to 15 carbon atoms.
  • Q being a hydrocarbon radical having 4 to 40 carbon atoms, in particular 4 to 20 carbon atoms, and preferably an aliphatic hydrocarbon radical
  • melamine-functional isocyanates those which contain heteroatoms in the radical linking the isocyanate groups are also suitable.
  • examples of this are mel rftml tional isocyanates which have carbodiimide groups, allophanate groups, isocyanurate groups, urethane groups, acylated urea groups or biuret groups.
  • suitable isocyanates reference is made, for example, to DE-A 29 28 552.
  • lacquer polyisocyanates based on hexamethylene diisocyanate or l-isocyanato-3J, 5-trimethyl-4-isocyanatomethyl-cyclohexane (ffDr) and / or bis (isocyanato-cyclohexyl) methane, in particular those based exclusively on hexamethylene diisocyanate
  • “Lacquer polyisocyanates” based on these diisocyanates are to be understood as meaning the derivatives of these diisocyanates which contain biuret, urethane, uretdione and / or isocyanurate groups and are known in the art, following their preparation if required in a known manner, preferably by distillation of Excess starting diisocyanate have been freed up to a residual mass fraction of less than 0.5%.
  • the preferred aliphatic non-functional isocyanates to be used according to the invention include biuret group-containing non-functional isocyanates based on hexamethylene diisocyanate, as described, for example, by the methods of US Pat. Nos. 3,124,605, 3,358,010, 3,903,126, 3 903 127 or 3 976 622 can be obtained, and which consist of mixtures of N, N, N-tris- (6-isocyanatohexyl) ⁇ biuret with minor amounts of its higher homologues, as well as the cyclic trimer of hexamethylene diisocyanate corresponding to the criteria mentioned, such as they can be obtained according to US Pat. No.
  • Hexamethylene diisocyanate using trialkylphosphanes Hexamethylene diisocyanate using trialkylphosphanes. Especially the last-mentioned mixtures having a viscosity at 23 ° C. of 50 mPa-s to 20,000 mPa-s and an NCO functionality between 2.0 and 5.0 are preferred.
  • the multifractional aromatic isocyanates which are also suitable according to the invention, but preferably to be used in a mixture with the aforementioned meliphatic functional aliphatic isocyanates, are in particular "paint polyisocyanates" based on 2,4-diisocyanatotoluene or its technical mixtures with 2,6-diisocyanatotoluene or on Base of 4,4-diisocyanatodiphenylmethane or its mixtures with its isomers and / or higher homologues.
  • Aromatic lacquer polyisocyanates of this type are, for example, the isocyanates containing urethane groups, as are obtained by reacting excess amounts of 2,4-diisocyanatotoluene with polyhydric alcohols such as trimethylolpropane and possibly subsequent removal of the unreacted excess diisocyanate by distillation.
  • Other aromatic paint polyisocyanates are, for example, the trisates of the monomeric diisocyanates mentioned by way of example, i.e. the corresponding isocyanato-isocyanurates, which may have been freed from excess monomeric diisocyanates by distillation, preferably after their preparation.
  • the amounts of these two components are chosen so that it is ensured that the isocyanate groups of the prepolymer are exclusively or at least 90% bound by (cyclo-) aliphatic.
  • the isocyanate component A can also consist of any mixtures of the exemplified multifunctional isocyanates.
  • the mass fraction of building blocks derived from the melamine-functional isocyanates A in the polyurethane resin is generally about 10% to 50%, preferably 20% to 35%, based on the mass of the polyurethane resin.
  • the polycarbonate polyols B1 preferably have a number-average molar mass M n of 400 g / mol to 5000 g / mol, in particular 600 g / mol to 2000 g / mol.
  • Your HydroxylzaM is generally 30 mg / g to 280 mg / g, preferably 40 mg / g to 250 mg / g and in particular 50 mg / g to 200 mg / g. It is preferred to use exclusively polycarbonate polyols B1; However, up to 5% of the mass of the polycarbonate polyols B1 can also be replaced by trivalent or higher polyols.
  • the hydroxylza is defined in accordance with DIN 53 240 as the quotient of the particular mass m K0H of potassium hydroxide which has just as many hydroxyl groups as a sample to be examined, and the mass m B of this sample (mass of the solid in the sample in the case of solutions or dispersions); its usual unit is "mg / g".
  • m K0H mass of potassium hydroxide
  • m B mass of this sample in the case of solutions or dispersions
  • the preferred polycarbonate polyols are polycarbonates of aliphatic linear, branched or cyclic alcohols B1 with 2 to 40 carbon atoms, preferably 3 to 20 carbon atoms, and of alkylene ether alkiols with 2 to 4 carbon atoms in the alkylene group and a total of 4 to 20 carbon atoms.
  • the polycarbonate polyols B1 are particularly preferably derived from mixtures of two or more of the alcohols B1.
  • Suitable alcohols B1 are in particular glycol, diethylene glycol, triethylene glycol, 1,2- and 1,3-propanediol, di- and tripropylene glycol, 1,2- and 1,4-butanediol, 1,6-hexanediol, neopentylglyol and 1 , 4-Dil ⁇ ydroxycyclohexan. Trihydric or polyhydric alcohols are used at most in such an amount that you
  • Mass fraction in the total mass of component B1 is up to 10%.
  • Suitable polyhydric alcohols are, in particular, trimethylolethane and trimethylolpropane, pentaerythritol and sorbitol. Mixtures of alkylene ether alcohols and alpha-omega-dihydroxyalkanes are particularly preferred.
  • the polycarbonate polyols B1 are preferably prepared by uniesters of carbonic acid esters of volatile alcohols such as dimethyl carbonate, diethyl carbonate or cyclic esters of diols such as ethylene or propylene carbonate with the alcohols B1 in question or mixtures thereof. Transesterification catalysts such as titanium or organotin compounds can be used. If, in addition to the polycarbonate polyols, other polyols are used as component B, these are preferably polyether polyols such as, for example, polyoxyethylene polyols, polyoxypropylene polyols, polyoxybutylene polyols and preferably polytetraliydrofurans with terminal OH groups. Other polyols which can be used for the present invention are acrylate polyols or polyolefin polyols, as well as dinier fatty acids reduced to the corresponding diols.
  • the mass fraction of building blocks derived from component B in the polyurethane resin is usually between 40% and 90%, preferably between 50% and 80%, based on the mass of the polyurethane resin.
  • the low molecular weight polyols C which are optionally used to build up the polyurethane resins generally stiffen the polymer chain. They generally have a molar mass of about 60 g / mol to 400 g / mol, preferably 60 g / mol to 200 g / mol and hydroxyl enes of 200 mg / g to 1500 mg / g. They may contain aliphatic, alicyclic or aromatic groups. Their mass fraction, insofar as they are used, is generally 0.5% to 20%, preferably 1% to 10%, based on the mass of components B to D containing hydroxyl groups.
  • the low molecular weight polyols with up to about 20 are suitable Carbon atoms per molecule, e.g. Ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2- and 1,3-butylene glycol, 1,2- and 1,4-cyclohexanediol, 1,4- Cyclol ⁇ exandi ⁇ etl ⁇ anol, 1, 6-hexanediol, bisphenol A (2,2-bis (4-hydroxyphenyl) propane), hydrogenated bisphenol A (2,2-bis (4-hydroxycyclohexyl) propane) and mixtures thereof, and also as triols trimethylli- ethane and propane.
  • Diols are preferably used exclusively or at least predominantly (generally more than 90% of the mass, preferably more than 95%).
  • trifunctional or higher functional compounds are used for the compounds A, B and / or C, care must be taken to ensure that no gelation occurs when the prepolymerization is built up. This can be prevented, for example, by using nonionic compounds together with the trifunctional or higher-functional compounds, the amount of monofunctional compounds then preferably increasing in this way choose is that the average functionality of the component in question does not exceed 2.3, preferably 2.2, and in particular 2.1.
  • the anionogenic compounds D contain at least one, preferably at least two groups reactive with isocyanates, such as hydroxyl, amino and mercaptan groups, and at least one acid group which forms anions when at least partially neutralized in aqueous solution or dispersion.
  • isocyanates such as hydroxyl, amino and mercaptan groups
  • acid group which forms anions when at least partially neutralized in aqueous solution or dispersion.
  • polyols preferably diols, which contain at least one carboxyl group, generally 1 to 3 carboxyl groups per molecule, can be used for this purpose.
  • Sulfonic acid groups or pliosphonic acid groups are also suitable as groups capable of forming anions.
  • Examples of compounds D are, in particular, dihydroxycarboxylic acids, such as alpha, alpha-dialkylolalkanoic acids, in particular alpha, alpha-dimethylolalkanoic acids, such as 2,2-dimethylethyl acetic acid, 2,2-dimethylol propionic acid, 2,2-dimethylol butyric acid, 2,2-dimethylol pentanoic acid and the isomeric tartaric acids, further polyhydroxy acids such as glulconic acid. 2,2-Dimethylolpropionic acid is particularly preferred.
  • dihydroxycarboxylic acids such as alpha, alpha-dialkylolalkanoic acids, in particular alpha, alpha-dimethylolalkanoic acids, such as 2,2-dimethylethyl acetic acid, 2,2-dimethylol propionic acid, 2,2-dimethylol butyric acid, 2,2-dimethylol pentanoic acid and the isomeric tartaric
  • Compounds D containing amino groups are, for example, 2,5-diaminovaleric acid (ornitliin) and 2,4-diaminotoluenesulfonic acid (5). Mixtures of the suitable compounds D can also be used. The mass fraction of the components derived from component D in the
  • Polyurethane resin is generally 2% to 20%, preferably 4% to 10%, based on the mass of the polyurethane resin.
  • the compounds E are predominantly, preferably 70% to 90%, in each case at the chain ends of the molecules and terminate them (chain stopper).
  • Suitable polyols have at least three, preferably 3 or 4 hydroxyl groups in the molecule. Examples include glycerol, hexanetriol, pentaerythritol, dipentaerythritol, diglycerol, trimethylolethane and trimethylolpropane, the latter being preferred.
  • component E is used in excess, that is, in an amount such that the number of hydroxyl groups in the amount of component E used exceeds that of the isocyanate groups still present in the prepolymerizing AB CD.
  • the mass fraction of The components derived from component E in the polyurethane resin are usually between 2% and 15%, preferably 5% to 15%, based on the mass of the polyurethane resin. If necessary, the building blocks derived from component E can be found in a mixture with the building blocks derived from G and / or H in the polyurethane resin.
  • the compounds G are monofunctional compounds which are reactive with NCO groups, such as monoamines, in particular mono-secondary amines, or monoalcohols.
  • Mer may be mentioned, for example: methylamine, ethylamine, n-propylamine, n-butylane in, n-octylamine, laurylamine, stearylamine, isononyloxypropylamine, dimethylamine, diethylamine, di-n- and di-isopropylamine, di-n-butylamine, N-metliylaminopropylamine , Diethyl- and dimethylaminopropylamine, morpholine, piperidine, or suitably substituted derivatives thereof, amidoamines from diprimary amines and monocarboxylic acids, and monoketimines from diprimary amines, and primary / tertiary amines, such as N, N-dimethylaminopropylamine.
  • G preference is also given to compounds which contain active hydrogen with different reactivity than NCO groups, in particular compounds which, in addition to a primary amino group, also contain secondary amino groups, or in addition to an OH group also COOH groups or in addition to an amino group (primary or secondary) also have OH groups, the latter being particularly preferred.
  • primary / secondary amines such as 3-amino-l-methylaminopropane, 3-
  • the polyurethanes obtained in this way can be crosslinked after application to a substrate by the action of high-energy radiation, such as UV rays or electron radiation.
  • the mass fraction of building blocks derived from component G in the polyurethane resin is usually between 2% and 20%, preferably 3% and 10%, based on the mass of the polyurethane resin.
  • the connections H are the so-called chain extenders.
  • the known, preferably functional, compounds which are reactive with NCO groups and which are not identical to B, C, D, E and G and mostly have moderate molar masses of up to 400 g / mol can be used.
  • Examples include water, diamines such as ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, isophoronediamine, diethylenetriamine, triethylenetetramine, and the amines can also carry substituents such as OH groups.
  • Such polyamines are described, for example, in German Offenlegungsschrift 36 44 371.
  • the mass fraction of building blocks derived from component H in the polyurethane resin is usually between 1% and 10%, preferably 2% and 5%, based on the mass of the polyurethane resin.
  • the polyurethane resin according to the invention is preferably prepared by first preparing a polyurethane prepolymer from the polyfunctional isocyanates A, the polyols according to B, optionally the low molecular weight polyols C and the compounds D, which has an average of at least 1.7, preferably 2 to 2.5 free
  • this prepolymer is then reacted with the compounds E and / or G, optionally in admixture with small amounts of compounds H, in a non-aqueous system, component E in a stoichiometric excess (number of hydroxyl groups in E is greater than the number of isocyanate groups is used in the prepolymer prepared in the first step), and the completely reacted polyurethane resin is preferably finally neutralized and transferred to the aqueous system. If appropriate, the reaction with G can also take place after the transfer s aqueous system.
  • the preparation of the polyurethane prepolymer in the first step is carried out according to the known methods.
  • the polyfunctional isocyanate A is compared to the polyols B to D used in excess, so that a product with free isocyanate groups results.
  • These isocyanate groups are terminal and / or pendant, preferably terminal.
  • the amount of melamine-functional isocyanate A is expediently so large that the ratio of the number of isocyanate groups in the amount of component A used to the total number of OH groups in the polyols B to D used is 1.05 to 1.4, preferably 1, Is 1 to 1.3.
  • the reaction for the preparation of the prepolymer is normally carried out at temperatures from 55 ° C. to 95 ° C., preferably 60 ° C. to 75 ° C., depending on the reactivity of the isocyanate used, generally without the presence of a catalyst, but preferably in the presence of solvents inactive to isocyanates.
  • Solvents which are compatible with water, such as the ethers, ketones and esters mentioned below and N-methylpyrrolidone, can be used in particular for this purpose.
  • the mass fraction of this solvent advantageously does not exceed 30%, and is preferably in the range from 5% to 20%, in each case based on the sum of the masses of the polyurethane resin and the solvent.
  • the polyfunctional isocyanate A is expediently added to the solution of the other components. However, it also ordered the possibility of first adding the isocyanate A to the polyol B and, if appropriate, component C, and the prepolymer ABC thus produced having component D, which was dissolved in a solvent which is inactive with isocyanates, preferably N-methylpyrrolidone or ketones, to implement the prepolymer ABCD.
  • isocyanates preferably N-methylpyrrolidone or ketones
  • the prepolymer ABCD or its solution is then reacted with compounds according to E and / or G, optionally in a mixture with H, the temperature expediently in the range from 50 ° C. to 160 ° C., preferably between 70 ° C. and 140 ° C lies until the NGO content in the reaction mixture has practically dropped to zero. If the compound E is used, it is added in excess (the number of hydroxyl groups in E exceeds the number of isocyanate groups in the prepolymer ABCD).
  • the amount of E is inevitably such that the ratio of the number of NCO groups in the prepolymerizing ABCD or of the prepolymer ABCD (G / H) which has possibly already been reacted with compounds according to G and / or H to the number of the reactive ones Groups of E 1: 1.05 to 1: 5, preferably 1: 1 to 1: 3.
  • the mass of G and / or H can be 0% to 90%, preferably 2% to 20%, based on the mass of E.
  • Tertiary amines are particularly suitable for neutralizing the resulting polyurethane, preferably containing COOH groups, e.g. Trialkylamiiie with 1 to 12, preferably 1 to 6 carbon atoms in each alkyl radical. Examples include trimethylamine, triethylamine, methyldiethylamine, tripropylamine.
  • the alkyl radicals can, for example, also carry hydroxyl groups, as in the case of the dialkylmonoalkanol, alkyldialkanol and triallcanolamines. An example of this is dimethylethanolamine, which preferably serves as a neutralizing agent.
  • inorganic bases such as ammonium or sodium hydroxide or potassium hydroxide may also be used as neutralizing agents.
  • the neutralizing agent is usually used in amounts such that the ratio of the substance close of amine groups or hydroxyl ions formed in aqueous solution to the amount of acid groups of the prepolymer is approximately 0.3: 1 to 1.3: 1, preferably approximately 0.5 : 1 to 1: 1.
  • the neutralization which generally takes place between room temperature and 110 ° C., can be carried out in any manner, for example in such a way that the water-containing neutralizing agent is added to the polyurethane or vice versa.
  • the neutralizing agent is first added to the polyurethane resin and only then the water, hn in general, a solids mass fraction in the dispersion of 20% to 70%, preferably 30% to 50%, is obtained in this way.
  • Coating compositions which contain the water-dispersible polyurethane dispersions according to the invention as binders lead to soft-feel coatings which, compared to the known coatings in which polyester-polyols are used as building blocks for the polyurethanes, have considerably improved properties and in particular do not have any sticky properties Surfaces.
  • the advantageous properties are independent of the coated substrate, as confirmed by tests on metals, plastics, wood and mineral substrates such as stone and concrete.
  • Example 2 In accordance with the procedure in Example 1, 600 g of diethylene glycol, 1257 g of 1,6-hexanediol and 48 g of trimethylolpropane were initially introduced, with the same amounts of catalyst and dimethyl carbonate giving 2255 g of a polycarbonate polyol with a PlydroxylzaM of 170 mg / g.
  • Example 3 Polyurethane Dispersion 1,935 g of the polycarbonate diol PCI from Example 1, 20 g of trimethylolpropane and 73 g of diethylolpropionic acid were placed in a reaction vessel and heated to 120 ° C. until a clear solution had resulted. 260 g of hexamethylene diisocyanate were metered in submerged at this temperature with cooling during about 90 minutes. After stirring for one hour, the mixture was cooled to 95 ° C. and a mixture of 39 g of dimethylethanolamine and 39 g of fully demineralized water was stirred in over the course of 15 minutes.
  • Example 5 Polyurethane Dispersion 3 (Chain Extended)
  • Example 5J Polyurethane Dispersion 91 g of dietlianolamine, 2265 g of water and 39 g
  • Example 5 The procedure from Example 5 was repeated, 935 g of the polycarbonate diol PCI from Example 1, 20 g of trimethylolpropane and 73 g of dimethylolpropionic acid being introduced. After adding 417 g of hexamethylene diisocyanate, the reaction was continued until the
  • Mass fraction of free isocyanate groups had dropped to about 2.8%.
  • the prepolymer was mixed with a mixture of 39 g dimethylamine ethanol and 1000 g
  • a two-component varnish (varnish A) was produced with the following formulation, the sub-steps identified by a Roman Za being carried out one after the other:
  • Part I For the preparation of the paint, Part I was submitted and mixed well. The components of Part II were then added and the mixture was mixed on one for twenty minutes
  • the mixture of parts I to III had a solids mass fraction of approx. 50%, the paint produced (parts I to TV) had a viscosity measured as the outflow time from a cup
  • the pigment / binder ratio (mass of the pigment divided by the mass of the solids content of the binder) was 0.2: 1.
  • the pot life of the ready-mixed paint was at room temperature (23 ° C.) in an open vessel about four hours.
  • a comparative lacquer (lacquer V) was produced in the same way, except that the dispersion from example 7 was used.
  • Example 3 The two polyurethane dispersions from Examples 3 and 7 (comparison) were stored at 40 ° C. for 4 weeks. The acid count was titrated weekly and the viscosity measured. The dispersion of Example 3 according to the invention remained unchanged. In the case of the dispersion of comparative example 7, the acid concentration increased significantly and the viscosity decreased by more than 3 powers of ten.
  • FIGS. 1 and 2 show the time course of the viscosity and the acid number of the polyurethane dispersion according to Example 3 when stored at a temperature of 40 ° C. 2 are the course of the
  • Viscosity of the dispersion and the acid number for the polyurethane dispersion of the comparative example (example 7) are shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

Wasserverdünnbare Polyurethan-Dispersionen, enthaltend Bausteine abgeleitet von Polyisocyanaten A, Polyolen B mit einer zahlenmittleren molaren Masse Mn von mindestens 400 g/mol, Verbindungen D, die mindestens zwei gegenüber Isocyanatgruppen reaktive Gruppen und mindestens eine zur Anionenbildung befähigte Gruppe aufweisen, niedermolekularen Polyolen E, die gegenüber Isocyanatgruppen keine weiteren reaktiven Gruppen tragen, Verbindungen G, die gegenüber Isocyanaten monofunktionell sind oder aktiven Wasserstoff unterschiedlicher Reaktivität enthalten und von den Verbindungen E verschieden sind, dadurch gekennzeichnet, daß die Polyole B mindestens einen Massenanteil von 85 % an Polycarbonat-Polyolen B1 enthalten, und ihre Verwendung in Beschichtungsmitteln.

Description

Wasserverdünnbare Polyurethandispersionen
Die Erfindung betrifft wasserverdünnbare Polyurethandispersionen. Die Erfindung betrifft weiter deren Herstellung sowie deren Anwendung als Lackbindemittel zur Herstellung von Beschichtungen, die eine verbesserte Hydrolysestabilität aufweisen.
Beschichtungen mit weichem Griff ("Soft feel") hergestellt mit wäßrigen Bindemitteln werden beispielsweise in der EP-A 0 669 352 beschrieben. Als Bindemittel werden hier wäßrige Polyester-Polyurethan-Dispersionen eingesetzt. Die Polyester-Polyole, die hier genannt sind, können auch Polycarbonat-Polyole enthalten, wobei deren Massenanteil, bezogen auf die Summe der Massen der eingesetzten hochmolekularen Polyole, maximal 75 / (75 + 15) = 83,3 % beträgt.
In den Untersuchungen, die zu der vorliegenden Erfindung geführt haben, wurde festgestellt, daß Beschichtungen auf Basis derartiger Bindemittel eine ungenügende Stabilität ilrrer Gebrauchseigenschaften aufweisen. Dies zeigt sich häufig erst nach längerer Benutzung lackierter Gegenstände und äußert sich in der Ausbildung einer klebrigen und daher auch stark verschmutzenden Oberfläche.
Es besteht daher die Aufgabe, ein Bindemittel für wäßrige Bescbichtungsmittel zur
Nerfügung zu stellen, das zu "soft feel"-Beschichtungen mit verbesserten Gebrauchseigenschaften führt. Diese Aufgabe wird durch die erfindungsgemäßen wasserverdünnbaren Polyurethan-Dispersionen gelöst.
Die Erfindung betrifft daher wasserverdünnbare Polyurethan-Dispersionen, enthaltend Bausteine abgeleitet von mehrfunl tionellen Isocyanaten A, Polyolen B mit einer zaMenmittleren molaren Masse Mn von mindestens 400 g/mol, gegebenenfalls niedermolekularen Polyolen C mit Mn unter 400 g/mol, Verbindungen D, die mindestens zwei gegenüber Isocyanatgruppen reaktive Gruppen und mindestens eine zur Amonenbildung befälligte Gruppe aufweisen, niedermolekularen Polyolen E, die gegenüber Isocyanatgruppen keine weiteren reaktiven Gruppen tragen, Verbindungen G, die gegenüber Isocyanaten monofunktionell sind BESTÄTIGUΝGSKOPIE oder aktiven Wasserstoff unterschiedlicher Reaktivität enthalten und von den Verbindungen E verschieden sind, sowie gegebenenfalls Verbindungen H, die von B, C, D, E und G verschieden sind und mindestens zwei mit Isocyanatgruppen reaktive Gruppen enthalten. Dabei enthalten die Polyole B mindestens einen Massenanteil von 85 % an Polycarbonat-Polyolen l, bevorzugt mindestens 90 %, und insbesondere mindestens 95 %. Es ist besonders bevorzugt, ausschließlich Polycarbonat-Polyole Bl zur Synthese der erfindungsgemäßen wasser- verdünnbaren Polyurethan-Dispersion einzusetzen.
Die Isocyanate A sind mindestens difunktionell und können ausgewählt werden aus aro- matischen und aliphatisclien linearen, cyclischen oder verzweigten Isocyanaten, insbesondere Diisocyanaten. Werden aromatische Isocyanate eingesetzt, so werden diese bevorzugt in Mischung mit den genannten aliphatisclien Isocyanaten verwendet. Dabei ist der Anteil der aromatischen Isocyanate bevorzugt so zu wählen, daß die Anzahl der durch diese in die Mischung eingefülirten Isocyanatgruppen zumindest 5 % geringer ist als die Anzahl der nach der ersten Stufe verbleibenden Isocyanatgruppen in dem erzeugten Präpolymer. Bevorzugt werden Diisocyanate, wobei bis zu 5 % von deren Masse durch trifunl tionelle oder höher- funktionelle Isocyanate ersetzt werden kann.
Die Diisocyanate besitzen vorzugsweise die Formel Q(NCO)2, wobei Q für einen Kohlen- wasserstoffrest mit 4 bis 40 C- Atomen, insbesondere 4 bis 20 C- Atomen steht und vorzugsweise einen aliphatisclien Kohlenwasserstoffrest mit 4 bis 12 Kohlenstoffatomen, einen cycloaliphatischen Kohlenwasserstoffrest mit 6 bis 15 KoMenstoffatomen, einen aromatischen Kohlenwasserstoffrest mit 6 bis 15 KoMenstoffatomen oder einen araliphatischen Kohlenwasserstoffrest mit 7 bis 15 KoMenstoffatomen bedeutet. Beispiele derartiger bevor- zugt einzusetzender Diisocyanate sind Tetramethylendiisocyanat, Hexamethylendiisocyanat,
2,2,4- oder 2,4,4-Trhιιetlιyllιexaι.netlιylendiisocyanat, Dodecamethylendiisocyanat, 1 ,4-Diiso- cyatιatocyclohexan, 3-Isocyanatometl yl-3,5,5-trimetlιylcyclohexylisocyanat(IsoplιoiOndiiso- cyanat, IPDI), 4,4'-Diisocyanatodicyclolιexylmethan, 4,4'-Diisocyanatodicyclohexylpropan- (2,2), 1,4-Diisocyanatobenzol, 2,4- oder 2,6-Diisocyanatotoluol bzw. Gemische dieser Iso- eren, 4,4'- oder 2,4'-Diisocyanatodiphenylmethan, 4,4'-Diisocyanatodiplιenylpropan-(2,2), p-Xylylendiisocyanat und alpha, alpha, alpha', alpha'-Tetraniethyl-m- oder p-Xylylendiiso- cyanat sowie aus diesen Verbindungen bestehende Gemische.
Neben diesen einfachen melirfunktionellen Isocyanaten sind auch solche geeignet, die Heteroatome in dem die Isocyanatgruppen verknüpfenden Rest enthalten. Beispiele hierfür sind mel rftml tionelle Isocyanate, die Carbodiimidgruppen, Allophanatgruppen, Isocyanurat- gruppen, Urethangruppen, acylierte Harnstoffgruppen oder Biuretgruppen aufweisen. Bezüglich weiterer geeigneter Isocyanate sei beispielsweise auf die DE-A 29 28 552 verwiesen. Geeignet sind auch "Lackpolyisocyanate" auf Basis von Hexamethylendiisocyanat oder von l-Isocyanato-3J,5-trimeüιyl-4-isocyanatomethyl-cyclohexan (ffDr) und/oder Bis(isocyanato- cyclohexyl)-methan, insbesondere solche, welche ausschließlich auf Hexamethylendiisocyanat basieren. Unter "Lackpolyisocyanaten" auf Basis dieser Diisocyanate sind die an sich bekannten Biuret-, Urethan-, Uretdion- und/oder Isocyanuratgruppen aufweisenden Deri- vate dieser Diisocyanate zu verstehen, die im Anschluß an ihre Herstellung bei Bedarf in bekannter Weise, vorzugsweise durch Destillation von überschüssigem Ausgangsdiisocyanat bis auf einen restlichen Massenanteil von weniger als 0,5 % befreit worden sind. Zu den bevorzugten, erfindungsgemäß zu verwendenden aliphatisclien nielirfimlctionellen Isocyanaten gehören den obengenannten Kriterien entsprechende, Biuretgruppen aufweisende niehr- funlctionelle Isocyanate auf Basis von Hexamethylendiisocyanat, wie sie beispielsweise nach den Verfahren der US -Patentschriften 3 124 605, 3 358 010, 3 903 126, 3 903 127 oder 3 976 622 erhalten werden können, und die aus Gemischen von N,N,N-Tris-(6- isocyanatohexyl)~biuret mit untergeordneten Mengen seiner höheren Homologen bestehen, sowie die den genannten Kriterien entsprechenden cyclischen Trimerisate von Hexamethylendiisocyanat, wie sie gemäß US-A 4 324 879 erhalten werden können, und die im wesentlichen auf N,N,N-Tris-(6-isocyanatohexyl)-isocyanurat im Gemisch mit untergeordneten Mengen an seinen höheren Homologen bestehen.. Insbesondere bevorzugt werden den genannten Kriterien entsprechende Gemische aus Uretdion- und/oder Isocyanuratgruppen aufweisenden melirfunlctionellen Isocyanaten auf Basis von Hexamethylendiisocyanat, wie sie durch katalytische Oligomerisierung von
Hexamethylendiisocyanat unter Verwendung von Trialkylphosphanen entstehen. Besonders bevorzugt sind die zuletzt genannten Gemische einer Viskosität bei 23 °C von 50 mPa-s bis 20 000 mPa-s und einer zwischen 2,0 und 5,0 liegenden NCO-Funlctionalität.
Bei den erfindungsgemäß ebenfalls geeigneten, jedoch bevorzugt in Mischung mit den vorge- nannten melirfunlctionellen aliphatisclien Isocyanaten einzusetzenden mehrfraktionellen aromatischen Isocyanaten handelt es sich insbesondere um "Lackpolyisocyanate" auf Basis von 2,4-Diisocyanatotoluol oder dessen technischen Gemischen mit 2,6-Diisocyanatotoluol oder auf Basis von 4,4-Diisocyanatodiphenylmethan bzw. dessen Gemischen mit seinen Isomeren und/oder höheren Homologen. Derartige aromatische Lackpolyisocyanate sind beispielsweise die Urethangruppen aufweisenden Isocyanate, wie sie durch Umsetzung von überschüssigen Mengen an 2,4-Diisocyanatotoluol mit mehrwertigen Alkoholen wie Trimethylolpropan und eventuell anscMießender destillativer Entfernung des nicht umgesetzten Diisocyanat-Überschusses erhalten werden. Weitere aromatische Lackpolyisocyanate sind beispielsweise die Tri erisate der beispielhaft genannten monomeren Diisocyanate, d.h. die entsprechenden Isocyanato-isocyanurate, die eventuell ήn AnscMuß an ihre Herstellung vorzugsweise destillativ von überschüssigen monomeren Diisocyanaten befreit worden sind. In den Mischungen von aromatischen und (cyclo-)aliplιatischen Isocyanaten werden die Mengen dieser beiden Komponenten so gewählt, daß sichergestellt ist, daß die Isocyanatgruppen des Präpolymeren ausscliließlich oder mindestens zu 90 % (cyclo-) aliphatisch gebunden sind.
Die Isocyanatkomponente A kann ήn übrigen aus beliebigen Gemischen der beispielhaft genannten mehrfunktionellen Isocyanate bestehen.
Der Massenanteil an von den melirfunlctionellen Isocyanaten A abgeleiteten Bausteinen in dem Polyurethanharz liegt in der Regel bei ca. 10 % bis 50 %, vorzugsweise 20 % bis 35 %, bezogen auf die Masse des Polyurethanharzes.
Die Polycarbonat-Polyole Bl besitzen vorzugsweise eine zahlenmittlere molare Masse Mn von 400 g/mol bis 5000 g/mol, insbesondere 600 g/mol bis 2000 g/mol. Ihre HydroxylzaM beträgt im allgemeinen 30 mg/g bis 280 mg/g, vorzugsweise 40 mg/g bis 250 mg/g und insbesondere 50 mg/g bis 200 mg/g. Bevorzugt werden ausschließlich difunlctionelle Polycarbonat-Polyole Bl eingesetzt; bis zu 5 % der Masse der Polycarbonat-Polyole Bl kann jedoch auch durch drei- oder höherwertige Polyole ersetzt werden. Die Hydroxylza ist gemäß DIN 53 240 definiert als der Quotient derj eiligen Masse mK0H an Kaliumhydroxid, die genausoviel Hydroxylgruppen aufweist wie eine zu untersuchende Probe, und der Masse mB dieser Probe (Masse des Feststoffes in der Probe bei Lösimgen oder Dispersionen); ihre übliche Einheit ist "mg/g". Von diesen Polycarbonat-Polyolen sind solche bevorzugt, die nur endständige OH-Gruppen aufweisen und eine FuMctionalität von kleiner als 3, vorzugsweise von 2,8 bis 2 und insbesondere von 2 besitzen. Die bevorzugten Polycarbonat-Polyole sind Polycarbonate von aliphatisclien linearen, verzweigten oder cyclischen Alkoholen Bll mit 2 bis 40 Kohlenstoffatomen, bevorzugt 3 bis 20 KoMenstoffatomen, sowie von Alkylenätheralkoliolen mit 2 bis 4 KoMenstoffatomen in der Alkylengruppe und insgesamt 4 bis 20 KoMenstoffatomen. Besonders bevorzugt sind die Polycarbonat-Polyole Bl abgeleitet von Mischungen aus zwei oder mehreren der Alkohole Bl l. Geeignete Alkohole Bll sind insbesondere Glylcol, Di- äthylenglykol, Triäthylenglykol, 1,2- und 1,3-Propandiol, Di- und Tripropylenglykol, 1,2- und 1,4-Butandiol, 1,6-Hexandiol, Neopentylgly ol und 1,4-Dilιydroxycyclohexan. Drei- oder mehrwertige Alkohole werden maximal in einer solchen Menge eingesetzt, daß ihr
Massenanteil in der Gesamtmasse der Komponente Bll bis zu 10 % beträgt. Geeignete mehrwertige Alkohole sind insbesondere Trimethyloläthan und Trimethylolpropan, Pentaerythrit und Sorbit. Besonders bevorzugt sind Mischungen aus Alkylenätheralkoholeii und alpha-omega-Diliydroxyalkanen.
Die Polycarbonat-Polyole Bl werden bevorzugt durch Uniestern von Kohlensäureestern leicht flüchtiger Alkohole wie Dimethylcarbonat, Diäthylcarbonat oder cyclischen Estern von Diolen wie Äthylen- oder Propylencarbonat mit den betreffenden Alkoholen Bll oder deren Mischungen hergestellt. Dabei können Umesterungskatalysatoren wie titan- oder zinnorganische Verbindungen eingesetzt werden. Sofern außer den Polycarbonat-Polyolen noch andere Polyole als Komponente B eingesetzt werden, sind dies bevorzugt Polyätherpolyole wie beispielsweise Polyoxyäthylenpolyole, Polyoxypropylenpolyole,Polyoxybutylenpolyole und vorzugsweise Polytetraliydrofurane mit endständigen OH-Gruppen. Andere Polyole, die für die vorliegende Erfindung eingesetzt werden kömien, sind Acrylatpolyole oder Polyolefinpolyole, sowie zu den entsprechenden Diolen reduzierte diniere Fettsäuren.
Der Massenanteil an von der Komponente B abgeleiteten Bausteinen in dem Polyurethanliarz liegt üblicherweise zwischen 40 % und 90 %, vorzugsweise zwischen 50 % und 80 %, be- zogen auf die Masse des Polyuretlianliarzes.
Die gegebenenfalls zum Aufbau der Polyuretha iarze eingesetzten niedermolekularen Polyole C bewirken in der Regel eine Versteifung der Polymerkette. Sie besitzen im allgemeinen eine molare Masse von etwa 60 g/mol bis 400 g/mol, vorzugsweise 60 g/mol bis 200 g/mol und Hydroxylza en von 200 mg/g bis 1500 mg/g. Sie kömien aliphatische, alicyclische oder aromatische Gruppen enthalten. Ihr Massenanteil, soweit sie eingesetzt werden, liegt hn allgemeinen bei 0,5 % bis 20 %, vorzugsweise 1 % bis 10 %, bezogen auf die Masse der Hydroxylgruppen enthaltenden Komponenten B bis D. Geeignet sind beispielsweise die niedermolekularen Polyole mit bis zu etwa 20 KoMenstoffatomen je Molekül, z.B. Äthylenglykol, Diäthylenglykol, 1,2-Propandiol, 1,3-Propandiol, 1,4-Butan- diol, 1,2- und 1,3-Butylenglykol, 1,2- und 1,4-Cyclohexandiol, 1,4-Cyclolιexandiιι etlιanol, 1 ,6-Hexandiol, Bisphenol A (2,2-Bis(4-hydroxyphenyl)propan), hydriertes Bisphenol A (2,2- Bis(4-hydroxycyclohexyl)propan) sowie deren Mischungen, sowie als Triole Trimetliylol- äthan und -propan. Bevorzugt werden ausschließlich oder zumindest überwiegend (in der Regel mehr als 90 % der Masse, bevorzugt mehr als 95 %) Diole eingesetzt.
Werden bei den Verbindungen A, B, und/oder C trifunktionelle oder höherfunlctioiielle Verbindungen eingesetzt, so ist darauf zu achten, daß beim Aufbau des Präpolynieren keine Ver- gelung eintritt. Dies kann beispielsweise dadurch verhindert werden, daß nionofuiiktionelle Verbindungen gemeinsam mit den tri- oder höherfunktionellen Verbindungen eingesetzt werden, wobei die Menge der monofunlctionellen Verbindungen dann vorzugsweise so zu wählen ist, daß die mittlere Funktionalität der betreffenden Komponente 2,3, bevorzugt 2,2, und insbesondere 2,1 nicht übersteigt.
Die anionogenen Verbindungen D enthalten mindestens eine, bevorzugt mindestens zwei mit Isocyanaten reaktive Gruppen wie Hydroxyl-, Amino- und Mercaptan-Gruppen und mindestens eine Säuregruppe, die bei zumindest teilweiser Neutralisation in wäßriger Lösung oder Dispersion Anionen bildet. Solche Verbindungen sind beispielsweise in den US- Patentschriften 34 12 054 und 36 40 924 sowie in den DE-Offenlegungsscliriften 26 24 442 und 27 44 544 beschrieben, auf die hier Bezug genommen wird. Insbesondere koimnen hierfür solche Polyole, vorzugsweise Diole, in Frage, die wenigstens eine Carboxyl-Gruppe, ün allgemeinen 1 bis 3 Carboxyl-Gruppen je Molekül enthalten. Als zur Anionenbilduiig befähigte Gruppen sind auch Sulfonsäuregruppen oder Pliosphonsäuregruppen geeignet. Beispiele für Verbindungen D sind insbesondere Diliydroxycarbonsäuren, wie alpha, alpha- Dialkylolalkansäuren, insbesondere alpha, alpha-Dimethylolalkansäuren wie 2,2-Dimefhylol- essigsaure, 2,2-Dimethylolpropionsäure, 2,2-Dimethylolbuttersäure, 2,2-Dimethylolpentan- säure und die isomeren Weinsäuren, weiterliin Polyhydroxysäuren wie Glulconsäure. Besonders bevorzugt ist dabei 2,2-Dimethylolpropionsäure. Aminogruppenhaltige Verbindungen D sind beispielsweise 2,5-Diaminovaleriansäure (Ornitliin) und 2,4-Diamino- toluolsulfonsäure-(5). Es können auch Gemische der geiiamiten Verbindungen D zmn Einsatz koimnen. Der Massenanteil der von der Komponente D abgeleiteten Bausteine in dem
Polyurethanl arz liegt im allgemeinen bei 2 % bis 20 %, vorzugsweise bei 4 % bis 10 %, bezogen auf die Masse des Polyurethanharzes.
Die Verbindungen E befinden sich überwiegend, vorzugsweise zu 70 % bis 90 %, jeweils an den Kettenenden der Moleküle und scliließen diese ab (Kettenstopper). Geeignete Polyole besitzen mindestens drei, vorzugsweise 3 oder 4 Hydroxylgruppen im Molekül. Genannt seien liier beispielsweise Glycerin, Hexantriol, Pentaeryτhrit, Dipentaerythrit, Diglycerin, Trimetliyloläthan und Trimethylolpropan, wobei letzteres bevorzugt ist. Als Kettenstopper wird die Komponente E im Überschuß eingesetzt, also i einer solchen Menge, daß die Anza der Hydroxylgruppen in der eingesetzten Menge der Komponente E die der noch vorhandenen Isocyanatgruppen im Präpolynieren AB CD übersteigt. Der Massenanteil an von der Komponente E abgeleiteten Bausteine im Polyurethanharz liegt üblicherweise zwischen 2 % und 15 % , vorzugsweise 5 % bis 15 %, bezogen auf die Masse des Polyurethanl arzes. Gegebenenfalls finden sich die von der Komponente E abgeleiteten Bausteine in Mischung mit den Bausteinen abgeleitet von G und/oder H im Polyurethanliarz.
Die Verbindungen G (Kettenstopper) sind monofunlctionelle, mit NCO-Gruppen reaktive Verbindungen, wie Monoamine, insbesondere mono-sekundäre Amine, oder Monoalkohole. Genannt seien Mer beispielsweise: Methylamin, Äthylamin, n-Propylamin, n-Butylan in, n- Octylamin, Laurylamin, Stearylamin, Isononyloxypropylamin, Dimethylamin, Diäthylamin, Di-n- und Di-isopropylamin, Di-n-butylamin, N-Metliylaminopropylamin, Diäthyl- und Di- methylaminopropylamin, Morpholin, Piperidin, bzw. geeignet substituierte Derivate davon, Amidoamine aus diprimären Aminen und Monocarboiisäuren, sowie Monoketimine von diprimären Aminen, und primär/tertiäre Amine, wie N,N-Dimethylaminopropylamin. Vorzugsweise kommen für G auch Verbindungen in Betracht, die alctiven Wasserstoff mit gegenüber NCO-Gruppen unterschiedlicher Reaktivität enthalten, insbesondere Verbindungen, die neben einer primären Aminogruppe auch sekundäre Aminogruppen, oder neben einer OH-Gruppe auch COOH-Gruppen oder neben einer Aminogruppe (primär oder sekundär) auch OH-Gruppen aufweisen, wobei die letzteren besonders bevorzugt sind. Bei- spiele hierfür sind: primäre/sekundäre Amine, wie 3-Amino-l-methylaminopropan, 3-
Amino- 1 -äthylaminopropan, 3 -Amino- 1 -cyclohexylaminopropan, 3 -Amino- 1 -methylamino- butan; Monohydroxycarbonsäuren, wie Hydroxyessigsäure, Milchsäure oder Äpfelsäure, weiterhin Alkanolamine wie N- Amino äthyläthanolamm, Äthanolamin, 3-Aminopropanol, Neopentanolamin und besonders bevorzugt Diäthanolamin. Gegebenenfalls kömien auch solche Verbindungen G eingesetzt werden, die außer den gegenüber Isocyanatgruppen realctiven Gruppen noch olefmische Doppelbindmigen enthalten. Die so erhaltenen Polyurethane können nach dem Aufbringen auf ein Substrat durch Einwirkung von energiereicher Stralilung wie UV-Strahlen oder Elektronenstralilen vernetzt werden.
Auf diese Weise können, ebenso wie bei der Verwendung der Verbindungen E, zusätzliche funlctionelle Gruppen in das polymere Endprodukt eingebracht und dieses damit reaktions- fälliger gegenüber Flärtern gemacht werden, falls dies gewünscht ist. Der Massenanteil an von der Komponente G abgeleiteten Bausteine in dem Polyurethanliarz liegt üblicherweise zwischen 2 % und 20 %, vorzugsweise 3 % und 10 %, bezogen auf die Masse des Poly- urethanharzes.
Die Verbindungen H sind die sogenannten Kettenverlängerer. Als solche koimnen die hierfür bekannten, mit NCO-Gruppen realctiven und vorzugsweise difunlctionellen Verbindungen in Frage, die nicht identisch mit B, C, D, E und G sind und zumeist zalilen ittlere molare Massen bis zu 400 g/mol aufweisen. Genannt seien liier beispielsweise Wasser, Diamine wie Äthylendiamin, 1,3-Diaminopropan, 1,4-Diaminobutan, Hexamethylendiamin, Isophoron- diainin, Diäthylentriamin, Triäthylentetramin, wobei die Amine auch Substituenten, wie OH- Gruppen, tragen können. Solche Polyamine sind beispielsweise in der DE-Offen- legungsschrift 36 44 371 beschrieben. Der Massenanteil an von der Komponente H abgeleiteten Bausteine in dem Polyurethanharz liegt üblicherweise zwischen 1 % und 10 %, vorzugsweise 2 % und 5 %, bezogen auf die Masse des PolyuretliaMiarzes.
Die Herstellung des erfindungsgemäßen Polyurethanharzes erfolgt bevorzugt in der Weise, daß man aus den mehrfunktionellen Isocyanaten A, den Polyolen gemäß B, gegebenenfalls den niedermolekularen Polyolen C sowie den Verbindungen D zunächst ein Polyurethan- Präpoly eres herstellt, das im Mittel mindestens 1,7, vorzugsweise 2 bis 2,5 freie
Isocyanatgruppen pro Molekül enthält, dieses Präpolymere dann mit den Verbindungen E und/oder G gegebenenfalls in Abmischung mit geringen Mengen an Verbindungen H, in einem nicht-wäßrigen System umsetzt, wobei die Komponente E im stöcliiometrisehen Überschuß (AnzaM der Hydroxylgruppen in E ist größer als die AnzaM der Isocyanatgruppen in dem im ersten Schritt hergestellten Präpolymer) eingesetzt wird, und das vollständig ausreagierte Polyurethanliarz vorzugsweise abschließend neutralisiert und ins wäßrige System überführt. Gegebenenfalls kann auch die Umsetzung mit G nach der Überfuhrung s wäßrige System erfolgen.
Die Herstellung des Polyurethan-Präpolymeren im ersten Schritt erfolgt dabei nach den bekannten Verfahren. Hierbei wird das mehrfunktionelle Isocyanat A gegenüber den Polyolen B bis D im Überschuß eingesetzt, so daß ein Produkt mit freien Isocyanatgruppen resultiert. Diese Isocyanatgruppen sind end- und/oder seitenständig, vorzugsweise endständig. Zweckmäßigerweise ist dabei die Menge des melirfunlctionellen Isocyanats A so groß, daß das Verhältnis der AnzaM von Isocyanatgruppen in der eingesetzten Menge der Komponente A zur Gesamtzahl der OH-Gruppen in den eingesetzten Polyolen B bis D 1,05 bis 1,4, vorzugsweise 1,1 bis 1,3 beträgt.
Die Umsetzung zur Herstellung des Präpolymeren wird normalerweise bei Temperaturen von 55 °C bis 95 °C, vorzugsweise 60 °C bis 75 °C, je nach Reaktivität des eingesetzten Isocyanats, durchgefülirt, in der Regel ohne Anwesenlieit eines Katalysators, jedoch vorzugsweise in Gegenwart von gegenüber Isocyanaten inaktiven Lösungsmitteln. Hierfür koimnen insbesondere solche Lösungsmittel in Betracht, die mit Wasser verträglich sind, wie die weiter unten genannten Äther, Ketone und Ester sowie N-Methylpyrrolidon. Der Massenanteil dieses Lösungsmittels überschreitet zweckmäßigerweise nicht 30 %, und liegt vorzugsweise im Bereich von 5 % bis 20 %, jeweils bezogen auf die Summe aus den Massen des Polyurethanharzes und des Lösungsmittels. Zweckmäßigerweise wird dabei das mehr- funktionelle Isocyanat A der Lösung der übrigen Komponenten zugegeben. Es bestellt jedoch ebenfalls die Möglichkeit, zunächst das Isocyanat A zu dem Polyol B und gegebenenfalls die Komponente C zuzugeben und das so erzeugte Präpolymer ABC mit der Komponente D, die in einem gegenüber Isocyanaten inaktiven Lösungsmittel, vorzugsweise N-Methylpyrrolidon oder Ketone, gelöst ist, zu dem Präpolymer ABCD umzusetzen.
Das Präpolymere ABCD oder dessen Lösung wird dann mit Verbindungen gemäß E und/oder G, gegebenenfalls in Abmischung mit H, umgesetzt, wobei die Temperatur zweck- mäßigerweise im Bereich von 50 °C bis 160 °C, vorzugsweise zwischen 70 °C und 140 °C liegt, bis der NGO-Gehalt in der Realctionsmischung praktisch auf Null abgesunken ist. Falls die Verbindung E eingesetzt wird, so wird diese im Überschuß (die Anzahl der Hydroxylgruppen in E übersteigt die Anzahl der Isocyanatgruppen im Präpolymer ABCD) zugegeben. Die Menge an E liegt dabei zweclαnäßigerweise so, daß das Verhältnis der AnzaM von NCO- Gruppen im Präpolynieren ABCD bzw. des vorher gegebenenfalls schon mit Verbindungen gemäß G und/oder H umgesetzten Präpolymeren ABCD(G/H) zur AnzaM der realctiven Gruppen von E 1 : 1,05 bis 1 :5, vorzugsweise 1 : 1 bis 1 :3 beträgt. Die Masse an G und/oder H kann dabei 0 % bis 90 %, vorzugsweise 2 % bis 20 %, bezogen auf die Masse von E betragen. Ein Teil der in dem so hergestellten Polyurethan gebundenen (nicht neutralisierten) Säuregruppen, vorzugsweise 5 % bis 30 %, kann gegebenenfalls mit difunktionellen mit Säuregruppen realctiven Verbindungen, wie Diepoxiden, umgesetzt werden.
Zur Neutralisation des resultierenden, vorzugsweise COOH-Gruppen enthaltenden Poly- urethans sind insbesondere tertiäre Amine geeignet, z.B . Trialkylamiiie mit 1 bis 12, vorzugsweise 1 bis 6 C-Atomen in jedem Alkylrest. Beispiele hierfür sind Trimethylamin, Triäthyl- amin, Methyldiäthylamiii, Tripropylamin. Die Alkylreste kömien beispielsweise auch Hydroxylgruppen tragen, wie bei den Dialkylmonoalkanol-, Alkyldialkanol- und Triallcanol- aminen. Ein Beispiel hierfür ist Dimethyläthanolamin, das bevorzugt als Neutralisationsmittel dient.
Wird die Kettenveiiängerung in organischer Phase durchgefülirt, oder werden Neutralisation und Kettenverlängeiτing zusammen mit der Dispergierung in einem Schritt durchgefülirt, so sind als Neutralisationsmittel gegebenenfalls auch anorganische Basen, wie AmmoniMc oder Natrium- bzw. Kalimnliydroxid einsetzbar.
Das Neutralisationsmittel wird zmneist in solchen Mengen emgesetzt, daß das Verhältnis der Stoff enge von Amingruppen bzw. in wäßriger Lösung gebildeten Hydroxylionen zur Stoffmenge der Säuregruppen des Präpolymeren ca. 0,3:1 bis 1,3:1, vorzugsweise ca. 0,5:1 bis 1:1 beträgt.
Die Neutralisation, die in der Regel zwischen Raumtemperatur und 110 °C erfolgt, kann in beliebiger Weise d -chgefülirt werden, z.B. so, daß das wasserhaltige Neutralisationsmittel dem Polyuretl anliarz zugegeben wird oder umgekehrt. Es ist aber auch möglich, daß man zuerst das Neutralisationsmittel dem Polyurethanliarz zufügt und danach erst das Wasser, hn allgemeinen erhält man so einen Festkörper-Massenanteil in der Dispersion von 20 % bis 70 %, bevorzugt 30 % bis 50 %.
Beschichtungsmittel, die die erfindungsgemäßen wasserverdümibaren Polyurethan-Disper- sionen als Bindemittel enthalten, führen zu soft-feel-Beschichtungen, die gegenüber den bekannten Bescliichtungen, in denen Polyester-Polyole als Baustein für die Polyurethane verwendet sind, erheblich verbesserte Gebrauchseigenschaften aufweisen und insbesondere keine klebrigen Oberflächen ergeben. Die vorteilhaften Eigenschaften ergeben sich unabhängig vom beschichteten Substrat, wie durch Testreihen auf Metallen, Kunststoffen, Holz und mineralischen Untergründen wie Stein und Beton bestätigt wurde.
Die Erfindung wird durch die nachstehenden Beispiele erläutert.
Beispiele
Beispiel 1 Herstellung eines Polycarbonatdiols PCI
600 g Diäthylengly ol und 1320 g 1,6-Hexandiol wurden in einen Dreihalskolben mit aufgesetzter Füllkörperkolonne und Tropftrichter unter einer Stickstoffatmosphäre vorgelegt und auf 200 °C erwärmt. AnscMießend wurden 1,6 g Tetraisopropyltitanat zugegeben und insgesamt 1608 g Dimethylcarbonat submers so zugegeben, daß die KolonneMcopftemperatur unter 59 °C blieb. Die BreclizaM des Destillats wurde dabei regelmäßig geprüft, sie blieb hn Bereich von 1,3391 bis 1,3395. Nach beendeter Zudosierung wurde noch eine Stunde bei der Temperatur gehalten, anscliließend wurde die Temperatur auf 180 °C gesenkt. Das unreagierte Dimethylcarbonat wurde zusaimnen mit dem gebildeten Methanol durch
Destillation unter vermindertem Druck (100 bis 180 liPa) entfernt; es verblieben ca. 2270 g eines Polycarbonatdiols mit einer HydroxylzaM von 171 mg/g, einem Staudinger-Index (gemessen in Chloroform bei 23 °C) von 8,6 cm3/g und einer dynamischen Viskosität (25 s"1; 23 °C) von 3690 mPa-s. Beispiel 2 Herstellung eines Polycarbonatdiols PC2
Enstprechend dem Procedere in Beispiel 1 wurden 600 g Diäthylenglykol, 1257 g 1,6- Hexandiol und 48 g Trimetliylolpropan vorgelegt, mit den gleichen Mengen Katalysator und Dimethylcarbonat ergaben sich 2255 g eines Polycarbonat-Polyols mit einer PlydroxylzaM von 170 mg/g.
Beispiel 3 Polyurethandispersion 1 935 g des Polycarbonat-Diols PCI aus Beispiel 1, 20 g Trimethylolpropan und 73 g Dniiethylolpropionsäure wurden in einem Realctionsgefäß vorgelegt und auf 120 °C erwärmt, bis sich eine klare Lösung ergeben hatte. Während ca. 90 Minuten wurden 260 g Hexamethylendiisocyanat submers bei dieser Temperatur unter Külilung zudosiert. Nach einer Stunde Nachrühren wurde auf 95 °C abgekülilt und eine Mischung von 39 g Dimethyläthanolamin und 39 g voll entsalztem Wasser innerhalb von 15 Minuten eingerührt.
Anschließend wurden bei 85 °C bis 90 °C weitere 1210 g Wasser eingerührt; die resultierende Dispersion wurde noch eine Stunde bei dieser Temperatur nachgerührt. Nach Abkühlen auf ca. 30 °C wurde durch ein 25 μm- Vliesfilter filtriert. Es ergaben sich 2576 g einer Polyurethan-Dispersion mit einem Festkörper-Massenanteil von ca. 50 %, einer dynamischen Viskosität von ca. 34 300 mPa-s, einer Säureza von ca. 22 mg/g und einer
Aminza von ca. 19,1 mg/g. Der pH- Wert wurde nach Verdünnung mit Wasser auf einen Festkörper-Massenanteil von 10 % zu 7,5 bestimmt.
Beispiel 4 Polyurethandispersion 2
Entsprechend dem Procedere in Beispiel 3 wurde eine Polyurethandispersion hergestellt aus 955 g des Polycarbonat-Polyols PC2 aus Beispiel 2, 73 g Diniethylolpropionsäure, 260 g Hexamethylendiisocyanat und einer Mischung von 39 g Dimethyläthanolamin und 39 g Wasser. Nach Verdünnung mit 1210 g Wasser, Abkühlen und Filtrieren über ein 25 μm- Vliesfilter ergaben sich 2576 g einer Polyurethan-Dispersion mit einem Festkörpermassen- anteil von ca. 50% und einer Viskosität von ca. 25100 mPa-s. Beispiel 5 Polyurethandispersion 3 (kettenverlängert)
Beispiel 5J Präpolymer
955 g des Polycarbonat-Polyols PC2 aus Beispiel 2 und 73 g Dimethylolpropionsäure wurden in einen Realctionsgefäß vorgelegt und auf 100 °C erwärmt, bis sich eine klare Lösung ergeben hatte. Danach wurde die Mischung auf 60 °C gekülilt. Dabei wurde sie leicht trübe. Während ca. 30 Minuten wurden 417 g Hexamethylendiisocyanat submers bei dieser Tem- peratur unter Kühlung zudosiert. Es wurde solange nachgerülirt, bis der Massenanteil an freien Isocyanatgruppen in der Reaktionsmischung auf ca. 2,8 % gefallen war.
Beispiel 5J Polyurethan-Dispersion In einem weiteren Realctionsgefäß wurden 91 g Diätlianolamin, 2265 g Wasser und 39 g
Dimethyläthanolamin gemischt; die Mischung wurde auf 60 °C geheizt xmd anschließend wurde das Präpolymer aus Beispiel 5.1 unter gutem Rühren eindispergiert. Nach einer Stunde Nachrühren wurde auf 35 °C abgeküMt und durch ein 25 μm- Vliesfilter filtriert. Es ergaben sich 3840 g einer Polyurethan-Dispersion mit einem Festkörper-Massenanteil von ca. 40 %.
Beispiel 6 Polyurethandispersion 4
Das Procedere aus Beispiel 5 wurde wiederholt, wobei 935 g des Polycarbonat-Diols PCI aus Beispiel 1, 20 g Trimethylolpropan und 73 g Dimethylolpropionsäure vorgelegt wurden. Nach Zugabe von 417 g Hexamethylendiisocyanat wurde solange reagiert, bis der
Massenanteil von freien Isocyanatgruppen auf ca. 2,8 % gefallen war.
Das Präpolymer wurde mit einer Mischung von 39 g Dimetliyläthanolaii in und 1000 g
Wasser, das auf 60 °C temperiert war, dispergiert und 10 Minuten danach mit einer Mischung aus 28,3 g Triethylentetramm in 451 g Wasser weiter umgesetzt . Nach Filtration über ein 25 μm- Vliesfilter ergaben sich 2960 g einer Polyurethan-Dispersion mit einem Festkörper- Massenanteil von ca. 49 % und einer Viskosität (23 °C, 25 s"1) von 1300 mPa-s.
Beispiel 7 Vergleichsbeispiel
Beispiel 7J Polyester-Polyol
Eine Mischmig von 32,2 kg Diätliylenglykol und 16,42 kg Athylenglykol wurde mit 72 kg Adipinsäure unter Zusatz von 330 g Dibutylzimidilaurat auf 150 °C erhitzt. Das entstehende Wasser wurde durch Zusatz von Xylol ausgelαeist, wobei im Verlauf von drei Stunden die
Temperatur bis auf 220 °C gesteigert wurde. Die Mischung wurde bei dieser Temperatur gehalten, bis eine SäurezaM von unter 3 mg/g erreicht war. Die HydroxylzaM des erhaltenen Polyesters betrug ca. 50 mg/g, bei 23 °C und einem Schergefälle von 25 s"1 wurde eine Viskosität von ca. 10 mPa-s gemessen.
Beispiel 1.2 Polyesterurethan
9,8 kg des Polyesterpolyols aus Beispiel 7J wurden mit 345 g Trimethylolpropan, 25 g Athylenglykol, 109 g 1,6-Hexandiol und 741 g Dimethylolpropionsäure gemischt und auf 130 °C erwärmt. Nach Erreichen dieser Temperatur wurden 1730 g 1,6-Diisocyanatol exan wälirend ca. 20 Minuten zugefügt und diese Temperatur noch ca. 1 Stunde gehalten. Nach Abkühlen auf 80 °C wurde durch Zugabe von ca. 290 g Dimethyläthanolamin neutralisiert und in ca. 10 g Wasser dispergiert zu einer feinteiligen Dispersion mit einem Festkörper- Massenanteil von ca. 55 %. Diese Dispersion hatte eine Viskosität von ca. 1000 mPa-s bei 23 °C und einem Schergefalle von ca. 25 sJ Die HydroxylzaM betrug ca. 40 mg/g, die
SäurezaM ca. 27 mg/g (jeweils bezogen auf den Feststoff der Dispersion). Beispiel 8 Lackformulierung
Es wurde ein Zweikomponentenlack (Lack A) hergestellt mit der folgenden Formulierung, wobei jeweils die mit einer römischen Za bezeichneten Teilschritte nacheinander ausgeführt wurden:
I (80,00 g Polyurethandispersion aus Beispiel 3 ( 6,70 g Wasser deiomsiert ( 0,50 g ®DNE Entschäumer (Bayer AG) ( 1,50 g Methoxypropanol π( 1,60 g ©Colanyl schwarz PR 130 (Clariant Deutschland GmbH) ( 9,00 g ® Acematt TS 100 (Degussa AG) (Kieselsäure)
111(0,10 g Dibutylzimidilaurat (0,40 g ®Byk 346 (Byk) (Benetzungsmittel, Polyätlier-modifiziertes Polydimethysiloxan) (0,20 g ®DNE Entschäumer (Bayer AG)
100,0 g
IV(Komponente 2, (10,0 g ©Bayhydur 3100 (Bayer AG)
Zur Herstellung des Lacks wurde Teil I vorgelegt und gut gemischt. Anschließend wurden die Komponenten des Teils II zugesetzt und die Mischmig wurde zwanzig Minuten auf einer
PerlmüMe dispergiert. Danach wurden die Komponenten des Teils IH zugemischt. Unmittelbar vor der Verarbeitung wurde der Teil IV, ®Bayhydur 3100, zugesetzt.
Die Mischung der Teile I bis III hatte einen Festkörper-Massenanteil von ca. 50 %, der er- zeugte Lack (Teile I bis TV) eine Viskosität gemessen als Auslaufzeit aus eine Becher nach
DIN EN ISO 2431 bei 23 °C und einer Auslauföffnung mit einem Durclmesser von 5 mm von ca. 38 s. Das Pigment/Bindemittelverhältnis (Masse des Pigments geteilt durch die Masse des Festkörper- Anteils des Bindemittels) betrug 0,2 : 1. Die Topfzeit des fertig gemischten Lacks (Teile I bis IV) betrug bei Raumtemperatur (23 °C) in einem offenen Gefäß ca. vier Stunden.
Als Vergleiclisbeispiel wurde ein Vergleichslack (Lack V) auf dieselbe Weise hergestellt, nur daß dabei die Dispersion aus Beispiel 7 verwendet wurde.
Beispiel 9 Prüfung der Lacke
Die beiden Polyurethandispersionen aus Beispiel 3 und 7 (Vergleich) wurden 4 Wochen bei 40 °C gelagert. Wöchentlich wurde die SäurezaM titriert sowie die Viskosität gemessen. Die erfindungsgemäße Dispersion des Beispiels 3 blieb dabei unverändert. Bei der Dispersion des Nergleichsbeispiels 7 nahm die SäurezaM deutlich zu, und die Viskosität nahm um über 3 Zehnerpotenzen ab.
Die Ergebnisse dieser Lagertests sind in den Fig. 1 und 2 dargestellt. Dabei zeigt Fig. 1 den zeitlichen Verlauf der Viskosität und der SäurezaM der Polyurethandispersion gemäß Beispiel 3 bei Lagerung bei einer Temperatur von 40 °C. In Fig. 2 sind der Verlauf der
Viskosität der Dispersion und der SäurezaM für die Polyurethandispersion des Nergleichsbeispiels (Beispiel 7) dargestellt.
Mit dem erfindungsgemäßen Lack A und dem als Vergleich dienenden Lack V aus Beispiel 8 wurden Besclήclitungen auf PVC-Platten durch Spritzen hergestellt, die nach einer
Ablüftzeit von dreißig Minuten bei Raumtemperatur für weitere dreißig Minuten bei 80 °C im Ofen getrocknet wurden. Die so beschichteten Platten wurden weitere vierundzwanzig Stunden bei 60 °C forciert gealtert. Danach wurden beide Platten für 3 Tage in einem Klimaschrank gelagert, der eine bei 90 °C mit Wasserdampf gesättigte Atmosphäre enthielt. An den so gealterten Bescliichtungen wurde die Haptik geprüft. Die PVC-Platte, die mit dem erfmdungsgemäßen Lack A beschichtet war, blieb imverändert. Die Beschichtung mit dem Lack V des Vergleichsbeispiels zeigte eine leichte Oberflächeiilclebriglceit. o-o-o-o

Claims

Patentansprüche
1. Wasserverdünnbare Polyurethan-Dispersionen, enthaltend Bausteine abgeleitet von Polyisocyanaten A, Polyolen B mit einer zalilenmittleren molaren Masse M„ von mindestens 400 g/mol, Verbindungen D, die mindestens zwei gegenüber Isocyanatgruppen reaktive Gruppen und mindestens eine zur Amonenbildung befähigte Gruppe aufweisen, niedemiolelcularen Polyolen E, die gegenüber Isocyanatgruppen kerne weiteren realctiven Gruppen tragen, Verbindungen G, die gegenüber Isocyanaten monofunlctionell sind oder alctiven Wasserstoff iterscliiedlicher Reaktivität enthalten und von den Verbindungen E verscMeden sind, dadurch gekemizeicMiet, daß die Polyole B mindestens einen Massenanteil von 85 % an Polycarbonat-Polyolen Bl enthalten.
2. Wasserverdünnbare Polyurethan-Dispersionen nach Anspruch 1, dadurch gelcenn- zeic et, daß sie zusätzlich Bausteine abgeleitet von niedermolekularen Polyolen C mit Mn unter 400 g/mol enthalten.
3. Wasserverdünnbare Polyurethan-Dispersionen nach Anspruch 1, dadurch gekennzeichnet, daß sie zusätzlich Bausteine enthalten abgeleitet von Verbindungen H, die von B, C, D, E und G verscMeden sind und mindestens zwei mit NCO-Gruppen reaktive Gruppen enthalten.
4. Wasserverdünnbare Polyurethan-Dispersionen nach Anspruch 1, dadurch gekennzeichnet, daß die Polycarbonat-Polyole Bl eine zalilenmittlere molare Masse Mn von 400 g/mol bis 5000 g/mol und eine HydroxylzaM von 30 mg/g bis 280 mg/g besitzen.
5. Wasserverdünnbare Polyurethan-Dispersionen nach Anspruch 1, dadurch gekemizeicMiet, daß als Komponente Bl ausschließlich diftuilctionelle Polycarbonat-Polyole Bl eingesetzt sind.
6. Wasserverdünnbare Polyurethan-Dispersionen nach Anspruch 1, dadurch gekemizeicMiet, daß bis zu 5 % der Masse der Polycarbonat-Polyole Bl drei- oder höherwertige Polycarbonat-Polyole sind.
7. Wasserverdünnbare Polyurethan-Dispersionen nach Anspruch 1, dadurch gekennzeichnet, daß die Polycarbonat-Polyolen Bl nur endständige OH-Gruppen aufweisen.
8. Wasserverdünnbare Polyurethan-Dispersionen nach Anspruch 1, dadurch gekemizeicMiet, daß die Polycarbonat-Polyole Bl Polycarbonate sind von aliphatisclien linearen, verzweigten oder cyclischen Alkoholen Bll mit 2 bis 40 KoMenstoffatomen sowie von
Alkylenätheralkoholen mit 2 bis 4 KoMenstoffatomen in der AUcylengruppe und insgesamt 4 bis 20 KoMenstoffatomen.
9. Wasserverdünnbare Polyurethan-Dispersionen nach Anspruch 1, dadurch gekenn- zeiclinet, daß die Polycarbonat-Polyole Bl abgeleitet sind von Mischungen aus Alkylenätheralkoholen und alpha-omega-Dihydroxyalkanen.
10. Wasserverdünnbare Polyurethan-Dispersionen nach Anspruch 1,- dadurch gekennzeichnet, daß die Komponente B noch weitere Polyole enthält ausgewälilt aus Polyäther- polyolen, Acrylatpolyolen und Polyolefinpolyolen.
11. Bescl ichtungsmittel enthaltend wasserverdünnbare Polyurethan-Dispersionen nach Anspruch 1.
12. Verwendung von wasserverdümϊbaren Polyurethan-Dispersionen nach Anspruch 1 zur
Herstellung von BescMchrungen. o-o-o-o
PCT/EP2004/006689 2003-06-27 2004-06-21 Wasserverdünnbare polyurethandispersionen WO2005000930A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2527023A CA2527023C (en) 2003-06-27 2004-06-21 Water-dilutable polyurethane dispersions
EP04740125A EP1641855A1 (de) 2003-06-27 2004-06-21 Wasserverdünnbare polyurethandispersionen
US10/561,257 US7345109B2 (en) 2003-06-27 2004-06-21 Water-dilutable polyurethane dispersions
JP2006516012A JP4567679B2 (ja) 2003-06-27 2004-06-21 水希釈性ポリウレタン分散液
ZA2005/10371A ZA200510371B (en) 2003-06-27 2005-12-21 Water-dilutable polyurethane dispersions
NO20060448A NO20060448L (no) 2003-06-27 2006-01-27 Vannfortynnbare polyuretandispersjoner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0099103A AT412648B (de) 2003-06-27 2003-06-27 Wasserverdünnbare polyurethandispersionen
ATA991/2003 2003-06-27

Publications (1)

Publication Number Publication Date
WO2005000930A1 true WO2005000930A1 (de) 2005-01-06

Family

ID=33136534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/006689 WO2005000930A1 (de) 2003-06-27 2004-06-21 Wasserverdünnbare polyurethandispersionen

Country Status (9)

Country Link
US (1) US7345109B2 (de)
EP (1) EP1641855A1 (de)
JP (1) JP4567679B2 (de)
CN (1) CN100491430C (de)
AT (1) AT412648B (de)
CA (1) CA2527023C (de)
NO (1) NO20060448L (de)
WO (1) WO2005000930A1 (de)
ZA (1) ZA200510371B (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033030A2 (en) 2005-09-14 2007-03-22 Ppg Industries Ohio, Inc. Multi-component, waterborne coating compositions, related coatings and methods
WO2008110480A1 (de) * 2007-03-09 2008-09-18 Chemetall Gmbh Verfahren zur beschichtung von metallischen oberflächen mit einer wässerigen, polymere enthaltenden zusammensetzung, die wässerige zusammensetzung und verwendung der beschichteten substrate
WO2009107354A1 (ja) * 2008-02-27 2009-09-03 日本ポリウレタン工業株式会社 ポリウレタンフィルム及びその製造方法
EP2216352A1 (de) * 2009-02-10 2010-08-11 Bayer MaterialScience AG 2K-Polyurethan-Lack für Trägerfolien
EP2216353A1 (de) * 2009-02-10 2010-08-11 Bayer MaterialScience AG Trägerfolie mit Polyurethan-Beschichtung
EP2692807A1 (de) * 2011-03-31 2014-02-05 Dai Nippon Toryo Co., Ltd. Wässrige beschichtungszusammensetzung

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080167431A1 (en) * 2005-09-14 2008-07-10 Ppg Industries Ohio, Inc. Multi-component, waterborne coating compositions, related coatings and methods
CN102046686B (zh) * 2008-05-29 2013-08-28 宇部兴产株式会社 水性聚氨酯树脂分散体、其制造方法和含有其的涂料组合物
KR20110041520A (ko) * 2008-07-16 2011-04-21 우베 고산 가부시키가이샤 수성 폴리우레탄 수지 분산체 및 그의 제조 방법
KR101731127B1 (ko) 2009-02-26 2017-04-27 우베 고산 가부시키가이샤 수성 폴리우레탄 수지 분산체 및 그의 제조 방법
JP5664545B2 (ja) 2009-02-26 2015-02-04 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその製造方法
JP5732674B2 (ja) 2009-08-20 2015-06-10 宇部興産株式会社 水性ポリウレタン樹脂分散体及びその製造方法
WO2011037033A1 (ja) * 2009-09-23 2011-03-31 三菱樹脂株式会社 積層ポリエステルフィルム
CN102686626B (zh) * 2009-12-18 2015-08-19 纳幕尔杜邦公司 水基涂料组合物
KR20140039237A (ko) * 2011-05-31 2014-04-01 우베 고산 가부시키가이샤 수성 폴리우레탄 수지 분산체 및 그것을 함유하는 코팅용 조성물
RU2652782C2 (ru) * 2012-11-16 2018-05-03 Басф Се Полиуретаны, их дисперсии, их получение и применение
EP3235844A1 (de) * 2016-04-20 2017-10-25 ALLNEX AUSTRIA GmbH Wässrige polyurethan-dispersion
EP3560981B1 (de) 2016-12-22 2024-01-31 Mitsubishi Chemical Corporation Polycarbonatpolyol und polyurethan
JP2019044003A (ja) * 2017-08-30 2019-03-22 Dic株式会社 二液硬化型ウレタン樹脂組成物及びフィルム成形品
CN108330712B (zh) * 2017-12-13 2021-03-19 上海华峰新材料研发科技有限公司 印花胶浆用聚(碳酸酯-醚)型聚氨酯乳液及制备方法
US11732083B2 (en) 2020-11-19 2023-08-22 Covestro Llc Polyisocyanate resins
CN114836091A (zh) * 2022-04-12 2022-08-02 上海立邦长润发涂料有限公司 一种水性透明格丽斯主剂及其制备方法和应用
CN116676032A (zh) * 2023-06-26 2023-09-01 厦门双瑞船舶涂料有限公司 一种快干辊涂型水性风电叶片面漆及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525567A2 (de) * 1991-08-01 1993-02-03 Bayer Ag Verwendung von Beschichtungsmitteln zur Erzeugung wasserdampfdurchlässiger Beschichtungen
EP0665563A1 (de) * 1994-01-17 1995-08-02 Diafoil Hoechst Co., Ltd Kondensator mit metallisierten Polyesterfolien
EP0669352A1 (de) 1994-02-25 1995-08-30 Bayer Ag Wässrige Polyester-Polyurethan-Dispersionen und ihre Verwendung in Beschichtungsmitteln
EP0784097A1 (de) * 1995-12-21 1997-07-16 Bayer Ag Dispersion nachvernetzbarer Beschichtungsmittel
US6084051A (en) * 1998-06-02 2000-07-04 Bayer Aktiengesellschaft High solids polyurethane-urea dispersions having improved storage stability

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124605A (en) 1963-12-05 1964-03-10 Biuret polyisocyanates
US3358010A (en) 1964-03-11 1967-12-12 Mobay Chemical Corp Biuret polyisocyanates
US3412054A (en) 1966-10-31 1968-11-19 Union Carbide Corp Water-dilutable polyurethanes
US3640924A (en) 1968-12-20 1972-02-08 American Cyanamid Co Textile adhesive from polyurethane containing carboxylate groups
DE2308015B2 (de) 1973-02-17 1980-07-31 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Polyisocyanaten mit Biuretstruktur
US3976622A (en) 1973-02-17 1976-08-24 Bayer Aktiengesellschaft Process for the production of polyisocyanates with a biuret structure
US3903126A (en) 1973-12-11 1975-09-02 Basf Ag Manufacture of biuret group-containing polyisocyanates
US4066591A (en) 1975-06-02 1978-01-03 Ppg Industries, Inc. Water-reduced urethane coating compositions
US4046729A (en) 1975-06-02 1977-09-06 Ppg Industries, Inc. Water-reduced urethane coating compositions
AU502343B2 (en) 1975-06-02 1979-07-19 Ppg Industries, Inc. Aqueous dispersion of a non-gelled polyurethane
GB1575637A (en) 1976-10-04 1980-09-24 Textron Inc Aqueous colloidal polyurea-urethane ionomer dispersions
CA1112243A (en) 1978-09-08 1981-11-10 Manfred Bock Process for the preparation of polyisocyanates containing isocyanurate groups and the use thereof
DE2928552A1 (de) 1979-07-14 1981-01-29 Bayer Ag Waessrige dispersionen urethanmodifizierter polyester, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von lacken
DE19653585A1 (de) * 1996-12-20 1998-06-25 Bayer Ag Colöserfreie, wäßrige, anionische Polyurethandispersionen, ein Verfahren zu ihrer Herstellung und Verwendung
JPH11228654A (ja) * 1998-02-18 1999-08-24 Nippon Polyurethane Ind Co Ltd 水性塗料用ポリウレタン系エマルジョン及びそれを用いた水性塗料
JPH11228655A (ja) * 1998-02-18 1999-08-24 Nippon Polyurethane Ind Co Ltd 水性印刷インキ用ポリウレタン系エマルジョン及びそれを用いた水性印刷インキ
JPH11323300A (ja) * 1998-05-13 1999-11-26 Nippon Polyurethane Ind Co Ltd 水性接着剤用ポリウレタン系エマルジョン及びそれを用いた水性接着剤
JPH11323252A (ja) * 1998-05-13 1999-11-26 Nippon Polyurethane Ind Co Ltd 水性塗料用ポリウレタン系エマルジョン及びそれを用いた水性塗料
JP2000169701A (ja) * 1998-12-07 2000-06-20 Sanyo Chem Ind Ltd ポリウレタン樹脂水性分散体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525567A2 (de) * 1991-08-01 1993-02-03 Bayer Ag Verwendung von Beschichtungsmitteln zur Erzeugung wasserdampfdurchlässiger Beschichtungen
EP0665563A1 (de) * 1994-01-17 1995-08-02 Diafoil Hoechst Co., Ltd Kondensator mit metallisierten Polyesterfolien
EP0669352A1 (de) 1994-02-25 1995-08-30 Bayer Ag Wässrige Polyester-Polyurethan-Dispersionen und ihre Verwendung in Beschichtungsmitteln
EP0784097A1 (de) * 1995-12-21 1997-07-16 Bayer Ag Dispersion nachvernetzbarer Beschichtungsmittel
US6084051A (en) * 1998-06-02 2000-07-04 Bayer Aktiengesellschaft High solids polyurethane-urea dispersions having improved storage stability

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033030A2 (en) 2005-09-14 2007-03-22 Ppg Industries Ohio, Inc. Multi-component, waterborne coating compositions, related coatings and methods
WO2007033030A3 (en) * 2005-09-14 2007-05-31 Ppg Ind Ohio Inc Multi-component, waterborne coating compositions, related coatings and methods
US7473442B2 (en) 2005-09-14 2009-01-06 Ppg Industries Ohio, Inc. Multi-component, waterborne coating compositions, related coatings and methods
EP2251390A1 (de) * 2005-09-14 2010-11-17 PPG Industries Ohio, Inc. Mehrkomponentiger Wasserlack, entsprechende Lackierungen und Verfahren
WO2008110480A1 (de) * 2007-03-09 2008-09-18 Chemetall Gmbh Verfahren zur beschichtung von metallischen oberflächen mit einer wässerigen, polymere enthaltenden zusammensetzung, die wässerige zusammensetzung und verwendung der beschichteten substrate
AU2008225914B2 (en) * 2007-03-09 2011-12-22 Chemetall Gmbh Method for coating metal surfaces using an aqueous compound having polymers, the aqueous compound, and use of the coated substrates
WO2009107354A1 (ja) * 2008-02-27 2009-09-03 日本ポリウレタン工業株式会社 ポリウレタンフィルム及びその製造方法
EP2216352A1 (de) * 2009-02-10 2010-08-11 Bayer MaterialScience AG 2K-Polyurethan-Lack für Trägerfolien
EP2216353A1 (de) * 2009-02-10 2010-08-11 Bayer MaterialScience AG Trägerfolie mit Polyurethan-Beschichtung
WO2010091823A1 (de) * 2009-02-10 2010-08-19 Bayer Materialscience Ag Trägerfolie mit polyurethan-beschichtung
EP2692807A1 (de) * 2011-03-31 2014-02-05 Dai Nippon Toryo Co., Ltd. Wässrige beschichtungszusammensetzung
EP2692807A4 (de) * 2011-03-31 2014-09-03 Dainippon Toryo Kk Wässrige beschichtungszusammensetzung

Also Published As

Publication number Publication date
ZA200510371B (en) 2006-12-27
CA2527023C (en) 2011-10-11
US7345109B2 (en) 2008-03-18
JP4567679B2 (ja) 2010-10-20
NO20060448L (no) 2006-01-27
CA2527023A1 (en) 2005-01-06
JP2008530253A (ja) 2008-08-07
AT412648B (de) 2005-05-25
CN100491430C (zh) 2009-05-27
EP1641855A1 (de) 2006-04-05
US20070083002A1 (en) 2007-04-12
ATA9912003A (de) 2004-10-15
CN1813012A (zh) 2006-08-02

Similar Documents

Publication Publication Date Title
AT412648B (de) Wasserverdünnbare polyurethandispersionen
EP0537568B1 (de) Bindemittelkombination, ein Verfahren zu ihrer Herstellung und ihre Verwendung
EP1599525B1 (de) 2k-pur-systeme
EP0654052B1 (de) Wasserverdünnbares überzugsmittel auf polyol- und polyisocyanatbasis, verfahren zu dessen herstellung und seine verwendung
EP1354902A1 (de) Wässrige Polysiloxan-Polyurethan-Dispersion, ihre Herstellung und Verwendung in Beschichtungsmitteln
EP0269972A2 (de) Verfahren zur Herstellung von in Wasser löslichen oder dispergierbaren Polyurethanen und ihre Verwendung zur Beschichtung beliebiger Substrate
EP1198487A1 (de) Polyurethan-dispersionen
DE19506736A1 (de) Wäßrige Bindemittel auf Polyester-Polyurethan-Basis
EP1845120B1 (de) Wässrige polyurethan-Dispersionen mit verbesserter Lagerstabilität
EP1790674B1 (de) Wässrige, Urethangruppen enthaltende, hydroxyfunktionelle Polyester-Dispersionen
DE4000748A1 (de) Waessrige ueberzugsmasse, deren herstellung und verwendung
AT410213B (de) Wasserverdünnbare bindemittel für ''soft-feel''-lacke
EP3109269B1 (de) Harnstofffreie polyurethan-dispersionen
WO2006099918A2 (de) Zubereitung zur beschichtung von substratoberflächen
AT409633B (de) Bindemittel für ''soft-feel''-lacke
AT500555B1 (de) Selbstvernetzende wässrige polyurethandispersionen
EP2848637A1 (de) Wässrige, hydroxylgruppenhaltige Polyurethandispersionen, ein Verfahren zu deren Herstellung und deren Verwendung in Beschichtungsmitteln
EP3768749A1 (de) Wässrige uretdiongruppenhaltige zusammensetzungen und verfahren zu deren herstellung
EP1306398B1 (de) Hochmolekulare Polyurethan-Dispersionen
EP1338634A1 (de) Oberflächenschutz für lackierte Flächen
EP2305727A1 (de) Neue 2K-PUR-Systeme
EP0562436A1 (de) Wasserverdünnbare Zweikomponenten-Überzugsmasse, ein Verfahren zu deren Herstellung und deren Verwendung
EP0989145B1 (de) Wässrige Polyurethan-Dispersionen mit reduziertem Gehalt an Triethylamin
EP2912079B1 (de) Beschichtungsmittel für mattierbare beschichtungen
EP3590988A1 (de) Wässrige uretdiongruppenhaltige zusammensetzungen und verfahren zu deren herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2527023

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004740125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005/10371

Country of ref document: ZA

Ref document number: 200510371

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 20048180899

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006516012

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004740125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007083002

Country of ref document: US

Ref document number: 10561257

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10561257

Country of ref document: US