WO2004114417A1 - 薄膜光電変換装置 - Google Patents

薄膜光電変換装置 Download PDF

Info

Publication number
WO2004114417A1
WO2004114417A1 PCT/JP2004/007803 JP2004007803W WO2004114417A1 WO 2004114417 A1 WO2004114417 A1 WO 2004114417A1 JP 2004007803 W JP2004007803 W JP 2004007803W WO 2004114417 A1 WO2004114417 A1 WO 2004114417A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
thin film
conversion device
crystalline silicon
conversion unit
Prior art date
Application number
PCT/JP2004/007803
Other languages
English (en)
French (fr)
Inventor
Takashi Suezaki
Masashi Yoshimi
Toshiaki Sasaki
Yuko Tawada
Kenji Yamamoto
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to AU2004250460A priority Critical patent/AU2004250460B2/en
Priority to DE602004022807T priority patent/DE602004022807D1/de
Priority to EP04735406A priority patent/EP1635402B1/en
Priority to US10/543,516 priority patent/US7678992B2/en
Priority to AT04735406T priority patent/ATE441213T1/de
Priority to JP2005507194A priority patent/JP4558646B2/ja
Publication of WO2004114417A1 publication Critical patent/WO2004114417A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to improvement of conversion efficiency of a thin film photoelectric conversion device, and more particularly to improvement of photoelectric conversion efficiency of a large area thin film photoelectric conversion device including a crystalline silicon photoelectric conversion unit formed by a plasma C V D method.
  • crystalline silicon photoelectric conversion devices including crystalline silicon photoelectric conversion units have been developed.
  • a hybrid thin film photoelectric conversion device in which these units are stacked has also been put into practical use.
  • crystalline includes polycrystals and microcrystals.
  • crystalline and microcrystalline shall also mean those that are partially amorphous.
  • a thin film photoelectric conversion device generally includes a transparent electrode film, one or more semiconductor thin film photoelectric conversion units, and a back electrode film, which are sequentially laminated on a transparent substrate. And one semiconductor thin film photoelectric conversion unit! ) Includes an i-type layer sandwiched by a n-type layer and an n-type layer.
  • the i-type layer which occupies most of the thickness of the photoelectric conversion unit, is a substantially intrinsic semiconductor layer, and the photoelectric conversion effect is mainly generated in this i-type layer, so that it is called a photoelectric conversion layer.
  • This i-type layer is preferably thicker in order to increase light absorption and increase the photocurrent, but if it is thicker than necessary, the cost and time for film formation will increase.
  • the p-type layer and n-type layer are called conductive layers and play a role in generating a diffusion potential in the semiconductor thin film photoelectric conversion unit.
  • the characteristics of the thin film photoelectric conversion device depend on the magnitude of this diffusion potential.
  • the value of the open-circuit voltage which is one of
  • these conductive layers are inactive layers that do not directly contribute to photoelectric conversion, and light absorbed by impurities doped in the conductive layer results in a loss that does not contribute to power generation. Therefore, if the conductive layer of the mold layer and the n-type layer is within a range that can generate a sufficient diffusion potential, It is preferable to have the smallest possible thickness.
  • the semiconductor thin film photoelectric conversion unit or the thin film photoelectric conversion device has a non-crystalline i-type layer material, regardless of whether the conductive layer material contained therein is amorphous or crystalline.
  • a crystalline silicon material is called an amorphous silicon photoelectric conversion unit or an amorphous silicon thin film photoelectric conversion device.
  • An i-type material made of crystalline silicon is a crystalline silicon photoelectric conversion unit or a crystalline silicon photoelectric device. It is called a conversion device.
  • a method for improving the conversion efficiency of the thin film photoelectric conversion device there is a method of stacking two or more semiconductor thin film photoelectric conversion units into a tandem type.
  • a front unit including a photoelectric conversion layer having a large band gap is arranged on the light incident side of the thin film photoelectric conversion device, and then a small panda gap (for example, Si_Ge alloy) is sequentially arranged.
  • a small panda gap for example, Si_Ge alloy
  • a stack of an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit is called a hybrid thin film photoelectric conversion device.
  • the wavelength of light that can be photoelectrically converted by i-type amorphous silicon is about 800 nm on the long wavelength side, but i-type crystalline silicon is about 110 nm longer than that. It is possible to perform photoelectric conversion up to light having a wavelength of.
  • a thickness of 0.3 ⁇ or less is sufficient for light absorption sufficient for photoelectric conversion.
  • the crystalline silicon photoelectric conversion layer made of crystalline silicon having a small light absorption coefficient preferably has a thickness of about 2 to 3 m or more in order to sufficiently absorb long-wavelength light. In other words, the crystalline silicon photoelectric conversion layer usually needs to be about 10 times as thick as the amorphous silicon photoelectric conversion layer.
  • -3 1 9 6 9 2 uses a plasma CVD apparatus to hold a transparent substrate with a transparent conductive film formed on one main surface with an area of 120 cm 2 or more on a substrate holder and When the crystalline silicon photoelectric conversion layer is formed at a power density of 10 O mW / cm 2 or more, the substrate holder and the transparent conductive film on the surface of the transparent substrate are electrically insulated from each other to form the crystalline silicon photoelectric conversion layer. And suppressing the abnormal discharge between the transparent conductive film on the surface of the transparent substrate.
  • This abnormal discharge is considered to occur when the charge charged on the transparent conductive film tries to escape to the substrate holder when the amount of charge accumulated in the transparent conductive film is more than a considerable amount. Since the amount of charge that escapes depends on the “substrate area Z substrate circumference”, this value depends on the substrate size. In other words, the larger the substrate size, more specifically, the larger the area of 1 200 cm 2 or more, the more the amount of charge that escapes at once becomes a certain value or more. .
  • An integrated thin film photoelectric conversion device generally includes a plurality of photoelectric transistors, each of which is laminated on a transparent substrate and has a strip shape, each of which includes a transparent electrode film, one or more semiconductor thin film photoelectric conversion units, and a back electrode film.
  • the integrated thin film photoelectric conversion device will be described with reference to the drawings.
  • the same referential mark is attached
  • FIG. 1 is a plan view schematically showing an integrated thin film photoelectric conversion device 1.
  • FIG. 2 is a cross-sectional view schematically showing the integrated thin film photoelectric conversion device 1.
  • the integrated thin film photoelectric conversion device 1 shown in FIG. 2 is a hybrid thin film photoelectric conversion device.
  • the photoelectric conversion cell 10 includes a transparent electrode film 3 and an amorphous silicon photoelectric conversion layer on a transparent substrate 2.
  • Amorphous silicon photoelectric conversion unit 4a, crystalline silicon photoelectric conversion unit 4b with crystalline silicon photoelectric conversion layer, back electrode film 5, sealing resin layer 6, organic protective layer 7 have. That is, this integrated thin film photoelectric conversion device 1 uses a hybrid-type structure to convert light incident from the transparent substrate 2 side.
  • the semiconductor thin film photoelectric conversion units 4a and 4b that form the film are used for photoelectric conversion.
  • the integrated thin film photoelectric conversion device 1 is provided with first and second separation grooves 21 and 2 2 and a connection groove 23 that divide the thin film.
  • the first and second separation grooves 21, 2 2 and the connection groove 23 are parallel to each other and extend in a direction perpendicular to the paper surface.
  • the boundary between adjacent photoelectric conversion cells 10 is defined by the second separation groove 22.
  • the first separation groove 21 divides the transparent electrode film 3 corresponding to each photoelectric conversion cell 10, and has an opening at the interface between the transparent electrode film 3 and the amorphous silicon photoelectric conversion unit 4 a. And the surface of the transparent substrate 2 is the bottom surface.
  • the first separation groove 21 is filled with an amorphous material constituting the amorphous silicon photoelectric conversion unit 4a, and electrically insulates the adjacent transparent electrode films 3 from each other.
  • the second separation groove 22 is provided at a position away from the first separation groove 21.
  • the second separation groove 22 divides the semiconductor thin film photoelectric conversion unit 4 a, 4 b, and the back electrode film 5 in accordance with the respective photoelectric conversion cells 10, and is sealed with the back electrode film 5 and the resin sealing.
  • An opening is formed at the interface with the layer 6, and the surface of the transparent electrode film 3 is the bottom surface.
  • the second separation groove 22 is filled with a sealing resin layer 6 and electrically insulates the back electrode films 6 between adjacent photoelectric conversion cells 10.
  • connection groove 23 is provided between the first separation groove 21 and the second separation groove 22.
  • the connection groove 23 divides the semiconductor thin film photoelectric conversion units 4 a and 4 b, has an opening at the interface between the crystalline silicon photoelectric conversion unit 4 b and the back electrode film 5, and the surface of the transparent electrode film 3. Is the bottom.
  • the connection groove 23 is embedded with a metal material constituting the back electrode film 5, and electrically connects one back electrode film 5 and the other transparent electrode film 3 of the adjacent photoelectric conversion cell 10. ing. That is, the metal material that fills the connection groove 23 and it has a role of connecting the photoelectric conversion cells 10 juxtaposed on the substrate 1 in series.
  • the integrated thin film photoelectric conversion device 1 since the photoelectric conversion cells 10 are connected in series, the integrated thin film photoelectric conversion device 1 at the time of photoelectric conversion The current value is equal to the current value of the photoelectric conversion cell 10 having the smallest photocurrent generated during photoelectric conversion among the plurality of photoelectric conversion cells 10, and the surplus photocurrent in the other photoelectric conversion cells 10 is lost. It becomes. Therefore, conventionally, studies have been made to keep the film quality in the plane of the crystalline silicon photoelectric conversion unit 4b constant. In other words, in the integrated thin film photoelectric conversion device 1 including the crystalline silicon photoelectric conversion unit 4b, it is generated due to the difference in crystallinity of the crystalline silicon photoelectric conversion layer in order to reduce the current loss as described above. Attempts have been made to obtain high photoelectric conversion efficiency by eliminating the region where the photocurrent is small and making the film quality uniform in the plane.
  • the region where the photocurrent of the crystalline silicon photoelectric conversion layer is small can be discriminated by visually observing the film side after the formation of the crystalline silicon photoelectric conversion unit 4b, and is observed as a cloudy discoloration region. Is done. This is due to the difference in crystallinity of crystalline silicon, which is the material of the crystalline silicon photoelectric conversion layer, and the cloudy discoloration region is not sufficiently crystallized. Since it is an area containing crystalline silicon, it is observed as cloudy and the photocurrent generated is small. On the other hand, since the normal region is sufficiently crystallized, it is observed as a gray region without white turbidity, and the generated photocurrent is larger than that of the white turbid color changing region.
  • Japanese Patent Application Laid-Open No. 1 1 1 3 3 0 5 2 0 describes a plasma reaction chamber of 1 3 3 Pa (lTorr) or less, which has been conventionally used for the production of a relatively thin amorphous silicon photoelectric conversion layer. It is disclosed that a high quality thick crystalline silicon photoelectric conversion layer can be formed at a high speed by using a high reaction chamber pressure of 6 6 7 Pa (5 Torr) or more instead of pressure. However, there is no description about such a cloudy discoloration region.
  • the present invention solves the problem of a small open-circuit voltage and a fill factor in a thin film photoelectric conversion device including a crystalline silicon photoelectric conversion unit, and reduces the current value.
  • the object is to provide a thin film photoelectric conversion device with improved photoelectric conversion efficiency, particularly an integrated thin film photoelectric conversion device.
  • the thin film photoelectric conversion device is a thin film photoelectric conversion device in which at least a transparent electrode film, a crystalline silicon photoelectric conversion mute and a back electrode film are sequentially formed on one main surface of a transparent substrate, After the crystalline silicon photoelectric conversion unit is formed, a part of its surface has a cloudy discoloration region.
  • the cloudy discoloration region is preferably 5% or less of the photoelectric conversion region area of the thin film photoelectric conversion device.
  • the transparent electrode film, the crystalline silicon photoelectric conversion unit, and the back electrode film are separated by a plurality of separation grooves so as to form a plurality of photoelectric conversion cells,
  • the white turbid discoloration region exists in a width of 2 mm or more and 1 O mm or less from the boundary parallel to the series connection direction of the photoelectric conversion region to the photoelectric conversion region side. Preferably it is.
  • the thin film photoelectric conversion device of the present invention preferably further comprises an amorphous silicon photoelectric conversion unit between the transparent electrode film and the crystalline silicon photoelectric conversion unit.
  • the thin film photoelectric conversion device of the present invention is a thin film photoelectric conversion device in which at least a transparent electrode film, a crystalline silicon photoelectric conversion unit, and a back electrode film are sequentially formed on one main surface of a transparent substrate.
  • the difference between the maximum value and the minimum value of the absolute reflectance including the diffuse component, measured by entering monochromatic light with a wavelength of 800 nm from the other main surface of the transparent substrate, is 5% or more. It is characterized by that.
  • the thin film photoelectric conversion device of the present invention is particularly preferable when the area of the semiconductor thin film photoelectric conversion unit formed on one main surface of the transparent substrate is 600 cm 2 or more.
  • FIG. 1 is a plan view schematically showing an integrated thin film photoelectric conversion device.
  • FIG. 2 is a cross-sectional view schematically showing an integrated thin film photoelectric conversion device.
  • FIG. 3 is a cross-sectional view schematically showing the formation position of the insulating separation groove.
  • FIG. 4 is a plan view schematically showing an integrated thin film photoelectric conversion device on a 9 10 X 9 1 Omm size substrate, and a schematic plan view of the thin film photoelectric conversion device when divided into a 910 X 455 mm size. .
  • FIG. 5 is a photograph of the film surface after the formation of the crystalline silicon photoelectric conversion unit on the 9 10 X 9 1 Omm size substrate and an enlarged photograph of the cloudy discoloration region.
  • FIG. 6 is a diagram showing spectral reflectance measurement points of a 9 10 X455 mm size integrated thin film photoelectric conversion device.
  • FIG. 7 is a plan view schematically showing a 300 ⁇ 40 Omm size integrated thin film photoelectric conversion device formed on a 360 ⁇ 465 mm size substrate.
  • FIG. 8 is a diagram showing spectral reflectance measurement points of a 300 ⁇ 400 mm size integrated thin film photoelectric conversion device. BEST MODE FOR CARRYING OUT THE INVENTION
  • the transparent substrate 2 for example, a glass plate or a transparent resin film can be used.
  • the glass plate transparency can be inexpensively obtained a large area plate, high insulating properties, Si0 2, N a 2 0 ⁇ Pi C a O both major surfaces mainly composed of a smooth float plate glass Can be used.
  • the transparent electrode film 3 may be constituted by I TO film, S n0 2 film, or a transparent conductive oxide layer such as Z Itashita film.
  • the transparent electrode film 3 may have a single layer structure or a multilayer structure.
  • the transparent electrode film 3 can be formed using a vapor deposition method known per se, such as a vapor deposition method, a CVD method, or a sputtering method.
  • a vapor deposition method known per se, such as a vapor deposition method, a CVD method, or a sputtering method.
  • On the surface of the transparent electrode film 3 It is preferable to form a surface texture structure including fine irregularities. By forming such a texture structure on the surface of the transparent electrode film 3, it is possible to improve the light incidence efficiency to the semiconductor thin film photoelectric conversion unit 4.
  • the tandem type thin film photoelectric conversion device is provided with two or more semiconductor thin film photoelectric conversion units.
  • the hybrid type thin film photoelectric conversion device has an amorphous silicon photoelectric conversion unit 4 a and a crystalline silicon photoelectric conversion unit 4.
  • the amorphous silicon photoelectric conversion unit 4a has an amorphous silicon photoelectric conversion layer, and has a structure in which a p-type layer, an amorphous silicon photoelectric conversion layer, and an n-type layer are sequentially stacked from the transparent electrode film 3 side. Have these! ) Type layer, amorphous silicon photoelectric conversion layer, and n-type layer can all be formed by a plasma C VD method.
  • the crystalline silicon photoelectric conversion unit 4b includes a crystalline silicon photoelectric conversion layer.
  • a p-type layer, a crystalline silicon photoelectric conversion layer, and an n-type layer are provided from the amorphous silicon photoelectric conversion unit 4a side.
  • a p-type layer, a crystalline silicon photoelectric conversion layer, and an n-type layer are provided from the amorphous silicon photoelectric conversion unit 4a side.
  • a p-type layer, a crystalline silicon photoelectric conversion layer, and an n-type layer are sequentially stacked.
  • These p-type layer, crystalline silicon photoelectric conversion layer, and n-type layer can all be formed by a plasma C VD method.
  • the p-type layer constituting these semiconductor thin film photoelectric conversion units 4a and 4b is formed by doping a p-type determining impurity atom such as poly-aluminum into a silicon alloy such as silicon or silicon carbide or silicon germanium, for example. Can be formed.
  • the amorphous silicon photoelectric conversion layer and the crystalline silicon photoelectric conversion layer can be formed of an amorphous silicon semiconductor material and a crystalline silicon semiconductor material, respectively.
  • Intrinsic semiconductor silicon (such as silicon hydride) can be used to fist silicon carbide and silicon alloys such as silicon germanium.
  • n-type layer can be formed by doping silicon or a silicon alloy such as silicon carbide or silicon germanium with n- conductivity-determining impurity atoms such as phosphorus or nitrogen.
  • Amorphous silicon photoelectric conversion unit 4a constructed as above and crystalline silicon
  • the absorption wavelength region of the photoelectric conversion unit 4b is different from that of the photoelectric conversion unit 4b. Since the photoelectric conversion layer of the amorphous silicon photoelectric conversion unit 4a is made of amorphous silicon and the photoelectric conversion layer of the crystalline silicon photoelectric conversion unit 4b is made of crystalline silicon, the former 550 The light component of about nm can be absorbed most efficiently, and the latter can absorb the light component of about 900 nm most efficiently.
  • the thickness of the amorphous silicon photoelectric conversion unit 4 a is preferably in the range of 0.0 1 / im to 0.5 m, and is in the range of 0.1 l // m to 0.3 m. It is more preferable.
  • the thickness of the crystalline silicon photoelectric conversion unit 4b is 0.1 l ⁇ n! Is preferably in the range of ⁇ ⁇ ⁇ , and more preferably in the range of 0.1 ⁇ to 5 m.
  • the back electrode film 5 not only functions as an electrode, but also reflects light that has entered the semiconductor thin film photoelectric conversion units 4 a and 4 b from the transparent substrate 2 and arrived at the back electrode film 5 to reflect the semiconductor thin film photoelectric conversion module. It also functions as a reflective layer that re-enters the bases 4a and 4b.
  • the back electrode film 5 can be formed to a thickness of, for example, about 200 nm to 400 nm by vapor deposition or sputtering using silver or aluminum.
  • a transparent conductive thin film (not shown) made of a non-metallic material such as Z ⁇ can be provided in order to improve the adhesion between the two.
  • Each photoelectric conversion cell 10 formed on the transparent substrate 2 of the integrated thin film photoelectric conversion device 1 is sealed with an organic protective layer 7 via a sealing resin layer 6.
  • a resin capable of adhering the organic protective layer to the cells 10 is used.
  • the organic protective layer 7 includes a fluororesin-based film such as a polyvinyl fluoride film (for example, Tedlar Film (registered trademark)). An insulating film with excellent moisture resistance and water resistance such as film or PET film is used.
  • the organic protective layer may have a single layer structure or a laminated structure in which these layers are laminated. Furthermore, the organic protective layer may have a structure in which a metal foil made of aluminum or the like is sandwiched between these films.
  • the organic protective layer can be protected from moisture more effectively than the photoelectric conversion cell 10 by having such a structure.
  • These sealing resin layer 6 / organic protective layer 7 can be simultaneously attached to the back side of the integrated thin film photoelectric conversion device 1 by a vacuum laminating method.
  • the insulating separation grooves 14 are formed on the transparent electrode film 2 as shown in FIG.
  • One or more photoelectric conversion cells 10 shown in FIG. 1 are formed in parallel with the integration direction 50 which is the direction of series connection of the photoelectric conversion cells 10.
  • the cloudy discoloration region can be visually observed from the film surface side after the crystalline silicon thin film photoelectric conversion unit 4 b is formed.
  • the cloudy discoloration region has a certain degree of uncertainty even under exactly the same conditions, and becomes particularly prominent in large areas due to the temperature distribution, plasma density distribution, and spatial relationship with the substrate holder. Therefore, it is important to control the cloudy discoloration area that does not need to be considered in the small area.
  • the cloudy discoloration region needs to be present in an appropriate amount at an appropriate location.
  • the area occupying the entire photoelectric conversion region of the cloudy discoloration region is preferably 5% or less. If present more than this, the short-circuit current drop will exceed the open-circuit voltage and fill factor improvements.
  • the clouding discoloration region is on the side parallel to the integration direction 50 with respect to each photoelectric conversion cell 10 of the integrated thin film photoelectric conversion device 1. It is preferable to exist at both ends or one end. At that time, the cloudy discoloration region is in the direction in which the photoelectric conversion cells 10 are connected in series, that is, parallel to the integration direction, from the boundary of the photoelectric conversion cells 10 to the inside of the photoelectric conversion cells 10 2 mm to 1 O mm.
  • the drop in the short circuit current exceeds the improvement in the open circuit voltage and fill factor.
  • the transparent electrode film 2 is formed on the photoelectric conversion region 52 and the surrounding non-photoelectric regions with the insulation separation groove 14 as a boundary.
  • the cloudy discoloration area is likely to be elongated along the boundary in the accumulation direction 50.
  • the cloudy discoloration region does not occur in the same area for all photoelectric conversion cells 10, so it occurs on both ends with an average width of about 6 mm, and is perpendicular to the integration direction 50. If the white turbid color change region does not occur, the white turbid color change region is 5% or less when the length in the direction perpendicular to the integration direction 50 of the photoelectric conversion cell is 24 O mm or more. Actually, not only the both ends of the integrated thin film photoelectric conversion device 1 in the direction parallel to the integration direction but also the white turbidity discoloration regions are generated at both ends in the vertical direction.
  • the size of the integrated thin film photoelectric conversion device 1 needs to be 2440 mm ⁇ 25 Omm or more, that is, 600 cm 2 or more.
  • the semiconductor thin film photoelectric conversion unit 4 of the transparent substrate 2 is formed after sealing with resin or the like. It is difficult to visually discriminate from the surface that is not. However, it is possible to discriminate from the surface of the transparent substrate 2 on which the semiconductor thin film photoelectric conversion unit is not formed by measuring the spectral reflectance using a spectral reflectometer.
  • Spectral reflection measurement uses a integrating sphere to measure reflection including diffuse components at an incident angle of 10 °, and uses values based on a barium sulfate plate.
  • the cloudy discoloration region is defined by the fact that the cloudy discoloration region is greater than 5% between the cloudy discoloration region and the region where the spectral reflectance of 80 nm is not. I can do it.
  • Example 1 A glass substrate 2 having a size of 9 10 mm ⁇ 9 1 Omm, on which the Sn 0 2 film 3 was formed on the main surface, was prepared. As shown in FIG. 1, the S N_ ⁇ 2 film 3 it was made form the surface of the glass substrate by laser scribing, to form separation grooves 2 1 and the insulating isolation groove 14. At this time, as shown in FIG. 3, when the plasma CVD apparatus is installed on the substrate holder 31, the first insulation separation with a width of about 1 00 // m so that it is about 1 mm away from the inner periphery of the substrate holder 31. A groove 14a was formed, and a second insulating separation groove 14b having a width of about 100 ⁇ m was formed at a distance of about 0.7 mm inward from the first insulating separation groove 14a.
  • These insulating separation grooves 14 are formed when a crystalline silicon photoelectric conversion unit 4 b is formed on a substrate having a large area of 1 200 cm 2 or more with a high power density of 100 mW / cm 2 or more by plasma CV D. Insulating between the holder 31 and the transparent conductive film 2 on the substrate surface serves to prevent abnormal discharge.
  • the glass substrate 2 on which the single Sn 0 2 film 3 on which the above laser scribing was performed was held on the substrate holder 31. At this time, if the positional deviation of the glass substrate 2 is anticipated, the distance from the inner periphery of the substrate holder 31 to the first insulating separation groove 14a is in the range of 3 ⁇ 2 mm.
  • the substrate holder 3 1 holding the glass substrate 2 is loaded into a CVD apparatus with 1 15 cmX 1 1 8 cm electrodes installed, and silane, hydrogen, methane and dipolane are introduced as reaction gases and p-type After forming the layer, silane is introduced as a reaction gas to form an amorphous silicon photoelectric conversion layer, and then silane, hydrogen, and phosphine are introduced as reaction gases to form an n-type layer, thereby forming an amorphous silicon photoelectric conversion layer. Nit 4a was formed.
  • silane, hydrogen and dipolane were introduced as reaction gases to form a P-type layer, and then hydrogen and silane were introduced as reaction gases under the flow conditions shown in Example 1 in Table 1 to form a crystalline silicon photoelectric conversion layer.
  • silane, hydrogen and phosphine were introduced as reaction gases to form an n-type layer to form crystalline silicon photoelectric conversion unit 4b.
  • amorphous silicon photoelectric conversion Laser scribing unit 4a and crystalline silicon photoelectric conversion unit 4b thus, connection grooves 23 were formed.
  • a back electrode film 5 that is a multilayer film of a ZnO film and an Ag film was formed as a back electrode film by a sputtering method.
  • the peripheral insulating groove 4 2 a was formed on the insulating separation groove 14 previously formed in the S n 0 2 film 3.
  • FIG. 5 shows the appearance of the cloudy discoloration area.
  • This cloudy discoloration region 5 1 is 9 1 0 X 4 5
  • the peripheral insulation separation groove 4 2 a parallel to the integration direction 50 It existed with a width of not less than mm and not more than 10 mm.
  • the cloudy discoloration region 51 is approximately equal to the total area of the photoelectric conversion region 52.
  • the spectral reflectance was measured for the sample in which the hybrid integrated thin film photoelectric conversion device 1 having the cloudy discoloration region 51 was sealed. Spectral reflection measurement was performed by measuring the reflection including diffuse components with an integrating sphere at an incident angle of 10 ° with reference to a barium sulfate plate.
  • the spectral reflectance at 80 O nm was larger by 5% or more in the cloudy discoloration region 51 than in the normal region where it was not. That is, as a result of measuring the spectral reflectance at nine points shown in FIG. 6, as shown in Example 1 of Table 2, the absolute value difference is 12.1%. It was.
  • measurement points 1, 4, and 7 correspond to the cloudy discoloration region 51
  • measurement points 2, 3, 5, 6, 8, and 9 correspond to the normal region.
  • the initial output which is the output before photodegradation due to light exposure of this hybrid integrated thin-film photoelectric conversion device 1, is that of a solar simulator with an irradiance of 10 OmW / cm 2 , AMI .5 using a xenon and halogen lamp as the light source. It is measured from the electrical characteristics when light is incident from the glass side. The measurement temperature was 25 ° C. As shown in Example 1 in Table 3, the initial output was 42.8 W. At this time, the short-circuit current, open-circuit voltage, and fill factor were 0.456 A, 135.5 V, and 0.692, respectively.
  • Table 1 shows the relationship between the film forming flow rate condition of the crystalline silicon photoelectric conversion layer and the cloudy discoloration region in the hybrid integrated thin film photoelectric conversion device of each example and each comparative example.
  • Table 2 shows the spectral reflectance at 800 nm of the hybrid integrated thin film photoelectric conversion device of each example and each comparative example.
  • Table 3 shows the photoelectric conversion characteristics of the hybrid integrated thin film photoelectric conversion device of each example and each comparative example.
  • a hybrid integrated thin film photoelectric conversion device 1 of Comparative Example 1 was produced in the same manner as in Example 1 except that the crystalline silicon photoelectric conversion layer was formed under the flow conditions shown in Comparative Example 1 of Table 1.
  • the hybrid integrated thin film photoelectric conversion device 1 of Comparative Example 1 the hybrid integrated thin film photoelectric conversion device 1 of 9 10 X 455 mm size without the cloudy discoloration region 5 1 was obtained by observation of the film surface before sealing.
  • the initial output and spectral reflectance of the hybrid integrated thin film photoelectric conversion device 1 of Comparative Example 1 were measured, and the results were as shown in Comparative Example 1 of Table 3 and Comparative Example 1 of Table 2, respectively. .
  • Example 2 480 50 One end 15-30 5.5
  • Example 4 38.1 0.435 72.8 12.1 (Example 2)
  • a hybrid integrated thin film photoelectric conversion device 1 of Example 2 was produced in the same manner as in Example 1 except that the crystalline silicon photoelectric conversion layer was formed under the flow conditions shown in Example 2 of Table 1.
  • the white turbid color-changing regions 51 that have turned white at both ends of the photoelectric conversion cell 10 are seen.
  • This white turbidity discoloration region 5 1 is 9 1 0 X 4 5
  • the peripheral insulation separation groove 4 2 a parallel to the integration direction 50 1 Photovoltaic conversion area with a width of 5 mm or more and 3 O mm or less
  • the cloudiness discoloration region 51 was about 5.5% with respect to the total area of 52.
  • Example 1 when the spectral reflectance of the hybrid integrated thin film photoelectric conversion device 1 of Example 2 was measured at 9 points as shown in FIG. 6, as shown in Example 2 of Table 2, 80 0 The difference in absolute value of spectral reflectance at nm was 11.7%.
  • measurement points 1, 4, and 7 correspond to the cloudy discoloration region 51
  • measurement points 2, 3, 5, 6, 8, and 9 correspond to the normal region.
  • Example 2 Similar to Example 1, the initial output of the hybrid integrated thin film photoelectric conversion device 1 of Example 2 was measured and found to be 41.2 W as shown in Example 2 of Table 3. Short-circuit current, open-circuit voltage, and fill factor are 0.4 4 1 A, 1 3 6.7 V, and 0.
  • Example 2 compared to Comparative Example 1, the open-circuit voltage and fill-fatter are high, and the initial output is also high. Compared to Example 1, the short-circuit current was slightly lower and the initial output was slightly lower.
  • the glass substrate 2 is moved to the position where the 40 O mm x 500 mm electrode is installed in a single wafer plasma CVD system that can transfer the glass substrate 2 by the transfer fork without using the substrate holder. Then, using the same gas as in Example 1, amorphous silicon photoelectric conversion unit 4a and crystalline silicon photoelectric conversion unit 4b were formed. At this time, the crystalline silicon photoelectric conversion layer was formed under the flow conditions shown in Example 3 in Table 1. Made. After forming the crystalline silicon photoelectric conversion unit 4b, the connection groove 23 is formed by laser scribing, and the back electrode film 5, which is a multilayer film of Z ⁇ film and Ag film, is formed as a back electrode film by sputtering. Formed.
  • the separation groove 2 2 and the peripheral insulation grooves 4 2 a and 4 2 b shown in Fig. 4 are formed by laser scribing, the lead wire 12 is attached, and the size of 8.9 mm with a size of 300 x 400 mm
  • a hybrid integrated thin-film photoelectric conversion device 1 in which 28 X photoelectric conversion cells 10 of X 3 80 mm were connected in series was fabricated.
  • Example 1 when the spectral reflectance of the hybrid integrated thin film photoelectric conversion device 1 of Example 3 was measured at 9 points as shown in FIG. 8, it was 80 0 as shown in Example 3 of Table 2. The difference in absolute value of spectral reflectance at 0 nm was 9.9%.
  • measurement points 1, 3, 4, 6, 7, and 9 correspond to the cloudy discoloration region 51
  • measurement points 2, 5, and 8 correspond to the normal region.
  • Example 3 When the initial output of the hybrid integrated thin film photoelectric conversion device 1 of Example 3 was measured in the same manner as in Example 1, it was 12.3 W as shown in Example 3 of Table 3. At this time, the short-circuit current, open-circuit voltage, and fill factor were 0.43 9 A, 37.8 V, and 0.74 1, respectively.
  • a hybrid integrated thin film photoelectric conversion device 1 of Comparative Example 2 was produced in the same manner as in Example 3 except that the crystalline silicon photoelectric conversion layer was formed under the flow conditions shown in Comparative Example 2 of Table 1.
  • the hybrid type integrated thin film photoelectric conversion device 1 of Comparative Example 2 the hybrid type integrated thin film photoelectric conversion device 1 having a size of 300 mm X 400 mm having no cloudy discoloration region 5 1 in the film surface observation before sealing is Obtained.
  • the initial output and spectral reflectance of the hybrid integrated thin film photoelectric conversion device 1 of Comparative Example 2 were measured. The results were as shown in Comparative Example 2 in Table 2 and Comparative Example 2 in Table 3.
  • Example 4 When the crystalline silicon photoelectric conversion layer is formed under the flow conditions shown in Example 4 in Table 1, as shown schematically in FIG. 7, there are white turbid color-changing regions 51 that have turned white at both ends of the photoelectric conversion cell 10. It was seen.
  • This cloudy discoloration region 5 1 is 5 mm or more and 16 mm or less from one side of the peripheral isolation groove 42 a parallel to the integration direction 50 when the hybrid integrated thin film photoelectric conversion device 1 of 300 X 40 Omm size is used.
  • the cloudy discoloration region 51 was about 5.2% of the total area of the photoelectric conversion region 52.
  • Example 2 As in Example 1, when the spectral reflectance was measured at 9 points shown in FIG. 8, the difference in the absolute value of the spectral reflectance at 800 nm was 9.6% as shown in Example 4 of Table 2. .
  • Example 4 When the initial output was measured in the same manner as in Example 1, it was 12.1 W as shown in Example 4 in Table 3.
  • the short-circuit current, open-circuit voltage, and fill factor were 0.435A, 38.IV, 0, respectively. It was 728.
  • the open-circuit voltage and fill factor are higher, and the initial output is also higher.
  • the short-circuit current was slightly lower and the initial output was also slightly lower.
  • the thin film photoelectric conversion device of the present invention is a thin film photoelectric conversion device including a crystalline silicon photoelectric conversion unit, and has a cloudy discoloration region in the crystalline silicon photoelectric conversion layer. It is possible to provide a thin film photoelectric conversion device in which the problem of voltage and fill factor is solved and photoelectric conversion efficiency is improved. In addition, after the formation of the crystalline silicon photoelectric conversion unit, the thin film light immediately after completion It is possible to determine whether the photoelectric conversion characteristics of the electric conversion device are good or bad.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

結晶質シリコン光電変換ユニットを含む薄膜光電変換装置において、開放端電圧およびフィルファクタが小さくならないようにすることで、光電変換効率が改善された薄膜光電変換装置、特に、集積化薄膜光電変換装置を提供する。本発明による薄膜光電変換装置は、透明基板の一方の主面上に少なくとも透明電極膜、結晶質シリコン光電変換ユニット及び裏面電極膜が順に形成された薄膜光電変換装置であって、前記結晶質シリコン光電変換ユニット形成後に、その表面の一部に白濁変色領域を有するようにしてなる。前記白濁変色領域は光電変換領域面積の5%以下とすることが好ましい。また、集積化薄膜光電変換装置とすることが好ましい。

Description

明細書
薄膜光電変換装置
技術分野
本発明は、 薄膜光電変換装置の変換効率の改善に関し、 特にプラズマ C V D法 により形成される結晶質シリコン光電変換ュニットを含む大面積薄膜光電変換装 置の光電変換効率の改善に関するものである。
背景技術
今日、 薄膜光電変換装置は多様化し、 従来の非晶質シリコン光電変換ユニット を含む非晶質シリコン光電変換装置の他に結晶質シリコン光電変換ュニットを含 む結晶質シリコン光電変換装置も開発され、 これらのユニットを積層したハイブ リツド型薄膜光電変換装置も実用化されている。 なお、 ここで使用する用語 「結 晶質」 は、 多結晶及ぴ微結晶を包含する。 また、 用語 「結晶質」 及び 「微結晶」 は、 部分的に非晶質を含むものをも意味するものとする。
薄膜光電変換装置としては、 透明基板上に順に積層された透明電極膜、 1以上 の半導体薄膜光電変換ユニット、 および裏面電極膜からなるものが一般的である 。 そして、 1つの半導体薄膜光電変換ユニットは!)型層と n型層でサンドイッチ された i型層を含んでいる。
光電変換ュニットの厚さの大部分を占める i型層は実質的に真性の半導体層で あって、 光電変換作用は主としてのこの i型層内で生じるので光電変換層と呼ば れる。 この i型層は光吸収を大きくし光電流を大きくするためには厚い方が好ま しいが、 必要以上に厚くすればその製膜のためのコストと時間が増大することに なる。
. 他方、 p型層や n型層は導電型層と呼ばれ、 半導体薄膜光電変換ユニット内に 拡散電位を生じさせる役目を果たしており、 この拡散電位の大きさによつて薄膜 光電変換装置の特性の 1つである開放端電圧の値が左右される。 し力 し、 これら の導電型層は光電変換に直接寄与しない不活性な層であり、 導電型層にドープさ れた不純物によって吸収される光は発電に寄与しない損失となる。 したがって、 型層と n型層の導電型層は、 十分な拡散電位を生じさせ得る範囲内であれば、 できるだけ小さな厚さを有することが好ましい。
このようなことから、半導体薄膜光電変換ュニットまたは薄膜光電変換装置は、 それに含まれる導電型層の材料が非晶質か結晶質かにかかわらず、 その主要部を 占める i型層の材料が非晶質シリコンのものは非晶質シリコン光電変換ュュット または非晶質シリコン薄膜光電変換装置と称され、 i型層の材料が結晶質シリコ ンのものは結晶質シリコン光電変換ュニットまたは結晶質シリコン光電変換装置 と称される。
ところで、 薄膜光電変換装置の変換効率を向上させる方法として、 2以上の半 導体薄膜光電変換ュニットを積層してタンデム型にする方法がある。 この方法に おいて、 薄膜光電変換装置の光入射側に大きなバンドギャップを有する光電変換 層を含む前方ユニットを配置し、 その後に順に小さなパンドギャップを有する ( たとえば S i _ G e合金などの) 光電変換層を含む後方ユニットを配置すること により、 入射光の広い波長範囲にわたって光電変換を可能にし、 これによつて薄 膜光電変換装置全体としての変換効率の向上を図ることができる。
このようなタンデム型薄膜光電変換装置の中でも、 非晶質シリコン光電変換ュ ニットと結晶質シリコン光電変換ュニットとを積層したものはハイプリッド型薄 膜光電変換装置と称される。
たとえば、 i型の非晶質シリコンが光電変換し得る光の波長は長波長側におい て 8 0 0 n m程度までであるが、 i型の結晶質シリコンはそれより長い約 1 1 0 0 n m程度の波長の光までを光電変換することができる。 ここで、 光吸収係数の 大きな非晶質シリコンからなる非晶質シリコン光電変換層では光電変換に充分な 光吸収のためには 0 . 3 ί πι以下の厚さでも十分であるが、 比較して光吸収係数 の小さな結晶質シリコンからなる結晶質シリコン光電変換層では長波長の光をも 十分に吸収するためには 2〜3 m程度以上の厚さを有することが好ましい。 す なわち、 結晶質シリコン光電変換層は、 通常は、 非晶質シリコン光電変換層に比 ベて 1 0倍程度の大きな厚さが必要となる。
他方、 薄膜光電変換装置は、 より大きな発電能力と生産効率の向上のために大 面積化が求められている。 大面積化には様々な問題があり、 例えば特開 2 0 0 2 - 3 1 9 6 9 2号公報にはプラズマ C V D装置を用い、 一方の主面上に透明導電 膜が形成された面積 1 2 0 0 c m 2以上の透明基板を基板ホルダーに保持して電 極と対向させ、 1 0 O mW/ c m 2以上の電力密度で結晶質シリコン光電変換層 を形成するにあたり、 前記基板ホルダーと前記透明基板表面の透明導電膜とを電 気的に絶縁し前記基板ホルダーと前記透明基板表面の透明導電膜との間の異常放 電を抑制する事が記載されている。 この異常放電は、 透明導電膜に帯電した電荷 が基板ホルダーに逃げようとする際に、 透明導電膜に蓄積されている電荷の量が 相当量以上の場合に発生すると考えられ、 基板ホルダーに一度に逃げる電荷量は 「基板面積 Z基板周囲長」 に依存しているので、 この値は基板サイズに依存する 。 つまり、 基板サイズが大きい程、 具体的には、 1 2 0 0 c m 2以上の大面積と なると、 一度に逃げる電荷量が一定値以上となり、 異常放電が起き易くなるとの gd載力、める。
また、 大面積の薄膜光電変換装置は、 通常、 集積化薄膜光電変換装置として形 成される。 集積化薄膜光電変換装置は、 一般的に、 透明基板上に積層され、 かつ 各々が帯状の形状を有する、 透明電極膜、 1以上の半導体薄膜光電変換ユニット 、 及び裏面電極膜からなる複数の光電変換セルが直列に接続された構造を有する ここで図面を参照しながら集積化薄膜光電変換装置の説明をする。 なお、 各図 において同様の部材には同一の参照符号を付し、 重複する説明は省略する。
第 1図は、 集積化薄膜光電変換装置 1を概略的に示す平面図である。
第 1図に示す集積化薄膜光電変換装置 1について、 さらに詳しく説明する。 第 2図は、 集積化薄膜光電変換装置 1を概略的に示す断面図である。
第 2図に示す集積化薄膜光電変換装置 1はハイブリッド型薄膜光電変換装置で あって、 光電変換セル 1 0は、 透明基板 2上に、 透明電極膜 3、 非晶質シリコン 光電変換層を備えた非晶質シリコン光電変換ュニット 4 a、 結晶質シリコン光電 変換層を備えた結晶質シリコン光電変換ユニット 4 b、 及び裏面電極膜 5、 封止 樹脂層 6、 有機保護層 7を順次積層した構造を有している。 すなわち、 この集積 化薄膜光電変換装置 1は、 透明基板 2側から入射する光を、 ハイブリッド型構造 を形成する半導体薄膜光電変換ュ-ット 4 a、 4 bによって光電変換するもので ある。
第 2図に示すように、 集積化薄膜光電変換装置 1には、 上記薄膜を分割する第 1、 第 2の分離溝 2 1、 2 2と接続溝 2 3とが設けられている。 これら第 1、 第 2の分離溝 2 1、 2 2及び接続溝 2 3は、 互いに平行であって、 紙面に対して垂 直な方向に延在している。 なお、 隣り合う光電変換セル 1 0間の境界は、 第 2の 分離溝 2 2によって規定されている。
第 1の分離溝 2 1は、 透明電極膜 3をそれぞれの光電変換セル 1 0に対応して 分割しており、 透明電極膜 3と非晶質シリコン光電変換ュニット 4 aとの界面に 開口を有し且つ透明基板 2の表面を底面としている。 この第 1の分離溝 2 1は、 非晶質シリコン光電変換ュニット 4 aを構成する非晶質によって埋め込まれてお り、 隣り合う透明電極膜 3同士を電気的に絶縁している。
第 2の分離溝 2 2は、 第 1の分離溝 2 1から離れた位置に設けられている。 第 2の分離溝 2 2は、 半導体薄膜光電変換ュニット 4 a、 4 b、 及び裏面電極膜 5 をそれぞれの光電変換セル 1 0に対応して分割しており、 裏面電極膜 5と樹脂封 止層 6との界面に開口を有し且つ透明電極膜 3の表面を底面としている。 この第 2の分離溝 2 2は、 封止樹脂層 6によって埋め込まれており、 隣り合う光電変換 セル 1 0間で裏面電極膜 6同士を電気的に絶縁している。
接続溝 2 3は、 第 1の分離溝 2 1と第 2の分離溝 2 2との間に設けられている 。 接続溝 2 3は、 半導体薄膜光電変換ュニット 4 a、 4 bを分割しており、 結晶 質シリコン光電変換ュニット 4 bと裏面電極膜 5との界面に開口を有し且つ透明 電極膜 3の表面を底面としている。 この接続溝 2 3は、 裏面電極膜 5を構成する 金属材料で埋め込まれており、 隣り合う光電変換セル 1 0の一方の裏面電極膜 5 と他方の透明電極膜 3とを電気的に接続している。 すなわち、 接続溝 2 3及ぴそ れを埋め込む金属材料は、 基板 1上に並置された光電変換セル 1 0同士を直列接 続する役割を担っている。
ところで、 このような集積化薄膜光電変換装置 1においては、 光電変換セル 1 0が直列に接続されているため、 集積化薄膜光電変換装置 1全体の光電変換時の 電流値は、 複数ある光電変換セル 1 0の内、 光電変換時に生じる光電流が最小の 光電変換セル 1 0の電流値と等しくなり、 他の光電変換セル 1 0における余剰分 の光電流はロスとなる。 そこで、 従来、 結晶質シリコン光電変換ユニット 4 bの 面内での膜質を一定に保っための検討がなされてきた。 つまり、 結晶質シリコン 光電変換ュニット 4 bを含む集積化薄膜光電変換装置 1においては、 上述したよ うな電流ロスを低減させるために、 結晶質シリコン光電変換層の結晶性の違いに 起因して発生する光電流が小さい領域を無くし、 さらに、 面内で膜質を均一にす ることで、 高い光電変換効率を得ることが試みられてきた。
このとき、 結晶質シリ コン光電変換層の光電流が小さい領域は、 結晶質シリコ ン光電変換ュニット 4 bの形成後、 膜面側を目視観察することで判別が可能で、 白濁変色領域として観察される。 これは、 結晶質シリコン光電変換層の材料であ る結晶質シリコンの結晶性の違いよるもので、 白濁変色領域は、 十分に結晶化さ れておらず、 結晶質シリコンだけでなく多くの非晶質シリコンを含む領域なので 白濁して観察され、 生じる光電流は小さくなる。 一方、 正常領域は、 十分に結晶 化されているので白濁の無い灰色の領域として観察され、 生じる光電流は白濁変 色領域に比べ大きくなる。
特開平 1 1一 3 3 0 5 2 0号は、 比較的薄い非晶質シリコン光電変換層の製膜 の場合に従来用いられていた 1 3 3 P a ( l T o r r ) 以下のプラズマ反応室内 圧力の代わりに、 6 6 7 P a ( 5 T o r r ) 以上の高い反応室内圧力を利用する ことによって、 高品質の厚い結晶質シリコン光電変換層を高速度で製膜し得るこ とを開示しているが、 このような白濁変色領域に関する記載はない。
しかし、面積 6 0 0 c m2以上の結晶質薄膜光電変換装置またはハイプリッド型 薄膜光電変換装置において、 結晶質シリコン光電変換層に前記の白濁変色領域が 全く存在しない場合、 光電流が小さい領域が存在しないので、 光感度増加により 短絡電流は増加するが、 開放端電圧およびフィルファクタが低下するという問題 があることが判った。 発明の開示 上述のような状況に鑑み、 本発明は、 結晶質シリコン光電変換ュ-ットを含む 薄膜光電変換装置において、 小さい開放端電圧およびフィルファクタとなるとい う問題を解決するとともに、 電流値の低下を防止することで、 光電変換効率が改 善された薄膜光電変換装置、 特に、 集積化薄膜光電変換装置を提供することを目 的としている。
本発明による薄膜光電変換装置は、 透明基板の一方の主面上に少なくとも透明 電極膜、 結晶質シリコン光電変換ュ-ット及ぴ裏面電極膜が順に形成された薄膜 光電変換装置であって、 前記結晶質シリコン光電変換ユニット形成後に、 その表 面の一部に白濁変色領域を有することを特徴としている。
前記白濁変色領域が前記薄膜光電変換装置の光電変換領域面積の 5 %以下とす ることが好ましい。
本発明の薄膜光電変換装置は、 前記透明電極膜、 結晶質シリコン光電変換ュニ ット、 および裏面電極膜が複数の光電変換セルを形成するように複数の分離溝に よって分離されてなり、 かつ、 それらの複数のセルが接続用溝を介して互いに電 気的に直列接続されてなる集積化薄膜光電変換装置とすると、 特に好ましい。 また、 前記集積化薄膜光電変換装置は、 前記白濁変色領域が、 光電変換領域の 前記直列接続した方向に平行な境界から光電変換領域側へ 2 mm以上 1 O mm以 下の幅で存在していることが好ましい。
本発明の薄膜光電変換装置は、 前記透明電極膜と前記結晶質シリコン光電変換 ユニットとの間に、 非晶質シリコン光電変換ユニットをさらに備えてなることが 好ましい。
さらに、 本発明の薄膜光電変換装置は、 透明基板の一方の主面上に少なくとも 透明電極膜、 結晶質シリコン光電変換ュニット及ぴ裏面電極膜が順に形成された 薄膜光電変換装置であって、 光電変換領域において、 波長 8 0 0 n mの単色光を 、 前記透明基板の他方の主面から入射し測定した、 拡散成分を含む絶対反射率の 最大値と最小値の差が、 5 %以上であることを特徴としている。
本発明の薄膜光電変換装置は、 透明基板の一方の主面上に形成されている半導 体薄膜光電変換ュニットの面積が 6 0 0 c m 2以上である場合に、 特に好ましい 図面の簡単な説明
第 1図は、 集積化薄膜光電変換装置を概略的に示す平面図である。
第 2図は、 集積化薄膜光電変換装置を概略的に示す断面図である。
第 3図は、 絶縁分離溝の形成位置を概略的に示す断面図である。
第 4図は、 9 10 X 9 1 Ommサイズ基板の集積化薄膜光電変換装置を概略的 に示す平面図と 910 X 455 mmサイズに分割する際の薄膜光電変換装置の概 略的平面図である。
第 5図は、 9 10 X 9 1 Ommサイズ基板における結晶質シリコン光電変換ュ ニット形成後の膜面写真と白濁変色領域の拡大写真である。
第 6図は、 9 10 X455 mmサイズ集積化薄膜光電変換装置の分光反射率測 定点を示す図である。
第 7図は、 360 X 465 mmサイズ基板上に形成される 300 X 40 Omm サイズ集積化薄膜光電変換装置を概略的に示す平面図である。
第 8図は、 300 X400 mmサイズ集積化薄膜光電変換装置の分光反射率測 定点を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施形態についてより詳細に説明する。
本発明の薄膜光電変換装置の各構成要素について説明する。
透明基板 2としては、 例えば、 ガラス板や透明樹脂フィルムなどを用いること ができる。 ガラス板としては、 大面積な板が安価に入手可能で透明性、 絶縁性が 高い、 Si02、 N a 20及ぴ C a Oを主成分とする両主面が平滑なフロート板ガラ スを用いることができる。
透明電極膜 3は、 I TO膜、 S n02膜、 或いは Z ηθ膜のような透明導電性 酸化物層等で構成することができる。 透明電極膜 3は単層構造でも多層構造であ つても良い。 透明電極膜 3は、 蒸着法、 CVD法、 或いはスパッタリング法等そ れ自体既知の気相堆積法を用いて形成することができる。 透明電極膜 3の表面に は、 微細な凹凸を含む表面テクスチャ構造を形成することが好ましい。 透明電極 膜 3の表面にこのようなテクスチヤ構造を形成することにより、 半導体薄膜光電 変換ュニット 4への光の入射効率を向上させることができる。
タンデム型薄膜光電変換装置においては 2以上の半導体薄膜光電変換ュニット を供えており、 特にハイプリッド型薄膜光電変換装置においては非晶質シリコン 光電変換ュニット 4 aおよび結晶質シリコン光電変換ュ-ット 4 bを備えている。 非晶質シリコン光電変換ュニット 4 aは非晶質シリコン光電変換層を備えてお り、 透明電極膜 3側から p型層、 非晶質シリコン光電変換層、 及び n型層を順次 積層した構造を有する。 これら!)型層、 非晶質シリコン光電変換層、 及び n型層 はいずれもプラズマ C V D法により形成することができる。
一方、 結晶質シリコン光電変換ュニット 4 bは結晶質シリコン光電変換層を備 えており、 例えば、 非晶質シリコン光電変換ユニット 4 a側から p型層、 結晶質 シリコン光電変換層、 及び n型層を順次積層した構造を有する。 これら p型層、 結晶質シリコン光電変換層、 及び n型層はいずれもプラズマ C V D法により形成 することができる。
これら半導体薄膜光電変換ユニット 4 a、 4 bを構成する p型層は、 例えば、 シリコンまたはシリコンカーバイドゃシリコンゲルマニウム等のシリコン合金に、 ポロンゃアルミニゥム等の p導電型決定不純物原子をドープすることにより形成 することができる。 また、 非晶質シリコン光電変換層及び結晶質シリコン光電変 換層は、 非晶質シリコン系半導体材料及び結晶質シリコン系半導体材料でそれぞ れ形成することができ、 そのような材料としては、 真性半導体のシリコン (水素 化シリコン等) ゃシリコンカーバイド及ぴシリコンゲルマニウム等のシリコン合 金等を拳げることができる。 また、 光電変換機能を十分に備えていれば、 微量の 導電型決定不純物を含む弱 p型もしくは弱 n型のシリコン系半導体材料も用いら れ得る。 さらに、 n型層は、 シリコンまたはシリコンカーバイドやシリコンゲル マニウム等のシリコン合金に、 燐や窒素等の n導電型決定不純物原子をドープす ることにより形成することができる。
以上のように構成される非晶質シリコン光電変換ュニット 4 aと結晶質シリコ ン光電変換ュニット 4 bとでは互いに吸収波長域が異なっている。 非晶質シリコ ン光電変換ュニット 4 aの光電変換層は非晶質シリコンで構成され、 結晶質シリ コン光電変換ュニット 4 bの光電変換層は結晶質シリコンで構成されているので、 前者に 550 nm程度の光成分を最も効率的に吸収させ、 後者に 900 n m程度 の光成分を最も効率的に吸収させることができる。
非晶質シリコン光電変換ユニット 4 aの厚さは、 0. 0 1 /im〜0. 5 mの 範囲内にあることが好ましく、 0. l //m〜0. 3 mの範囲内にあることがよ り好ましい。
一方、 結晶質シリコン光電変換ユニッ ト 4 bの厚さは、 0. l ^n!〜 Ι Ο μπι の範囲内にあることが好ましく、 0. 1 μΐη〜5 mの範囲内にあることがより 好ましい。
裏面電極膜 5は電極としての機能を有するだけでなく、 透明基板 2から半導体 薄膜光電変換ュニット 4 a、 4 bに入射し裏面電極膜 5に到着した光を反射して 半導体薄膜光電変換ュ-ット 4 a、 4 b内に再入射させる反射層としての機能も 有している。 裏面電極膜 5は、 銀やアルミニウム等を用いて、 蒸着法ゃスパッタ リング法等により、 例えば 200 nm〜400 n m程度の厚さに形成することが できる。
なお、 裏面電極膜 5と半導体薄膜光電変換ユニット 4との間、 もしくはハイブ リッド型薄膜光電変換装置の場合は裏面電極膜 5と結晶質シリコン光電変換ュニ ット 4 bとの間には、 例えば両者の間の接着性を向上させるために、 Z ηθのよ うな非金属材料からなる透明電導性薄膜 (図示せず) を設けることができる。 集積化薄膜光電変換装置 1の透明基板 2上に形成された各光電変換セル 10は、 封止樹脂層 6を介して有機保護層 7により封止されている。この封止樹脂層 6は、 有機保護層をこれらセル 10に接着することが可能な樹脂が用いられる。 そのよ うな樹脂としては、 例えば、 EVA (エチレン ' ビュルアセテート共重合体) 、 P VB (ポリビニルプチラール) 、 P I B (ポリイソブチレン) 、 及ぴシリコー ン樹脂等を用いることができる。 また、 有機保護層 7としては、 ポリフッ化ビニ ルフィルム (例えば、 テドラーフィルム (登録商標) ) のようなフッ素樹脂系フ イルム或いは P E Tフィルムのような耐湿性や耐水性に優れた絶縁フィルムが用 いられる。 有機保護層は、 単層構造でもよく、 これらを積層した積層構造であつ てもよい。 さらに、 有機保護層は、 アルミニウム等からなる金属箔がこれらのフ イルムで挟持された構造を有してもよい。 アルミニウム箔のような金属箔は耐湿 性や耐水性を向上させる機能を有するので、 有機保護層をこのような構造とする ことにより、 光電変換セル 1 0より効果的に水分から保護することができる。 こ れら封止樹脂層 6 /有機保護層 7は、真空ラミネート法により集積化薄膜光電変換 装置 1の裏面側に同時に貼着することができる。
また、 第 3図に示すような基板ホルダー 3 1を結晶質シリコン薄膜光電変換ュ ニット 4 b形成時に用いる場合は、 透明電極膜 2上に第 3図に示すように絶縁分 離溝 1 4が 1本以上第 1図中に示す光電変換セル 1 0の直列接続の方向である集 積方向 5 0に平行に形成される。
ところで前記白濁変色領域は結晶質シリコン薄膜光電変換ュニット 4 b形成後 、 膜面側から目視で観察可能である。 白濁変色領域は全く同条件でも、 ある程度 の不確定性を持っており、 特に大面積においては、 温度分布、 プラズマ密度分布 、 基板ホルダーとの空間的関係などにより、 いっそう顕著となる。 そのため小面 積においては考慮する必要の無い白濁変色領域の制御を行うことが重要となる。 白濁変色領域は適当な箇所に適量の存在である必要がある。
白濁変色領域の光電変換領域全体に占める面積は 5 %以下が好ましい。 これ以 上存在すると短絡電流の低下が、 開放端電圧およびフィルファクタの向上を上回 る。 また、 直列に集積された構造をもつ集積化薄膜光電変換装置 1の場合、 白濁 変色領域は集積化薄膜光電変換装置 1の各光電変換セル 1 0に対して集積方向 5 0と平行な側の両端もしくは片端に存在する事が好ましい。 その際白濁変色領域 、 光電変換セル 1 0を直列接続した方向すなわち集積方向に対して平行側の光 電変換セル 1 0の境界から光電変換セル 1 0の内側へ 2 mm以上 1 O mm以下の 幅であれば、 短絡電流の低下が開放端電圧おょぴフィルファクタの向上を上回る 。 透明基板 2の一方の主面上において、 絶縁分離溝 1 4を形成することで、 絶縁 分離溝 1 4を境界として、 透明電極膜 2を光電変換領域 5 2とその周辺の非光電 変換領域に集積方向 5 0に平行に分割した場合には、 前記白濁変色領域は集積方 向 5 0に前記境界に沿つて細長く発生し易くなる。
逆に集積方向に対して垂直な側に白濁変色領域が存在し、 いくつかある光電変 換セル 1 0の内一つだけ全面が白濁変色領域となるとその光電変換セル 1 0の光 感度は非常に低くなり短絡電流が小さくなる。 そのため、 たとえ白濁変色領域の 面積が 5。/。以下であっても、 集積構造が直列のため集積化薄膜光電変換装置 1全 体として短絡電流が極端に小さくなり、 光電変換効率が低下する。
実際、 白濁変色領域が全ての光電変換セル 1 0に対して同じ面積だけ発生する わけではないので、 平均して 6 mm程度の幅で両端に発生し、 集積方向 5 0と垂 直な方向に白濁変色領域が生じないとすれば、 光電変換セルの集積方向 5 0に垂 直な方向の長さが 2 4 O mm以上の時、 白濁変色領域は 5 %以下となる。 実際に は、 集積化薄膜光電変換装置 1の集積方向に平行な方向の両端だけでなく、 垂直 な方向の両端にも白濁変色領域は同程度発生する。 このため、 この垂直な方向の 白濁の部分は除外するように集積するようにすると、 白濁変色領域が 5 %以下で あり、 集積方向に平行な境界からの幅が 2 mm以上 1 O mm以下である集積化薄 膜光電変換装置 1を実現するには、 集積化薄膜光電変換装置 1のサイズが 2 4 0 mm X 2 5 O mm以上すなわち 6 0 0 c m 2以上である必要がある。
この白濁変色領域は裏面電極膜 5が形成された後でも膜面からの判別が容易で あるが、 樹脂などにより封止をされた後では透明基板 2の半導体薄膜光電変換ュ ニット 4が形成されていない面からの目視による判別は困難である。 しかし分光 反射計を用いた分光反射率測定により、 透明基板 2の半導体薄膜光電変換ュニッ トが形成されていない面からの判別が可能である。 分光反射測定は、 積分球を用 いた 1 0 ° 入射での拡散成分を含む反射を測定しており、 硫酸バリウム板を基準 とした値を用いている。 前記の条件での分光反射率測定における 8 0 0 n mの分 光反射率が白濁変色領域とそうでない領域とで 5 %以上白濁変色領域の方が大き いということで白濁変色領域を定義する事が出来る。
実施例
(実施例 1 ) —方の主面上に S n02膜 3が形成された 9 1 0 mmX 9 1 Ommの寸法を有 するガラス基板 2を用意した。 第 1図に示すように、 このガラス基板の表面に形 成された S n〇2膜 3に、 レーザースクライブにより、 分離溝 2 1及び絶縁分離 溝 14を形成した。 このとき、 第 3図に示すようにプラズマ CVD装置の基板ホ ルダー 31への設置時に、 基板ホルダー 31の内周から約 1 mm離れるように、 幅約 1 00 // mの第 1の絶縁分離溝 14 aを形成し、 更に第 1の絶縁分離溝 14 aから内側に約 0. 7 mmの距離に、 幅約 1 00 μ mの第 2の絶縁分離溝 14 b を形成した。
これら絶縁分離溝 14は、 1 200 c m2以上の大面積の基板上にプラズマ CV Dにより 1 00 mW/ c m2以上という高い電力密度で結晶質シリコン光電変換 ユニット 4 bを形成する際に、 基板ホルダー 3 1と基板表面の透明導電膜 2との 間を絶縁する事により、 異常放電を防止する役割をする。
基板ホルダー 3 1に上記レーザースクライブを実施した 1枚の S n02膜 3が 形成されたガラス基板 2を保持した。 このとき、 ガラス基板 2の位置ずれを見込 むと、 基板ホルダー 31の内周から第 1の絶縁分離溝 14 aまでの距離は 3 ±2 mmの範囲となる。 ガラス基板 2を保持した基板ホルダー 3 1を、 1 15 cmX 1 1 8 cmの電極が設置されている CVD装置内に搬入して、 反応ガスとしてシ ラン、 水素、 メタン及びジポランを導入し p型層形成後、 反応ガスとしてシラン を導入し非晶質シリコン光電変換層を形成し、 その後反応ガスとしてシラン、 水 素及びホスフィンを導入し n型層を形成することで非晶質シリコン光電変換ュニ ット 4 aを形成した。
その後、 反応ガスとしてシラン、 水素及ぴジポランを導入し P型層形成後、 反 応ガスとして水素とシランを表 1の実施例 1に示す流量条件で導入し結晶質シリ コン光電変換層を形成し、 その後反応ガスとしてシラン、 水素及びホスフィンを 導入し n型層を形成することで結晶質シリコン光電変換ュニット 4 bを形成した 結晶質シリコン光電変換ュニット 4 b形成後、 非晶質シリコン光電変換ュニッ ト 4 a及ぴ結晶質シリコン光電変換ュニット 4 bをレーザースクライブすること により接続溝 2 3を形成した。 、 更に、 スパッタリング法により裏面電極膜とし て Z n O膜と A g膜との複層膜である裏面電極膜 5を形成した。 その後、 非晶質 シリコン光電変換ュ-ット 4 a、 結晶質シリコン光電変換ュニット 4 b及び裏面 電極膜 5をレーザースクライブすることにより分離溝 2 2を形成し、 更に、 第 4 図に示す周辺絶縁溝 4 2 a及び 4 2 bを、 S n O 2膜 3、 非晶質シリコン光電変 換ュニット 4 a、 結晶質シリコン光電変換ュニット 4 b及ぴ裏面電極膜 5をレー ザースクライブすることにより形成し、 リード線 1 2の取り付け前に第 4図に示 すように集積方向 5 0と平行な方向で切断線 4 1にそって半分のサイズに基板を 割り、 9 1 0 X 4 5 5 mmサイズの、 8 . 9 mm X 4 3 0 mmの光電変換セノレ 1 0が 1 0 0個直列に接続されたハイプリッド型集積化薄膜光電変換装置 1を作製 した。 ここで、 周辺絶縁溝 4 2 aは予め S n 0 2膜 3に形成してた絶縁分離溝 1 4上に形成した。
このハイブリッド型集積化薄膜光電変換装置 1の結晶質シリコン光電変換ュニ ット 4 b形成後の膜面観察を行うと、 第 4図で模式的に示すように光電変換セル 1 0の両端に白く変色した白濁変色領域 5 1が見られた。 また第 5図は白濁変色 領域の外観写真である。 この白濁変色領域 5 1は 9 1 0 X 4 5 5 mmサイズのハ イブリツド型集積化薄膜光電変換装置 1にした際、 集積方向 5 0に平行な周辺絶 縁分離溝 4 2 aの片方から 5 mm以上 1 0 mm以下の幅で存在した。 このとき周 辺絶縁分離溝 4 2 a及ぴ 4 2 bで囲まれた領域を光電変換領域 5 2と呼ぶことに すると、 光電変換領域 5 2の総面積に対して白濁変色領域 5 1は約 2 %であった また、 この白濁変色領域 5 1をもつハイプリッド型集積化薄膜光電変換装置 1 を封止したサンプルについて、 ガラス面 2側から光を入射し、 分光反射率の測定 を行った。 分光反射測定は、 積分球を用い、 1 0 ° 入射で、 拡散成分を含む反射 を、 硫酸バリウム板を基準として測定することで実施した。 その結果、 8 0 O n mでの分光反射率が、 白濁変色領域 5 1では、 そうでない正常領域と比較すると 、 5 %以上大きいことが判った。 すなわち、 第 6図に示す 9点の分光反射率を測 定した結果、 表 2の実施例 1に示すように、 その絶対値の差が 1 2 . 1 %であつ た。 ここで、 測定点 1、 4、 及び 7が白濁変色領域 5 1に対応し、 測定点 2、 3 、 5, 6, 8及び 9は正常領域に対応する。
このハイプリッド型集積化薄膜光電変換装置 1の光曝露による光劣化前の出力 である初期出力は、 光源としてキセノン及びハロゲンランプを用いた放射照度 1 0 OmW/cm2, AMI . 5のソーラーシミュレータの光を、 ガラス面側から 入射した時の電気的特性から測定される。 なお、 測定温度は 25°Cとした。 表 3 の実施例 1に示すように初期出力は 42. 8Wであった。 このとき、 短絡電流、 開放端電圧、 フィルファクタはそれぞれ、 0. 456 A、 135. 5V、 0. 6 92であった。
表 1は、 各実施例及び各比較例のハイブリッド型集積化薄膜光電変換装置にお ける結晶質シリコン光電変換層の製膜流量条件と白濁変色領域との関係である。 表 2は、 各実施例及び各比較例のハイプリッド型集積化薄膜光電変換装置の 8 00 nmにおける分光反射率である。
表 3は、 各実施例及び各比較例のハイプリッド型集積化薄膜光電変換装置の光 電変換特性である。
(比較例 1 )
結晶質シリコン光電変換層を、 表 1の比較例 1に示す流量条件で形成した以外 は実施例 1と同様にして比較例 1のハイブリッド型集積化薄膜光電変換装置 1を 作成した。 比較例 1のハイブリッド型集積化薄膜光電変換装置 1では、 封止前の 膜面観察で白濁変色領域 5 1が無い 9 10 X 455 mmサイズのハイプリッド型 集積化薄膜光電変換装置 1が得られた。 実施例 1と同様に比較例 1のハイプリッ ド型集積化薄膜光電変換装置 1の初期出力と分光反射率を測定すると、 それぞれ 表 3の比較例 1と表 2の比較例 1のようになった。 80 O nmにおける分光反射 率の絶対値の差は 5%以下であり、 初期出力は 40. 1Wであり、 短絡電流、 開 放端電圧、 フィルファクタはそれぞれ、 0. 455 A、 1 29. 5V、 0. 68 1であった。 比較例 1では、 実施例 1に比べ、 開放端電圧おょぴフィルファクタ は明らかに低く、 初期出力も低い値となった。 シラン流量 水素流量 境界からの幅 白濁変色領域の
No [seem] [slm] 白濁の有無 [mm] 光電変換領域に対する割合 [%] 実施例 1 450 50 片端 5〜10 2.0
比較例 1 420 50 無し 0 0
実施例 2 480 50 片端 15~30 5.5
実施例 3 130 15 両端 2~6 3.0
比較例 2 120 15 無し 0 0
実施例 4 150 15 両端 5〜16 5.2
表 2
Figure imgf000017_0001
表 3 特性 N o 開放電圧 [V] 短絡電流 [A] 7ィルファクタ [% 初期出力 [W] 実施例 1 135.5 0.456 69.2 42.8
比較例 1 129.5 0.455 68.1 40.1
実施例 2 136.7 0.441 68.3 41.2
実施例 3 37.8 0.439 74.1 12.3
比較例 2 37.0 0.441 72.5 11.8
実施例 4 38.1 0.435 72.8 12.1 (実施例 2 )
結晶質シリコン光電変換層を、 表 1の実施例 2に示す流量条件で形成した以外 は実施例 1と同様にして実施例 2のハイブリッド型集積化薄膜光電変換装置 1を 作成した。 実施例 2のハイブリッド型集積化薄膜光電変換装置 1では、 封止前の 膜面観察で第 4図に示すような、 光電変換セル 1 0の両端に白く変色した白濁変 色領域 5 1が見られ、 この白濁変色領域 5 1は 9 1 0 X 4 5 5 mmサイズのハイ プリッド型集積化薄膜光電変換装置 1にした際、 集積方向 5 0に平行な周辺絶縁 分離溝 4 2 aの片方から 1 5 mm以上 3 O mm以下の幅で存在し、 光電変換領域
5 2の総面積に対して白濁変色領域 5 1は約 5 . 5 %であった。
実施例 1と同様に実施例 2のハイブリッド型集積化薄膜光電変換装置 1の分光 反射率を第 6図に示すように 9点測定すると、 表 2の実施例 2に示すように、 8 0 0 n mにおける分光反射率の絶対値の差が 1 1 . 7 %であった。 ここで、 測定 点 1、 4、 及び 7が白濁変色領域 5 1に対応し、 測定点 2、 3、 5, 6, 8及び 9は正常領域に対応する。
実施例 1と同様に実施例 2のハイブリッド型集積化薄膜光電変換装置 1の初期 出力を測定すると、 表 3の実施例 2に示すように 4 1 . 2 Wであった。 短絡電流 、 開放端電圧、 フィルファクタはそれぞれ、 0 . 4 4 1 A、 1 3 6 . 7 V、 0 .
6 8 3であった。 実施例 2では、 比較例 1とくらべ開放端電圧及びフィルファタ タが高く、 初期出力も高い。 実施例 1に比べ、 短絡電流はやや低く、 初期出力も やや低い値となった。
(実施例 3 )
一方の主面上に S n 0 2膜 3が形成された 3 6 5 mm X 4 6 5 mmの寸法を有 するガラス基板 2を用意し、 第 7図に示すように分離溝 2 1を形成した。
基板ホルダーを用いず、 搬送フォークによりガラス基板 2を搬送する事が可能 な枚葉式プラズマ C V D装置の 4 0 O mm X 5 0 0 mmの電極が設置されている 位置に前記ガラス基板 2を移動させて、 実施例 1と同様のガスを用いて非晶質シ リコン光電変換ュニット 4 aおよび結晶質シリコン光電変換ュニット 4 bを形成 した。 この際、 結晶質シリコン光電変換層は表 1の実施例 3に示す流量条件で形 成した。 結晶質シリコン光電変換ユニット 4 b形成後、 接続溝 2 3をレーザ ス クライブにより形成し、 スパッタリング法により裏面電極膜として Z η θ膜と A g膜との複層膜である裏面電極膜 5を形成した。 その後分離溝 2 2及び第 4図に 示す周辺絶縁溝 4 2 a及ぴ 4 2 bをレーザースクライブにより形成し、 リード線 1 2の取り付け、 3 0 0 X 4 0 0 mmサイズの 8 . 9 mm X 3 8 0 mmの光電変 換セル 1 0が 2 8個直列に接続されたハイプリッド型集積化薄膜光電変換装置 1 を作製した。
このハイプリッド型集積化薄膜光電変換装置 1の封止前の膜面観察を行うと、 第 7図に模式的に示すように光電変換セル 1 0の両端に白く変色した白濁変色領 域 5 1が見られた。 白濁変色領域 5 1は集積方向 5 0に平行な周辺絶縁分離溝 4 2 aの両方から 2 mm以上 6 mm以下の幅で観察され、 光電変換領域 5 2の総面 積に対して白濁変色領域 5 1は約 3 %であった。
また実施例 1と同様に実施例 3のハイプリッド型集積化薄膜光電変換装置 1の 分光反射率を第 8図に示すように 9点測定すると、 表 2の実施例 3に示すように 、 8 0 0 n mにおける分光反射率の絶対値の差が 9 . 9 %であった。 ここで、 測 定点 1、 3、 4、 6、 7及ぴ 9が白濁変色領域 5 1に対応し、 測定点 2, 5及び 8は正常領域に対応する。
この実施例 3のハイプリッド型集積化薄膜光電変換装置 1の初期出力を実施例 1と同様に測定すると、 表 3の実施例 3に示すように 1 2 . 3 Wであった。 この とき、 短絡電流、 開放端電圧、 フィルファクタはそれぞれ、 0 . 4 3 9 A、 3 7 . 8 V、 0 . 7 4 1であった。
(比較例 2 )
結晶質シリコン光電変換層を、 表 1の比較例 2に示す流量条件で形成した以外 は実施例 3と同様にして比較例 2のハイブリッド型集積化薄膜光電変換装置 1を 作成した。 比較例 2のハイプリッド型集積化薄膜光電変換装置 1では、 封止前の 膜面観察で白濁変色領域 5 1が無い 3 0 0 X 4 0 0 mmサイズのハイプリッド型 集積化薄膜光電変換装置 1が得られた。 実施例 1と同様に比較例 2のハイプリッ ド型集積化薄膜光電変換装置 1の初期出力と分光反射率を測定すると、 それぞれ 表 2の比較例 2と表 3の比較例 2のようになった。 800 nmにおける分光反射 率の絶対値の差は 5%以下であり、 初期出力は 1 1. 8Wであり、 短絡電流、 開 放端電圧、 フィルファクタはそれぞれ、 0. 44 1 A、 3 7. 0V、 0. 68 1 であった。 比較例 2では、 実施例 3に比べ、 開放端電圧およびフィルファクタは 明らかに低く、 初期出力も低い。
(実施例 4)
結晶質シリコン光電変換層を、 表 1の実施例 4に示す流量条件で形成した場合 、 第 7図に模式的に示すように、 光電変換セル 10の両端に白く変色した白濁変 色領域 51が見られた。 この白濁変色領域 5 1は 300 X 40 Ommサイズのハ イブリッド型集積化薄膜光電変換装置 1にした際、 集積方向 50に平行な周辺絶 縁分離溝 42 aの片方から 5 mm以上 1 6 mm以下の幅で存在し、 光電変換領域 52の総面積に対して白濁変色領域 51は約 5. 2%であった。
実施例 1と同様に分光反射率を第 8図に示す 9点測定すると、 表 2の実施例 4 に示すように、 800 nmにおける分光反射率の絶対値の差が 9. 6%であった 。
初期出力を実施例 1と同様に測定すると、 表 3の実施例 4に示すように 1 2. 1Wであり、 短絡電流、 開放端電圧、 フィルファクタはそれぞれ、 0. 435A 、 38. I V、 0. 728であった。 実施例 4では、 比較例 2とくらべ開放端電 圧及びフィルファクタが高く、 初期出力も高い。 実施例 2に比べ、 短絡電流はや や低く、 初期出力もやや低い値となった。
図面の符号の説明を記載する。
1 集積化薄膜光電変換装置
2 透明基板
3 透明電極膜
4 a,4 b 半導体薄膜光電変換ユニット
5 裏面電極膜
6 封止樹脂層
7 有機保護層 1 0 光電変換セル
1 2 リ一ド線
1 4 a , 1 4 b , 1 4 c 絶縁分離溝
2 1 , 2 2 分離溝
2 3 接続溝
3 1 基板ホルダー
3 2 バックプレート
4 1 切断線
4 2 a , 4 2 b 周辺絶縁分離溝
5 0 集積方向
5 1 白濁変色領域
5 2 光電変換領域
6 1 分光反射率測定点 1
6 2 分光反射率測定点 2
6 3 分光反射率測定点 3
6 4 分光反射率測定点 4
6 5 分光反射率測定点 5
6 6 分光反射率測定点 6
6 7 分光反射率測定点 7
6 8 分光反射率測定点 8
6 9 分光反射率測定点 9 産業上の利用可能性
以上詳述したように、 本発明の薄膜光電変換装置は、 結晶質シリコン光電変換 ユニットを含む薄膜光電変換装置であって、 結晶質シリコン光電変換層に白濁変 色領域を有するので、 小さい開放端電圧おょぴフィルファクタとなるという問題 が解決され、 光電変換効率が改善された薄膜光電変換装置を提供することができ る。 さらに、 結晶質シリコン光電変換ユニットを形成後、 即座に完成後の薄膜光 電変換装置の光電変換特性の良否を判別することが可能である。

Claims

請求の範囲
1 . 透明基板の一方の主面上に少なくとも透明電極膜、 結晶質シリコン光電変換 ュニット及び裏面電極膜が順に形成された薄膜光電変換装置であって、 前記結晶 質シリコン光電変換ュニット形成後に、 その表面の一部に白濁変色領域を有する ことを特徴とする薄膜光電変換装置。
2 . 前記白濁変色領域が前記薄膜光電変換装置の光電変換領域面積の 5 %以下で あることを特徴とする請求の範囲第 1項に記載の薄膜光電変換装置。 ·
3 . 請求の範囲第 1項または第 2項に記載の薄膜光電変換装置であって、 前記透 明電極膜、 結晶質シリコン光電変換ユニット、 および裏面電極膜が複数の光電変 換セルを形成するように複数の分離溝によって分離されてなり、 かつ、 それらの 複数のセルが接続用溝を介して互いに電気的に直列接続されてなることを特徴と する集積化薄膜光電変換装置。
4 . 請求の範囲第 3項に記載の集積化薄膜光電変換装置であって、 前記白濁変色 領域が、 前記光電変換領域の前記直列接続した方向に平行な境界から光電変換領 域側へ 2 mm以上 1 0 mm以下の幅で存在することを特徴とする集積化薄膜光電 変換装置。
5 . 前記透明電極膜と前記結晶質シリコン光電変換ユニッ トとの間に、 非晶質シ リコン光電変換ュニットをさらに備えてなることを特徴とする請求の範囲第 1項 から第 4項に記載の薄膜光電変換装置。
6 . 透明基板の一方の主面上に少なくとも透明電極膜、 結晶質シリコン光電変換 ュニット及び裏面電極膜が順に形成された薄膜光電変換装置であって、 光電変換 領域において、 波長 8 0 0 n mの単色光を、 前記透明基板の他方の主面から入射 し測定した、 拡散成分を含む絶対反射率の最大値と最小値の差が、 5 %以上であ ることを特徴とする薄膜光電変換装置。
7 . 前記透明電極膜と前記結晶質シリコン光電変換ユニッ トとの間に、 非晶質シ リコン光電変換ュニットをさらに備えてなることを特徴とする請求の範囲第 6項 に記載の薄膜光電変換装置。
8 . 請求の範囲第 1項から第 7項に記載の薄膜光電変換装置であって、 半導体薄 膜光電変換ュ-ットが形成されている面積が 600 cm2以上であることを特徴 とする薄膜光電変換装置。
PCT/JP2004/007803 2003-06-19 2004-05-28 薄膜光電変換装置 WO2004114417A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2004250460A AU2004250460B2 (en) 2003-06-19 2004-05-28 Thin-film photoelectric converter
DE602004022807T DE602004022807D1 (de) 2003-06-19 2004-05-28 Photoelektrischer dünnfilm-wandler
EP04735406A EP1635402B1 (en) 2003-06-19 2004-05-28 Thin-film photoelectric converter
US10/543,516 US7678992B2 (en) 2003-06-19 2004-05-28 Thin-film photoelectric converter
AT04735406T ATE441213T1 (de) 2003-06-19 2004-05-28 Photoelektrischer dünnfilm-wandler
JP2005507194A JP4558646B2 (ja) 2003-06-19 2004-05-28 集積化薄膜光電変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003174423 2003-06-19
JP2003-174423 2003-06-19

Publications (1)

Publication Number Publication Date
WO2004114417A1 true WO2004114417A1 (ja) 2004-12-29

Family

ID=33534791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007803 WO2004114417A1 (ja) 2003-06-19 2004-05-28 薄膜光電変換装置

Country Status (10)

Country Link
US (1) US7678992B2 (ja)
EP (1) EP1635402B1 (ja)
JP (1) JP4558646B2 (ja)
KR (1) KR101067354B1 (ja)
CN (1) CN100485973C (ja)
AT (1) ATE441213T1 (ja)
AU (1) AU2004250460B2 (ja)
DE (1) DE602004022807D1 (ja)
ES (1) ES2329371T3 (ja)
WO (1) WO2004114417A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492028B2 (en) 2005-02-18 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method of the same, and a semiconductor device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4411337B2 (ja) * 2007-06-25 2010-02-10 シャープ株式会社 積層型光電変換装置
WO2009012346A1 (en) * 2007-07-16 2009-01-22 Ascent Solar Technologies, Inc. Methods for fabricating p-type cadmium selenide
EP2187449A1 (en) * 2007-08-14 2010-05-19 Mitsubishi Heavy Industries, Ltd. Photoelectric conversion device, and its manufacturing method
US8129613B2 (en) * 2008-02-05 2012-03-06 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having low base resistivity and method of making
US20110284061A1 (en) * 2008-03-21 2011-11-24 Fyzikalni Ustav Av Cr, V.V.I. Photovoltaic cell and methods for producing a photovoltaic cell
US8338209B2 (en) * 2008-08-10 2012-12-25 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having a rear junction and method of making
US20100032010A1 (en) * 2008-08-10 2010-02-11 Twin Creeks Technologies, Inc. Method to mitigate shunt formation in a photovoltaic cell comprising a thin lamina
US20100031995A1 (en) * 2008-08-10 2010-02-11 Twin Creeks Technologies, Inc. Photovoltaic module comprising thin laminae configured to mitigate efficiency loss due to shunt formation
EP2287920A1 (en) * 2008-10-30 2011-02-23 Mitsubishi Heavy Industries, Ltd. Photoelectric conversion apparatus and process for producing photoelectric conversion apparatus
JP5470633B2 (ja) * 2008-12-11 2014-04-16 国立大学法人東北大学 光電変換素子及び太陽電池
WO2010088725A1 (en) * 2009-02-04 2010-08-12 Applied Hybrid Energy Pty Ltd A module for a solar array
KR101125322B1 (ko) * 2009-11-03 2012-03-27 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US8704083B2 (en) * 2010-02-11 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and fabrication method thereof
US8213470B2 (en) * 2010-11-24 2012-07-03 Photop Technologies, Inc. Intra-cavity frequency doubled microchip laser operating in TEM00 transverse mode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295466A (ja) * 1987-05-29 1987-12-22 Semiconductor Energy Lab Co Ltd 光電変換半導体装置
JPH077168A (ja) * 1994-04-15 1995-01-10 Semiconductor Energy Lab Co Ltd 光電変換半導体装置
JPH07254568A (ja) * 1994-01-28 1995-10-03 Toray Ind Inc アモルファスシリコン−ゲルマニウム膜およびその製造方法
JPH11330520A (ja) * 1998-03-09 1999-11-30 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置の製造方法とその方法に用いられるプラズマcvd装置
JP2002111028A (ja) * 2000-10-04 2002-04-12 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜太陽電池の製造方法
JP2002261015A (ja) * 1997-12-17 2002-09-13 Matsushita Electric Ind Co Ltd 半導体薄膜、その製造方法、および製造装置、ならびに半導体素子、およびその製造方法
JP2002319692A (ja) * 2001-02-15 2002-10-31 Kanegafuchi Chem Ind Co Ltd シリコン薄膜の製膜方法およびシリコン薄膜太陽電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041646B1 (en) * 1997-11-10 2012-12-12 Kaneka Corporation Method of producing silicon thin-film photoelectric transducer
US6528397B1 (en) 1997-12-17 2003-03-04 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same
US6566159B2 (en) * 2000-10-04 2003-05-20 Kaneka Corporation Method of manufacturing tandem thin-film solar cell
US6632993B2 (en) * 2000-10-05 2003-10-14 Kaneka Corporation Photovoltaic module
JP2002261025A (ja) * 2001-02-28 2002-09-13 Hitachi Kokusai Electric Inc 半導体製造装置
JP2003347572A (ja) 2002-01-28 2003-12-05 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜光電変換装置とその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295466A (ja) * 1987-05-29 1987-12-22 Semiconductor Energy Lab Co Ltd 光電変換半導体装置
JPH07254568A (ja) * 1994-01-28 1995-10-03 Toray Ind Inc アモルファスシリコン−ゲルマニウム膜およびその製造方法
JPH077168A (ja) * 1994-04-15 1995-01-10 Semiconductor Energy Lab Co Ltd 光電変換半導体装置
JP2002261015A (ja) * 1997-12-17 2002-09-13 Matsushita Electric Ind Co Ltd 半導体薄膜、その製造方法、および製造装置、ならびに半導体素子、およびその製造方法
JPH11330520A (ja) * 1998-03-09 1999-11-30 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置の製造方法とその方法に用いられるプラズマcvd装置
JP2002111028A (ja) * 2000-10-04 2002-04-12 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜太陽電池の製造方法
JP2002319692A (ja) * 2001-02-15 2002-10-31 Kanegafuchi Chem Ind Co Ltd シリコン薄膜の製膜方法およびシリコン薄膜太陽電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492028B2 (en) 2005-02-18 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method of the same, and a semiconductor device
US7936037B2 (en) 2005-02-18 2011-05-03 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method of the same, and a semiconductor device

Also Published As

Publication number Publication date
ES2329371T3 (es) 2009-11-25
EP1635402B1 (en) 2009-08-26
JP4558646B2 (ja) 2010-10-06
KR101067354B1 (ko) 2011-09-23
ATE441213T1 (de) 2009-09-15
EP1635402A1 (en) 2006-03-15
AU2004250460A1 (en) 2004-12-29
CN1748322A (zh) 2006-03-15
EP1635402A4 (en) 2007-02-21
US20060097259A1 (en) 2006-05-11
CN100485973C (zh) 2009-05-06
JPWO2004114417A1 (ja) 2006-08-03
AU2004250460B2 (en) 2009-08-27
DE602004022807D1 (de) 2009-10-08
US7678992B2 (en) 2010-03-16
KR20060064703A (ko) 2006-06-13

Similar Documents

Publication Publication Date Title
JP4811945B2 (ja) 薄膜光電変換装置
JP4162447B2 (ja) 光起電力素子及び光起電力装置
WO2004114417A1 (ja) 薄膜光電変換装置
JP3557148B2 (ja) 太陽電池モジュール
JP2002261308A (ja) 薄膜光電変換モジュール
JP2006310694A (ja) 集積化多接合薄膜光電変換装置
EP2393120A1 (en) Solar cell and method for manufacturing solar cell
JP2002118273A (ja) 集積型ハイブリッド薄膜光電変換装置
JP2007035914A (ja) 薄膜光電変換装置
US20090165850A1 (en) Transparent conductive film and solar cell using the same
JP4579436B2 (ja) 薄膜光電変換モジュール
US20070251573A1 (en) Photoelectric Converter
TW201523908A (zh) 光發電元件
WO2014050193A1 (ja) 光電変換モジュール
JP4261169B2 (ja) 透光性薄膜太陽電池及び透光性薄膜太陽電池モジュールの製造方法
JP2005353836A (ja) 太陽電池素子及びこれを用いた太陽電池モジュール
US20120090664A1 (en) Photovoltaic device
EP2355165A1 (en) Photoelectric conversion device
JP2000252505A (ja) 太陽電池モジュール
JP4911878B2 (ja) 半導体/電極のコンタクト構造とこれを用いた半導体素子、太陽電池素子、並びに太陽電池モジュール
JP2010103347A (ja) 薄膜光電変換装置
JP2011216586A (ja) 積層型光電変換装置および積層型光電変換装置の製造方法
WO2005088734A1 (ja) 薄膜光電変換装置
US20130153022A1 (en) Photoelectric conversion device and method for manufacturing the same
JP2007150230A (ja) 多接合型シリコン系薄膜光電変換装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005507194

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004250460

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1281/KOLNP/2005

Country of ref document: IN

Ref document number: 01281/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020057012589

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004735406

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004250460

Country of ref document: AU

Date of ref document: 20040528

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004250460

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006097259

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10543516

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048040338

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004735406

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10543516

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057012589

Country of ref document: KR