WO2004113815A1 - Vorrichtung zum mehrstufigen wärmeaustausch und verfahren zur herstellung einer derartigen vorrichtung - Google Patents

Vorrichtung zum mehrstufigen wärmeaustausch und verfahren zur herstellung einer derartigen vorrichtung Download PDF

Info

Publication number
WO2004113815A1
WO2004113815A1 PCT/EP2004/006224 EP2004006224W WO2004113815A1 WO 2004113815 A1 WO2004113815 A1 WO 2004113815A1 EP 2004006224 W EP2004006224 W EP 2004006224W WO 2004113815 A1 WO2004113815 A1 WO 2004113815A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
fluid
elements
particular according
fluids
Prior art date
Application number
PCT/EP2004/006224
Other languages
English (en)
French (fr)
Inventor
Markus Flik
Jochen Eitel
Peter Geskes
Michael LÖHLE
Ulrich Maucher
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to MXPA05014018A priority Critical patent/MXPA05014018A/es
Priority to JP2006515866A priority patent/JP2007506928A/ja
Priority to US10/561,975 priority patent/US20070125527A1/en
Priority to EP04739733A priority patent/EP1642076A1/de
Priority to BRPI0411930-4A priority patent/BRPI0411930A/pt
Publication of WO2004113815A1 publication Critical patent/WO2004113815A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • F28D7/1692Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0462Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/182Arrangements or mounting of liquid-to-air heat-exchangers with multiple heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a device for multi-stage heat exchange and a method for producing such a device.
  • BESTATIGUNGSKOPIE two other fluids are available, which are at two different temperature levels.
  • the disadvantage of the two-stage temperature control of fluids is that the use of two conventionally connected heat exchangers is associated with significantly higher costs and a larger space requirement.
  • the invention is therefore based on the object of creating a device in which the at least two-stage cooling or heating of a fluid can be implemented in a compact and cost-effective manner.
  • the object is achieved according to the invention by a device according to claim 1.
  • the method according to the invention for producing such a device is the subject of claim 20.
  • Preferred embodiments and further developments are the subject of the subclaims.
  • the heat exchange device has at least three flow devices through which at least one flowable medium (fluid) flows. After flowing through the individual flow devices, at least two of the at least three fluids can also be mixed in the heat exchanger and discharged together.
  • the greater part of the heat output is preferably transferred in the first flow assembly of the cooling or heating, preferably over 60%, in particular up to 70%.
  • flowable media or fluids are understood to mean liquid and / or gaseous media of any viscosity, such as, in particular, but not exclusively, oils, liquids, in particular high heat of vaporization, water, air or gases, and refrigerants which can evaporate or condense.
  • the flowable media can also contain additives, for example to inhibit corrosion.
  • the device according to the invention has at least one fluid inflow device, at least one fluid collection and / or distribution device and at least one fluid outflow device for at least one flow device through which essentially liquid fluids flow.
  • At least two flow modules are provided, each with at least two flow elements, which are arranged in such a way that different fluids flow through them alternately. Furthermore, the flow elements belonging to a flow device through which essentially liquid fluids flow are connected in a positive and / or material and / or non-positive, essentially gas and liquid tight manner to at least one fluid collection and / or distribution device.
  • the main flow directions of all fluids in the flow elements lie in mutually parallel planes. Furthermore, two flow assemblies of the device according to the invention are directly connected in series in a form-fitting and / or material and / or non-positive manner and / or in a flow-connected manner via a fluid distribution device, at least with respect to one flow device.
  • a device is understood to mean, by which a “liquid or gaseous medium flow can flow and or which, in the case of substantially liquid fluids flowing through flow means, gas substantially and liquid-tightly against the surrounding space delimited is ,
  • the flow devices are formed by flow elements connected in series and / or in parallel.
  • these flow elements are formed, at least in sections, by in particular, but not exclusively, hollow disks, flat tubes, plates and / or layers.
  • Hollow disks, plates or layers are understood to be essentially gas- and liquid-tight hollow bodies with inlet and outlet openings, their length and width extension is significantly larger than their height.
  • flat tubes are understood to be tubes which have a long side in cross section and a side which is considerably shorter than this long side.
  • the flow elements can have one or more flow channels for the medium flowing or flowing through. They can run in a straight line, but can also have several curved sections. In addition, the flow elements can also have twisted sections, that is to say those sections in which the flow element is twisted or twisted in itself.
  • a fluid distribution and / or collection device in the context of the invention in the case of the flow devices through which essentially liquid fluids are understood are essentially gas- and liquid-tight hollow bodies, in which fluids can flow or flow and in which these are collected. At the same time, however, these fluid distribution and / or collection devices can also serve to distribute the respective fluids over several flow elements or to collect them again from different flow elements.
  • flow-connected is understood to mean that a fluid can flow or flow between the flow elements, fluid distribution and / or collection devices.
  • substantially gas-tight and liquid-tight means in particular, but not exclusively, a division by separation devices, so that no fluid can flow or flow past the respective separation device along certain directions of the flow devices, flow elements, and fluid distribution and / or collection devices.
  • the flow or main flow direction of a fluid is understood to mean the direction which the fluid preferably takes within a flow device, a flow element and / or a fluid distribution and / or collection device, with changes in direction of the fluid which are locally limited being disregarded.
  • the fluid distribution and / or collection devices are collectors and / or distribution pipes in the broader sense.
  • At least one fluid collection and / or distribution device is formed, at least in part, from openings arranged in the longitudinal direction in the flow elements, a first number of simple openings forming fluid inlets and outlets to adjacent flow elements, and sealing devices around a second number of openings are arranged to form passages in the corresponding flow element, through which adjacent flow elements are fluidly connected.
  • the first number of openings arranged in the longitudinal direction in flow elements is understood to mean, in particular, but not exclusively, round punched holes or boreholes which are provided in the substantially longer and wider sides of the flow elements.
  • Openings in flow elements are understood in the context of the invention, in particular, but not exclusively, to be material and / or form-fitting and / or non-positively adjoining features in the corresponding flow element or sealing rings.
  • Partition walls are preferably provided in a gas-tight and liquid-tight manner in individual openings, as a result of which preferred control of the
  • Fluid distribution is made possible by, in particular, but not exclusively, stacking of the same plate-shaped flow elements.
  • turbulence-generating and / or increasing shaped elements are preferably provided within the flow device, which are used in particular to increase the heat transfer coefficient between the fluids contribute different flow devices.
  • These shaped elements which generate or increase turbulence are preferably taken from a group which contains, in particular, but not exclusively, ribs, webs, knobs, furrows, embossings or cutouts.
  • the turbulence-generating and / or increasing shaped elements are arranged in at least one and / or between at least two flow elements.
  • the profile of at least one flow element preferably has turbulence-generating and / or -increasing properties.
  • turbulence inserts are provided, preferably for insertion in at least one flow element, in particular, but not exclusively, in hollow disks, plates and / or layers.
  • turbulence inserts are understood, in particular, but not exclusively, to be sheets which form and / or increase turbulence-shaped elements such as Have ribs, webs, knobs, furrows, impressions and / or millings and are inserted into the flow elements to simplify production, preferably with external dimensions corresponding to the internal dimensions of the flow elements and to the distribution devices with sealing device, in particular corresponding to the characteristics in the flow elements. , the punched holes for the passages through which adjacent flow elements are fluidly connected.
  • At least two flow elements through which different fluids flow are connected to one another in a positive and / or material and / or non-positive manner along the longitudinal side.
  • At least two flow elements flowed through by the same fluid are arranged on the longitudinal side, in particular, but not exclusively, the intermediate or wise profile-specific turbulence-generating and / or increasing shaped elements connected in such a way that at least one cavity thereby created between these flow elements forms a flow element for another fluid.
  • connections of the flow elements are taken from a group which contains soldered connections, welded connections or adhesive connections.
  • At least one sealing element is provided at least between two flow elements through which different fluids flow, which is formed in particular, but not exclusively, by fluid-empty hollow elements and / or separating elements.
  • At least one sealing element is preferably arranged between flow assemblies designed in series.
  • At least one of the sealing elements in particular, but not exclusively, a fluid-empty hollow element, has a tightness control opening. This proves to be particularly advantageous during the manufacture of the device according to the invention. If the individual flow devices are then individually filled with their respective fluids and if the respective flow device should prove to be leaky due to, for example, an error in the manufacturing process, there is the possibility that the escaping fluid collects in the initially fluid-empty hollow or blind element and proves the leakage through its outlet at the leakage control opening.
  • each individual flow device with its corresponding fluid also makes it possible to check the gas and liquid tightness according to the invention of the various flow devices against one another by transferring the respectively filled fluid into a second flow device.
  • at least one of the sealing elements has at least one tightness sensor which, in the event of fluid leakage from one of the flow devices, causes a physically perceptible signal to be output.
  • At least two flow assemblies are separated from one another in a substantially thermally insulating manner, for example by means of an arrangement which is only spatially spaced apart, and / or also by means of fluid-hollow elements arranged in particular between them.
  • shaped elements are provided within at least one flow element, which change the main flow direction of the fluid flowing in the flow element at least in sections.
  • At least one flow device is mixed with a fluid, in particular, but not exclusively, via at least one further inflow device, which fluid corresponds to the fluid in this flow device.
  • the inventive series connection of at least two flow assemblies with respect to at least one flow device takes place in such a way that the temperature gradients of the fluid of this flow device along the flow path of this fluid from the fluid inflow device to the fluid outflow device of this flow device each with respect to the other, the flow assemblies of the Flow assembly series connection flowing fluids are essentially always smaller in amount.
  • fluids are mixed in the heat exchanger, different proportions of the total fluid being able to flow through different flow elements.
  • a further preferred embodiment allows a fluid to be separated in the heat exchanger, with different portions of the divided fluid being able to flow through different flow elements.
  • the heat exchange in individual flow assemblies takes place via condensation or evaporation of a fluid.
  • the individual flow modules can be operated as cross, countercurrent or cocurrent heat exchange units.
  • the heat exchanger is part of a cooling circuit and the supply of the individual flow assemblies with the fluid takes place via a further low and / or high temperature cooling circuit.
  • the heat exchanger is used as an at least two-stage heat exchanger for use in land, air or water vehicles, in particular for exhaust gas cooling for an internal combustion engine.
  • Figure 1 is a schematic section through a heat exchange device according to the invention with stacked disks as flow assemblies.
  • FIG. 2 shows a perspective partial exploded view of the two-stage heat exchanger according to FIG. 1; 3 shows an upper longitudinal sectional view of two types of disks for a further embodiment of the heat exchange device according to the invention;
  • FIG. 4 shows an upper longitudinal sectional view of two types of disks for a further exemplary embodiment of the heat exchange device according to the invention
  • FIG. 5 shows an upper longitudinal sectional view of two types of disks for a further exemplary embodiment of the heat exchange device according to the invention
  • FIG. 6 is a perspective view of a further exemplary embodiment of the heat exchange device according to the invention with flow assemblies arranged one above the other;
  • FIG. 7 is a perspective view of a further exemplary embodiment of the heat exchange device according to the invention with flow assemblies arranged next to one another;
  • FIG. 8 shows a perspective view of a further exemplary embodiment of the heat exchange device according to the invention with flow assemblies for a gaseous fluid 2 arranged one above the other;
  • FIG. 9 is a perspective view of a further exemplary embodiment of the heat exchange device according to the invention with flow assemblies arranged one above the other and an alternative arrangement of a discharge device.
  • FIG. 10 shows a perspective view of a further exemplary embodiment of the heat exchange device according to the invention with flow assemblies arranged next to one another and a common fluid drainage device;
  • FIG. 11 shows two plan views of further exemplary embodiments of the heat exchange device according to the invention.
  • FIG. 12 shows a cooling circuit in which the heat exchanger according to FIG. 10 has been integrated.
  • FIGS. 1 and 2 show a schematic section through a two-stage heat exchanger, the flow elements of which are disks, and the heat exchange or flow assemblies of which are formed by stacked disks with a hollow disk arranged therebetween, or a partial exploded perspective view of the same heat exchanger.
  • the fluid 1 flows in the top left via the inflow device 10 through the cover 5 into the flow assembly 120 and first passes through a second opening 100 with a shape through the uppermost disk 22 into the uppermost disk 12 as a flow element for fluid 1 there are two possible flow directions for the fluid 1, namely on the one hand essentially diagonally over the uppermost disk 12 to the first opening 102 shown in FIG. 2, a heat exchange taking place along this path with the fluid 2 flowing through the disks 22 above and below.
  • Fluid 1 then passes through the first opening 102 through a corresponding configuration in the underlying disk 22, through which fluid 2 again flows, into the subsequent disks 12.
  • the first opening 101 shown in FIG. 2 also allows passage through the underlying disk 22 to the subsequent disks 12.
  • a direct flow path for fluid 1 is directly through the partition wall through the first and second openings of the disks of both flow assemblies from the inflow device 10 to the outflow device 11, without the fluid 1 having to flow over the disks 12 of the lower flow assembly 130 71 blocked.
  • fluid 1 flows from the bottom disk 12 of the upper flow assembly 120 through a corresponding configuration in the blind disk 7 into the flow assembly 130 which is thereby connected in series with the flow assembly 120 with respect to fluid 1 and which forms a second heat exchange stage, through the disks 12 of which analogue flows flow paths between the discs 32 through which fluid 3 flows, which now permits heat exchange between the fluids 1 and 3.
  • partition walls 72 and 73 as well as 74 and 75 separate the disks 22 as an essential part of the flow device of fluid 2 from the disks 32 as an essential part of the flow device of fluid 3. Finally, fluid 1 passes through the bottom 6 and the drain device 11 from the two-stage heat exchanger 9 out.
  • fluid 2 flows through the disks 22 of the upper flow assembly 120 or fluid 3 through the disks 32 of the lower flow assembly 130, the outflow devices 21 and 31 corresponding to the inflow devices 20 and 30 for fluid 2 and 3 respectively being arranged on the same side, i.e. for fluid 2 above and for fluid 3 below.
  • the fluid-empty blind disk 7 allows thermal insulation of the flow assemblies 120 and 130, which are preferably at different temperature levels, and on the other hand serves to check the tightness and to avoid that fluids 3 and 2 go unnoticed during operation in the event of a leak in both flow devices or fluid circuits mix.
  • the blind disk 7 is closed from all sides and has a small opening 8 to the outside on one side of its edge web. In the event of a leak, the respective fluid can flow out through this opening and does not penetrate into another flow device.
  • Turbulence-generating ribs or elements can be inserted between the disks 12, 22 and 32 and / or the disks themselves have embossed ribs, webs and / or knobs (not shown here).
  • a predetermined compressive strength is achieved by soldering the elevations in the form of the inserts or impressions from pane to pane.
  • FIG. 3 shows an upper longitudinal sectional view of the two types of plates for a two-stage heat exchanger formed from plates, in which the separation of two fluids within the first disk type 15 takes place by means of two parallel webs 77, two smaller first openings 121, 122 and 131, 132 being provided for the inlet and outlet for fluid 2 and 3, respectively. Furthermore, the first disk type 15 has two larger second openings 113 and 114 with a circumferential configuration as a passage opening for fluid 1.
  • the second disc type 25 has two smaller second openings 123 and 124 and 133 and 134 with circumferential characteristics for the passage of fluid 2 and 3 through the second disc type 25 and two larger first openings 111 and 112 for the inlet and outlet for fluid 1 in or out of the second disc type 25.
  • Fluid 2 and 3 are supplied via separate fluid inflow devices.
  • Fluid 2 and 3 respectively, enter and pass through the first disk type 17 via two smaller third openings 126 and 136 with an interrupted circumferential configuration.
  • the passage of fluid 2 or 3 through the second disc type 27 allows two smaller second openings 125 and 135 with a circumferential configuration.
  • Fluid 2 and 3 are mixed within the first disk type 17 and discharged via an additional larger first opening 1231.
  • FIG. 5 shows an upper longitudinal sectional view of the two disk types for a two-stage heat exchanger formed from disks according to FIG.
  • Fluid 4 is preferably at a different temperature level than fluid 1 and / or it can also contain, for example, corrosion-inhibiting additives.
  • FIG. 6 shows a perspective view of a two-stage heat exchanger, the flow elements of which are formed from flat tubes 40 and from cavities 50 between them, the flow assemblies for fluid 1 and 2 or fluid 1 and 3 being arranged one above the other and the inlet and outlet of the tempering fluid 1 on the same side.
  • surface-enlarging cooling fins 99 are indicated, which contribute to an increase in the heat transfer coefficient between fluid 1 and 2.
  • the pressure resistance is increased by soldering the cooling fins 99 from flat tube to flat tube.
  • FIG. 7 shows a perspective view of a two-stage heat exchanger, the flow elements of which are formed from flat tubes 41 and from cavities 51 located therebetween, the flow assemblies for fluid 1 and 2 or fluid 1 and 3 being arranged next to one another and the inlet and outlet of the tempering fluid 1 on opposite sides.
  • FIG. 8 shows a perspective view of a two-stage heat exchanger, the flow elements of which are formed from flat tubes and from cavities in between, the flow assemblies according to the invention for fluid 1 and 2 or fluid 1 and 3 being arranged one above the other according to FIG. 5, but due to a Gaseous fluids 2, preferably ambient air, can be dispensed with a supply and discharge as well as a housing of the fluid flow assembly fluid 1 and 2.
  • the direction of flow of the fluid 2 is indicated by the arrow shown next to the corresponding reference number.
  • FIG. 9 shows a perspective view of a two-stage heat exchanger according to FIG.
  • FIG. 10 shows a perspective view of a two-stage heat exchanger according to FIG. 7, with more flat tubes being used than in FIG. 7. It is characteristic of this exemplary embodiment that fluid 2 and 3 are fluid, analogous to FIG Fig. 4. In this embodiment, fluids 2 and 3 flow into the heat exchanger with different mass flows and temperatures. Essentially in the common fluid collection device of fluid 2 and 3, both fluids mix and flow in a mixed manner via the common fluid drainage device.
  • FIG. 10 shows a top view of this exemplary embodiment, which clarifies that the flow assembly with the fluids 1 and 3 is predominantly operated in cocurrent, the flow assembly with the fluids 1 and 2 predominantly in countercurrent and not in predominantly cross flow according to FIG. 7 ,
  • This variant has advantages in the cooling of exhaust gases.
  • HT flow assembly high-temperature flow assembly
  • NT flow assembly low-temperature flow assembly
  • Boiling of the coolant is largely avoided by the direct current; in the low-temperature flow assembly (NT flow assembly) with fluids 1 and 2, a significantly lower coolant coolant mass flow flows in countercurrent to the already cooled exhaust gas.
  • a counterflow circuit can be permitted here, since the risk of boiling no longer exists due to the exhaust gas cooling that has already taken place.
  • the counterflow circuit has the advantage that the heat exchange between exhaust gas and coolant is very high and the exhaust gas can be cooled down considerably.
  • the position of the fluid inflow and outflow device can also be determined such that the entire cooler is flowed through in countercurrent (A) or cocurrent (B). This is possible if there is no risk of boiling for the coolant or coolants.
  • FIG. 12 schematically shows the integration of a cooler 300 according to FIG. 10 for the case of exhaust gas cooling for an internal combustion engine 400.
  • Many circuits are conceivable here, which is advantageous if a small mass flow flows through the NT flow assembly 311 of the cooler 300 which is brought to a very low temperature by air in a separate low-temperature cooler 310. This small mass flow is branched off from the main flow after the main air cooler 320 and cooled in the low-temperature cooler 310.
  • the HT flow assembly 321 of the two-stage cooler 300 is flowed through by a larger mass flow at a higher temperature level, which is branched off directly from the coolant mass flow flowing to the main air cooler 320.
  • the two-stage heat exchanger has its own coolant circuit, i.e. no integration into the actual engine cooling circuit is provided.
  • the NT circuit can also have its own pump.

Abstract

Die vorliegende Erfindung betrifft eine Vorrichtung zum mehrstufigen Wärmeaustausch und ein Verfahren zum Herstellen einer derartigen Vorrichtung bei dem wenigstens drei strömungsfähige Medien (Fluide) in drei Strömungseinrichtungen zum Einsatz kommen, die sich in wenigstens zwei Wärmetausch- oder Strömungsbaugruppen untergliedern. Letztere bestehen aus wenigstens jeweils zwei Strömungselementen, welche derart angeordnet sind, dass sie alternierend von verschiedenen Fluiden durchströmt werden. Ferner erfolgt die Verteilung der Fluide auf die Strömungselemente für im wesentlichen flüssigen Fluide über gas- und flüssigkeitsdicht verbundene Fluidsammel- und/oder -verteileinrichtung. Die Hauptströmungsrichtungen aller Fluide in den Strömungselementen liegen in zueinander im wesentli­chen parallelen Ebenen. Wenigstens zwei Strömungsbaugruppen sind direkt und/oder über Fluidverteileinrichtungen strömungsverbunden wenigstens bezüglich einer Strömungseinrichtung in Reihe geschaltet.

Description

Vorrichtung zum mehrstufigen Wärmeaustausch und
Verfahren zur Herstellung einer derartigen Vorrichtung
Die vorliegende Erfindung betrifft eine Vorrichtung zum mehrstufigen Wärmeaustausch und ein Verfahren zur Herstellung einer derartigen Vorrichtung.
Die Anforderungen an heutige Kühlungs- und Klimatisierungssysteme in Fährzeugen nehmen stetig zu. Dies liegt einerseits daran, dass der Kühlungsbedarf insgesamt ansteigt, und andererseits an der notwendigen Verbesserung des Wirkungsgrades von Kühlsystemen, die immer weiter vorangetrieben wird. Die verbesserte Ausnutzung von Wärmequellen und Wärmesenken kanri insbesondere in einem Gesamtkonzept zu einem höheren Nut- zungsgrad und darüber zu einer Verringerung des Verbrauchs führen. In diesem Gesamtkonzept spielt die Gestaltung von Wärmetauschern eine zentrale Rolle.
Kühl- und Heizkonzepte des heutigen Stands der Technik sehen in der Regel die einstufige Wärmeübertragung in Wärmetauschern vor. Dabei werden Fluide, wie z. B. Kühlmittel, Kältemittel, Öl, Abgas- oder Ladeluft gekühlt oder erwärmt. Normalerweise ist der mit einer einstufigen Temperierung erreichbare Wirkungsgrad limitiert. Um die Leistungsfähigkeit von Kühlkreisläufen zu verbessern, ist es daher in einigen Fällen sinnvoll, ein Fluid über zwei Stufen abzukühlen oder aufzuwärmen. Dies ist dann möglich, wenn neben dem zu
BESTATIGUNGSKOPIE temperierenden Fluid zwei weitere Fluide zur Verfügung stehen, die auf zwei unterschiedlichen Temperaturniveaus liegen.
Nachteil der zweistufigen Temperierung von Fluiden ist in der Regel, dass der Einsatz von zwei konventionell hintereinandergeschalteten Wärmetauschern mit deutlich höheren Kosten sowie größerem Bauraumbedarf verbunden ist.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung zu schaf- fen, bei dem die wenigstens zweistufige Kühlung oder Erwärmung eines Fluids kompakt und kostengünstig umgesetzt werden kann.
Die Aufgabe wird erfindungsgemäß durch eine Vorrichtung gemäß Anspruch 1 gelöst. Das erfindungsgemäße Verfahren zur Herstellung einer sol- chen Vorrichtung ist Gegenstand des Anspruchs 20. Bevorzugte Ausführungsformen und Weiterbildungen sind Gegenstand der Unteransprüche.
Die erfindungsgemäße Vorrichtung zum Austausch von Wärme weist wenigstens drei Strömungseinrichtungen auf, welche von wenigstens einem strömungsfähigen Medium (Fluid) durchströmt werden. Nach der Durchströmung der einzelnen Strömungseinrichtungen können zumindest zwei der wenigstens drei Fluide auch im Wärmeübertrager gemischt und gemeinsam abgeführt werden.
Vorzugsweise wird in der ersten Strömungsbaugruppe der Kühlung oder Heizung der größere Anteil der Wärmeleistung übertragen, vorzugsweise über 60%, im Besonderen bis zu 70%. Unter strömungsfähigen Medien beziehungsweise Fluiden werden im Rahmen der Erfindung flüssige und/oder gasförmige Medien beliebiger Viskosität verstanden, wie insbesondere, aber nicht ausschließlich Öle, Flüssigkeiten, insbesondere hoher Verdampfungswärme, Wasser, Luft oder Gase sowie Kältemittel, die verdampfen oder kondensieren können. Die strömungsfähigen Medien können dabei auch Zusätze beispielsweise zur Korrosionshemmung enthalten. Ferner weist die erfindungsgemäße Vorrichtung für wenigsten eine von im wesentlichen flüssigen Fluiden durchströmte Strömungseinrichtung wenigstens eine Fluidzuflusseinrichtung, wenigstens eine Fluidsammel- und/oder - Verteileinrichtung und wenigstens eine Fluidabflusseinrichtung auf.
Erfindungsgemäß sind wenigstens zwei Strömungsbaugruppen vorgesehen, mit wenigstens jeweils zwei Strömungselementen, welche derart angeordnet sind, dass letztere alternierend von verschiedenen Fluiden durchströmt werden. Weiterhin sind die zu einer von im wesentlichen flüssigen Fluiden durch- strömten Strömungseinrichtung gehörigen Strömungselemente form- und/oder stoff- und/oder kraftschlüssig, im wesentlichen gas- und flüssigkeitsdicht mit wenigstens einer Fluidsammel- und/oder Verteileinrichtung verbunden.
Erfindungsgemäß liegen dabei die Hauptströmungsrichtungen aller Fluide in den Strömungselementen in zueinander im wesentlichen parallelen Ebenen. Ferner sind zwei Strömungsbaugruppen der erfindungsgemäßen Vorrichtung direkt form- und/oder stoff- und/oder kraftschlüssig und/oder über eine Fluid- verteileinrichtung strömungsverbunden wenigstens bezüglich einer Strö- mungseinrichtung in Reihe geschaltet.
Unter einer Strömungseinrichtung wird dabei eine Einrichtung verstanden, durch welche ein' flüssiges beziehungsweise gasförmiges Medium fließen beziehungsweise strömen kann und welche, im Falle der von im wesentli- chen flüssigen Fluiden durchströmten Strömungseinrichtungen, im wesentlichen gas- und flüssigkeitsdicht gegen den sie umgebenden Raum abgegrenzt ist. Die Strömungseinrichtungen werden hierbei durch strömungsverbunden in Reihe und/oder parallel geschaltete Strömungselemente gebildet.
In einer bevorzugten Weiterbildung der erfindungsgemäßen Vorrichtung werden diese Strömungselemente zumindest abschnittsweise von insbesondere, aber nicht ausschließlich, Hohlscheiben, Flachrohren, Platten und/oder Schichten gebildet. Unter Hohlscheiben, Platten oder Schichten werden dabei im wesentlichen gas- und flüssigkeitsdichte Hohlkörper mit Ein- und Aus- lassöffnungen verstanden, deren längen- und breitenmäßige Ausdehnung deutlich größer als deren Höhe ist. Unter Flachrohren werden hierbei Rohre verstanden, die im Querschnitt eine lange Seite und eine gegenüber dieser langen Seite wesentlich kürzere Seite aufweisen.
Die Strömungselemente können einen oder mehrere Strömungskanäle für das hindurchfließende beziehungsweise -strömende Medium aufweisen. Sie können geradlinig verlaufen, jedoch auch mehrere gekrümmte Abschnitte aufweisen. Daneben können die Strömungselemente auch tordierte Abschnitte aufweisen, das heißt solche Abschnitte, in denen das Strömungs- element in sich verdreht beziehungsweise verdrillt wird.
Unter einer Fluidverteil- und/oder -Sammeleinrichtung werden im Rahmen der Erfindung im Falle der von im wesentlichen flüssigen Fluiden durchströmten Strömungseinrichtungen im wesentlichen gas- und flüssigkeitsdichte Hohlkörper verstanden, in welchen Fluide strömen beziehungsweise fließen können und in welchen diese gesammelt werden. Gleichzeitig können diese Fluidverteil- und/oder -Sammeleinrichtungen jedoch auch dazu dienen, die jeweiligen Fluide auf mehrere Strömungselemente zu verteilen beziehungsweise aus verschiedenen Strömungselementen wieder zu sammeln.
Unter strömungsverbunden wird im Rahmen der Erfindung verstanden, dass ein Fluid zwischen den Strömungselementen, Fluidverteil- und/oder - Sammeleinrichtungen fließen beziehungsweise strömen kann. Unter im wesentlichen gas- und flüssigkeitsdicht wird insbesondere, aber nicht aus- schließlich eine Unterteilung durch Trenneinrichtungen verstanden, so dass entlang bestimmter Richtungen der Strömungseinrichtungen, Strömungselemente, Fluidverteil- und/oder -Sammeleinrichtungen kein Fluid an der jeweiligen Trenneinrichtung vorbeifließen beziehungsweise -strömen kann.
Unter Strömungs- beziehungsweise Hauptströmungsrichtung eines Fluids wird die Richtung verstanden, welche das Fluid innerhalb einer Strömungseinrichtung, eines Strömungselements und/oder einer Fluidverteil- und/oder - Sammeleinrichtung vorzugsweise annimmt, wobei Richtungsänderungen des Fluids, die lokal begrenzt sind, außer Acht gelassen werden. In einer bevorzugten Ausführungsform handelt es sich bei den Fluidverteil- und/oder -Sammeleinrichtungen im weiteren Sinne um Sammel- und/oder Verteilungsrohre.
In einer weiteren bevorzugten Ausführungsform wird wenigstens eine Fluidsammel- und/oder -Verteileinrichtung zumindest zum Teil aus längsseitig angeordneten Öffnungen in den Strömungselementen gebildet, wobei eine erste Anzahl einfache Öffnungen Fluidein- und -auslasse zu benachbarten Strömungselementen bilden und wobei um eine zweite Anzahl Öffnungen Dichteinrichtungen angeordnet sind, um im entsprechenden Strömungselement Durchlässe zu bilden, durch welche hierzu benachbarte Strömungselemente strömungsverbunden sind.
Unter der ersten Anzahl längsseitig angeordneter Öffnungen in Strömungs- elementen, vorzugsweise in Hohlscheiben, Platten oder Schichten werden im Rahmen der Erfindung, insbesondere, aber nicht ausschließlich, runde Ausstanzungen oder Bohrlöcher verstanden, die in den wesentlich längeren und breiteren Seiten der Strömungselemente vorgesehen sind.
Unter den Dichteinrichtungen um die zweite Anzahl längsseitig angeordneter
Öffnungen in Strömungselementen, vorzugsweise in Hohlscheiben, Platten, oder Schichten werden im Rahmen der Erfindung, insbesondere, aber nicht ausschließlich, an das benachbarte Strömungselement stoff- und/oder form- und/oder kraftschlüssig angrenzende Ausprägungen im entsprechenden Strömungselement oder Dichtringe verstanden.
Bevorzugt sind in einzelnen Öffnungen Trennwände im wesentlichen gas- und flüssigkeitsdicht vorgesehen, wodurch eine bevorzugte Steuerung der
Fluidverteilung durch, insbesondere, aber nicht ausschließlich, Übereinan- derstapeln der gleichen plattenförmigen Strömungselemente ermöglicht wird.
In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung sind bevorzugt innerhalb der Strömungseinrichtung turbulenzerzeugende und/oder -erhöhende Formelemente vorgesehen, die insbesondere zur Erhöhung des Wärmeübergangskoeffizienten zwischen den Fluiden der verschiedenen Strömungseinrichtungen beitragen. Bevorzugt sind diese turbulenzerzeugenden oder -erhöhenden Formelemente einer Gruppe entnommen, welche insbesondere, aber nicht ausschließlich, Rippen, Stege, Noppen, Furchen, Einprägungen oder Ausfräsungen beinhaltet.
In einer weiteren bevorzugten Ausführungsform sind die turbulenzerzeugenden und/oder -erhöhenden Formelemente in wenigstens einem und/oder zwischen wenigstens zwei Strömungselementen angeordnet. Ferner weist das Profil wenigstens eines Strömungselements bevorzugt turbulenzerzeu- gende und/oder -erhöhende Eigenschaften auf.
In einer weiteren bevorzugten Ausführungsform sind Turbulenzeinlagen vorgesehen, bevorzugt zur Einlage in wenigstens ein Strömungselement, insbesondere, aber nicht ausschließlich, in Hohlscheiben, Platten und/oder Schichten. '
Unter Turbulenzeinlagen werden im Rahmen der Erfindung, insbesondere aber nicht ausschließlich, Bleche verstanden, die turbulenzerzeugende und/oder -erhöhende Formelemente wie z.B. Rippen, Stege, Noppen, Fur- chen, Einprägungen und/oder Ausfräsungen aufweisen und produktionsver- einfachend in die Strömungselemente eingelegt werden, bevorzugt mit zu den Innenabmaßen der Strömungselemente korrespondierenden Außenabmaßen sowie zur den Verteileinrichtungen mit Dichtigkeitseinrichtung, insbesondere den Ausprägungen in den Strömungselementen korrespondieren- , den Ausstanzungen für die Durchlässe, durch welche benachbarte Strömungselemente strömungsverbunden sind.
In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung sind wenigstens zwei von unterschiedlichen Fluiden durchströmte Strömungselemente längsseitig form- und/oder stoff- und/oder kraftschlüssig miteinander verbunden.
In einer weiteren bevorzugten Ausführungsform sind wenigstens zwei vom gleichen Fluid durchströmte Strömungselemente längsseitig über insbeson- dere, aber nicht ausschließlich, die dazwischen angeordneten beziehungs- weise profileigenen turbulenzerzeugenden und/oder -erhöhenden Formelemente derart verbunden, dass wenigstens ein hierdurch zwischen diesen Strömungselementen entstehender Hohlraum ein Strömungselement für ein anderes Fluid bildet.
In einer weiteren Ausführungsform sind die Verbindungen der Strömungselemente einer Gruppe entnommen, die Lötverbindungen, Schweißverbindungen oder Klebeverbindungen enthält.
In einer weiteren bevorzugten Ausführungsform ist wenigstens zwischen zwei von unterschiedlichen Fluiden durchflossenen Strömungselementen wenigstens ein Dichtelement vorgesehen, das insbesondere, aber nicht ausschließlich, von fluidleeren Hohlelementen und/oder Trennelementen gebildet wird.
Bevorzugt ist wenigstens ein Dichtelement zwischen in Reihe gestalteten Strömungsbaugruppen angeordnet.
In einer weiteren bevorzugten Ausführungsform weist wenigstens eines der Dichtelemente, insbesondere, aber nicht ausschließlich, ein fluidleeres Hohlelement, eine Dichtigkeitskontrollöffnung auf. Diese erweist sich insbesondere während der Herstellung der erfindungsgemäßen Vorrichtung von Vorteil. Denn werden dann die einzelnen Strömungseinrichtungen zunächst einzeln mit ihren jeweiligen Fluiden gefüllt und sollte sich die jeweilige Strömungsein- richtung durch beispielsweise einen Fehler im Herstellungsprozess als undicht erweisen, besteht die Möglichkeit, dass sich das austretende Fluid in dem zunächst fluidleeren Hohl- oder auch Blindelement sammelt und durch seinen Austritt an der Dichtigkeitskontrollöffnung die Undichtigkeit nachweist.
Das Verfahren, zunächst jede einzelne Strömungseinrichtung mit ihrem entsprechenden Fluid zu befüllen, ermöglicht es jedoch auch, durch den Übertritt des jeweils befüllten Fluids in eine zweite Strömungseinrichtung die erfindungsgemäße Gas- und Flüssigkeitsdichtigkeit der verschiedenen Strömungseinrichtungen gegeneinander zu überprüfen. In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung weist wenigstens eines der Dichtelemente wenigstens einen Dichtigkeitssensor auf, der im Falle eines Fluidaustritts aus einer der Strömungseinrichtungen bewirkt, dass ein physisch wahrnehmbares Signal ausgegeben wird.
In einer weiteren bevorzugten Ausführungsform sind wenigstens zwei Strömungsbaugruppen in im wesentlichen thermisch isolierender Weise voneinander getrennt, beispielsweise durch lediglich räumlich beabstandete Anord- nung, und/oder aber auch durch insbesondere dazwischen angeordnete flu- idleere Hohlelemente.
In einer weiteren bevorzugten Ausführungsform sind innerhalb wenigstens eines Strömungselements Formelemente vorgesehen, welche zumindest abschnittsweise die Hauptströmungsrichtung des im Strömungselement strömenden Fluids ändern.
In einer weiteren Ausführungsform wird wenigstens einer Strömungseinrichtung über wenigstens eine weitere Zuflusseinrichtung ein Fluid, insbesonde- re, aber nicht ausschließlich, ein solches, welches dem Fluid in dieser Strömungseinrichtung entspricht, beigemischt.
In einer weiteren bevorzugten Ausführungsform erfolgt die erfmdungsgemä- ße Reihenschaltung von wenigstens zwei Strömungsbaugruppen bezüglich wenigstens einer Strömungseinrichtung derart, dass die Temperaturgradienten des Fluids dieser Strömungseinrichtung entlang des Strömungswegs dieses Fluids von der Fluidzuflusseinrichtung zur Fluidabflusseinrichtung dieser Strömungseinrichtung jeweils in bezug auf die anderen, die Strömungsbaugruppen der Strömungsbaugruppenreihenschaltung durchströmenden Fluide betragsmäßig im wesentlichen immer kleiner werden.
In einer weiteren bevorzugten Ausführungsform erfolgt eine Mischung von Fluiden im Wärmetauscher, wobei unterschiedliche Anteile des Gesamtfluids unterschiedliche Strömungselemente durchströmen können. Eine weitere bevorzugte Ausführungsform erlaubt eine Trennung eines Fluids im Wärmetauscher, wobei unterschiedliche Anteile des aufgeteilten Fluids unterschiedliche Strömungselemente durchströmen können.
In einer weiteren bevorzugten Ausführungsform erfolgt der Wärmeaustausch in einzelnen Strömungsbaugruppen über Kondensation oder Verdampfung eines Fluids.
In weiteren bevorzugten Ausführungsformen können die einzelnen Strömungsbaugruppen als Kreuz-, Gegen- oder Gleichstromwärmetauscheinheiten betrieben werden.
In einer weiteren bevorzugten Ausführungsform ist der Wärmeübertrager Teil eines Kühlkreislaufs und die Versorgung der einzelnen Strömungsbaugruppen mit dem Fluid erfolgt über einen weiteren Nieder- und/oder Hochtempe- raturkühlkreislauf.
In einer weiteren bevorzugten Ausführungsform der Wärmeübertrager als wenigstens zweistufiger Wärmetauscher zum Einsatz in Land-, Luft- oder Wasserfahrzeugen, insbesondere zur Abgaskühlung für einen Verbrennungsmotor verwendet wird.
Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen im Zusammenhang mit den Figuren.
Darin zeigen:
Fig. 1 einen schematischen Schnitt durch eine erfindungsgemäße Wärmetauschvorrichtung mit übereinander angeordneten Scheibenstapeln als Strömungsbaugruppen;
Fig. 2 eine perspektivische Teilexplosionsansicht des zweistufigen Wärme- tauschers gemäß Fig. 1 ; Fig. 3 eine obere Längsschnittansicht zweier Scheibentypen für eine weitere Ausführungsform der erfindungsgemäßen Wärmetauschvorrichtung;
Fig. 4 eine obere Längsschnittansicht zweier Scheibentypen für ein weiteres Ausführungsbeispiel der erfindungsgemäßen Wärmetauschvorrichtung;
Fig. 5 eine obere Längsschnittansicht zweier Scheibentypen für ein weiteres Ausführungsbeispiel der erfindungsgemäßen Wärmetauschvorrichtung;
Fig. 6 eine perspektivische Durchsicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Wärmetauschvorrichtung mit übereinander angeordneten Strömungsbaugruppen;
Fig. 7 eine perspektivische Durchsicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Wärmetauschvorrichtung mit nebeneinander angeordneten Strömungsbaugruppen;
Fig. 8 eine perspektivische Durchsicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Wärmetausch Vorrichtung mit übereinander angeordneten Strömungsbaugruppen für ein gasförmiges Fluid 2;
Fig. 9 eine perspektivische Durchsicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Wärmetauschvorrichtung mit übereinander ange- ordneten Strömungsbaugruppen und alternativer Anordnung einer Abflusseinrichtung.
Fig. 10 eine perspektivische Durchsicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Wärmetauschvorrichtung mit nebeneinander angeordneten Strömungsbaugruppen und gemeinsamer Fluidabflusseinrichtung;
Fig. 11 zwei Draufsichten von weiteren Ausführungsbeispielen der erfindungsgemäßen Wärmetauschvorrichtung;
Fig. 12 einen Kühlkreislauf, in den der Wärmetauscher gemäß Fig. 10 integ- riert wurde. Ein erstes Ausführungsbeispiel der Erfindung wird nun in Bezug auf die Figuren 1 und 2 beschrieben. Diese Figuren zeigen einen schematischen Schnitt durch einen zweistufigen Wärmetauscher, dessen Strömungselemente Scheiben sind, und dessen Wärmetausch- oder Strömungsbaugruppen durch übereinander angeordnete Scheibenstapel mit einer dazwischen angeordneten Hohlscheibe gebildet werden beziehungsweise eine perspektivische Teilexplosionsansicht des gleichen Wärmetauschers.
Hierbei fließt in Fig. 1 das Fluid 1 links oben über die Zuflusseinrichtung 10 durch die Abdeckung 5 in die Strömungsbaugruppe 120 und tritt zunächst durch eine zweite Öffnung 100 mit Ausprägung durch die oberste Scheibe 22 in die oberste Scheibe 12 als Strömungselement für Fluid 1. Von dort bieten sich dem Fluid 1 zwei mögliche Strömungsrichtungen, nämlich einerseits im wesentlichen diagonal über die oberste Scheibe 12 zur in Fig. 2 dargestellten ersten Öffnung 102, wobei entlang dieses Wegs ein Wärmeaustausch mit dem die darüber- beziehungsweise darunterliegenden Scheiben 22 durchströmenden Fluid 2 erfolgt.
Anschließend gelangt Fluid 1 durch die erste Öffnung 102 durch eine korrespondierende Ausprägung in der wiederum von Fluid 2 durchströmten darunterliegenden Scheibe 22 in die nachfolgenden Scheiben 12. Andererseits erlaubt auch die in Fig. 2 dargestellte erste Öffnung 101 den Durchtritt durch die darunterliegende Scheibe 22 zu den nachfolgenden Scheiben 12. Jedoch wird ein unmittelbarer Strömungsweg für Fluid 1 direkt durch die ersten und zweiten Öffnungen der Scheiben beider Strömungsbaugruppen von der Zuflusseinrichtung 10 zur Abflusseinrichtung 11 , ohne dass das Fluid 1 über die Scheiben 12 der unteren Strömungsbaugruppe 130 strömen müsste, über die Trennwand 71 blockiert.
Von der untersten Scheibe 12 der oberen Strömungsbaugruppe 120 schließlich strömt Fluid 1 durch eine entsprechende Ausprägung in der Blindscheibe 7 in die hierdurch zu Strömungsbaugruppe 120 bezüglich Fluid 1 in Reihe geschaltete Strömungsbaugruppe 130, welche eine zweite Wärmeaus- tauschstufe bildet, durch deren Scheiben 12 sich analoge Strömungswege zwischen den von Fluid 3 durchströmten Scheiben 32 ergeben, was nun einen Wärmeaustausch zwischen den Fluiden 1 und 3 erlaubt.
Die Trennwände 72 und 73 sowie 74 und 75 trennen die Scheiben 22 als wesentlichem Teil der Strömungseinrichtung von Fluid 2 von den Scheiben 32 als wesentlichem Teil der Strömungseinrichtung von Fluid 3. Schließlich tritt Fluid 1 durch den Boden 6 und die Abflusseinrichtung 11 aus dem zweistufigen Wärmetauscher 9 aus.
Auf analoge Weise durchströmen Fluid 2 die Scheiben 22 der oberen Strömungsbaugruppe 120 beziehungsweise Fluid 3 die Scheiben 32 der unteren Strömungsbaugruppe 130, wobei die den Zuflusseinrichtungen 20 und 30 entsprechenden Abflusseinrichtung 21 beziehungsweise 31 für Fluid 2 beziehungsweise 3 jeweils auf der gleichen Seite angeordnet sind, d.h. für Flu- id 2 oben und für Fluid 3 unten.
Die fluidleere Blindscheibe 7 erlaubt zum einen eine thermische Isolation der sich bevorzugt auf unterschiedlichem Temperaturniveau befindlichen Strömungsbaugruppen 120 und 130, zum anderen dient sie zur Überprüfung der Dichtigkeit und Vermeidung, dass sich im Betrieb unbemerkt Fluid 3 und 2 bei auftretender Undichtigkeit in beiden Strömungseinrichtungen beziehungsweise Fluidkreisläufen vermischen. Die Blindscheibe 7 ist von allen Seiten verschlossen und weist an einer Seite ihres Randstegs eine kleine Öffnung 8 nach außen auf. Im Falle eine Undichtigkeit kann das jeweilige Fluid durch diese Öffnung nach außen strömen und dringt nicht in eine andere Strömungseinrichtung ein.
Zwischen den Scheiben 12, 22 und 32 können turbulenzerzeugende Rippen oder Elemente eingelegt werden und/oder aber die Scheiben weisen selbst eingeprägte Rippen, Stege und/oder Noppen auf (hier nicht dargestellt). Durch Verlöten der Erhebungen in Form der Einlagen oder Einprägungen von Scheibe zu Scheibe wird eine vorgegebene Druckfestigkeit erreicht.
In Fig. 3 ist eine obere Längsschnittansicht der zwei Scheibentypen für einen zweistufigen aus Scheiben gebildeten Wärmetauscher dargestellt, bei dem die Trennung von zwei Fluiden innerhalb des ersten Scheibentyps 15 mittels zweier paralleler Stege 77 erfolgt, wobei jeweils zwei kleinere erste Öffnungen 121 , 122 sowie 131 , 132 zum Ein- beziehungsweise Auslass für Fluid 2 und 3 vorgesehen sind. Ferner weist der erste Scheibentyp 15 zwei größere zweite Öffnungen 113 und 114 mit umlaufender Ausprägung als Durchtrittsöffnung für Fluid 1 auf.
Der zweite Scheibentyp 25 weist demgegenüber jeweils zwei kleinere zweite Öffnungen 123 und 124 sowie 133 und 134 mit umlaufender Ausprägung zum Durchtritt von Fluid 2 beziehungsweise 3 durch den zweiten Scheibentyp 25 auf sowie zwei größere erste Öffnungen 111 und 112 zum Ein- beziehungsweise Auslass für Fluid 1 in den beziehungsweise aus dem zweiten Scheibentyp 25.
In Fig. 4 ist eine weitere Variante der zwei Scheibentypen für einen zweistufigen aus Scheiben gebildeten Wärmetauscher dargestellt, bei der Fluid 2 und 3 über getrennte Fluidzuflusseinrichtungen zugeführt werden. Einlass und Durchtritt von Fluid 2 beziehungsweise 3 in beziehungsweise durch den ersten Scheibentyp 17 erfolgt über zwei kleinere dritte Öffnungen 126 und 136 mit unterbrochener umlaufender Ausprägung. Den Durchtritt von Fluid 2 beziehungsweise 3 durch den zweiten Scheibentyp 27 erlauben zwei kleinere zweite Öffnungen 125 und 135 mit umlaufender Ausprägung. Innerhalb des ersten Scheibentyps 17 werden Fluid 2 und 3 gemischt und über eine zusätzliche größere erste Öffnung 1231 abgeführt.
Den Durchtritt der Mischung von Fluid 2 und 3 durch den zweiten Scheibentyp 27 erlaubt eine darin befindliche zusätzliche größere zweite Öffnung 1232 mit umlaufender Ausprägung. Vorzugweise handelt es sich bei Fluid 2 und 3 um ein Fluid, das aber an den Fluidzuflusseinrichtungen unterschiedliche Temperaturniveaus aufweist. Wegen der Mischung der Fluide entfällt bei dieser Ausführungsform die Trennung der Strömungseinrichtungen über die Stege 77 gemäß Fig. 3. Kennzeichnend für diese Ausführungsform ist, dass das Fluid 2 mit dem Fluid 1 im Gleichstrom und das Fluid 3 mit dem Fluid 1 im Gegenstrom Wärme übertragen. Fig. 5 stellt eine obere Längsschnittansicht der zwei Scheibentypen für einen zweistufigen aus Scheiben gebildeten Wärmetauscher gemäß Fig. 3 dar, wobei im zweiten Scheibentyp 26 eine zusätzliche größere erste Öffnung 141 zum Einlass eines vorzugsweise Fluid 1 entsprechenden Fluids 4 in den zweiten Scheibentyp 26 vorgesehen ist. Bevorzugt befindet sich Fluid 4 auf einem anderen Temperatumiveau als Fluid 1 und/oder aber es kann ebenfalls beispielsweise korrosionshemmende Zusatzstoffe enthalten.
Fig. 6 zeigt eine perspektivische Durchsicht eines zweistufigen Wärmetau- schers, dessen Strömungselemente aus Flachrohren 40 sowie aus dazwischenliegenden Hohlräumen 50 gebildet werden, wobei die erfindungsgemäßen Strömungsbaugruppen für Fluid 1 und 2 beziehungsweise Fluid 1 und 3 übereinander angeordnet sind und Ein- und Auslass des zu temperierenden Fluids 1 auf der gleichen Seite erfolgt. Zwischen den Flachrohren sind oberflächenvergrößernde Kühlrippen 99 angedeutet, die zu einer Erhöhung des Wärmeübergangskoeffizienten zwischen Fluid 1 und 2 beitragen. Durch Verlöten der Kühlrippen 99 von Flachrohr zu Flachrohr wird die Druckfestigkeit erhöht.
In Fig. 7 ist eine perspektivische Durchsicht eines zweistufigen Wärmetauschers dargestellt, dessen Strömungselemente aus Flachrohren 41 sowie aus dazwischenliegenden Hohlräumen 51 gebildet werden, wobei die erfindungsgemäßen Strömungsbaugruppen für Fluid 1 und 2 beziehungsweise Fluid 1 und 3 nebeneinander angeordnet sind und Ein- und Auslass des zu temperierenden Fluids 1 auf gegenüberliegenden Seiten erfolgt.
Fig. 8 zeigt eine perspektivische Durchsicht eines zweistufigen Wärmetauschers, dessen Strömungselemente aus Flachrohren sowie aus dazwischenliegenden Hohlräumen gebildet werden, wobei die erfindungsgemäßen Strömungsbaugruppen für Fluid 1 und 2 beziehungsweise Fluid 1 und 3 ü- bereinander entsprechend Fig. 5 angeordnet sind, wobei aber aufgrund eines gasförmigen Fluids 2, vorzugsweise Umgebungsluft auf eine Zu- und Abführung sowie eine Einhausung der Strömungsbaugruppe Fluid 1 und 2 verzichtet werden kann. Die Strömungsrichtung des Fluids 2 wird durch den neben dem entsprechenden Bezugzeichen dargestellten Pfeil angedeutet. In Fig. 9 ist eine perspektivische Durchsicht eines zweistufigen Wärmetauschers gemäß Fig. 5 dargestellt, wobei je nach durch die gestrichelte Ab- flussströmungsrichtung von Fluid 1 angedeutete alternative Anordnung der Abflusseinrichtung für Fluid 1 auf der gleichen beziehungsweise der gegenüberliegenden Seite bezüglich des Zuflusses von Fluid 1 , die zweite Wärmeaustauschstufe in Form der Strömungsbaugruppe für Fluid 1 und 3 genutzt beziehungsweise auf diese verzichtet wird.
In Fig. 10 ist eine perspektivische Durchsicht eine zweistufigen Wärmetauschers gemäß Fig. 7 dargestellt, wobei mehr Flachrohre zum Einsatz kommen als in Fig. 7. Kennzeichnend für dieses Ausführungsbeispiel ist, dass es sich bei Fluid 2 und 3 um ein Fluid handelt, analog zu Fig. 4. In diesem Ausführungsbeispiel strömen Fluid 2 und 3 mit unterschiedlichen Massenströ- men und Temperaturen in den Wärmetauscher ein. Im wesentlichen in der gemeinsamen Fluidsammeleinrichtung von Fluid 2 und 3 mischen sich beide Fluide und strömen gemischt über die gemeinsame Fluidabflusseinrichtung ab. Zusätzlich zeigt Fig. 10 eine Draufsicht auf dieses Ausführungsbeispiel, welche verdeutlicht, dass die Strömungsbaugruppe mit den Fluiden 1 und 3 vorwiegend im Gleichstrom, die Strömungsbaugruppe mit den Fluiden 1 und 2 vorwiegend im Gegenstrom und nicht im vorwiegend im Kreuzstrom gemäß Fig. 7 betrieben wird.
Vorteile weist diese Variante bei der Kühlung von Abgasen auf. In der Hoch- temperaturströmungsbaugruppe (HT-Strömungsbaugruppe) mit den Fluiden 1 und 3 gemäß der Draufsichtdarstellung strömt sehr viel Kühlmittel im Gleichstrom zum sehr heißen Abgas durch den Kühler. Durch den Gleichstrom wird ein Sieden des Kühlmittels weitgehend vermieden, in der Nieder- temperaturströmungsbaugruppe (NT-Strömungsbaugruppe) mit den Flui- den 1 und 2 strömt ein deutlich geringerer kühler Kühlmittelmassenstrom im Gegenstrom zum schon stark abgekühlten Abgas. Hier kann eine Gegen- stromschaltung zugelassen werden, da die Gefahr des Siedens durch die schon erfolgte Abgaskühlung nicht mehr gegeben ist. Die Gegenstromschal- tung hat den Vorteil, dass der Wärmetausch zwischen Abgas und Kühlmittel sehr hoch ist und das Abgas stark abgekühlt werden kann. Fig. 11 zeigt dass, die Lage der Fluidzu- und abflusseinrichtung auch je nach Anwendung so festgelegt werden kann, dass der gesamte Kühler im Gegenstrom (A) oder Gleichstrom (B) durchströmt wird. Dies ist dann möglich, wenn eine Siedegefahr für das oder die Kühlmittel nicht vorliegt.
Fig. 12 zeigt schematisch die Einbindung eines Kühlers 300 gemäß Fig. 10 für den Fall der Abgaskühlung für einen Verbrennungsmotor 400. Dabei sind viele Schaltungen denkbar, vorteilhaft ist, wenn die NT-Strömungsbau- gruppe 311 des Kühlers 300 von einem kleinen Massenstrom durchströmt wird, der in einem separaten Niedertemperaturkühler 310 durch Luft auf eine sehr niedrige Temperatur gebracht wird. Dieser kleine Massenstrom wird nach dem Hauptluftkühler 320 vom Hauptstrom abgezweigt und in dem Niedertemperaturkühler 310 abgekühlt. Die HT-Strömungsbaugruppe 321 des zweistufigen Kühlers 300 wird von einem größeren Massenstrom auf höherem Temperaturniveau durchströmt, der direkt von dem dem Hauptluftküh- le 320 zuströmenden Kühlmittelmassenstrom abgezweigt wird.
Es ist ebenfalls denkbar, dass der zweistufige Wärmeübertrager einen eig- nen Kühlmittelkreislauf besitzt, d.h. keine Einbindung in den eigentlichen Motorkühlkreislauf vorgesehen ist. Auch kann der NT-Kreislauf über eine eigne Pumpe verfügen.

Claims

P a t e n t a n s p r ü c h e
1. Vorrichtung zum Austausch von Wärme mit:
- wenigstens drei Strömungseinrichtungen, welche von wenigstens einem strömungsfähigen Medium (Fluid) durch- strömt werden;
- für die von im wesentlichen flüssigen Fluiden durchströmten Strömungseinrichtungen jeweils wenigstens einer Fluidzuflusseinrichtung, wenigstens einer Fluidsammel- und/oder Verteileinrichtung und wenigstens einer Fluidabflusseinrichtung,
dadurch gekennzeichnet, dass
- wenigstens zwei Strömungsbaugruppen vorgesehen sind mit wenigstens jeweils zwei Strömungselementen, welche derart angeordnet sind, dass letztere alternierend von verschiedenen Fluiden durchströmt werden,
- die zu wenigstens einer von im wesentlichen flüssigen Fluiden durchströmten Strömungseinrichtung gehörigen Strömungselemente form- und/oder stoff- und/oder kraftschlüssig im wesentlichen gas- und flüssigkeitsdicht mit wenigstens einer Flu- idsammel- und/oder -Verteileinrichtung verbunden sind,
- die Hauptströmungsrichtungen aller Fluide in den Strömungselementen in zueinander im wesentlichen parallelen Ebenen liegen,
- wenigstens zwei Strömungsbaugruppen direkt form- und/oder stoff- und/oder kraftschlüssig und/oder über Fluidverteileinrich- tungen strömungsverbunden wenigstens bezüglich einer Strömungseinrichtung in Reihe geschaltet sind.
. Vorrichtung, insbesondere nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Strömungselemente zumindest abschnittsweise von insbesondere, aber nicht ausschließlich, Hohlscheiben, Flachrohren, Platten, Schichten und dergleichen gebildet werden.
3. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
wenigstens eine Fluidsammel- und/oder -Verteileinrichtung zumindest abschnittsweise insbesondere, aber nicht ausschließlich von Hohlkör- pern und/oder Rohren gebildet werden.
4. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
wenigstens eine Fluidsammel- und/oder -Verteileinrichtung zumindest zum Teil aus längsseitig angeordneten Öffnungen in den Strömungselementen gebildet werden, wobei eine erste Anzahl einfache Öffnungen Fluidein- und -auslasse zu benachbarten Strömungselementen bilden und wobei um eine zweite Anzahl Öffnungen Dichteinrichtungen angeordnet sind, um im entsprechenden Strömungselement Durchlas- se zu bilden, durch welche hierzu benachbarte Strömungselemerite strömungsverbunden sind.
5. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
turbulenzerzeugende und/oder -erhöhende Formelemente vorgesehen sind.
6. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die turbulenzerzeugenden und/oder -erhöhende Formelemente einer
Gruppe entnommen sind, welche insbesondere, aber nicht ausschließlich, Rippen, Stege, Noppen, Furchen, Einprägungen oder Ausfräsungen beinhaltet.
7. Vorrichtung, insbesondere nach wenigstens einem der vorangegan- genen Ansprüche,
dadurch gekennzeichnet, dass
die turbulenzerzeugenden und/oder -erhöhende Formelemente in we- , nigstens einem und/oder zwischen wenigstens zwei Strömungselementen angeordnet sind.
Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
das Profil wenigstens eines Strömungselements turbulenzerzeugende und/oder -erhöhende Eigenschaften aufweist.
Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
wenigstens zwei von unterschiedlichen Fluiden durchströmte Strömungselemente längsseitig form- und/oder stoff- und/oder kraftschlüs- sig verbunden sind.
10. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
wenigstens zwei vom gleichen Fluid durchströmte Strömungselemente längsseitig über insbesondere, aber nicht ausschließlich, die dazwischen angeordneten beziehungsweise profileigenen turbulenzerzeugenden und/oder -erhöhenden Formelemente derart verbunden sind, dass der wenigstens eine hierdurch zwischen diesen Strömungselementen entstehende Hohlraum ein Strömungseiement für ein anderes Fluid bildet.
1. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die Verbindungen zwischen den Strömungselementen einer Gruppe entnommen sind, die Lötverbindüήgen, Schweißverbindungen oder Klebeverbindungen enthält.
12. Vorrichtung, insbesondere nach wenigstens einem der vorangegan- genen Ansprüche,
dadurch gekennzeichnet, dass
zwischen wenigstens zwei von unterschiedlichen Fluiden durchflosse- nen Strömungselementen wenigstens ein Dichtelement vorgesehen ist, welches insbesondere, aber nicht ausschließlich, von fluidleeren Hohlelementen, Blindelementen und/oder Trennelementen gebildet wird.
13. Vorrichtung, insbesondere nach wenigstens einem der vorangegan- genen Ansprüche,
dadurch gekennzeichnet, dass
wenigstens eines der Dichtelemente, zwischen wenigstens zwei Strö- mungsbaugruppen angeordnet ist.
4. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
wenigstens eines der Dichtelemente, insbesondere, aber nicht ausschließlich, ein fluidleeres Hohlelement, eine Dichtigkeitskontrollöffnung aufweist.
15. Vorrichtung, insbesondere nach wenigstens einem der vorangegan- genen Ansprüche,
dadurch gekennzeichnet, dass
wenigstens eines der Dichtelemente wenigstens einen Dichtigkeits- sensor aufweist, der im Falle eines Fluidaustritts aus einer der Strömungseinrichtungen bewirkt, dass ein physisch wahrnehmbares Signal ausgegeben wird.
16. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
wenigstens zwei Strömungsbaugruppen in im wesentlichen thermisch isolierender Weise voneinander getrennt sind, insbesondere, aber nicht ausschließlich, durch Hohl- und/oder Trennelemente oder auch eine beabstandete Anordnung.
7. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
innerhalb wenigstens eines Strömungselements, Formelemente vorgesehen sind, welche zumindest abschnittsweise die Hauptstromrichtung des im Strömungselement strömenden Fluids ändern.
18. Vorrichtung, insbesondere nach wenigstens einem der vorangegan- genen Ansprüche,
dadurch gekennzeichnet, dass
wenigstens einer Strömungseinrichtung über wenigstens eine weitere Zuflusseinrichtung ein Fluid, insbesondere, aber nicht ausschließlich ein solches, welches dem Fluid in dieser Strömungseinrichtung entspricht, beigemischt wird.
19. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die erfindungsgemäße Reihenschaltung von wenigstens zwei Strömungsbaugruppen bezüglich wenigstens einer Strömungseinrichtung derart erfolgt, dass die Temperaturgradienten des Fluids dieser Strömungseinrichtung entlang des Strömungswegs dieses Fluids von der Fluidzuflusseinrichtung zur Fluidabflusseinrichtung dieser Strömungs- einrichtung jeweils in bezug auf die anderen, die Strömungsbaugruppen der Strömungsbaugruppenreihenschaltung durchströmenden Fluide betragsmäßig im wesentlichen immer kleiner werden.
20. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
eine Mischung von Fluiden im Wärmetauscher erfolgt, wobei unter- schiedliche Anteile des Gesamtfluids unterschiedliche Strömungselemente durchströmen können.
21. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
eine Trennung eines Fluids im Wärmetauscher erfolgt, wobei unterschiedliche Anteile des aufgeteilten Fluids unterschiedliche Strömungselemente durchströmen können.
22. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
in einzelnen Strömungsbaugruppen die Wärme über Kondensation oder Verdampfung eines Fluids ausgetauscht wird.
3. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
die einzelnen Strömungsbaugruppen als Kreuz-, Gegen- oder Gleichstromwärmetauscheinheiten betrieben werden können.
24. Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
der Wärmeübertrager Teil eines Kühlkreislaufs ist und die einzelnen Strömungsbaugruppen mit dem Fluid eines weiteren Nieder- und/oder Hochtemperaturkühlkreislaufs versorgt werden.
25. Verfahren zur Herstellung einer Vorrichtung zum Austausch von Wärme, bei welchem:
- wenigstens drei Strömungseinrichtungen geformt werden, ins- besondere, aber nicht ausschließlich, durch Ausstanzung wan- nenförmiger Metallplatten, welche Strömungselemente bilden, wobei längsseitig Öffnungen ausgestanzt werden, wovon eine erste Anzahl einfache Öffnungen Fluidein- und -auslasse zu benachbarten Strömungselementen bilden und wobei um eine zweite Anzahl Öffnungen Dichteinrichtungen angeordnet sind, insbesondere, aber nicht ausschließlich, an das benachbarte Strömungselement stoff- und/oder form- und/oder kraftschlüssig angrenzende Ausprägungen im entsprechenden Strömungselement, um im entsprechenden Strömungselement Durchlässe zu bilden, durch welche hierzu benachbarte Strömungselemente strömungsverbunden sind,
dadurch gekennzeichnet, dass
- durch insbesondere, aber nicht ausschließlich Übereinander- stapeln der Strömungselemente wenigstens zwei Strömungsbaugruppen gebildet werden, wobei die Strömungselemente derart anzuordnen sind, dass sie alternierend von verschiedenen Fluiden durchströmt werden, - die Hauptströmungsrichtungen aller Fluide in den Strömungselementen in zueinander im wesentlichen parallelen Ebenen liegen,
- wenigstens zwei Strömungsbaugruppen direkt form- und/oder stoff- und/oder kräftschlüssig und/oder über Fluidverteileinrich- tungen strömungsverbunden wenigstens bezüglich einer Strömungseinrichtung in Reihe geschaltet werden,
- Verbindungen zwischen den Strömungselementen, Fluidzu-, - abfluss-, -verteil- und/oder -Sammeleinrichtung hergestellt werden, welche einer Gruppe entnommen sind, die Lötverbindun- gen, Schweißverbindungen oder Klebeyerbindungen enthält.
26. Verwendung einer Vorrichtung, insbesondere nach wenigstens einem der vorangegangenen Ansprüche als wenigstens zweistufiger Wärmetauscher zum Einsatz in Land-, Luft- oder Wasserfahrzeugen, insbesondere zur Abgaskühlung für einen Verbrennungsmotor.
PCT/EP2004/006224 2003-06-25 2004-06-09 Vorrichtung zum mehrstufigen wärmeaustausch und verfahren zur herstellung einer derartigen vorrichtung WO2004113815A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MXPA05014018A MXPA05014018A (es) 2003-06-25 2004-06-09 Dispositivo para cambio de calor de etapas multiples, y metodo para producir dicho dispositivo.
JP2006515866A JP2007506928A (ja) 2003-06-25 2004-06-09 多段熱交換装置およびこのような装置を製造するための方法
US10/561,975 US20070125527A1 (en) 2003-06-25 2004-06-09 Device for multi-stage heat exchange and method for producing one such device
EP04739733A EP1642076A1 (de) 2003-06-25 2004-06-09 Vorrichtung zum mehrstufigen wärmeaustausch und verfahren zur herstellung einer derartigen vorrichtung
BRPI0411930-4A BRPI0411930A (pt) 2003-06-25 2004-06-09 dispositivo para troca de calor de estágios múltiplos e processo para a fabricação de um dispositivo deste gênero

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10328746A DE10328746A1 (de) 2003-06-25 2003-06-25 Vorrichtung zum mehrstufigen Wärmeaustausch und Verfahren zur Herstellung einer derartigen Vorrichtung
DE10328746.9 2003-06-25

Publications (1)

Publication Number Publication Date
WO2004113815A1 true WO2004113815A1 (de) 2004-12-29

Family

ID=33521018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/006224 WO2004113815A1 (de) 2003-06-25 2004-06-09 Vorrichtung zum mehrstufigen wärmeaustausch und verfahren zur herstellung einer derartigen vorrichtung

Country Status (8)

Country Link
US (1) US20070125527A1 (de)
EP (1) EP1642076A1 (de)
JP (1) JP2007506928A (de)
CN (1) CN1813164A (de)
BR (1) BRPI0411930A (de)
DE (1) DE10328746A1 (de)
MX (1) MXPA05014018A (de)
WO (1) WO2004113815A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886340A1 (fr) * 2005-05-31 2006-12-01 Valeo Systemes Thermiques Refroidisseur d'air d'admission pour un moteur thermique turbocompresse a deux etages de suralimentation et circuit d'air correspondant
WO2007045406A1 (de) * 2005-10-20 2007-04-26 Behr Gmbh & Co. Kg Wärmetauscher
WO2007028591A3 (de) * 2005-09-06 2007-05-03 Behr Gmbh & Co Kg Kühlsystem für ein kraftfahrzeug
US20080196871A1 (en) * 2005-06-29 2008-08-21 Alfa Laval Vicarb Condenser-Type Welded-Plate Heat Exchanger
WO2008125309A2 (de) * 2007-04-11 2008-10-23 Behr Gmbh & Co.Kg Wärmetauscher
US20100025023A1 (en) * 2007-01-31 2010-02-04 Michael Schmidt Heat exchanger, exhaust gas recirculation system, and use of a heat exchanger
FR2935475A1 (fr) * 2008-08-27 2010-03-05 Valeo Systemes Thermiques Echangeur de chaleur pour le refroidissement d'un fluide, en particulier des gaz d'echappement recircules d'un moteur thermique
FR2936304A1 (fr) * 2008-09-25 2010-03-26 Valeo Systemes Thermiques Element d'echange de chaleur d'un faisceau d'echange de chaleur d'un echangeur de chaleur
DE102009034723A1 (de) * 2009-07-24 2011-01-27 Behr Gmbh & Co. Kg Wärmetauscher und Aufladesystem
EP2370680A1 (de) * 2008-11-28 2011-10-05 Scania CV AB Systemluftkühler zum kühlen von in einen suprageladenen verbrennungsmotor geleiteter luft
WO2012080508A1 (de) * 2010-12-17 2012-06-21 Behr Gmbh & Co. Kg Vorrichtung zur kühlung von ladeluft, system zum konditionieren von ladeluft und ansaugmodul für einen verbrennungsmotor
WO2014083061A1 (de) * 2012-11-29 2014-06-05 Behr Gmbh & Co. Kg Wärmeübertrager
FR3001795A1 (fr) * 2013-02-07 2014-08-08 Delphi Automotive Systems Lux Agencement d’echangeurs thermiques a plaques
CN105571380A (zh) * 2016-01-19 2016-05-11 四川派尼尔环境科技有限公司 一种高效局部冷却系统用热交换方法
IT201700113260A1 (it) * 2017-10-09 2019-04-09 Zilmet S P A Gruppo scambiatore compatto a circuiti multipli
IT201700122805A1 (it) * 2017-10-27 2019-04-27 Zilmet S P A Centralina termica di regolazione compatta del tipo "hiu"

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1899589B1 (de) * 2005-06-03 2012-08-15 Behr GmbH & Co. KG Ladeluftkühler
EP1913324B1 (de) * 2005-07-19 2011-09-14 Behr GmbH & Co. KG Wärmeübertrager
DE102006014188A1 (de) * 2006-03-24 2007-09-27 Behr Gmbh & Co. Kg Vorrichtung zur Kühlung eines Abgasstroms
DE102008014169A1 (de) * 2007-04-26 2009-01-08 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere zur Abgaskühlung, System mit einem Wärmetauscher zur Abgaskühlung, Verfahren zum Betreiben eines Wärmetauschers
NZ601752A (en) * 2007-07-04 2013-11-29 Astral Pool Australia Pty Ltd Water heating apparatus, especially for pools
US7703282B1 (en) * 2007-12-10 2010-04-27 Iea, Inc. Heat exchanger with horizontal flowing charge air cooler
DE202008017767U1 (de) * 2008-01-15 2010-06-17 Kioto Clear Energy Ag Wärmetauscher
US8225852B2 (en) * 2008-04-30 2012-07-24 Dana Canada Corporation Heat exchanger using air and liquid as coolants
KR20110074970A (ko) * 2008-07-31 2011-07-05 조지아 테크 리서치 코포레이션 마이크로스케일 열 또는 열 및 물질 전달 시스템
JP2010048536A (ja) * 2008-08-25 2010-03-04 Denso Corp 熱交換器
PT2161525T (pt) * 2008-09-08 2016-07-26 Balcke-Dürr GmbH Permutador de calor de construção modular
EA201270240A1 (ru) 2009-08-03 2012-07-30 Флуор Текнолоджиз Корпорейшн Охлаждение низкоэнергетического отходящего газа с использованием смешивающего конденсатора
US8011191B2 (en) 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
US8011201B2 (en) * 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system mounted within a deck
DE202009015586U1 (de) * 2009-11-12 2011-03-24 Autokühler GmbH & Co. KG Wärmeaustauschernetz
DE102010048015B4 (de) * 2010-10-09 2015-11-05 Modine Manufacturing Co. Anlage mit einem Wärmeübertrager
WO2012083454A1 (en) * 2010-12-24 2012-06-28 Dana Canada Corporation Fluid flow mixing box with fluid flow control device
JP5496369B2 (ja) * 2011-01-18 2014-05-21 三菱電機株式会社 積層型熱交換器及びそれを搭載したヒートポンプシステム
CN103090716B (zh) * 2011-10-31 2015-11-25 杭州三花研究院有限公司 用于板式换热器的流体分配器
CN103090707B (zh) * 2011-10-31 2015-11-25 杭州三花研究院有限公司 板式换热器
KR101776718B1 (ko) * 2011-11-22 2017-09-11 현대자동차 주식회사 차량용 열교환기
KR101765582B1 (ko) * 2011-12-06 2017-08-08 현대자동차 주식회사 차량용 열교환기
KR101316859B1 (ko) * 2011-12-08 2013-10-10 현대자동차주식회사 차량용 컨덴서
JP5943619B2 (ja) * 2012-01-31 2016-07-05 株式会社神戸製鋼所 積層型熱交換器及び熱交換システム
WO2013127009A1 (en) * 2012-02-27 2013-09-06 Dana Canada Corporation Method and system for cooling charge air for a fuel cell, and three-fluid charge air cooler
CN103185470A (zh) * 2012-03-05 2013-07-03 哈尔滨工大金涛科技股份有限公司 流道式免焊污水换热器
DK2653818T3 (da) * 2012-04-20 2014-11-03 Alfa Laval Corp Ab Varmevekslerplade og pladevarmeveksler
CN102853695A (zh) * 2012-09-28 2013-01-02 陈建平 一种多流程板式换热器提高换热效率的方法及产品
CN102980328B (zh) * 2012-12-10 2015-04-22 丹佛斯(杭州)板式换热器有限公司 板式换热器
CN103868394B (zh) * 2012-12-13 2017-06-27 浙江三花汽车零部件有限公司 换热器的流通板、换热器的换热单元及换热器
FR3000183B1 (fr) * 2012-12-21 2018-09-14 Valeo Systemes Thermiques Condenseur avec reserve de fluide frigorigene pour circuit de climatisation
WO2014181400A1 (ja) * 2013-05-08 2014-11-13 三菱電機株式会社 熱交換器及び冷凍サイクル装置
JP6346426B2 (ja) * 2013-08-12 2018-06-20 現代自動車株式会社Hyundai Motor Company Egrガス及びエンジンオイル冷却装置とその制御方法
ITBO20130632A1 (it) * 2013-11-20 2015-05-21 Gas Point S R L Scambiatore di calore a piastre, in particolare per caldaie a condensazione
KR20160094979A (ko) * 2013-12-05 2016-08-10 젠썸 인코포레이티드 환경 제어 시트를 위한 시스템 및 방법
US20170022884A1 (en) * 2014-01-30 2017-01-26 Yanmar Co., Ltd. Engine
DE102014201956A1 (de) 2014-02-04 2015-08-06 MAHLE Behr GmbH & Co. KG Rohranordnung für einen Ladeluftkühler
KR102123639B1 (ko) 2014-02-14 2020-06-16 젠썸 인코포레이티드 전도식 대류식 기온 제어 시트
DE102014004322B4 (de) * 2014-03-25 2020-08-27 Modine Manufacturing Company Wärmerückgewinnungssystem und Plattenwärmetauscher
DE102014212906A1 (de) 2014-07-03 2016-01-07 Volkswagen Aktiengesellschaft Ladeluftkühler mit einem Plattenwärmetauscher
WO2016077843A1 (en) 2014-11-14 2016-05-19 Cauchy Charles J Heating and cooling technologies
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies
DE102016006127B4 (de) * 2015-06-08 2022-12-29 Modine Manufacturing Company Ladeluftkühler und Verfahren
CN105240110B (zh) * 2015-08-27 2017-09-26 沪东重机有限公司 一种船用柴油机用多段式空冷换热器
CN105090467A (zh) * 2015-09-02 2015-11-25 陕西法士特齿轮有限责任公司 一种变速器和缓速器的板翅式冷却装置及其控制方法
CN106871670A (zh) * 2015-12-10 2017-06-20 莱尔德电子材料(深圳)有限公司 热交换器
DE102016203951A1 (de) * 2016-03-10 2017-09-14 Mahle International Gmbh Wärmeübertrager
FR3053452B1 (fr) * 2016-07-01 2018-07-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur comprenant un dispositif de distribution d'un melange liquide/gaz
JP2018054264A (ja) 2016-09-30 2018-04-05 株式会社マーレ フィルターシステムズ 熱交換器
JP6791704B2 (ja) * 2016-09-30 2020-11-25 株式会社マーレ フィルターシステムズ 熱交換器
JP2018084393A (ja) * 2016-11-25 2018-05-31 株式会社ノーリツ 熱交換器及び貯湯給湯装置
US10670346B2 (en) * 2018-01-04 2020-06-02 Hamilton Sundstrand Corporation Curved heat exchanger
RS61922B1 (sr) * 2018-10-12 2021-06-30 Vahterus Oy Postavka pločastog izmenjivača topline
DE102018217757A1 (de) * 2018-10-17 2020-04-23 Volkswagen Aktiengesellschaft Abgasrückführungskühler und Verfahren zur Kühlungvon Abgas einer Brennkraftmaschine mit einer Kühlflüssigkeit
JP2020104827A (ja) * 2018-12-28 2020-07-09 株式会社マーレ フィルターシステムズ 熱交換器、及び、車両用の熱交換システム
KR102140781B1 (ko) * 2019-06-04 2020-08-03 두산중공업 주식회사 열교환장치 및 이를 포함하는 가스 터빈
CN110425603A (zh) * 2019-07-31 2019-11-08 安徽冠东科技有限公司 一种具有余热利用功能的商用燃气炉灶
CN111156850B (zh) * 2020-01-17 2021-07-20 陕西秦科世博航空科技有限公司 一种换热器及其换热方法
FR3111971B1 (fr) * 2020-06-29 2022-08-05 Valeo Systemes Thermiques Echangeur thermique pour véhicule automobile
CN111829370A (zh) * 2020-07-28 2020-10-27 贵州永红航空机械有限责任公司 一种热交换器及换热方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755280A (en) * 1995-05-04 1998-05-26 Packinox Plate-type heat exchanger
US6089313A (en) * 1996-07-16 2000-07-18 Packinox Apparatus for exchanging heat between at least three fluids
EP1054225A1 (de) * 1998-12-08 2000-11-22 Ebara Corporation Plattenwärmetauscher für drei fluide und verfahren zu dessen herstellung
FR2843449A1 (fr) * 2002-08-09 2004-02-13 Valeo Thermique Moteur Sa Echangeur de chaleur pour le circuit d'air d'admission d'un moteur thermique

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117624A (en) * 1959-06-22 1964-01-14 Separator Ab Plate heat exchanger
GB2062833B (en) * 1979-08-08 1983-02-02 Apv Co Ltd Plate heat exchangers
GB2076304B (en) * 1980-05-26 1984-02-22 Univ Sydney Heat exchange (evaporator) device
WO1992006343A1 (en) * 1990-09-28 1992-04-16 Matsushita Refrigeration Company Laminated heat exchanger
FR2757257B1 (fr) * 1996-12-13 1999-03-05 Packinox Sa Echangeur thermique a plaques
DE19654362B4 (de) * 1996-12-24 2007-12-06 Behr Gmbh & Co. Kg Wärmeübertrageranordnung
US6044902A (en) * 1997-08-20 2000-04-04 Praxair Technology, Inc. Heat exchange unit for a cryogenic air separation system
DE19824026A1 (de) * 1998-05-29 1999-12-02 Behr Gmbh & Co Kühler
FR2789165B1 (fr) * 1999-02-01 2001-03-09 Air Liquide Echangeur de chaleur, notamment echangeur de chaleur a plaques d'un appareil de separation d'air
WO2000052411A1 (fr) * 1999-03-04 2000-09-08 Ebara Corporation Echangeur de chaleur a plaques
JP2000274968A (ja) * 1999-03-24 2000-10-06 Ebara Corp プレート式熱交換器
DE19948903C2 (de) * 1999-10-11 2002-07-18 Infineon Technologies Ag Getaktete Stromversorgung
AU2224501A (en) * 1999-12-27 2001-07-09 Sumitomo Precision Products Co., Ltd. Plate fin type heat exchanger for high temperature
US6893619B1 (en) * 2000-09-13 2005-05-17 Ford Global Technologies, Llc Plate-frame heat exchange reactor with serial cross-flow geometry
DE10049890B4 (de) * 2000-10-10 2007-02-22 Behr Gmbh & Co. Kg Stapelscheiben-Wärmeübertrager
DE10112710A1 (de) * 2001-03-16 2002-09-26 Modine Mfg Co Plattenwärmetauscher und Herstellungsverfahren
US6516874B2 (en) * 2001-06-29 2003-02-11 Delaware Capital Formation, Inc. All welded plate heat exchanger
DE10137103A1 (de) * 2001-07-30 2003-02-13 Linde Ag Mehrstöckiger Kondensator-Verdampfer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755280A (en) * 1995-05-04 1998-05-26 Packinox Plate-type heat exchanger
US6089313A (en) * 1996-07-16 2000-07-18 Packinox Apparatus for exchanging heat between at least three fluids
EP1054225A1 (de) * 1998-12-08 2000-11-22 Ebara Corporation Plattenwärmetauscher für drei fluide und verfahren zu dessen herstellung
FR2843449A1 (fr) * 2002-08-09 2004-02-13 Valeo Thermique Moteur Sa Echangeur de chaleur pour le circuit d'air d'admission d'un moteur thermique

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886340A1 (fr) * 2005-05-31 2006-12-01 Valeo Systemes Thermiques Refroidisseur d'air d'admission pour un moteur thermique turbocompresse a deux etages de suralimentation et circuit d'air correspondant
US20080196871A1 (en) * 2005-06-29 2008-08-21 Alfa Laval Vicarb Condenser-Type Welded-Plate Heat Exchanger
US8443869B2 (en) * 2005-06-29 2013-05-21 Alfa Laval Vicarb Condenser-type welded-plate heat exchanger
US8028522B2 (en) 2005-09-06 2011-10-04 Behr Gmbh & Co. Kg Cooling system for a motor vehicle
WO2007028591A3 (de) * 2005-09-06 2007-05-03 Behr Gmbh & Co Kg Kühlsystem für ein kraftfahrzeug
JP2010502870A (ja) * 2005-09-06 2010-01-28 ベール ゲーエムベーハー ウント コー カーゲー 自動車用の冷却システム
WO2007045406A1 (de) * 2005-10-20 2007-04-26 Behr Gmbh & Co. Kg Wärmetauscher
JP2009512832A (ja) * 2005-10-20 2009-03-26 ベール ゲーエムベーハー ウント コー カーゲー 熱交換器
US8627882B2 (en) * 2007-01-31 2014-01-14 Behr Gmbh & Co. Kg Heat exchanger, exhaust gas recirculation system, and use of a heat exchanger
US20100025023A1 (en) * 2007-01-31 2010-02-04 Michael Schmidt Heat exchanger, exhaust gas recirculation system, and use of a heat exchanger
US9097466B2 (en) 2007-04-11 2015-08-04 MAHLE Behr GmbH & Co. KG Heat exchanger
WO2008125309A2 (de) * 2007-04-11 2008-10-23 Behr Gmbh & Co.Kg Wärmetauscher
WO2008125309A3 (de) * 2007-04-11 2009-04-09 Behr Gmbh & Co Kg Wärmetauscher
FR2935475A1 (fr) * 2008-08-27 2010-03-05 Valeo Systemes Thermiques Echangeur de chaleur pour le refroidissement d'un fluide, en particulier des gaz d'echappement recircules d'un moteur thermique
FR2936304A1 (fr) * 2008-09-25 2010-03-26 Valeo Systemes Thermiques Element d'echange de chaleur d'un faisceau d'echange de chaleur d'un echangeur de chaleur
EP2169195A1 (de) * 2008-09-25 2010-03-31 Valeo Systemes Thermiques Wärmeaustauschelement von einer Wärmeaustauscheinheit in einem Wärmetauscher
EP2370680A1 (de) * 2008-11-28 2011-10-05 Scania CV AB Systemluftkühler zum kühlen von in einen suprageladenen verbrennungsmotor geleiteter luft
EP2370680A4 (de) * 2008-11-28 2014-03-19 Scania Cv Ab Systemluftkühler zum kühlen von in einen suprageladenen verbrennungsmotor geleiteter luft
DE102009034723A1 (de) * 2009-07-24 2011-01-27 Behr Gmbh & Co. Kg Wärmetauscher und Aufladesystem
US9512776B2 (en) 2010-12-17 2016-12-06 Mahle International Gmbh Device for cooling charge air, system for conditioning charge air, and intake module for an internal combustion engine
WO2012080508A1 (de) * 2010-12-17 2012-06-21 Behr Gmbh & Co. Kg Vorrichtung zur kühlung von ladeluft, system zum konditionieren von ladeluft und ansaugmodul für einen verbrennungsmotor
WO2014083061A1 (de) * 2012-11-29 2014-06-05 Behr Gmbh & Co. Kg Wärmeübertrager
US9945614B2 (en) 2012-11-29 2018-04-17 Mahle International Gmbh Heat exchanger with high pressure phase refrigerant channel, low pressure phase refrigerant channel and coolant channel
FR3001795A1 (fr) * 2013-02-07 2014-08-08 Delphi Automotive Systems Lux Agencement d’echangeurs thermiques a plaques
CN105571380A (zh) * 2016-01-19 2016-05-11 四川派尼尔环境科技有限公司 一种高效局部冷却系统用热交换方法
IT201700113260A1 (it) * 2017-10-09 2019-04-09 Zilmet S P A Gruppo scambiatore compatto a circuiti multipli
WO2019073322A1 (en) * 2017-10-09 2019-04-18 Zilmet Spa COMPACT THERMAL EXCHANGER UNIT WITH MULTIPLE CIRCUITS
IT201700122805A1 (it) * 2017-10-27 2019-04-27 Zilmet S P A Centralina termica di regolazione compatta del tipo "hiu"
WO2019081994A1 (en) * 2017-10-27 2019-05-02 Zilmet Spa COMPRISING THERMOREGULATION UNIT OF THE "HIU" TYPE

Also Published As

Publication number Publication date
MXPA05014018A (es) 2006-03-17
CN1813164A (zh) 2006-08-02
EP1642076A1 (de) 2006-04-05
DE10328746A1 (de) 2005-01-13
US20070125527A1 (en) 2007-06-07
JP2007506928A (ja) 2007-03-22
BRPI0411930A (pt) 2006-08-15

Similar Documents

Publication Publication Date Title
WO2004113815A1 (de) Vorrichtung zum mehrstufigen wärmeaustausch und verfahren zur herstellung einer derartigen vorrichtung
EP3119623B1 (de) Heizkühlmodul
DE1911889C2 (de) Plattenwärmetauscher
DE102012109346B4 (de) Interner Wärmetauscher mit externen Sammelrohren
DE102008052875A1 (de) Plattenwärmetauscher
EP2476975A2 (de) Vorrichtung zur Wärmeübertragung für ein Fahrzeug
DE112019003711B4 (de) Integrierter Flüssigkeits-/Luftgekühlter Kondensator und Niedertemperatur-Kühler
DE102011057190A1 (de) Wärmetauscher für ein Fahrzeug
EP2798297B1 (de) Verfahren zur Herstellung von mehr als zwei unterschiedlichen Wärmeübertragern
DE102011054578A1 (de) Wärmetauscher mit einem integrierten Temperatureinstellelement
DE10035939A1 (de) Vorrichtung zur Wärmeübertragung
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
DE102009034303A1 (de) Wärmeübertrager
EP2187157B1 (de) Wärmeübertrager zur Beheizung eines Kraftfahrzeuges
DE102009051184A1 (de) Wärmetauscher
DE102015111393A1 (de) Vorrichtung zur Wärmeübertragung
WO2005100895A1 (de) Wärmeübertrager für kraftfahrzeuge
WO2012159958A1 (de) Lamellenwärmeübertrager
DE102012105386A1 (de) Wärmetauscher für ein Fahrzeug
EP2926073B1 (de) Wärmeübertrager
WO2003054468A1 (de) Vorrichtung zur wärmeübertragung
DE102009012493A1 (de) Vorrichtung zum Austausch von Wärme und Kraftfahrzeug
DE102015101818A1 (de) Klimaanlage für ein Fahrzeug
EP1734324A2 (de) Verstellbarer innerer Wärmeübertrager
DE102019132955B4 (de) Wärmeübertrager mit integriertem Trockner und Platte für einen Plattenwärmeübertrager

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004739733

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006515866

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/014018

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20048180494

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004739733

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007125527

Country of ref document: US

Ref document number: 10561975

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0411930

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10561975

Country of ref document: US