WO2004111279A2 - Verfahren und anlage zur herstellung von warmband mit dualphasengefüge - Google Patents

Verfahren und anlage zur herstellung von warmband mit dualphasengefüge Download PDF

Info

Publication number
WO2004111279A2
WO2004111279A2 PCT/EP2004/006170 EP2004006170W WO2004111279A2 WO 2004111279 A2 WO2004111279 A2 WO 2004111279A2 EP 2004006170 W EP2004006170 W EP 2004006170W WO 2004111279 A2 WO2004111279 A2 WO 2004111279A2
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
strip
temperature
ferrite
hot
Prior art date
Application number
PCT/EP2004/006170
Other languages
English (en)
French (fr)
Other versions
WO2004111279A3 (de
Inventor
Karl-Ernst Hensger
Wolfgang Hennig
Tillmann BÖCHER
Christian Bilgen
Original Assignee
Sms Demag Aktiengesellschaft
Aceria Compacta De Bizkaia S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33546580&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004111279(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sms Demag Aktiengesellschaft, Aceria Compacta De Bizkaia S.A. filed Critical Sms Demag Aktiengesellschaft
Priority to EP04739698.1A priority Critical patent/EP1633894B1/de
Priority to JP2006515855A priority patent/JP5186636B2/ja
Priority to CA2529837A priority patent/CA2529837C/en
Priority to US10/561,385 priority patent/US20070175548A1/en
Priority to UAA200600445A priority patent/UA81329C2/uk
Publication of WO2004111279A2 publication Critical patent/WO2004111279A2/de
Publication of WO2004111279A3 publication Critical patent/WO2004111279A3/de
Priority to EGNA2005000837 priority patent/EG23893A/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a method for producing hot strip with a dual-phase structure made of ferrite and martensite, wherein at least 70% of the austenite is converted into ferrite from the hot-rolled state by controlled two-stage cooling after the finish rolling to a strip temperature below the martensite start temperature in one Cooling section from water cooling groups arranged one behind the other.
  • the targeted structural transformation by means of a controlled cooling of the steels is known, and for the production of dual-phase steels this controlled cooling is carried out after the hot strip has been formed.
  • the setting of the achievable dual-phase structure essentially depends on the cooling speeds that are technically possible in the system and the chemical composition of the steel. In any case, it is important to have sufficient ferrite formation of at least 70% in the first cooling stage. During this first cooling stage, conversion of the austenite in the pearlite stage should be avoided.
  • the cooling capacity of the second cooling stage following the first cooling stage must be large enough that reel temperatures below the martensite start temperature are reached. Only then is the formation of a dual phase structure with ferritic and martensitic components ensured.
  • EP 0 747 495 B1 describes a process for producing high-strength steel sheet with a structure of at least 75% ferrite, at least 10% martensite and optionally bainite and residual austenite. It is therefore not a structure of pure dual-phase steels.
  • a steel micro-alloyed with niobium is used as the alloy.
  • the hot-rolled steel sheet is specifically cooled, with slow cooling being followed by rapid cooling, or alternatively, the slow cooling is first preceded by rapid cooling.
  • Specified point and 730 0 C - for the first cooling stage a cooling 2-15 ° C / s within a period of 8 to 40 seconds cooling time to a final temperature between the An is.
  • the second cooling stage is conducted at a cooling rate of 20 to 150 0 CVs up to a temperature of 300 0 C.
  • the rapid cooling which alternatively precedes the slow cooling, is carried out at a cooling rate of 20 to 150 ° C./s below the Ar 3 point.
  • EP 1 108 072 B1 describes a process for the production of dual-phase steels, in which after the finish rolling with a two-stage cooling - first slowly, then quickly - a two-phase structure made of 70 to 90% ferrite and 30 to 10% martensite is achieved.
  • the first (slow) cooling is carried out in a cooling section in which the hot strip is cooled in a defined manner by water cooling zones arranged one behind the other at a cooling rate of 20 - 30 K / s.
  • the cooling is set so that the cooling curve enters the ferrite area at such a high temperature that the ferrite can form quickly.
  • This first cooling is continued until at least 70% of the austenite has been converted into ferrite before the further (rapid) cooling follows immediately and without a holding time.
  • the object of the invention to provide a method and a system with or in which the production of hot strip with dual-phase structures in a conventional casting and rolling plant with the local conditions given there and thus time restrictions can also be implemented.
  • the cooling section of such a system is characterized in that the total length generally does not exceed 50 m and no compact cooling is provided.
  • the cooling strategy provides for two-stage cooling with optionally different cooling speeds, which is interrupted by an isothermal holding time of a maximum of 5 seconds.
  • the start of the holding time which corresponds to the end of the first cooling stage, is determined by the entry of the cooling curve into the ferrite area or the start of the austenite transformation into ferrite.
  • the short isothermal cooling pause of a maximum of 5 seconds during which the conversion heat released according to the invention is used to keep the temperature at a constant value and an inevitable cooling of the air is compensated for, the total targeted conversion of the austenite to at least 70% ferrite takes place.
  • the second cooling stage is followed in this holding period immediately by a cooling of the hot strip to a temperature below 300 0 C. Since this temperature is below the martensite start temperature is then held at this cooling with martensite, the second structure component at the desired height.
  • the cooling strategy is determined by a precisely defined, predetermined cooling rate for both cooling stages.
  • these cooling speeds it should be noted that a cooling speed of less than 30 K / s is not possible because of the short time available in the conventional cooling section of a casting and rolling mill, while cooling speeds greater than 150 K / s cannot be achieved in such cooling sections either.
  • the method according to the invention is distinguished not only by a different is sponding chemical composition of the base steel is characterized in that a) the final rolling temperature is well below the A 3 temperature, b) in the second cooling stage to a temperature below 300 0 C cooled, c) the cooling rate below 150 K / s and are above 30 K / s, d) between the two cooling stages there is a very short holding time with a maximum of 5 seconds during which no cooling takes place, e) the conversion to ferrite is isothermal.
  • a plant for carrying out the method of the invention is characterized by a conventional cooling section of a casting and rolling plant, which is arranged behind the last finishing roll stand and has a plurality of controllable water cooling groups with water cooling bars arranged at a distance from one another.
  • the cooling beams in each cooling group are arranged in such a way that a certain amount of water is applied uniformly to the top and bottom of the hot strip.
  • the total amount of water can be regulated by switching individual cooling beams on or off during the rolling process.
  • the number and arrangement of the connected water cooling beams can be variably set in advance in order to optimally adapt the entire cooling section to the cooling conditions to be set
  • FIG. 1 is a time-temperature cooling curve of a hot strip
  • 2 shows a layout of a cooling section in a casting and rolling plant with a 6-stand finishing train
  • FIG. 3 shows a layout of a cooling section in a casting and rolling plant with a 7-stand finishing train.
  • FIG. 1 shows an example of a cooling curve with the time-temperature profile of a hot strip which was cooled in a cooling section 1 on the outlet roller table by the method according to the invention.
  • the hot-rolled strip having the composition: 0.06% C, 0.1% Si, 1, 2% Mn, 0.015% P, 0.06% S, 00.036% Al, 0.15% Cu, 0.054% Ni 1 0, 71% Cr 1 rest Fe and usual accompanying elements were cooled from a set final rolling temperature T fl ni s h of 800 0 C in a first cooling stage with a cooling rate Vi of 54 K / s to a temperature of the hot strip of 670 0 C, at which the Cooling curve entered the ferrite area.
  • FIG. 2 shows an example of the layout of a cooling section 1 of a conventional casting and rolling system designed according to the invention.
  • the cooling section 1 traversed by the hot strip 10 in the transport direction 8 is located between the last finishing stand 2 and the reel 5. Between the last finishing stand 2 and the first water cooling group 3i there is a temperature measuring point 6 for checking the temperature of the hot strip 10 entering the cooling section 1.
  • 2 consists of a total of eight cooling groups 3-
  • FIG. 2 is the typical layout of a cooling section for a 6-stand casting and rolling system, which can be seen from the gap between the cooling groups 3 7 and 4.
  • the subsequent expansion to a 7-stand finishing train often means that, for example, the first cooling group (cooling zone) 3i has to be moved backwards into the structural gap between cooling groups 3 7 and 4.
  • a layout of a cooling section 1 'according to FIG. 3 which differs from the layout of the cooling section 1 of FIG. 2 only in that this structural gap between the cooling groups 3 7 and 4 is eliminated. 3 therefore correspond to the corresponding reference numerals in FIG. 2.
  • An exception is the first cooling group 3i ', whose upper cooling bar, in contrast to the cooling bar of cooling group 3i in FIG. 2, has the usual length of cooling groups 3 2 to 3 7 is formed.
  • each cooling group has four chilled beams on both the top and bottom.
  • Each chilled beam in turn consists of two rows of water tubes for cooling the upper side 10 'and the lower side 10 "of the belt.
  • the cooling group 3i shown in FIG. 2 is shortened by one chilled beam on the upper side for reasons of space.
  • the trimming zone 4 has two valves 7 for each beam. This means that each row of cooling tubes can be controlled individually in the trim zone and the water volume can thus be regulated more precisely.
  • the speed of the strip running out of the finishing train changes and the driving style of the cooling section must be adjusted accordingly in order to adjust the strip properties to be able to set the required time-temperature control.
  • the first necessary cooling stage is achieved with the cooling groups 3i and 3 2
  • the second cooling stage is realized with the groups 3s, 3 6 , 3 7 and 4.
  • the cooling groups 36, 3 7 and 4 are used for the second cooling stage due to the changed boundary conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

Um die Herstellung von Dualphasenstählen durch eine gesteuerte Abkühlung des Warmbandes in zwei Kühlstufen nach der erfolgten Umformung auch in der vorhandenen Kühlstrecke einer Gießwalzanlage mit den örtlichen Gegebenheiten durchführen zu können, wird erfindungsgemäß vorgeschlagen, neben der Einhaltung der chemischen Zusammensetzung des Ausgangsstahls in genau definierten Grenzen die zweistufige Kühlung von einer Endwalz-Bandtemperatur Tfinish mit A3 - 100 K < Tfinish < A3 - 50 K auf eine Haspel-Bandtemperatur Tcoiling < 300 °C (< Martensit-Starttemperatur) durchzuführen, wobei die Abkühlgeschwindigkeit V1,2 in beiden Kühlstufen zwischen V = 30 - 150 K/s, vorzugsweise zwischen V = 50 - 90 K/s liegt, wobei die erste Kühlstufe bis zum Eintritt der Kühlkurve in das Ferritgebiet durchgeführt wird und dann die durch Umwandlung des Austenits in Ferrit freigesetzte Umwandlungswärme zum isothermen Halten der erreichten Bandtemperatur Tconst. mit einer Haltezeit ≤ 5 s bis zum Beginn der zweiten Kühlstufe genutzt wird.

Description

Verfahren und Anlage zur Herstellung von Warmband mit Dualphasengefüge
Die Erfindung betrifft ein Verfahren zur Herstellung von Warmband mit einem Dualphasengefüge aus Ferrit und Martensit, wobei mindestens 70 % des Austenits in Ferrit umgewandelt sind, aus dem warmgewalzten Zustand durch eine kontrollierte zweistufige Abkühlung nach dem Fertigwalzen auf eine Bandtemperatur unterhalb der Martensit-Starttemperatur in einer Kühlstrecke aus mit Abstand hintereinander angeordneten Wasserkühlgruppen.
Die gezielte Gefügeumwandlung durch eine gesteuerte Abkühlung der Stähle ist bekannt, wobei zur Herstellung von Dualphasenstählen diese gesteuerte Abkühlung zeitlich nach der erfolgten Umformung des Warmbandes durchgeführt wird. Die Einstellung des erreichbaren Dualphasengefüges hängt dabei wesentlich von den anlagentechnisch möglichen Abkühlgeschwindigkeiten und der chemischen Zusammensetzung des Stahles ab. Wichtig ist dabei in jedem Fall eine ausreichende Ferritbildung von mindestens 70 % in der ersten Kühlstufe. Während dieser ersten Kühlstufe sollte dabei eine Umwandlung des Austenits in der Perlitstufe vermieden werden.
Die Kühlkapazität der an die erste Kühlstufe anschließenden zweiten Kühlstufe muss so groß sein, dass Haspeltemperaturen unterhalb der Martensit- Starttemperatur erreicht werden. Nur dann ist die Bildung eines Dualphasengefüges mit ferritischen und martensitischen Bestandteilen sichergestellt.
Die bekannte Herstellung von Dualphasenstählen ist unproblematisch bei kleinen Bandgeschwindigkeiten bzw. bei ausreichend langen Kühlstrecken. Bei sehr hohen Bandgeschwindigkeiten kann allerdings der Beginn der zweiten Kühlstufe so weit in der vorhandenen Kühlstrecke verschoben sein, dass die anschließende Martensitbildung nur noch unvollkommen erfolgt oder gänzlich ausbleibt. Es entsteht dann ein Mischgefüge aus Ferrit, Bainit und Anteilen an
BESTATIGUNGSKOPIE Martensit, das die angestrebten mechanischen Eigenschaften reiner Dualpha- sengefüge nicht erreicht.
In der EP O 747 495 B1 wird ein Verfahren zur Herstellung von Stahlblech hoher Festigkeit beschrieben mit einer Struktur von wenigstens 75 % Ferrit, wenigstens 10 % Martensit und gegebenenfalls Bainit und Restaustenit. Es handelt sich demnach nicht um ein Gefüge reiner Dualphasenstähle. Als Legierung wird ein mit Niob mikrolegierter Stahl verwendet. Zu seiner Herstellung wird das warmgewalzte Stahlblech gezielt gekühlt, wobei einer langsamen Abkühlung eine schnelle Abkühlung folgt oder alternativ der langsamen Abkühlung zunächst eine schnelle Abkühlung vorangestellt wird. Für die erste Kühlstufe wird eine Abkühlgeschwindigkeit von 2 bis 15 °C/s innerhalb einer Zeitspanne von 8 bis 40 Sekunden Abkühldauer bis zu einer Endtemperatur zwischen dem An - Punkt und 730 0C angegeben. Die zweite Kühlstufe wird mit einer Abkühlgeschwindigkeit von 20 bis 150 0CVs bis zu einer Temperatur von 300 0C geführt. Die alternativ der langsamen Abkühlung vorangestellte schnelle Abkühlung wird mit einer Abkühlgeschwindigkeit von 20 bis 150 °C/s bis unterhalb des Ar3 - Punktes geführt.
In der EP 1 108 072 B1 wird ein Verfahren zur Herstellung von Dualphasen- Stählen beschrieben, bei dem nach dem Fertigwalzen mit einer zweistufigen Abkühlung - zunächst langsam, dann schnell -, ein zweiphasiges Gefüge aus 70 bis 90 % Ferrit und 30 bis 10 % Martensit erreicht wird. Die erste (langsame) Kühlung wird in einer Kühlstrecke durchgeführt, in der das Warmband durch mit Abstand hintereinander angeordneten Wasserkühlzonen mit einer Abkühlgeschwindigkeit von 20 - 30 K/s definiert gekühlt wird. Die Abkühlung ist dabei so eingestellt, dass die Abkühlkurve mit einer noch so hohen Temperatur in das Ferritgebiet einläuft, dass die Ferritbildung schnell erfolgen kann. Diese erste Kühlung wird so lange fortgesetzt, bis mindestens 70 % des Austenits in Ferrit umgewandelt sind, bevor die weitere (schnelle) Abkühlung unmittelbar und ohne Haltezeit anschließt. Ausgehend von diesem geschilderten Stand der Technik mit den aufgezeigten verschiedenen Möglichkeiten der Herstellung von Dualphasengefüge ist es Aufgabe der Erfindung, ein Verfahren und eine Anlage anzugeben, mit der bzw. in der die Herstellung von Warmband mit Dualphasengefüge in einer konventionellen Gießwalzanlage mit den dort gegebenen örtlichen und damit auch zeitlichen Beschränkungen durchführbar ist. Die Kühlstrecke einer solchen Anlage ist dadurch gekennzeichnet, dass die Gesamtlänge in aller Regel 50 m nicht überschreitet und keine Kompaktkühlung vorgesehen ist.
Diese Aufgabe wird verfahrensmäßig mit den kennzeichnenden Merkmalen des Anspruchs 1 dadurch gelöst, dass ausgehend von einem Stahl mit der chemischen Zusammensetzung: 0,01 - 0,08% C, 0,9 % Si, 0,5 - 1 ,6 % Mn, 1 ,2 % AI, 0,3 - 1 ,2 % Cr, Rest Fe sowie übliche Begleitelemente, zur Erzielung eines Warmbandes mit einem zweiphasigen Gefüge aus 70 bis 95 % Ferrit und 30 bis 5 % Martensit mit hoher mechanischer Festigkeit und hohem Umformvermögen (Zugfestigkeit größer 600 MPa, Bruchdehnung mindestens 25 %) in der Kühlstrecke einer Gießwalzanlage die zweistufige kontrollierte Kühlung von einer Endwalz-Bandtemperatur TfjnjSh mit A3- 100 K < TfjnjSh < A3- 50 K auf eine Haspel-Bandtemperatur TCOiiing < 300 0C (< Martensit-Starttemperatur) durchgeführt wird, wobei die Abkühlgeschwindigkeit Vi,2 in beiden Kühlstufen zwischen V = 30 - 150 K/s, vorzugsweise zwischen V = 50 - 90 K/s liegt, die erste Kühlstufe bis zum Eintritt der Kühlkurve in das Ferritgebiet durchgeführt wird und dann die durch Umwandlung des Austenits in Ferrit freigesetzte Umwandlungswärme zum isothermen Halten der erreichten Bandtemperatur mit einer Haltezeit 5 s bis zum Beginn der zweiten Kühlstufe genutzt wird.
Auf Grund der geringen Länge konventioneller Kühlstrecken in vorhandenen Gießwalzanlagen ist die Herstellung von Warmband mit Dualphasengefüge nur mit einer speziellen Kühlstrategie möglich. Damit eine derartige Kühlstrategie auch durchführbar ist, ist die Einhaltung von bestimmten Grenzwerten der chemischen Zusammensetzung, wie im Anspruch 1 aufgelistet, zwingend erforder- lieh, um innerhalb der zur Verfügung stehenden kurzen Kühlgesamtzeit den gewünschten Umwandlungsgrad zu erreichen.
Die Kühlstrategie sieht dabei eine zweistufige Kühlung mit wahlweise unterschiedlichen Abkühlgeschwindigkeiten vor, die durch eine isothermische Haltezeit von maximal 5 Sekunden unterbrochen wird. Der Beginn der Haltezeit, dies entspricht dem Ende der ersten Kühlstufe, wird bestimmt durch den Eintritt der Kühlkurve in das Ferritgebiet bzw. dem Beginn der Austenitumwandlung in Ferrit. In der kurzen isothermischen Kühlpause von maximal 5 Sekunden, während der erfindungsgemäß die freigesetzte Umwandlungswärme zum Halten der Temperatur auf einen konstanten Wert genutzt und dabei eine unvermeidliche Luftabkühlung kompensiert wird, erfolgt der gesamte angestrebte Umsatz des Austenits zu mindestens 70 % Ferrit. Anschließend an diese Haltezeit folgt dann unmittelbar die zweite Kühlstufe mit einer Abkühlung des Warmbandes auf eine Temperatur unterhalb von 300 0C. Da diese Temperatur unterhalb der Martensit-Starttemperatur liegt, wird bei dieser Kühlung dann mit Martensit der zweite Gefügebestandteil in gewünschter Höhe erhalten.
Neben der Durchführung einer kurzen Haltezeit wird die Kühlstrategie durch eine genau definierte vorgegebene Abkühlgeschwindigkeit für beide Abkühlstufen bestimmt. Diese Abkühlgeschwindigkeit liegt zwischen V = 30 - 150 K/s, vorzugsweise zwischen V = 50 - 90 K/s, abhängig von der Warmbandgeometrie sowie der chemischen Zusammensetzung der eingesetzten Stahlsorte. Zu diesen Abkühlgeschwindigkeiten ist zu bemerken, dass eine Abkühlgeschwindigkeit kleiner 30 K/s wegen der geringen zur Verfügung stehenden Zeit in der konventionellen Kühlstrecke einer Gießwalzanlage nicht möglich ist, während Abkühlgeschwindigkeiten größer 150 K/s in derartigen Kühlstrecken ebenfalls nicht zu erreichen sind.
Im Vergleich zur Herstellung von Dualphasen-Warmband nach dem Stand der Technik zeichnet sich das erfindungsgemäße Verfahren neben einer abwei- chenden chemischen Zusammensetzung des Ausgangsstahls dadurch aus, dass a) die Endwalztemperatur deutlich unterhalb der A3 -Temperatur liegt, b) in der zweiten Kühlstufe bis zu einer Temperatur unterhalb von 300 0C gekühlt wird, c) die Abkühlgeschwindigkeiten unterhalb von 150 K/s und oberhalb von 30 K/s liegen, d) zwischen den beiden Kühlstufen eine mit maximal 5 Sekunden sehr kurze Haltezeit liegt, in der keine Kühlung erfolgt, e) die Umwandlung zu Ferrit isotherm erfolgt.
Eine Anlage zur Durchführung des Verfahrens der Erfindung ist gekennzeichnet durch eine hinter dem letzten Fertigwalzgerüst angeordnete konventionelle Kühlstrecke einer Gießwalzanlage, die mehrere mit Abstand hintereinander angeordnete regelbare Wasserkühlgruppen mit Wasserkühlbalken aufweist. Die in jeder Kühlgruppe vorhandenen Kühlbalken sind so angeordnet, dass die Bandoberseite und die Bandunterseite des Warmbandes gleichmäßig mit einer bestimmten Wassermenge beaufschlagt werden. Die Gesamtwassermenge ist regelbar, indem einzelne Kühlbalken während des Walzens zu- oder abgeschaltet werden. Die Anzahl und Anordnung der zugeschalteten Wasserkühlbalken kann variabel vorab eingestellt werden, um die gesamte Kühlstrecke optimal an die einzustellenden Abkühlbedingungen anzupassen
Weitere Einzelheiten, Merkmale und Eigenschaften der Erfindung werden nachfolgend an einem in schematischen Zeichnungsfiguren dargestellten Ausführungsbeispiel näher erläutert.
Es zeigen:
Fig. 1 eine Zeit-Temperatur-Abkühlkurve eines Warmbandes, Fig. 2 ein Layout einer Kühlstrecke in einer Gießwalzanlage mit 6- gerüstiger Fertigstraße, Fig. 3 ein Layout einer Kühlstrecke in einer Gießwalzanlage mit 7- gerüstiger Fertigstraße.
In Figur 1 ist eine Abkühlkurve mit dem Zeit-Temperaturverlauf eines Warmbandes beispielhaft dargestellt, das nach dem erfindungsgemäßen Verfahren auf dem Auslaufrollgang in einer Kühlstrecke 1 gekühlt wurde. Das Warmband mit der Zusammensetzung: 0,06 % C, 0,1 % Si, 1 ,2 % Mn, 0,015 % P, 0,06 % S, 00,036 % AI, 0,15 % Cu, 0,054 % Ni1 0,71 % Cr1 Rest Fe sowie übliche Begleitelemente wurde von einer eingestellten Endwalztemperatur Tflnish von 800 0C in einer ersten Kühlstufe mit einer Abkühlgeschwindigkeit Vi von 54 K/s auf eine Temperatur des Warmbandes von 670 0C abgekühlt, bei der die Kühlkurve in das Ferritgebiet eintrat. Während einer Haltezeit von etwa 4 Sekunden blieb die Warmbandtemperatur bei dieser Haltetemperatur Tconst., bevor in einer zweiten Kühlstufe mit einer Abkühlgeschwindigkeit V2 von 84 K/s auf eine Bandtemperatur unterhalb von 300 0C (ca. 250 0C Haspeltemperatur) fertig gekühlt wurde. An dem nach diesem Verfahren hergestellten Warmband mit einem Dualphasengefüge im angestrebten Bereich von mindestens 70 % Ferrit und weniger als 20 % Martensit wurde in Versuchen eine Zugfestigkeit von 620 MPa in Kombination mit einem Streckgrenzenverhältnis von 0,52 ermittelt.
In Figur 2 ist beispielhaft das Layout einer erfindungsgemäß ausgebildeten Kühlstrecke 1 einer konventionellen Gießwalzanlage dargestellt. Die vom Warmband 10 in Transportrichtung 8 durchlaufene Kühlstrecke 1 befindet sich zwischen dem letzten Fertiggerüst 2 und dem Haspel 5. Zwischen dem letzten Fertiggerüst 2 und der ersten Wasserkühlgruppe 3i befindet sich eine Temperaturmessstelle 6 zur Kontrolle der Temperatur des in die Kühlstrecke 1 einlaufenden Warmbandes 10. Die Kühlstrecke 1 besteht gemäß Fig. 2 aus insgesamt acht Kühlgruppen 3-|.7 und 4, wobei die letzte häufig als Trimmzone 4 ausgeführt ist. Allgemeiner - abhängig von der jeweiligen Gießwalzanlage - gehö- ren zwischen sechs und neun Kühlgruppen zu einer konventionellen Kühlstrek- ke.
Im dargestellten Beispiel der Fig. 2 handelt es sich um das typische Layout einer Kühlstrecke für eine 6-gerüstige Gießwalzanlage, was an der Lücke zwischen den Kühlgruppen 37 und 4 zu erkennen ist. Der spätere Ausbau auf eine 7-gerüstige Fertigstraße bedingt häufig, dass beispielsweise die erste Kühlgruppe (Kühlzone) 3i nach hinten in die bauliche Lücke zwischen den Kühlgruppen 37 und 4 versetzt werden muss. In diesem Fall ergibt sich ein Layout einer Kühlstrecke 1' gemäß Figur 3, die sich lediglich durch den Wegfall dieser baulichen Lücke zwischen den Kühlgruppen 37 und 4 vom Layout der Kühlstrecke 1 der Fig. 2 unterscheidet. Die Bezugszeichen der einzelnen Konstruktionsteile und Baugruppen der Fig. 3 entsprechen deshalb den entsprechenden Bezugszeichen der Fig. 2. Eine Ausnahme bildet die erste Kühlgruppe 3i', deren oberer Kühlbalken im Gegensatz zum Kühlbalken der Kühlgruppe 3i der Fig. 2 in üblicher Länge der Kühlgruppen 32 bis 37 ausgebildet ist.
In aller Regel weist jede Kühlgruppe jeweils vier Kühlbalken sowohl auf der Ober- als auch auf der Unterseite auf. Jeder Kühlbalken wiederum besteht aus zwei Reihen an Wasserröhrchen zur Kühlung von Bandoberseite 10' und Bandunterseite 10". Als Besonderheit ist die in Figur 2 dargestellte Kühlgruppe 3i aus Platzgründen auf der Oberseite um einen Kühlbalken gekürzt.
Im Unterschied zu den vorderen Kühlgruppen 3i-7, welche pro Kühlbalken ein schaltbares Ventil 7 besitzen, weist die Trimmzone 4 für jeden Balken zwei Ventile 7 auf. Dies bedeutet, dass in der Trimmzone jede Reihe an Kühlröhr- chen einzeln angesteuert werden kann und sich somit die Wassermenge feiner regeln lässt.
Je nach gewalzter Fertigbanddicke ändert sich die Auslaufgeschwindigkeit des Bandes aus der Fertigstraße und dementsprechend muss die Fahrweise der Kühlstrecke angepasst werden, um die zur Einstellung der Bandeigenschaften erforderliche Zeit-Temperaturführung einstellen zu können. Für eine Banddicke von beispielsweise 3 mm wird die erste notwendige Kühlstufe mit den Kühlgruppen 3i und 32 erreicht, während die zweite Kühlstufe mit den Gruppen 3s, 36, 37 und 4 realisiert wird. Bei einem 2.0 mm Fertigband werden aufgrund der geänderten Randbedingungen nur noch die Kühlgruppen 36, 37 und 4 für die zweite Kühlstufe eingesetzt.
Bezugszeichenliste
1 Kühlstrecke
2 letztes Fertiggerüst
3i-7 Wasserkühlgruppen
4 Wasserkühlgruppe (Trimmzone)
5 Haspel
6 Temperaturmessstelle
7 schaltbares Ventil
8 Transportrichtung
10 Warmband
10' Bandoberseite
10" Bandunterseite
Vi Abkühlgeschwindigkeit der ersten Kühlstufe
V2 Abkühlgeschwindigkeit der zweiten Kühlstufe
I finish Bandtemperatur nach dem letzten Fertiggerüst
I const. Bandtemperatur nach der Haltezeit
' coiling Bandtemperatur nach Ende der Kühlung (Coiltemperatur)

Claims

Patentansprüche
1. Verfahren zur Herstellung von Warmband (10) mit einem Dualphasengefüge aus Ferrit und Martensit, wobei mindestens 70 % des Austenits in Ferrit umgewandelt sind, aus dem warmgewalzten Zustand durch eine kontrollierte zweistufige Abkühlung nach dem Fertigwalzen auf eine Bandtemperatur unterhalb der Martensit-Starttemperatur in einer Kühlstrecke (1 , 1') aus mit Abstand hintereinander angeordneten Wasserkühlgruppen (3i-7, 4), dadurch gekennzeichnet, dass ausgehend von einem Stahl mit der chemischen Zusammensetzung: 0,01 - 0,08% C, 0,9 % Si, 0,5 - 1 ,6 % Mn, 1 ,2 % AI, 0,3 - 1 ,2 % Cr, Rest Fe sowie übliche Begleitelemente, zur Erzielung eines Warmbandes (10) mit einem zweiphasigen Gefüges aus 70 bis 95 % Ferrit und 30 bis 5 % Martensit mit hoher mechanischer Festigkeit und hohem Umformvermögen (Zugfestigkeit größer 600 MPa, Bruchdehnung mindestens 25 %) in der Kühlstrecke einer Gießwalzanlage: a) die zweistufige kontrollierte Kühlung von einer Endwalz-Bandtemperatur Tfinish mit A3- 100 K < TfjnjSh < A3 - 50 K auf eine Haspel-Bandtemperatur Tcoiiing < 300 0C (< Martensit-Starttemperatur) durchgeführt wird, wobei die Abkühlgeschwindigkeit Vi,2 in beiden Kühlstufen zwischen V = 30 - 150 K/s, vorzugsweise zwischen V = 50 - 90 K/s liegt, b) die erste Kühlstufe bis zum Eintritt der Kühlkurve in das Ferritgebiet durchgeführt wird und dann die durch Umwandlung des Austenits in Ferrit freigesetzte Umwandlungswärme zum isothermen Halten der erreichten Bandtemperatur TCOnst. mit einer Haltezeit 5 s bis zum Beginn der zweiten Kühlstufe genutzt wird.
2. Gießwalzanlage zur Herstellung von Warmband (10) mit Dualphasengefüge aus dem warmgewalzten Zustand mit einer hinter dem letzten Fertigwalzge- rüst (2) angeordneten Kühlstrecke (1 , 1') mit mehreren mit Abstand hintereinander angeordneten Wasserkühlgruppen (3i-7, 4), zur Durchführung des Verfahrens nach Anspruch 1 , dadurch gekennzeichnet, dass die Kühlstrecke (1 , 1') eine für konventionelle Gießwalzanlagen übliche Länge (< 50 m) aufweist, innerhalb der eine entsprechende Anzahl von regelbaren Wasserkühlgruppen (3i-7, 4) so angeordnet sind, dass durch eine angepasste Fahrweise der gesamten Kühlstrecke in Abhängigkeit von der Banddicke und der Bandgeschwindigkeit die benötigte Abkühlgeschwindigkeit (Vi ,2) jeder Kühlstufe eingestellt sowie die benötigte Haltezeit bei der Bandtemperatur TCOnst zwischen den beiden Kühlstufen realisiert werden kann.
3. Gießwalzanlage nach Anspruch 2, dadurch gekennzeichnet, dass jede Wasserkühlgruppe (3i_7, 4) mehrere über schaltbare Ventile (7) regelbare Kühlbalken enthält, die so angeordnet sind, dass die Bandoberseite (10') und die Bandunterseite (10") des durchlaufenden Warmbandes (10) gleichmäßig mit einer bestimmten Wassermenge beaufschlagt werden, wobei die Wassermengen für die Bandoberseite (10') und die Bandunterseite (10") auch gegeneinander vertrimmbar sind.
4. Gießwalzanlage nach Anspruch 3, dadurch gekennzeichnet, dass die letzte Wasserkühlgruppe (4) zur Kühlung der Bandoberseite (10') und der Bandunterseite (10") jeweils acht schaltbare Ventile (7) für vier Kühlbalken oben und unten zur genaueren Einstellung der Wassermenge aufweist.
PCT/EP2004/006170 2003-06-18 2004-06-08 Verfahren und anlage zur herstellung von warmband mit dualphasengefüge WO2004111279A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04739698.1A EP1633894B1 (de) 2003-06-18 2004-06-08 Verfahren und anlage zur herstellung von warmband mit dualphasengefüge
JP2006515855A JP5186636B2 (ja) 2003-06-18 2004-06-08 二相組織を有するホットストリップを製造する方法及び設備
CA2529837A CA2529837C (en) 2003-06-18 2004-06-08 Method and installation for the production of hot-rolled strip with a dual-phase microstructure
US10/561,385 US20070175548A1 (en) 2003-06-18 2004-06-08 Method and installation for the production of hot-rolled strip having a dual-phase structure
UAA200600445A UA81329C2 (en) 2003-06-18 2004-08-06 Method and cooling device for making of hot-rolled strip with dual-phase structure
EGNA2005000837 EG23893A (en) 2003-06-18 2005-12-17 Method and installation for the production of hot-rolled strip with a dual-phase microstructure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10327383A DE10327383C5 (de) 2003-06-18 2003-06-18 Anlage zur Herstellung von Warmband mit Dualphasengefüge
DE10327383.2 2003-06-18

Publications (2)

Publication Number Publication Date
WO2004111279A2 true WO2004111279A2 (de) 2004-12-23
WO2004111279A3 WO2004111279A3 (de) 2005-05-06

Family

ID=33546580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/006170 WO2004111279A2 (de) 2003-06-18 2004-06-08 Verfahren und anlage zur herstellung von warmband mit dualphasengefüge

Country Status (14)

Country Link
US (1) US20070175548A1 (de)
EP (1) EP1633894B1 (de)
JP (1) JP5186636B2 (de)
KR (1) KR20060057538A (de)
CN (1) CN100381588C (de)
CA (1) CA2529837C (de)
DE (1) DE10327383C5 (de)
EG (1) EG23893A (de)
MY (1) MY136875A (de)
RU (1) RU2346061C2 (de)
TW (1) TWI300443B (de)
UA (1) UA81329C2 (de)
WO (1) WO2004111279A2 (de)
ZA (1) ZA200509876B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447260C (zh) * 2006-06-23 2008-12-31 宝山钢铁股份有限公司 盘式带钢快速冷却试验装置及其使用方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2361699A1 (de) 2010-02-26 2011-08-31 Siemens Aktiengesellschaft Verfahren zur Kühlung eines Blechs mittels einer Kühlstrecke, Kühlstrecke und Steuer- und/oder Regeleinrichtung für eine Kühlstrecke
DE102011000089A1 (de) * 2011-01-11 2012-07-12 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines warmgewalzten Stahlflachprodukts
CN103215420B (zh) * 2012-12-31 2015-02-04 西安石油大学 一种大变形管线钢双相组织的获取方法
CN104043660B (zh) * 2013-09-26 2015-09-30 北大方正集团有限公司 一种非调质钢的生产工艺
DE102017206540A1 (de) * 2017-04-18 2018-10-18 Sms Group Gmbh Vorrichtung und Verfahren zum Kühlen von Metallbändern oder -blechen
DE102017127470A1 (de) * 2017-11-21 2019-05-23 Sms Group Gmbh Kühlbalken und Kühlprozess mit variabler Abkühlrate für Stahlbleche
DE102017220891A1 (de) * 2017-11-22 2019-05-23 Sms Group Gmbh Verfahren zum Kühlen eines metallischen Guts und Kühlbalken
CN109576581A (zh) 2018-11-30 2019-04-05 宝山钢铁股份有限公司 一种高表面质量、低屈强比热轧高强度钢板及制造方法
CN110724801B (zh) * 2019-10-28 2021-02-12 重庆科技学院 Cr-Mo超高强钢在奥氏体和铁素体两相区等温热处理后直接深冷处理提高强韧性的方法
RU2724217C1 (ru) * 2020-02-04 2020-06-22 Антон Владимирович Шмаков Способ производства стального проката

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159218A (en) * 1978-08-07 1979-06-26 National Steel Corporation Method for producing a dual-phase ferrite-martensite steel strip
EP0019193A1 (de) * 1979-05-09 1980-11-26 SSAB Svenskt Stal AB Verfahren zur Herstellung von Stahlbändern mit hoher Festigkeit und guter Verformbarkeit
US4790889A (en) * 1984-11-08 1988-12-13 Thyssen Stahl Ag Hot-rolled strip having a dual-phase structure
EP0747495A1 (de) * 1995-06-08 1996-12-11 Sollac S.A. Niob enthaltendes warmgewalztes, hochfestes Stahlblech mit gute Tiefziehfähigkeit, und Verfahren zu ihrer Herstellung
WO2000005422A1 (de) * 1998-07-24 2000-02-03 Sms Schloemann-Siemag Aktiengesellschaft Verfahren und anlage zur herstellung von dualphasen-stählen

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533261A (en) * 1967-06-15 1970-10-13 Frans Hollander Method and a device for cooling hot-rolled metal strip on a run-out table after being rolled
FR223577A (de) * 1973-12-11
JPS57137452A (en) * 1981-02-20 1982-08-25 Kawasaki Steel Corp Hot rolled high tensile steel plate having composite structure and its manufacture
JPS57137426A (en) * 1981-02-20 1982-08-25 Kawasaki Steel Corp Production of low yield ratio, high tensile hot rolled steel plate by mixed structure
JPS63207410A (ja) 1987-02-24 1988-08-26 Kawasaki Steel Corp 熱延鋼帯の板幅変動防止方法
JPH0763749B2 (ja) 1988-11-15 1995-07-12 日本鋼管株式会社 熱間圧延後の冷却方法
JPH0390206A (ja) * 1989-08-31 1991-04-16 Kobe Steel Ltd 熱延鋼板の冷却制御方法
JPH04167916A (ja) 1990-10-30 1992-06-16 Sumitomo Metal Ind Ltd スプレー用給水圧力制御装置
JPH06190419A (ja) 1992-12-24 1994-07-12 Kawasaki Steel Corp ストリップの冷却方法
JPH06238312A (ja) * 1993-02-18 1994-08-30 Sumitomo Metal Ind Ltd 熱延鋼板の冷却制御方法
DE19513999C2 (de) 1995-04-13 1999-07-29 Sundwig Gmbh Fertigungslinie und deren Verwendung zum Herstellen von Stahlband
EP0750049A1 (de) * 1995-06-16 1996-12-27 Thyssen Stahl Aktiengesellschaft Ferritischer Stahl und Verfahren zu seiner Herstellung und Verwendung
CN1161378A (zh) * 1996-01-16 1997-10-08 艾利格汉尼·勒德鲁姆公司 生产双相铁素体不锈钢带的方法
TW426742B (en) * 1997-03-17 2001-03-21 Nippon Steel Corp Dual-phase type high strength steel sheets having high impact energy absorption properties and a method of producing the same
DE19963186B4 (de) 1999-12-27 2005-04-14 Siemens Ag Verfahren zur Steuerung und/oder Regelung der Kühlstrecke einer Warmbandstrasse zum Walzen von Metallband und zugehörige Vorrichtung
DE10129565C5 (de) 2001-06-20 2007-12-27 Siemens Ag Kühlverfahren für ein warmgewalztes Walzgut und hiermit korrespondierendes Kühlstreckenmodell
US20080178972A1 (en) 2006-10-18 2008-07-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) High strength steel sheet and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159218A (en) * 1978-08-07 1979-06-26 National Steel Corporation Method for producing a dual-phase ferrite-martensite steel strip
EP0019193A1 (de) * 1979-05-09 1980-11-26 SSAB Svenskt Stal AB Verfahren zur Herstellung von Stahlbändern mit hoher Festigkeit und guter Verformbarkeit
US4790889A (en) * 1984-11-08 1988-12-13 Thyssen Stahl Ag Hot-rolled strip having a dual-phase structure
EP0747495A1 (de) * 1995-06-08 1996-12-11 Sollac S.A. Niob enthaltendes warmgewalztes, hochfestes Stahlblech mit gute Tiefziehfähigkeit, und Verfahren zu ihrer Herstellung
WO2000005422A1 (de) * 1998-07-24 2000-02-03 Sms Schloemann-Siemag Aktiengesellschaft Verfahren und anlage zur herstellung von dualphasen-stählen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447260C (zh) * 2006-06-23 2008-12-31 宝山钢铁股份有限公司 盘式带钢快速冷却试验装置及其使用方法

Also Published As

Publication number Publication date
EP1633894B1 (de) 2017-04-26
TWI300443B (en) 2008-09-01
TW200502405A (en) 2005-01-16
DE10327383C5 (de) 2013-10-17
CA2529837A1 (en) 2004-12-23
CA2529837C (en) 2012-08-21
RU2006101338A (ru) 2006-06-10
CN100381588C (zh) 2008-04-16
JP5186636B2 (ja) 2013-04-17
KR20060057538A (ko) 2006-05-26
WO2004111279A3 (de) 2005-05-06
UA81329C2 (en) 2007-12-25
EG23893A (en) 2007-12-13
US20070175548A1 (en) 2007-08-02
EP1633894A2 (de) 2006-03-15
RU2346061C2 (ru) 2009-02-10
DE10327383B4 (de) 2010-10-14
ZA200509876B (en) 2006-11-29
JP2006527790A (ja) 2006-12-07
CN1820086A (zh) 2006-08-16
MY136875A (en) 2008-11-28
DE10327383A1 (de) 2005-02-10

Similar Documents

Publication Publication Date Title
EP0885974B1 (de) Verfahren zum Walzen von Warmband in einer CSP-Anlage
DE19911287C1 (de) Verfahren zum Erzeugen eines Warmbandes
EP1305122B1 (de) Produktionsverfahren und -anlage zur erzeugung von dünnen flachprodukten
DE102005051052A1 (de) Verfahren zur Herstellung von Warmband mit Mehrphasengefüge
AT504782A4 (de) Verfahren zur herstellung eines warmgewalzten stahlbandes und kombinierte giess- und walzanlage zur durchführung des verfahrens
EP2507399B1 (de) Warmwalzwerk und verfahren zum warmwalzen eines metallbandes oder -blechs
EP1121208A1 (de) Verfahren und vorrichtung zum herstellen eines metallbandes für abzulängende tailored blanks
EP1633894B1 (de) Verfahren und anlage zur herstellung von warmband mit dualphasengefüge
DE19600990C2 (de) Verfahren zum Warmwalzen von Stahlbändern
EP1319725B1 (de) Verfahren zum Herstellen von Warmband
DE10315419B3 (de) Verfahren zum Herstellen von Schraubenfedern oder Stabilisatoren
DE3440752C2 (de)
DE2900271A1 (de) Schweissbarer betonstahl und verfahren zu seiner herstellung
WO2008006346A2 (de) Verfahren zur herstellung eines zum formhärten geeigneten blechhalbzeugs
DE3033501A1 (de) Verfahren zur direkten waermebehandlung von stabdraht aus austenitischem, rostfreiem stahl
EP1038978B1 (de) Verfahren zum Herstellen eines Warmbandes
AT525283B1 (de) Verfahren zur Herstellung eines Dualphasenstahlbands in einer Gieß-Walz-Verbundanlage, ein mit dem Verfahren hergestelltes Dualphasenstahlband und eine Gieß-Walz-Verbundanlage
WO2023016965A1 (de) Verfahren und vorrichtung zur herstellung eines hoch- und höchstfesten mehrphasenstahls
EP0185341B1 (de) Verfahren zur Erhöhung der Festigkeit von Bewehrungsstählen
WO2000036162A1 (de) Verfahren zur erzeugung von dünnen warmbändern aus stahl mit verbesserter tiefziehfähigkeit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2004739698

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004739698

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200509876

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 1020057023848

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/013706

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006515855

Country of ref document: JP

Ref document number: 20048167574

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2529837

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 180/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006101338

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004739698

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057023848

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10561385

Country of ref document: US

Ref document number: 2007175548

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10561385

Country of ref document: US