WO2004106594A1 - 単結晶内ボイド欠陥と単結晶内酸素析出核の密度分布及びサイズ分布のシミュレーション方法 - Google Patents

単結晶内ボイド欠陥と単結晶内酸素析出核の密度分布及びサイズ分布のシミュレーション方法 Download PDF

Info

Publication number
WO2004106594A1
WO2004106594A1 PCT/JP2004/006822 JP2004006822W WO2004106594A1 WO 2004106594 A1 WO2004106594 A1 WO 2004106594A1 JP 2004006822 W JP2004006822 W JP 2004006822W WO 2004106594 A1 WO2004106594 A1 WO 2004106594A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
temperature
void
distribution
mesh
Prior art date
Application number
PCT/JP2004/006822
Other languages
English (en)
French (fr)
Inventor
Kounosuke Kitamura
Jun Furukawa
Naoki Ono
Original Assignee
Sumitomo Mitsubishi Silicon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003150262A external-priority patent/JP4403722B2/ja
Priority to US10/558,790 priority Critical patent/US7282094B2/en
Priority claimed from JP2003161493A external-priority patent/JP4604462B2/ja
Application filed by Sumitomo Mitsubishi Silicon Corporation filed Critical Sumitomo Mitsubishi Silicon Corporation
Priority to DE04734077T priority patent/DE04734077T1/de
Priority to EP04734077A priority patent/EP1650331A4/en
Publication of WO2004106594A1 publication Critical patent/WO2004106594A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means

Definitions

  • the present invention uses computer simulation to determine the density distribution and size distribution of gross defects and oxygen precipitation nuclei in a single crystal such as silicon pulled by the Czochralski (hereinafter, CZ) method. How to do it.
  • CZ Czochralski
  • the term “global defect” as used herein refers to a void defect composed of a void and an inner wall oxide film.
  • a crystal originated particle hereinafter, referred to as COP
  • LSTD Laser Scattering Tomograph Defects
  • Oxygen precipitate nuclei are oxygen precipitate nuclei formed by consuming the vacancies and oxygen in the single crystal, which are stabilized by a low-temperature (700-800 ° C) heat treatment and When grown by heat treatment at (° C), it is observed as BMD (Bulk Micro-Defect) with an optical microscope.
  • a hot zone structure in a pulling machine 1 at the time of pulling a silicon single crystal 4 by a CZ method using a comprehensive heat transfer simulator and its silicon single crystal By manipulating the thermal conductivity of the silicon melt 2 based on the pulling speed of the crystal 4, the internal temperature distribution of the silicon melt 2 is predicted, and the coordinates of the mesh and the mesh of the silicon single crystal 4 are estimated from the internal temperature distribution.
  • the density distribution of the interstitial silicon and the vacancies is obtained by using a computer by calculating the temperature and further solving the diffusion equation based on the diffusion coefficients and the boundary conditions of the interstitial silicon and the vacancies in the silicon single crystal 4. Methods are known.
  • each member of the hot zone is modeled by mesh division.
  • the mesh of the silicon melt 2 is set to be relatively coarse, about 10 mm, in order to shorten the calculation time.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-145696
  • the conventional method of simulating the density distribution of interstitial silicon and holes does not consider the convection of the silicon melt generated in an actual pulling machine, and the mesh of the silicon melt is relatively coarse. As a result, the reproducibility of the solid-liquid interface shape is poor, and a highly accurate temperature distribution in the single crystal cannot be provided. Therefore, there is a problem that the density distribution of interstitial silicon and vacancies in the silicon single crystal is significantly different from the actually measured values.
  • the type, density distribution, and size distribution of defects in a silicon single crystal generated at a relatively high temperature during the crystal cooling process, such as void-oxygen precipitates were not found.
  • the density distribution and the size distribution of oxygen precipitate nuclei which are defects in a silicon single crystal generated at a relatively low temperature during the crystal cooling process, were not found.
  • the size distribution and the density distribution of vertical grown-in defects in a silicon single crystal can be predicted, but the silicon single crystal in the radial direction can be predicted.
  • the size distribution and the density distribution of the glow-in defect could not be predicted, and the glow-in defect on the inner surface of the wafer could not be considered.
  • a first object of the present invention is to analyze a temperature distribution in a growing single crystal in consideration of convection of a melt, and then to analyze in consideration of a cooling process of a single crystal separated from the melt. Accordingly, it is an object of the present invention to provide a method for simulating the density distribution and the size distribution of void defects in a single crystal, which can accurately predict the density distribution and the size distribution of void defects formed of voids and an inner wall oxide film in the single crystal.
  • a second object of the present invention is to analyze the temperature distribution in a growing single crystal in consideration of the convection of the melt, and then to analyze the cooling process of the single crystal separated from the melt. Accordingly, an object of the present invention is to provide a method for simulating the density distribution and size distribution of oxygen precipitate nuclei in a single crystal, which can accurately predict the density distribution and size distribution of oxygen precipitate nuclei in a single crystal.
  • the invention according to claim 1 uses the pulling machine 11 from the start of raising the bow 1 from the melt 12 of the single crystal 14 by the pulling machine 11 to the completion of cooling of the single crystal 14.
  • the first step of modeling the hot zone with a mesh structure the mesh is assembled for each member of the hot zone, and the physical properties of each member with respect to the assembled mesh, the bow of the single crystal 14
  • a second step of inputting the pulling speed of the single crystal 14 corresponding to the raising length to the computer and a third step of obtaining the surface temperature distribution of each member based on the calorific value of the heater and the emissivity of each member,
  • a turbulence model formula obtained by assuming that the melt 12 is turbulent after obtaining the internal temperature distribution of each member by solving the heat conduction equation based on the surface temperature distribution and the thermal conductivity of each member, and Navier's Task
  • the sixth step of obtaining the temperature and temperature and inputting these data to the computer, and the first step force up to the sixth step by changing the pulling length and the pulling height of the single crystal 14 step by step repeatedly in the pulling machine 11 The seventh step of calculating the temperature distribution of the single crystal 14 to obtain the coordinates and temperature of the mesh of the single crystal 14 and inputting these data to a computer, and cooling the single crystal 14 from the start of pulling the single crystal 14 from the melt 12 Until completion From the data of the coordinates and temperature of the mesh of the single crystal 14 obtained in the seventh step at each of the divided time intervals, and Eighth step for obtaining the temperature distribution in the single crystal 14 and a predetermined time interval by solving the diffusion equation based on the diffusion coefficient and boundary conditions of vacancies and interstitial atoms in the single crystal 14
  • the single crystal in the cooling process is not only determined in consideration of the convection of the melt 12 but also in the single crystal 14 grown from the melt 12.
  • the temperature distribution in the melt 14 that is, by taking into account the effects of slow cooling and rapid cooling of the single crystal 14 in the cooling process of the single crystal 14 separated from the melt 12, It is possible to accurately predict the density distribution and size distribution of the void defect formed by the void 21 and the inner wall oxide film 22 in the inside.
  • the invention according to claim 2 is, as shown in Figs. 5 to 10, a pulling machine 11 pulls a single crystal 14 from a melt 12 from a bow 1 and starts pulling the single crystal 14 from completion of cooling.
  • a second step of inputting the bow I raising speed of the single crystal 14 corresponding to the length to the computer and a third step of obtaining the surface temperature distribution of each member based on the calorific value of the heater and the emissivity of each member,
  • a turbulence model formula obtained by assuming that the melt 12 is turbulent after obtaining the internal temperature distribution of each member by solving the heat conduction equation based on the surface temperature distribution and the thermal conductivity of each member, and Navier's One Fourth stearyl further determine the internal temperature distribution of the melt 12 in consideration of the con
  • the seventh step input to the computer and the time from the start of pulling of the single crystal 14 from the melt 12 to the completion of cooling of the single crystal 14 are separated at predetermined intervals, and the seventh step is performed at each of the divided time intervals.
  • the single crystal 14 The eighth step of obtaining the bow I raising length and bow I of the single crystal 14 and the temperature distribution in the single crystal 14 from the mesh coordinates and temperature data, and the calculation of the vacancies and interstitial atoms in the single crystal 14
  • Shape The thirteenth step for determining the starting temperature, and the radius of the void 21 and the inner wall oxidation when the temperature at the lattice point of each mesh in the single crystal 14 gradually decreases to become lower than the formation start temperature of the inner wall oxide film 22
  • the calculation for calculating the radius of the void 21 and the thickness of the inner wall oxide film 22 is stopped when the amount of generated oxygen precipitation nuclei per unit time exceeds zero, and the radius of the oxygen precipitation nuclei is determined.
  • Simulating the density distribution and size distribution of oxygen precipitate nuclei in the single crystal using a computer including a 16th step of determining the density distribution and a 17th step of repeating the eighth to 16th steps until the cooling of the single crystal 14 is completed. It is a way to do Chillon.
  • the single crystal in the cooling process is not only obtained from the temperature distribution in the single crystal growing from the melt in consideration of the convection of the melt.
  • the density distribution and the size distribution of oxygen precipitation nuclei in the single crystal 14 can be accurately predicted. That is, by analyzing the single crystal 14 in the cooling process of the single crystal 14 separated from the melt 12 in consideration of the effects of slow cooling and rapid cooling of the single crystal 14, the density of the void defects composed of the void 21 and the inner wall oxide film 22 is obtained. The distribution and size distribution are determined, the amount of oxygen precipitate nuclei generated per unit time and this critical radius are determined.When the amount of oxygen precipitate nuclei generated per unit time exceeds zero, the void radius and the inner wall oxide film thickness are determined. Stop the calculation to determine the radius and calculate the radius of the oxygen precipitation nucleus. Thereby, the density distribution and the size distribution of the oxygen precipitation nuclei in the single crystal 14 can be accurately predicted.
  • the critical radius of the oxygen precipitation nucleus means the minimum radius of the nucleus generated during the crystal growth, and this radius depends on the degree of supersaturation of the vacancy density and the degree of supersaturation of the oxygen density.
  • the temperature distribution in a single crystal growing from the melt is determined not only by using a computer in consideration of the convection of the melt but also in the cooling process.
  • the density distribution of voids is calculated by computer using the temperature distribution in the void, that is, by taking into account the effects of slow cooling and rapid cooling of the single crystal in the cooling process of the single crystal separated from the melt.
  • the radius of the void and the thickness of the inner wall oxide film that grows around the void are determined using a computer in relation to each other. As a result, it is possible to accurately predict the density distribution and the size distribution of the void in the single crystal and the void defect formed of the inner wall oxide film.
  • the temperature distribution in the single crystal during the cooling process is also determined, so that The density distribution and size distribution of oxygen precipitation nuclei can be accurately predicted. That is, the density distribution and size distribution of void defects such as voids and inner wall oxide film strength are determined, the amount of oxygen precipitate nuclei generated per unit time and this critical radius are determined, and the amount of oxygen precipitate nuclei generated per unit time is further determined. When the value exceeds zero, the calculation for determining the void radius and the inner wall oxide film thickness is stopped, and the radius of the oxygen precipitation nucleus is determined using a computer.
  • the density distribution of oxygen precipitate nuclei in a single crystal can be accurately predicted by determining the amount of oxygen precipitate nuclei generated per unit time, and the size distribution of oxygen precipitate nuclei in the crystal by determining the radius of oxygen precipitate nuclei. Can be accurately predicted.
  • a quartz crucible 13 for storing a silicon melt 12 is provided in a chamber of a silicon single crystal pulling machine 11.
  • the quartz crucible 13 is connected to a crucible driving means via a graphite susceptor and a support shaft, and the crucible driving means is configured to rotate the quartz crucible 13 and move it up and down.
  • the outer peripheral surface of the quartz crucible 13 is surrounded by a heater (not shown) at a predetermined interval from the quartz crucible 13, and the heater is surrounded by a heat retaining cylinder (not shown).
  • the heater heats the high-purity polycrystalline silicon charged in the quartz crucible 13 and melts it into a silicon melt 12.
  • a cylindrical casing (not shown) is connected to the upper end of the chamber, and a pulling means is provided in the casing. The pulling means is configured to pull while rotating the silicon single crystal 14.
  • each member of the hot zone of the silicon single crystal pulling machine 11 in a state where the silicon single crystal 14 is pulled up to a predetermined length L (for example, 100 mm), that is, a chamber, a quartz crucible 13, a silicon melt 12 , Silicon single crystal 14, graphite susceptor, heat insulation cylinder, etc. are modeled by mesh division.
  • the coordinate data of the mesh points of each member of the hot zone is input to a computer.
  • the mesh of the silicon melt 12 the mesh in the radial direction of the silicon single crystal 14 and a part or all of the mesh immediately below the silicon single crystal 14 of the silicon melt 12 (hereinafter referred to as a radial mesh).
  • the mesh in the longitudinal direction of the silicon single crystal 14 and a part or all of the mesh of the silicon melt 12 (hereinafter referred to as a longitudinal mesh) are referred to as 0.01. ⁇ 5.00 mm, preferably 0.1-1 Set to mm.
  • the reason why the radial mesh is limited to the range of 0.01 mm to 5.00 mm is that the calculation time becomes extremely long when the mesh is less than 0.01 mm, and the calculation becomes unstable when the mesh exceeds 5.00 mm, and the calculation is repeated. This is because the shape of the solid-liquid interface cannot be determined to a certain level even if the above is performed.
  • the reason why the longitudinal mesh was limited to the range of 0.01 to 5.00 mm was that the calculation time was extremely long if the mesh was less than 0.01 mm, and the calculated value of the solid-liquid interface shape was actually measured above 5.00 mm.
  • meshes are grouped for each member in the hot zone, and the physical property values of the members are input to the computer for the grouped mesh.
  • the computer calculates the bow I raising length of the silicon single crystal 14, the bow I raising speed of the silicon single crystal 14 corresponding to the bow I raising length, and the turbulence parameter C of the turbulence model formula (1) described later. input.
  • the surface temperature distribution of each member in the hot zone is obtained by using a computer based on the calorific value of the heater and the emissivity of each member. That is, the calorific value of the heater is arbitrarily set and input to the computer, and the surface temperature distribution of each member is obtained from the emissivity of each member using the computer.
  • the internal temperature distribution of each member is obtained by solving the heat conduction equation (1) using a computer based on the surface temperature distribution and the thermal conductivity of each member in the hot zone.
  • the xyz rectangular coordinate system is used for simplicity of description, but the cylindrical coordinate system is used in the actual calculation.
  • q is the heating value of the heater.
  • the silicon melt 12 is turbulent based on the internal temperature distribution of the silicon melt 12.
  • the turbulence model equation (2) and the Navier's equation equation (3)-(5) obtained assuming that there is the internal flow velocity distribution of the silicon melt 12 is calculated using a computer. Confuse.
  • is the turbulent thermal conductivity of the silicon melt 12
  • c is the specific heat of the silicon melt 12
  • Pr is the Prandtl number
  • p Density
  • C is a turbulence parameter
  • d is the distance from the wall of the quartz crucible 13 storing the silicon melt 12
  • k is the sum of squares of the fluctuation component with respect to the average flow velocity of the silicon melt 12.
  • the turbulence model formula (2) is called a kl (key) one model formula, and it is preferable that an arbitrary value in a range of 0.4 to 0.6 be used as the turbulence parameter C of this model formula.
  • the reason for limiting the turbulence parameter C to the range of 0.4 to 0.6 is that if it is less than 0.4 or exceeds 0.6, the calculated interface shape will not match the measured value. It is.
  • the Navier's equation (3) and (5) are equations of motion when the silicon melt 12 is incompressible and has a constant viscosity.
  • the internal temperature distribution of the silicon melt 12 in consideration of the convection of the silicon melt 12 is further obtained using a computer. .
  • u, v, and w are the x, y, and z-direction components of the flow velocity at each mesh point of the silicon melt 12, and T is the mesh flow rate at each mesh point of the silicon melt 12.
  • T is the mesh flow rate at each mesh point of the silicon melt 12.
  • p is the density of the silicon melt 12
  • c is the specific heat of the silicon melt 12
  • is the molecular thermal conductivity
  • the shape of the solid-liquid interface of the silicon single crystal 14 and the silicon melt 12 includes the triple point S of silicon (tri-junction of solid, liquid and gas) indicated by the point S in FIG.
  • the heating value of the heater input to the computer is changed (increased gradually), and the third step force
  • the fifth step is repeated until the triple point reaches the melting point of the silicon single crystal 14, then pulled up
  • the temperature distribution in the machine 11 is calculated to determine the coordinates and temperature of the silicon single crystal mesh, and these data are stored in a computer.
  • the pulling length L of the silicon single crystal 14 is changed by ⁇ (for example, 50 mm).
  • the temperature distribution in the puller 11 is calculated to determine the coordinates and temperature of the mesh of the silicon single crystal 14, and these data are stored in a computer.
  • the pulling length L of the silicon single crystal 14 is
  • Length (L is the length of silicon single crystal 14 when cut from silicon melt 12
  • the silicon single crystal 14 is grown from the silicon melt 12 and started to be pulled, the silicon single crystal 14 is separated from the silicon melt 12 to further pull the silicon single crystal 14 from t.
  • the time until t is delimited at predetermined intervals of At seconds (small time intervals). At this time, not only the diffusion coefficient and boundary conditions of interstitial silicon and vacancies in the silicon single crystal 14 but also the equations for calculating the density distribution and size distribution of the void 21 and the inner wall oxide film 22 (FIG. 6) described later. Enter the constants used in the computer into the computer. At each of the divided time intervals At seconds, the pull-up length L and pull-up of the silicon single crystal 14 are obtained from the coordinates and temperature data of the mesh of the silicon single crystal 14 obtained in the seventh step.
  • the height H and the temperature distribution in the silicon single crystal 14 are obtained.
  • the coordinates and the temperature of the mesh of the silicon single crystal are obtained for each pulling length ⁇ , and it takes several tens of minutes to pull up the silicon single crystal by, for example, 50 mm.
  • Equation (7) the equation for calculating the density C of vacancies is given by the following equation (7)
  • equation (8) the equation for calculating the density C of interstitial silicon is given by the following equation (8).
  • Equations (7) and (8) the thermal equilibrium between vacancies and interstitial silicon is maintained on the entire surface of the silicon single crystal to calculate the density C and the evolution of density C over time.
  • Equations (9) and (10) are the activation energies of vacancies and interstitial silicon due to thermal diffusion, and k is the Boltzmann constant. Equations (9) and (10)
  • K in the third term on the right side is the recombination constant of vacancy and interstitial silicon pairs.
  • Expression (9 ) And N in the fourth term on the right side of equation (10) are the density of void 21, r is the radius of void 21, and N in the fifth term on the right side of equation (9) is the inner wall oxide film 22.
  • the formation start temperature ⁇ of the void 21 is obtained from the following equation (14) based on the density C distribution of the holes obtained by solving the above diffusion equation.
  • C is the vacancy density in the silicon single crystal 14
  • C is The vacancy equilibrium density at the melting point T of the single crystal 14
  • is the vacancy formation energy.
  • p is the density of the silicon single crystal 14
  • k is the Boltzmann constant.
  • the void 21 is formed using the following approximate expression (15). Find the density N.
  • n is the density of the void 21, and (dT / dt) is the cooling rate of the silicon single crystal 14.
  • D is the diffusion coefficient of void 21
  • k is Boltzmann's constant
  • C is silicon single bond.
  • the radius r of the void when the temperature at the lattice point of each mesh in the silicon single crystal 14 is lower than the formation start temperature T of the void 21 is obtained from the following equation (16).
  • the growth rate of the voids 21 is a diffusion-controlled rate that depends on the diffusion rate of the vacancies.
  • the shape of the void 21 is actually an octahedron, it is treated here as a sphere for efficiency of calculation.
  • Tl is the time when the temperature at the lattice point of the mesh of the silicon single crystal 14 drops to the formation start temperature T of the void 21.
  • r is the edge of the void 21
  • the critical diameter r is the value at the time tl. Further, C and C are respectively
  • the temperature at which the inner wall oxide film 22 growing around the void 21 starts forming is formed.
  • the degree T When the formation start temperature ⁇ of the inner wall oxide film 22 is lower than the formation start temperature ⁇ of the void 21, oxygen and vacancies are combined, and the inner wall oxide film 22 grows on the surface of the void 21 (FIG. 6).
  • the inner wall oxide film 22 is treated as growing as soon as the void 21 is generated.
  • “immediately” means “from the next repetitive calculation in which a void is generated.” Therefore, the formation start temperature ⁇ of the inner wall oxide film 22 is
  • the temperature at the lattice points of the respective meshes in the silicon single crystal 14 gradually decreases and becomes lower when the formation start temperature of the inner wall oxide film 22 becomes lower than ⁇ .
  • the radius r of the id 21 and the thickness d of the inner wall oxide film 22 are determined in relation to each other.
  • the inner wall oxide film 22 is formed by diffusion of oxygen and reaction with silicon.
  • the flow of oxygen flowing into the outer peripheral surface of the oxide film from outside the inner wall oxide film 22 is originated at the center of the void 21.
  • D is a diffusion coefficient of oxygen
  • C is an oxygen density
  • O O Oeif is the oxygen equilibrium density at a radius R with the origin at the center of the spherical void 21, and g is Si
  • Voids flow into the outer peripheral surface (spherical surface of radius R) of this oxide film from outside the inner wall oxide film 22.
  • g is the reaction rate of vacancies on the outer peripheral surface of the inner wall oxide film 22
  • C is the equilibrium density of vacancies on the outer peripheral surface of the inner wall oxide film 22.
  • the ratio of the change of the flux with respect to time in ⁇ 0) is considered to depend on the thickness of the inner wall oxide film 22. For this reason, the thickness d of the inner wall oxide film 22, that is, (R ⁇ r) is less than d.
  • the voids flow into the oxide film from inside the void 21, and the outer diameter of the void 21 becomes small.
  • the inner wall oxide film 22 does not pass through the holes at all.
  • D is the diffusion coefficient of o oxygen, and C is the oxygen density. Furthermore, C is the center of the spherical void 21
  • the oxygen equilibrium density at radius R, which is the origin, and g is the outer peripheral surface of inner wall oxide film 22.
  • Equation (21) holds.
  • p x / (QSiOx) is defined.
  • is the molecular volume of Si ⁇ x and its simple p SiOx
  • the position is the molecular weight Z density.
  • X corresponds to X in Si ⁇ x, and ⁇ is a constant.
  • Equation (22) is ⁇ / ⁇ . this? In the definition of 7, ⁇ is 1 / p and p
  • equation (22) It is determined by the consumption of vacancies or oxygen flowing from the matrix of 4. That is, if ⁇ _ ⁇ ])> 0, equation (22) becomes the following equation (23), and if Q ⁇ yJ) ⁇ 0, equation (23)
  • is the molecular volume of SiOx.
  • the outer radius R of the inner wall oxide film 22 is obtained from the equation (24), and the boy radius is calculated from the outer radius R of the inner wall oxide film 22.
  • the thickness d of the inner wall oxide film 22 is obtained by subtracting the radius r of the gate 21.
  • the above eighth to fourteenth steps are repeated until the cooling of the silicon single crystal 14 is completed (the fifteenth step).
  • the equation (9) and the equation (24) are solved by a computer in association with each other.
  • the analysis reflects the effects of slow cooling and rapid cooling of the silicon single crystal 14 in the results. By doing so, it is possible to accurately predict the density distribution and the size distribution of the void defect composed of the void 21 and the inner wall oxide film 22 in the silicon single crystal 14. As a result, the structure of the pulling machine 11 is studied at the design stage of the pulling machine 11 in order to obtain a desired density distribution and size distribution of defects in the silicon single crystal 14 pulled from the silicon melt 12. That power S can.
  • FIG. 7 to FIG. 10 show a second embodiment of the present invention.
  • the first to fourteenth steps are almost the same as the first embodiment.
  • the equation (9) in the first embodiment becomes the following equation (9) ′.
  • D is the oxygen diffusion coefficient
  • C is the oxygen density at the oxygen precipitation nucleation temperature.
  • J is the amount of oxygen precipitation nuclei having a critical radius generated per unit time, and r is the oxygen This is the radius of the precipitation nucleus.
  • is 0.5
  • C is the oxygen density at the oxygen precipitation nucleation temperature.
  • the expression (13) in the first embodiment becomes the following expression (13) ′.
  • equation (13) ' is the amount of oxygen nuclei having a critical radius generated per unit time, and r is the radius of the oxygen nuclei.
  • the generation of oxygen precipitation nuclei per unit time and the critical radius r are determined.
  • oxygen precipitation nucleation growth depends on oxygen density C, vacancy density C, and temperature.
  • the generation amount T of oxygen precipitation nuclei in a steady state per unit time is calculated from the following equation (25) because it depends on the degree ⁇ .
  • is the interface energy between SiOx and Si at the oxygen precipitation nucleation temperature
  • D is the oxygen diffusion coefficient
  • C is oxygen-tight at the oxygen precipitation nucleation temperature o o
  • F * is a growth barrier for oxygen precipitation nuclei
  • F * can be obtained by the following equation (26).
  • is the oxygen number density of the oxygen precipitation nuclei made of SiOx
  • f is the driving force (force per oxygen atom) required for the formation of oxygen precipitation nuclei
  • C is the oxygen density at the temperature for forming oxygen precipitation nuclei
  • C is the acid density
  • O Oe is the elemental equilibrium density.
  • is the amount of vacancies per oxygen atom required for oxide growth without distortion, and is a number that depends on the phase of oxygen precipitation nuclei.
  • Oxygen precipitation nuclei are Si
  • (Interfacial energy between Si ⁇ x and Si at the oxygen precipitation nucleation temperature) in 6) is an important parameter that governs nucleation, and this parameter ⁇ depends on nucleation, and is generally Varies with temperature and radius of oxygen precipitation nuclei.
  • the critical radius r of the oxygen precipitation nucleus is obtained by the following equation (28).
  • Equation (9) and equation (30) are solved by computer in relation to each other.
  • the silicon single crystal 14 separated from the silicon melt 12 By taking into account the cooling process and analyzing the effects of slow cooling and rapid cooling of the silicon single crystal 14 by reflecting the results, it is possible to accurately predict the density distribution and size distribution of oxygen precipitate nuclei in the silicon single crystal 14 (see FIG. Five). That is, considering the pulling speed of the silicon single crystal 14 after the silicon single crystal 14 is separated from the silicon melt 12, the density distribution of the voids 21 and the void defects composed of the inner wall oxide film 22 (FIG. 6) is considered. The size distribution is calculated using a computer, and the SJ generated per unit time of oxygen precipitation nuclei and the critical radius r are calculated using a computer.
  • the density distribution of oxygen precipitation nuclei in the silicon single crystal 14 can be accurately predicted.
  • the size distribution of oxygen precipitation nuclei in the silicon crystal 14 can be accurately predicted.
  • the single crystal may be a silicon GaAs single crystal, a GaAs single crystal, an InP single crystal, a ZnS single crystal, or a ZnSe single crystal.
  • Example 1 As shown in FIGS. 5 and 6, when a silicon single crystal 14 having a diameter of 6 inches is pulled from the silicon melt 12 stored in the quartz crucible 13, the void 21 and the inner wall oxide film 22 in the silicon single crystal 14 The density distribution and size distribution of the void defects were determined by a simulation method based on the flowcharts of FIGS.
  • the hot zone of the silicon single crystal pulling machine 11 was modeled with a mesh structure.
  • the radial mesh of the silicon single crystal 14 immediately below the silicon single crystal 14 of the silicon melt 12 is set to 0.75 mm, and the silicon single crystal 14 of the silicon melt 12 other than immediately below the silicon single crystal 14 is set.
  • the mesh in the radial direction was set at 115 mm.
  • the mesh in the longitudinal direction of the silicon single crystal 14 of the silicon melt 12 was set to 0.25 to 5 mm, and 0.45 was used as the turbulence parameter C of the turbulence model formula. Further, at the start of pulling of silicon single crystal 14, t force Cooling completed
  • the temperature distribution in the silicon single crystal 14 was determined in consideration of the convection of the silicon melt 12.
  • the time from the start of pulling of the silicon single crystal 14 t to the completion of cooling t is set for a predetermined time.
  • the pulling length and bow of the silicon single crystal 14 are determined from the coordinates and temperature data of the mesh of the silicon single crystal 14 at each time interval ⁇ t seconds.
  • the height and the temperature distribution in the silicon single crystal 14 were obtained, and the formation start temperature of the void 21 was further obtained to obtain the density distribution and the size distribution of the void 21. That is, in consideration of slow cooling and rapid cooling of the silicon single crystal 14 after the silicon single crystal 14 is separated from the silicon melt 12, the density distribution and the size distribution of the voids 21 in the silicon single crystal 14 are calculated using a computer. I asked for each.
  • the inner wall oxide film 22 growing around the void 21 was treated as growing as soon as the void 21 was generated.
  • the outer radius of the inner wall oxide film 22 when it becomes lower than the formation start temperature of the inner wall oxide film 22 R was determined using a computer, and the outer half of the inner wall oxide film 22 was determined.
  • the thickness d of the inner wall oxide film 22 was determined by subtracting the diameter R from the radius of the void 21.
  • the density distribution of the wall oxide film was the same as the density distribution of the void.
  • the void and inner wall acid The size distribution of void defects, i.e., the size of the silicon oxide with the outer radius R of the inner wall oxide film 22
  • FIGS. 12 (a) and 12 (b) The results of calculating the distribution of the crystals in the radial direction by changing the pulling speed of the silicon single crystal are shown by solid lines in FIGS. 12 (a) and 12 (b).
  • Figures 13 (a) and 13 (b) show the results of calculating the density distribution of void defects composed of the voids and the inner wall oxide film in the radial direction of the silicon single crystal by changing the pulling speed of the silicon single crystal. Indicated by
  • LSTD Laser Scattering Tomograph Defects
  • the size distribution and the density distribution of the LSTD may correspond to the size distribution and the density distribution of the void defect of the first embodiment. Since LSTD has a detection limit, it was not possible to detect LSTDs with a size smaller than the specified value.
  • the void 21 and the inner wall oxide film 22 in the silicon single crystal 14 were determined by a simulation method based on the flowcharts of FIGS. That is, the hot zone of the silicon single crystal pulling machine 11 was modeled with a mesh structure.
  • the radial mesh of the silicon single crystal 14 immediately below the silicon single crystal 14 of the silicon melt 12 is set to 0.75 mm, and the silicon single crystal 14 of the silicon melt 12 other than immediately below the silicon single crystal 14 is set.
  • the mesh in the radial direction was set at 115 mm.
  • the mesh in the longitudinal direction of the silicon single crystal 14 of the silicon melt 12 was set to 0.25 to 5 mm, and 0.45 was used as the turbulence parameter C of the turbulence model formula. Further, at the start of pulling of silicon single crystal 14, t force Cooling completed
  • the temperature distribution in the silicon single crystal 14 was determined in consideration of the convection of the silicon melt 12.
  • the time from the start of the pulling of the silicon single crystal 14 t to the completion of the cooling t is set to a predetermined time.
  • the pull-up length and pull-up height of the silicon single crystal 14 are obtained from the coordinates and temperature data of the mesh of the silicon single crystal 14 at each time interval ⁇ t seconds. Then, the temperature distribution in the silicon single crystal 14 was obtained, and the formation start temperature of the void 21 was further obtained to obtain the density distribution and the size distribution of the void 21. That is, in consideration of slow cooling and rapid cooling of the silicon single crystal 14 after the silicon single crystal 14 is separated from the silicon melt 12, the density distribution and the size distribution of the voids 21 in the silicon single crystal 14 are calculated using a computer. I asked for each.
  • the inner wall oxide film 22 growing around the void 21 was treated as growing as soon as the void 21 was generated.
  • the outer radius R of the inner wall oxide film 22 when the temperature became lower than the formation start temperature of the inner wall oxide film 22 was determined using a computer.
  • the density distribution of the oxide film was the same as the density distribution of the void.
  • the generation of oxygen precipitation nuclei per unit time and the critical radius r are calculated using a computer.
  • the radius r of the oxygen precipitation nucleus that has stopped and has a radius r greater than or equal to the critical radius r is calculated by computer.
  • a silicon single crystal having the same shape as in Example 2 was pulled under the same conditions. This silicon single crystal was used as Comparative Example 2.
  • the density distribution of the oxygen precipitate nuclei calculated by the method of Example 2 matched the order of the density distribution of the oxygen precipitate nuclei actually measured in Comparative Example 2. As a result, the density distribution of oxygen precipitation nuclei can be estimated at the order level by the method of Example 2. It turns out.
  • the method for simulating the density distribution and size distribution of void defects in single crystal and oxygen precipitation nuclei in single crystal of the present invention can be used to improve the quality of a silicon single crystal rod pulled by the CZ method.
  • FIG. 1 is a flowchart showing a first stage of a method for simulating the density distribution and size distribution of void defects in a silicon single crystal according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a second step of the method for simulating the density distribution and size distribution of void defects.
  • FIG. 3 is a flowchart showing a third step of the method for simulating the density distribution and the size distribution of void defects.
  • FIG. 4 is a flowchart showing a fourth step of the method for simulating the density distribution and size distribution of void defects.
  • FIG. 5 is a sectional view of a principal part of a silicon single crystal bow I raising machine having a mesh structure of a silicon melt of the present invention.
  • FIG. 6 is a schematic view of a void and an inner wall oxide film in the silicon single crystal.
  • FIG. 7 is a flowchart showing a first step of a method for simulating the density distribution and size distribution of oxygen precipitation nuclei in a silicon single crystal according to the second embodiment of the present invention.
  • FIG. 8 is a flowchart showing a second step of the method for simulating the density distribution and size distribution of the oxygen precipitation nuclei.
  • FIG. 9 is a flowchart showing a third step of the method for simulating the density distribution and size distribution of the oxygen precipitation nuclei.
  • FIG. 10 is a flowchart showing a fourth step of the method for simulating the density distribution and size distribution of the oxygen precipitation nuclei.
  • FIG. 11 is a sectional view of a main part of a conventional silicon single crystal pulling machine having a mesh structure of a silicon melt.
  • FIG. 12 The size distribution in the radial direction of the silicon single crystal of the void defect in Example 1 was increased.
  • FIG. 13 is a diagram showing a value obtained by a computer at different speeds and a value obtained by actually measuring the size distribution in the radial direction of the silicon single crystal of the LSTD of Comparative Example 1 at different pulling speeds.
  • the density distribution of the void defect in Example 1 in the radial direction of the silicon single crystal was calculated by changing the pulling speed by computer, and the density distribution in the radial direction of the silicon single crystal of the LSTD of Comparative Example 1 was pulled up. It is a figure which shows the value actually measured by changing the speed.
  • Garden 14 A diagram showing the size distribution and density distribution of oxygen precipitate nuclei obtained by using a computer when the radial position of the silicon single crystal is changed and when the pulling speed of the silicon single crystal is changed. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 単結晶内のボイド及び内壁酸化膜からなるボイド欠陥の密度分布及びサイズ分布を正確に予測する。  第1~第7ステップで、融液12の対流を考慮して融液から成長する単結晶14内の温度分布を、単結晶の引上げ時から冷却完了時までのコンピュータを用いて求める。第8~第15ステップで、融液から切離された単結晶の冷却過程、即ち単結晶が融液から切離された後の単結晶の引上げ速度を考慮し、単結晶の徐冷及び急冷の効果を結果に反映して、ボイドの密度をコンピュータを用いて求めた後に、ボイドの半径と、これらのボイドの周囲に成長する内壁酸化膜の厚さとを互いに関連させてコンピュータを用いて求める。

Description

明 細 書
単結晶内ボイド欠陥と単結晶内酸素析出核の密度分布及びサイズ分布 のシミュレーション方法
技術分野
[0001] 本発明は、チヨクラルスキー(以下、 CZとレ、う。)法にて引上げられるシリコン等の単 結晶内のグロ一イン欠陥や酸素析出核の密度分布及びサイズ分布をコンピュータシ ミュレーシヨンする方法に関するものである。ここで言うグロ一イン欠陥とは、ボイドと内 壁酸化膜からなるボイド欠陥のことであり、例えばゥエーハ表面に観察される結晶起 因のパーティクル(Crystal Originated Particle,以下、 COPという。)や、結晶内部に 観察される LSTD (Laser Scattering Tomograph Defects)に対応する。また酸素析出 核とは、単結晶内の空孔と酸素を消費して形成された酸素析出核であり、これを低温 (700— 800°C)の熱処理で安定化し、更に高温(1000— 1100°C)の熱処理で成長 させると、光学顕微鏡などで BMD (Bulk Micro-Defect)として観察される。
背景技術
[0002] 従来、この種のシミュレーション方法として、図 11に示すように、総合伝熱シミュレ一 タを用いて CZ法によるシリコン単結晶 4引上げ時の引上げ機 1内のホットゾーン構造 及びそのシリコン単結晶 4の引上げ速度に基づいて、シリコン融液 2の熱伝導率を操 作することによりシリコン融液 2の内部温度分布を予測し、この内部温度分布からシリ コン単結晶 4のメッシュの座標及び温度をそれぞれ求め、更にシリコン単結晶 4内の 格子間シリコン及び空孔の拡散係数及び境界条件に基づいて拡散方程式を解くこと により、上記格子間シリコン及び空孔の密度分布をコンピュータを用いて求める方法 が知られている。このシミュレーション方法では、ホットゾーンの各部材がメッシュ分割 されてモデル化される。特にシリコン融液 2のメッシュは計算時間を短くするために 10 mm程度と比較的粗く設定される。
[0003] 一方、 CZ法によるシリコン単結晶育成時の操業条件及び炉内の温度条件をコンビ ユータにデータとして入力し、単結晶内部に導入される空孔起因のグローンイン欠陥 のサイズ及び密度と単結晶の成長速度との関係をコンピュータを用いたシミュレーシ ヨンにより求め、このシミュレーション結果に基づいて単結晶内部に導入される空孔起 因のグローンイン欠陥のサイズ及び密度が所定値になるように成長速度を選択して 単結晶を育成するシリコン単結晶の製造方法が知られている(例えば、特許文献 1参 照。)。このシリコン単結晶の製造方法では、総合伝熱解析プログラムを用いて炉内 の熱分布のシミュレーションを行レ、、単結晶の育成時の単結晶中心の鉛直方向にお ける温度勾配を求める。
特許文献 1:特開 2002 - 145696号公報
発明の開示
発明が解決しょうとする課題
しかし、上記従来の格子間シリコン及び空孔の密度分布のシミュレーション方法で は、実際の引上げ機においては発生するシリコン融液の対流を考慮しておらず、また シリコン融液のメッシュが比較的粗いため、固液界面形状の再現性が悪ぐ精度の良 い単結晶内温度分布を提供できない。そのため、シリコン単結晶内の格子間シリコン 及び空孔の密度分布が実測値と大幅に相違する問題点があった。また、上記従来の シミュレーション方法では、結晶冷却過程のうち比較的高温で生成されるシリコン単 結晶内の欠陥、例えばボイドゃ酸素析出物の種類や、密度分布及びサイズ分布は 判らなかった。更に、上記従来のシミュレーション方法では、結晶冷却過程のうち比 較的低温で生成されるシリコン単結晶内の欠陥である酸素析出核の密度分布及び サイズ分布は判らなかった。
一方、上記従来の特許文献 1に記載されたシリコン単結晶の製造方法では、シリコ ン単結晶の鉛直方向のグローンイン欠陥のサイズ分布及び密度分布を予測できるけ れども、シリコン単結晶の半径方向のグローイン欠陥のサイズ分布及び密度分布を 予測できず、ゥエーハ内面のグローイン欠陥を検討できない問題点があった。
本発明の第 1の目的は、融液の対流を考慮して成長中の単結晶内の温度分布を 解析した後に、融液から切離された単結晶の冷却過程を考慮して解析することにより 、単結晶内のボイド及び内壁酸化膜からなるボイド欠陥の密度分布及びサイズ分布 を正確に予測できる、単結晶内ボイド欠陥の密度分布及びサイズ分布のシミュレ一 シヨン方法を提供することにある。 本発明の第 2の目的は、融液の対流を考慮して成長中の単結晶内の温度分布を 解析した後に、融液から切離された単結晶の冷却過程を考慮して解析することにより 、単結晶内の酸素析出核の密度分布及びサイズ分布を正確に予測できる、単結晶 内酸素析出核の密度分布及びサイズ分布のシミュレーション方法を提供することに ある。
課題を解決するための手段
請求項 1に係る発明は、図 1一図 6に示すように、引上げ機 11による単結晶 14の融 液 12からの弓 1上げ開始時から単結晶 14の冷却完了時までの引上げ機 11のホットゾ ーンをメッシュ構造でモデル化する第 1ステップと、ホットゾーンの各部材毎にメッシュ をまとめかっこのまとめられたメッシュに対する各部材の物性値とともに単結晶 14の 弓 1上げ長及びこの弓 1上げ長に対応する単結晶 14の引上げ速度をそれぞれコンビュ ータに入力する第 2ステップと、各部材の表面温度分布をヒータの発熱量及び各部 材の輻射率に基づいて求める第 3ステップと、各部材の表面温度分布及び熱伝導率 に基づいて熱伝導方程式を解くことにより各部材の内部温度分布を求めた後に融液 12が乱流であると仮定して得られた乱流モデル式及びナビエ'スト一タスの方程式を 連結して解くことにより対流を考慮した融液 12の内部温度分布を更に求める第 4ステ ップと、単結晶 14及び融液 12の固液界面形状を単結晶の三重点 Sを含む等温線に 合せて求める第 5ステップと、第 3ステップから第 5ステップを三重点 Sが単結晶 14の 融点になるまで繰返し引上げ機 11内の温度分布を計算して単結晶 14のメッシュの 座標及び温度を求めこれらのデータをそれぞれコンピュータに入力する第 6ステップ と、単結晶 14の引上げ長及び引上げ高さを段階的に変えて第 1ステップ力 第 6ステ ップまでを繰返し引上げ機 11内の温度分布を計算して単結晶 14のメッシュの座標 及び温度を求めこれらのデータをそれぞれコンピュータに入力する第 7ステップと、単 結晶 14の融液 12からの引上げ開始時から単結晶 14の冷却完了時までの時間を所 定の間隔毎に区切りこの区切られた時間間隔毎に第 7ステップで求めた単結晶 14の メッシュの座標及び温度のデータから単結晶 14の弓 1上げ長及び弓 1上げ高さと単結 晶 14内の温度分布とを求める第 8ステップと、単結晶 14内の空孔及び格子間原子 の拡散係数及び境界条件に基づいて拡散方程式を解くことにより所定の時間間隔 の経過した後の空孔及び格子間原子の密度分布を求める第 9ステップと、空孔の密 度分布に基づいてボイド 21の形成開始温度を求める第 10ステップと、単結晶 14内 のそれぞれのメッシュの格子点における温度が次第に低下してボイド 21の形成開始 温度になったときのボイド 21の密度を求める第 11ステップと、単結晶 14内のそれぞ れのメッシュの格子点における温度がボイド 21の形成開始温度より低いときのボイド 21の半径を求める第 12ステップと、ボイド 21の周囲に成長する内壁酸化膜 22の形 成開始温度を求める第 13ステップと、単結晶 14内のそれぞれのメッシュの格子点に おける温度が次第に低下して内壁酸化膜 22の形成開始温度より低くなつたときのボ イド 21の半径と内壁酸化膜 22の厚さとを互いに関連させて求める第 14ステップと、 第 8ステップから第 14ステップを単結晶 14の冷却が完了するまで繰返す第 15ステツ プとを含む、コンピュータを用いて単結晶内ボイド欠陥の密度分布及びサイズ分布の シミュレーションを行う方法である。
[0006] この請求項 1に記載されたシミュレーション方法では、融液 12の対流を考慮して融 液 12から成長する単結晶 14内の温度分布を求めるだけでなぐ更に冷却過程にお ける単結晶 14内の温度分布までも求めることによって、即ち融液 12から切離された 単結晶 14の冷却過程における単結晶 14の徐冷及び急冷の効果を考慮して解析す ることによって、単結晶 14内のボイド 21及び内壁酸化膜 22からなるボイド欠陥の密 度分布及びサイズ分布を正確に予測できる。
[0007] 請求項 2に係る発明は、図 5—図 10に示すように、引上げ機 11による単結晶 14の 融液 12からの弓 1上げ開始時から単結晶 14の冷却完了時までの引上げ機 11のホット ゾーンをメッシュ構造でモデル化する第 1ステップと、ホットゾーンの各部材毎にメッシ ュをまとめかっこのまとめられたメッシュに対する各部材の物性値とともに単結晶 14 の引上げ長及びこの引上げ長に対応する単結晶 14の弓 I上げ速度をそれぞれコンビ ユータに入力する第 2ステップと、各部材の表面温度分布をヒータの発熱量及び各部 材の輻射率に基づいて求める第 3ステップと、各部材の表面温度分布及び熱伝導率 に基づいて熱伝導方程式を解くことにより各部材の内部温度分布を求めた後に融液 12が乱流であると仮定して得られた乱流モデル式及びナビエ'スト一タスの方程式を 連結して解くことにより対流を考慮した融液 12の内部温度分布を更に求める第 4ステ ップと、単結晶 14及び融液 12の固液界面形状を単結晶の三重点 Sを含む等温線に 合せて求める第 5ステップと、第 3ステップから第 5ステップを三重点 Sが単結晶 14の 融点になるまで繰返し弓 1上げ機 11内の温度分布を計算して単結晶 14のメッシュの 座標及び温度を求めこれらのデータをそれぞれコンピュータに入力する第 6ステップ と、単結晶 14の引上げ長及び引上げ高さを段階的に変えて第 1ステップ力 第 6ステ ップまでを繰返し引上げ機 11内の温度分布を計算して単結晶 14のメッシュの座標 及び温度を求めこれらのデータをそれぞれコンピュータに入力する第 7ステップと、単 結晶 14の融液 12からの引上げ開始時から単結晶 14の冷却完了時までの時間を所 定の間隔毎に区切りこの区切られた時間間隔毎に第 7ステップで求めた単結晶 14の メッシュの座標及び温度のデータから単結晶 14の弓 I上げ長及び弓 I上げ高さと単結 晶 14内の温度分布とを求める第 8ステップと、単結晶 14内の空孔及び格子間原子 の拡散係数及び境界条件に基づいて拡散方程式を解くことにより所定の時間間隔 の経過した後の空孔及び格子間原子の密度分布を求める第 9ステップと、空孔の密 度分布に基づいてボイド 21の形成開始温度を求める第 10ステップと、単結晶 14内 のそれぞれのメッシュの格子点における温度が次第に低下してボイド 21の形成開始 温度になったときのボイド 21の密度を求める第 11ステップと、単結晶 14内のそれぞ れのメッシュの格子点における温度がボイド 21の形成開始温度より低いときのボイド 21の半径を求める第 12ステップと、ボイド 21の周囲に成長する内壁酸化膜 22の形 成開始温度を求める第 13ステップと、単結晶 14内のそれぞれのメッシュの格子点に おける温度が次第に低下して内壁酸化膜 22の形成開始温度より低くなつたときのボ イド 21の半径と内壁酸化膜 22の厚さとを互いに関連させて求める第 14ステップと、 単結晶 14内の酸素の密度分布と空孔の密度分布と温度分布に基づいて酸素析出 核の単位時間当りの発生量と臨界半径とを求める第 15ステップと、酸素析出核の単 位時間当りの発生量がゼロを越えたときにボイド 21の半径及び内壁酸化膜 22の厚さ を求める計算を停止しかつ酸素析出核の半径を求める第 16ステップと、第 8ステップ から第 16ステップを単結晶 14の冷却が完了するまで繰返す第 17ステップとを含む、 コンピュータを用いて単結晶内酸素析出核の密度分布及びサイズ分布のシミュレ一 シヨンを行う方法である。 [0008] この請求項 2に記載されたシミュレーション方法では、融液 12の対流を考慮して融 液 12から成長する単結晶 14内の温度分布を求めるだけでなぐ更に冷却過程にお ける単結晶 14内の温度分布までも求めることによって、単結晶 14内の酸素析出核の 密度分布及びサイズ分布を正確に予測できる。即ち、融液 12から切離された単結晶 14の冷却過程における単結晶 14の徐冷及び急冷の効果を考慮して解析することに よって、ボイド 21及び内壁酸化膜 22からなるボイド欠陥の密度分布とサイズ分布を 求め、酸素析出核の単位時間当りの発生量とこの臨界半径を求め、更に酸素析出 核の単位時間当りの発生量がゼロを越えたときに、ボイド半径及び内壁酸化膜厚さ を求める計算を停止し、かつ酸素析出核の半径を求める。これにより単結晶 14内の 酸素析出核の密度分布及びサイズ分布を正確に予測できる。
ここで、酸素析出核の臨界半径とは、結晶成長中に発生した核の最小半径をいい 、この半径は空孔密度の過飽和度及び酸素密度の過飽和度に依存する。
発明の効果
[0009] 以上述べたように、本発明によれば、融液の対流を考慮して融液から成長する単結 晶内の温度分布をコンピュータを用いて求めるだけでなぐ更に冷却過程における単 結晶内の温度分布までも求めることによって、即ち融液から切離された単結晶の冷 却過程における単結晶の徐冷及び急冷の効果を考慮することによって、ボイドの密 度分布をコンピュータを用いて求めた後に、ボイドの半径と、ボイドの周囲に成長する 内壁酸化膜の厚さとを互いに関連させてコンピュータを用いて求める。この結果、単 結晶内のボイド及び内壁酸化膜からなるボイド欠陥の密度分布及びサイズ分布を正 確に予測できる。
また融液の対流を考慮して融液から成長する単結晶内の温度分布をコンピュータ を用いて求めるだけでなぐ更に冷却過程における単結晶内の温度分布までも求め ることによって、単結晶内の酸素析出核の密度分布及びサイズ分布を正確に予測で きる。即ち、ボイド及び内壁酸化膜力 なるボイド欠陥の密度分布とサイズ分布を求 め、酸素析出核の単位時間当りの発生量とこの臨界半径とを求め、更に酸素析出核 の単位時間当りの発生量がゼロを越えたときに、ボイド半径及び内壁酸化膜厚さを 求める計算を停止し、かつ酸素析出核の半径をコンピュータを用いて求める。この結 果、酸素析出核の単位時間当りの発生量を求めることにより単結晶内の酸素析出核 の密度分布を正確に予測でき、酸素析出核の半径を求めることにより結晶内の酸素 析出核のサイズ分布を正確に予測できる。
発明を実施するための最良の形態
[0010] 次に本発明の第 1の実施の形態を図面に基づいて説明する。
図 5に示すように、シリコン単結晶引上げ機 11のチャンバ内には、シリコン融液 12 を貯留する石英るつぼ 13が設けられる。この石英るつぼ 13は図示しないが黒鉛サセ プタ及び支軸を介してるつぼ駆動手段に接続され、るつぼ駆動手段は石英るつぼ 1 3を回転させるとともに昇降させるように構成される。また石英るつぼ 13の外周面は石 英るつぼ 13から所定の間隔をあけてヒータ(図示せず)により包囲され、このヒータは 保温筒(図示せず)により包囲される。ヒータは石英るつぼ 13に投入された高純度の シリコン多結晶体を加熱.溶融してシリコン融液 12にする。またチャンバの上端には 図示しないが円筒状のケーシングが接続され、このケーシングには引上げ手段が設 けられる。引上げ手段はシリコン単結晶 14を回転させながら引上げるように構成され る。
[0011] このように構成されたシリコン単結晶引上げ機 11におけるシリコン単結晶 14内のボ イド欠陥の密度分布及びサイズ分布のシミュレーション方法を図 1一図 6に基づいて 説明する。
先ず第 1ステップとして、シリコン単結晶 14を所定長さ L (例えば 100mm)まで引 上げた状態におけるシリコン単結晶引上げ機 11のホットゾーンの各部材、即ちチャン バ,石英るつぼ 13,シリコン融液 12,シリコン単結晶 14,黒鉛サセプタ,保温筒等を メッシュ分割してモデル化する。具体的には上記ホットゾーンの各部材のメッシュ点の 座標データをコンピュータに入力する。このときシリコン融液 12のメッシュのうちシリコ ン単結晶 14の径方向のメッシュであつてかつシリコン融液 12のシリコン単結晶 14直 下の一部又は全部のメッシュ(以下、径方向メッシュという。)を 0· 01-5. 00mm, 好ましくは 0. 25-1. 00mmに設定する。またシリコン融液 12のメッシュのうちシリコ ン単結晶 14の長手方向のメッシュであってかつシリコン融液 12の一部又は全部のメ ッシュ(以下、長手方向メッシュとレヽう。)を 0. 01^5. 00mm,好ましくは 0· 1— 0. 5 mmに設定する。
[0012] 径方向メッシュを 0· 01 -5. 00mmの範囲に限定したのは、 0. 01mm未満では計 算時間が極めて長くなり、 5. 00mmを越えると計算が不安定になり、繰返し計算を行 つても固液界面形状が一定に定まらなくなるからである。また長手方向メッシュを 0. 0 1 -5. 00mmの範囲に限定したのは、 0. 01mm未満では計算時間が極めて長くな り、 5. 00mmを越えると固液界面形状の計算値が実測値と一致しなくなるからである 。なお、径方向メッシュの一部を 0. 01 -5. 00の範囲に限定する場合には、シリコン 単結晶 14直下のシリコン融液 12のうちシリコン単結晶 14外周縁近傍のシリコン融液 12を上記範囲に限定することが好ましぐ長手方向メッシュの一部を 0. 01 -5. 00 の範囲に限定する場合には、シリコン融液 12の液面近傍及び底近傍を上記範囲に 限定することが好ましい。
[0013] 第 2ステップとして上記ホットゾーンの各部材毎にメッシュをまとめ、かっこのまとめら れたメッシュに対して各部材の物性値をそれぞれコンピュータに入力する。例えば、 チャンバがステンレス鋼にて形成されていれば、そのステンレス鋼の熱伝導率,輻射 率,粘性率,体積膨張係数,密度及び比熱がコンピュータに入力される。またシリコ ン単結晶 14の弓 I上げ長及びこの弓 I上げ長に対応するシリコン単結晶 14の弓 I上げ速 度と、後述する乱流モデル式(1)の乱流パラメータ Cとをコンピュータに入力する。 第 3ステップとして、ホットゾーンの各部材の表面温度分布をヒータの発熱量及び各 部材の輻射率に基づいてコンピュータを用いて求める。即ち、ヒータの発熱量を任意 に設定してコンピュータに入力するとともに、各部材の輻射率から各部材の表面温度 分布をコンピュータを用いて求める。次に第 4ステップとしてホットゾーンの各部材の 表面温度分布及び熱伝導率に基づレ、て熱伝導方程式(1)をコンピュータを用いて 解くことにより各部材の内部温度分布を求める。ここでは、記述を簡単にするため xyz 直交座標系を用いたが、実際の計算では円筒座標系を用いる。
[0014] [数 1]
Figure imgf000010_0001
[0015] 上記式(1)において、 pは各部材の密度、 cは各部材の比熱、 Tは各部材の各メッ シュ点での絶対温度、 tは時間である。また λ , λ 及びえ は各部材の熱伝導率の X
, y及び z方向成分であり、 qはヒータの発熱量である。
一方、シリコン融液 12に関しては、上記熱伝導方程式(1)でシリコン融液 12の内部 温度分布を求めた後に、このシリコン融液 12の内部温度分布に基づき、シリコン融液 12が乱流であると仮定して得られた乱流モデル式(2)及びナビエ'スト一タスの方程 式(3)—(5)を連結して、シリコン融液 12の内部流速分布をコンピュータを用いて求 める。
[数 2]
X XCXd^k (2)
Pr
[0017] 上記式(2)において、 κ はシリコン融液 12の乱流熱伝導率であり、 cはシリコン融 液 12の比熱であり、 Prはプラントル数であり、 pはシリコン融液 12の密度であり、 C は乱流パラメータであり、 dはシリコン融液 12を貯留する石英るつぼ 13壁からの距離 であり、 kはシリコン融液 12の平均流速に対する変動成分の二乗和である。
[0018] [数 3]
du o d du
■十 u― ~十 V― ~ +W ·
dt ay d:
1 3D d u d u d u F;
+ (v1+vi) (3) β 3x 3x2 dy2 d
3 v 9 v
•十 u― ~十 v― ~十 w
dt •'X dy
Figure imgf000011_0001
dw dw dw dw
■十 u― ~十 v― ~十 w― ~
dt •'X dy
1 dp d w d w d w Fz
(5) d z [0019] 上記式(3)—式(5)において、 u, V及び wはシリコン融液 12の各メッシュ点での流 速の X, y及び z方向成分であり、 Vはシリコン融液 12の分子動粘性係数 (物性値)で
1
あり、 はシリコン融液 12の乱流の効果による動粘性係数であり、 F , F及び Fはシ リコン融液 12に作用する体積力の x, y及び z方向成分である。
上記乱流モデル式(2)は kl (ケィエル)一モデル式と呼ばれ、このモデル式の乱流 パラメータ Cは 0. 4-0. 6の範囲内の任意の値が用いられることが好ましい。乱流パ ラメータ Cを 0. 4— 0. 6の範囲に限定したのは、 0. 4未満又は 0. 6を越えると計算に より求めた界面形状が実測値と一致しないという不具合があるからである。また上記 ナビエ'スト一タスの方程式(3) (5)はシリコン融液 12が非圧縮性であって粘度が 一定である流体としたときの運動方程式である。
上記求められたシリコン融液 12の内部流速分布に基づいて熱エネルギ方程式(6) を解くことにより、シリコン融液 12の対流を考慮したシリコン融液 12の内部温度分布 をコンピュータを用いて更に求める。
[0020] [数 4] dT 3T 3T 1 32T 32Τ 32Τ
u― V― ~ +W (κ κ t) (6) a X V a z ρ c α χ 9 ν d z
[0021] 上記式(6)において、 u, v及び wはシリコン融液 12の各メッシュ点での流速の x, y 及び z方向成分であり、 Tはシリコン融液 12の各メッシュ点での絶対温度であり、 pは シリコン融液 12の密度であり、 cはシリコン融液 12の比熱であり、 κは分子熱伝導率
1
(物性値)であり、 κ は式(1 )を用いて計算される乱流熱伝導率である。
次いで第 5ステップとして、シリコン単結晶 14及びシリコン融液 12の固液界面形状 を図 5の点 Sで示すシリコンの三重点 S (固体と液体と気体の三重点 (tri-junction))を 含む等温線に合せてコンピュータを用いて求める。第 6ステップとして、コンピュータ に入力するヒータの発熱量を変更し (次第に増大し)、上記第 3ステップ力 第 5ステ ップを三重点がシリコン単結晶 14の融点になるまで繰返した後に、引上げ機 1 1内の 温度分布を計算してシリコン単結晶のメッシュの座標及び温度を求め、これらのデー タをコンピュータに記憶させる。 [0022] 次に第 7ステップとして、シリコン単結晶 14の引上げ長 Lに δ (例えば 50mm)だけ
1
加えて上記第 1ステップから第 6ステップまでを繰返した後に、引上げ機 11内の温度 分布を計算してシリコン単結晶 14のメッシュの座標及び温度を求め、これらのデータ をコンピュータに記憶させる。この第 7ステップは、シリコン単結晶 14の引上げ長 Lが
1 長さし (Lはシリコン融液 12から切離されたときのシリコン単結晶 14の長さ(成長完
2 2
了時の結晶長)である。 )に達してシリコン単結晶 14がシリコン融液 12から切離され た後、更にシリコン単結晶 14が引上げられてその高さ H (Hはシリコン単結晶 14の
1 1
直胴開始部からシリコン融液 12の液面までの距離である(図 5)。)が11 (Hは冷却
2 2 完了時のシリコン単結晶 14の直胴開始部からシリコン融液 12の液面までの距離であ る。 )に達するまで、即ちシリコン単結晶 14の冷却が完了するまで行われる。なお、シ リコン単結晶 14がシリコン融液 12から切離された後は、シリコン単結晶 14の引上げ 高さ Hに δ (例えば 50mm)だけ加え、上記と同様に上記第 1ステップから第 6ステツ
1
プまでを繰返す。
[0023] シリコン単結晶 14の引上げ高さ Hが Hに達すると、第 8ステップに移行する。第 8
1 2
ステップでは、シリコン単結晶 14をシリコン融液 12から成長させて引上げ始めたとき t から、シリコン単結晶 14をシリコン融液 12から切離して更にシリコン単結晶 14を引
0
上げ、その冷却が完了したとき tまでの時間を、所定の間隔 A t秒 (微小時間間隔) 毎に区切る。このときシリコン単結晶 14内の格子間シリコン及び空孔の拡散係数及 び境界条件のみならず、後述するボイド 21及び内壁酸化膜 22 (図 6)の密度分布及 びサイズ分布を求めるための式に用いられる定数をそれぞれコンピュータに入力す る。上記区切られた時間間隔 A t秒毎に、第 7ステップで求めたシリコン単結晶 14の メッシュの座標及び温度のデータから、シリコン単結晶 14の引上げ長 L及び引上げ
1
高さ Hと、シリコン単結晶 14内の温度分布とを求める。
1
[0024] 即ち、第 1一第 7ステップでシリコン単結晶のメッシュの座標及び温度を引上げ長 δ 毎に求め、シリコン単結晶を例えば 50mm引上げるのに数十分要するため、この数 十分間でのシリコン単結晶のメッシュの温度変化を時間の関数として微分することに より、時刻 t力も A t秒後におけるシリコン単結晶 14の引上げ長 L及び引上げ高さ H
0 1 とシリコン単結晶 14内の温度分布を算出する。次にシリコン単結晶 14内の空孔及 び格子間シリコンの拡散係数及び境界条件に基づいて拡散方程式を解くことにより、
Δ t秒経過後の空孔及び格子間シリコンの密度分布を求める(第 9ステップ)。
具体的には、空孔の密度 Cの計算式が次の式(7)で示され、格子間シリコンの密 度 Cの計算式が次の式(8)で示される。式(7)及び式 (8)におレ、て、密度 C及び密 度 Cの経時的進展を計算するために、空孔と格子間シリコンの熱平衡がシリコン単結 晶の全表面で維持されると仮定する。
[数 5]
Figure imgf000014_0001
[0026] 上記式(7)及び式(8)において、 K及び Kは定数であり、 E及び Eはそれぞれ格
1 2
子間シリコン及び空孔の形成エネルギーであり、 C 及び C は空孔の平衡密度及び
ve ie
格子間シリコンの平衡密度である。また kはボルツマン定数、 Tは絶対温度を意味す
B
る。
上記平衡式は時間で微分され、空孔及び格子間シリコンに対してそれぞれ次の式 (9)及び式(10)になる。
[0027] [数 6]
Figure imgf000015_0001
Θ ( Τ, Τ)Θ( T- Tp) ( Cv- Cve)N,r X 4 π r VDV ( Cv- CVJ
Dv(Cv-Cve)
■0(T-T)0(C-C v7Je/N p X ½RP X (9)
i+- e R
dC
L=V(DiVCi)-V CVT kiv(T){CiCv- Cie(T)Cve(T)} dt kT丄2
- Θ ( Tv— Τ)Θ( T- T )Θ( C e)Nv X 4兀 ΓνΌ; ( C C; e) (10)
[0028] 上記式(9)及び式(10)において、 θ(χ)はヘビサイド関数(Heaviside ftmction)であ る。即ち、 x<0のとき θ(χ) = 0であり、かつ χ>0のとき θ(χ) = 1である。また Τは内
Ρ
壁酸化膜 22 (ボイド 21表面に形成されたシリコンの酸化膜 (Si〇x膜))の形成開始温 度であり、 Tはボイド 21の形成開始温度である(図 6)。更に式(9)及び(10)のそれ ぞれ右側の第 1項はフィックの拡散式であり、右側の第 1項中の D及び Dは、次の式
(11)及び(12)で表される空孔及び格子間シリコンの拡散係数である。
[0029] [数 7]
Figure imgf000015_0002
[0030] 上記式(11)及び式(12)において、 ΔΕ及び ΔΕはそれぞれ空孔及び格子間シリ コンの活性化エネルギーであり、 d及び dはそれぞれ定数である。また式(9)及び式
(10)のそれぞれ右側の第 2項中の E 1及び は熱拡散による空孔及び格子間シリコ ンの活性化エネルギーであり、 kはボルツマン定数である。式(9)及び式(10)のそ
B
れぞれ右側の第 3項の k は空孔及び格子間シリコンペアの再結合定数である。式(9 )及び式(10)のそれぞれ右側の第 4項の Nはボイド 21の密度であり、 rはボイド 21 の半径であり、更に式(9)の右側の第 5項の Nは内壁酸化膜 22の密度であり、 Rは
P P
内壁酸化膜 22の外半径である。
[0031] 上記式(9)が成立つのは、空孔が析出するための空孔の流束が十分に大きぐシリ コン単結晶 14を構成する Siマトリックスと内壁酸化膜を構成する SiOxとの単位質量 当りの体積差を坦められる場合、即ち C ≤D (C-C )の場合である。上記以
O O ve
外の場合、即ち T D C >D (C-C )の場合には、次式(13)が成立つ。ここで、 γ
Ο Ο
とは酸素 1原子に対する空孔の消費割合であり、 D は酸素の拡散係数であり、 C は
o o 酸素密度である。
[0032] [数 8]
D C,VT kiv(T CiCv- Cie(T)Cv
Figure imgf000016_0001
■ Θ ( Tv- T) Θ( T- Tp ) Θ ( Cv- Cve ) N v X4 π r v Dv ( Cv- Cve)
Dv(C-Cve)
-0(Cv-Cve)0(Tp-T) X 4 RpNp X (13)
Figure imgf000016_0002
[0033] 上記式(13)において、 θ(χ)はヘビサイド関数(Heaviside ilmction)である。即ち、 x く 0のとき Θ(χ) = 0であり、かつ χ>0のとき Θ(χ) = 1である。また Τは内壁酸化膜 22
Ρ
の形成開始温度であり、 Τはボイド 21の形成開始温度である。更に式(13)の右側 の第 1項はフィックの拡散式であり、右側の第 1項中の Dは、式(11)で表される空孔 の拡散係数である。
次に第 10ステップとして、上記拡散方程式を解くことにより求めた空孔の密度 C分 布に基づいて、ボイド 21の形成開始温度 Τを次の式(14)から求める。
[0034] [数 9]
3/2 Τ 1/2 1/2 _ 3/2
Τ, kB ln(Cv/Cv0)-kB Ev/Tr + TV kB nv=0.68 σν /p (14)
[0035] 上記式(14)において、 Cはシリコン単結晶 14中の空孔密度であり、 C はシリコン 単結晶 14の融点 T での空孔平衡密度であり、 Εは空孔形成エネルギーである。ま
m V
たび はシリコン単結晶 14の結晶面 (111)における界面エネルギーであり、 pはシリコ ン単結晶 14の密度であり、 kはボルツマン定数である。
B
第 11ステップとして、シリコン単結晶 14内のそれぞれのメッシュの格子点における 温度が次第に低下してボイド 21の形成開始温度 Tになったときに、次の近似式(15 )を用いてボイド 21の密度 Nを求める。
[数 10]
Hr≥≤n ( dT / dt)3/2(D,7 k o T2)"3/2( CJ_1^ --- (15)
[0037] 上記式(15)において、 nはボイド 21の密度であり、 (dT/dt)はシリコン単結晶 14の 冷却速度である。上記ボイド 21の密度は空孔過飽和度に依存するけれども、計算す るシリコン単結晶 14での核形成温度のような狭い温度領域では一定とみなしてよい。 また Dはボイド 21の拡散係数であり、 kはボルツマン定数であり、 Cはシリコン単結
B
晶 14中の空孔密度である。
第 12ステップとして、シリコン単結晶 14内のそれぞれのメッシュの格子点における 温度がボイド 21の形成開始温度 Tより低いときのボイドの半径 rを、次の式(16)から 求める。ここでボイド 21の成長速度は空孔の拡散速度に依存する拡散律速である。 またボイド 21の形状は実際には八面体であるけれども、ここでは計算の効率化から 球状として扱う。
[0038] [数 11]
1/2
ί t®( Cv- Cve)Dv( Cv- Cve) _Θ( C「 Ci e)Di( C「 C, e)}dV + r2 vc r (16) 上記式(16)において、 tlはシリコン単結晶 14のメッシュの格子点における温度が ボイド 21の形成開始温度 Tまで低下したときの時刻である。また r はボイド 21の臨
V vcr
界径であり、この臨界径 r は上記時刻 tlでの値とする。更に C 及び C はそれぞれ
vcr ve ie
の状態での空孔及び格子間シリコンの平衡密度である。
次に第 13ステップとして、ボイド 21の周囲に成長する内壁酸化膜 22の形成開始温 度 Tを求める。内壁酸化膜 22の形成開始温度 Τがボイド 21の形成開始温度 Τより 小さい場合には、酸素と空孔が結合し、ボイド 21表面に内壁酸化膜 22が成長する( 図 6)。本発明のモデルでは、上記内壁酸化膜 22はボイド 21が発生するとすぐに成 長するものとして扱った。ここで、「すぐに」とは、「ボイドが発生した次の繰返し計算か ら』という意味である。従って、内壁酸化膜 22の形成開始温度 Τはボイド 21の形成
Ρ
開始温度 Τと同一となる。
更に第 14ステップとして、シリコン単結晶 14内のそれぞれのメッシュの格子点にお ける温度が次第に低下して内壁酸化膜 22の形成開始温度 Τより低くなつたときのボ
Ρ
イド 21の半径 rと内壁酸化膜 22の厚さ dとを互いに関連させて求める。一般的に、酸 素はその拡散とシリコンとの反応によって内壁酸化膜 22が形成される。酸素が内壁 酸化膜 22外からこの酸化膜の外周面に流入する流 は、ボイド 21の中心を原点 o
とする内壁酸化膜 22の外半径を Rとするとき、次の式(17)から求められる。
P
[0040] [数 12]
J0=4兀 R pD0( C0- C。e i f)/{l + D。バ g。R p )} ------ (17)
[0041] 上記式(17)において、 D は酸素の拡散係数であり、 C は酸素密度であり、 C
O O Oeif は球状のボイド 21の中心を原点とする半径 Rにおける酸素平衡密度であり、 g は Si
P o
Ox及び Siの界面、即ち内壁酸化膜 22の外周面における酸素原子の反応割合であ る。
また空孔が内壁酸化膜 22外からこの酸化膜の外周面(半径 Rの球面)に流入する
P
流 ¾Jは次の式(18)力 求められる。
[0042] [数 13]
Jv =4 R PDV ( CV— Cve i f)/ 1 + Dノ(gVR P )} (18)
[0043] 上記式(18)において、 gは内壁酸化膜 22の外周面での空孔の反応割合であり、 C は内壁酸化膜 22の外周面での空孔の平衡密度である。シリコンの内壁酸化膜 2 veif
2が成長すると同時に空孔が消費され、空孔の消費割合は酸素 1原子に対して γで ある。このため内壁酸化膜 22が歪みなく成長するための条件は、酸素の流 に対 o して空孔の流束は であるので、空孔の流束 γ】 は次の式(19)力 求められる。
ο ο
[数 14] yJ。=47TYR PD。( C。- C。e i f ) {l+D。A g。R P )} ( 19) 従って、(Ι _ γ】)は内壁酸化膜 22に吸収される空孔の流束となる。ここで空孔の
Ο
内壁酸化膜 22外からこの酸化膜への流束が増大する場合 ( 一 γ J ) >0)、或いは空
O
孔のボイド 21内から酸化膜への流束が時間の経過に対して増大する場合 ( _ γ J )
O
< 0)の上記流束の時間に対する変化の割合をひとすると、このひは内壁酸化膜 22 の厚さに依存すると考えられる。このため内壁酸化膜 22の厚さ d、即ち (R -r )が d未
P 0 満であるならば、内壁酸化膜 22は空孔を酸化膜外及びボイド 21内の双方向から部 分浸透させると考えられる。換言すれば、 d< dであってひ≠0である場合には、空孔
0
はある割合で内壁酸化膜 22を貫通してボイド 21の成長に使われる。但し、格子間シ リコンは酸素析出層が核形成されると同時にボイド 21の成長に使われなくなる。 また空孔の内壁酸化膜 22外からこの酸化膜への流束量が少ない場合、即ち (T - yj )< 0である場合には、歪みの無い内壁酸化膜 22を成長させることができないの
O
で、空孔はボイド 21内から酸化膜に流入し、ボイド 21の外径は小さくなる。この結果 d≥dであって α =0の場合には、内壁酸化膜 22は空孔を全く通過させなくなる。
0
そして、 ηをボイド 21中の空孔の数とすると、 dn /dtは空孔の流入量となり、 dn /dt = (J - y ] )であるならば、次の式(20)が成り立つ。なお、式(20)において、 rは式( O
16)で求めたボイド 21の半径であり、 Rは内壁酸化膜 22の外半径である。また D は o 酸素の拡散係数であり、 C は酸素密度である。更に C は球状のボイド 21の中心を
O Oeif
原点とする半径 Rにおける酸素平衡密度であり、 g は内壁酸化膜 22の外周面にお
P o
ける酸素原子の反応割合である。
[数 15]
Figure imgf000019_0001
[0047] 同時に内壁酸化膜 22を構成する SiOx分子の数は式(20)の酸素が内壁酸化膜 2
2外からこの酸化膜の外周面に流入する流 ¾J の消費に依存して変化するため、次
o
の式(21)が成り立つ。なお、式(21)において、 p =x/(QSiOx)と定義する。この
P
p の定義式において、 Ω は Si〇xの分子容量(molecular volume)であり、その単 p SiOx
位は分子量 Z密度である。また Xは Si〇xの Xに対応し、 Ωは定数である。
[0048] [数 16]
Figure imgf000020_0001
[0049] 上記式(21)を上記式(20)に代入すると次の式(22)が得られる。なお、式(22)に おいて、 は Ω /Ω である。この? 7の定義式において、 Ω は 1/ pであり、 p
SiOx Si S―i.
はシリコン単結晶 14の密度である。
[0050] [数 17]
Figure imgf000020_0002
[0051] 上記式(20)及び式(22)から次のことが分かる。先ず dが dになった時刻を tとする
0 3 と、この時刻 tにおいてひがゼロとなるため、内壁酸化膜 22は非浸透となる。またボイ
3
ド 21の外径力 (t )で固定されている間は、内壁酸化膜 22の成長はシリコン単結晶 1
3
4のマトリックスから流入する空孔或いは酸素の消費量によって決まる。即ち、 α_γ】 ) >0である場合には式(22)は次の式(23)となり、 Q -yJ ) <0である場合には式
O O
(22)は次の式(24)となる。
[0052] [数 18]
Figure imgf000021_0001
Figure imgf000021_0002
[0053] 上記式(23)及び式(24)におレ、て、 Ω は SiOxの分子容量(molecular volume)
SiOx
である。また式(23)及び式(24)において、内壁酸化膜の外周面での空孔平衡密度 は Rと無関係であり、 C =C かつ C =C であると想定している。式(23)又は p veif ve Oeif Oe
式(24)から内壁酸化膜 22の外半径 Rを求め、内壁酸化膜 22の外半径 Rからボイ
P P
ド 21の半径 rを引くことにより、内壁酸化膜 22の厚さ dを求める。上記第 8ステップか ら第 14ステップをシリコン単結晶 14の冷却が完了するまで繰返す(第 15ステップ)。 なお、式(9)一式(24)は互いに関連させてコンピュータにより解く。
上述のように、シリコン融液 12の対流を考慮してシリコン融液 12から成長するシリコ ン単結晶 14内の温度分布を求めた後に、シリコン融液 12から切離されたシリコン単 結晶 14の冷却過程、即ちシリコン単結晶 14がシリコン融液 12から切離された後のシ リコン単結晶 14の引上げ速度を考慮し、シリコン単結晶 14の徐冷及び急冷の効果を 結果に反映して解析することにより、シリコン単結晶 14内のボイド 21及び内壁酸化膜 22からなるボイド欠陥の密度分布及びサイズ分布を正確に予測できる。この結果、シ リコン融液 12から引上げられるシリコン単結晶 14内の欠陥の密度分布及びサイズ分 布を所望の分布にするために、引上げ機 11の設計段階で引上げ機 11の構造を検 討すること力 Sできる。
[0054] 図 7—図 10は本発明の第 2の実施の形態を示す。
この実施の形態では、第 1ステップから第 14ステップまでは第 1の実施の形態とほ ぼ同一である。但し、第 1の実施の形態の式(9)は次の式(9) 'となる。この式(9) 'に おいて、 D は酸素拡散係数であり、 C は酸素析出核形成温度での酸素密度である
o o
。更に Jは臨界半径を有する酸素析出核の単位時間当りの発生量であり、 rは酸素 析出核の半径である。
[0055] [数 19]
Figure imgf000022_0001
- Θ ( ΤΝ- Τ) Θ( Τ- ΤΡ) ( CV- CVE)NV X 4 π r VDV ( CY- CV E)
-0(TP-T)0(CV-CVE)NP X 4兀 RP X DV( CV"CVE
Figure imgf000022_0002
- y X4 D0C。J" Jc(t')rc(t,t,) dt (9)'
[0056] 上記式(9) 'が成立つのは、空孔が析出するための空孔の流束が十分に大きぐシ リコン単結晶 14を構成する Siマトリックスと内壁酸化膜を構成する SiOxとの単位質量 当りの体積差を坦められる場合、即ち C ≤D (C -C )の場合である。上記以
O O ve
外の場合、即ち T D C >D (C -C )の場合には、次式(13)が成立つ。ここで、 γ
Ο Ο ve
は酸化物が歪みなく成長するのに必要な酸素 1原子当たりの空孔量であり、酸素析 出核の相に依存する数である。酸素析出核が Si〇からなる場合には γ 0.5であり
2
、酸素析出核が Si〇からなる場合には γ =0.65である。また D は酸素の拡散係数 ο
であり、 C は酸素析出核形成温度での酸素密度である。
ο
また第 1の実施の形態の式(13)は次の式(13)'となる。この式(13) 'において、】 は臨界半径を有する酸素析出核の単位時間当りの発生量であり、 rは酸素析出核の 半径である。
[0057] [数 20] E,
=V (DVVCV)-V D C VT -kiv(T){CiCv-C1e(T)Cve(T)
- Θ(Τν-Τ)Θ(Τ-Τρ) e(Cv-Cve ) Nv X4 π r v Dv( Cv- Cve)
0(CV ■Cve)©(Tp-T) X 4πΙ¾ρΝρ X
Figure imgf000023_0001
■ Θ ( Cv— Cve) X 4 π D v ( Cv_ Cve) J Jc(t') rc (t,t') dt (13V
[0058] 第 15ステップとして、シリコン単結晶 14内の酸素の密度分布と空孔の密度分布と 温度分布に基づいて酸素析出核の単位時間当りの発生 と上記臨界半径 r とを
c cr 求める。具体的には、酸素析出核成長(Si〇x相)は、酸素密度 C と空孔密度 Cと温
O
度 τに依存するため、古典論では定常状態での酸素析出核の単位時間当りの発生 量 Tを次の式(25)から求める。
[0059] [数 21]
3F*kBT -1/2
F- exp
c = tJcDoし o (25)
16π kBT
[0060] 上記式(25)において、 σ は酸素析出核形成温度での SiOxと Siとの界面エネル ギーであり、 D は酸素拡散係数である。また C は酸素析出核形成温度での酸素密 o o
度であり、 kはボルツマン定数である。更に F*は酸素析出核の成長バリアであり、酸
B
素析出核を球体と仮定すれば、 F*は次の式(26)により求めることができる。
[0061] [数 22]
3
16 πσ
F* 2 r2
3 ρί ί (26)
[0062] 上記式(26)において、 ρ は SiOxからなる酸素析出核の酸素数密度であり、 f は 酸素析出核形成のために必要な駆動力(酸素原子 1個当りの力)であり、この f を次 の式(27)力 求める。
[0063] [数 23] fc = kBTXln(C0/C0e) + ykBTXln(Cv/Cve) ------ (27)
[0064] 上記式(27)において、 C は酸素析出核形成温度での酸素密度であり、 C は酸
O Oe 素平衡密度である。また γは酸化物が歪みなく成長するのに必要な酸素 1原子当た りの空孔量であり、酸素析出核の相に依存する数である。酸素析出核が Si〇力 な
2 る場合には γ 0. 5であり、酸素析出核が Si〇からなる場合には γ =0. 65である。 更に Cは空孔の密度であり、 C は空孔の平衡密度である。なお、式(25)及び式(2 ve
6)における σ (酸素析出核形成温度での Si〇xと Siとの界面エネルギー)は核形成 を支配する重要なパラメータであり、このパラメータ σ は核形成に依存しており、一 般的には温度と酸素析出核の半径によって値が変化する。一方、酸素析出核の臨 界半径 r を次の式(28)により求める。
cr
[0065] [数 24]
r=2 ac/[pc kBT X ln{( C0/C0e) X ( Cv /Cvf] (28)
[0066] 次に第 16ステップとして、酸素析出核の単位時間当りの発生量がゼロを越えると、 ボイド 21の半径及び内壁酸化膜 22の厚さを求める計算を停止し、かつ酸素析出核 の半径を求める。酸素析出核は酸素と空孔を消費しながら成長し、空孔は Siとその 酸化物(SiOx)との間の歪みを調整する。また本発明のモデルでは、酸素析出核の 成長速度は酸素の拡散と空孔の拡散に限定すると仮定している。 yO C <D (C
O O v v
-C )であるならば、酸素析出核の成長速度は酸素の拡散に限定され、次の式(29) ve
により求められる。
[0067] [数 25] drc/dt-D0C0/(rnPc ) (29)
[0068] また T D C >D (C-C )であるならば、クラスターの成長時に、 Siとその酸化物( o o
SiOx)との間の歪みを無くすために空孔が消費されるので、クラスターの成長速度は 次の式(30)で表される。
[0069] [数 26] d rc /dt -Dv( Cv-Cve ) / ( y rc p c ) ------- (30)
[0070] 上記第 8ステップから第 16ステップをシリコン単結晶 14の冷却が完了するまで繰返 す(第 17ステップ)。なお、式(9)一式(30)は互いに関連させてコンピュータにより解
<。
上述のように、シリコン融液 12の対流を考慮してシリコン融液 12から成長するシリコ ン単結晶 14内の温度分布を求めた後に、シリコン融液 12から切離されたシリコン単 結晶 14の冷却過程を考慮し、シリコン単結晶 14の徐冷及び急冷の効果を結果に反 映して解析することにより、シリコン単結晶 14内の酸素析出核の密度分布及びサイズ 分布を正確に予測できる(図 5)。即ち、シリコン単結晶 14がシリコン融液 12から切離 された後のシリコン単結晶 14の引上げ速度を考慮して、ボイド 21及び内壁酸化膜 2 2 (図 6)からなるボイド欠陥の密度分布とサイズ分布をコンピュータを用いて求め、酸 素析出核の単位時間当りの発生 SJとこの臨界半径 r とをコンピュータを用いて求め c cr
、更に臨界半径 r 以上の半径 rを有する酸素析出核の単位時間当りの発生 Siが cr c c ゼロを越えたときに、ボイド半径 r及び内壁酸化膜厚さ dを求める計算を停止し、かつ 臨界半径 r 以上の半径 rを有する酸素析出核の半径 rをコンピュータを用いて求め cr c c
る。この結果、臨界半径!: 以上の半径 rを有する酸素析出核の単位時間当りの発生 cr c
を求めることにより、シリコン単結晶 14内の酸素析出核の密度分布を正確に予測 できる。また臨界半径 r 以上の半径 rを有する酸素析出核の半径 rを求めることによ cr c c
り、シリコン結晶 14内の酸素析出核のサイズ分布を正確に予測できる。
なお、上記第 1及び第 2の実施の形態では、単結晶としてシリコン単結晶を挙げた 力 GaAs単結晶, InP単結晶, ZnS単結晶若しくは ZnSe単結晶でもよい。
実施例
[0071] 次に本発明の実施例を比較例とともに詳しく説明する。
<実施例 1 > 図 5及び図 6に示すように、石英るつぼ 13に貯留されたシリコン融液 12から直径 6 インチのシリコン単結晶 14を引上げる場合の、シリコン単結晶 14内のボイド 21及び 内壁酸化膜 22からなるボイド欠陥の密度分布及びサイズ分布を、図 1一図 4のフロ 一チャートに基づくシミュレーション方法により求めた。
即ち、シリコン単結晶引上げ機 11のホットゾーンをメッシュ構造でモデルィ匕した。こ こで、シリコン融液 12のシリコン単結晶 14直下のシリコン単結晶 14の径方向のメッシ ュを 0. 75mmに設定し、シリコン融液 12のシリコン単結晶 14直下以外のシリコン単 結晶 14の径方向のメッシュを 1一 5mmに設定した。またシリコン融液 12のシリコン単 結晶 14の長手方向のメッシュを 0. 25— 5mmに設定し、乱流モデル式の乱流パラメ ータ Cとして 0. 45を用いた。更にシリコン単結晶 14の引上げ開始時 t力 冷却完了
0
時 tまでの引上げ長及び引上げ高さの段階的な変更を 50mmずっとした。このよう な条件下で、シリコン融液 12の対流を考慮してシリコン単結晶 14内の温度分布を求 めた。
次にシリコン単結晶 14の引上げ開始時 tから冷却完了時 tまでの時間を所定の間
0 1
隔 Δ t秒 (微小な時間の間隔)毎に区切り、この時間間隔 Δ t秒毎に上記シリコン単結 晶 14のメッシュの座標及び温度のデータから、シリコン単結晶 14の引上げ長及び弓 [ 上げ高さとシリコン単結晶内 14の温度分布を求め、更にボイド 21の形成開始温度を 求めてボイド 21の密度分布及びサイズ分布を求めた。即ち、シリコン単結晶 14をシリ コン融液 12から切離した後のシリコン単結晶 14の徐冷及び急冷を考慮して、シリコン 単結晶 14内のボイド 21の密度分布及びサイズ分布をコンピュータを用いてそれぞれ 求めた。
一方、ボイド 21の周囲に成長する内壁酸化膜 22は、ボイド 21が発生するとすぐに 成長するものとして扱ったので、内壁酸化膜 22の形成開始温度 Tをボイド 21の形成
P
開始温度 Tと同一とした。ここで、「すぐに」とは、「ボイドが発生した次の繰返し計算 から』という意味である。次に内壁酸化膜 22の形成開始温度より低くなつたときの内 壁酸化膜 22の外半径 Rをコンピュータを用いて求めた。更に内壁酸化膜 22の外半
P
径 Rをボイド 21の半径から引くことにより内壁酸化膜 22の厚さ dを求めた。なお、内
P
壁酸化膜の密度分布は上記ボイドの密度分布と同一とした。上記ボイド及び内壁酸 化膜力 なるボイド欠陥のサイズ分布、即ち内壁酸化膜 22の外半径 Rのシリコン単
P
結晶の半径方向への分布を、シリコン単結晶の引上げ速度を変えて算出した結果を 図 12 (a)及び (b)に実線で示す。また上記ボイド及び内壁酸化膜からなるボイド欠陥 の密度分布のシリコン単結晶の半径方向への分布を、シリコン単結晶の引上げ速度 を変えて算出した結果を図 13 (a)及び (b)に実線で示す。
[0073] ぐ比較例 1 >
実施例 1と同一形状のシリコン単結晶を同一の条件で引上げたときの LSTD (Laser Scattering Tomograph Defects)を測定した。この LSTDのサイズ分布を、シリコン単 結晶の引上げ速度を変えて測定した結果を図 12 (a)及び (b)に黒い点で示す。また LSTDの密度分布を、シリコン単結晶の引上げ速度を変えて測定した結果を図 13 (a )及び (b)に黒い点で示す。なお、上記 LSTDは、空孔型点欠陥の凝集体の一種で あり、シリコン単結晶内に赤外線を照射したときにシリコンとは異なる屈折率を有する 散乱光を発する源をいう。なお、上記 LSTDのサイズ分布及び密度分布は、上記実 施例 1のボイド欠陥のサイズ分布及び密度分布に対応させてもよいと考える。また LS TDは検出限界があるため、所定値より小さいサイズのものは検出できな力 た。
[0074] <評価 1 >
図 12 (a)及び (b)から明らかなように、実施例 1のボイド欠陥のサイズ分布と比較例 1の LSTDのサイズ分布とは、サイズの検出限界以上で略一致した。
また図 13 (a)及び (b)から明らかなように、実施例 1のボイド欠陥の密度分布と比較 例 1の LSTDの密度分布とは、範囲 (1)において略一致したけれども、範囲 (2)では一 致しなかった。範囲 (2)において密度分布が一致しなかったのは、範囲 (2)では検出可 能なボイドと検出不能なボイドが入り交じつているため、比較例 1の LSTDの密度分 布が実施例 1のボイド欠陥の密度分布より少なくなつてしまったものと考えられる。
[0075] ぐ実施例 2 >
図 5及び図 6に示すように、石英るつぼ 13に貯留されたシリコン融液 12から直径 6 インチのシリコン単結晶 14を引上げる場合の、シリコン単結晶 14内のボイド 21及び 内壁酸化膜 22からなるボイド欠陥の密度分布及びサイズ分布を、図 7 図 10のフロ 一チャートに基づくシミュレーション方法により求めた。 即ち、シリコン単結晶引上げ機 11のホットゾーンをメッシュ構造でモデルィ匕した。こ こで、シリコン融液 12のシリコン単結晶 14直下のシリコン単結晶 14の径方向のメッシ ュを 0. 75mmに設定し、シリコン融液 12のシリコン単結晶 14直下以外のシリコン単 結晶 14の径方向のメッシュを 1一 5mmに設定した。またシリコン融液 12のシリコン単 結晶 14の長手方向のメッシュを 0. 25— 5mmに設定し、乱流モデル式の乱流パラメ ータ Cとして 0. 45を用いた。更にシリコン単結晶 14の引上げ開始時 t力 冷却完了
0
時 tまでの引上げ長及び引上げ高さの段階的な変更を 50mmずっとした。このよう な条件下で、シリコン融液 12の対流を考慮してシリコン単結晶 14内の温度分布を求 めた。
[0076] 次にシリコン単結晶 14の引上げ開始時 tから冷却完了時 tまでの時間を所定の間
0 1
隔 Δ t秒 (微小な時間の間隔)毎に区切り、この時間間隔 Δ t秒毎に上記シリコン単結 晶 14のメッシュの座標及び温度のデータから、シリコン単結晶 14の引上げ長及び引 上げ高さとシリコン単結晶内 14の温度分布を求め、更にボイド 21の形成開始温度を 求めてボイド 21の密度分布及びサイズ分布を求めた。即ち、シリコン単結晶 14をシリ コン融液 12から切離した後のシリコン単結晶 14の徐冷及び急冷を考慮して、シリコン 単結晶 14内のボイド 21の密度分布及びサイズ分布をコンピュータを用いてそれぞれ 求めた。
一方、ボイド 21の周囲に成長する内壁酸化膜 22は、ボイド 21が発生するとすぐに 成長するものとして扱ったので、内壁酸化膜 22の形成開始温度 Tをボイド 21の形成
P
開始温度 Tと同一とした。ここで、「すぐに」とは、「ボイドが発生した次の繰返し計算 から」という意味である。次に内壁酸化膜 22の形成開始温度より低くなつたときの内 壁酸化膜 22の外半径 Rをコンピュータを用いて求めた。次に壁酸化膜 22の外半径
P
Rをボイド 21の半径から引くことにより内壁酸化膜 22の厚さ dを求めた。なお、内壁
P
酸化膜の密度分布は上記ボイドの密度分布と同一とした。
[0077] 次にシリコン単結晶 14内の酸素の密度分布と空孔の密度分布と温度分布に基づ いて、酸素析出核の単位時間当りの発生 とこの臨界半径 r とをコンピュータを用 c cr
いて求めた。更に臨界半径 r 以上の半径 rを有する酸素析出核の単位時間当りの cr c
発生量 Tがゼロを越えたときに、ボイド半径 r及び内壁酸化膜厚さ dを求める計算を 停止し、かつ臨界半径 r 以上の半径 rを有する酸素析出核の半径 rをコンピュータ
cr c c
を用いて求めた。
シリコン単結晶 14の半径方向の位置を変えた場合(図 14 (a)の A部と B部)の、上 記酸素析出核のサイズ分布及び密度分布を図 14 (b)の実線 A及び実線 Bで示した 。またシリコン単結晶 14の引上げ速度を変えた場合(図 14 (a)の A部と C部)の、上 記酸素析出核のサイズ分布及び密度分布を図 14 (b)の実線 A及び実線 Cで示した
[0078] ぐ比較例 2 >
実施例 2と同一形状のシリコン単結晶を同一の条件で引上げた。このシリコン単結 晶を比較例 2とした。
<比較試験 1及び評価 2 >
実施例 2の方法で求めた図 14 (a)の A部、 B部及び C部での酸素析出核の密度分 布のうち、経験的に求めた熱処理条件に依存したあるサイズ以上の酸素析出核の総 数 (A、 B及び C )をコンピュータを用いて求めた。その結果を表 1に示す。一方、比 較例 2のシリコン単結晶において、上記図 14 (a)の A部、 B部及び C部に対応する部 分の酸素析出核の密度分布を所定の熱処理後に光学顕微鏡にて測定した。その結 果を表 1に示す。
[0079] [表 1]
Figure imgf000029_0001
表 1から明ら力なように、実施例 2の方法で算出した酸素析出核の密度分布は比較 例 2の実際に測定した酸素析出核の密度分布とオーダーが一致した。この結果、酸 素析出核の密度分布を実施例 2の方法によりオーダーレベルで見積もり可能である ことが判った。
産業上の利用可能性
[0081] 本発明の単結晶内ボイド欠陥と単結晶内酸素析出核の密度分布及びサイズ分布 のシミュレーション方法は、 CZ法にて引上げられるシリコン単結晶棒等の品質を向上 するために利用できる。
図面の簡単な説明
[0082] [図 1]本発明第 1実施形態シリコン単結晶内のボイド欠陥の密度分布及びサイズ分布 のシミュレーション方法の第 1段を示すフローチャートである。
[図 2]そのボイド欠陥の密度分布及びサイズ分布のシミュレーション方法の第 2段を示 すフローチャートである。
[図 3]そのボイド欠陥の密度分布及びサイズ分布のシミュレーション方法の第 3段を示 すフローチャートである。
[図 4]そのボイド欠陥の密度分布及びサイズ分布のシミュレーション方法の第 4段を示 すフローチャートである。
[図 5]本発明のシリコン融液をメッシュ構造としたシリコン単結晶の弓 I上げ機の要部断 面図である。
[図 6]そのシリコン単結晶内のボイド及び内壁酸化膜の模式図である。
[図 7]本発明第 2実施形態シリコン単結晶内の酸素析出核の密度分布及びサイズ分 布のシミュレーション方法の第 1段を示すフローチャートである。
[図 8]その酸素析出核の密度分布及びサイズ分布のシミュレーション方法の第 2段を 示すフローチャートである。
[図 9]その酸素析出核の密度分布及びサイズ分布のシミュレーション方法の第 3段を 示すフローチャートである。
[図 10]その酸素析出核の密度分布及びサイズ分布のシミュレーション方法の第 4段 を示すフローチャートである。
[図 11]従来例のシリコン融液をメッシュ構造としたシリコン単結晶の引上げ機の要部 断面図である。
[図 12]実施例 1のボイド欠陥のシリコン単結晶の半径方向へのサイズ分布を、引上げ 速度を変えてコンピュータにより求めた値と、比較例 1の LSTDのシリコン単結晶の半 径方向へのサイズ分布を、引上げ速度を変えて実際に測定した値とを示す図である 園 13]実施例 1のボイド欠陥のシリコン単結晶の半径方向への密度分布を、引上げ 速度を変えてコンピュータにより求めた値と、比較例 1の LSTDのシリコン単結晶の半 径方向への密度分布を、引上げ速度を変えて実際に測定した値とを示す図である。 園 14]シリコン単結晶の半径方向の位置を変えた場合と、シリコン単結晶の引上げ速 度を変えた場合に、コンピュータを用いて求めた酸素析出核のサイズ分布及び密度 分布を示す図である。
符号の説明
11 シリコン単結晶引上げ機
12 シリコン融液
14 シリコン単結晶
21 ボイド
22 内壁酸化膜
S シリコンの三重点

Claims

請求の範囲
引上げ機 (11)による単結晶 (14)の融液 (12)からの引上げ開始時力 前記単結晶 (14) の冷却完了時までの前記引上げ機 (11)のホットゾーンをメッシュ構造でモデル化する 第 1ステップと、
前記ホットゾーンの各部材毎にメッシュをまとめかっこのまとめられたメッシュに対す る前記各部材の物性値とともに前記単結晶 (14)の引上げ長及びこの引上げ長に対 応する前記単結晶 (14)の引上げ速度をそれぞれコンピュータに入力する第 2ステップ と、
前記各部材の表面温度分布をヒータの発熱量及び前記各部材の輻射率に基づい て求める第 3ステップと、
前記各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式を解くことに より前記各部材の内部温度分布を求めた後に融液 (12)が乱流であると仮定して得ら れた乱流モデル式及びナビエ'スト一タスの方程式を連結して解くことにより対流を考 慮した前記融液 (12)の内部温度分布を更に求める第 4ステップと、
前記単結晶 (14)及び前記融液 (12)の固液界面形状を前記単結晶の三重点 (S)を含 む等温線に合せて求める第 5ステップと、
前記第 3ステップ力も前記第 5ステップを前記三重点 (S)が前記単結晶 (14)の融点に なるまで繰返し前記引上げ機 (11)内の温度分布を計算して前記単結晶 (14)のメッシ ュの座標及び温度を求めこれらのデータをそれぞれ前記コンピュータに入力する第 6 ステップと、
前記単結晶 (14)の引上げ長及び引上げ高さを段階的に変えて前記第 1ステップか ら前記第 6ステップまでを繰返し前記引上げ機 (11)内の温度分布を計算して前記単 結晶 (14)のメッシュの座標及び温度を求めこれらのデータをそれぞれ前記コンビユー タに入力する第 7ステップと、
前記単結晶 (14)の前記融液 (12)からの引上げ開始時力 前記単結晶 (14)の冷却完 了時までの時間を所定の間隔毎に区切り前記区切られた時間間隔毎に第 7ステップ で求めた前記単結晶 (14)のメッシュの座標及び温度のデータから前記単結晶 (14)の 引上げ長及び引上げ高さと前記単結晶 (14)内の温度分布とを求める第 8ステップと、 前記単結晶 (14)内の空孔及び格子間原子の拡散係数及び境界条件に基づいて 拡散方程式を解くことにより前記所定の時間間隔の経過した後の空孔及び格子間原 子の密度分布を求める第 9ステップと、
前記空孔の密度分布に基づいてボイド (21)の形成開始温度を求める第 10ステップ と、
前記単結晶 (14)内のそれぞれのメッシュの格子点における温度が次第に低下して 前記ボイド (21)の形成開始温度になったときの前記ボイド (21)の密度を求める第 11ス テツプと、
前記単結晶 (14)内のそれぞれのメッシュの格子点における温度が前記ボイド (21)の 形成開始温度より低いときの前記ボイド (21)の半径を求める第 12ステップと、
前記ボイド (21)の周囲に成長する内壁酸化膜 (22)の形成開始温度を求める第 13ス テツプと、
前記単結晶 (14)内のそれぞれのメッシュの格子点における温度が次第に低下して 前記内壁酸化膜 (22)の形成開始温度より低くなつたときの前記ボイド (21)の半径と前 記内壁酸化膜 (22)の厚さとを互いに関連させて求める第 14ステップと、
第 8ステップから第 14ステップを前記単結晶 (14)の冷却が完了するまで繰返す第 1 5ステップと
を含むコンピュータを用いて単結晶内ボイド欠陥の密度分布及びサイズ分布のシミ ユレーシヨンを行う方法。
引上げ機 (11)による単結晶 (14)の融液 (12)からの引上げ開始時から前記単結晶 (14) の冷却完了時までの前記引上げ機 (11)のホットゾーンをメッシュ構造でモデル化する 第 1ステップと、
前記ホットゾーンの各部材毎にメッシュをまとめかっこのまとめられたメッシュに対す る前記各部材の物性値とともに前記単結晶 (14)の引上げ長及びこの引上げ長に対 応する前記単結晶 (14)の引上げ速度をそれぞれコンピュータに入力する第 2ステップ と、
前記各部材の表面温度分布をヒータの発熱量及び前記各部材の輻射率に基づい て求める第 3ステップと、 前記各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式を解くことに より前記各部材の内部温度分布を求めた後に融液 (12)が乱流であると仮定して得ら れた乱流モデル式及びナビエ'スト一タスの方程式を連結して解くことにより対流を考 慮した前記融液 (12)の内部温度分布を更に求める第 4ステップと、
前記単結晶 (14)及び前記融液 (12)の固液界面形状を前記単結晶の三重点 (S)を含 む等温線に合せて求める第 5ステップと、
前記第 3ステップ力も前記第 5ステップを前記三重点 (S)が前記単結晶 (14)の融点に なるまで繰返し前記引上げ機 (11)内の温度分布を計算して前記単結晶 (14)のメッシ ュの座標及び温度を求めこれらのデータをそれぞれ前記コンピュータに入力する第 6 ステップと、
前記単結晶 (14)の引上げ長及び引上げ高さを段階的に変えて前記第 1ステップか ら前記第 6ステップまでを繰返し前記引上げ機 (11)内の温度分布を計算して前記単 結晶 (14)のメッシュの座標及び温度を求めこれらのデータをそれぞれ前記コンビユー タに入力する第 7ステップと、
前記単結晶 (14)の前記融液 (12)からの引上げ開始時力 前記単結晶 (14)の冷却完 了時までの時間を所定の間隔毎に区切り前記区切られた時間間隔毎に第 7ステップ で求めた前記単結晶 (14)のメッシュの座標及び温度のデータから前記単結晶 (14)の 引上げ長及び引上げ高さと前記単結晶 (14)内の温度分布とを求める第 8ステップと、 前記単結晶 (14)内の空孔及び格子間原子の拡散係数及び境界条件に基づいて 拡散方程式を解くことにより前記所定の時間間隔の経過した後の空孔及び格子間原 子の密度分布を求める第 9ステップと、
前記空孔の密度分布に基づいてボイドの形成開始温度を求める第 10ステップと、 前記単結晶 (14)内のそれぞれのメッシュの格子点における温度が次第に低下して 前記ボイド (21)の形成開始温度になったときの前記ボイド (21)の密度を求める第 11ス テツプと、
前記単結晶 (14)内のそれぞれのメッシュの格子点における温度が前記ボイド (21)の 形成開始温度より低いときの前記ボイド (21)の半径を求める第 12ステップと、 前記ボイド (21)の周囲に成長する内壁酸化膜 (22)の形成開始温度を求める第 13ス テツプと、
前記単結晶 (14)内のそれぞれのメッシュの格子点における温度が次第に低下して 前記内壁酸化膜 (22)の形成開始温度より低くなつたときに前記ボイド (21)の半径と前 記内壁酸化膜 (22)の厚さとを互いに関連させて求める第 14ステップと、
前記単結晶 (14)内の酸素の密度分布と前記空孔の密度分布と温度分布に基づい て酸素析出核の単位時間当りの発生量と前記臨界半径とを求める第 15ステップと、 前記酸素析出核の単位時間当りの発生量がゼロを越えたときに前記ボイド (21)の半 径及び前記内壁酸化膜 (22)の厚さを求める計算を停止しかつ前記酸素析出核の半 径を求める第 16ステップと、
第 8ステップから第 16ステップを前記単結晶 (14)の冷却が完了するまで繰返す第 1 7ステップと
を含むコンピュータを用いて単結晶内酸素析出核の密度分布及びサイズ分布のシ ミュレーシヨンを行う方法。
PCT/JP2004/006822 2003-05-28 2004-05-20 単結晶内ボイド欠陥と単結晶内酸素析出核の密度分布及びサイズ分布のシミュレーション方法 WO2004106594A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/558,790 US7282094B2 (en) 2003-05-28 2003-05-30 Method of simulation with respect to density distribution and size distribution of void defect within single crystal and oxygen precipitation nucleus within single crystal
DE04734077T DE04734077T1 (de) 2003-05-28 2004-05-20 Simulationsverfahren zur Vorhersage der Verteilung von Dichten und Größen von Fehlstellendefekten und Sauerstoffabscheidungskeimen in einem Einkristall
EP04734077A EP1650331A4 (en) 2003-05-28 2004-05-20 SIMULATION PROCESS FOR THE DICHTE DISTRIBUTION AND SIZE DISTRIBUTION OF EMPTYING DEFECT IN SINGLE CRYSTAL AND OXYGEN DETERGENT IN SINGLE CRYSTAL

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-150262 2003-05-28
JP2003150262A JP4403722B2 (ja) 2003-05-28 2003-05-28 シリコン単結晶内ボイド欠陥の密度分布及びサイズ分布のシミュレーション方法
JP2003-161493 2003-06-06
JP2003161493A JP4604462B2 (ja) 2003-06-06 2003-06-06 単結晶内酸素析出核の密度分布及びサイズ分布のシミュレーション方法

Publications (1)

Publication Number Publication Date
WO2004106594A1 true WO2004106594A1 (ja) 2004-12-09

Family

ID=33492426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006822 WO2004106594A1 (ja) 2003-05-28 2004-05-20 単結晶内ボイド欠陥と単結晶内酸素析出核の密度分布及びサイズ分布のシミュレーション方法

Country Status (5)

Country Link
US (1) US7282094B2 (ja)
EP (1) EP1650331A4 (ja)
KR (1) KR100719207B1 (ja)
DE (1) DE04734077T1 (ja)
WO (1) WO2004106594A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012112836B4 (de) 2012-12-21 2017-11-02 Technische Universität Dresden Verfahren zur rückführenden Simulation von Halbleiterstrukturen
KR102138121B1 (ko) * 2013-11-07 2020-07-27 에스케이실트론 주식회사 실리콘 단결정 잉곳 제조 장치 및 제조 방법
CN107747122B (zh) * 2017-09-11 2020-03-31 西安理工大学 一种直拉硅单晶生长工艺优化固液界面氧分布调节方法
US10954606B2 (en) * 2018-06-27 2021-03-23 Globalwafers Co., Ltd. Methods for modeling the impurity concentration of a single crystal silicon ingot
US11047066B2 (en) 2018-06-27 2021-06-29 Globalwafers Co., Ltd. Growth of plural sample rods to determine impurity build-up during production of single crystal silicon ingots

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302385A (ja) * 2000-04-26 2001-10-31 Mitsubishi Materials Silicon Corp 単結晶及び融液の固液界面形状のシミュレーション方法
JP2003040695A (ja) * 2001-07-27 2003-02-13 Sumitomo Mitsubishi Silicon Corp 単結晶内欠陥の密度分布及びサイズ分布のシミュレーション方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154795A (en) * 1989-06-12 1992-10-13 Mitsubishi Kasei Polytec Company System for setting analysis condition for a thermal analysis of a fluid inside an apparatus
JPH0777996B2 (ja) * 1990-10-12 1995-08-23 信越半導体株式会社 コーン部育成制御方法及び装置
JP2807609B2 (ja) * 1993-01-28 1998-10-08 三菱マテリアルシリコン株式会社 単結晶の引上装置
US5779791A (en) * 1996-08-08 1998-07-14 Memc Electronic Materials, Inc. Process for controlling thermal history of Czochralski-grown silicon
TW541365B (en) * 1996-08-30 2003-07-11 Sumitomo Sitix Corp Single crystal pulling method and single crystal pulling device
TW574445B (en) * 1997-03-19 2004-02-01 Komatsu Denshi Kinzoku Kk Defect-control method of silicon single-crystal
JPH11190662A (ja) * 1997-12-26 1999-07-13 Sumitomo Sitix Corp 単結晶引上炉内融液の表面温度測定方法及び該方法に用いる装置
US6171391B1 (en) * 1998-10-14 2001-01-09 Memc Electronic Materials, Inc. Method and system for controlling growth of a silicon crystal
TW498402B (en) * 2000-04-26 2002-08-11 Mitsubishi Material Silicon Method for simulating the shape of the solid-liquid interface between a single crystal and a molten liquid, and the distribution of point defect of a single crystal
EP2287369B1 (en) * 2002-07-05 2012-11-14 SUMCO Corporation Method for manufacturing silicon single crystal
US7074271B2 (en) * 2004-02-23 2006-07-11 Sumitomo Mitsubishi Silicon Corporation Method of identifying defect distribution in silicon single crystal ingot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302385A (ja) * 2000-04-26 2001-10-31 Mitsubishi Materials Silicon Corp 単結晶及び融液の固液界面形状のシミュレーション方法
JP2003040695A (ja) * 2001-07-27 2003-02-13 Sumitomo Mitsubishi Silicon Corp 単結晶内欠陥の密度分布及びサイズ分布のシミュレーション方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KITAMURA K. ET AL: "Radial distribution of temperature gradients in growing CZ-Si crystals and its application to the prediction of microdefect distribution", JOURNAL OF CRYSTAL GROWTH, vol. 242, July 2002 (2002-07-01), pages 293 - 301, XP004368859 *

Also Published As

Publication number Publication date
DE04734077T1 (de) 2006-10-12
US20060243192A1 (en) 2006-11-02
KR20060015319A (ko) 2006-02-16
US7282094B2 (en) 2007-10-16
KR100719207B1 (ko) 2007-05-16
EP1650331A1 (en) 2006-04-26
EP1650331A4 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
Sinno et al. Defect engineering of Czochralski single-crystal silicon
Sinno et al. Modeling microdefect formation in Czochralski silicon
EP1541721B1 (en) Method of producing silicon monocrystal
Kulkarni et al. Quantification of defect dynamics in unsteady-state and steady-state Czochralski growth of monocrystalline silicon
JP2009190926A (ja) シリコン単結晶製造における数値解析方法
WO2004106594A1 (ja) 単結晶内ボイド欠陥と単結晶内酸素析出核の密度分布及びサイズ分布のシミュレーション方法
KR100411553B1 (ko) 단결정과 용융액 사이의 고체-액체 계면 형상 및 단결정의점결함 분포의 시뮬레이션 방법
WO2022141768A1 (zh) 一种基于深度学习和导模法的氧化镓的质量预测方法、制备方法及系统
Kakimoto Development of crystal growth technique of silicon by the Czochralski method
JP4604462B2 (ja) 単結晶内酸素析出核の密度分布及びサイズ分布のシミュレーション方法
JP4106880B2 (ja) 単結晶内欠陥の密度分布及びサイズ分布のシミュレーション方法
Zhang et al. Impact of heat shield structure in the growth process of Czochralski silicon derived from numerical simulation
JP4449347B2 (ja) シミュレーションによるosfリングの分布予測方法
Xu et al. Unsteady melt heat flow coupling optimization method for sapphire crystal seeding growth by the Kyropoulos method
Hao et al. Numerical simulation for growing large-scale and high-quality zinc germanium phosphide crystals
JP4096499B2 (ja) 単結晶の点欠陥分布のシミュレーション方法
Talanin et al. A New Method for Research of Grown-In Microdefects in Dislocation-Free Silicon Single Crystals
JP3846155B2 (ja) 単結晶及び融液の固液界面形状のシミュレーション方法
JP2004091316A (ja) 単結晶の無欠陥領域を最大化するシミュレーション方法
JP4154936B2 (ja) 単結晶の無欠陥領域シミュレーション方法
Prostomolotov et al. Simplistic approach for 2D grown‐in microdefect modeling
Zhang et al. Turbulent convection in a Czochralski silicon melt
Jin Numerical study of heat transport and fluid flow during the silicon crystal growth process by the Czochralski method
Gan’shin et al. He 4 nanoclusters around vacancies in solid solutions of He 4 in He 3
Azouia et al. Numerical investigation of three-dimensional heat transfer and natural convection in the sapphire melt for Czochralski growth process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006243192

Country of ref document: US

Ref document number: 1020057022730

Country of ref document: KR

Ref document number: 10558790

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2004734077

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004734077

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057022730

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004734077

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10558790

Country of ref document: US