JP3846155B2 - 単結晶及び融液の固液界面形状のシミュレーション方法 - Google Patents

単結晶及び融液の固液界面形状のシミュレーション方法 Download PDF

Info

Publication number
JP3846155B2
JP3846155B2 JP2000125840A JP2000125840A JP3846155B2 JP 3846155 B2 JP3846155 B2 JP 3846155B2 JP 2000125840 A JP2000125840 A JP 2000125840A JP 2000125840 A JP2000125840 A JP 2000125840A JP 3846155 B2 JP3846155 B2 JP 3846155B2
Authority
JP
Japan
Prior art keywords
melt
single crystal
mesh
liquid interface
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000125840A
Other languages
English (en)
Other versions
JP2001302385A (ja
Inventor
浩之介 北村
直樹 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2000125840A priority Critical patent/JP3846155B2/ja
Priority to TW090101842A priority patent/TW498402B/zh
Priority to DE10106948A priority patent/DE10106948A1/de
Priority to US09/793,862 priority patent/US6451107B2/en
Priority to KR10-2001-0009978A priority patent/KR100411553B1/ko
Priority to CNB011083166A priority patent/CN1249272C/zh
Publication of JP2001302385A publication Critical patent/JP2001302385A/ja
Application granted granted Critical
Publication of JP3846155B2 publication Critical patent/JP3846155B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、チョクラルスキー(以下、CZという。)法にて引上げられるシリコン等の単結晶及び融液の固液界面形状をコンピュータシミュレーションする方法に関するものである。
【0002】
【従来の技術】
従来、この種のシミュレーション方法として、図3に示すように、総合伝熱シミュレータを用いてCZ法によるシリコン単結晶4引上げ時の引上げ機1内のホットゾーン構造及びそのシリコン単結晶4の引上げ速度に基づいて、シリコン融液2の熱伝導率を操作することによりシリコン融液2の内部温度分布を予測し、この内部温度分布からシリコン単結晶4及びシリコン融液2の固液界面形状をコンピュータを用いて求める方法が知られている。このシミュレーション方法では、ホットゾーンの各部材がメッシュ分割されてモデル化される。特にシリコン融液2のメッシュは計算時間を短くするために10mm程度と比較的粗く設定される。
【0003】
【発明が解決しようとする課題】
しかし、上記従来の固液界面形状のシミュレーション方法では、実際の引上げ機においては発生するシリコン融液の対流を考慮しておらず、またシリコン融液のメッシュが比較的粗いため、固液界面形状が実測値と大幅に相違する不具合があった。
本発明の目的は、計算値が実測値と極めて良く一致する、単結晶及び融液の固液界面形状のシミュレーション方法を提供することにある。
【0004】
【課題を解決するための手段】
請求項1に係る発明は、図1及び図2に示すように、計算する単結晶14の引上げ機11のホットゾーンをメッシュ構造でモデル化する第1ステップと、ホットゾーンの各部材毎にメッシュをまとめかつこのまとめられたメッシュに対する各部材の物性値をそれぞれコンピュータに入力する第2ステップと、各部材の表面温度分布をヒータの発熱量及び各部材の輻射率に基づいて求める第3ステップと、各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式を解くことにより各部材の内部温度分布を求めた後に融液12が乱流であると仮定して得られた乱流モデル式及びナビエ・ストークスの方程式を連結して解くことにより対流を考慮した融液12の内部温度分布を更に求める第4ステップと、単結晶14及び融液12の固液界面形状を単結晶14の三重点Sを含む等温線に合せて求める第5ステップと、第3ステップから第5ステップを三重点Sが単結晶14の融点になるまで繰返す第6ステップとを含むコンピュータを用いて単結晶及び融液の固液界面形状のシミュレーションを行う方法であって、融液12のメッシュのうち単結晶14の径方向のメッシュであってかつ融液12の単結晶14直下の一部又は全部のメッシュを0.01〜5.00mmに設定し、融液12のメッシュのうち単結晶14の長手方向のメッシュであってかつ融液12の一部又は全部のメッシュを0.01〜5.00mmに設定し、乱流モデル式が式(1)で表されるkl−モデル式であり、このモデル式の乱流パラメータCとして0.4〜0.6の範囲内の任意の値が用いられたことを特徴とする。
【数2】
Figure 0003846155
ここで、κ t は融液の乱流熱伝導率であり、cは融液の比熱であり、Pr t はプラントル数であり、ρは融液の密度であり、dは融液を貯留するるつぼ壁からの距離であり、kは融液の平均流速に対する変動成分の二乗和である。
【0005】
この請求項1に記載された単結晶及び融液の固液界面形状のシミュレーション方法では、融液12の対流を考慮しており、かつ融液12のメッシュを比較的細かく設定しているので、計算により得られた単結晶14及び融液12の固液界面形状は実測値と極めて良く一致する。
【0006】
また第2ステップにおける各部材に与えられる物性値はそれぞれ各部材の熱伝導率,輻射率,粘性率,体積膨張係数,密度及び比熱であることが好ましい。
【0008】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図2に示すように、シリコン単結晶引上げ機11のチャンバ内には、シリコン融液12を貯留する石英るつぼ13が設けられる。この石英るつぼ13は図示しないが黒鉛サセプタ及び支軸を介してるつぼ駆動手段に接続され、るつぼ駆動手段は石英るつぼ13を回転させるとともに昇降させるように構成される。また石英るつぼ13の外周面は石英るつぼ13から所定の間隔をあけてヒータ(図示せず)により包囲され、このヒータは保温筒(図示せず)により包囲される。ヒータは石英るつぼ13に投入された高純度のシリコン多結晶体を加熱・溶融してシリコン融液12にする。またチャンバの上端には図示しないが円筒状のケーシングが接続され、このケーシングには引上げ手段が設けられる。引上げ手段はシリコン単結晶14を回転させながら引上げるように構成される。
【0009】
このように構成されたシリコン単結晶引上げ機11におけるシリコン単結晶14及びシリコン融液12の固液界面形状のシミュレーション方法を図1及び図2に基づいて説明する。
先ず第1ステップとしてシリコン単結晶引上げ機11のホットゾーンの各部材、即ちチャンバ,石英るつぼ13,シリコン融液12,シリコン単結晶14,黒鉛サセプタ,保温筒等をメッシュ分割してモデル化する。具体的には上記ホットゾーンの各部材のメッシュ点の座標データをコンピュータに入力する。このときシリコン融液12のメッシュのうちシリコン単結晶14の径方向のメッシュであってかつシリコン融液12のシリコン単結晶14直下の一部又は全部のメッシュ(以下、径方向メッシュという。)を0.01〜5.00mm、好ましくは0.25〜1.00mmに設定する。またシリコン融液12のメッシュのうちシリコン単結晶14の長手方向のメッシュであってかつシリコン融液12の一部又は全部のメッシュ(以下、長手方向メッシュという。)を0.01〜5.00mm、好ましくは0.1〜0.5mmに設定する。
【0010】
径方向メッシュを0.01〜5.00mmの範囲に限定したのは、0.01mm未満では計算時間が極めて長くなり、5.00mmを越えると計算が不安定になり、繰返し計算を行っても固液界面形状が一定に定まらなくなるからである。また長手方向メッシュを0.01〜5.00mmの範囲に限定したのは、0.01mm未満では計算時間が極めて長くなり、5.00mmを越えると固液界面形状の計算値が実測値と一致しなくなるからである。なお、径方向メッシュの一部を0.01〜5.00の範囲に限定する場合には、シリコン単結晶14直下のシリコン融液12のうちシリコン単結晶14外周縁近傍のシリコン融液12を上記範囲に限定することが好ましく、長手方向メッシュの一部を0.01〜5.00の範囲に限定する場合には、シリコン融液12の液面近傍及び底近傍を上記範囲に限定することが好ましい。
【0011】
次いで第2ステップとして上記ホットゾーンの各部材毎にメッシュをまとめ、かつこのまとめられたメッシュに対して各部材の物性値をそれぞれコンピュータに入力する。例えば、チャンバがステンレス鋼にて形成されていれば、そのステンレス鋼の熱伝導率,輻射率,粘性率,体積膨張係数,密度及び比熱がコンピュータに入力される。また後述する乱モデル式(1)の乱パラメータCをコンピュータに入力する。
【0012】
第3ステップとして、ホットゾーンの各部材の表面温度分布をヒータの発熱量及び各部材の輻射率に基づいてコンピュータを用いて求める。即ち、ヒータの発熱量を任意に設定してコンピュータに入力するとともに、各部材の輻射率から各部材の表面温度分布をコンピュータを用いて求める。次に第4ステップとしてホットゾーンの各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式(2)をコンピュータを用いて解くことにより各部材の内部温度分布を求める。ここでは、記述を簡単にするためxyz直交座標系を用いたが、実際の計算では円筒座標系を用いる。
【0013】
【数3】
Figure 0003846155
ここで、ρは各部材の密度であり、cは各部材の比熱であり、Tは各部材の各メッシュ点での絶対温度であり、tは時間であり、λx,λy及びλzは各部材の熱伝導率のx,y及びz方向成分であり、qはヒータの発熱量である。
【0014】
一方、シリコン融液12に関しては、上記熱伝導方程式(2)でシリコン融液12の内部温度分布を求めた後に、このシリコン融液12の内部温度分布に基づき、シリコン融液12が乱流であると仮定して得られた乱流モデル式(1)及びナビエ・ストークスの方程式(3)〜(5)を連結して、シリコン融液12の内部流速分布をコンピュータを用いて求める。
【0015】
【数4】
Figure 0003846155
ここで、κtはシリコン融液12の乱流熱伝導率であり、cはシリコン融液12の比熱であり、Prtはプラントル数であり、ρはシリコン融液12の密度であり、Cは乱流パラメータであり、dはシリコン融液12を貯留する石英るつぼ13壁からの距離であり、kはシリコン融液12の平均流速に対する変動成分の二乗和である。
【0016】
【数5】
Figure 0003846155
ここで、u,v及びwはシリコン融液12の各メッシュ点での流速のx,y及びz方向成分であり、νlはシリコン融液12の分子動粘性係数(物性値)であり、νtはシリコン融液12の乱流の効果による動粘性係数であり、Fx,Fy及びFzはシリコン融液12に作用する体積力のx,y及びz方向成分である。
【0017】
上記乱流モデル式(1)はkl(ケイエル)−モデル式と呼ばれ、このモデル式の乱流パラメータCは0.4〜0.6の範囲内の任意の値が用いられることが好ましい。乱流パラメータCを0.4〜0.6の範囲に限定したのは、0.4未満又は0.6を越えると計算により求めた界面形状が実測値と一致しないという不具合があるからである。また上記ナビエ・ストークスの方程式(3)〜(5)はシリコン融液12が非圧縮性であって粘度が一定である流体としたときの運動方程式である。
【0018】
上記求められたシリコン融液12の内部流速分布に基づいて熱エネルギ方程式(6)を解くことにより、シリコン融液12の対流を考慮したシリコン融液12の内部温度分布をコンピュータを用いて更に求める。
【0019】
【数6】
Figure 0003846155
ここで、u,v及びwはシリコン融液12の各メッシュ点での流速のx,y及びz方向成分であり、Tはシリコン融液12の各メッシュ点での絶対温度であり、ρはシリコン融液12の密度であり、cはシリコン融液12の比熱であり、κlは分子熱伝導率(物性値)であり、κtは式(1)を用いて計算される乱流熱伝導率である。
【0020】
次に第5ステップとして、シリコン単結晶14及びシリコン融液12の固液界面形状を図2の点Sで示すシリコンの三重点S(固体と液体と気体の三重点(tri-junction))を含む等温線に合せてコンピュータを用いて求める。更にコンピュータに入力するヒータの発熱量を変更して(次第に増大して)、上記第3ステップから第5ステップを三重点がシリコン単結晶14の融点になるまで繰返す。このようにして得られたシリコン単結晶14及びシリコン融液12の固液界面形状は実測値とほぼ一致する。この結果、本発明で求められた固液界面形状はシリコン単結晶14の引上げ時の点欠陥の拡散を考慮した結晶内分布を予測する計算の基礎とすることができる。
なお、この実施の形態では、シリコン単結晶を挙げたが、GaAs単結晶,InP単結晶,ZnS単結晶若しくはZnSe単結晶でもよい。
【0021】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図2に示すように、石英るつぼ13に貯留されたシリコン融液12から直径6インチのシリコン単結晶14を引上げる場合の、シリコン単結晶14及びシリコン融液12の固液界面形状を、図1のフローチャートに基づくシミュレーション方法により求めた。即ち、シリコン単結晶引上げ機11のホットゾーンをメッシュ構造でモデル化した。ここで、シリコン融液12のシリコン単結晶14直下のシリコン単結晶14の径方向のメッシュを0.75mmに設定し、シリコン融液12のシリコン単結晶14直下以外のシリコン単結晶14の径方向のメッシュを1〜5mmに設定した。またシリコン融液12のシリコン単結晶14の長手方向のメッシュを0.25〜5mmに設定した。更に乱流モデル式の乱流パラメータCとして0.45を用いた。
【0022】
<比較例1>
図3に示すように、石英るつぼ3に貯留されたシリコン融液2から直径6インチのシリコン単結晶4を引上げる場合の、シリコン単結晶4及びシリコン融液2の固液界面形状を従来のシミュレーション方法により求めた。即ち、シリコン単結晶引上げ機1のホットゾーンをメッシュ構造でモデル化した。ここで、シリコン融液2のシリコン単結晶4の径方向のメッシュを10mmに設定し、シリコン融液2のシリコン単結晶4の長手方向のメッシュを10mmに設定した。またシリコン融液2の対流を考慮しなかった(乱流モデル式及びナビエ・ストークスの方程式を連結した式は用いなかった。)。上記以外は実施例1と同様にコンピュータを用いてシミュレーションを行った。
【0023】
<比較試験及び評価>
実施例1及び比較例1のシミュレーション方法によりシリコン単結晶及びシリコン融液の固液界面形状を求めた。その結果を図4に示す。
図4から明らかなように、比較例1のシミュレーション方法で得られた固液界面形状(一点鎖線で示す。)は実測値(実線で示す。)と大幅に相違しているのに対し、実施例1のシミュレーション方法で得られた固液界面形状(破線で示す。)は実測値とほぼ一致していることが判った。
【0024】
【発明の効果】
以上述べたように、本発明によれば、メッシュ構造でモデル化したホットゾーンの各部材毎にまめられたメッシュに対する各部材の物性値をそれぞれコンピュータに入力し、各部材の表面温度分布をヒータの発熱量及び各部材の輻射率に基づいて求め、各部材の表面温度分布及び熱伝導率に基づいて各部材の内部温度分布を求めた後に対流を考慮した融液の内部温度分布を更に求め、単結晶及び融液の固液界面形状を単結晶の三重点を含む等温線に合せて求め、上記ステップを三重点が単結晶の融点になるまで繰返すとともに、融液のメッシュを所定の範囲に限定し、更に乱流モデル式が式(1)で表されるkl−モデル式であり、このモデル式の乱流パラメータCとして0.4〜0.6の範囲内の任意の値を用いたので、計算により得られた単結晶及び融液の固液界面形状は実測値と極めて良く一致する。この結果、本発明のシミュレーション方法で求められた固液界面形状はシリコン単結晶の引上げ時の点欠陥の拡散を考慮した結晶内分布を予測する計算の基礎とすることができる。
【図面の簡単な説明】
【図1】本発明実施形態のシリコン単結晶及びシリコン融液の固液界面形状のシミュレーション方法を示すフローチャート。
【図2】本発明のシリコン融液をメッシュ構造としたシリコン単結晶の引上げ機の要部断面図。
【図3】従来例のシリコン融液をメッシュ構造としたシリコン単結晶の引上げ機の要部断面図。
【図4】実施例1及び比較例1と実測したシリコン単結晶及びシリコン融液の固液界面形状を示す要部正面図。
【符号の説明】
11 シリコン単結晶引上げ機
12 シリコン融液
14 シリコン単結晶
S シリコンの三重点

Claims (2)

  1. 計算する単結晶(14)の引上げ機(11)のホットゾーンをメッシュ構造でモデル化する第1ステップと、
    前記ホットゾーンの各部材毎にメッシュをまとめかつこのまとめられたメッシュに対する前記各部材の物性値をそれぞれコンピュータに入力する第2ステップと、
    前記各部材の表面温度分布をヒータの発熱量及び前記各部材の輻射率に基づいて求める第3ステップと、
    前記各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式を解くことにより前記各部材の内部温度分布を求めた後に融液(12)が乱流であると仮定して得られた乱流モデル式及びナビエ・ストークスの方程式を連結して解くことにより対流を考慮した前記融液(12)の内部温度分布を更に求める第4ステップと、
    前記単結晶(14)及び前記融液(12)の固液界面形状を前記単結晶の三重点(S)を含む等温線に合せて求める第5ステップと、
    前記第3ステップから前記第5ステップを前記三重点(S)が前記単結晶(14)の融点になるまで繰返す第6ステップと
    を含むコンピュータを用いて単結晶及び融液の固液界面形状のシミュレーションを行う方法であって、
    前記融液(12)のメッシュのうち前記単結晶(14)の径方向のメッシュであってかつ前記融液(12)の前記単結晶(14)直下の一部又は全部のメッシュを0.01〜5.00mmに設定し、
    前記融液(12)のメッシュのうち前記単結晶(14)の長手方向のメッシュであってかつ前記融液(12)の一部又は全部のメッシュを0.01〜5.00mmに設定し、
    前記乱流モデル式が次の式(1)で表されるkl−モデル式であり、このモデル式の乱流パラメータCとして0.4〜0.6の範囲内の任意の値が用いられた
    ことを特徴とする単結晶及び融液の固液界面形状のシミュレーション方法。
    Figure 0003846155
    ここで、κ t は融液の乱流熱伝導率であり、cは融液の比熱であり、Pr t はプラントル数であり、ρは融液の密度であり、dは融液を貯留するるつぼ壁からの距離であり、kは融液の平均流速に対する変動成分の二乗和である。
  2. 第2ステップにおける各部材に与えられる物性値がそれぞれ前記各部材の熱伝導率,輻射率,粘性率,体積膨張係数,密度及び比熱である請求項1記載の単結晶及び融液の固液界面形状のシミュレーション方法。
JP2000125840A 2000-04-26 2000-04-26 単結晶及び融液の固液界面形状のシミュレーション方法 Expired - Fee Related JP3846155B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000125840A JP3846155B2 (ja) 2000-04-26 2000-04-26 単結晶及び融液の固液界面形状のシミュレーション方法
TW090101842A TW498402B (en) 2000-04-26 2001-01-31 Method for simulating the shape of the solid-liquid interface between a single crystal and a molten liquid, and the distribution of point defect of a single crystal
DE10106948A DE10106948A1 (de) 2000-04-26 2001-02-15 Verfahren zur Simulierung der Form der Festflüssiggrenzfläche zwischen einem Einkristall und einer Schmelze und der Verteilung von Punktdefekten des Einkristalls
US09/793,862 US6451107B2 (en) 2000-04-26 2001-02-26 Method for simulating the shape of the solid-liquid interface between a single crystal and a molten liquid, and the distribution of point defects of the single crystal
KR10-2001-0009978A KR100411553B1 (ko) 2000-04-26 2001-02-27 단결정과 용융액 사이의 고체-액체 계면 형상 및 단결정의점결함 분포의 시뮬레이션 방법
CNB011083166A CN1249272C (zh) 2000-04-26 2001-02-27 单晶与熔液固液界面形状和单晶点缺陷分布的模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125840A JP3846155B2 (ja) 2000-04-26 2000-04-26 単結晶及び融液の固液界面形状のシミュレーション方法

Publications (2)

Publication Number Publication Date
JP2001302385A JP2001302385A (ja) 2001-10-31
JP3846155B2 true JP3846155B2 (ja) 2006-11-15

Family

ID=18635719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125840A Expired - Fee Related JP3846155B2 (ja) 2000-04-26 2000-04-26 単結晶及び融液の固液界面形状のシミュレーション方法

Country Status (1)

Country Link
JP (1) JP3846155B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604462B2 (ja) * 2003-06-06 2011-01-05 株式会社Sumco 単結晶内酸素析出核の密度分布及びサイズ分布のシミュレーション方法
US7282094B2 (en) * 2003-05-28 2007-10-16 Sumco Corporation Method of simulation with respect to density distribution and size distribution of void defect within single crystal and oxygen precipitation nucleus within single crystal
JP5040846B2 (ja) * 2008-07-31 2012-10-03 株式会社Sumco シリコン単結晶の育成方法および温度推定方法

Also Published As

Publication number Publication date
JP2001302385A (ja) 2001-10-31

Similar Documents

Publication Publication Date Title
EP2385025B1 (en) Method for calculating temperature distribution in crucible
JP2009190926A (ja) シリコン単結晶製造における数値解析方法
KR100411553B1 (ko) 단결정과 용융액 사이의 고체-액체 계면 형상 및 단결정의점결함 분포의 시뮬레이션 방법
Kalaev et al. Crystal twisting in Cz Si growth
JP3846155B2 (ja) 単結晶及び融液の固液界面形状のシミュレーション方法
Ding et al. The influence mechanism of melt flow instability on the temperature fluctuation on the crystal/melt interface during Czochralski silicon crystal growth
JP4106880B2 (ja) 単結晶内欠陥の密度分布及びサイズ分布のシミュレーション方法
JP4096499B2 (ja) 単結晶の点欠陥分布のシミュレーション方法
Miller Numerical simulations of bulk crystal growth on different scales: silicon and GeSi
KR100719207B1 (ko) 단결정 내 보이드 결함과 단결정 내 산소 석출핵의 밀도분포 및 사이즈 분포의 시뮬레이션 방법
JP4604462B2 (ja) 単結晶内酸素析出核の密度分布及びサイズ分布のシミュレーション方法
JP4403722B2 (ja) シリコン単結晶内ボイド欠陥の密度分布及びサイズ分布のシミュレーション方法
JP4449347B2 (ja) シミュレーションによるosfリングの分布予測方法
Virzi Finite element analysis of the thermal history for Czochralski growth of large diameter silicon single crystals
Schwabe et al. An experimental and numerical effort to simulate the interface deflection of YAG
Rolley et al. Growth shape of He 3 needle crystals
Hahn et al. Global analysis of heat transfer in Si CZ furnace with specular and diffuse surfaces
Lu Boundary element analysis of the heat transfer in Bridgman growth process of semi-transparent crystals
Jing et al. Global analysis of heat transfer considering three-dimensional unsteady melt flow in CZ crystal growth of oxide
JP4192704B2 (ja) 単結晶の無欠陥領域を最大化するシミュレーション方法
JP4154936B2 (ja) 単結晶の無欠陥領域シミュレーション方法
Young et al. A mathematical model of the edge-defined film-fed growth process
Kalaev et al. Numerical modeling of Czochralski silicon crystal growth
Dupret et al. Mathematical modeling of the growth of large diameter Czochralski silicon crystals considering melt dynamics
JP2001348292A (ja) 単結晶成長最高速度を割り出す方法およびそれを用いた高速結晶成長方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Ref document number: 3846155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees