JP4449347B2 - シミュレーションによるosfリングの分布予測方法 - Google Patents
シミュレーションによるosfリングの分布予測方法 Download PDFInfo
- Publication number
- JP4449347B2 JP4449347B2 JP2003161494A JP2003161494A JP4449347B2 JP 4449347 B2 JP4449347 B2 JP 4449347B2 JP 2003161494 A JP2003161494 A JP 2003161494A JP 2003161494 A JP2003161494 A JP 2003161494A JP 4449347 B2 JP4449347 B2 JP 4449347B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- void
- temperature
- silicon
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の属する技術分野】
本発明は、チョクラルスキー(以下、CZという。)法にて引上げられるシリコン等の単結晶内のグローイン欠陥の密度分布及びサイズ分布をコンピュータシミュレーションしてOSF(Oxidation Induced Stacking Fault:酸化誘起積層欠陥)リングの分布を予測する方法に関するものである。ここで言うグローイン欠陥とは、ボイドと内壁酸化膜からなるボイド欠陥のことであり、例えばウェーハ表面に観察される結晶起因のパーティクル(Crystal Originated Particle、以下、COPという。)や、結晶内部に観察されるLSTD(Laser Scattering Tomograph Defects)に対応する。
【0002】
【従来の技術】
従来、この種のシミュレーション方法として、図8に示すように、総合伝熱シミュレータを用いてCZ法によるシリコン単結晶4引上げ時の引上げ機1内のホットゾーン構造及びそのシリコン単結晶4の引上げ速度に基づいて、シリコン融液2の熱伝導率を操作することによりシリコン融液2の内部温度分布を予測し、この内部温度分布からシリコン単結晶4のメッシュの座標及び温度をそれぞれ求め、更にシリコン単結晶4内の格子間シリコン及び空孔の拡散係数及び境界条件に基づいて拡散方程式を解くことにより、上記格子間シリコン及び空孔の密度分布をコンピュータを用いて求める方法が知られている。このシミュレーション方法では、ホットゾーンの各部材がメッシュ分割されてモデル化される。特にシリコン融液2のメッシュは計算時間を短くするために10mm程度と比較的粗く設定される。
【0003】
一方、CZ法によるシリコン単結晶育成時の操業条件及び炉内の温度条件をコンピュータにデータとして入力し、単結晶内部に導入される空孔起因のグローンイン欠陥のサイズ及び密度と単結晶の成長速度との関係をコンピュータを用いたシミュレーションにより求め、このシミュレーション結果に基づいて単結晶内部に導入される空孔起因のグローンイン欠陥のサイズ及び密度が所定値になるように成長速度を選択して単結晶を育成するシリコン単結晶の製造方法が知られている(例えば、特許文献1参照)。このシリコン単結晶の製造方法では、総合伝熱解析プログラムを用いて炉内の熱分布のシミュレーションを行い、単結晶の育成時の単結晶中心の鉛直方向における温度勾配を求める。
【0004】
また、抵抗率が0.02Ωcm以下であって、熱酸化処理をした際にリング状に発生するOSFがウェーハ中心部で消滅したシリコンウェーハの表面にエピタキシャル層が形成されたエピタキシャルウェーハが知られている(例えば、特許文献2参照)。このエピタキシャルウェーハでは、ボロンのようなp型不純物を4×1018atoms/cm3以上ドープし、熱酸化処理を行った際にOSFリングがウェーハ中心部で消滅するようにCZ法によりシリコンウェーハを作製し、更にこのウェーハの表面にエピタキシャル層をCVD法にて形成することにより製造される。このように製造されたエピタキシャルウェーハでは、エピタキシャル層を形成した後の熱処理によりウェーハ面内で均一に高密度のBMDを発生させてウェーハ面内で均一なIG効果を得ることができるので、エピタキシャル層を形成したときにそのエピタキシャル層にL/Dの転写痕を生じさせないようになっている。
【0005】
【特許文献1】
特開2002−145696号公報
【特許文献2】
特開2000−331933号公報
【0006】
【発明が解決しようとする課題】
しかし、上記従来の格子間シリコン及び空孔の密度分布のシミュレーション方法では、実際の引上げ機においては発生するシリコン融液の対流を考慮しておらず、またシリコン融液のメッシュが比較的粗いため、固液界面形状の再現性が悪く、精度の良い単結晶内温度分布を提供できない。そのため、シリコン単結晶内の格子間シリコン及び空孔の密度分布が実測値と大幅に相違する問題点があった。また、上記従来のシミュレーション方法では、結晶冷却過程に比較的高温で生成されるシリコン単結晶内の欠陥、例えばボイドや酸素析出物の種類や、密度分布及びサイズ分布は判らなかった。
【0007】
また、上記従来の特許文献1に示されたシリコン単結晶の製造方法では、シリコン単結晶の鉛直方向のグローンイン欠陥のサイズ分布及び密度分布を予測できるけれども、シリコン単結晶の半径方向のグローイン欠陥のサイズ分布及び密度分布を予測できず、このためOSFリングの分布を予測できない問題点があった。
更に、上記従来の特許文献2に示されたエピタキシャルウェーハでは、不純物を高密度で添加した場合、添加密度に応じてOSFリングの位置がシフトすることを確認できず、OSFリングの分布を予測することもできない問題点があった。
【0008】
本発明の目的は、単結晶内でのOSFリングの分布を正確に予測できる、シミュレーションによるOSFリングの分布予測方法を提供することにある。
本発明の別の目的は、不純物(ドーパント)を添加した場合、この不純物の添加密度に応じてOSFリングの分布を正確の予測できる、シミュレーションによるOSFリングの分布予測方法を提供することにある。
【0009】
【課題を解決するための手段】
請求項1に係る発明は、図1〜図7に示すように、引上げ機11による単結晶14の融液12からの引上げ開始時から単結晶14の冷却完了時までの引上げ機11のホットゾーンをメッシュ構造でモデル化する第1ステップと、ホットゾーンの各部材毎にメッシュをまとめかつこのまとめられたメッシュに対する各部材の物性値とともに単結晶14の引上げ長及びこの引上げ長に対応する単結晶14の引上げ速度をそれぞれコンピュータに入力する第2ステップと、各部材の表面温度分布をヒータの発熱量及び各部材の輻射率に基づいて求める第3ステップと、各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式を解くことにより各部材の内部温度分布を求めた後に融液12が乱流であると仮定して得られた乱流モデル式及びナビエ・ストークスの方程式を連結して解くことにより対流を考慮した融液12の内部温度分布を更に求める第4ステップと、単結晶14及び融液12の固液界面形状を単結晶の三重点Sを含む等温線に合せて求める第5ステップと、第3ステップから第5ステップを三重点Sが単結晶14の融点になるまで繰返し引上げ機11内の温度分布を計算して単結晶14のメッシュの座標及び温度を求めこれらのデータをそれぞれコンピュータに入力する第6ステップと、単結晶14の引上げ長及び引上げ高さを段階的に変えて第1ステップから第6ステップまでを繰返し引上げ機11内の温度分布を計算して単結晶14のメッシュの座標及び温度を求めこれらのデータをそれぞれコンピュータに入力する第7ステップと、単結晶14の融液12からの引上げ開始時から単結晶14の冷却完了時までの時間を所定の間隔毎に区切りこの区切られた時間間隔毎に第7ステップで求めた単結晶14のメッシュの座標及び温度のデータから単結晶14の引上げ長及び引上げ高さと単結晶14内の温度分布とを求める第8ステップと、単結晶14内の空孔及び格子間原子の拡散係数及び境界条件に基づいて拡散方程式を解くことにより所定の時間間隔の経過した後の空孔及び格子間原子の密度分布を求める第9ステップと、空孔の密度分布に基づいてボイド21の形成開始温度を求める第10ステップと、単結晶14内のそれぞれのメッシュの格子点における温度が次第に低下してボイド21の形成開始温度になったときのボイド21の密度を求める第11ステップと、単結晶14内のそれぞれのメッシュの格子点における温度がボイド21の形成開始温度より低いときのボイド21の半径を、このボイド21の成長速度が空孔の拡散速度に依存する拡散律速でありかつボイド21の形状が球状であるとして求める第12ステップと、ボイド21の周囲に成長する内壁酸化膜22の形成開始温度を求める第13ステップと、単結晶14内のそれぞれのメッシュの格子点における温度が次第に低下して内壁酸化膜22の形成開始温度より低くなったときのボイド21の半径と内壁酸化膜22の厚さとを互いに関連させて求める第14ステップと、第8ステップから第14ステップを単結晶14の冷却が完了するまで繰返す第15ステップと、ボイド21の密度分布及び半径と内壁酸化膜22の厚さに基づいてOSFリング23のリング幅及び位置を求める第16ステップとを含む、コンピュータを用いてシミュレーションによりOSFリングの分布を予測する方法である。
【0010】
この請求項1に記載されたOSFリングの分布予測方法では、先ず融液12の対流を考慮して融液12から成長する単結晶14内の温度分布を求めるだけでなく、更に冷却過程における単結晶14内の温度分布までも求める、即ち融液12から切離された単結晶14の冷却過程における単結晶14の徐冷及び急冷の効果を考慮して解析する。次に単結晶14内のボイド21の密度分布及び半径と内壁酸化膜22の厚さを求めた後に、ボイド21の密度分布及び半径と内壁酸化膜22の厚さに基づいてOSFリング23のリング幅及び位置を求める。これによりOSFリング23の単結晶14内での分布を正確に予測することができる。
【0011】
請求項2に係る発明は、請求項1に係る発明であって、更に融液に添加する不純物の密度に基づき融液と単結晶の固液界面における空孔又は格子間原子の密度を変更して、請求項1に記載された第1〜第16ステップを行う、コンピュータを用いてシミュレーションによりOSFリングの分布を予測する方法である。
この請求項2に記載されたOSFリングの分布予測方法では、融液に不純物を添加した場合、この不純物の添加密度に応じてOSFリングの分布を正確に予測することができる。
【0012】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図5に示すように、シリコン単結晶引上げ機11のチャンバ内には、シリコン融液12を貯留する石英るつぼ13が設けられる。この石英るつぼ13は図示しないが黒鉛サセプタ及び支軸を介してるつぼ駆動手段に接続され、るつぼ駆動手段は石英るつぼ13を回転させるとともに昇降させるように構成される。また石英るつぼ13の外周面は石英るつぼ13から所定の間隔をあけてヒータ(図示せず)により包囲され、このヒータは保温筒(図示せず)により包囲される。ヒータは石英るつぼ13に投入された高純度のシリコン多結晶体を加熱・溶融してシリコン融液12にする。またチャンバの上端には図示しないが円筒状のケーシングが接続され、このケーシングには引上げ手段が設けられる。引上げ手段はシリコン単結晶14を回転させながら引上げるように構成される。
【0013】
このように構成されたシリコン単結晶引上げ機11におけるシリコン単結晶14内のボイド欠陥の密度分布及びサイズ分布のシミュレーション方法を図1〜図7に基づいて説明する。
先ず第1ステップとして、シリコン単結晶14を所定長さL1(例えば100mm)まで引上げた状態におけるシリコン単結晶引上げ機11のホットゾーンの各部材、即ちチャンバ,石英るつぼ13,シリコン融液12,シリコン単結晶14,黒鉛サセプタ,保温筒等をメッシュ分割してモデル化する。具体的には上記ホットゾーンの各部材のメッシュ点の座標データをコンピュータに入力する。このときシリコン融液12のメッシュのうちシリコン単結晶14の径方向のメッシュであってかつシリコン融液12のシリコン単結晶14直下の一部又は全部のメッシュ(以下、径方向メッシュという。)を0.01〜5.00mm、好ましくは0.25〜1.00mmに設定する。またシリコン融液12のメッシュのうちシリコン単結晶14の長手方向のメッシュであってかつシリコン融液12の一部又は全部のメッシュ(以下、長手方向メッシュという。)を0.01〜5.00mm、好ましくは0.1〜0.5mmに設定する。
【0014】
径方向メッシュを0.01〜5.00mmの範囲に限定したのは、0.01mm未満では計算時間が極めて長くなり、5.00mmを越えると計算が不安定になり、繰返し計算を行っても固液界面形状が一定に定まらなくなるからである。また長手方向メッシュを0.01〜5.00mmの範囲に限定したのは、0.01mm未満では計算時間が極めて長くなり、5.00mmを越えると固液界面形状の計算値が実測値と一致しなくなるからである。なお、径方向メッシュの一部を0.01〜5.00の範囲に限定する場合には、シリコン単結晶14直下のシリコン融液12のうちシリコン単結晶14外周縁近傍のシリコン融液12を上記範囲に限定することが好ましく、長手方向メッシュの一部を0.01〜5.00の範囲に限定する場合には、シリコン融液12の液面近傍及び底近傍を上記範囲に限定することが好ましい。
【0015】
第2ステップとして上記ホットゾーンの各部材毎にメッシュをまとめ、かつこのまとめられたメッシュに対して各部材の物性値をそれぞれコンピュータに入力する。例えば、チャンバがステンレス鋼にて形成されていれば、そのステンレス鋼の熱伝導率,輻射率,粘性率,体積膨張係数,密度及び比熱がコンピュータに入力される。またシリコン単結晶14の引上げ長及びこの引上げ長に対応するシリコン単結晶14の引上げ速度と、後述する乱流モデル式(1)の乱流パラメータCとをコンピュータに入力する。
【0016】
第3ステップとして、ホットゾーンの各部材の表面温度分布をヒータの発熱量及び各部材の輻射率に基づいてコンピュータを用いて求める。即ち、ヒータの発熱量を任意に設定してコンピュータに入力するとともに、各部材の輻射率から各部材の表面温度分布をコンピュータを用いて求める。次に第4ステップとしてホットゾーンの各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式(1)をコンピュータを用いて解くことにより各部材の内部温度分布を求める。ここでは、記述を簡単にするためxyz直交座標系を用いたが、実際の計算では円筒座標系を用いる。
【数1】
【0017】
上記式(1)において、ρは各部材の密度、cは各部材の比熱、Tは各部材の各メッシュ点での絶対温度、tは時間である。またλx,λy及びλzは各部材の熱伝導率のx,y及びz方向成分であり、qはヒータの発熱量である。
【0018】
一方、シリコン融液12に関しては、上記熱伝導方程式(1)でシリコン融液12の内部温度分布を求めた後に、このシリコン融液12の内部温度分布に基づき、シリコン融液12が乱流であると仮定して得られた乱流モデル式(2)及びナビエ・ストークスの方程式(3)〜(5)を連結して、シリコン融液12の内部流速分布をコンピュータを用いて求める。
【数2】
【0019】
上記式(2)において、κtはシリコン融液12の乱流熱伝導率であり、cはシリコン融液12の比熱であり、Prtはプラントル数であり、ρはシリコン融液12の密度であり、Cは乱流パラメータであり、dはシリコン融液12を貯留する石英るつぼ13壁からの距離であり、kはシリコン融液12の平均流速に対する変動成分の二乗和である。
【数3】
【0020】
上記式(3)〜式(5)において、u,v及びwはシリコン融液12の各メッシュ点での流速のx,y及びz方向成分であり、νlはシリコン融液12の分子動粘性係数(物性値)であり、νtはシリコン融液12の乱流の効果による動粘性係数であり、Fx,Fy及びFzはシリコン融液12に作用する体積力のx,y及びz方向成分である。
【0021】
上記乱流モデル式(2)はkl(ケイエル)−モデル式と呼ばれ、このモデル式の乱流パラメータCは0.4〜0.6の範囲内の任意の値が用いられることが好ましい。乱流パラメータCを0.4〜0.6の範囲に限定したのは、0.4未満又は0.6を越えると計算により求めた界面形状が実測値と一致しないという不具合があるからである。また上記ナビエ・ストークスの方程式(3)〜(5)はシリコン融液12が非圧縮性であって粘度が一定である流体としたときの運動方程式である。
【0022】
上記求められたシリコン融液12の内部流速分布に基づいて熱エネルギ方程式(6)を解くことにより、シリコン融液12の対流を考慮したシリコン融液12の内部温度分布をコンピュータを用いて更に求める。
【数4】
【0023】
上記式(6)において、u,v及びwはシリコン融液12の各メッシュ点での流速のx,y及びz方向成分であり、Tはシリコン融液12の各メッシュ点での絶対温度であり、ρはシリコン融液12の密度であり、cはシリコン融液12の比熱であり、κlは分子熱伝導率(物性値)であり、κtは式(1)を用いて計算される乱流熱伝導率である。
【0024】
次いで第5ステップとして、シリコン単結晶14及びシリコン融液12の固液界面形状を図5の点Sで示すシリコンの三重点S(固体と液体と気体の三重点(tri-junction))を含む等温線に合せてコンピュータを用いて求める。第6ステップとして、コンピュータに入力するヒータの発熱量を変更し(次第に増大し)、上記第3ステップから第5ステップを三重点がシリコン単結晶14の融点になるまで繰返した後に、引上げ機11内の温度分布を計算してシリコン単結晶のメッシュの座標及び温度を求め、これらのデータをコンピュータに記憶させる。
【0025】
次に第7ステップとして、シリコン単結晶14の引上げ長L1にδ(例えば50mm)だけ加えて上記第1ステップから第6ステップまでを繰返した後に、引上げ機11内の温度分布を計算してシリコン単結晶14のメッシュの座標及び温度を求め、これらのデータをコンピュータに記憶させる。この第7ステップは、シリコン単結晶14の引上げ長L1が長さL2(L2はシリコン融液12から切離されたときのシリコン単結晶14の長さ(成長完了時の結晶長)である。)に達してシリコン単結晶14がシリコン融液12から切離された後、更にシリコン単結晶14が引上げられてその高さH1(H1はシリコン単結晶14の直胴開始部からシリコン融液12の液面までの距離である(図5)。)がH2(H2は冷却完了時のシリコン単結晶14の直胴開始部からシリコン融液12の液面までの距離である。)に達するまで、即ちシリコン単結晶14の冷却が完了するまで行われる。なお、シリコン単結晶14がシリコン融液12から切離された後は、シリコン単結晶14の引上げ高さH1にδ(例えば50mm)だけ加え、上記と同様に上記第1ステップから第6ステップまでを繰返す。
【0026】
シリコン単結晶14の引上げ高さH1がH2に達すると、第8ステップに移行する。第8ステップでは、シリコン単結晶14をシリコン融液12から成長させて引上げ始めたときt0から、シリコン単結晶14をシリコン融液12から切離して更にシリコン単結晶14を引上げ、その冷却が完了したときt1までの時間を、所定の間隔Δt秒(微小時間間隔)毎に区切る。このときシリコン単結晶14内の格子間シリコン及び空孔の拡散係数及び境界条件のみならず、後述するボイド21及び内壁酸化膜22(図6(a))の密度分布及びサイズ分布を求めるための式に用いられる定数をそれぞれコンピュータに入力する。上記区切られた時間間隔Δt秒毎に、第7ステップで求めたシリコン単結晶14のメッシュの座標及び温度のデータから、シリコン単結晶14の引上げ長L1及び引上げ高さH1と、シリコン単結晶14内の温度分布とを求める。
【0027】
即ち、第1〜第7ステップでシリコン単結晶のメッシュの座標及び温度を引上げ長δ毎に求め、シリコン単結晶を例えば50mm引上げるのに数十分要するため、この数十分間でのシリコン単結晶のメッシュの温度変化を時間の関数として微分することにより、時刻t0からΔt秒後におけるシリコン単結晶14の引上げ長L1及び引上げ高さH1とシリコン単結晶14内の温度分布を算出する。次にシリコン単結晶14内の空孔及び格子間シリコンの拡散係数及び境界条件に基づいて拡散方程式を解くことにより、Δt秒経過後の空孔及び格子間シリコンの密度分布を求める(第9ステップ)。
【0028】
具体的には、空孔の密度Cvの計算式が次の式(7)で示され、格子間シリコンの密度Ciの計算式が次の式(8)で示される。式(7)及び式(8)において、密度Cv及び密度Ciの経時的進展を計算するために、空孔と格子間シリコンの熱平衡がシリコン単結晶の全表面で維持されると仮定する。
【数5】
【0029】
上記式(7)及び式(8)において、K1及びK2は定数であり、Ei及びEvはそれぞれ格子間シリコン及び空孔の形成エネルギーであり、Cve及びCieは空孔の平衡密度及び格子間シリコンの平衡密度である。またkBはボルツマン定数、Tは絶対温度を意味する。
【0030】
上記平衡式は時間で微分され、空孔及び格子間シリコンに対してそれぞれ次の式(9)及び式(10)になる。
【数6】
【0031】
上記式(9)及び式(10)において、Θ(x)はヘビサイド関数(Heaviside function)である。即ち、x<0のときΘ(x)=0であり、かつx>0のときΘ(x)=1である。またTpは内壁酸化膜22(ボイド21表面に形成されたシリコンの酸化膜(SiOx膜))の形成開始温度であり、Tvはボイド21の形成開始温度である。更に式(9)及び(10)のそれぞれ右側の第1項はフィックの拡散式であり、右側の第1項中のDv及びDiは、次の式(11)及び(12)で表される空孔及び格子間シリコンの拡散係数である。
【数7】
【0032】
上記式(11)及び式(12)において、△Ev及び△Eiはそれぞれ空孔及び格子間シリコンの活性化エネルギーであり、dv及びdiはそれぞれ定数である。また式(9)及び式(10)のそれぞれ右側の第2項中のEv t及びEi tは熱拡散による空孔及び格子間シリコンの活性化エネルギーであり、kBはボルツマン定数である。式(9)及び式(10)のそれぞれ右側の第3項のkivは空孔及び格子間シリコンペアの再結合定数である。式(9)及び式(10)のそれぞれ右側の第4項のNvはボイド21の密度であり、rvはボイド21の半径であり、更に式(9)の右側の第5項のNpは内壁酸化膜22の密度であり、Rpは内壁酸化膜22の外半径である。
【0033】
上記式(9)が成立つのは、空孔が析出するための空孔の流束が十分に大きく、シリコン単結晶14を構成するSiマトリックスと内壁酸化膜を構成するSiOxとの単位質量当りの体積差を埋められる場合、即ちγDOCO≦Dv(Cv−Cve)の場合である。上記以外の場合、即ちγDOCO>Dv(Cv−Cve)の場合には、次式(13)が成立つ。ここで、γとは酸素1原子に対する空孔の消費割合であり、DOは酸素の拡散係数であり、COは酸素密度である。
【数8】
【0034】
上記式(13)において、Θ(x)はヘビサイド関数(Heaviside function)である。即ち、x<0のときΘ(x)=0であり、かつx>0のときΘ(x)=1である。またTpは内壁酸化膜22の形成開始温度であり、Tvはボイド21の形成開始温度である。更に式(13)の右側の第1項はフィックの拡散式であり、右側の第1項中のDvは、式(11)で表される空孔の拡散係数である。
【0035】
次に第10ステップとして、上記拡散方程式を解くことにより求めた空孔の密度Cv分布に基づいて、ボイド21の形成開始温度Tvを次の式(14)から求める。
【数9】
【0036】
上記式(14)において、Cvはシリコン単結晶14中の空孔密度であり、Cv0はシリコン単結晶14の融点Tmでの空孔平衡密度であり、Evは空孔形成エネルギーである。またσvはシリコン単結晶14の結晶面(111)における界面エネルギーであり、ρはシリコン単結晶14の密度であり、kBはボルツマン定数である。
【0037】
第11ステップとして、シリコン単結晶14内のそれぞれのメッシュの格子点における温度が次第に低下してボイド21の形成開始温度Tvになったときに、次の近似式(15)を用いてボイド21の密度Nvを求める。
【数10】
【0038】
上記式(15)において、nvはボイド21の密度であり、(dT/dt)はシリコン単結晶14の冷却速度である。上記ボイド21の密度は空孔過飽和度に依存するけれども、計算するシリコン単結晶14での核形成温度のような狭い温度領域では一定とみなしてよい。またDvはボイド21の拡散係数であり、kBはボルツマン定数であり、Cvはシリコン単結晶14中の空孔密度である。
【0039】
第12ステップとして、シリコン単結晶14内のそれぞれのメッシュの格子点における温度がボイド21の形成開始温度Tvより低いときのボイドの半径rvを、次の式(16)から求める。ここでボイド21の成長速度は空孔の拡散速度に依存する拡散律速である。またボイド21の形状は実際には八面体であるけれども、ここでは計算の効率化から球状として扱う。
【数11】
【0040】
上記式(16)において、t1はシリコン単結晶14のメッシュの格子点における温度がボイド21の形成開始温度Tvまで低下したときの時刻である。またrvcrはボイド21の臨界径であり、この臨界径rvcrは上記時刻t1での値とする。更にCve及びCieはそれぞれの状態での空孔及び格子間シリコンの平衡密度である。
【0041】
次に第13ステップとして、ボイド21の周囲に成長する内壁酸化膜22の形成開始温度Tpを求める。内壁酸化膜22の形成開始温度Tpがボイド21の形成開始温度Tvより小さい場合には、酸素と空孔が結合し、ボイド21表面に内壁酸化膜22が成長する(図6(a))。本発明のモデルでは、上記内壁酸化膜22はボイド21が発生するとすぐに成長するものとして扱った。ここで、「すぐに」とは、「ボイドが発生した次の繰返し計算から」という意味である。従って、内壁酸化膜22の形成開始温度Tpはボイド21の形成開始温度Tvと同一となる。
【0042】
更に第14ステップとして、シリコン単結晶14内のそれぞれのメッシュの格子点における温度が次第に低下して内壁酸化膜22の形成開始温度Tpより低くなったときのボイド21の半径rvと内壁酸化膜22の厚さdとを互いに関連させて求める。一般的に、酸素はその拡散とシリコンとの反応によって内壁酸化膜22が形成される。酸素が内壁酸化膜22外からこの酸化膜の外周面に流入する流束JOは、ボイド21の中心を原点とする内壁酸化膜22の外半径をRpとするとき、次の式(17)から求められる。
【数12】
【0043】
上記式(17)において、DOは酸素の拡散係数であり、COは酸素密度であり、COeifは球状のボイド21の中心を原点とする半径Rpにおける酸素平衡密度であり、gOはSiOx及びSiの界面、即ち内壁酸化膜22の外周面における酸素原子の反応割合である。
【0044】
また空孔が内壁酸化膜22外からこの酸化膜の外周面(半径Rpの球面)に流入する流束Jvは次の式(18)から求められる。
【数13】
【0045】
上記式(18)において、gvは内壁酸化膜22の外周面での空孔の反応割合であり、Cveifは内壁酸化膜22の外周面での空孔の平衡密度である。シリコンの内壁酸化膜22が成長すると同時に空孔が消費され、空孔の消費割合は酸素1原子に対してγである。このため内壁酸化膜22が歪みなく成長するための条件は、酸素の流束JOに対して空孔の流束はγJOであるので、空孔の流束γJOは次の式(19)から求められる。
【数14】
【0046】
従って、(Jv−γJO)は内壁酸化膜22に吸収される空孔の流束となる。ここで空孔の内壁酸化膜22外からこの酸化膜への流束が増大する場合((Jv−γJO)>0)、或いは空孔のボイド21内から酸化膜への流束が時間の経過に対して増大する場合((Jv−γJO)<0)の上記流束の時間に対する変化の割合をαとすると、このαは内壁酸化膜22の厚さに依存すると考えられる。このため内壁酸化膜22の厚さd、即ち(Rp−rv)がd0未満であるならば、内壁酸化膜22は空孔を酸化膜外及びボイド21内の双方向から部分浸透させると考えられる。換言すれば、d<d0であってα≠0である場合には、空孔はある割合で内壁酸化膜22を貫通してボイド21の成長に使われる。但し、格子間シリコンは酸素析出層が核形成されると同時にボイド21の成長に使われなくなる。
【0047】
また空孔の内壁酸化膜22外からこの酸化膜への流束量が少ない場合、即ち(Jv−γJO)<0である場合には、歪みの無い内壁酸化膜22を成長させることができないので、空孔はボイド21内から酸化膜に流入し、ボイド21の外径は小さくなる。この結果、d≧d0であってα=0の場合には、内壁酸化膜22は空孔を全く通過させなくなる。そして、nvをボイド21中の空孔の数とすると、dnv/dtは空孔の流入量となり、dnv/dt=α(Jv−γJO)であるならば、次の式(20)が成り立つ。なお、式(20)において、rvは式(16)で求めたボイド21の半径であり、Rpは内壁酸化膜22の外半径である。またDOは酸素の拡散係数であり、COは酸素密度である。更にCOeifは球状のボイド21の中心を原点とする半径Rpにおける酸素平衡密度であり、gOは内壁酸化膜22の外周面における酸素原子の反応割合である。
【数15】
【0048】
同時に内壁酸化膜22を構成するSiOx分子の数は式(20)の酸素が内壁酸化膜22外からこの酸化膜の外周面に流入する流束JOの消費に依存して変化するため、次の式(21)が成り立つ。なお、式(21)において、ρp=x/(ΩSiOx)と定義する。このρpの定義式において、ΩSiOxはSiOxの分子容量(molecular volume)であり、その単位は分子量/密度である。またxはSiOxのxに対応し、Ωは定数である。
【数16】
【0049】
上記式(21)を上記式(20)に代入すると次の式(22)が得られる。なお、式(22)において、ηはΩSiOx/ΩSiである。このηの定義式において、ΩSiは1/ρであり、ρはシリコン単結晶14の密度である。
【数17】
【0050】
上記式(20)及び式(22)から次のことが分かる。先ずdがd0になった時刻をt3とすると、この時刻t3においてαがゼロとなるため、内壁酸化膜22は非浸透となる。またボイド21の外径がrv(t3)で固定されている間は、内壁酸化膜22の成長はシリコン単結晶14のマトリックスから流入する空孔或いは酸素の消費量によって決まる。即ち、(Jv−γJO)>0である場合には式(22)は次の式(23)となり、(Jv−γJO)<0である場合には式(22)は次の式(24)となる。
【数18】
【0051】
上記式(23)及び式(24)において、ΩSiOxはSiOxの分子容量(molecular volume)である。また式(23)及び式(24)において、内壁酸化膜の外周面での空孔平衡密度はRpと無関係であり、Cveif=CveかつCOeif=COeであると想定している。式(23)又は式(24)から内壁酸化膜22の外半径Rpを求め、内壁酸化膜22の外半径Rpからボイド21の半径rvを引くことにより、内壁酸化膜22の厚さdを求める。上記第8ステップから第14ステップをシリコン単結晶14の冷却が完了するまで繰返す(第15ステップ)。なお、式(9)〜式(24)は互いに関連させてコンピュータにより解く。
【0052】
一方、シリコン単結晶14内で空孔型点欠陥が優勢であって凝集した点欠陥を有する領域[V]と、格子間シリコン型点欠陥が優勢であって凝集した点欠陥を有する領域[I]との境界付近では、内壁酸化膜22の厚さdがボイド21の半径と比較して極めて大きい領域がOSFリングの位置にほぼ一致していることが分かっている。この内壁酸化膜22の厚さdがボイド21の半径と比較して極めて大きい領域では、ボイド21は殆ど成長しない(図6(c)のOSF核のイメージ図)。これにより図7に示すように、上記ボイドの密度分布と、ボイドの半径rvと、内壁酸化膜の厚さdとに基づいて、OSFリング23のリング幅と、OSFリング23の発生する位置とをコンピュータを用いて求めることができる。なお、図6(b)はボイド21の半径rvが内壁酸化膜22の厚さより極めて大きいCOPのイメージ図を示す。
【0053】
上述のように、シリコン融液12の対流を考慮してシリコン融液12から成長するシリコン単結晶14内の温度分布を求めた後に、シリコン融液12から切離されたシリコン単結晶14の冷却過程、即ちシリコン単結晶14がシリコン融液12から切離された後のシリコン単結晶14の引上げ速度を考慮し、シリコン単結晶14の徐冷及び急冷の効果を結果に反映して解析することにより、シリコン単結晶14内におけるOSFリング23の分布を正確に予測できる。即ち、ボイド21の密度分布をコンピュータを用いて求めた後に、ボイド21の半径と、ボイド21の周囲に成長する内壁酸化膜22の厚さとを互いに関連させてコンピュータを用いて求め、更にボイド21の密度分布と、ボイド21の半径と、内壁酸化膜22の厚さに基づいて、OSFリング23のリング幅と、OSFリング23のシリコン単結晶14内における位置とをコンピュータを用いて求めることにより、シリコン単結晶14内におけるOSFリング23の分布を正確に予測できる。この結果、シリコン融液12から引上げられるシリコン単結晶14内のOSFリング23を所望の分布にするために、引上げ機11の設計段階で引上げ機11の構造を検討することができる。
【0054】
なお、上記実施の形態では、不純物(ドーパント)の添加を考慮しなかったが、シリコン融液に不純物を添加する場合には、シリコン融液に添加する不純物の密度に基づきシリコン単結晶内のシリコン融点における空孔又は格子間シリコンの密度を変更して、上記実施の形態の第1〜第16ステップを行う。具体的には、rを不純物原子の半径とし、rSiをシリコン原子の半径とするとき、r>rSiの場合には、式(25)に基づいて空孔の密度CVDを求め、r<rSiの場合には、式(26)に基づいて格子間シリコンの密度CIDを求める。
【数19】
【0055】
上記式(25)及び式(26)において、(CV)0及び(CI)0は不純物を添加しない場合の空孔及び格子間シリコンの熱平衡密度であり、上記実施の形態の式(7)及び式(8)のCve及びCieに相当する。また式(25)及び式(26)において、aは調整可能なパラメータであり、Nは不純物の密度であり、kBはボルツマン定数であり、Tは絶対温度である。なお、r<rSiである不純物としては、ボロン(B)やリン(P)などが挙げられ、r>rSiである不純物としては、アンチモン(Sb)やヒ素(As)などが挙げられる。
【0056】
上記式(25)及び式(26)は、シリコン融液とシリコン単結晶の固液界面におけるシリコン単結晶内の空孔及び格子間シリコンの熱平衡密度をそれぞれ変更する式であり、初期値として上記固液界面での空孔の密度CVD及び格子間シリコンの密度CIDを上記式(25)及び式(26)から求め、その値をコンピュータに入力した後は、上記実施の形態と同一のプロセスでコンピュータを用いて計算する。これによりシリコン融液に不純物を添加した場合における不純物の添加密度に応じたOSFリングの分布を正確に予測できる。
また、上記実施の形態では、単結晶としてシリコン単結晶を挙げたが、GaAs単結晶,InP単結晶,ZnS単結晶若しくはZnSe単結晶でもよい。
【0057】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図5及び図6に示すように、石英るつぼ13に貯留されたシリコン融液12から直径6インチのシリコン単結晶14を引上げる場合の、シリコン単結晶14内のOSFリングのリング幅及び位置を、図1〜図4のフローチャートに基づくシミュレーション方法により求めた。なお、上記シリコン融液12には、不純物(ドーパント)としてボロン(B)を添加した。このボロンは、シリコン融液12から引上げられるシリコン単結晶14のトップ部の抵抗率及びボロン密度がそれぞれ0.015Ωcm及び4.89×1018/cm3となるように添加した。
【0058】
具体的には、先ず、シリコン単結晶引上げ機11のホットゾーンをメッシュ構造でモデル化した。ここで、シリコン融液12のシリコン単結晶14直下のシリコン単結晶14の径方向のメッシュを0.75mmに設定し、シリコン融液12のシリコン単結晶14直下以外のシリコン単結晶14の径方向のメッシュを1〜5mmに設定した。またシリコン融液12のシリコン単結晶14の長手方向のメッシュを0.25〜5mmに設定し、乱流モデル式の乱流パラメータCとして0.45を用いた。更にシリコン単結晶14の引上げ開始時t0から冷却完了時t1までの引上げ長及び引上げ高さの段階的な変更を50mmずつとした。このような条件下で、シリコン融液12の対流を考慮してシリコン単結晶14内の温度分布を求めた。
【0059】
次にシリコン単結晶14の引上げ開始時t0から冷却完了時t1までの時間を所定の間隔Δt秒(微小な時間の間隔)毎に区切り、この時間間隔Δt秒毎に上記シリコン単結晶14のメッシュの座標及び温度のデータから、シリコン単結晶14の引上げ長及び引上げ高さとシリコン単結晶内14の温度分布を求め、更にボイド21の形成開始温度を求めてボイド21の密度分布及びサイズ分布を求めた。即ち、シリコン単結晶14をシリコン融液12から切離した後のシリコン単結晶14の徐冷及び急冷を考慮して、シリコン単結晶14内のボイド21の密度分布及びサイズ分布をコンピュータを用いてそれぞれ求めた。
【0060】
一方、ボイド21の周囲に成長する内壁酸化膜22は、ボイド21が発生するとすぐに成長するものとして扱ったので、内壁酸化膜22の形成開始温度Tpをボイド21の形成開始温度Tvと同一とした。ここで、「すぐに」とは、「ボイドが発生した次の繰返し計算から」という意味である。次に内壁酸化膜22の形成開始温度より低くなったときの内壁酸化膜22の外半径Rpをコンピュータを用いて求めた。更に内壁酸化膜22の外半径Rpをボイド21の半径から引くことにより内壁酸化膜22の厚さdを求めた。なお、内壁酸化膜の密度分布は上記ボイドの密度分布と同一とした。更に上記ボイド21の密度分布及び半径と内壁酸化膜22の厚さに基づいてOSFリングのリング幅及び位置をコンピュータを用いて求めた。このシリコン単結晶を実施例1とした。
【0061】
なお、上記計算において、ボロン原子の半径rはシリコン原子rSiの半径より小さい、即ちr<rSiであるため、ボロンが添加されたシリコン融液とこのシリコン融液から引上げられるシリコン単結晶との固液界面における空孔の密度CVDを式(25)から求め、この値を初期値としてコンピュータに入力した。ここで、式(25)中のaには、4.0×102eVを代入した。
また上記計算において、シリコン単結晶14中の酸素濃度を1.2×1018〜1.3×1018/cm3(旧ASTM)に徐々に増大させ、シリコン単結晶の引上げ速度を1.3〜1.4mm/分に徐々に増加させた。
【0062】
<実施例2>
シリコン単結晶のトップ部の抵抗率及びボロン密度がそれぞれ0.016Ωcm及び4.60×1018/cm3となるように、ボロンをシリコン単結晶に添加したことを除いて、実施例1と同様にして、OSFリングのリング幅及び位置をコンピュータを用いて求めた。このシリコン単結晶を実施例2とした。
<実施例3>
シリコン単結晶のトップ部の抵抗率及びボロン密度がそれぞれ0.017Ωcm及び4.10×1018/cm3となるように、ボロンをシリコン単結晶に添加したことを除いて、実施例1と同様にして、OSFリングのリング幅及び位置をコンピュータを用いて求めた。このシリコン単結晶を実施例3とした。
【0063】
<比較例1>
実施例1と同一形状のシリコン単結晶を実施例1と同一の条件で実際に引上げて、所定の熱処理を行ってOSFリングを顕在化させた。このシリコン単結晶を比較例1とした。
<比較例2>
実施例2と同一形状のシリコン単結晶を実施例2と同一の条件で実際に引上げて、所定の熱処理を行ってOSFリングを顕在化させた。このシリコン単結晶を比較例2とした。
<比較例3>
実施例3と同一形状のシリコン単結晶を実施例3と同一の条件で実際に引上げて、所定の熱処理を行ってOSFリングを顕在化させた。このシリコン単結晶を比較例3とした。
【0064】
<比較試験1及び評価>
実施例1のシリコン単結晶をトップ部から1200mmの位置で、引上げ方向に対して直角にスライスして得られたウェーハの半径方向におけるCOPの半径、ボイドの半径及び内壁酸化膜の厚さの分布をコンピュータを用いて求めた。その結果を図9に示す。また比較例1のシリコン単結晶をトップ部から1200mmの位置で、引上げ方向に対して直角にスライスして得られたウェーハのOSFリングのリング幅及び中心位置を実際に観察して測定した。その結果を図9に示す。
図9から明らかなように、実施例1のCOP発生領域からウェーハの半径方向外側に向うとき、内壁酸化膜の厚さがボイドの半径より大きくなる位置(以下、変節点という)が存在するけれども、この位置が比較例1のOSFリングと一致することが分かった。
【0065】
<比較試験2及び評価>
実施例1〜3のシリコン単結晶を引上げ方向に所定の間隔をあけかつ引上げ方向に対して直角にそれぞれスライスして得られた各ウェーハの上記変節点をコンピュータを用いて求めた。その結果を図10(a)〜図10(c)に示す。また比較例1のシリコン単結晶を、上記と同様に、引上げ方向に所定の間隔をあけかつ引上げ方向に対して直角にそれぞれスライスして得られた各ウェーハのOSFリングの中心位置を実際に観察して測定した。その結果を図10(a)〜図10(c)に示す。
図10(a)〜図10(c)から明らかなように、実施例1〜3の変節点が比較例1〜3のOSFリングに略一致することが分かった。
【0066】
【発明の効果】
以上述べたように、本発明によれば、融液の対流を考慮して融液から成長する単結晶内の温度分布をコンピュータを用いて求めるだけでなく、更に冷却過程における単結晶内の温度分布までも求めることによって、即ち融液から切離された単結晶の冷却過程における単結晶の徐冷及び急冷の効果を考慮することによって、ボイドの密度分布をコンピュータを用いて求めた後に、ボイドの半径と、ボイドの周囲に成長する内壁酸化膜の厚さとを互いに関連させてコンピュータを用いて求め、更にボイドの密度分布及び半径と内壁酸化膜の厚さに基づいてOSFリングのリング幅及び位置をコンピュータを用いて求める。この結果、単結晶内でのOSFリングの分布を正確に予測できる。
また融液に添加する不純物の密度に基づき融液と単結晶の固液界面における空孔又は格子間原子の密度を変更して、上記第1〜第16ステップを行えば、融液に不純物を添加した場合、この不純物の添加密度に応じてOSFリングの分布を正確に予測できる。
【図面の簡単な説明】
【図1】本発明実施形態シミュレーションによるOSFリングの分布予測方法の第1段を示すフローチャート。
【図2】そのシミュレーションによるOSFリングの分布予測方法の第2段を示すフローチャート。
【図3】そのシミュレーションによるOSFリングの分布予測方法の第3段を示すフローチャート。
【図4】そのシミュレーションによるOSFリングの分布予測方法の第4段を示すフローチャート。
【図5】本発明のシリコン融液をメッシュ構造としたシリコン単結晶の引上げ機の要部断面図。
【図6】そのシリコン単結晶内のボイド及び内壁酸化膜の模式図。
【図7】そのシミュレーションにより予測したOSFリングの位置を示すシリコン単結晶の縦断面図。
【図8】従来例のシリコン融液をメッシュ構造としたシリコン単結晶の引上げ機の要部断面図。
【図9】実施例1のシリコン単結晶の半径方向の位置によって、COPの半径の変化、ボイドの半径の変化及び内壁酸化膜の半径の変化をそれぞれ示す図。
【図10】実施例1〜3のシリコン単結晶内のOSFリングの位置をシミュレーションにより求めた値と、比較例1〜3のシリコン単結晶内のOSFリングの位置を実測した値とを比較した図。
【符号の説明】
11 シリコン単結晶引上げ機
12 シリコン融液
14 シリコン単結晶
21 ボイド
22 内壁酸化膜
23 OSFリング
S シリコンの三重点
Claims (2)
- 引上げ機(11)による単結晶(14)の融液(12)からの引上げ開始時から前記単結晶(14)の冷却完了時までの前記引上げ機(11)のホットゾーンをメッシュ構造でモデル化する第1ステップと、
前記ホットゾーンの各部材毎にメッシュをまとめかつこのまとめられたメッシュに対する前記各部材の物性値とともに前記単結晶(14)の引上げ長及びこの引上げ長に対応する前記単結晶(14)の引上げ速度をそれぞれコンピュータに入力する第2ステップと、
前記各部材の表面温度分布をヒータの発熱量及び前記各部材の輻射率に基づいて求める第3ステップと、
前記各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式を解くことにより前記各部材の内部温度分布を求めた後に融液(12)が乱流であると仮定して得られた乱流モデル式及びナビエ・ストークスの方程式を連結して解くことにより対流を考慮した前記融液(12)の内部温度分布を更に求める第4ステップと、
前記単結晶(14)及び前記融液(12)の固液界面形状を前記単結晶の三重点(S)を含む等温線に合せて求める第5ステップと、
前記第3ステップから前記第5ステップを前記三重点(S)が前記単結晶(14)の融点になるまで繰返し前記引上げ機(11)内の温度分布を計算して前記単結晶(14)のメッシュの座標及び温度を求めこれらのデータをそれぞれ前記コンピュータに入力する第6ステップと、
前記単結晶(14)の引上げ長及び引上げ高さを段階的に変えて前記第1ステップから前記第6ステップまでを繰返し前記引上げ機(11)内の温度分布を計算して前記単結晶(14)のメッシュの座標及び温度を求めこれらのデータをそれぞれ前記コンピュータに入力する第7ステップと、
前記単結晶(14)の前記融液(12)からの引上げ開始時から前記単結晶(14)の冷却完了時までの時間を所定の間隔毎に区切り前記区切られた時間間隔毎に第7ステップで求めた前記単結晶(14)のメッシュの座標及び温度のデータから前記単結晶(14)の引上げ長及び引上げ高さと前記単結晶(14)内の温度分布とを求める第8ステップと、
前記単結晶(14)内の空孔及び格子間原子の拡散係数及び境界条件に基づいて拡散方程式を解くことにより前記所定の時間間隔の経過した後の空孔及び格子間原子の密度分布を求める第9ステップと、
前記空孔の密度分布に基づいてボイド(21)の形成開始温度を求める第10ステップと、
前記単結晶(14)内のそれぞれのメッシュの格子点における温度が次第に低下して前記ボイド(21)の形成開始温度になったときの前記ボイド(21)の密度を求める第11ステップと、
前記単結晶(14)内のそれぞれのメッシュの格子点における温度が前記ボイド(21)の形成開始温度より低いときの前記ボイド(21)の半径を、このボイド(21)の成長速度が空孔の拡散速度に依存する拡散律速でありかつ前記ボイド(21)の形状が球状であるとして求める第12ステップと、
前記ボイド(21)の周囲に成長する内壁酸化膜(22)の形成開始温度を求める第13ステップと、
前記単結晶(14)内のそれぞれのメッシュの格子点における温度が次第に低下して前記内壁酸化膜(22)の形成開始温度より低くなったときの前記ボイド(21)の半径と前記内壁酸化膜(22)の厚さとを互いに関連させて求める第14ステップと、
第8ステップから第14ステップを前記単結晶(14)の冷却が完了するまで繰返す第15ステップと、
前記ボイド(21)の密度分布及び半径と前記内壁酸化膜(22)の厚さに基づいてOSFリング(23)のリング幅及び位置を求める第16ステップと
を含むコンピュータを用いてシミュレーションによりOSFリングの分布を予測する方法。 - 融液に添加する不純物の密度に基づき前記融液と単結晶の固液界面における空孔又は格子間原子の密度を変更して、請求項1に記載された第1〜第16ステップを行う、コンピュータを用いてシミュレーションによりOSFリングの分布を予測する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003161494A JP4449347B2 (ja) | 2003-06-06 | 2003-06-06 | シミュレーションによるosfリングの分布予測方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003161494A JP4449347B2 (ja) | 2003-06-06 | 2003-06-06 | シミュレーションによるosfリングの分布予測方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004363413A JP2004363413A (ja) | 2004-12-24 |
JP4449347B2 true JP4449347B2 (ja) | 2010-04-14 |
Family
ID=34053887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003161494A Expired - Lifetime JP4449347B2 (ja) | 2003-06-06 | 2003-06-06 | シミュレーションによるosfリングの分布予測方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4449347B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007314090A (ja) | 2006-05-26 | 2007-12-06 | Mitsubishi Cable Ind Ltd | 電熱ヒータ付きグリップ部材 |
-
2003
- 2003-06-06 JP JP2003161494A patent/JP4449347B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004363413A (ja) | 2004-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110139951B (zh) | 单晶硅的提拉条件计算程序、单晶硅的热区的改良方法以及单晶硅的培育方法 | |
JP4380537B2 (ja) | シリコン単結晶を製造する方法 | |
TWI722480B (zh) | 矽單結晶的成長方法 | |
KR100411553B1 (ko) | 단결정과 용융액 사이의 고체-액체 계면 형상 및 단결정의점결함 분포의 시뮬레이션 방법 | |
CN105765114B (zh) | 单晶硅的生长方法 | |
JP6135611B2 (ja) | 点欠陥濃度計算方法、Grown−in欠陥計算方法、Grown−in欠陥面内分布計算方法及びこれらを用いたシリコン単結晶製造方法 | |
KR101862157B1 (ko) | 단결정 실리콘 잉곳 제조 방법 및 장치 | |
KR100719207B1 (ko) | 단결정 내 보이드 결함과 단결정 내 산소 석출핵의 밀도분포 및 사이즈 분포의 시뮬레이션 방법 | |
JP4449347B2 (ja) | シミュレーションによるosfリングの分布予測方法 | |
JP4604462B2 (ja) | 単結晶内酸素析出核の密度分布及びサイズ分布のシミュレーション方法 | |
JP4106880B2 (ja) | 単結晶内欠陥の密度分布及びサイズ分布のシミュレーション方法 | |
JP4403722B2 (ja) | シリコン単結晶内ボイド欠陥の密度分布及びサイズ分布のシミュレーション方法 | |
KR100665683B1 (ko) | 실리콘 단결정 제조방법 | |
JP4192704B2 (ja) | 単結晶の無欠陥領域を最大化するシミュレーション方法 | |
JP4154936B2 (ja) | 単結晶の無欠陥領域シミュレーション方法 | |
JP3846155B2 (ja) | 単結晶及び融液の固液界面形状のシミュレーション方法 | |
JP4096499B2 (ja) | 単結晶の点欠陥分布のシミュレーション方法 | |
JP5509636B2 (ja) | シリコン単結晶の欠陥解析方法 | |
JP7525568B2 (ja) | シリコンインゴット単結晶を製造するための方法 | |
Sheikhi | Experimentally verified numerical simulation of single crystal growth process with a low melt height and an axial vibration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4449347 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140205 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |