WO2004099597A1 - 内燃機関の燃料噴射タイミング制御装置及び方法 - Google Patents

内燃機関の燃料噴射タイミング制御装置及び方法 Download PDF

Info

Publication number
WO2004099597A1
WO2004099597A1 PCT/JP1993/000829 JP9300829W WO2004099597A1 WO 2004099597 A1 WO2004099597 A1 WO 2004099597A1 JP 9300829 W JP9300829 W JP 9300829W WO 2004099597 A1 WO2004099597 A1 WO 2004099597A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
intake
injection
valve
timing
Prior art date
Application number
PCT/JP1993/000829
Other languages
English (en)
French (fr)
Inventor
Naoki Tomisawa
Shigemi Sugino
Toru Kitayama
Original Assignee
Naoki Tomisawa
Shigemi Sugino
Toru Kitayama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naoki Tomisawa, Shigemi Sugino, Toru Kitayama filed Critical Naoki Tomisawa
Priority to US08/193,133 priority Critical patent/US5427069A/en
Publication of WO2004099597A1 publication Critical patent/WO2004099597A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a fuel injection timing control apparatus and method for an internal combustion engine.
  • the present invention relates to an injection timing control apparatus and method for an internal combustion engine, and more particularly, to an apparatus and method for controlling fuel injection timing by a fuel injection valve so as to end fuel injection at a predetermined injection end timing.
  • injection start timing is variably set so that high combustion stability can be obtained.
  • the intake air flow of the engine is affected by the effect of the engine operating conditions before the intake stroke due to the effect of the intake charge acceleration due to the overlap of the intake and exhaust valves, and in the case of engines equipped with a variable valve timing Affected by variable mining.
  • the present invention has been made in view of the above-described problems, and has been made in consideration of a fuel injection valve.
  • an injection timing control device and method that can set the optimal injection end timing under all operating conditions including transient operation by detecting the intake flow velocity near the injection hole, it improves the flammability of the engine. It is intended to do so.
  • the feature of the configuration adopted by the present invention to solve the above-described problem is that the fuel injection valve is driven in accordance with the fuel injection amount calculated based on the engine operating condition so that the fuel injection ends at a predetermined injection end timing.
  • the control configuration at least the engine speed, the engine intake air amount, and the opening area of the intake valve are respectively detected, and the intake flow velocity near the injection hole of the fuel injection valve is obtained based on the detected parameters.
  • the predetermined injection end timing is variably set according to the intake flow velocity.
  • the opening of the intake valve is determined based on the crank angle position and the timing control information in the variable valve timing mechanism. It is preferable to detect the area.
  • the opening area can be correctly detected by the variable valve timing mechanism even if the opening timing of the intake valve changes.
  • the intake flow velocity near the injection hole of the fuel injection valve be detected using the intake flow velocity near the intake valve and the intake flow velocity at the location where the engine intake air amount is detected as a parameter.
  • the intake flow velocity near the injection hole of the fuel injection valve can be accurately estimated from the intake flow velocity at the detection point of the engine intake air amount on the upstream side and the intake flow velocity near the downstream intake valve.
  • FIG. 1 is a block diagram showing a basic configuration of the present invention.
  • FIG. 2 is a system schematic diagram of the embodiment.
  • Fig. 3 is a flowchart showing the control for obtaining various parameters.o
  • FIG. 4 is a flowchart showing the control for setting the injection end timing.
  • FIG. 5 is a flowchart showing the fuel injection control based on the injection end timing.
  • FIG. 6 is a state diagram showing various parameters used in the embodiment.
  • FIG. 7 is a diagram showing the relationship between the amount of intake air and the flow velocity of intake air.
  • FIG. 8 is a diagram showing characteristics of a lean combustion limit corresponding to an injection end timing.
  • FIG. 9 is a time chart showing characteristics of the injection end control. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 2 showing one embodiment, air is sucked into an internal combustion engine 1 from an air cleaner 2 through an intake duct 3, a throttle valve 4 and an intake manifold 5.
  • a fuel injection valve 6 is provided for each cylinder.
  • This fuel injector 6 energizes the solenoid This is an electromagnetic fuel injection valve that is opened when it is energized, and is closed when it is de-energized. The fuel adjusted to the specified pressure by the pressure regulator is injected into the engine 1.
  • Each combustion chamber of the engine 1 is provided with an ignition plug 7, which ignites a spark to ignite and burn an air-fuel mixture. Then, exhaust gas is exhausted from the engine 1 through the exhaust manifold 8, the exhaust duct 9, the catalyst 10, and the muffler 11.
  • the control unit 12 as a fuel supply control means includes a microcomputer including a CPU, a ROM, a RAM, an A / D converter, an input / output interface, and various sensors.
  • the fuel injection amount T i by the fuel injection valve 6 is set by calculation as described later, and an injection pulse signal corresponding to the fuel injection amount T i is given at a predetermined injection timing. By outputting to the injection valve 6, the fuel supply to the engine is controlled electronically. ,
  • an air flow system 13 is provided in the intake duct 3, and outputs a signal corresponding to the intake air amount Q of the engine 1.
  • crank angle sensor 14 is provided, and outputs a rotation signal for each predetermined crank angle.
  • the engine rotation speed Ne can be calculated by measuring the cycle of the rotation signal or the number of occurrences within a predetermined time.
  • a water temperature sensor 15 for detecting the cooling water temperature Tw of the service jacket of the engine 1 is provided.
  • an oxygen sensor 16 for detecting the air-fuel ratio of the engine intake air-fuel mixture via the concentration of oxygen in the exhaust gas is provided at the junction of the exhaust manifold 8.
  • the CPU of the microphone port computer built in the control unit 12 calculates the basic fuel injection amount Tp based on the intake air amount Q and the engine rotation speed Ne, while the cooling water
  • the final fuel injection amount T i is calculated by correcting the basic fuel injection amount T p according to the engine operating conditions such as the temperature Tw.
  • the injection end timing T i the fuel injection amount T i crank angle corresponding to only before the angular position injection start timing from E T i s
  • an injection pulse signal having a pulse width corresponding to the fuel injection amount Ti is output to the fuel injection valve 6 (see FIG. 9).
  • co emissions Control unit 12 Niyotsu Te the injection termination timing setting control of T i E to be performed, and, the embodiment of the injection tie Mi ring control using the injection end timing T i E, the The description will be made in accordance with the flowcharts of FIGS. 3 to 5.
  • the program shown in the flow chart of Fig. 3 is a program that calculates the opening area of the intake valve and calculates the inflow intake velocity V a * (intake flow velocity near the air flow meter 13) from the intake air amount Q data. It is.
  • step 1 the data of the current crank angle position obtained based on the detection signal of the crank angle sensor 14 is stored in “CAJ”.
  • CAJ the data of the current crank angle position obtained based on the detection signal of the crank angle sensor 14 is stored in “CAJ”.
  • Set and equipped with a variable valve timing mechanism If this is the case, set the information indicating the current cam timing (evening control information) to “X”.
  • the current intake valve opening area S is obtained by referring to a map in which the intake valve opening area S corresponding to the crank angle position CA and the cam timing information X is stored in advance. Set to “S v”. If a variable valve timing mechanism is not provided, the intake valve opening area S may be obtained based only on the information on the crank angle position CA.
  • the intake valve opening area is detected based on the crank angle position CA and the cam timing X.
  • the change rate ⁇ Q of the intake air amount Q is calculated as a deviation between the data of the intake air amount Q most recently detected by the air flow meter 13 and the previous (predetermined time) detected value Q— ⁇ .
  • the latest detected air amount Q is set to the previous value Q— for the calculation of ⁇ Q at the next execution.
  • the program shown in the flowchart of FIG. 4 is a program for variably setting the injection end timing Ti E using the data of the inflow intake speed V a **.
  • step 11 a piston movement speed Vp corresponding to the current engine rotation speed Ne is obtained by using a table for converting the engine rotation speed Ne into a piston movement speed Vp.
  • a map in which the intake flow rate V a * (see FIG. 6) near the intake valve corresponding to the valve opening area SV and the piston moving speed V p is stored in advance is referred to.
  • the intake flow velocity V a * near the intake valve and the inflow intake velocity V a * (intake flow velocity near the air flow meter 13) obtained by the flow chart in FIG.
  • the current intake flow velocity Va near the injection hole is determined by referring to a map storing the intake flow velocity Va near the injection hole of the injection valve 6.
  • step 14 it is determined whether or not the intake air velocity Va calculated in the vicinity of the injection hole obtained this time is a peak value (maximum value). set the angular position in the injection end timing T i E Tosuru. Steps 14 and 15 correspond to the injection end timing variable means (see Fig. 1).
  • the valve opening area obtained from the crank angle position and cam timing information, the piston movement speed VP obtained from the engine rotation speed Ne, and the change rate of the intake air amount Q ⁇ Q (intake intake speed V a * *) was used to estimate the intake air flow velocity V a near the injection hole of the fuel injection valve 6, the intake flow velocity V a of this is to shall the time the injection end timing T i E which is a peak value.
  • the intake flow velocity parameter detecting means in this embodiment is provided with an opening corresponding to the crank angle position stored in the crank angle sensor 14, the air flow meter 13 and the control unit 12. The information of the area corresponds.
  • crank angle position at which the intake flow velocity V a is maximum is determined by the valve opening area, piston movement speed V p (engine speed N e), inflow intake speed V a *
  • the rate of change ⁇ Q) is calculated each time as data corresponding to the engine operating conditions at that time, so even if the engine is in transient operation or cam timing is changed, it is stable near the injection hole.
  • the position where the intake flow velocity V a is the maximum can be set to the injection termination timing T i E in, it is possible to exhibit a high fog resistance in all operating conditions (including transient).
  • Fig. 8 shows the change in the combustion performance when the injection end time T i E is changed, as a change in the lean combustion limit. The higher the lean combustion limit, the higher the air-fuel ratio is possible. It is shown that.
  • the intake flow velocity V a near the injection hole is not required to be end timing of time having the maximum injection end timing T i E is higher the fuel It is preferable that the temperature is variably set within the range of the crank angle at which sinterability is obtained.
  • the intake flow velocity V a near the injection hole is determined using a plurality of maps.
  • a model equation of the engine intake flow is set, and the injection is performed by substituting various data into this equation.
  • the intake flow velocity Va near the hole may be obtained.
  • the injection end timing TiE set as described above is used in the fuel injection control shown in the flowchart of FIG.
  • control unit 12 shown in the flowchart of FIG. 5 corresponds to the fuel injection amount calculating means and the fuel supply control means (see FIG. 1) in the present embodiment.
  • the fuel injection amount Ti is calculated based on the engine operating conditions.
  • the injection amount Ti is converted into a crank angle Tic based on the engine speed Ne.
  • step 23 the injection end timing T i E based on the injection class link angle T ics, the injection start timing T i s (injection start crank angle for ending the fuel injection to the injection end timing T i E Position) (see Fig. 9).
  • step 24 the current crank angle is compared with the injection start timing Tis, and when the actual crank angle matches the injection start timing Tis, the routine proceeds to step 25, where the fuel injection amount Ti is reduced.
  • An injection pulse signal having a corresponding pulse width is output to the fuel injection valve 6 of the corresponding cylinder to execute fuel injection for each cylinder.
  • the fuel injection timing control apparatus and method for an internal combustion engine according to the present invention it is possible to stably obtain good fuel atomization and improve combustion performance, and particularly to an internal combustion engine for automobiles. By applying this, it is possible to provide an automobile with good exhaust properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

明 糸田 書
内燃機関の燃料噴射タイ ミ ング制御装置及び方法 技術分野
本発明は内燃機関の噴射タイ ミ ング制御装置及び方法に関し、 詳しく は、 所定の噴射終了時期に燃料噴射を終了させるように、 燃料噴射弁による燃料噴射タイ ミ ングを制御する装置 , 方法に関 する。 背景技術
この種の内燃機関としては、 例えば特開昭 5 9 — 2 9 7 3 3号 公報等に開示されるようなものがある。
これは、 気筒毎に設けられた燃料噴射弁による燃料の噴射終了 時期が、 各気筒の吸気行程直前になるように、 機関運転条件に基 づいて演算された燃料噴射量 (噴射時間) から逆算して噴射開始 時期を可変設定するものであり、 これにより、 高い燃焼安定性を 得られるようにしている。
しかしながら、 機関の吸気流は、 吸 ' 排気バルブのオーバ一ラ ップによる吸気充填加速効果により、 吸気行程前の機関運転条件 の影響や、 可変バルブタイ ミ ング機構を備えた機関においては、 該バルブタイ ミ ングの可変による影響を受ける。
このため、 定常状態に適合させて割り付けた噴射終了時期では、 過渡運転を含む全運転条件で最適な噴射終了時期に制御すること はできず、 安定的に最適な燃焼性を得られないという問題があつ た。
本発明は上記問題点に鑑みなされたものであり、 燃料噴射弁の 噴孔付近における吸気流速を検知することにより、 過渡運転を含 む全運転条件で最適な噴射終了時期を設定できる噴射タイ ミ ング 制御装置及び方法を提供し、 以て、 機関の燃焼性を改善すること を目的とする。
また、 燃料噴射弁の噴孔付近における吸気流速が最大となるク ランク角位置に燃料噴射を終了させることができるようにするこ とを目的とする。
更に、 噴射終了時期の可変範囲を限定して、 安定的な噴射終了 時期制御を可能とすることを目的とする。
また、 可変バルブタイ ミ ング機構を備える場合において、 バル ブ夕イ ミ ングの可変によって、 噴孔付近における吸気流速の検知 精度が影響されることを回避できるようにすることを目的とする。
また、 燃料噴射弁の噴孔付近における吸気流速を、 精度良く検 知できるようにするこ とを目的とする。 発明の開示
上述した課題を解決するために本発明が採用する構成の特徴は、 所定の噴射終了時期に燃料噴射が終了するように、 機関運転条件 に基づいて演算された燃料噴射量に従って燃料噴射弁を駆動制御 する構成において、 少なく とも機関回転速度, 機関吸入空気量及 び吸気バルブの開口面積をそれぞれに検出し、 該検出されたパラ メータに基づいて燃料噴射弁の噴孔付近における吸気流速を求め、 該吸気流速に従って前記所定の噴射終了時期を可変設定する構成 としたことにある。
かかる構成によると、 燃料噴射弁の噴孔付近の吸気流速の状態 が変化したときに、 かかる変化に応じて噴射終了時期を変化させ るこ とが可能となる。
こ こで、 燃料噴射弁の噴孔付近における吸気流速が所定値以上 となるクランク角位置を噴射終了時期として設定させる構成とす ることが好ま しい。
かかる構成とすれば、 吸気流速が最大となるクランク角位置が 変化しても、 かかる変化に対応して常に最大吸気流速となる時期 に噴射を終了させることが可能となる。
また、 吸気開始上死点と吸気終了下死点との間のクランク角区 間を 100 %としたときに、 前記クランク角区間の中点に对して土 40 %のクランク角範囲内に噴射終了時期を設定するようにすると 良い。
即ち、 前記クランク角範囲内であれば、 略安定的に良好な燃焼 性が得られることが実験的に求められたので、 吸気流速の検知結 果に基づいて噴射終了時期を可変設定する構成において、 噴射終 了時期の可変設定範囲を前記クランク角範囲に限定することが望 ましい。
更に、 内燃機関がバルブタイ ミ ングを可変とする可変バルブ夕 ィ ミ ング機構を備える場合には、 クランク角位置と前記可変バル ブタイ ミ ング機構におけるタイ ミ ング制御情報とに基づいて吸気 バルブの開口面積を検出するよう構成すると良い。
かかる構成によると、 可変バルブタイ ミ ング機構によって、 吸 気バルブの開タイ ミ ングが変化しても、 正しく開口面積を検出す るこ とができる。
また、 吸気バルブ付近における吸気流速と機関吸入空気量の検 出個所における吸気流速とをパラメータとして燃料噴射弁の噴孔 付近における吸気流速を検知する構成とすることが好ましい。 かかる構成によると、 燃料噴射弁の噴孔付近における吸気流速 が、 上流側の機関吸入空気量の検出個所における吸気流速と、 下 流側の吸気バルブ付近における吸気流速とから精度良く推定でき る。 図面の簡単な説明
第 1 図は本発明の基本構成を示すプロッ ク図である。
第 2図は実施例のシステム概略図である。
第 3図は各種パラメータを求める制御を示すフローチヤ一 トで める o
第 4図は噴射終了時期の設定制御を示すフローチヤ一 トである。 第 5図は噴射終了時期に基づく燃料噴射制御を示すフローチヤ ― 卜であな。
第 6図は実施例で用いた各種パラメ一夕を示す状態図である。 第 7図は吸入空気量と吸気流速との関係を示す線図である。
第 8図は噴射終了時期に対応する リ一ン燃焼限界の特性を示す 線図である。
第 9図は噴射終了制御の特性を示すタイムチヤ一 トである。 発明を実施するための最良の形態
以下に本発明の実施例を説明する。
一実施例を示す第 2図において、 内燃機関 1 にはエアク リーナ 2から吸気ダク ト 3, スロッ トル弁 4及び吸気マ二ホールド 5を 介して空気が吸入される。
吸気マ二ホールド 5の各ブランチ部には、 各気筒別に燃料噴射 弁 6が設けられている。 この燃料噴射弁 6は、 ソレノイ ドに通電 されて開弁し、 通電停止されて閉弁する電磁式燃料噴射弁であつ て、 後述するコン トロールュニッ ト 12からの噴射パルス信号によ り通電されて開弁し、 図示しない燃料ポンプから圧送されてプレ ッシャ レギユレ一夕により所定の圧力に調整された燃料を、 機関 1 に噴射供給する。
機関 1 の各燃焼室には点火栓 7が設けられていて、 これにより 火花点火して混合気を着火燃焼させる。 そして、 機関 1 からは、 排気マ二ホール ド 8, 排気ダク ト 9 , 触媒 10及びマフラ一 11を介 して排気が排出される。
燃料供給制御手段 (第 1 図参照) としてのコン トロールュニッ ト 12は、 C P U , R O M , R A M , A / D変換器及び入出力イ ン タフヱイス等を含んで構成されるマイクロコンピュータを備え、 各種のセンサからの入力信号を受け、 後述の如く燃料噴射弁 6 に よる燃料噴射量 T i を演算により設定し、 所定の噴射タイ ミ ング において前記燃料噴射量 T i に相当する噴射パルス信号を前記燃 料噴射弁 6 に出力するこ とによって、 機関への燃料供給を電子制 御する。 ,
前記各種のセンサとしては、 吸気ダク ト 3中にェアフロ一メ一 夕 13が設けられていて、 機関 1 の吸入空気量 Qに応じた信号を出 力する。
また、 クランク角センサ 14が設けられていて、 所定クランク角 毎の回転信号を出力する。 ここで、 前記回転信号の周期、 或いは、 所定時間内における発生数を計測することにより、 機関回転速度 N eを算出できる。
また、 機関 1 のゥ ォ一タジャケッ トの冷却水温度 T wを検出す る水温センサ 15が設けられている。 また、 排気マ二ホールド 8の集合部に排気中の酸素濃度を介し て機関吸入混合気の空燃比を検出する酸素センサ 16が設けられて いる。
こ こにおいて、 コ ン トロールユニッ ト 12に内蔵されたマイ ク口 コ ンピュータの C P Uは、 吸入空気量 Qと機関回転速度 N e とに 基づいて基本燃料噴射量 T pを演算する一方、 冷却水温度 T w等 の機関運転条件に応じて前記基本燃料噴射量 T pに補正を施して 最終的な燃料噴射量 T i (噴射パルス幅) を演算する。
そして、 所定の噴射終了時期 T i E に燃料噴射が終了するよう に、 前記噴射終了時期 T i E から前記燃料噴射量 T i に相当する クランク角度だけ前の角度位置を噴射開始時期 T i s として設定 し、 この噴射開始時期 T i s になったときに、 前記燃料噴射量 T i に相当するパルス幅の噴射パルス信号を燃料噴射弁 6へ出力す る (第 9図参照) 。
こ こで、 コ ン トロールユニッ ト 12によつて行われる前記噴射終 了時期 T i E の設定制御、 及び、 該噴射終了時期 T i E を用いた 噴射タイ ミ ング制御の実施例を、 第 3図〜第 5図のフローチヤ一 トに従って説明する。
第 3図のフローチヤ一 トに示すプログラムは、 吸気バルブの開 口面積を求めると共に、 吸入空気量 Qのデータから流入吸気速度 V a * * (ェアフロ一メータ 13付近における吸気流速) を計算する プログラムである。
この 3 のフローチャー トにおいて、 まず、 ステップ 1 (図中で は S 1 としてある。 以下同様) では、 クランク角センサ 14の検出 信号に基づいて求められる現在のクランク角位置のデータを 「 C A J にセッ トすると共に、 可変バルブタイ ミ ング機構を備えてい る場合には、 現在のカムタイ ミ ングを示す情報 (夕イ ミ ング制御 情報) を 「X」 にセッ トする。
そして、 次のステップ 2では、 予め前記クランク角位置 C A及 びカムタイ ミ ング情報 Xに対応する吸気バルブ開口面積 Sを記憶 したマップを参照し、 現在の吸気バルブ開口面積 Sを求め、 これ を 「 S v」 にセッ トする。 尚、 可変バルブタイ ミ ング機構を備え ない場合には、 クランク角位置 C Aの情報のみに基づいで吸気バ ルブ開口面積 Sを求めれば良い。
従って、 本実施例において、 吸気バルブ開口面積は、 クランク 角位置 C Aとカムタイ ミ ング Xとに基づいて検出される。
次のステップ 3では、 エアフローメータ 13で最新に検出された 吸入空気量 Qのデータと前回 (所定時間前) 検出値 Q— ^との偏差 として、 吸入空気量 Qの変化割合 Δ Qを演算すると共に、 次回実 行時における△ Qの演算のために今回の最新検出空気量 Qを、 前 回値 Q— にセッ トする。
次のステップ 4では、 前記空気量の変化割合△ Qを、 流入吸気 速度 V a **にセッ トする。 即ち、 吸入空気量 Qは吸気流速に相関 し (第 7図参照) 、 クランク角を 0 としたときに、 吸入空気量 Q は Q = k J V a **d 6 ( kは定数) で表されるから、 V a **= l / k ■ △ Qとなるため、 本実施例では、 △ Q二 V a **と見做して いる。
一方、 第 4図のフローチャー トに示すプログラムは、 前記流入 吸気速度 V a **のデ—夕を用いて噴射終了時期 T i E を可変設定 するためのプログラムである。
尚、 前記第 4図のフローチヤ一 トに示すコン トロ一ルュニッ ト 12のソフ トウ ア機能が、 本実施例における吸気流速検知手段及 び噴射終了時期可変手段 (第 1図参照) に相当する。
まず、 ステップ 1 1では、 機関回転速度 N eをピス ト ン移動速度 V pに変換するテーブルを用い、 現在の機関回転速度 N eに対応 するピス ト ン移動速度 V pを求める。
次のステツプ 12では、 予め前記バルブ開口面積 S Vとピス ト ン 移動速度 V p とに対応する吸気バルブ付近での吸気流速 V a * ( 第 6図参照) を記憶したマップを参照し、 現在のバルブ開口面積 S V及びビス トン移動速度 V pに対応する吸気バルブ付近の吸気 流速 V a * (吸気バルブ付近における吸入負圧に相当するパラメ —タ) を求める。
次のステップ 13では、 前記吸気バルブ付近の吸気流速 V a * と、 前記第 3図のフローチャー トで求めた流入吸気速度 V a * * (エア フローメ一タ 13付近での吸気流速) とに対応させて噴射弁 6の噴 孔付近における吸気流速 V aを記憶したマップを参照し、 現在の 噴孔付近での吸気流速 V aを求める。
そして、 ステップ 14では、 今回求められた噴孔付近での吸気流 速 V aがピーク値 (最大値) であるか否かを判別し、 ピーク値で あるときには、 ステップ 15へ進み、 現在のクランク角位置を噴射 終了時期 T i E にセッ トする。 このステップ 14, 15の部分が噴射 終了時期可変手段 (第 1 図参照) に相当する。
即ち、 クランク角位置及びカムタイ ミ ングの情報から求めたバ ルブ開口面積、 機関回転速度 N eから求めたピス ト ン移動速度 V P、 吸入空気量 Qの変化割合 Δ Q (流入吸気速度 V a * * ) を用い て、 燃料噴射弁 6の噴孔付近における吸気流速 V aを推定し、 こ の吸気流速 V aがピーク値となる時点を噴射終了時期 T i E とす るものである。 尚、 本実施例における吸気流速パラメータ検出手段 (第 1 図参 照) は、 前述のように、 クランク角センサ 14, エアフローメータ 13及びコン トロールュニッ ト 12に記憶されたクランク角位置に対 応する開口面積の情報が相当する。
このようにして、 噴孔付近における吸気流速 V aが最大となる クランク角位置を噴射終了時期 T i E とすれば、 燃料噴霧を速い 吸気流に乗せてシリ ンダ内に吸引させ、 燃料を良好に霧化させる ことが可能となる。
然も、 前記吸気流速 V aが最大となるクランク角位置は、 バル ブ開口面積、 ピス ト ン移動速度 V p (機関回転速度 N e ) 、 流入 吸気速度 V a * * (吸入空気量 Qの変化割合 Δ Q ) に基づいてその ときの機関運転条件に対応するデータとしてその都度演算される から、 機関が過渡運転されたり、 カムタイ ミ ングの変更などがあ つても、 安定的に噴孔付近における吸気流速 V aが最大となる位 置を噴射終了時期 T i E に設定でき、 全運転条件 (過渡を含む) で高い霧化性を発揮させることが可能となる。
第 8図は、 噴射終了時期 T i E を変化させた場合の燃焼性能の 変化を、 リーン燃焼限界の変化として示すものであり、 リーン燃 焼限界が高いほど、 高い空燃比での燃焼が可能であることを示す。
この第 8図に示すように、 吸気開始上死点と吸気終了下死点と の間のクランク角区間を 100 %としたときに、 前記クランク角区 間の中点に対して ± 40%のクランク角範囲内を噴射終了時期 T i E とすれば、 比較的良好な燃焼性が得られることが実験から求めら れ 7こ o
従って、 必ずしも噴孔付近の吸気流速 V aが最大となる時期を 終了時期とする必要はないが、 噴射終了時期 T i E は前記高い燃 焼性が得られるクランク角範囲内で可変設定されるようにすると 良い。
尚、 上記実施例では、 複数のマップを用いて噴孔付近における 吸気流速 V aを求めるようにしたが、 機関吸気流のモデル式を設 定し、 この式に各種データを代入することにより噴孔付近におけ る吸気流速 V aを求めるようにしても良い。
上記のようにして設定された噴射終了時期 T i E は、 第 5図の フローチャー トに示す燃料噴射制御において用いられる。
尚、 第 5図のフローチャー トに示すコン トロールュニッ ト 12の ソフ トウェア機能が、 本実施例における燃料噴射量演算手段及び 燃料供給制御手段 (第 1 図参照) に相当する。
第 5図のフローチャー トにおいて、 まず、 ステップ 21では、 機 関運転条件に基づく燃料噴射量 T i (噴射パルス幅) の演算を行 わせる。
次のステツプ 22では、 前記噴射量 T i を機関回転速度 N eに基 づいてクランク角 T i cに換算する。
そして、 ステップ 23では、 噴射終了時期 T i E と前記噴射クラ ンク角度 T i c とに基づいて、 噴射終了時期 T i E に燃料噴射を 終了させるための噴射開始時期 T i s (噴射開始クランク角位置) を設定する (第 9図参照) 。
次のステツプ 24では、 現在のクランク角と前記噴射開始時期 T i s とを比較し、 噴射開始時期 T i S に実際のクランク角度が一 致したときには、 ステップ 25へ進み、 燃料噴射量 T i に相当する パルス幅の噴射パルス信号を、 対応する気筒の燃料噴射弁 6 に対 して出力して、 各気筒別の燃料噴射を実行させる。 産業上の利用可能性
以上のように、 本発明にかかる内燃機関の燃料噴射タイ ミ ング 制御装置及び方法によると、 良好な燃料霧化性を安定的に得て燃 焼性能を改善でき、 特に自動車用の内燃機関に適用することで、 排気性状の良好な自動車を提供できる。

Claims

言青求 の 範 囲
1 . 機関運転条件に基づいて燃料噴射量を演算する燃料噴射量 演算手段と、
所定の噴射終了時期に燃料噴射が終了するように前記燃料噴射 量に従って燃料噴射弁を駆動制御する燃料供給制御手段と、
吸気流速に相関するパラメータとして少なく とも機関回転速度, 機関吸入空気量及び吸気バルブの開口面積をそれぞれに検出する 吸気流速パラメータ検出手段と、
該吸気流速パラメ一夕検出手段で検出された前記パラメ一夕に 基づいて前記燃料噴射弁の噴孔付近における吸気流速を求める吸 気流速検知手段と、
該吸気流速検知手段で求められた吸気流速に基づいて前記燃料 供給制御手段における所定の噴射終了時期を可変設定する噴射終 了時期可変手段と、
を含んで構成されたことを特徴とする内燃機関の燃料噴射タイ ミ ング制御装置。
2 . 前記噴射終了時期設定手段が、 燃料噴射弁の噴孔付近にお ける吸気流速が所定値以上となるクランク角位置を噴射終了時期 として設定することを特徴とするク レーム 1記載の内燃機関の燃 料噴射タイ ミ ング制御装置。
3 . 前記噴射終了時期設定手段が、 吸気開始上死点と吸気終了 下死点との間のクランク角区間を 1 00 %としたときに、 前記クラ ンク角区間の中点に対して ± 40 %のクランク角範囲内に噴射終了 時期を設定することを特徴とするク レーム 1記載の内燃機関の燃 料噴射タイ ミ ング制御装置。
4 . 内燃機関がバルブタイ ミ ングを可変とする可変バルブタイ ミ ング機構を備え、 前記吸気流速パラメータ検出手段が、 クラン ク角位置と前記可変バルブタイ ミ ング機構におけるタイ ミ ング制 御情報とに基づいて吸気バルブの開口面積を検出することを特徴 とするク レーム 1記載の内燃機関の燃料噴射タイ ミ ング制御装置。
5 . 前記吸気流速検知手段が、 吸気バルブ付近における吸気流 速と機関吸入空気量の検出個所における吸気流速とをパラメ一夕 として燃料噴射弁の噴孔付近における吸気流速を検知することを 特徴とするク レーム 1記載の内燃機関の燃料噴射タイ ミ ング制御
6 . 機関運転条件に基づいて燃料噴射量を演算するステツプと. 所定の噴射終了時期に燃料噴射が終了するように前記燃料噴射 量に従って燃料噴射弁を駆動制御するステツプと、
吸気流速に相関するパラメータとして少なく とも機関回転速度, 機関吸入空気量及び吸気バルブの開口面積をそれぞれに検出する ステップと、
前記各パラメータに基づいて前記燃料噴射弁の噴孔付近におけ る吸気流速を求めるステップと、
前記吸気流速に基づいて前記所定の噴射終了時期を可変設定す るステップと、
を含んで構成されたことを特徵とする内燃機関の燃料噴射タイ ミ ング制御方法。
7 . 前記噴射終了時期を可変設定するステップが、 燃料噴射弁 の噴孔付近における吸気流速が所定値以上となるクランク角位置 を噴射終了時期として設定することを特徴とするク レーム 6記載 の内燃機関の燃料噴射タイ ミ ング制御方法。
8 . 前記噴射終了時期を可変設定するステップが、 吸気開始上 死点と吸気終了下死点との間のクランク角区間を 100 %としたと きに、 前記クランク角区間の中点に対して ± 40 %のクランク角範 囲内に噴射終了時期を設定することを特徴とするク レーム 6記載 の内燃機関の燃料噴射タイ ミ ング制御方法。
9 . 内燃機関がバルブタイ ミ ングを可変とする可変バルブタイ ミ ング機構を備え、 前記吸気流速に相関するパラメータを検出す るステツプが、 クランク角位置と前記可変バルブタイ ミ,ング機構 におけるタイ ミ ング制御情報とに基づいて吸気バルブの開口面積 を検出することを特徴とするクレーム 6記載の内燃機関の燃料噴 射夕イ ミ ング制御方法。
10. 前記吸気流速を求めるステップが、 吸気バルブ付近におけ る吸気流速と機関吸入空気量の検出個所における吸気流速とをパ ラメータとして燃料噴射弁の噴孔付近における吸気流速を検知す ることを特徴とするク レーム 6記載の内燃機関の燃料噴射タイ ミ ング制御方法。
PCT/JP1993/000829 1992-06-18 1993-06-18 内燃機関の燃料噴射タイミング制御装置及び方法 WO2004099597A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/193,133 US5427069A (en) 1992-06-18 1993-06-18 Apparatus and method for fuel injection timing control of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4159851A JP2829891B2 (ja) 1992-06-18 1992-06-18 内燃機関の燃料噴射タイミング制御装置
JP4/159851 1992-06-18

Publications (1)

Publication Number Publication Date
WO2004099597A1 true WO2004099597A1 (ja) 2004-11-18

Family

ID=15702624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000829 WO2004099597A1 (ja) 1992-06-18 1993-06-18 内燃機関の燃料噴射タイミング制御装置及び方法

Country Status (3)

Country Link
US (1) US5427069A (ja)
JP (1) JP2829891B2 (ja)
WO (1) WO2004099597A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543337B2 (ja) * 1993-07-23 2004-07-14 日産自動車株式会社 信号処理装置
AUPN561095A0 (en) * 1995-09-25 1995-10-19 Orbital Engine Company (Australia) Proprietary Limited Engine control strategy
US6062201A (en) * 1997-05-13 2000-05-16 Denso Corporation Fuel injection control for internal combustion engine
US6425367B1 (en) * 1999-09-17 2002-07-30 Nissan Motor Co., Ltd. Compression self-ignition gasoline internal combustion engine
AUPR387701A0 (en) * 2001-03-21 2001-04-12 Infamed Limited Improved spacer device
JP2002285895A (ja) * 2001-03-26 2002-10-03 Nissan Motor Co Ltd 内燃機関
US7448369B2 (en) * 2006-10-12 2008-11-11 Honda Motor Co., Ltd. Method for controlling a fuel injector
JP2010095080A (ja) 2008-10-15 2010-04-30 Tokai Rika Co Ltd プリテンショナ
DE102009028798A1 (de) * 2009-08-21 2011-02-24 Robert Bosch Gmbh Verfahren zum Durchführen einer Saugrohreinspritzung
JP6227946B2 (ja) * 2013-09-18 2017-11-08 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP6328289B1 (ja) * 2017-03-29 2018-05-23 三菱電機株式会社 内燃機関の燃料噴射制御装置
JP6960370B2 (ja) * 2018-04-19 2021-11-05 日立Astemo株式会社 内燃機関の燃料噴射制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128930A (ja) * 1983-01-11 1984-07-25 Nissan Motor Co Ltd 内燃機関の燃料噴射時期制御装置
JPH033941A (ja) * 1989-05-31 1991-01-10 Mazda Motor Corp エンジンの燃料噴射装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929733A (ja) * 1982-08-11 1984-02-17 Toyota Motor Corp 内燃機関の電子制御燃料噴射方法
JP2936749B2 (ja) * 1991-02-28 1999-08-23 株式会社日立製作所 電子制御燃料噴射装置
US5211147A (en) * 1991-04-15 1993-05-18 Ward Michael A V Reverse stratified, ignition controlled, emissions best timing lean burn engine
CA2077068C (en) * 1991-10-03 1997-03-25 Ken Ogawa Control system for internal combustion engines
JPH05163974A (ja) * 1991-12-12 1993-06-29 Yamaha Motor Co Ltd 内燃機関の燃料噴射制御装置
JP2755018B2 (ja) * 1992-02-28 1998-05-20 三菱自動車工業株式会社 吸排気弁停止機構付きエンジンの吸気量算出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128930A (ja) * 1983-01-11 1984-07-25 Nissan Motor Co Ltd 内燃機関の燃料噴射時期制御装置
JPH033941A (ja) * 1989-05-31 1991-01-10 Mazda Motor Corp エンジンの燃料噴射装置

Also Published As

Publication number Publication date
JPH062600A (ja) 1994-01-11
JP2829891B2 (ja) 1998-12-02
US5427069A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
JP4683573B2 (ja) 内燃機関を運転するための方法
CN102135045B (zh) 柴油发动机中的适应性进气氧气估计
JPH051837U (ja) 筒内直噴式エンジンの燃料噴射制御装置
US9194322B2 (en) Control device of an engine
US7178494B2 (en) Variable valve timing controller for internal combustion engine
WO2004099597A1 (ja) 内燃機関の燃料噴射タイミング制御装置及び方法
JPH01244138A (ja) 自動車用エンジンの燃料噴射制御装置
JP3314294B2 (ja) 内燃機関の制御装置
JP2000002157A (ja) 電子機関制御装置
JPWO2003038262A1 (ja) 4ストロークエンジンの大気圧検出装置及び方法
JPH1122515A (ja) 機関トルク算出装置
US20010047795A1 (en) Fuel injection control system for internal combustion engine
JP4100806B2 (ja) 筒内噴射式内燃機関の制御装置
US4787358A (en) Fuel supply control system for an engine
US6173698B1 (en) Closed loop exhaust gas sensor fuel control audited by dynamic crankshaft measurements
JPH09256886A (ja) 直噴式エンジンの燃料噴射制御装置
JPH09287510A (ja) 内燃機関の空燃比制御装置
JP4000972B2 (ja) 内燃機関の筒内ガス状態取得装置
JP3756366B2 (ja) 内燃機関の制御装置
JP3728844B2 (ja) エンジンの空気量検出装置
CN103492706B (zh) 内燃机的点火定时控制装置
JP4529306B2 (ja) エンジンの実トルク算出装置
JP2003083126A (ja) 内燃機関の燃料噴射制御装置
JPH01247753A (ja) 排気ガス再循環装置
JPH0710048Y2 (ja) 内燃機関の燃料供給制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08193133

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): US