WO2004096847A1 - IMPORTIN-α MIT INAKTIVIERTER AUTOINHIBITORISCHER DOMÄNE ZUR DIAGNOSE - Google Patents

IMPORTIN-α MIT INAKTIVIERTER AUTOINHIBITORISCHER DOMÄNE ZUR DIAGNOSE Download PDF

Info

Publication number
WO2004096847A1
WO2004096847A1 PCT/EP2004/004335 EP2004004335W WO2004096847A1 WO 2004096847 A1 WO2004096847 A1 WO 2004096847A1 EP 2004004335 W EP2004004335 W EP 2004004335W WO 2004096847 A1 WO2004096847 A1 WO 2004096847A1
Authority
WO
WIPO (PCT)
Prior art keywords
importin
nucleic acid
variant
acid molecule
proteins
Prior art date
Application number
PCT/EP2004/004335
Other languages
English (en)
French (fr)
Inventor
Michael Meisterernst
Erik Blazek
Original Assignee
Gsf-Forschungszentrum Für Umwelt Und Gesundheit, Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gsf-Forschungszentrum Für Umwelt Und Gesundheit, Gmbh filed Critical Gsf-Forschungszentrum Für Umwelt Und Gesundheit, Gmbh
Publication of WO2004096847A1 publication Critical patent/WO2004096847A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/23Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a GST-tag

Definitions

  • the present invention relates to a variant of Importin- ⁇ (preferably Importin- ⁇ - ⁇ N) in which the auto-inhibitory domain of Importin- ⁇ is inactivated, preferably by deletion, and a nucleic acid molecule encoding this variant.
  • the present invention relates to vectors containing these nucleic acid molecules.
  • the present invention relates to diagnostic methods in which Importin- ⁇ variants according to the invention are used and with which, for example, diseases associated with an altered nuclear proteome can be detected.
  • Genetic diagnostics currently include the detection of infectious diseases, cancer screening, a series of transplant analyzes to avoid rejection reactions, forensic analysis, the detection of hereditary diseases, etc. Genetic tests are already available for 500 of the 7,000 known hereditary diseases. Diagnostics can be increased by determining a gene expression profile (e.g. on the mRNA level using so-called DNA chips) or also on the protein level (e.g. two-dimensional ELISA, esters blot etc.), with the over- / under-expression of a large number of genes is analyzed and then displayed in a profile. The representation of only proteins in the cell nucleus (nuclear proteome) or their different profiles depending on certain diseases could also be of diagnostic interest. Unfortunately, there are so far no convincing options for "profiling" restricted to core proteins.
  • the invention is therefore essentially based on the technical problem of providing diagnostic means which permit direct diagnosis of the nuclear proteome.
  • Importin- ⁇ and Importin-ß are responsible for the majority of the nuclear import processes in eukaryotic cells.
  • Importin- ⁇ binds to the so-called nuclear localization sequences (NLS) of the nuclear proteins, while Importin-ß mediates the transport through the nuclear pore complex (NPC).
  • Importin- ⁇ has its own NLS sequence as part of an auto-inhibitory domain that blocks its NLS binding site for core proteins. Binding of this domain to Importin-ß removes the blockade and the NLS of a core protein can be bound with high affinity to form a trimeric complex. The reverse process then takes place in the cell nucleus: Importin-ß dissociates from the complex by binding to RanGTP, with the consequence that the remaining complex of importin- ⁇ and the core protein does not remain stable, so that the core protein is then in free form.
  • a large number of basic regulatory processes in a eukaryotic cell are based on the precisely regulated nuclear import of certain signal proteins.
  • External signals such as the binding of a growth factor to its receptor on the cell surface, can influence the transcription of target genes in the nucleus via a cascade of protein-protein interactions.
  • the core localization sequence of corresponding proteins is not accessible to the importin- ⁇ or is compensated for by a cytoplasmic inhibitor (examples: MAP kinase, NF-kappaB, protein kinase A, STAT).
  • a cytoplasmic inhibitor examples: MAP kinase, NF-kappaB, protein kinase A, STAT.
  • the tumor suppressors BRCAl breast cancer
  • VHL kidney cell cancer
  • p53 p53
  • the signaling pathway of the transcription factor NF-kappaB which includes a core import process, plays a role in a variety of human diseases, for example inflammation, asthma, atherosclerosis, arthritis and cancer (Garg and Aggarwal, Leukemia 16 (2002), 1053-1068).
  • the Importin- ⁇ variant according to the invention can therefore be used as a general tool for characterizing cells and thus has general diagnostic potential, e.g. for the diagnosis of diseases which are associated with a disturbed distribution of nuclear proteins between the cytoplasm and the cell nucleus or which have a nuclear protein profile which deviates from the normal state.
  • one embodiment of the present invention relates to a nucleic acid molecule that contains a variant of a protein encodes a biological activity of human importin- ⁇ , which is characterized in that the nucleic acid sequence of the nucleic acid molecule has a mutation relative to the nucleic acid sequence encoding the native protein, which leads to inactivation of the auto-inhibitory domain of human importin- ⁇ in the variant.
  • the importin- ⁇ is preferably human importin- ⁇ , more preferably human importin- ⁇ -1, the amino acid sequence of which is described, for example, in O'Neill and Palese, Virology 206 (1) (1995), 116-125.
  • protein with a biological activity of human Importin- ⁇ refers to any protein that contains at least one of the biological Has properties of Importin- ⁇ -1, at least the ability to specifically bind to the NLS of the core proteins.
  • variant of Importin- ⁇ refers to any form of Importin- ⁇ which has been changed compared to the native form in such a way that the auto-inhibitory domain is biologically inactive, ie the NLS binding site of Importin- ⁇ can no longer be blocked become. This is preferably achieved by changing amino acid (s) within the auto-inhibitory domain accordingly. This can be done by the targeted insertion of point mutations into the Importin- ⁇ DNA (see regarding DNA sequence and amino acid sequence O'Neill and Palese, Virology 206 (1) (1995), 116-125; Accession-No.: GI: 22043734 ) for example using the polymerase chain reaction.
  • any desired mutation in the amino acid sequence can be generated in a targeted manner.
  • the inactivation of the autoinhibitory domain is preferably carried out by deleting it in whole or in part. Most preferred is a complete deletion comprising the amino acid sequence from position 1 to 61 (Importin- ⁇ -
  • the Importin- ⁇ variant according to the invention can, in addition to these changes with respect to the native form, have further changes, ie with respect to the native form, deletions, additions and / or exchanges of one or more amino acids and / or (a) modified amino acid (s) or modified oligosaccharide side chains, their biological activity is essentially retained.
  • the exchanges preferably include "conservative" exchanges of amino acid residues, ie exchanges for biologically similar residues, for example the substitution of a hydrophobic residue (for example isoleucine, valine, leucine, methionine) for another hydrophobic residue, or the substitution of one polar residue for another polar residue (eg arginine against lysine, glutamic acid against aspartic acid etc.)
  • a hydrophobic residue for example isoleucine, valine, leucine, methionine
  • one polar residue eg arginine against lysine, glutamic acid against aspartic acid etc.
  • Deletions can lead to the generation of molecules which are significantly smaller in size (fragments), ie which, for example, lack amino acids at the N or C terminus.
  • fragments ie which, for example, lack amino acids at the N or C terminus.
  • the above variants also relate to Importin- ⁇ variants which have a similar or better biological activity
  • nucleic acid molecules according to the invention can also be inserted into a vector.
  • General methods known in the art can be used to construct expression vectors containing the DNA sequences of the invention and suitable control sequences.
  • the present invention also includes vectors containing these nucleic acid molecules.
  • vector refers to a plasmid (eg pUC18, pBR322, pBlueScript), a virus or another suitable vehicle.
  • the nucleic acid molecule according to the invention is functionally linked in the vector to regulatory elements which allow its expression in prokaryotic or eukaryotic host cells.
  • such vectors typically contain an origin of replication and specific genes which allow the phenotypic selection of a transformed host cell.
  • the regulatory elements for expression in prokaryotes include the lac, trp promoter or T7 promoter, and for expression in eukaryotes the A0X1 or GALl promoter in yeast, and the CMV, SV40 , RVS-40 promoter, CMV or SV40 enhancer for expression in animal cells.
  • suitable promoters are the metallothionein I and the polyhedrin promoter.
  • Suitable vectors include, for example, T7-based expression vectors for expression in bacteria (Rosenberg et al., Gene 56 (1987), 125, pMSXND for expression in mammalian cells (Lee and Nathans, J. Biol. Chem. 263 (1988), 3521, and baculovirus-derived vectors for expression in insect cells.
  • the nucleic acid sequence according to the invention is present in the vector in such a way that a fusion protein is encoded which contains an importin- ⁇ - Variant and a fusion partner (polypeptide or peptide) comprises, the fusion partner is linked at the N or C terminus with the Importin- ⁇ variant via a peptide bond.
  • the fusion partner is a detectable polypeptide / peptide, e.g. Glutathione-S-transferase (GST), strep-tag or hemagglutinin (HA) -tag or a polypeptide / peptide that allows the enrichment / isolation of the complexes from the importin- ⁇ variant and core proteins, e.g. Glutathione-S-Transferase (GST), Hexahistidine-Tag, Calmodulin Binding Protein (CBP) -tag or Protein A-Tag, with Glutathione-S-Transferase being preferred.
  • GST Glutathione-S-transferase
  • CBP Calmodulin Binding Protein
  • the present invention also relates to host cells containing the vectors described above.
  • host cells include bacteria, yeast, insect and animal cells, preferably mammalian cells. Methods for transforming these host cells, for phenotypically selecting transformants and for expressing the nucleic acid molecules according to the invention using the vectors described above are known in the art.
  • the present invention also relates to the importin- ⁇ variants (e.g. importin- ⁇ - ⁇ N) and fusion proteins encoded by the above nucleic acid molecules or vectors containing them.
  • importin- ⁇ variants e.g. importin- ⁇ - ⁇ N
  • fusion proteins encoded by the above nucleic acid molecules or vectors containing them.
  • the present invention also relates to a method for producing the importin- ⁇ variant (or the fusion protein) according to the invention and obtaining the protein from the culture.
  • Suitable methods for the recombinant production of proteins are generally known (see for example Holmgren, Annu.Rev.Biochem. 54 (1985), 237; LaVallie et al., Bio / Technology, 11 (1993), 187; Wong, Curr.Opin. Biotech. 6 (1995), 517; Romanos, Curr.Opin.Biotech. 6 (1995), 527; Williams et al., Curr. Opin. Biotech. 6 (1995), 538; and Davies, Curr. Opin Biotech . 6 (1995), 543).
  • suitable Cleaning procedures e.g. preparative
  • the present invention relates to an importin- ⁇ variant according to the invention, preferably as a fusion protein with a detectable or specifically enrichable / isolable partner.
  • the proofs that can be carried out in this way include: (a) characterization of the protein composition, (b) analytical detection of proteins which contain a nuclear localization signal, (c) target identification (differential protein localization in the nucleus) and (d) direct diagnosis of the nuclear proteome.
  • the Importin- ⁇ variant according to the invention thus allows the diagnosis of diseases which are associated with a changed nuclear proteome or a changed nuclear protein expression profile.
  • the diagnosis usually comprises the following steps: (a) obtaining a cell sample from the patient, and (b) bringing the cell sample thus obtained into contact with the importin- ⁇ variant according to the invention described above as a probe under conditions which bind the importin- ⁇ - Allow variation in core proteins.
  • This detection can be performed using standard techniques known to those skilled in the art. These are also known cell disruption processes which allow the isolation of the proteins in such a way that they can be brought into contact with the Importin- ⁇ variants.
  • the detection of the bound Importin- ⁇ variant and thus the detection of the bound core proteins can be carried out using customary methods, preferably using Western blot.
  • the core proteins thus analyzed or represented or the core protein profile thus determined can be compared with a sample obtained from a control tissue of the patient or from one or more control persons.
  • the present invention further relates to kits for carrying out the diagnostic methods according to the invention which contain an importin- ⁇ variant according to the invention, optionally in combination with a suitable detection means.
  • the importin- ⁇ variant contained in the kit can be immobilized on a suitable carrier.
  • the present invention relates to the use of the Importin- ⁇ variant according to the invention for the identification or purification of NLS-bearing proteins or for the labeling of core proteins (for example in the “proteomics” area).
  • the person skilled in the art knows suitable techniques for carrying out these methods, the identification of Core proteins are also described in Example 3.
  • Figure 1 Schematic representation of the construction of the GST-Importin- ⁇ - ⁇ N coding vector for heterologous expression of Importin- ⁇ - ⁇ N in E. coli
  • the fusion gene from glutathione-S-transferase and the coding sequence of amino acids 62 to 538 from Importin- ⁇ is under the control of the chemically inducible tac promoter. It also contains sequences for propagation in E. coli (ori) and ampicillin selection in culture (Amp r ).
  • Figure 2 Amino acid sequence of Importin- ⁇ and Importin- ⁇ -AN printed in bold: Importin-ß-binding or auto-inhibitory domain. Highlighted in gray: N-terminal deletion in Importin- ⁇ - ⁇ N.
  • Figure 3 Far Western blot of a core extract from Jurkat T-Lvmphozvten
  • the position of the auto-inhibitory domain is given differently in the literature with the amino acid positions 10-50 and 23-49.
  • the internal NLS between the residues Arg25 and Arg28 is essential for the function of the domain.
  • the deletion in Importin ⁇ - ⁇ N from position 1-61 encompasses the regions mentioned.
  • Six negatively charged amino acids between Glu54 and Glu60 were also deleted in Importin ⁇ - ⁇ N to avoid unspecific electrostatic interactions of the protein.
  • the nucleic acid fragment coding for amino acids 62-538 was produced using the polymerase chain reaction (PCR).
  • the sequence of the primer oligonucleotides (KPNAfwd: 5 '-ATA TCG ATC GCA TAT GTC AGA TGG AGG CTT TCA-3'; KPNArev: 5 '-AGC TGG ATC CTC AAA GCT GGA AAC CTT CC-3') was chosen so that with the Sequence from codon 62 or until codon 538 could hybridize.
  • a vector derived from the commercially available construct pGEX-2T (Amersha Biosciences, Freiburg, Germany) was used to clone the Importin- ⁇ - ⁇ N fragment, the difference being limited to the presence of the restriction sites for the enzymes Itfel and BamHI.
  • the importin- ⁇ - ⁇ N fragment was amplified from the corresponding cDNA using the polymerase chain reaction (PCR).
  • the necessary primer oligonucleotides contained 5 'and 3' end of the coding sequence for Importin ⁇ - ⁇ N and one of the above. Restriction sites.
  • the PCR product was ligated into the vector using standard procedures.
  • the importin ⁇ - ⁇ N coding sequence is in the same reading frame as the coding sequence for gluthathione-S-transferase and under the control of the inducible tac promoter.
  • the pGEX import into ⁇ - ⁇ N DNA was transformed into E.coli DH5 ⁇ . Expression of the fusion protein was induced in a large culture of the bacteria with IPTG. After expression of the protein, it was bound from the bacterial lysate to immobilized glutathione (glutathione-Sepharose) and extracted with dissolved glutathione after washing steps.
  • Nuclear proteins were obtained by osmolysis of Jurkat T lymphocytes and subsequent high salt extraction of the cell nuclei (Wells et al., J.Biol.Chem. 276 (3) (2001), 20482-90). The extracts were separated in different amounts by SDS-polyacrylamide gel electrophoresis according to molecular weight and transferred to a PVDF membrane. After unspecific binding was saturated with bovine serum albumin, GST-Importin- ⁇ - ⁇ N was applied in a concentration of 1.5 ⁇ g / ml.
  • the protein complexes were detected essentially according to a Western blot standard protocol by sequential incubation with the antibodies anti-GST (rat IgG) and anti-rat IgG alkaline phosphatase (Promega GmbH, Mannheim, Germany; Amersham Biosciences) and by the BCIP / NBT color reaction.
  • anti-GST rat IgG
  • anti-rat IgG alkaline phosphatase Promega GmbH, Mannheim, Germany; Amersham Biosciences

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Beschrieben wird eine Variante von Importin-α, bei der die autoinhibitorische Domäne des Importin-α inaktiviert ist, vorzugsweise durch Deletion, sowie ein diese Variante kodierendes Nukleinsäuremolekül. Ausserdem werden diese Nukleinsäuremoleküle enthaltende Vektoren beschrieben. Schliesslich werden Diagnoseverfahren beschrieben, bei denen eine erfindungsgemässe Importin-α-Variante verwendet wird und mit denen sich beispielsweise mit einem veränderten Kernproteom in Zusammenhang stehende Erkrankungen diagnostizieren lassen.

Description

Importin-α mit inaktivierter autoinhibitorischer Domäne zur
Diagnose
Die vorliegende Erfindung betrifft eine Variante von Importin-α (vorzugsweise Importin-α-ΔN) , bei der die autoinhibitorische Domäne des Importin-α inaktiviert ist, vorzugsweise durch Deletion, sowie ein diese Variante kodierendes Nukleinsauremolekul. Außerdem betrifft die vorliegende Erfindung diese Nukleinsäuremoleküle enthaltende Vektoren. Schließlich betrifft die vorliegende Erfindung Diagnoseverfahren, bei denen erfindungsgemäße Importin-α-Varianten verwendet werden und mit denen sich beispielsweise mit einem veränderten Kernproteom in Zusammenhang stehende Erkrankungen nachweisen lassen.
Die Gendiagnostik umfasst derzeit den Nachweis von Infektionskrankheiten, die Krebsvorsorge, eine Reihe von Transplantationsanalysen zur Vermeidung von Abstoßungsreaktionen, die gerichtsmedizinische Analytik, den Nachweis von Erbkrankheiten etc. So sind bereits für 500 der 7000 bekannten Erbkrankheiten Gentests verfügbar. Eine Steigerung der Diagnostik kann durch die Ermittlung eines Genexpressionsprofils (z.B. auf mRNA-Ebene mittels sogenannter DNA-Chips) oder auch auf Proteineebene (z.B. zweidimensionaler ELISA, estern-Blot etc.) erreicht werden, wobei die Über- /Unterexpression einer Vielzahl von Genen analysiert und dann in einem Profil dargestellt wird. Von diagnostischem Interesse könnte auch die Darstellung ausschließlich von im Zellkern befindlichen Proteinen (Kernproteom) sein bzw. deren unterschiedliches Profil in Abhängigkeit von bestimmten Erkrankungen. Leider gibt es bisher keine überzeugenden Möglichkeiten, ein auf Kernproteine beschränktes „Profiling" durchzuführen.
Somit liegt der Erfindung im wesentlichen das technische Problem zugrunde, Diagnosemittel bereitzustellen, die eine direkte Diagnostik des Kernproteoms erlauben.
Die Lösung dieses technischen Problems wurde durch die Bereitstellung der in den Patentansprüchen gekennzeichneten Ausführungsformen erreicht.
Es wurde bei den zu der vorliegenden Erfindung führenden Experimenten gefunden, dass humanes Importin-α mit einer Deletion der autoinhibitorischen Domäne (Importin-α-&N) konstitutiv und spezifisch an Kernproteine bindet, somit zur direkten Diagnostik des Kernproteoms bzw. allgemein zum analytischen Nachweis von Kernproteinen oder zur Targetidentifizierung (differentielle Protein-Lokalisation im Kern) geeignet ist.
Für die Mehrheit der Kernimportprozesse in eukaryontisehen Zellen ist ein Komplex aus Importin-α und Importin-ß verantwortlich. Dabei bindet Importin-α an die sogenannten Kernlokalisationssequenzen (NLS) der Kernproteine, während Importin-ß den Transport durch den Kernporenkomplex (NPC) vermittelt. Importin-α besitzt eine eigene NLS-Sequenz als Bestandteil einer autoinhibitorischen Domäne, die seine NLS- Bindungsstelle für Kernproteine blockiert. Durch die Bindung dieser Domäne an Importin-ß wird die Blockade aufgehoben und die NLS eines Kernproteins kann mit hoher Affinität unter Bildung eines trimeren Komplexes gebunden werden. Im Zellkern findet dann der umgekehrte Prozess statt: Importin-ß dissoziiert aus dem Komplex durch Bindung an RanGTP, mit der Konsequenz, dass auch der verbleibende Komplex aus Importin-α und dem Kernprotein nicht stabil bleibt, somit dann das Kernprotein in freier Form vorliegt.
Im sogenannten „Far Western Blot", bei dem anstelle der Interaktion eines Antikörpers mit einem Antigen die interaktion des Importin-α mit NLS analysiert wurde, konnte gezeigt werden, dass ein erfindungsgemäßes Importin-α-^N, das mit einem nachweisbaren Protein (Glutathion-S-Transferase; GST) fusioniert war, an Kernproteine bindet, jedoch nur eine Minderheit der in einem cytoplasmatischen Extrakt vorliegenden Proteine. Der Nachweis erfolgte über sekundäre Antikörper gegen den GST-tag oder durch direkte Markierung von Importin-α~&N) . Dieses Protein lasst sich somit zu einem sehr empfindlichen Nachweis von Kernproteinen z.B. auf Western-Blot-Membranen verwenden.
Eine Vielzahl von grundlegenden Regulationsprozessen in einer eukaryotischen Zelle beruht auf dem exakt regulierten Kernimport bestimmter Signalproteine. Äußere Signale, wie die Bindung eines Wachstumsfaktors an seinen Rezeptor auf der Zelloberfläche können so über eine Kaskade von Protein- Protein-Interaktionen die Transkription von Zielgenen im Kern beeinflussen. Bis zum Auftreten eines solchen Signals ist die Kernlokalisationssequenz entsprechender Proteine für das Importin-α nicht zugänglich oder durch einen cytoplasmatischen Inhibitor kompensiert (Beispiele: MAP-Kinase, NF-kappaB, Protein Kinase A, STAT) . Die Verteilung dieser Proteine zwischen Cytoplasma und Zellkern lässt eine Aussage über das Maß der Aktivierung der zugehörigen Signaltransduktionswege zu. So sind z.B. mindestens zehn verschiedene Tu orsuppressor- Proteine sind in durch ihre subzelluläre Lokalisation in ihrer Aktivität reguliert. Von den Tumorsuppressoren BRCAl (Brustkrebs) , VHL (Nierenzellkrebs) und p53 ist bekannt, dass sie in entsprechenden Krebszellen eine abweichende Lokalisation aufweisen. (Fabbro and Henderson, Exp. Cell Res . 282 (2003), 59-69). Der Signalweg des Transkriptionsfaktor NF- kappaB, der einen Kernimportprozess beinhaltet, spielt in einer Vielzahl von menschlichen Krankheiten eine Rolle, beispielsweise Entzündungen, Asthma, Atherosklerose, Arthritis und Krebs (Garg and Aggarwal, Leukemia 16 (2002), 1053-1068) .
Die erfindungsgemäße Importin-α-Variante kann daher als ein allgemeines Werkzeug zur Charakterisierung von Zellen Anwendung finden und hat somit generelles diagnostisches Potential, z.B. zur Diagnose von Krankheiten, die mit einer gestörten Verteilung von Kernproteinen zwischen Cytoplasma und Zellkern in Zusammenhang stehen oder ein von dem Normalzustand abweichendes Kernproteinprofil aufweisen.
Somit betrifft eine Ausführungsform der vorliegenden Erfindung ein Nukleinsauremolekul, das eine Variante eines Proteins mit einer biologischen Aktivität von humanem Importin-α kodiert, das dadurch gekennzeichnet ist, dass die Nukleinsäuresequenz des Nukleinsäuremoleküls gegenüber der das native Protein kodierenden Nukleinsäuresequenz eine Mutation aufweist, die zu einer Inaktivierung der autoinhibitorischen Domäne des humanen Importin-α bei der Variante führt. Bei dem Importin-α handelt es sich vorzugsweise um humanes Importin-α, mehr bevorzugt humanes Importin-α-1, dessen Aminosäuresequenz z.B. in O'Neill and Palese, Virology 206 (1) (1995), 116-125 beschrieben ist.
Der hier verwendete Ausdruck „Importin-α" bezieht sich sowohl auf Importin-α-1 (=Karyopherin-α-l; Gen: KPNA1) als auf andere, z.T. bereits beschriebene Typen von Importin-α (bzw. den entsprechenden Genen) , die eine nahezu gleiche Funktion wie Importin-α-1 haben, sich jedoch bezüglich der Spezifität für manche NLS unterscheiden können. Somit betrifft der hier verwendete Ausdruck "Protein mit einer biologischen Aktivität von humanem Importin-α" jedes Protein, das mindestens eine der biologischen Eigenschaften von Importin-α-1 aufweist, jedenfalls die Fähigkeit zur spezifischen Bindung an die NLS der Kernproteine .
Der hier verwendete Ausdruck "Variante von Importin-α" betrifft jede Form von Importin-α, die gegenüber der nativen Form so verändert ist, dass die autoinhibitorische Domäne biologisch inaktiv ist, d.h., die NLS-Bindungsstelle von Importin-α kann nicht mehr blockiert werden. Dies wird vorzugsweise dadurch erreicht, dass Aminosäure (n) innerhalb der autoinhibitorischen Domäne entsprechend verändert werden. Dies lässt sich durch die gezielte Einfügung von Punktmutationen in die Importin-α DNA (siehe bezüglich DNA-Sequenz und Aminosäuresequenz O'Neill and Palese, Virology 206 (1) (1995), 116-125; Accession-No. : GI:22043734) z.B. mittels der Polymerase-Kettenreaktion durchführen. Hierbei kann durch die Wahl geeigneter Oligonukleotide (Primer) mit einem oder mehreren gegenüber der Wildtyp-Sequenz veränderten Nukleotiden eine beliebige Mutation der Aminosäuresequenz gezielt erzeugt werden. Vorzugsweise erfolgt die Inaktivierung der autoinhibitorischen Domäne dadurch, dass diese ganz oder teilweise deletiert ist. Am meisten bevorzugt ist eine vollständige Deletion, die die Aminosäuresequenz von Position 1 bis 61 umfasst (Importin-α-
Die erfindungsgemäße Importin-α-Variante kann neben diesen Veränderungen gegenüber der nativen Form noch weitere Veränderungen aufweisen, d.h. gegenüber der nativen Form Deletionen, Additionen und/oder Austausche von einer oder mehreren Aminosäuren und/oder (eine) modifizierte Aminosäure (n) aufweisen oder veränderte Oligosaccharidseitenketten, wobei ihre biologische Aktivität im wesentlichen erhalten bleibt. Zu den Austauschen zählen vorzugsweise "konservative" Austausche von Aminosäureresten, d.h. Austausche gegen biologisch ähnliche Reste, z.B. die Substitution eines hydrophoben Rests (z.B. Isoleucin, Valin, Leucin, Methionin) gegen einen anderen hydrophoben Rest, oder die Substitution eines polaren Rests gegen einen anderen polaren Rest (z.B. Arginin gegen Lysin, Glutaminsäure gegen Asparaginsäure etc . ) . Deletionen können zur Erzeugung von Molekülen führen, die eine deutlich geringere Größe aufweisen (Fragmente), d.h., denen beispielsweise Aminosäuren am N- oder C-Terminus fehlen. Die vorstehenden Varianten betreffen auch Importin-α-Varianten, die im Vergleich zu der ursprünglichen Form eine ähnliche oder bessere biologische Aktivität aufweisen. Diese biologische Aktivität kann mittels der in den nachstehenden Beispielen beschriebenen Verfahren untersucht werden. Verfahren zur Erzeugung der vorstehenden Änderungen in der Aminosäuresequenz bzw. entsprechenden Nukleinsäuresequenz sind dem Fachmann bekannt und in Standardwerken der Molekularbiologie beschrieben, beispielsweise in Sambrook et al . , Molecular Cloning: A Laboratory Manual, 2. Ausgabe, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY (1989) . Der Fachmann ist auch in der Lage zu bestimmen, ob eine von einer so veränderten Nukleinsäuresequenz kodierte Importin-α- Variante die Kernlokalisationssequenz (NLS) noch spezifisch binden kann. Die erfindungsgemäßen Nukleinsäuremoleküle können auch in einen Vektor inseriert werden. Allgemeine, auf dem Fachgebiet bekannte Verfahren können zur Konstruktion von Expressionsvektoren, die die erfindungsgemäßen DNA-Sequenzen und geeignete KontrollSequenzen enthalten, verwendet werden. Zu diesen Verfahren zählen beispielsweise in vitro- Rekombinationstechniken, synthetische Verfahren, sowie in vivo- Rekombinationsverfahren, wie sie beispielsweise in Sambrook et al . , supra, beschrieben sind. Somit umfasst die vorliegende Erfindung auch diese Nukleinsäuremoleküle enthaltende Vektoren. Die Bezeichnung "Vektor" bezieht sich auf ein Plasmid (z.B. pUC18, pBR322, pBlueScript) , auf ein Virus oder ein anderes geeignetes Vehikel . In einer bevorzugten Ausführungsform ist das erfindungsgemäße Nukleinsauremolekul im Vektor mit regulatorischen Elementen funktioneil verknüpft, die dessen Expression in prokaryotisehen oder eukaryotischen Wirtszellen erlauben. Solche Vektoren enthalten neben den regulatorischen Elementen, beispielsweise einem Promotor, typischerweise einen Replikationsursprung und spezifische Gene, die die phänotypische Selektion einer transformierten Wirtszelle erlauben. Zu den regulatorischen Elementen für die Expression in Prokaryonten, beispielsweise E.coli, zählen der lac-, trp-Promotor oder T7-Promotor, und für die Expression in Eukaryonten der A0X1- oder GALl-Promotor in Hefe, und der CMV- , SV40-, RVS-40-Promotor, CMV- oder SV40-Enhancer für die Expression in tierischen Zellen. Weitere Beispiele für geeignete Promotoren sind der Metallothionein I- und der Polyhedrin-Promotor . Zu geeigneten Vektoren zählen beispielsweise auf T7 basierende Expressionsvektoren für die Expression in Bakterien (Rosenberg et al . , Gene 56 (1987) , 125, pMSXND für die Expression in Säugerzellen (Lee und Nathans, J.Biol.Chem. 263 (1988) ,3521, und von Baculovirus abgeleitete Vektoren für die Expression in Insektenzellen.
In einer bevorzugten Ausführungsform liegt die erfindungsgemäße Nukleinsäuresequenz so in dem Vektor vor, dass ein Fusionsprotein kodiert wird, das eine Importin-α- Variante sowie einen Fusionspartner (Polypeptid oder Peptid) umfasst, wobei der Fusionspartner am N- oder C-Terminus mit der Importin-α-Variante über eine Peptidbindung verknüpft ist.
Vorzugsweise handelt es sich bei dem Fusionspartner um ein nachweisbares Polypeptid/Peptid, z.B. Glutathion-S-Transferase (GST) , Strep-tag oder Hemagglutinin(HA) -tag oder ein Polypeptid/Peptid, das die Anreicherung/Isolierung der Komplexe aus der Importin-α-Variante und Kernproteinen erlaubt, z.B. Glutathion-S-Transferase (GST), Hexahistidin-tag, Calmodulin Binding Protein (CBP) -tag oder Protein A-tag, wobei Glutathion-S-Transferase bevorzugt ist.
Die vorliegende Erfindung betrifft auch die vorstehend beschriebenen Vektoren enthaltende Wirtszellen. Zu diesen Wirtszellen zählen Bakterien, Hefe, Insekten- und Tierzellen, vorzugsweise Säugerzellen. Verfahren zur Transformation dieser Wirtszellen, zur phänotypischen Selektion von Transformanten und zur Expression der erfindungsgemäßen Nukleinsäuremoleküle unter Verwendung der vorstehend beschriebenen Vektoren sind auf dem Fachgebiet bekannt .
Die vorliegende Erfindung betrifft darüber hinaus die von den vorstehenden Nukleinäuremolekülen bzw. diese enthaltenden Vektoren kodierten Importin-α-Varianten (z.B. Importin-α-ΔN) und Fusionsproteine.
Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung der erfindungsgemäßen Importin-α-Variante (oder des Fusionsproteins) und Gewinnung des Proteins aus der Kultur. Geeignete Verfahren zur rekombinanten Herstellung von Proteinen sind allgemein bekannt (siehe beispielsweise Holmgren, Annu.Rev.Biochem. 54 (1985), 237; LaVallie et al . , Bio/Technology ,11 (1993), 187; Wong, Curr.Opin.Biotech.6. (1995), 517; Romanos, Curr.Opin.Biotech.6 (1995), 527; Williams et al . , Curr. Opin. Biotech.6. (1995), 538; und Davies, Curr. Opin.Biotech.6. (1995), 543). Auch geeignete Reinigungsverfahren (beispielsweise präparative
Chromatographie, Affinitätschromatographie, beispielsweise
Immunoaffinitäts-chro atographie, HPLC etc.) sind allgemein bekannt .
Schließlich betrifft die vorliegende Erfindung, die eine erfindungsgemäße Importin-α-Variante, vorzugsweise als Fusionsprotein mit einem nachweisbaren oder spezifisch anreichenbaren/isolierbaren Partner erlaubt. Die damit durchführbaren Nachweise umfassen: (a) Charakterisierung der Proteinzusammensetzung, (b) analytischer Nachweis von Proteinen, die eine Kernlokalisationssignal enthalten, (c) Target-Identifizierung (differentielle Protein-Lokalisation im Kern) und (d) direkte Diagnostik des Kernproteoms .
Somit erlaubt die erfindungsgemäße Importin-α-Variante die Diagnose von Erkrankungen, die mit einem veränderten Kernproteom bzw. einem veränderten Kernprotein- Expressionsprofil in Zusammenhang stehen. Die Diagnose umfasst üblicherweise die folgenden Schritte: (a) Gewinnung einer Zellprobe von dem Patienten, und (b) Inkontaktbringen der so erhaltenen Zellprobe mit der vorstehend beschriebenen erfindungsgemäßen Importin-α-Variante als Sonde unter Bedingungen, die die Bindung der Importin-α-Variante an Kernproteine erlauben. Dieser Nachweis kann unter Anwendung von dem Fachmann bekannten Standardtechniken durchgeführt werden. Diesem sind auch Zellaufschlußverfahren bekannt, die die Isolierung der Proteine auf eine solche Weise erlauben, dass diese mit der Importin-α-Varianten in Kontakt gebracht werden können. Der Nachweis der gebundenen Importin-α-Variante und somit der Nachweis der gebundenen Kernproteine kann über übliche Verfahren erfolgen, vorzugsweise über Western-Blot . Schließlich können die so analysierten bzw. dargestellten Kernproteine bzw. das so ermittelte Kernprotein-Profil mit einer aus einem Kontrollgewebe des Patienten bzw. aus einer oder mehreren Kontrollpersonen gewonnenen Probe verglichen werden. Weiter betrifft die vorliegende Erfindung Kits zur Durchführung der erfindungsgemäßen Diagnoseverfahren, die eine erfindungsgemäße Importin-α-Variante enthalten, gegebenenfalls in Kombination mit einem geeigneten Nachweismittel.
Je nach Ausgestaltung des mit den erfindungsgemäßen Kits durchzuführenden Diagnoseverfahrens kann die in dem Kit enthaltene Importin-α-Variante an einem geeigneten Träger immobilisiert sein.
Schließlich betrifft die vorliegende Erfindung die Verwendung der erfindungsgemäßen Importin-α-Variante zur Identifizierung oder Reinigung von NLS-tragenden Proteinen oder zur Markierung von Kernproteinen (beispielsweise in Bereich „Proteomics"). Der Fachmann kennt geeignete Techniken zur Durchführung dieser Verfahren, die Identifizierung von Kernproteinen ist auch in Beispiel 3 beschrieben.
Die Erfindung wird weiter anhand der Figuren beschrieben, welche zeigen:
Figur 1 : Schematische Darstellung der Konstruktion des GST- Importin-α-ΔN kodierenden Vektors zur heterologen Expression von Importin-α-ΔN in E.coli
Das Fusionsgen aus Glutathion-S-Transferase und der kodierenden Sequenz der Aminosäuren 62 bis 538 aus Importin-α steht unter Kontrolle des chemisch induzierbaren tac Promotors. Des weiteren sind Sequenzen für die Propagation in E.coli (ori) und die Ampicillin-Selektion in Kultur (Ampr) enthalten.
Figur 2 : Aminosäuresequenz von Importin-α und Importin-α-AN Fettgedruckt: Importin-ß bindende bzw. autoinhibitorische Domäne. Grau hinterlegt: N-terminale Deletion in Importin-α- ΔN .
Figur 3 : Far Western Blot eines Kernextrakts aus Jurkat T- Lvmphozvten
Verdünnungsreihe eines Kernextrakts aus Jurkat T-Lymphozyten aufgetrennt mit SDS-PAGE. Im linken Bild ist eine Silberfärbung der Gesamtproteine zu sehen. Analog dazu wurde ein „Far Western Blot" mit GST-Importin-α-ΔN als Sonde durchgeführt (rechtes Bild) . Die Komplexe aus Kernprotein und Importin α-ΔN wurden mit den Antikörpern anti-GST (Ratte IgG) und anti-Ratte IgG gekoppelt mit alkalischer Phosphatase inkubiert und die Aktivität der alkalischen Phosphatase mit einer Farbreaktion sichtbar gemacht.
Die nachstehenden Beispiele veranschaulichen die Erfindung.
Beispiel 1
Erzeugung der Deletion der autoinhibitorischen Domäne in
Importin-α
Die Position der autoinhibitorischen Domäne wird in der Literatur unterschiedlich angegeben mit den Aminosäurepositionen 10-50 bzw. 23-49. Für die Funktion der Domäne essentiell ist die interne NLS zwischen den Resten Arg25 und Arg28. Die Deletion in Importin α-ΔN von Position 1- 61 umfasst die genannten Regionen. Sechs negativ geladene Aminosäuren zwischen Glu54 und Glu60 wurden in Importin α-ΔN ebenfalls deletiert, um unspezifische elektrostatische Wechselwirkungen des Proteins zu vermeiden. Das für die Aminosäuren 62-538 kodierende Nukleinsäure-Fragment wurde mit der Poly erase-Kettenreaktion (PCR) hergestellt. Die Sequenz der Primer-Oligonukleotide (KPNAfwd: 5' -ATA TCG ATC GCA TAT GTC AGA TGG AGG CTT TCA-3 ' ; KPNArev: 5 ' -AGC TGG ATC CTC AAA GCT GGA AAC CTT CC-3 ' ) wurde so gewählt, dass sie mit der Sequenz ab Codon 62 bzw. bis Codon 538 hybridisieren konnten.
Beispiel 2
Konstruktion eines GST-Importin-fö-üSJ kodierenden Fa o s und rekombinante Herstellung von GST-Importin-α-ΔN
Zur Klonierung des Importin-α-ΔN Fragments wurde ein aus dem kommerziell erhältlichen Konstrukt pGEX-2T (Amersha Biosciences, Freiburg, Deutschland) abgeleiteter Vektor verwendet, wobei sich der Unterschied auf das Vorhandensein der Restriktionsschnittstellen für die Enzyme Itfel und BamHI beschränkt.
Das Importin-α-ΔN Fragment wurde mit Hilfe der Polymerase- Kettenreaktion (PCR) aus der entsprechenden cDNA amplifiziert . Die hierzu notwendigen Primer-Oligonukleotide enthielten 5' und 3 ' Ende der Kodierungssequenz für Importin α-ΔN und jeweils eine der o.g. Restriktionsschnittstellen. Das PCR- Produkt wurde nach Standardverfahren in den Vektor ligiert.
Im fertiggestellten Vektor befindet sich die Importin α-ΔN Kodierungssequenz im selben Leseraster wie die Kodierungssequenz für Gluthathion-S-Transferase und unter Kontrolle des induzierbaren tac Promotors . Die pGEX-Importin α-ΔN DNA wurde in E.coli DH5α transformiert. Die Expression des Fusionsproteins wurde in einer Großkultur der Bakterien mit IPTG induziert. Nach Expression des Protein wurde es aus dem Bakterienlysat an immobilisiertes Glutathion (Glutathion- Sepharose) gebunden und nach Waschschritten mit gelöstem Glutathion extrahiert. Beispiel 3
Identifikation von Kernproteinen mit GST-Importin-α-ΔN
Kernproteine wurden durch Osmolyse von Jurkat T-Lymphozyten und anschließende Hochsalzextraktion der Zellkerne gewonnen (Wells et al., J.Biol.Chem. 276(3) (2001), 20482-90). Die Extrakte wurden in unterschiedlichen Mengen per SDS- Polyacrylamid-Gelelektrophorese nach Molekulargewicht aufgetrennt und auf eine PVDF-Membran transferiert. Nach Absättigen unspezifischer Bindungen mit Rinderserum-Albumin wurde GST-Importin-α-ΔN in einer Konzentration von 1,5 μg/ml aufgegeben.
Die Detektion der Proteinkomplexe erfolgte im wesentlichen nach einem Western Blot-Standardprotokoll durch sequentielle Inkubation mit den Antikörpern anti-GST (Ratte IgG) und anti- Ratte IgG-alkalische Phosphatase (Promega GmbH, Mannheim, Deutschland; Amersham Biosciences) und durch die BCIP/NBT Farbreaktion.

Claims

Patentansprüche
1. Nukleinsauremolekul, das eine Variante eines Proteins mit einer biologischen Aktivität von Importin-α kodiert, dadurch gekennzeichnet, dass die Nukleinsäuresequenz des Nukleinsäuremoleküls gegenüber der das native Protein kodierenden Nukleinsäuresequenz eine Mutation aufweist, die zu einer Inaktivierung der autoinhibitorischen Domäne des humanen Importin-α bei der Variante führt.
2. Nukleinsauremolekul nach Anspruch 1, wobei das Importin—α humanes Importin-α ist.
3. Nukleinsauremolekul nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die autoinhibitorische Domäne ganz oder teilweise deletiert ist.
4. Nukleinsauremolekul nach Anspruch 3 , wobei die Aminosäuren von Position 1 bis 61 deletiert sind (Importin-α-^N) .
5. Nukleinsauremolekul nach einem der Ansprüche 1 bis 4, wobei die Variante ein Fusionsprotein ist.
6. Nukleinsauremolekul nach Anspruch 5, wobei der Fusionspartner (a) ein nachweisbares Polypeptid ist oder (b) ein Polypeptid, das die Anreicherung/Isolierung von Komplexen aus Variante und Kernproteinen erlaubt.
7. Nukleinsauremolekul nach Anspruch 6, wobei das Polypeptid (b) Gluthathion-S-Transferase (GST) ist.
8. Vektor, ein Nukleinsauremolekul nach einem der Ansprüche 1 bis 7 enthaltend.
9. Vektor nach Anspruch 8, wobei das Nukleinsauremolekul mit regulatorischen Elementen funktionell verknüpft ist, die die Expression in prokaryotischen oder eukaryotischen Wirtszellen erlauben.
10. Wirtszelle, einen Vektor nach Anspruch 8 oder 9 enthaltend.
11. Wirtszelle nach Anspruch 10, die eine Säugerzelle ist.
12. Importin-α-Variante, die von einem Nukleinsauremolekul nach einem der Ansprüche 1 bis 7 oder der inserierten Nukleinsäuresequenz eines Vektors Anspruch 8 oder 9 kodiert wird.
13. Verfahren zur Herstellung der Importin-α-Variante nach Anspruch 12 , umfassend die Kultivierung der Wirtszelle nach Anspruch 10 oder 11 unter Bedingungen, die die Expression des Proteins erlauben, und Gewinnung des Proteins aus der Kultur.
14. Importin-α-Variante, die nach dem Verfahren von Anspruch 13 hergestellt wurde.
15. Diagnostische Zusammensetzung, die eine Importin-α-Variante nach Anspruch 12 oder 14 enthält.
16. Verwendung der Importin-α-Variante nach Anspruch 12 oder 14 zur Herstellung einer diagnostischen Zusammensetzung zur Diagnose von Erkrankungen, die mit einem veränderten Kernproteom in Zusammenhang stehen.
17. Verwendung der Importin-α-Variante nach Anspruch 12 oder 14 zur Identifizierung oder Reinigung von Proteinen.
18. Verwendung nach Anspruch 17, wobei die Proteine NLS-tragende Proteine sind.
19. Verwendung der Importin-α-Variante nach Anspruch 12 oder 14 zur Markierung von Proteinen.
20. Verwendung nach Anspruch 19, wobei die Proteine Kernproteine sind.
PCT/EP2004/004335 2003-04-25 2004-04-23 IMPORTIN-α MIT INAKTIVIERTER AUTOINHIBITORISCHER DOMÄNE ZUR DIAGNOSE WO2004096847A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10319073.2 2003-04-25
DE2003119073 DE10319073A1 (de) 2003-04-25 2003-04-25 Importin-α mit inaktivierter autoinhibitorischer Domäne zur Diagnose

Publications (1)

Publication Number Publication Date
WO2004096847A1 true WO2004096847A1 (de) 2004-11-11

Family

ID=33393928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/004335 WO2004096847A1 (de) 2003-04-25 2004-04-23 IMPORTIN-α MIT INAKTIVIERTER AUTOINHIBITORISCHER DOMÄNE ZUR DIAGNOSE

Country Status (2)

Country Link
DE (1) DE10319073A1 (de)
WO (1) WO2004096847A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965394A (en) * 1997-09-18 1999-10-12 Incyte Pharmaceuticals, Inc. Human importin alpha homolog

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965394A (en) * 1997-09-18 1999-10-12 Incyte Pharmaceuticals, Inc. Human importin alpha homolog

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE UNIPROT 1 October 1996 (1996-10-01), XP002299165, retrieved from UNIPROT accession no. P52294 *
FANARA PATRIZIA ET AL: "Quantitative analysis of nuclear localization signal (NLS)-importin alpha interaction through fluorescence depolarization. Evidence for auto-inhibitory regulation of NLS binding", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, no. 28, 14 July 2000 (2000-07-14), pages 21218 - 21223, XP002299162, ISSN: 0021-9258 *
HARREMAN MICHELLE T ET AL: "The auto-inhibitory function of importin alpha is essential in vivo.", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 278, no. 8, 21 February 2003 (2003-02-21), pages 5854 - 5863, XP002299163, ISSN: 0021-9258 *
MAHLKNECHT ULRICH ET AL: "Far-Western based protein-protein interaction screening of high-density protein filter arrays", JOURNAL OF BIOTECHNOLOGY, vol. 88, no. 2, 15 June 2001 (2001-06-15), pages 89 - 94, XP002299164, ISSN: 0168-1656 *

Also Published As

Publication number Publication date
DE10319073A1 (de) 2004-12-02

Similar Documents

Publication Publication Date Title
EP0471701B2 (de) Neue proteine mit tnf-hemmender wirkung und ihre herstellung
DE10113776A1 (de) Sequenziell angeordnete streptavidinbindende Module als Affinitätsanhängsel
EP1481004B1 (de) Streptavidin-bindungspeptid
DE69435071T2 (de) Das tumore unterdrückende protein prb2, damit zusammenhängende genprodukte, und die dafür kodierende dna
DE3752391T2 (de) Rattenproteinkinase C und Verfahren zur Herstellung
WO2006092175A1 (de) Methode zur identifizierung von pde11-modulatoren
DE10333406A1 (de) T-regulatorische-Zellen enthaltend Galectine zur Therapie und Diagnose von Erkrankungen
DE69631516T2 (de) Familie von Kaliumkanälen von Säugetieren, deren Klonierung und Anwendung für Drogenscreening
DE602004009292T2 (de) Verwendung von caspasen zur herstellung von reifen rekombinanten fusionsproteinen
DE10033353A1 (de) Breit einsetzbares Verfahren zur Identifizierung von Modulatoren von G-Protein gekoppelten Rezeptoren
WO2004096847A1 (de) IMPORTIN-α MIT INAKTIVIERTER AUTOINHIBITORISCHER DOMÄNE ZUR DIAGNOSE
DE19521046C1 (de) Protein mit DNase-Aktivität
EP1141291A1 (de) Methode zur zellulären high-throughput-detektion von nukleären rezeptor-liganden-interaktionen
EP1436327B1 (de) Ee3-proteinfamilie und zugrundeliegende dna-sequenzen
DE4041464A1 (de) 5-ht(pfeil abwaerts)1(pfeil abwaerts)-rezeptor
DE60123754T2 (de) Neuer transkriptionsfaktor carp-2
EP1556488B1 (de) Humanes chondroosteomodulin (tig2), herstellung und verwendung zur behandlung oder diagnose von knochen- und knorpelerkrankungen, fettsucht sowie entzündlichen erkrankungen und hauterkrankungen
DE4216321A1 (de) Untereinheiten von NMDA-Rezeptoren, Verfahren zu ihrer Herstellung und ihre Verwendung
WO1994010297A1 (de) Verfahren zur herstellung hochreiner humaner gad-1- und gad-2-proteine
DE69932351T2 (de) DNS-kodierende Fusionsproteine, die durch Kupfer(II)-Ionen spezifisch spaltbar sind
DE19835910C1 (de) Gen isoliert auf dem kurzen Arm des menschlichen Chromosoms 17
EP1220920A1 (de) Das gen prv-1 und dessen verwendung
DE69826649T2 (de) Mit der zellteilungsfurche assoziierte tyrosinphosphorylierte proteine (pstpips)
DE102005011579B4 (de) Affinitätsmarker zur Proteinreinigung, seine Herstellung und Verwendung sowie Verfahren zur Aufreinigung eines Proteins
DE10208877B4 (de) Verwendung eines Streptavidin- Bindungspeptides

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase