WO1994010297A1 - Verfahren zur herstellung hochreiner humaner gad-1- und gad-2-proteine - Google Patents

Verfahren zur herstellung hochreiner humaner gad-1- und gad-2-proteine Download PDF

Info

Publication number
WO1994010297A1
WO1994010297A1 PCT/EP1993/003080 EP9303080W WO9410297A1 WO 1994010297 A1 WO1994010297 A1 WO 1994010297A1 EP 9303080 W EP9303080 W EP 9303080W WO 9410297 A1 WO9410297 A1 WO 9410297A1
Authority
WO
WIPO (PCT)
Prior art keywords
gad
proteins
protein
recombinant
cdna
Prior art date
Application number
PCT/EP1993/003080
Other languages
English (en)
French (fr)
Inventor
Wolfgang Northemann
Ludwig Mauch
Heinz Haubruck
Neil J. Cook
Original Assignee
Elias Entwicklungslabor Für Immunoassays Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elias Entwicklungslabor Für Immunoassays Gmbh & Co. Kg filed Critical Elias Entwicklungslabor Für Immunoassays Gmbh & Co. Kg
Publication of WO1994010297A1 publication Critical patent/WO1994010297A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14111Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
    • C12N2710/14141Use of virus, viral particle or viral elements as a vector
    • C12N2710/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/988Lyases (4.), e.g. aldolases, heparinase, enolases, fumarase

Definitions

  • the present invention relates to a method for producing high-purity human GAD-1 and GAD-2 proteins according to the features of the main claim.
  • the insulin-dependent type I diabetes mellitus results from a selective destruction of the insulin-producing endogenous ⁇ cells of the pancreas.
  • the progressive process of destruction of the ⁇ cells leads to the formation of specific autoantibodies a few years before the onset of the autoimmune disease owing to a certain protein release.
  • Baekkeskov et al. (S. Baekkeskov et al., Nature 298 (1982), pages 167 to 169) found that a specific protein of the Langerhans islet cells, namely a 64 dKa protein, is the target antigen sought.
  • Stiffman syndrome When clarifying the molecular identity of the 64 kDa protein, examinations in a neurological disorder, the Stiffman syndrome (SMS), were of fundamental importance. The relatively rarely occurring androtropic Stiffman syndrome manifests itself in slowly increasing trunk and limb stiffness and tetany-like muscle cramps.
  • GABA GABA-synthesizing enzyme
  • GAD glutamate decarboxylase
  • GAD GAD 65
  • the GAD proteins form an antibody-antigen complex with the autoantibodies which are formed in type I diabetes mellitus.
  • WO-90/07117 describes a method for the early detection and treatment of IDDM, the antigen preparation, which contains a 64 kDa protein alone or together with other antibodies, being obtained directly from human pancreas.
  • a disadvantage of this immunoassay is the time required to obtain the antigen from the pancreas or from the Langerhans islet cells.
  • a further disadvantage lies in the quality of the preparations obtained in this way, since both human and animal tissues contain variable amounts of antigens which significantly impair the purity and the quality of the antigens isolated and used in the immunoassays.
  • GAD proteins are difficult to express due to their molecular size.
  • the antigen preparations used, which accordingly accordingly often only contain small amounts of GAD proteins, can also react with non-specific components due to the presence of contamination by other substances. This significantly affects both the significance and the reliability of the immunoassay.
  • it is not possible to distinguish the two GAD forms in the antigen preparation since they are only present in limited amounts and the impurities present in the antigen preparation do not allow a distinction.
  • bacterial expression systems have been proposed to express recombinant GAD-1 and GAD-2 proteins.
  • the use of bacterial expression systems, in particular of Escherichia coli cells, has proven to be unsuccessful, since the majority of the recombinant GAD proteins expressed have neither the correct modification nor the natural molecular conformation.
  • the specific reaction of the antibodies with the GAD proteins depends on the antigenic epitopes of the GAD proteins that are recognized by the antibodies. A change in the molecular conformation of the GAD proteins prevents the antibodies from being able to recognize the specific epitopes.
  • the sera used by the IDDM patients accordingly respond insufficiently to the bacterially expressed GAD proteins.
  • the use of bacterially expressed GAD proteins leads to immunoassays, the results of which are neither reliable nor meaningful.
  • the expressed GAD proteins are often in the form of insoluble inclusion bodies in the bacterial cell. This is due to an intracellular accumulation of the expressed proteins, which is caused by an increased expression rate. These insoluble inclusion bodies prove to be problematic since it is often not possible to obtain recombinant GAD proteins with the correct conformation from these insoluble inclusion bodies.
  • the purification of the recombinant antigenic epitopes of the human 68-kDa (Ul) ribonucleoprotein antigen is known, pH6EX3 being used as the expression system.
  • the purification step is carried out by metal chelate affinity chromatography (H. Berthold et al., Prot Exp Purif 3, (1992), pages 50 to 56).
  • the article contains no information regarding the expression of GAD proteins and their purification.
  • the disadvantages of the prior art are, in particular, that the human GAD-1 and GAD-2 antigen extracts both contain impurities and are only available in small amounts.
  • the invention is therefore based on the technical problem of specifying a method for producing human GAD-1 and GAD-2 proteins in sufficient quantity which overcomes the disadvantages of the prior art.
  • the present invention thus relates to a method for producing high-purity human GAD-1 and GAD-2 proteins using a eukaryotic expression system, in particular the baculovirus / Sf9 expression system, the method comprising the following steps:
  • FIG. 1 shows the expression and the Western blotting analysis of the GAD-1 and GAD-2 proteins expressed in the Sf9 insect cells.
  • the proteins separated by the SDS-polyacrylamide gel electrophoresis are stained (A) with the dye Coo assie brilliant blue or (B) by the Western blotting method which detects the anti-GAD924-IDDM patient serum which is specific for GAD -2 is used or (C) by onoclonal mouse anti-GAD antibodies which fish against GAD-1 are analyzed.
  • Column 1 shows the soluble, column 2 the insoluble fractions of the MOCK cells; column 3 lists the soluble fractions and column 4 the insoluble fractions of the GAD-2 protein expressed in the Sf9 cell; Columns 5 and 6 show the soluble and insoluble fractions of the GAD-1 proteins expressed in the Sf9 insect cell; Column 7 contains 2.5 mg of purified GAD-2 and column 8 2.5 mg of purified GAD-1.
  • FIG. 2 shows the measurement of the GAD enzyme activity in infected Sf9 insect cells, Sf9 cells infected with the control baculovirus (MOCK), SF9 cells, the GAD-2 (GAD 65 - Sf9) and GAD- l (GAD 67 -Sf9) and isolated pancreatic islet cells and brain tissue from pigs, which are homogenized and used for measuring GAD activity.
  • MOCK control baculovirus
  • SF9 cells the GAD-2 (GAD 65 - Sf9) and GAD- l (GAD 67 -Sf9)
  • isolated pancreatic islet cells and brain tissue from pigs which are homogenized and used for measuring GAD activity.
  • FIG. 3 shows the immunoprecipitation of the recombinant human GAD-2 (A) and GAD-1 (B) with IDDM patient sera.
  • A human GAD-2
  • B GAD-1
  • Column 13 shows the total protein extract of the GAD-2 or GAD-1 expressing cells. The precipitated proteins were separated by 10% polyacrylamide gel electrophoresis and visualized by fluorography.
  • Lane 4 shows immunoprecipitation with purified recombinant GAD-2 (also GAD 65).
  • the recombinant GAD-2 fusion protein was labeled metabolically and purified by metal chelate affinity chromatography.
  • Lane 1 shows the reaction with a diabetic serum, lane 2 with a polyclonal anti-GAD-2 rabbit serum and lane 3 with a blood donor serum pool.
  • FIG. 5 shows the Western blotting analysis of the GAD-2 and GAD-1 proteins expressed in E. coli with specific IDDM patient sera.
  • the GAD proteins isolated from the inclusion bodies are stained with Coo assie brilliant blue (A) or with the Western blotting method (BK), in which ten sera from newly ill IDDM patients were used, or with Anti-GAD924 -IDDM serum (L) analyzed. Monoclonal mouse anti-GAD antibodies (M) served as a control serum.
  • the dashed line corresponds to the cut-off of 1500 mGAD / ml. 50% (9/18) newly manifested diabetics type 1 and 23% (11/47) longer manifested diabetics type 1 show increased GAD-2 antibody values (blood donors: 2/25, 8%; diabetic type 2: 1/32, 3%).
  • This assay designed as a quantitative method, enables the specific detection of GAD-2 antibodies.
  • the data show the high level of GAD-2 antibody positivity at the onset of the disease.
  • the method according to the invention uses eukaryotic expression systems, preferably the Baculovirus-Spodoptera frugiperda (Sf9 cell) expression system, which delivers a large amount of biologically active proteins. It is also possible to use this expression system to produce recombinant GAD-1 and GAD-2 proteins in a highly pure form.
  • the baculovirus provides the vector on a viral basis, while the expression takes place in the Sf9 insect cell.
  • the baculovirus / Sf9 system has the advantage that the expression cell system can be grown and expanded as a suspension culture under serum-free conditions.
  • the DNA to be expressed which encodes the human GAD proteins is preferably produced from cDNA libraries which are derived from a pancreatic carcinoma cell line or a hippocampus cell line.
  • the specific cDNAs encoding the GAD-1 or GAD-2 proteins are hybridized with oli from a human pancreatic carcino cDNA library or a human hippocus cDNA library.
  • the synthetic oligonucleotides used in this screening method are based on the homologous sequence that has been published for rat brain GAD 67 cDNA (JF Julien et al., J. Neurochem 54 (1990), pages 703 to 705).
  • the isolated cDNA fragments were characterized by cDNA analysis and linked together to produce full-length cDNAs of 2.0 and 1.8 kb which contain the proteins of the 585 amino acids of GAD-2 and the 594 amino acids of GAD- l code.
  • the GAD-1 or GAD-2 cDNA is linked to a sequence coding for an affinity peptide by means of mutagenesis.
  • the corresponding products are preferably inserted into the baculovirus transfer vector pVL1393 (Invitrogen Corporation 1992, Cat. No. V 1392-20) to form the clones pAc GAD-1 and pAc GAD-2.
  • the invention thus also relates to a DNA sequence which encodes a fusion protein which comprises a GAD-1 or GAD-2 polypeptide and an affinity peptide.
  • the affinity peptide allows the resulting GAD fusion proteins to be purified by means of metal chelate affinity chromatography and preferably corresponds to an oligopeptide with at least 2 histidines, so that in the further process a highly specific purification of the resulting fusion proteins is achieved Metal chelate affinity chromatography is enabled.
  • the affinity peptide can be attached to the a terminal or carboxy terminal end of the GAD-1 and GAD-2 proteins.
  • the expressed GAD fusion proteins contain the human GAD-1 and GAD-2 proteins particularly preferably at the N-terminus and a histidine hexapeptide at the C-terminus.
  • the Sf9 (insect) cells are then co-transfected together with baculovirus DNA. After isolation and amplification of the recombinant virus, the expression of the recombinant GAD fusion proteins follows.
  • Sf9 cells are also infected with a control virus without GAD cDNA. No expression takes place in this control system (MOCK) (FIG. 1, column 1, 2).
  • MOCK control system
  • the expression of the GAD proteins can be carried out in prokaryotic E. coli cells. An expression takes place in the bacterial cells, which has considerable disadvantages, which are discussed in more detail below.
  • the cultivation of the Sf9 cells as a suspension culture is preferably carried out in a serum-free medium.
  • the recombinant GAD-1 and GAD-2 fusion proteins can be obtained by lysis and centrifugation of the Sf9 cells, resulting in an insoluble and a soluble cell fraction.
  • the GAD-1 or GAD-2 fusion proteins are in the supernatant, i.e. in the soluble cell fraction.
  • the GAD-1 or GAD-2 fusion proteins are then purified according to the invention, particularly preferably by means of metal chelate affinity chromatography.
  • the principle of this method is based on the affinity of proteins for Metal ions, which is dependent on the exposure of certain amino acid residues. Histidine and cysteine usually show the strongest interactions with metals in metal chelate affinity chromatography. Furthermore, tryptophan, for example, appears to influence the binding affinity with its indole structure. Ni 2+ , Zn 2+ , Cu 2+ or Co 2+ are primarily used as metals which are immobilized on the column matrix via a chelate complex. Various techniques (pH gradient, competitive ligands) are available for the final protein elution.
  • the extract containing GAD-1 or GAD-2 fusion proteins is placed on a column which contains a matrix with metal ions, in particular Ni 2+ ions, as the stationary phase.
  • the GAD fusion proteins form a metal chelate complex with the Ni 2+ ions.
  • An eluent, in particular imidazole, is then added to the column, which is a gentle method for eluting the GAD fusion proteins from the column.
  • This particularly preferred embodiment of the invention provides an almost homogeneous GAD antigen substrate by the single-stage affinity chromatography over a metal ion matrix. Chromatography is carried out at physiological pH and without additional detergents in order to maintain the natural conformation of both GAD forms. This is clearly demonstrated on the basis of the enzyme activity and the non-precipitation method.
  • the invention also relates to the GAD-1 and GAD-2 proteins obtainable by the above cleaning processes and their modifications, in particular the fusion proteins and their modifications.
  • the invention also relates to the purification of modifications of the GAD-1 and GAD-2 proteins or their fusion derivatives, which may be caused by amino acid deletions (ie fragments of GAD proteins), substitutions, insertions, Inversions or modifications such as glycosylations, phos phorylations or acetylations, as long as these modifications have the same antigenic properties as the natural GAD-1 or GAD-2 protein.
  • the term “GAD-1” or “GAD-2 protein” also means the respective recombinant fusion protein and the above-mentioned modifications.
  • FIGS. IB and IC show the expression and the Western blotting analysis of the GAD-1 and GAD-2 proteins expressed in the Sf9 cells.
  • a GAD-2-specific IDDM autoimmune serum which is designated as anti-GAD924 (FIG. IB)
  • a GAD-1-specific mouse monoclonal antibody (FIG. IC) are used as the test serum.
  • FIGS. IB and IC show that specific antigen-antibody complexes form.
  • the GAD-2 proteins have an excellent antigen function, which can be used in immunoassays. It should be noted that the numbering of FIGS. IB and IC corresponds to that in FIG. 1A.
  • the GAD proteins produced according to the invention were tested with regard to their enzyme activity and compared with natural GAD proteins derived from pig islet cells and brain tissue.
  • the human GAD-2 (GAD 65 -Sf9) and GAD-1 (GAD 67 -Sf9) proteins produced according to the invention have a much higher enzyme activity than the GAD proteins from the islets and brains of pigs.
  • the enzyme activity of the GAD-1 and GAD-2 proteins produced according to the invention is 400 or 45 times for GAD-2 and 600 or 75 times for GAD-1 compared to GAD from pancreatic islet cells or from brain cells.
  • Naturally no GAD enzyme activity was detected in the Sf9 cells with the control baculovirus (MOCK).
  • each GAD-1 and GAD-2 protein are obtained from 1000 ml of culture suspension of the infected cells.
  • FIG. 3 shows the immunoprecipitation of the GAD-2 protein (A) and GAD-1 protein (B) produced according to the invention with the IDDM patient sera and two normal sera.
  • the GAD-2 proteins produced according to the invention are outstandingly suitable as reagents and thus as antigen substrates for immunoprecipitations with sera from IDDM patients. While an antibody-antigen complex is formed in columns 1 to 10, there is no reaction between the GAD-2 protein and the normal sera.
  • FIG. 4 shows the immunoprecipitations with purified recombinant GAD-2 protein (GAD 65).
  • GAD-2 fusion protein was metabolically labeled.
  • a high-purity GAD fusion protein fraction was obtained by purification by means of metal chelate affinity chromatography and was used in the immunoprecipitation.
  • An IDDM serum (lane 1) and a polyclonal anti-GAD-2 rabbit serum (lane 2) recognize the purified GAD-2, but there is no reaction with the blood donor serum.
  • the comparison procedure in which the production of the GAD-1 and GAD-2 proteins takes place by expression in the prokaryotic E. coli system shows different results.
  • the SDS-polyacrylamide gel electrophoresis and the Western blotting method from FIG. 5 show that in addition to the GAD expressed in the E. coli cell -2-protein, a smaller GAD 65 protein with a molecular weight of 41 kDa is expressed (column 1). This smaller GAD form has a different conformation than that of the specific GAD-2 and is only found in prokaryotic expression systems.
  • the recombinant GAD proteins of the bacterial system are analyzed by means of the Western blotting method, also using ten IDDM test sera. All test sera had to be pretreated with bacterial extracts in order to minimize side reactions with other bacterial proteins.
  • the method according to the invention provides highly pure human recombined GAD-1 and GAD-2 proteins which are produced in the Baculovirus / Sf9 expression system.
  • the recombinant GAD-1 and GAD-2 proteins produced have an excellent enzyme activity and a highly specific antigenicity.
  • the method according to the invention enables rapid and effective isolation of the recombinant GAD-1 and GAD-2 proteins, which have a high degree of purification.
  • the invention also relates to the use of the GAD proteins according to the invention for the production of a pharmaceutical composition for the treatment of IDDM and SMS.
  • the invention further relates to a medicament comprising the GAD proteins obtainable by one of the methods according to the invention.
  • the high purity GAD-1 and / or GAD-2 proteins can be used as an antigen substrate in immunoassays, e.g. Solid phase immunoassay and ELISA, and kits for (early detection) diagnosis of diabetes mellitus, type I can be used.
  • immunoassays e.g. Solid phase immunoassay and ELISA
  • kits for (early detection) diagnosis of diabetes mellitus, type I can be used.
  • the specific cDNA sequences encoding human GAD-1 or GAD-2 proteins are hybridized from a human pancreatic carcinoma cDNA library or a human hip pocampus cDNA library Oligonucleotide probes and PCR amplification prepared.
  • the synthetic oligonucleotides that are used are based on the known sequence of Rat brain GAD-1 cDNA (J-.F. Julien et al., J. Neurochem.
  • the recombinant DNA was isolated for PCR (polymerase chain reaction) amplification from 2 ⁇ 10 6 plaques of the lambda cDNA library by known methods.
  • 1 ⁇ g of the recombined cDNA is amplified with 1 unit Tac polymerase in 10 mM Tris / HCl, pH 8.0, 50 mM KC1, 1.5 mM MgCl 2 , 4 pmol of each primer and 100 ⁇ M dNTPS.
  • the amplification reaction was carried out in 30 cycles with the following cycle times: denaturation, 1 minute at 95 ° C., annealing, 2 minutes at 60 ° C. and primer extension, 2 minutes at 72 ° C.
  • the synthesized GAD cDNA fragments were analyzed by DNA sequence analysis using T7 DNA polymerase. Suitable cDNA fragments are combined according to known methods to form 2.0 kb and 1.8 kb cDNAs which encode the full length of the GAD-2 and GAD-1 proteins.
  • the GAD cDNAs are by targeted mutagenesis at the 5 * end of the coding sequence with a restriction site (BamHl) and at the 3 'end of the coding sequence by a histidine hexapeptide coding sequence, a stop codon, and a restriction site (Xhol) expanded and inserted into the corresponding cloning interfaces of pBluescript SK (Stratagene Cloning Systems).
  • the cDNAs produced in section 1, which encode both human GAD-2 and GAD-1 proteins, were derived from the recombining pBluescript SK vectors using the BamHI and Kpnl restriction sites in the Baculovirus transfer vector pVL 1393 (Invitrogen Corporation) cloned.
  • the vectors encoding the recombinant GAD proteins were called pAc GAD-1 and pAc GAD-2.
  • the recom- Binary fusion proteins have the GAD-1 or GAD-2 protein at the N-terminus and the histidine hexapeptide at the C-terminus.
  • Sf9 cells were co-transfected with the recombined transfer vector and the linearized wild type Baculovirus Autographa californica by lipofection. Recombinant viruses were identified visually and isolated by plaque assays. After amplification, the recombinant viruses were tested for the expression of the recombinant GAD-1 and GAD-2 fusion proteins by means of Western blots. Sf9 cells in suspension culture were infected with these recombinant viruses. The cells were worked up further 48-72 h post infection. Sf9 cells which had been infected with a recombinant control virus without corresponding GAD sequences were used as control.
  • the cultivated cells were sedimented with 02 mM PLP (pyridoxal-5-phosphate) and 2 ⁇ g / ml of the proteinase inhibitors leupeptin, aprotinin, bestatin and pepstatin.
  • the sedimented cells were resuspended and homogenized in 30 ml lysis buffer at 0 ° C. and separated into soluble and insoluble cell fractions by centrifugation (100,000 ⁇ g and 4 ° C.).
  • the supernatant liquid which contains the GAD-1 or GAD-2 proteins, was applied to a Ni-loaded chelating Sepharose Fast Flow (Pharmacia) column.
  • the column was then gradually eluted with lysis buffer containing 10 mM, 40 mM, 100 mM and 500 mM imidazole.
  • the recombinant GAD proteins elute at 100 mM and 500 mM imidazole.
  • the isolated GAD proteins can be used directly in immunoassays.
  • the GAD-I or GAD-2 protein purified as described in Section 3 was separated by SDS-polyacrylamide gel electrophoresis under reducing and denaturing conditions and transferred to nitrocellulose filters using a "transblot" semi-dry electrophoretic transfer cell (BioRad).
  • the vacant protein binding sites on the filter were blocked with 5% defatted dry milk in TBST buffer (10 mM Tris / HCl, pH 8.0, 150 M NaCl, 0.05% Tween-20).
  • the immobilized proteins were incubated for 90 minutes in a 500-fold dilution of a patient autoimmune serum which had been pre-absorbed with 0.1 mg / ml E. coli extracts.
  • the bound antibodies were made visible with anti-human immunoglobulin conjugated with alkaline phosphatase.
  • the cells were treated with 1 ml of hypotonic buffer (20 M potassium phosphate, pH 7.0, 2 mM EDTA, 2 mM PMSF (polymethylsulfonyl fluoride), 1 mM AET (2-aminoethylisothiuronium bromide), 2 ⁇ g / ml aprotinin, 0.2 mM PLP (pyridoxal-5-phosphate) lysed and centrifuged at 36,000 xg for 30 minutes.
  • hypotonic buffer (20 M potassium phosphate, pH 7.0, 2 mM EDTA, 2 mM PMSF (polymethylsulfonyl fluoride), 1 mM AET (2-aminoethylisothiuronium bromide), 2 ⁇ g / ml aprotinin, 0.2 mM PLP (pyridoxal-5-phosphate) lysed and centrifuged at 36,000 xg for 30 minutes.
  • the resulting pellet was resuspended in 1.5 ml of 20 mM Tris / HCl, pH 7.4, 150 M NaCl, 20 ⁇ g / ⁇ l aprotinin, 2 mM PMSF, 2 mM EDTA, 1% Tri ⁇ ton X-100 and homogenized.
  • the homogenate was centrifuged at 23,000 xg for 30 minutes. 800 ⁇ l of supernatant were incubated for 2 hours at 4 ° C. with a GAD autoantibody-negative blood donor pool. After adding 300 ⁇ l Protein A Sepharose, the mixture was incubated for a further 1.5 hours and then centrifuged for 5 minutes at 15,000 ⁇ g.
  • Recombinant GAD-2 fusion proteins were metabolically labeled as in section 5 and affinity-purified as in section 3. 30 ⁇ l of the 500 mM imidazole eluate were immunoprecipitated with 10 ⁇ l serum. The GAD-2 proteins show a highly specific antigenicity.
  • the GAD activity is measured according to the standard methods of Krieger and Heller (O'Reilly, Miller, Locow, Baculovirus expression vectors, Freeman and Company, New York (1992)).
  • the formation of 14 C0 2 by decarboxylation of 0.1 ⁇ Ci L- [l- 1 C] glutamate was determined in 200 ⁇ l of a tissue or cell homogenate in cell lysis buffer (50 M KH 2 PO 4 , pH 7.0, 1 mM EDTA, 1 mM AET, 0.2 mM PLP, 1% Triton X-100).
  • the GAD-1 and GAD-2 cDNAs were inserted into the prokaryotic expression vector pH6EX3.
  • the cDNA clones pGAD-E22 and pGAD-Ell produced synthesize the recombinant GAD proteins with a histidine hexapeptide fragment at the N-ter- minus under the control function of a Tac promoter.
  • expression of the fusion genes was induced by 1 mM IPTG (isopropylthiogalactoside) for eight hours.
  • the transformed E. coli strain K5254 was cultivated, induced with 1 mM IPTG and sedimented with Lysozy and Triton X-100 before lysis.
  • the insoluble inclusion bodies were dissolved in 8 mol of urea and separated by SDS-polyacrylamide gel electrophoresis and Western blotting analysis.
  • the autoimmune sera used in the present invention have been obtained from newly manifested IDDM patients and are positive for anti-GAD-2 autoantibodies, which is indicated by immune Precipitation has been demonstrated.
  • Isolated pancreatic islet cells from pigs were used after metabolic labeling with 35 S-methionine.
  • the patient serum which is designated as anti-GAD924, reacts with linear autoantigenic epitopes of the human GAD-2 proteins. As a result, this serum was selected for the Western blotting analysis of the expressed recombinant GAD-2 proteins.
  • the mouse anti-GAD monoclonal antibody which specifically recognizes only the linear epitopes of the GAD-1 protein, was kindly developed by Dr. B. Ziegler and Dr. M. Ziegler (Diabetes Institute, University of Greifswald, Karlsburg, Germany).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Food Science & Technology (AREA)
  • Virology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung hochreiner humaner GAD-1- und GAD-2-Proteine unter Verwendung des Baculovirus/Sf9-Expressionssystems, wobei das Verfahren die folgenden Schritte umfaßt: a) Herstellung von cDNA-Sequenzen aus humanen cDNA-Bibliotheken, die jeweils GAD-1- und GAD-2-Proteine in voller Länge bzw. Abwandlungen davon codieren; b) Insertion der GAD-1- oder GAD-2-cDNA-Sequenz in einen Baculovirus-Transfervektor; c) Co-Transfektion von Sf9-Zellen mit GAD-1- oder GAD-2- cDNA enthaltenden Baculovirus-Transfervektoren und Baculovirus-DNA zur Erzeugung rekombinanter Baculoviren; d) Identifizierung, Selektion und Anreicherung von rekombinanten Baculoviren; e) Gewinnung des GAD-1- oder GAD-2-Proteins nach Infektion von Sf9-Zellen mit rekombinanten Baculoviren; und f) Reinigung des rekombinanten GAD-1- oder GAD-2-Proteins. Das erfindungsgemäße Verfahren stellt hochreine, fast homogene GAD-1- bzw. GAD-2-Proteine mit einer hohen Expressionsrate und einem hohen Reinigungsgrad zur Verfügung. Die isolierten GAD-Proteine werden in Immunassays zur Früherkennung von Diabetes mellitus Typ I (IDDM) eingesetzt.

Description

Verfahren zur Herstellung hochreiner humaner GAD-l- und
GAD-2-Proteine
Die vorliegende Erfindung betrifft ein Verfahren zur Her¬ stellung hochreiner humaner GAD-l- und GAD-2-Proteine gemäß den Merkmalen des Hauptanspruchs.
Der insulinabhängige Diabetes mellitus Typ I (IDDM) resul¬ tiert aus einer selektiven Zerstörung der insulinproduzie¬ renden körpereigenen ß-Zellen der Bauchspeicheldrüse. Der fortschreitende Zerstörungsprozeß der ß-Zellen führt schon einige Jahre vor dem Ausbruch der Autoimmunkrankheit auf¬ grund einer bestimmten Proteinfreisetzung zur Bildung spezi¬ fischer Autoantikörper.
Aus dem Stand der Technik ist bekannt, daß die Bildung die¬ ser Antoantikörper eine Früherkennungsdiagnose der Autoium- munkrankheit durch geeignete I munassays ermöglicht. Infol¬ gedessen wurde nach spezifischen Zielantigenen gesucht, mit deren Hilfe die Antikörper nachgewiesen werden können.
Baekkeskov et al. (S. Baekkeskov et al., Nature 298 (1982), Seiten 167 bis 169) stellten fest, daß ein spezifisches Pro¬ tein der Langerhans-Inselzellen, nämlich ein 64 dKa-Protein, das gesuchte Zielantigen darstellt.
Bei der Klärung der molekularen Identität des 64 kDa-Pro- teins waren Untersuchungen bei einer neurologischen Erkran¬ kung, dem Stiff-man-Syndrom (SMS) , von grundlegender Bedeu¬ tung. Das relativ selten auftretende androtrope Stiff-man- Syndrom äußert sich in langsam zunehmender Rumpf- und Glied¬ maßensteife und tetanieformen Muskelkrämpfen.
Ende der 80er Jahre wurde bekannt, daß sich bei den meisten SMS-Patienten Antikörper gegen GABA (Gam a-Aminobutter- säure)-sezernierende Neuronen finden. Das GABA-synthetisie- rende Enzym, die Glutamat-Decarboxylase (GAD) , wurde als vorherrschendes Antigen erkannt. Auffallend waren die bei dieser Patientengruppe fast ausnahmslos positiven ICA (Inselzeil-Antikörper) -Immunfluoreszenz-Befunde auf Pankre- as-Kryostat-Schnitten. Ein signifikanter Anteil der Patien¬ ten litt darüber hinaus an IDDM. Schließlich gelang mittels Immunpräzipitation unter Verwendung von 64 kDa-Protein aus Ratteninseln beziehungsweise GAD aus Hirn der überzeugende Beweis, daß GAD sowohl in den Neuronen als auch in den Beta- Zellen das relevante Antigen und damit identisch mit dem 64 kDa-Target ist (S. Baekkeskov et al., Nature 347 (1990), Seiten 151-156) .
Bei den GAD-Proteinen handelt es sich um zwei Isoformen mit unterschiedlichem Molekulargewicht: Die humane GAD-65-cDNA codiert ein 65.000 Da-Polypeptid (GAD 65 = GAD-2) mit 585 Aminosäureresten, während die GAD-67-cDNA die Information für ein 67.000 Da-Polypeptid (GAD 67 = GAD-l) birgt, das aus 594 Aminosäuren aufgebaut ist (M.G. Erlander et al., Neuron 7 (1991), Seiten 91-100; D.-F. Bu et al. , Proc. Natl. Acad. Sei. USA 89 (1992), Seiten 2115-2119). Während bei der Ratte sowohl in den Neuronen als auch in den Inselzellen beide GAD-Isoformen präsent zu sein scheinen, wird beim Menschen in den Beta-Zellen offenbar nur die GAD-2 (GAD 65) ex- primiert und damit als Autoantigen relevant (H.J. De Aizpurua und L.D. Harrison, Diabetes Metab. Rev. 8 (1992) , Seiten 133-147; A.E. Karlsen et al. , Diabetes 41 (1992), Seiten 1355-1359) . Durch die Erkenntnis, daß ein positiver 64 kDa-Antikörperbefund bereits Jahre vor Ausbruch der Krankheit detektiert werden kann, erlangte dieser Parameter einen völlig neuartigen Stellenwert als prädiktiver diag¬ nostischer Marker. Die GAD-Proteine bilden mit den Autoanti¬ körpern, die bei Diabetes mellitus Typ I gebildet werden, einen Antikörper-Antigenkomplex. Bisher wurden einige Immun- assays basierend auf dem Antikörper-Antigenkomplex ent¬ wickelt, die die Früherkennung von IDDM vor dem eigentlichen Ausbruch der Krankheit ermöglichen. Die Antigene, die im allgemeinen in diesen Immunassays verwendet werden, wurden bisher direkt aus dem Pankreas oder den Langerhans-Inselzel- len gewonnen.
Die WO-90/07117 beschreibt ein Verfahren zur Früherkennung und Behandlung von IDDM, wobei die Antigenpräparation, die ein 64 kDa-Protein allein oder zusammen mit anderen Antikör¬ pern enthält, direkt aus humanem Pankreas gewonnen wird.
Ein Nachteil dieses Immunassays liegt in dem Zeitaufwand, der benötigt wird, um das Antigen aus dem Pankreas bzw. aus den Langerhans-Inselzellen zu gewinnen. Ein weiterer Nach¬ teil liegt in der Qualität der derart gewonnenen Präparatio¬ nen, da sowohl humane als auch tierische Gewebe variable Mengen an Antigenen enthalten, die die Reinheit und die Qua¬ lität der isolierten und in den Immunassays eingesetzten Antigene erheblich beeinträchtigen. GAD-Proteine sind auf¬ grund ihrer Molekülgröße schwer zu exprimieren. Die verwen¬ deten Antigenpräparationen, die dementsprechend oft nur ge¬ ringe Mengen an GAD-Proteinen enthalten, können infolge vor¬ handener Verunreinigungen durch andere Substanzen auch mit unspezifischen Komponenten reagieren. Dadurch wird sowohl die Signifikanz als auch die Zuverlässigkeit des Immunassays erheblich beeinträchtigt. Weiterhin ist es nicht möglich, die beiden GAD-For en in der Antigenpräparation zu unter¬ scheiden, da sie nur in begrenzten Mengen vorhanden sind, und die in der Antigenpräparation vorhandenen Verunreinigun¬ gen eine Unterscheidung nicht ermöglichen.
Um die Nachteile der Immunassay-Systeme zu vermeiden, die solche aus natürlichen Quellen gewonnenen GAD-Proteine als Antigen verwenden, wurden bisher bakterielle Expres¬ sionssysteme vorgeschlagen, um rekombinante GAD-l- und GAD- 2-Proteine zu exprimieren. Die Verwendung bakterieller Expressionssysteme, insbesondere von Escherichia coli-Zellen, hat sich als wenig erfolgreich erwiesen, da der größte Teil der exprimierten, rekombinanten GAD-Proteine weder die korrekte Modifikation noch die natür¬ liche Molekülkonformation aufweist. Die spezifische Reaktion der Antikörper mit den GAD-Proteinen ist abhängig von den antigenen Epitopen der GAD-Proteine, die von den Antikörpern erkannt werden. Eine Veränderung der Molekülkonformation der GAD-Proteine verhindert, daß die Antikörper die spezifischen Epitope erkennen können. Die eingesetzten Seren der IDDM-Pa- tienten sprechen demgemäß auf die bakteriell exprimierten GAD-Proteine nur ungenügend an. Infolgedessen führt die Ver¬ wendung bakteriell exprimierter GAD-Proteine zu Immunassays, deren Ergebnisse weder zuverlässig noch aussagekräftig sind.
Darüber hinaus liegen die exprimierten GAD-Proteine in der bakteriellen Zelle oft in Form von unlöslichen Einschlußkör¬ pern vor. Dies ist auf eine intrazelluläre Akkumulation der exprimierten Proteine zurückzuführen, die durch eine erhöhte Expressionsrate hervorgerufen wird. Diese unlöslichen Ein¬ schlußkörper erweisen sich als problematisch, da es oftmals nicht möglich ist, aus diesen unlöslichen Einschlußkörpern rekombinante GAD-Proteine mit korrekter Konformation zu ge¬ winnen.
Christgau et al. (Journal of Cell Biology 118 (July 1992) , Seiten 309 bis 320) publizierten ein Baculovirus-Sf9-System, in welchem rekombinante GAD-Proteine ausgehend von Ratten- GAD-cDNA exprimiert werden. Die isolierten GAD-Proteine lie¬ gen in unreiner Form vor, da ein Reinigungsschritt nicht vorgesehen ist. Darüber hinaus befaßt sich der Artikel spe¬ zifisch mit der Bindung des GAD-2-Autoantigens an die Zell¬ membran. Bisher war jedoch nicht bekannt, gereinigte humane GAD-Antigensubεtrate herzustellen und die Nachteile der bis¬ her in Immunassays eingesetzten nicht gereinigten An- tigensubstrate zu überwinden. Weiterhin ist die Reinigung der rekombinanten antigenen Epitope des humanen 68-kDa (Ul) Ribonucleoproteinantigens bekannt, wobei als Expressionssystem pH6EX3 verwendet wird. Der Reinigungsschritt erfolgt durch Metallchelat-Affinitäts- chromatographie (H. Berthold et al., Prot Exp Purif 3, (1992), Seiten 50 bis 56). Der Artikel enthält keinen Hin¬ weis bezüglich der Expression von GAD-Proteinen und ihrer Reinigung.
Es läßt sich also feststellen, daß die Nachteile des Stands der Technik insbesondere darin bestehen, daß die humanen GAD-l und GAD-2 Antigenextrakte sowohl Verunreinigungen ent¬ halten als auch nur in geringen Mengen zur Verfügung stehen. Somit liegt der Erfindung das technische Problem zugrunde, ein Verfahren zur Herstellung humaner GAD-l- und GAD-2-Pro- teine in ausreichender Menge anzugeben, das die Nachteile des Standes der Technik überwindet.
Die Lösung dieses technischen Problems wird durch die Ex¬ pression humaner GAD-l- und GAD-2-codierender Sequenzen in eukaryotischen Zellen, insbesondere aber Baculoviren und an¬ schließende Reinigung der Expressionsprodukte erreicht.
Zur Lösung dieser Aufgabe dienen insbesondere die Merkmale des Hauptanspruchs. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen definiert.
Die vorliegende Erfindung betrifft somit ein Verfahren zur Herstellung hochreiner humaner GAD-l- und GAD-2-Proteine un¬ ter Verwendung eines eukaryotischen Expressionssystems, ins¬ besondere des Baculovirus/Sf9-Expressionssystems, wobei das Verfahren die folgenden Schritte umfaßt:
a) Herstellung von cDNA-Sequenzen aus humanen cDNA-Biblio- theken, die jeweils GAD-l- und GAD-2-Proteine in voller Länge codieren bzw. Abwandlungen davon; b) Insertion der GAD-l- oder GAD-2-cDNA-Sequenz in einen Baculovirus-Transfervektor; c) Co-Transfektion von Sf9-Zellen mit GAD-l- oder GAD-2- cDNA-enthaltenden Baculovirus-Transfervektoren und Bacu- lovirus-DNA zur Erzeugung rekombinanter Baculoviren; d) Identifizierung, Selektion und Anreicherung von rekom¬ binanten Baculoviren; e) Gewinnung des GAD-l- oder GAD-2-Proteins nach Infektion von Sf9-Zellen mit rekombinanten Baculoviren; und f) Reinigung des rekombinanten GAD-l- oder GAD-2-Proteins.
Die Erfindung wird durch die Figuren näher erläutert. Es zeigen:
Fig. 1 die Analyse der Expression von GAD-l- und GAD-2-cDNA in Sf9-Zellen und ihre Westernanalyse;
Fig. 2 die Messung der GAD-l- und GAD-2-Enzymaktivität in infizierten Sf9-Zellen;
Fig. 3 a/b die Immunpräzipitation von rekombinanten GAD-1- und GAD-2-Proteinen mit Seren von IDDM-Patienten;
Fig. 4 die Immunpräzipitation des hochreinen GAD-2-Pro- teins;
Fig. 5 die Analyse der Expression von GAD-l- und GAD-2-cDNA in E. coli und ihre Westernanalyse, und
Fig. 6 die enzymimmunometrische Bestimmung von GAD-2-Anti¬ körpern mittels ELISA in Blutspender- und Diabeti¬ ker-Seren.
Die Zeichnungen zeigen insbesondere:
Fig. 1 zeigt die Expression und die Western-Blotting-Analyse der in den Sf9-Insektenzellen exprimierten GAD-l- bzw. GAD- 2-Proteine. Die durch die SDS-Polyacrylamid-Gelelektropho- rese getrennten Proteine werden (A) mit dem Farbstoff Coo assie-Brillantblau gefärbt oder (B) durch das Western- Blotting-Verfahren, das das Anti-GAD924-IDDM-Patientenserum, welches spezifisch gegenüber GAD-2 ist, verwendet bzw. (C) durch onoclonale Maus-anti-GAD-Antikörper, welche spezi- fisch gegenüber GAD-l sind, analysiert. Spalte 1 weist die löslichen, Spalte 2 die unlöslichen Fraktionen der MOCK-Zel- len auf; in Spalte 3 sind die löslichen und in Spalte 4 die unlöslichen Fraktionen des in der Sf9-Zelle exprimierten GAD-2-Proteins aufgeführt; Spalten 5 und 6 zeigen die lösli¬ chen und unlöslichen Fraktionen der in der Sf9-Insektenzelle exprimierten GAD-1-Proteine; Spalte 7 enthält 2,5 mg gerei¬ nigtes GAD-2 und Spalte 8 2,5 mg gereiniges GAD-l.
Fig. 2 zeigt die Messung der GAD-Enzy aktivität in infizier¬ ten Sf9-Insektenzellen, Sf9-Zellen, infiziert mit dem Kontroll-Baculovirus (MOCK) , SF9-Zellen, die GAD-2(GAD65- Sf9) und GAD-l (GAD67-Sf9) exprimieren sowie isolierte Pankreas-Inselzellen und Gehirngewebe von Schweinen, die ho¬ mogenisiert und für die Messung der GAD-Aktivität verwendet werden.
Fig. 3 zeigt die Immunpräzipitation der rekombinanten huma¬ nen GAD-2 (A) und GAD-l (B) mit IDDM-Patientenseren. In den Spalten 1 bis 10 werden die Seren neuerkrankter IDDM-Patien- ten und in den Spalten 11 und 12 zwei normale Seren verwen¬ det. Spalte 13 zeigt den Gesamtproteinextrakt der GAD-2 bzw. GAD-l exprimierenden Zellen. Die ausgefallenen Proteine wur¬ den durch 10 %ige Polyacrylamid-Gelelektrophorese getrennt und durch Fluorographie sichtbar gemacht.
Fig. 4 zeigt Immunpräzipitation mit gereinigter rekombinan- ter GAD-2 (auch GAD 65) . Das rekombinante GAD-2-Fusionspro- tein wurde etabolisch markiert und über Metallchelat- Affinitätschromatographie gereinigt. Spur 1 zeigt die Reak¬ tion mit einem Diabetikerserum, Spur 2 mit einem polyclona- len Anti-GAD-2-Kaninchenserum und Spur 3 mit einem Blutspenderserenpool.
Fig. 5 zeigt die Western-Blotting-Analyse der in E. coli ex¬ primierten GAD-2 und GAD-1-Proteine mit spezifischen IDDM- Patientenseren. Die Einschlußkörper der E. coli, die mit den rekombinanten Expressionsvektoren pGAD-E22 und pGAD-Ell, welche für GAD-2 (Nummer 1 in der Fig. 5) und GAD-l (Nummer 2 in der Fig. 5) transformiert sind, wurden isoliert und in 8 Mol Harnstoff gelöst. Aliquots, die 10 μl der Bakterien¬ kulturen enthalten, wurden durch 10 % Polyacrylamid-SDS-Gel- elektrophorese analysiert. Die aus den Einschlußkörpern iso¬ lierten GAD-Proteine werden mit Coo assie Brillantblau (A) angefärbt oder mit dem Western-Blotting-Verfahren (B-K) , in dem zehn Seren neu erkrankter IDDM-Patienten verwendet wur¬ den, oder mit Anti-GAD924-IDDM-Serum (L) analysiert. Mono- clonale Maus-anti-GAD-Antikörper (M) dienten als Kontrollse¬ rum.
Fig. 6 zeigt die Bestimmung von GAD-2-Antikörpern mittels eines ELISA-Systems unter Verwendung der gereinigten GAD-2 bei Blutspendern (A, n = 25) , neu manifestierten Diabetikern Typ 1 (B, n = 14) , Diabetikern Typ 1 mit einer Krankheits¬ dauer >3 Monate (C, n = 47) und Diabetikern Typ 2 (D, n = 32) . Die gestrichelte Linie entspricht dem Cut-off von 1500 mGAD/ml. 50 % (9/18) neu manifestierte Diabetiker Typ 1 und 23 % (11/47) länger manifestierte Diabetiker Typ 1 zeigen erhöhte GAD-2-Antikörper-Werte (Blutspender: 2/25, 8 %; Dia¬ betiker Typ 2: 1/32, 3 %) . Dieser als quantitative Methode konzipierte Assay ermöglicht den spezifischen Nachweis von GAD-2-Antikörpern. Die Daten zeigen den hohen GAD-2-Antikör- per-Positivitätsgrad beim Ausbruch der Krankheit.
Das erfindungsgemäße Verfahren verwendet eukaryotische Ex¬ pressionssysteme, vorzugsweise das Baculovirus-Spodoptera frugiperda (Sf9-Zellen)-Expressionssystem, das eine große Menge an biologisch aktiven Proteinen liefert. Des weiteren ist es möglich, mit diesem Expressionssystem rekombinante GAD-l- und GAD-2-Proteine in höchstreiner Form herzustellen. Hierbei stellt der Baculovirus den Vektor auf viraler Basis zur Verfügung, während in der Sf9-Insektenzelle die Expres¬ sion stattfindet. Das Baculovirus/Sf9-System hat den Vorteil, daß das Expres¬ sionszellsystem unter serumfreien Bedingungen als Suspen¬ sionskultur gezüchtet und vermehrt werden kann.
Gemäß der vorliegenden Erfindung wird die zu exprimierende DNA, die die humanen GAD-Proteine codiert, vorzugsweise aus cDNA-Bibliotheken hergestellt, die von einer Pankreas- karzinomzellinie oder einer Hippocampus-Zellinie abstammen. In einem Screening-Verfahren werden aus einer humanen Pan- kreaskarzino -cDNA-Bibliothek oder einer humanen Hippoca - pus-cDNA-Bibliothek die spezifischen cDNAs, die die GAD-1- bzw. GAD-2-Proteine codieren, durch Hybridisierung mit Oli- gonucleotid-Sonden und PCR-Amplifikation isoliert bzw. her¬ gestellt. Die verwendeten synthetischen Oligonucleotide in diesem Screening-Verfahren basieren auf der homologen Se¬ quenz, die für Rattengehirn GAD67 cDNA publiziert ist (J. F. Julien et al., J. Neurochem 54 (1990), Seiten 703 bis 705). Die isolierten cDNA-Fragmente wurden durch cDNA-Analyse cha¬ rakterisiert und miteinander verbunden, um cDNAs von 2,0 und 1,8 kb in voller Länge herzustellen, die die Proteine der 585 Aminosäuren der GAD-2 und der 594 Aminosäuren der GAD-l codieren.
Im nächsten Verfahrensschritt erfolgt die Verknüpfung der GAD-l- bzw. GAD-2-cDNA mit einer für ein Äffinitatspeptid codierenden Sequenz mittels Mutagenese. Die entsprechenden Produkte werden vorzugsweise in den Baculovirus-Transfervek¬ tor pVL1393 (Invitrogen Corporation 1992, Cat.-Nr. V 1392- 20) unter Bildung der Clone pAc GAD-l und pAc GAD-2 inse¬ riert. Die Erfindung betrifft also auch eine DNA-Sequenz, die ein Fusionsprotein codiert, das ein GAD-l- oder GAD-2- Polypeptid und ein Äffinitatspeptid umfaßt. Das Äffinitats¬ peptid erlaubt die Reinigung resultierender GAD-Fusionspro- teine mittels Metallchelat-Affinitatschromatographie und entspricht vorzugsweise einem Oligopeptid mit mindestens 2 Histidinen, wodurch im weiteren Verfahren eine hochspezifi¬ sche Reinigung der resultierenden Fusionsproteine mittels Metallchelat-Affinitatschromatographie ermöglicht wird. Die Anlagerung des Äffinitatspeptids kann an das a inoterminale oder das carboxyter inale Ende der GAD-l- und GAD-2-Proteine erfolgen. Für das erfindungsgemäße Verfahren zur Herstellung der GAD-Proteine enthalten die exprimierten GAD-Fusionspro- teine besonders bevorzugt am N-Terminus die humanen GAD-1- und GAD-2-Proteine und am C-Terminus ein Histidin-Hexapep- tid.
Dann erfolgt die Co-Transfektion der Sf9-(Insekten) Zellen zusammen mit Baculovirus-DNA. Nach Isolierung und Amplifika- tion des rekombinanten Virus schließt sich nun die Expres¬ sion der rekombinanten GAD-Fusionsproteine an.
Um die Expressionsrate des Baculovirus/Sf9-Systems verglei¬ chen zu können, werden zudem Sf9-Zellen mit einem Kontroll¬ virus ohne GAD-cDNA infiziert. In diesem Kontrollsystem (MOCK) findet keine Expression statt (Fig. 1, Spalte 1, 2) . In einem weiteren Vergleichsverfahren kann die Expression der GAD-Proteine in prokaryotischen E. coli-Zellen durchge¬ führt werden. In den bakteriellen Zellen erfolgt eine Ex¬ pression, die erhebliche Nachteile aufweist, auf die nach¬ stehend näher eingegangen wird.
Die Kultivierung der Sf9-Zellen als Suspensionskultur er¬ folgt vorzugsweise in einem serumfreien Medium. Nach Infek¬ tion mit dem rekombinanten Virus können die rekombinanten GAD-l- und GAD-2-Fusionsproteine durch Lyse und Zentrifugie- ren der Sf9-Zellen gewonnen werden, wobei eine unlösliche und eine lösliche Zellfraktion entsteht. Die GAD-l- bzw. GAD-2-Fusionsproteine befinden sich im Überstand, d.h. in der löslichen Zellfraktion.
Anschließend erfolgt die erfindungsgemäße Reinigung der GAD- 1- bzw. GAD-2-Fusionsproteine, und zwar besonders bevorzugt durch Metallchelat-Affinitatschromatographie. Das Prinzip dieser Methode basiert auf der Affinität von Proteinen für Metallionen, welche in Abhängigkeit zur Exposition bestimm¬ ter Aminosäurereste steht. Histidin und Cystein zeigen in der Regel die stärksten Interaktionen mit Metallen in der Metallchelat-Affinitatschromatographie. Weiterhin scheint z.B. Tryptophan mit seiner Indolstruktur die Bindungsaffini¬ tät zu beeinflussen. Als Metalle, die über einen Chelatkom- plex an die Säulenmatrix immobilisiert sind, finden in erster Linie Ni2+, Zn2+, Cu2+ oder Co2+ Anwendung. Für die abschließende Proteinelution stehen verschiedene Techniken (pH-Gradient, kompetive Liganden) zur Verfügung. Für das er¬ findungsgemäße Verfahren wird der GAD-l- bzw. GAD-2-Fusions- proteine enthaltende Extrakt auf eine Säule gegeben, die eine Matrix mit Metallionen, insbesondere Ni2+-Ionen, als stationäre Phase enthält. Die GAD-Fusionsproteine bilden mit den Ni2+-Ionen einen Metallchelat-Komplex. Anschließend wird die Säule mit einem Eluierungsmittel, insbesondere Imidazol, versetzt, was eine schonende Methode darstellt, um die GAD- Fusionsproteine von der Säule zu eluieren.
Diese besonders bevorzugte Ausführungsform der Erfindung stellt durch die einstufige Affinitätschromatographie über eine Metallionen-Matrix ein fast homogenes GAD-Antigensub- strat zur Verfügung. Dabei wird die Chromatographie bei phy¬ siologischem pH und ohne zusätzliche Detergentien durchge¬ führt, um die natürliche Konformation beider GAD-For en zu erhalten. Dies wird anhand der Enzymaktivität und durch das Im unpräzipitationsverfahren eindeutig belegt.
Die Erfindung betrifft demgemäß auch die durch die vorste¬ henden Reinigungsverfahren erhältlichen GAD-l- und GAD-2- Protei e und deren Abwandlungen, insbesondere die Fusions¬ proteine und deren Abwandlungen. Die Erfindung betrifft außerdem auch die Reinigung von Abwandlungen der GAD-l- und GAD-2-Proteine oder deren Fusionsderivaten, die verursacht sein können durch Aminosäure-Deletionen, (d.h. z.B. Frag¬ mente von GAD-Proteinen) , -Substitutionen, -Insertionen, -Inversionen oder Modifikationen wie Glykosylierungen, Phos- phorylierungen oder Acetylierungen, so lange diese Abwand¬ lungen die gleichen antigenen Eigenschaften wie das natürli¬ che GAD-l- bzw. GAD-2-Protein aufweisen. Im Zusammenhang der vorliegenden Erfindung werden unter dem Begriff "GAD-1-" bzw. "GAD-2-Protein" auch das jeweilige rekombinante Fu¬ sionsprotein, sowie die vorstehend genannten Abwandlungen verstanden.
Die antigene Funktion der erfindungsgemäß hergestellten GAD- 1- und GAD-2-Proteine wird durch Western-Blotting-Verfahren nachgewiesen. Fig. 1 zeigt die Expression und die Western- Blotting-Analyse der in den Sf9-Zellen exprimierten GAD-1- bzw. GAD-2-Proteine. Als Testserum wird ein GAD-2-spezifi- sches IDDM-Autoimmunserum, welches als Anti-GAD924 bezeich¬ net wird, (Fig. IB) und ein GAD-l-spezifischer Maus-monoclo- naler Antikörper (Fig. IC) verwendet. Aus den Figuren IB und IC ergibt sich, daß sich spezifische Antigen-Antikörper-Kom- plexe bilden. Weiterhin zeigen sie, daß die GAD-2-Proteine eine hervorragende Antigenfunktion aufweisen, die in Immun¬ assays eingesetzt werden kann. Es sei darauf verwiesen, daß die Numerierung der Fig. IB und IC derjenigen in Fig. 1A entspricht.
Die erfindungsgemäß hergestellten GAD-Proteine wurden bezüg¬ lich ihrer Enzymaktivität getestet und mit natürlichen GAD- Proteinen, die aus Inselzellen und Hirngewebe von Schweinen abstammen, verglichen.
Der Fig. 2 ist zu entnehmen, daß die erfindungsgemäß herge¬ stellten humanen GAD-2(GAD65-Sf9)- und GAD-l(GAD67-Sf9)-Pro¬ teine eine weitaus höhere Enzymaktivität aufweisen, als die GAD-Proteine aus den Inselzellen und Gehirnen von Schweinen. Die Enzymaktivität der erfindungsgemäß hergestellten GAD-1- und GAD-2-Proteine beträgt das 400- bzw. 45-fache bei GAD-2 und das 600- bzw. 75-fache bei GAD-l im Vergleich zu GAD aus Pankreas-Inselzellen bzw. aus Gehirnzellen. Naturgemäß wird in den Sf9-Zellen mit dem Kontroll-Baculovirus (MOCK) keine GAD-Enzymaktivität nachgewiesen.
Ca. 2 bis 3 mg eines jeden GAD-l- und GAD-2-Proteins werden aus 1000 ml Kultursuspension der infizierten Zellen gewon¬ nen.
Fig. 3 zeigt die Immunpräzipitation des erfindungsgemäß her¬ gestellten GAD-2-Proteins (A) und GAD-1-Proteins (B) mit den IDDM-Patientenseren und zwei normalen Seren. Wie sich aus den Immunpräzipitaten der Spalten l bis 10, Teil A, entneh¬ men läßt, eignen sich die erfindungsgemäß hergestellten GAD- 2-Proteine in hervorragender Weise als Reagenzien und somit als Antigensubstrate bei Immunpräzipitationen mit Seren von IDDM-Patienten. Während in den Spalten 1 bis 10 ein Antikör- per-Antigen-Komplex gebildet wird, findet zwischen dem GAD- 2-Protein und den normalen Seren keine Reaktion statt.
Die Immunpräzipitationen aus Teil B zeigen, daß nur 20 % der zehn mit GAD-2 reagierenden IDDM-Seren zusätzlich auch GAD-l erkennen. GAD-l scheint insofern von geringerer Bedeutung bei der IDDM-Diagnose zu sein.
Fig. 4 gibt die Immunpräzipitationen mit gereinigtem rekom¬ binanten GAD-2-Protein (GAD 65) wieder. Das rekombinante GAD-2-Fusionsprotein wurde metabolisch markiert. Über Reini¬ gung mittels Metallchelat-Affinitatschromatographie wurde eine hochreine GAD-Fusionsprotein-Fraktion gewonnen, welche in der Immunpräzipitation eingesetzt wurde. Ein IDDM-Serum (Spur 1) und ein polyclonales Anti-GAD-2-Kaninchenserum (Spur 2) erkennen die gereinigte GAD-2, mit dem Blutspender¬ serum findet dagegen keine Reaktion statt.
Das Vergleichsverfahren, in dem die Herstellung der GAD-1- und GAD-2-Proteine durch Expression im prokaryotischen E. coli-Syste stattfindet, zeigt andere Ergebnisse. Die SDS-Polyacrylamid-Gelelektrophorese und das Western- Blotting-Verfahren aus Fig. 5 (GAD-2: Spuren 1, GAD-l: Spu¬ ren 2) zeigen, daß neben dem in der E. coli-Zelle exprimier¬ ten GAD-2-Protein ein kleineres GAD65-Protein mit einem Mo¬ lekulargewicht von 41 kDa exprimiert wird (Spalte 1) . Diese kleinere GAD-Form weist eine andere Konformation als die des spezifischen GAD-2 auf und wird nur in prokaryotischen Ex¬ pressionssystemen gefunden. Die rekombinanten GAD-Proteine des bakteriellen Systems werden mittels des Western- Blotting-Verfahrens analysiert, wobei ebenfalls zehn IDDM- Testseren verwendet werden. Alle Testseren mußten mit bakte¬ riellen Extrakten vorbehandelt werden, um Nebenreaktionen mit anderen bakteriellen Proteinen zu minimieren.
Im Vergleich zur Immunpräzipitation hat sich im Western-Blot gezeigt, daß nur fünf IDDM-Seren (50 %) Autoantikörper ent¬ halten, die mit dem liniearen Epitop der GAD-2 reagieren, während zwei IDDM-Seren (20 %) das lineare Epitop der GAD-l erkennen.
Dieses Ergebnis zeigt, daß die GAD-2-spezifischen Autoanti¬ körper hauptsächlich mit den Antigenepitopen reagieren, die bedingt durch die native Konformation erreichbar sind. In¬ folgedessen sind die Ansätze, Anti-GAD-Autoantikörper in IDDM-Patientenseren mit prokaryotisch exprimierten rekom¬ binanten GAD-2-Proteinen zu messen, nicht repräsentativ, da die GAD-Autoantikörper mit den prokaryotisch exprimierten GAD-2-Proteinen nicht spezifisch reagieren.
Fig. 6 zeigt die enzymimmunometrische Bestimmung von GAD-2- Antikörpern mittels ELISA unter Einsatz des gereinigten GAD- 2-Fusionsproteins. Der quantitative Assay ermöglicht den hochspezifischen Nachweis von GAD-2-Antikörpern. Die Daten zeigen, daß insbesondere bei neu manifestierten Typ-1-Diabe- tikern ein hoher Anteil (50 %) positiv für GAD-2-Antikörper ist. Das erfindungsgemäße Verfahren stellt hochreine humane re¬ kombinante GAD-l- und GAD-2-Proteine, die im Baculovi- rus/Sf9-Expressionssystem produziert werden, zur Verfügung. Die hergestellten rekombinanten GAD-l- und GAD-2-Proteine weisen eine hervorragende Enzymaktivität und eine hoch spe¬ zifische Antigenität auf. Das erfindungsgemäße Verfahren er¬ möglicht eine schnelle und effektive Isolierung der rekom¬ binanten GAD-l- und GAD-2-Proteine, die einen hohen Reini¬ gungsgrad aufweisen.
Die Erfindung betrifft auch die Verwendung der erfin- dungsgemäßen GAD-Proteine zur Herstellung einer Arzneimit¬ telzusammensetzung zur Behandlung von IDDM und SMS. Die Er¬ findung betrifft ferner ein Arzneimittel, umfassend die nach einem der erfindungsgemäßen Verfahren erhältlichen GAD-Pro¬ teine.
Darüber hinaus können die hochreinen GAD-l- und/oder GAD-2- Proteine als Antigensubstrat in Immunassays, z.B. Festpha- senimmunassay und ELISA, und Kits zur (Früherkennungs-) Diagnose von Diabetes mellitus, Typ I verwendet werden.
Das nachfolgende Beispiel erläutert die Erfindung, ohne sie jedoch zu einzuschränken.
Beispiel I
1. Herstellung der GAD-l- und GAD-2-cDNA-Seσuenzen. die die GAD-l- beziehungsweise GAD-2-Fusionsproteine in voller Länge codieren.
Mit Hilfe eines Screening-Verfahrens werden aus einer huma¬ nen Pankreaskarzinom-cDNA-Bibliothek oder einer humanen Hip- pocampus-cDNA-Bibliothek die spezifischen cDNA-Sequenzen, die humane GAD-l- beziehungsweise GAD-2-Proteine codieren, durch Hybridisieren mit Oligonucleotid-Sonden und PCR-Ampli- fikation hergestellt. Die synthetischen Oligonucleotide, die verwendet werden, basieren auf der bekannten Sequenz der Rattengehirn-GAD-1-cDNA (J-.F. Julien et al. , J. Neurochem.
54, (1990), Seiten 703 bis 705) und der humanen GAD-2-cDNA
(A.E. Karlsen et al., Proc. Natl. Acad. Sei. USA 88 (1991), Seiten 8337-8341) .
Die rekombinante DNA wurde für die PCR (polymerase-chain- reaction)-Amplifikation aus 2 x 106 Plaques der Lambda-cDNA- Bibliothek nach bekannten Methoden isoliert. 1 μg der rekom¬ binierten cDNA wird mit 1 Unit Tac-Polymerase in 10 mM Tris/HCl, pH 8,0, 50 mM KC1, 1,5 mM MgCl2, 4 pMol eines je¬ den Primers und 100 μM dNTPS amplifiziert. Die Amplifika- tionsreaktion wurde in 30 Cyclen mit den folgenden Cyclen- zeiten durchgeführt: Denaturierung, 1 Minute bei 95°C, Annealing, 2 Minuten bei 60°C und Primer Extension, 2 Minu¬ ten bei 72°C. Die synthetisierten GAD-cDNA-Fragmente wurden durch DNA-Sequenzanalyse unter Verwendung von T7-DNA-Polyme- rase analysiert. Geeignete cDNA-Fragmente werden nach be¬ kannten Methoden unter Bildung von 2,0 kb- und 1,8 kb-cDNAs, die die GAD-2- und GAD-1-Proteine in voller Länge codieren, kombiniert. Die GAD-cDNAs werden durch gezielte Mutagenese am 5*-Ende der codierenden Sequenz mit einer Restriktions¬ schnittstelle (BamHl) und am 3 '-Ende der codierenden Sequenz durch eine Histidin-Hexapeptid-codierende Sequenz, ein Stop- codon, und eine Restriktionsschnittstelle (Xhol) erweitert und in die entsprechenden Clonierungsschnittstellen von pBluescript SK (Stratagene Cloning Systems) inseriert.
2. Expression der GAD-l- und GAD-2-cDNAs im Baculovi¬ rus/Sf9-Eχpressionssvstem
Die in Abschnitt 1 hergestellten cDNAs, die sowohl humane GAD-2- als auch GAD-1-Proteine codieren, wurden aus den re¬ kombinanten pBluescript SK-Vektoren unter Verwendung der BamHl- und Kpnl-Restriktionsschnittstellen in den Baculovi¬ rus-Transfervektor pVL 1393 (Invitrogen Corporation) um- cloniert. Die die rekombinanten GAD-Proteine codierenden Vektoren wurden pAc GAD-l und pAc GAD-2 genannt. Die rekom- binanten Fusionsproteine weisen am N-Terminus das GAD-1- bzw. GAD-2-Protein und am C-Terminus des Histidin-hexapeptid auf. Spodoptera frugiperda (Sf9)-Zellen wurden mit dem re¬ kombinanten Transfervektor und dem linearisierten Wildtyp Baculovirus Autographa californica durch Lipofektion co- transfiziert. Rekombinante Viren wurden visuell identifi¬ ziert und durch Plaque-Assays isoliert. Nach Amplifikation wurden mittels Western blots die rekombinanten Viren auf die Expression der rekombinanten GAD-l- und GAD-2-Fusionspro- teine getestet. Mit diesen rekombinanten Viren wurden Sf9- Zellen in Suspensionskultur infiziert. Die Zellen wurden 48 - 72 h post infectionem weiter aufgearbeitet. Als Kontrolle wurden Sf9-Zellen verwendet, die mit einem rekombinanten Kontrollvirus ohne entsprechende GAD-Sequenzen infiziert worden waren.
3. Reinigung der rekombinanten humanen GAD-l- und GAD-2- Proteine
Vor der Lyse in einem Lysepuffer, der 40 mM HEPES/KOH, pH 7,4, 0,5 M NaCl, 1 mM PMSF (Phenylmethylsulfonylfluorid) , 1 M AET (2-Aminoethylisothiuroniumbromid) , 0,2 % Lubrol PX, 0,02 mM PLP (Pyridoxal-5-Phosphat) und 2 μg/ml der Pro- teinaseinhibitoren Leupeptin, Aprotinin, Bestatin und Pep- statin enthält, wurden die kultivierten Zellen sedimentiert. Die sedimentierten Zellen wurden resuspendiert und in 30 ml Lysepuffer bei 0°C homogenisiert und durch Zentrifugation (100 000 x g und 4°C) in lösliche und unlösliche Zell¬ fraktionen aufgetrennt.
Die überstehende Flüssigkeit, die die GAD-l- beziehungsweise GAD-2-Proteine enthält, wurde auf eine mit Ni beladene Chelating Sepharose Fast Flow (Pharmacia)-Säule aufgetragen. Anschließend wurde die Säule stufenweise mit Lysepuffer, der 10 mM, 40 mM, 100 mM und 500 mM Imidazol enthielt, eluiert. Die rekombinanten GAD-Proteine eluieren bei 100 mM und 500 mM Imidazol. Die isolierten GAD-Proteine können direkt in Immunassays eingesetzt werden.
4. Western-blottinq-Analvse der humanen GAD-l- und GAD-2- Proteine
Das, wie in Abschnitt 3 beschrieben, gereinigte GAD-l- be¬ ziehungsweise GAD-2-Protein wurde durch SDS-Polyacrylamid- Gelelektrophorese unter reduzierenden und denaturierenden Bedingungen aufgetrennt und auf Nitrocellulose-Filter über¬ tragen, unter Verwendung einer "transblot" halbtrockenen elektrophoretischen Transferzelle (BioRad) . Die unbesetzten Proteinbindungsstellen auf dem Filter wurden mit 5 % entfet¬ teter Trockenmilch in TBST-Puffer (10 mM Tris/HCl, pH 8,0, 150 M NaCl, 0,05 % Tween-20) blockiert. Die immobilisierten Proteine wurden 90 Minuten lang in einer 500fachen Verdün¬ nung eines Patienten-Autoimmunserums, das mit 0,1 mg/ml E. coli-Extrakten vorabsorbiert war, inkubiert. Die gebundenen Antikörper wurden mit antihumanem Immunoglobulin, welches mit alkalischer Phosphatase konjugiert war, sichtbar ge¬ macht.
5. Immunpräzipitation der metabolisch markierten GAD-l- und GAD-2-Proteine
Ungefähr 7 x 106 infizierte Sf9-Zellen pro Petrischale mit einem Durchmeser von 100 mm wurden in Grace's Medium, wel¬ ches 10 % fetales Kälberserum enthält, 36 Stunden bei 27°C kultiviert. Anschließend wurde das fetale Kälberserum für 60 Minuten durch ein seru - und methioninfreies Serum ersetzt, und nachfolgend wurden die infizierten Sf9-Zellen mit 10 ml eines serumfreien Mediums, das 200 μCi35S-Methionin enthält, weitere sechs Stunden bei 27°C markiert.
Die Zellen wurden mit 1 ml hypotonischem Puffer (20 M Kali¬ umphosphat, pH 7,0, 2 mM EDTA, 2 mM PMSF (Polymethylsulfo- nylfluorid) , 1 mM AET (2-Aminoethylisothiuroniumbromid) , 2 μg/ml Aprotinin, 0,2 mM PLP (Pyridoxal-5-Phosphat) lysiert und bei 36.000 x g 30 Minuten lang zentrifugiert. Das resul¬ tierende Pellet wurde in 1,5 ml 20 mM Tris/HCl, pH 7,4, 150 M NaCl, 20 μg/μl Aprotinin, 2 mM PMSF, 2 mM EDTA, 1 % Tri¬ ton X-100 resuspendiert und homogenisiert. Das Homogenat wurde bei 23 000 x g 30 Minuten zentrifugiert. 800 μl Über¬ stand wurden 2 Stunden bei 4°C mit einem GAD-Autoantikörper- negativen Blutspender-Pool inkubiert. Nach Zugabe von 300 μl Protein A Sepharose wurde weitere 1,5 Stunden inkubiert und anschließend 5 Minuten bei 15 000 x g zentrifugiert.
Ein 30 μl-Aliquot der überstehenden Flüssigkeit wurde mit 30 μl Antiserum, 800 μl PBS, 0,2 % Triton X-100 gemixt und über Nacht bei 4°C inkubiert. Der Immunkomplex wurde an 10 mg Protein A-Sepharose bei 4°C zwei Stunden gebunden, zweimal mit 1,25 ml Waschpuffer (100 mM Tris/HCl, pH 9,0, 500 mM LiCl, 1 % ß-Mercaptoethanol, 1 % Triton X-100) und einmal mit PBS gewaschen und vor der Fluorographie mit 80 mM Tris/HCl, pH 6,8, 2 % SDS, 5 % ß-Mercaptoethanol eluiert und durch SDS-Polyacrylamid-Gelelektrophorese aufgetrennt.
6. Immunpräzipitation der metabolisch markierten hochreinen GAD-2-Proteine
Rekombinante GAD-2-Fusionsproteine wurden wie in Abschnitt 5 metabolisch markiert und wie in Abschnitt 3 affinitätsgerei- nigt. 30 μl des 500 mM Imidazol-Eluats wurden mit 10 μl Se¬ rum immunpräzipitiert. Die GAD-2-Proteine zeigen eine hoch¬ spezifischen Antigenität.
7. Messung der Enzvmaktivitäten der rekombinanten GAD-1- und GAD-2-Proteine
Die GAD-Aktivität wird entsprechend der Standardmethoden von Krieger und Heller (O'Reilly, Miller, Locow, Baculovirus ex¬ pression vectors, Freeman and Company, New York (1992)) ge¬ messen. Die Bildung des 14C02 durch Decarboxylierung von 0,1 μCi L-[l-1 C]Glutamat wurde in 200 μl eines Gewebes oder Zellhomogenats in Zell-Lysepuffer bestimmt (50 M KH2P04, pH 7,0, 1 mM EDTA, 1 mM AET, 0,2 mM PLP, 1 % Triton X-100) . Die GAD-Aktivität wurde bezüglich der Inkubationszeit und der Proteinkonzentration kalibriert und als mU/mg der gesamten Zellproteine identifiziert (1 Einheit = 1 μM 1 C02/min.).
Beispiel II
Vergleichsversuch:
Expression der humanen GAD-l und GAD-2 in E. coli-Zellen
Die GAD-l- und GAD-2-cDNAs wurden in den prokaryotischen Ex¬ pressionsvektor pH6EX3 inseriert. Die hergestellten cDNA- Clone pGAD-E22 und pGAD-Ell synthetisieren die rekombinanten GAD-Proteine mit einem Histidin-Hexapeptidfragment am N-Ter- minus unter der Kontrollfunktion eines Tac-Promotors. Nach Transformation des E. coli-Stammes K5254 oder CAG456 (Snyder et al., Methods Enzymol. 154 (1987), Seiten 107-128) wurde die Expression der Fusionsgene durch 1 mM IPTG (Isopro- pylthiogalactosid) acht Stunden lang induziert.
Um die bakteriell exprimierten rekombinanten humanen GAD- Proteine zu analysieren, wurde der transformierte E. coli- Stamm K5254 kultiviert, mit 1 mM IPTG induziert und vor der Lyse mit Lysozy und Triton X-100 sedimentiert. Die unlösli¬ chen Einschlußkörper wurden in 8 Mol Harnstoff gelöst und durch SDS-Polyacrylamid-Gelelektrophorese und Western- Blotting-Analyse getrennt.
Beispiel III
Anti-GAD-Antikörper
Die in der vorliegenden Erfindung verwendeten Autoimmunseren wurden von neu manifestierten IDDM-Patienten erhalten und sind für Anti-GAD-2-Autoantikörper positiv, was durch Immun- prazipitation nachgewiesen wurde. Hierbei wurden isolierte Pankreas-Inselzellen vom Schwein nach metabolischem Markie¬ ren mit 35S-Methionin verwendet. Das Patientenserum, welches als Anti-GAD924 bezeichnet wird, reagiert mit linearen auto- antigenen Epitopen der humanen GAD-2-Proteine. Infolgedessen wurde dieses Serum für die Western-Blotting-Analyse der ex¬ primierten rekombinanten GAD-2-Proteine ausgewählt.
Der monoclonale Maus-anti-GAD-Antikörper, der speziell nur die linearen Epitope des GAD-1-Proteins erkennt, wurde freundlicherweise von Dr. B. Ziegler und Dr. M. Ziegler (Diabetes-Institut, Universität in Greifswald, Karlsburg, Deutschland) zur Verfügung gestellt. Die flüssige Kultur einer entsprechenden Maushybridoma-Zellinie, die die mono- clonalen anti-GAD-Antikörper enthält, wurde für das Western- Blotting-Verfahren 200 mal verdünnt.
Dieses Beispiel wird durch die in den Figuren 1 bis 6 darge¬ stellten Ausführungsformen näher erläutert.

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Herstellung hochreiner humaner GAD-l- und GAD-2-Proteine unter Verwendung des Baculovirus/Sf9-Ex¬ pressionssystems, wobei das Verfahren die folgenden Schritte umfaßt: a) Herstellung von cDNA-Sequenzen aus humanen cDNA-Bi- bliotheken, die jeweils GAD-l- und GAD-2-Proteine in voller Länge bzw. Abwandlungen davon codieren; b) Insertion der GAD-l- oder GAD-2-cDNA-Sequenz in einen Baculovirus-Transfervektor; c) Co-Transfektion von Sf9-Zellen mit GAD-l- oder GAD- 2-cDNA- enthaltenden Baculovirus-Transfervektoren und Baculovirus-DNA zur Erzeugung rekombinanter Ba¬ culoviren; d) Identifizierung, Selektion und Anreicherung von re¬ kombinanten Baculoviren; e) Gewinnung des GAD-l- oder GAD-2-Proteins nach Infek¬ tion von Sf9-Zellen mit rekombinanten Baculoviren; und f) Reinigung des rekombinanten GAD-l- oder GAD-2-Pro- teins.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Reinigung mittels Metallchelat-Affinitatschromato¬ graphie erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß die cDNA-Sequenzen aus einer humanen Pankreas- karzinom-cDNA-Bibliothek oder aus einer Hippocampus- cDNA-Bibliothek stammen.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekenn¬ zeichnet, daß die rekombinanten Baculovirus-Transfervek¬ toren zusätzlich noch eine DNA-Sequenz enthalten, die ein Äffinitatspeptid codiert, das a) einem Histidin-Hexapeptid entspricht oder b) einem Histidin-Oligopeptid mit mindestens 2 Histidi- nen entspricht oder c) die Reinigung resultierender GAD-Fusionsproteine mittels Metallchelat-Affinitatschromatographie er¬ laubt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch ge¬ kennzeichnet, daß die humanen cDNA-Sequenzen, die GAD-l oder GAD-2 codieren, in den Baculovorius-Transfervektor pVL1393 inseriert werden.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß das rekombinante GAD-l- oder GAD-2- Protein ein Fusionsprotein ist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch ge¬ kennzeichnet, daß die Co-Transfektion von Spodoptera frugiperda (Sf9-Insektenzellen) mit dem rekombinanten Baculovirus-Transfervektor und einem linearisierten Wildtyp Baculovirus Autographa californica durchgeführt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch ge¬ kennzeichnet, daß nach der Kultivierung die Sf9-Zellen lysiert werden und durch Zentrifugation in lösliche und unlösliche Zellfraktionen aufgetrennt werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die lösliche Zellfraktion das GAD-l- oder GAD-2-Fusions¬ protein enthält.
10. Verfahren nach einem der Ansprüche 1 bis 9 , dadurch ge¬ kennzeichnet, daß die lösliche Zellfraktion durch eine einstufige Metallchelat-Affinitatschromatographie gerei¬ nigt wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch ge¬ kennzeichnet, daß die lösliche Zellfraktion über eine chromatographische Säule gegeben wird, die mit einer Me¬ tallionen-Matrix, insbesondere Ni +-Ionenmatrix, ausge¬ stattet ist.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch ge¬ kennzeichnet, daß die GAD-Proteine mit einem Eluent, insbesondere I idazol, eluiert werden.
13. Hochreine GAD-l- oder GAD-2-Fusionsproteine, dadurch ge¬ kennzeichnet, daß sie nach einem der Verfahren nach An¬ spruch 4 bis 12 erhältlich sind.
14. Immunassay, dadurch gekennzeichnet, daß der Immunassay die durch das Verfahren gemäß einem der Ansprüche 1 bis 12 hergestellten hochreinen GAD-l- und/oder GAD-2-Pro- teine umfaßt.
15. Immunassay nach Anspruch 14, dadurch gekennzeichnet, daß der Immunassay zur Früherkennungsdiagnose von Diabetes mellitus Typ I eingesetzt wird.
16. Immunassay nach einem der Ansprüche 14 und 15, dadurch gekennzeichnet, daß der Immunassay einen ELISA- oder einen Festphasen-Immunassay umfaßt.
17. Kit zur Diagnose von Diabetes mellitus, umfassend ein nach einem der Ansprüche 1 bis 12 erhältliches GAD-1- und/oder GAD-2-Protein.
18. Arzneimittel, umfassend ein nach einem der Verfahren 1 bis 12 erhältliches GAD-l- und/oder GAD-2-Protein.
19. Verwendung des hochreinen GAD-l- und/oder GAD-2-Pro- teins, das nach einem der Verfahren der Ansprüche 1 bis 12 erhältlich ist, zur Herstellung einer Arzneimit¬ telzusammensetzung zur Behandlung von IDDM und SMS.
20. DNA-Sequenz, die ein Fusionsprotein codiert, das ein GAD-l- oder GAD-2-Polypeptid und ein Äffinitatspeptid umfaßt.
PCT/EP1993/003080 1992-11-04 1993-11-03 Verfahren zur herstellung hochreiner humaner gad-1- und gad-2-proteine WO1994010297A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924237244 DE4237244A1 (de) 1992-11-04 1992-11-04 Verfahren zur Herstellung hochreiner humaner GAD-1- und GAD-2- Proteine
DEP4237244.5 1992-11-04

Publications (1)

Publication Number Publication Date
WO1994010297A1 true WO1994010297A1 (de) 1994-05-11

Family

ID=6472091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/003080 WO1994010297A1 (de) 1992-11-04 1993-11-03 Verfahren zur herstellung hochreiner humaner gad-1- und gad-2-proteine

Country Status (2)

Country Link
DE (1) DE4237244A1 (de)
WO (1) WO1994010297A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004137A1 (en) * 1993-07-28 1995-02-09 Novo Nordisk A/S A stable composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203734A (ja) * 1996-01-26 1997-08-05 Sumitomo Electric Ind Ltd 抗血清、抗体、リガンド及びそれらの検出方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0282042A2 (de) * 1987-03-10 1988-09-14 F. Hoffmann-La Roche Ag Neue Fusionsproteine und deren Reinigung
WO1990007117A1 (en) * 1988-12-13 1990-06-28 University Of Florida Methods and compositions for the early detection and treatment of insulin dependent diabetes mellitus
WO1992004632A1 (en) * 1990-09-07 1992-03-19 The Regents Of The University Of California Methods for the diagnosis and treatment of diabetes
WO1992005446A1 (en) * 1990-09-21 1992-04-02 Regents Of The University Of California Cloned glutamic acid decarboxylase
WO1992014485A1 (en) * 1991-02-22 1992-09-03 Amrad Corporation Limited A method for the diagnosis and treatment of glutamic acid decarboxylase autoantigen associated diseases
WO1992020811A2 (en) * 1991-05-15 1992-11-26 Zymogenetics, Inc. Cloning and expression of human islet glutamic acid decarboxylase autoantigen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0282042A2 (de) * 1987-03-10 1988-09-14 F. Hoffmann-La Roche Ag Neue Fusionsproteine und deren Reinigung
WO1990007117A1 (en) * 1988-12-13 1990-06-28 University Of Florida Methods and compositions for the early detection and treatment of insulin dependent diabetes mellitus
WO1992004632A1 (en) * 1990-09-07 1992-03-19 The Regents Of The University Of California Methods for the diagnosis and treatment of diabetes
WO1992005446A1 (en) * 1990-09-21 1992-04-02 Regents Of The University Of California Cloned glutamic acid decarboxylase
WO1992014485A1 (en) * 1991-02-22 1992-09-03 Amrad Corporation Limited A method for the diagnosis and treatment of glutamic acid decarboxylase autoantigen associated diseases
WO1992020811A2 (en) * 1991-05-15 1992-11-26 Zymogenetics, Inc. Cloning and expression of human islet glutamic acid decarboxylase autoantigen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
H. BERTHOLD ET AL.: "Purification of recombinant antigenic epitopes of the human 68-kDa (U1) ribonucleoprotein antigen using the expression system pH6EX3 followed by metal chelating affinity chromatography", PROTEIN EXPRESSION AND PURIFICATION, vol. 3, no. 1, February 1992 (1992-02-01), ACADEMIC PRESS, INC., NEW YORK US;, pages 50 - 56, XP002049376, DOI: doi:10.1016/1046-5928(92)90055-2 *
J. SEISSLER ET AL.: "Prevalence of autoantibodies to the 65- and 67kD isoform of glutamate decarboxylase in insulin-dependent diabetes mellitus", J. CLIN. INVEST., vol. 92, no. 3, September 1993 (1993-09-01), AM.SOC.CLIN.INVEST.,ROCKEFELLER UNIV. PRESS,US;, pages 1394 - 1399, XP001317572 *
L. MAUCH ET AL.: "Baculovirus-mediated expression of human 65kDa and 67kDa glutamic acid decarboxylase in SF9 insect cells and their relevance in diagnosis of insulin-dependent diabetes mellitus", J. BIOCHEMISTRY, vol. 113, no. 6, June 1993 (1993-06-01), JAP. BIOCHEM. SOC.,TOKYO, JP;, pages 699 - 704, XP001317573 *
S. CHRISTGAU ET AL.: "Membrane anchoring of the autoantigen GAD65 to microvesicles in pancratic beta-cells by palmitoylation in the NH2-terminal domain", J. CELL BIOLOGY, vol. 118, no. 2, July 1992 (1992-07-01), ROCKEFELLER UNIV. PRESS, N.Y. , US;, pages 309 - 320, XP000673047, DOI: doi:10.1083/jcb.118.2.309 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004137A1 (en) * 1993-07-28 1995-02-09 Novo Nordisk A/S A stable composition

Also Published As

Publication number Publication date
DE4237244A1 (de) 1994-05-05

Similar Documents

Publication Publication Date Title
DE69132546T2 (de) Expression von an g-protein gekoppelten rezeptoren in hefe
EP0021152B1 (de) Verfahren zur immunologischen Bestimmung von Basalmembranmaterial, hierfür geeignete Basalmembranfragmente und Verfahren zu deren Herstellung, bzw. Gewinnung
DE69126568T2 (de) Neues physiologisch aktives Schweinepeptid (CNP-53)
EP0799890A2 (de) Rekombinante inaktive Core-Streptavidin Mutanten
DE68924354T2 (de) Verfahren und zusammensetzungen zur früherkennung von behandlung der insulinabhängigen diabetes mellitus(iddm).
JAGADISH et al. Insulin-responsive tissues contain the core complex protein SNAP-25 (synaptosomal-associated protein 25) A and B isoforms in addition to syntaxin 4 and synaptobrevins 1 and 2
JP3267980B2 (ja) 神経薬スクリーニング
DE19957065B4 (de) Screening-Verfahren für Arzneistoffe
DE69712878T2 (de) Phosphatasemodulator
DE69922489T2 (de) Rekombinantes aktives humanes Zona Pellucida
DE69013015T2 (de) Protein aus dem Cytosol, das FK-506 binden kann.
EP0938679B1 (de) Rezeptorbindungsassay, für den rezeptorbindungsassay geeigneter rekombinanter fusionsrezeptor, vektor zu dessen herstellung sowie reagenziensatz für die durchführung des rezeptorbindungsassays
EP1287142B1 (de) Nukleinsaure-molekul umfassend eine fur ein sdf-1 gamma chemokin,einen neuropeptid-prakursor oder mindestens ein neuropeptid kodierende nukleinsauresequenz
CH670451A5 (de)
WO1994010297A1 (de) Verfahren zur herstellung hochreiner humaner gad-1- und gad-2-proteine
DE69832156T2 (de) Zusammensetzungen des synaptischen Aktivierungsproteins und Verfahren
DE69731682T2 (de) TAB1 Protein und dafür kodierende DNA
DE69025689T2 (de) Verfahren zur Herstellung von menschlicher Thiroid-Peroxydase
DE19860833C1 (de) Methode zur zellulären High-Throughput(Hochdurchsatz)-Detektion von Rezeptor-Liganden-Interaktionen
EP1141291B1 (de) Methode zur zellulären high-throughput-detektion von nukleären rezeptor-liganden-interaktionen
EP1436327B1 (de) Ee3-proteinfamilie und zugrundeliegende dna-sequenzen
DE60120220T2 (de) Screening-verfahren auf basis der siah-numb-wechselwirkung
Hart et al. Glycosylation of Nuclear and Cytoplasmic Proteins is as Abundant and as Dynamic as Phosphorylation
CA2265458A1 (en) Novel protein, its production and use
EP0595241A2 (de) Nachweis und Inhibierung von Malatenzym in Tumorzellen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase