WO2004096599A1 - Steuerung eines elektromotors - Google Patents

Steuerung eines elektromotors Download PDF

Info

Publication number
WO2004096599A1
WO2004096599A1 PCT/EP2004/002009 EP2004002009W WO2004096599A1 WO 2004096599 A1 WO2004096599 A1 WO 2004096599A1 EP 2004002009 W EP2004002009 W EP 2004002009W WO 2004096599 A1 WO2004096599 A1 WO 2004096599A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion engine
internal combustion
electric motor
load
motor
Prior art date
Application number
PCT/EP2004/002009
Other languages
English (en)
French (fr)
Inventor
Conrad RÖSSEL
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to JP2006504486A priority Critical patent/JP2006525167A/ja
Priority to US10/554,318 priority patent/US20070034425A1/en
Publication of WO2004096599A1 publication Critical patent/WO2004096599A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to the control of an electric motor which can be switched over between motor operation and generator operation and which is coupled or can be coupled with an internal combustion engine and has an associated battery, in particular in a hybrid drive with an internal combustion engine and an electric motor which can be switched over between generator and motor operation, and a battery associated with the electric motor with its charge state. sorik, wherein the internal combustion engine and the electric motor are coupled and / or can be coupled with the output of the hybrid drive and the electric motor can be driven by the internal combustion engine and / or output during generator operation.
  • Automobiles with hybrid drive have been developed for a long time.
  • the electric motor which can be switched between generator and motor operation is constantly connected to the drive train of the vehicle and thus to the output of the hybrid drive leading to the drive train.
  • the internal combustion engine can be switched on via a clutch, ie when the clutch is closed, the internal combustion engine is connected to the drive train and the electric motor, and is disconnected from the electric motor and drive train when the clutch is open.
  • differently configured hybrid drives are also known, for example those in which both the internal combustion engine and the electric motor each have a separate clutch with the output of the hybrid drive. drive and are connectable according to the drive train of the vehicle.
  • a particular advantage of hybrid drives is that useful braking is possible in which the electric motor connected to the drive train is operated as a generator and is driven via the drive train, so that the power supplied to the battery in generator operation becomes braking and accordingly the propulsion of the vehicle is withdrawn. In this way, the kinetic energy extracted from the propulsion of the vehicle is converted into potential energy, i. H. here in an increased battery charge, converted and not "destroyed” as unusable heat as with normal brakes.
  • hybrid drives offer the possibility of operating the vehicle purely by an electric motor and thus without emissions in conurbations in which a comparatively low driving speed and very frequent stopping maneuvers can regularly be expected.
  • the internal combustion engine can then be used for driving.
  • the electric motor can be switched to generator operation and driven by the internal combustion engine, so that the previously discharged battery can be recharged.
  • the object of the invention is now to improve the economy of a hybrid drive. This object is achieved according to the invention in that the electric motor with operating combustion engine coupled to the output during operating phases
  • the invention is based on the general idea that the electric motor should only be switched to generator operation when the internal combustion engine is working, if the associated additional load on the internal combustion engine only leads to a comparatively low additional consumption of fuel. This is typically the case when the internal combustion engine is little loaded or works with high load reserves.
  • the electric motor is used as far as possible in addition to the internal combustion engine for the vehicle drive if the load reduction of the internal combustion engine associated with the parallel operation of the electric motor and internal combustion engine leads to a comparatively high reduction in the fuel consumption of the internal combustion engine. This is regularly the case when high performance is required for the respective operating phase of the vehicle and the internal combustion engine is accordingly heavily loaded.
  • the invention takes into account that the electric motor and the battery almost always have a high degree of efficiency compared to the internal combustion engine.
  • the invention takes advantage of the fact that the fuel consumption of the internal combustion engine increases disproportionately to its load under high load, so that increases in the load on the internal combustion engine at low total load only lead to relatively small increases in the fuel consumption of the internal combustion engine, and other- on the part of load reductions of the internal combustion engine under high load result in comparatively large savings in the fuel consumption of the internal combustion engine.
  • the principle of the control according to the invention shown above can always be carried out when the charge level of the battery neither exceeds an upper threshold nor falls below a lower threshold and the battery accordingly accordingly both for feeding the electric motor during motor operation and for storing the electrical generated by the electric motor during generator operation Energy can be used without fear of overcharging or undercharging the battery.
  • an idling operation of the electric motor - i. H. the electric motor is decoupled from the battery and can neither work in motor nor in generator operation - to be avoided. Rather, the electric motor is kept while the internal combustion engine is operating, while optimizing the fuel consumption of the internal combustion engine, either in generator operation or in engine operation, or is switched between these operating modes.
  • an electric motor causes more or less pronounced magnetization losses when idling and thus entails unavoidable drag losses. This applies in particular to those typically used in hybrid drives due to their low construction volume. permanent magnet motors. Here the fact is used that very high differential efficiencies of the electric motor can be used in the transition from towing to generator or motor operation.
  • the engine and generator power can preferably be controlled or regulated to further optimize fuel consumption.
  • data for changes in the fuel consumption of the internal combustion engine that occur when there are changes in load are recorded and / or stored as a function of its speed, and the electric motor is operated as a generator when the quotient of change in load and change in consumption is a first threshold - Value exceeds and / or is operated as an engine if the quotient of change in load and change in consumption of the internal combustion engine falls below a second threshold.
  • the generator power and / or the motor power of the electric motor can then be controlled analogously to the differential efficiency of the internal combustion engine by increasing the generator power with increasing differential efficiency during generator operation or increasing the engine power with decreasing differential efficiency during engine operation.
  • FIG. 2 shows a diagram from which it can be seen when, depending on the charge level SOC of the battery and the driving speed v in a vehicle with a hybrid drive, the electric motor or the internal combustion engine is preferably used as the driving drive, and
  • a typical hybrid drive 1 essentially consists of an internal combustion engine 2 and an electric motor 3 which can be switched between motor and generator operation and which, as a rule, has a significantly lower output than the internal combustion engine 2.
  • a separating clutch 4 is generally arranged between the internal combustion engine 2 and the electric motor 3.
  • the rotor shaft of the electric motor 3 forms the output 5 of the hybrid drive.
  • This output 5 is connected, possibly via a transmission and / or clutch arrangement, not shown, to a drive train, not shown, of a motor vehicle when the hybrid drive 1 is arranged in a motor vehicle. With the clutch 4 open, the hybrid drive 1 can operate purely by an electric motor, i. H. the output 5 is driven only by the electric motor 3, a battery 6 assigned to the electric motor 3 supplying the electrical energy.
  • the output 5 can be driven by the internal combustion engine 3, wherein the electric motor 3 can be operated as a generator in order to charge the battery 6.
  • the electric motor 3 can always be operated as a generator when the drive train coupled to the output 5 or the motor vehicle are to be braked. In this mode of operation, the kinetic energy of the drive train or of the moving vehicle is thus converted into electrical energy and stored in the battery 6.
  • the diagram in FIG. 2 shows that if the battery 6 is sufficiently charged, a motor vehicle with a hybrid drive is generally driven by an electric motor at a low driving speed, ie exclusively via the electric motor 3. At higher driving speeds, a switch is made to driving with the internal combustion engine 2 ,
  • the switchover to driving operation with an internal combustion engine takes place at a low speed threshold of, for example, 32 km / h. If, on the other hand, the charge level is above 50%, the switch to driving with an internal combustion engine generally only takes place at a speed threshold of 52 km / h, for example.
  • the internal combustion engine 2 is used to drive the vehicle.
  • Switching between driving with an electric motor and driving with an internal combustion engine is regularly influenced by other parameters, in particular by the position of an accelerator pedal or another organ with which the desired power of the hybrid drive is controlled.
  • the electric motor 3 In order to keep the battery 6 within a desired range of the charge level, the electric motor 3 must work in generator operation during operating phases with the internal combustion engine 2 operating.
  • the invention makes use of the fact that increases in the load on the internal combustion engine only lead to comparatively small increases in fuel consumption in a wide range of operating phases. Accordingly, it is provided according to the invention to operate the electric motor as a generator during these operating phases of the internal combustion engine, it being possible, in an expedient embodiment of the invention, to further control the generator power of the electric motor as a function of the differential efficiency. In operating phases in which particularly small increases in the fuel consumption of the internal combustion engine occur when the load on the internal combustion engine is increased, the electric motor is set to a particularly high generator output.
  • the aforementioned operating phases occur in particular when the internal combustion engine is under low load, that is to say the electric motor is primarily operated as a generator when the internal combustion engine only has to exert moderate power for the particular driving state of the vehicle.
  • load changes lead to relatively large changes in fuel consumption can be exploited in the invention. It is then preferably provided according to the invention to have the electric motor work as a motor parallel to the internal combustion engine, so that the internal combustion engine is subjected to less stress and a significantly reduced fuel consumption occurs because the electric motor provides part of the power required for the particular driving state.
  • FIG. 3 now shows an example of a schematic characteristic diagram of the differential efficiency of an internal combustion engine as a function of the speed and the mean pressure in the combustion chambers or the torque of the internal combustion engine correlated therewith.
  • the invention is not limited to the control of a hybrid drive in which the electric motor works in certain operating phases with the internal combustion engine stopped. Rather, the invention can always be used when an internal combustion engine provided as a drive motor is assigned an electrical unit that can be operated as an electric motor and generator.
  • an electrical unit serves, for example, on the one hand as a starter motor for starting the internal combustion engine and on the other hand as a generator for charging a battery of an electrical system.
  • the electrical unit can then be controlled in exactly the same way as that described above for the electric motor of a hybrid that can be switched between motor and generator operation. aggregates when operating the internal combustion engine has been described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Bei einem Hybridantrieb mit zwischen Motorbetrieb and Generatorbetrieb umschaltbarem Elektromotor wird der Elektromotor bei arbeitendem Verbrennungsmotor in Abhangigkeit vom differentiellen Wirkungsgrad des Verbrennungsmotors zwischen seinen Betriebsarten umgesteuert, wobei dann die Generatorleistung proportional zum differentielle Wirkungsgrad bzw. die Motorleistung umgekehrt proportional zum differentiellen Wirkungsgrad gesteuert werden kann.

Description

Steuerung eines Elektromotors
Die Erfindung bezieht sich auf die Steuerung eines zwischen Motorbetrieb und Generatorbetrieb umschaltbaren, mit einem Verbrennungsmotor gekoppelten oder koppelbaren Elektromotors mit zugeordneter Batterie, insbesondere in einem Hybridantrieb mit Verbrennungsmotor und zwischen Generator- und Motorbetrieb umschaltbarem Elektromotor sowie dem Elektromotor zugeordneter Batterie mit deren Ladezustand erfassender Sen- sorik, wobei der Verbrennungsmotor und der Elektromotor mit dem Abtrieb des Hybridantriebes antriebsmäßig gekoppelt und/oder koppelbar sind und der Elektromotor beim Generatorbetrieb vom Verbrennungsmotor und/oder Abtrieb antreibbar ist .
Seit längerem werden Kraftfahrzeuge mit Hybridantrieb entwickelt. In der Regel ist bei diesen Antrieben vorgesehen, dass der zwischen Generator- und Motorbetrieb umschaltbare Elektromotor ständig mit dem Antriebstrang des Fahrzeuges und damit mit dem zum Antriebstrang führenden Abtrieb des Hybridantriebes antriebsmäßig verbunden ist . Dagegen ist der Verbrennungsmotor über eine Kupplung zuschaltbar, d. h. bei geschlossener Kupplung ist der Verbrennungsmotor mit dem Antriebsstrang und dem Elektromotor antriebsmäßig verbunden, und bei geöffneter Kupplung vom Elektromotor und Antriebstrang abgetrennt. Grundsätzlich sind jedoch auch anders konfigurierte Hybridantriebe bekannt, beispielsweise solche, bei denen sowohl der Verbrennungsmotor als auch der Elektromotor über je eine gesonderte Kupplung mit dem Abtrieb des Hybrid- antriebes und dem entsprechend dem Antriebstrang des Fahrzeuges verbindbar sind.
Ein besonderer Vorteil der Hybridantriebe liegt darin, dass Nutzbremsungen möglich sind, bei denen der mit dem Antriebstrang verbundene Elektromotor als Generator betrieben und ü- ber den Antriebstrang angetrieben wird, so dass die der Batterie im Generatorbetrieb zugeführte Leistung bremswirksam wird und dementsprechend dem Vortrieb des Fahrzeuges entzogen wird. Auf diese Weise wird die dem Vortrieb des Fahrzeuges entzogene kinetische Energie in potentielle Energie, d. h. hier in eine erhöhte Batterieladung, umgewandelt und nicht wie bei normalen Bremsen als nicht nutzbare Wärme „vernichtet".
Des weiteren bieten Hybridantriebe die Möglichkeit, das Fahrzeug in Ballungsgebieten, in denen regelmäßig mit vergleichsweise geringer Fahrgeschwindigkeit und sehr häufigen Anhalte- manδvern zu rechnen ist, rein elektromotorisch und damit abgasfrei zu betreiben.
Außerhalb der Ballungsgebiete kann dann der Verbrennungsmotor für den Fahrbetrieb herangezogen werden. Während dieser Betriebsphasen kann der Elektromotor auf Generatorbetrieb umgeschaltet und vom Verbrennungsmotor angetrieben werden, so dass sich die zuvor ggf. entladene Batterie wieder aufladen läßt.
Bisher wurde in diesem Zusammenhang vorgesehen, die Generatorleistung beim Ladebetrieb in Abhängigkeit vom Ladegrad der Batterie zu steuern, vergleiche beispielsweise die Druckschrift „Analysing Hybrid Drive System Topologies", Karin Jo- nasson (2002), Lund University, ISBN 91-88934-23-3, Seite 74.
Aufgabe der Erfindung ist es nun, die Wirtschaftlichkeit eines Hybridantriebes zu verbessern. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der Elektromotor bei Betriebsphasen mit an den Abtrieb gekoppeltem, arbeitendem Verbrennungsmotor
- vorwiegend nur bei geringer Belastung des Verbrennungsmotors im Generatorbetrieb und/oder
- vorwiegend nur bei hoher Belastung des Verbrennungsmotors im Motorbetrieb arbeitet .
Die Erfindung beruht auf dem allgemeinen Gedanken, den Elektromotor möglichst nur dann bei arbeitendem Verbrennungsmotor auf Generatorbetrieb zu schalten, wenn die damit einher gehende -Zusatzbelastung des Verbrennungsmotors nur zu einem vergleichsweise geringem Zusatzverbrauch an Kraftstoff führt. Dies ist typischerweise der Fall, wenn der Verbrennungsmotor wenig belastet ist bzw. mit hohen Belastungsreserven arbeitet.
Andererseits wird der Elektromotor möglichst dann zusätzlich zum Verbrennungsmotor für den Fahrzeugantrieb herangezogen, wenn die mit dem Parallelbetrieb von Elektromotor und Verbrennungsmotor einher gehende Belastungsminderung des Verbrennungsmotors zu einer vergleichsweise hohen Minderung des Kraftstoffverbrauchs des Verbrennungsmotors führt. Dies ist regelmäßig dann der Fall, wenn für die jeweilige Betriebsphase des Fahrzeuges eine hohe Leistung notwendig ist und dementsprechend der Verbrennungsmotor hoch belastet wird.
Bei der Erfindung wird einerseits berücksichtigt, dass der E- lektromotor sowie die Batterie fast immer einen im Vergleich zum Verbrennungsmotor hohen Wirkungsgrad aufweisen. Andererseits wird bei der Erfindung die Tatsache ausgenutzt, dass der Kraftstoffverbrauch des Verbrennungsmotors bei hoher Last überproportional zu dessen Belastung ansteigt, so dass einerseits Belastungserhöhungen des Verbrennungsmotors bei geringer Gesamtlast nur zu relativ geringen Zuwächsen des Kraftstoffverbrauches des Verbrennungsmotors führen und anderer- seits Belastungsminderungen des Verbrennungsmotors bei hoher Last vergleichsweise große Einsparungen beim Kraftstoffverbrauch des Verbrennungsmotors ergeben.
Das oben dargestellte Prinzip der erfindungsgemäßen Steuerung läßt sich immer dann durchführen, wenn der Ladegrad der Batterie weder eine obere Schwelle überschreitet noch eine untere Schwelle unterschreitet und die Batterie dementsprechend sowohl zur Speisung des Elektromotors beim Motorbetrieb als auch zur Speicherung der vom Elektromotor beim Generatorbetrieb erzeugten elektrischen Energie herangezogen werden kann, ohne eine Über- oder Unterladung der Batterie befürchten zu müssen.
Nach Wahrscheinlichkeit liegen solche Verhältnisse zumindest bei typischen Fahrzyklen vor, so dass nur in seltenen Ausnahmefällen der Motor- oder Generatorbetrieb des Elektromotors ausschließlich in Abhängigkeit vom Ladegrad der Batterie gesteuert werden sollte oder müßte.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist bei Verbrennungsmotor-Elektromotor-Kombination bzw. Hybridantrieben mit ständig mit dem Abtrieb zwangsgekoppeltem Elektromotor vorgesehen, einen Leerlaufbetrieb des Elektromotors - d. h. der Elektromotor ist von der Batterie abgekoppelt und kann weder im Motor- noch im Generatorbetrieb arbeiten - zu vermeiden. Vielmehr wird der Elektromotor bei arbeitendem Verbrennungsmotor unter Optimierung des Kraftstoffverbrauchs des Verbrennungsmotors entweder im Generatorbetrieb oder im Motorbetrieb gehalten bzw. zwischen diesen Betriebsarten umgeschaltet .
Auf diese Weise wird berücksichtigt, dass ein Elektromotor im Leerlaufbetrieb mehr oder weniger ausgeprägte Ummagnetisie- rungsverluste verursacht und damit unvermeidbare Schleppverluste mit sich bringt. Dies gilt insbesondere für die in Hybridantrieben typischerweise aufgrund ihres geringen Bauvolu- mens eingesetzten Permanentmagnet-Motoren. Hier wird die Tatsache genutzt, dass sich beim Übergang vom Schleppbetrieb auf Generator- oder Motorbetrieb sehr hohe differentielle Wirkungsgrade des Elektromotors nutzen lassen.
Außerdem können vorzugsweise die Motor- und die Generatorleistung zur weiteren Optimierung des Kraftstoffverbrauchs gesteuert oder geregelt werden.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass Daten für bei Belastungsänderungen eintretende Änderungen des Kraftstoffverbrauches des Verbrennungsmotors in Abhängigkeit von dessen Drehzahl erfaßbar und/oder gespeichert sind und der Elektromotor als Generator betrieben wird, wenn der Quotient aus Belastungsänderung und Verbrauchsänderung einen ersten Schwell- wert überschreitet und/oder als Motor betrieben wird, wenn der Quotient aus Belastungsänderung und Verbrauchsänderung des Verbrennungsmotors einen zweiten Schwellwert unterschreitet.
Hier wird die Tatsache ausgenutzt, dass Verbrennungsmotoren heute regelmäßig mit einer automatischen Motorsteuerung versehen sind, die entsprechende Daten „kennt" oder jeweils erfassen kann, um die Betriebsweise des Verbrennungsmotors unter dem Gesichtspunkt eines geringen Abgasausstoßes, eines gewünschten Drehmomemtverlaufes und/oder eines geringen Kraftstoffverbrauches zu optimieren. Die somit ohnehin zur Verfügung stehenden Daten können dann auch zur Optimierung des Generator- und/oder Motorbetriebes des Elektromotors herangezogen werden.
Im Ergebnis läuft dies darauf hinaus, dass bei der Steuerung des Betriebes des Elektromotors der jeweilige differentielle Wirkungsgrad, das ist der Quotient aus Belastungsänderungen und Verbrauchsänderungen des Verbrennungsmotors, berücksichtigt wird.
In zweckmäßiger Ausgestaltung der Erfindung kann dann die Generatorleistung und/oder die Motorleistung des Elektromotors analog zum differentiellen Wirkungsgrad des Verbrennungsmotors gesteuert werden, in dem beim Generatorbetrieb die Generatorleistung bei zunehmendem differentiellen Wirkungsgrad erhöht bzw. beim Motorbetrieb die Motorleistung bei abnehmendem differentiellen Wirkungsgrad erhöht wird.
Im übrigen wird hinsichtlich bevorzugter Merkmale der Erfindung auf die Ansprüche sowie die nachfolgende Erläuterung der Zeichnung verwiesen, anhand der besonders bevorzugte Ausführungsformen der Erfindung näher beschrieben werden.
Selbstverständlich wird Schutz nicht nur für die ausdrücklich beanspruchten oder beschriebenen Merkmalskombinationen, sondern auch für prinzipiell beliebige Unterkombinationen der dargestellten Merkmale beansprucht.
Dabei zeigen:
Fig. 1 eine schematisierte Darstellung eines Hybridantriebes,
Fig. 2 ein Diagramm, aus dem ersichtlich ist, wann in Abhängigkeit vom Ladegrad SOC der Batterie sowie der Fahrgeschwindigkeit v bei einem Fahrzeug mit Hybridantrieb vorzugsweise der Elektromotor oder der Verbrennungsmotor als Fahrantrieb verwendet wird, und
Fig. 3 ein Kennfeld, welches schematisiert den differenziel- len Wirkungsgrad des Verbrennungsmotors in Abhängigkeit von der Drehzahl n sowie der des mittleren Verbrennungsdruckes p bzw. des Drehmomentes t des Verbrennungsmotors wiedergibt . Gemäß Fig. 1 besteht ein typischer Hybridantrieb 1 im wesentlichen aus einem Verbrennungsmotor 2 sowie einem zwischen Motor- und Generatorbetrieb umschaltbaren Elektromotor 3 mit einer im Vergleich zum Verbrennungsmotor 2 in der Regel deutlich geringeren Leistung. Zwischen Verbrennungsmotor 2 und E- lektromotor 3 ist in der Regel eine Trennkupplung 4 angeordnet .
Die Rotorwelle des Elektromotors 3 bildet den Abtrieb 5 des Hybridantriebes. Dieser Abtrieb 5 ist, ggf. über eine nicht dargestellte Getriebe- und/oder Kupplungsanordnung, mit einem nicht dargestellten Antriebstrang eines Kraftfahrzeuges verbunden, wenn der Hybridantrieb 1 in einem Kraftfahrzeug angeordnet ist. Bei geöffneter Kupplung 4 kann der Hybridantrieb 1 rein elektromotorisch arbeiten, d. h. der Abtrieb 5 wird nur vom Elektromotor 3 angetrieben, wobei eine dem Elektromotor 3 zugeordnete Batterie 6 die elektrische Energie liefert.
Bei geschlossener Kupplung 4 kann der Abtrieb 5 vom Verbrennungsmotor 3 angetrieben werden, wobei der Elektromotor 3 als Generator betrieben werden kann, um die Batterie 6 aufzuladen.
Grundsätzlich ist es auch möglich, den Elektromotor 3 bei geschlossener Kupplung 4 parallel zum Verbrennungsmotor 2 arbeiten zu lassen, so dass beide Motoren 2, 3 den Abtrieb 5 antreiben.
Im übrigen kann der Elektromotor 3 immer dann als Generator betrieben werden, wenn der an den Abtrieb 5 gekoppelte Antriebstrang bzw. das Kraftfahrzeug abgebremst werden sollen. Bei dieser Betriebsweise wird also die kinetische Energie des Antriebstranges bzw. des fahrenden Fahrzeuges in elektrische Energie umgewandelt und in der Batterie 6 gespeichert . Das Diagramm der Fig. 2 läßt erkennen, dass bei hinreichendem Ladezustand der Batterie 6 ein Kraftfahrzeug mit Hybridantrieb bei geringer Fahrgeschwindigkeit in der Regel elektromotorisch angetrieben wird, d. h. ausschließlich über den E- lektromotor 3. Bei höherer Fahrgeschwindigkeit wird auf Fahrbetrieb mit dem Verbrennungsmotor 2 umgeschaltet .
Falls der Ladegrad der Batterie einen Schwellwert von beispielsweise 50 % unterschreitet, erfolgt die Umschaltung auf Fahrbetrieb mit Verbrennungsmotor bereits bei einer geringen Geschwindigkeitsschwelle von beispielsweise 32 km/h. Liegt der Ladegrad dagegen oberhalb von 50 %, erfolgt die Umschaltung auf Fahrbetrieb mit Verbrennungsmotor in der Regel erst bei einer Geschwindigkeitsschwelle von beispielsweise 52 km/h.
Falls der Ladegrad der Batterie unter einen Wert von beispielsweise 20 % absinkt, wird der Verbrennungsmotor 2 für den Antrieb des Fahrzeuges herangezogen.
Die Umschaltung zwischen Fahrbetrieb mit Elektromotor und Fahrbetrieb mit Verbrennungsmotor wird regelmäßig von weiteren Parametern beeinflußt, insbesondere von der Stellung eines Fahrpedals oder eines sonstigen Organs, mit dem die gewünschte Leistung des Hybridantriebes gesteuert wird.
Wenn der Fahrer beispielsweise das Fahrpedal stark durchtritt, ist dies ein Zeichen dafür, dass er eine hohe Leistung des Hybridantriebes abrufen will, beispielsweise für eine starke Beschleunigung des Fahrzeuges. Eine derart hohe Leistung kann der Elektromotor 3 bei typischen Hybridantrieben nicht zur Verfügung stellen. Deshalb wird in einem solchen Fall auch unterhalb der in Fig. 2 dargestellten Schwellen der Fahrgeschwindigkeit auf Fahrbetrieb mit Verbrennungsmotor umgeschaltet, so dass die vom Fahrer gewünschte hohe Leistung zur Verfügung steht . Sobald der Fahrer das Fahrpedal zurücknimmt, d. h. nur noch eine vergleichsweise geringe Leistung des Hybridantriebes fordert, wird wieder auf Fahrbetrieb mit Elektromotor umgeschaltet, vorausgesetzt, dass die Fahrgeschwindigkeit unterhalb der in Fig. 2 beispielhaften dargestellten Geschwindigkeitsschwellen liegt.
Um die Batterie 6 innerhalb eines gewünschten Bereiches des Ladegrades zu halten, muß der Elektromotor 3 bei Betriebsphasen mit arbeitendem Verbrennungsmotor 2 im Generatorbetrieb arbeiten.
Hier ist nun erfindungsgemäß vorgesehen, den differentiellen Wirkungsgrad des Verbrennungsmotors zu berücksichtigen. Dabei handelt es sich um den Quotienten zwischen Belastungsänderungen des Verbrennungsmotors und damit einhergehenden Änderungen des Kraftstoffverbrauches des Verbrennungsmotors.
Die Erfindung nutzt die Tatsache, dass in einem weiten Bereich der Betriebsphasen Erhöhungen der Belastung des Verbrennungsmotors nur zu vergleichsweise geringen Erhöhungen des Kraftstoffverbrauches führen. Dementsprechend ist erfindungsgemäß vorgesehen, den Elektromotor bei diesen Betriebsphasen des Verbrennungsmotors als Generator zu betreiben, wobei in zweckmäßiger Ausgestaltung der Erfindung des weiteren vorgesehen sein kann, die Generatorleistung des Elektromotors in Abhängigkeit vom differentiellen Wirkungsgrad zu steuern. Bei Betriebsphasen, in denen besonders geringe Erhöhungen des Kraftstoffverbrauches des Verbrennungsmotors bei Erhöhung der Belastung des Verbrennungsmotors auftreten, wird also der E- lektromotor auf besonders hohe Generatorleistung eingestellt .
Wie weiter unten dargestellt wird, treten die vorgenannten Betriebsphasen insbesondere bei geringer Belastung des Verbrennungsmotors auf, d. h. der Elektromotor wird vor allem dann als Generator betrieben, wenn der Verbrennungsmotor für den jeweiligen Fahrzustand des Fahrzeuges nur eine mäßige Leistung aufbringen muß. Des weiteren kann bei der Erfindung die Tatsache ausgenutzt wird, dass in anderen Betriebsphasen des Verbrennungsmotors, insbesondere wenn der Verbrennungsmotor vergleichsweise stark belastet wird, Belastungsänderungen zu relativ starken Änderungen des Kraftstoffverbrauches führen. Hier ist dann nach der Erfindung vorzugsweise vorgesehen, den Elektromotor parallel zum Verbrennungsmotor als Motor arbeiten zu lassen, so dass der Verbrennungsmotor weniger stark belastet wird und ein deutlich verminderter Kraftstoffverbrauch eintritt, weil der Elektromotor einen Teil der für den jeweiligen Fahrzustand notwendigen Leistung bereitstellt.
Hier kann zweckmäßigerweise vorgesehen sein, die Motorleistung des Elektromotors umgekehrt proportional zum differentiellen Wirkungsgrad des Verbrennungsmotors zu steuern, d. h. die elektrische Motorleistung steigt, wenn durch eine Belastungsminderung des Verbrennungsmotors eine vergleichsweise hohe Verminderung des Kraftstoffverbrauchs des Verbrennungsmotors erreichbar ist .
Die Fig. 3 zeigt nun beispielhaft ein schematisiertes Kennfeld des differentiellen Wirkungsgrades eines Verbrennungsmotors in Abhängigkeit von der Drehzahl und dem mittleren Druck in den Verbrennungsräumen bzw. dem damit korrelierten Drehmoment des Verbrennungsmotors .
Die in das Diagramm eingezeichneten „Höhenlinien" zeigen Drehzahl-Mitteldruck-Kombinationen, mit gleichem, jeweils zahlenmäßig angegebenen differentiellen Wirkungsgrad. Diese Zahlen ergeben sich rechnerisch, wenn berücksichtigt wird, dass sowohl die Belastungsänderungen des Verbrennungsmotors als auch die damit einhergehenden Änderungen des Kraftstoffverbrauches physikalisch Leistungsänderungen darstellen. Denn bei einer Änderung der Belastung des Verbrennungsmotors ändert sich dessen abgegebene Leistung. Bei einer Änderung des Kraftstoffverbrauches ändert sich der Quotient zwischen der im Kraftstoff enthaltenen Energie und der Zeit, d. h. die mit dem Kraftstoff erbrauch einher gehende verbrauchte Leistung.
Aus dem Diagramm der Fig. 3 wird erkennbar, dass - vereinfacht ausgedrückt - bei geringer Belastung bzw. Leistung des Verbrennungsmotors vergleichsweise hohe differentielle Wirkungsgrade vorliegen, die dann mit zunehmender Belastung bzw. Leistung des Verbrennungsmotors geringer werden.
Dieser Sachverhalt ist gleichbedeutend damit, dass der absolute Wirkungsgrad eines Verbrennungsmotors bei Betriebsphasen mit geringer Belastung bzw. Leistung mit zunehmender Belastung bzw. Leistung vergleichsweise stark ansteigt, während der absolute Wirkungsgrad des Verbrennungsmotors bei Betriebsphasen mit hoher Belastung bzw. Leistung bei zunehmender Belastung bzw. Leistung nur noch geringfügig ansteigt bzw. nicht mehr ansteigt oder sogar fällt. Ein solcher ungünstiger Fall ist immer dann gegeben, wenn die differentiellen Wirkungsgrade geringer als die absoluten Wirkungsgrade sind, welche ihrerseits bei einem Otto-Verbrennungsmotor derzeit bestenfalls bei 30% bis 35% liegen.
Die Erfindung ist nicht auf die Steuerung eines Hybridantriebes beschränkt, bei dem der Elektromotor in bestimmten Betriebsphasen bei still gesetztem Verbrennungsmotor arbeitet. Vielmehr kann die Erfindung immer dann genutzt werden, wenn einem als Antriebsmotor vorgesehenen Verbrennungsmotor ein als Elektromotor und Generator betreibbares Elektroaggregat zugeordnet ist. Im Falle eines Kraftfahrzeuges dient ein solches Elektroaggregat beispielsweise einerseits als Startermotor zum Starten des Verbrennungsmotors sowie andererseits als Generator zum Laden einer Batterie eines Bordnetzes. Während des Betriebes des Verbrennungsmotors zum Antrieb des Kraftfahrzeuges kann dann das Elektroaggregat in völlig gleicher Weise gesteuert werden, wie es oben für den zwischen Motor- und Generatorbetrieb umschaltbaren Elektromotor eines Hybrid- aggregates bei Betrieb des Verbrennungsmotors beschrieben wurde .

Claims

Patentansprüche
1. Steuerung eines zwischen Motorbetrieb und Generatorbetrieb umschaltbaren, mit einem Verbrennungsmotor gekoppelten oder koppelbaren Elektromotors mit zugeordneter Batterie, insbesondere in einem Hybridantrieb (1) mit Verbrennungsmotor (2) und zwischen Generator- und Motorbetrieb umschaltbarem Elektromotor (3) sowie dem Elektromotor zugeordneter Batterie (6) mit deren Ladezustand erfassender Sensorik, wobei der Verbrennungsmotor und der Elektromotor mit dem Abtrieb (5) des Hybridantriebes antriebsmäßig gekoppelt und/oder koppelbar sind und der Elektromotor beim Generatorbetrieb vom Verbrennungsmotor und/oder Abtrieb antreibbar ist, d a d u r c h g e k e n n z e i c h n e t , dass der Elektromotor bei Betriebsphasen mit an den Abtrieb gekoppelten, arbeitendem Verbrennungsmotor
- vorwiegend nur bei geringer Belastung des Verbrennungsmotors im Generatorbetrieb und/oder
- vorwiegend nur bei hoher Belastung des Verbrennungsmotors im Motorbetrieb arbeitet .
2. Steuerung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass Daten für bei Belastungsänderungen eintretende Änderungen des Kraftstoffverbrauches des Verbrennungsmotors (2) in Abhängigkeit von dessen Drehzahl erfaßbar und/oder gespeichert sind und der Elektromotor (3) - als Generator betrieben wird, wenn der Quotient aus Be- lastungsänderung und Verbrauchsänderung einen ersten Schwellwert überschreitet und/oder
- als Motor betrieben wird, wenn der Quotient aus Belastungsänderung und Verbrauchsänderung des Verbrennungsmotors den vorgenannten oder einen zweiten Schwellwert unterschreitet .
3. Steuerung nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t , dass der Elektromotor mit wachsender Generatorleistung betrieben wird, wenn der Quotient aus Belastungsänderung und Verbrauchsänderung des Verbrennungsmotors zunimmt .
4. Steuerung nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass der Elektromotor mit zunehmender Motorleistung betrieben wird, wenn der Quotient aus Belastungsänderung und Verbrauchsänderung des Verbrennungsmotors absinkt.
5. Steuerung nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass bei ständig mit dem Abtrieb (5) zwangsgekoppeltem E- lektromotor (3) der Elektromotor immer entweder im Motorbetrieb oder im Generatorbetrieb arbeitet .
PCT/EP2004/002009 2003-04-25 2004-02-28 Steuerung eines elektromotors WO2004096599A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006504486A JP2006525167A (ja) 2003-04-25 2004-02-28 電動機の制御方法
US10/554,318 US20070034425A1 (en) 2003-04-25 2004-02-28 Method of operating a hybrid drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10318738A DE10318738A1 (de) 2003-04-25 2003-04-25 Steuerung eines Elektromotors
DE10318738.3 2003-04-25

Publications (1)

Publication Number Publication Date
WO2004096599A1 true WO2004096599A1 (de) 2004-11-11

Family

ID=33154412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/002009 WO2004096599A1 (de) 2003-04-25 2004-02-28 Steuerung eines elektromotors

Country Status (4)

Country Link
US (1) US20070034425A1 (de)
JP (1) JP2006525167A (de)
DE (1) DE10318738A1 (de)
WO (1) WO2004096599A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172524B1 (ja) * 2007-04-24 2008-10-29 トヨタ自動車株式会社 車両およびその制御方法
JP4172523B1 (ja) * 2007-04-24 2008-10-29 トヨタ自動車株式会社 車両およびその制御方法
DE102010022018B4 (de) * 2010-05-29 2012-08-23 Audi Ag Verfahren zum Betreiben eines Fahrzeugs mit Verbrennungskraftmaschine und Generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901930A1 (de) * 1997-09-15 1999-03-17 Honda Giken Kogyo Kabushiki Kaisha Vorrichtung zur Steuerung eines Hybridfahrzeuges
EP0930982A1 (de) * 1996-10-18 1999-07-28 Electromotive, Inc. Elektrisches hybridfahrzeug mit elektromotor zur bereitstellung von zusatzleistung für den lastausgleich einer brennkraftmaschine
US6362580B1 (en) * 1999-03-10 2002-03-26 Suzuki Motor Corporation Controller of vehicle propulsion system
US6470983B1 (en) * 1999-04-27 2002-10-29 Hitachi, Ltd. Hybrid vehicle

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127221A (en) * 1979-03-20 1980-10-01 Daihatsu Motor Co Ltd Driving system of vehicle
US4305254A (en) * 1980-02-20 1981-12-15 Daihatsu Motor Co., Ltd. Control apparatus and method for engine/electric hybrid vehicle
US4588040A (en) * 1983-12-22 1986-05-13 Albright Jr Harold D Hybrid power system for driving a motor vehicle
JP2827568B2 (ja) * 1991-04-30 1998-11-25 トヨタ自動車株式会社 ハイブリッド車の駆動装置
DE4202083C2 (de) * 1992-01-25 1994-01-20 Daimler Benz Ag Hybridantrieb für ein Kraftfahrzeug
US5301764A (en) * 1992-04-13 1994-04-12 Gardner Conrad O Hybrid motor vehicle having an electric motor and utilizing an internal combustion engine for fast charge during cruise mode off condition
US5343970A (en) * 1992-09-21 1994-09-06 Severinsky Alex J Hybrid electric vehicle
US5318142A (en) * 1992-11-05 1994-06-07 Ford Motor Company Hybrid drive system
JP2794272B2 (ja) * 1995-02-28 1998-09-03 株式会社エクォス・リサーチ ハイブリッド車両及びハイブリッド車両の制御方法
JPH08336205A (ja) * 1995-04-07 1996-12-17 Nippon Soken Inc ハイブリッド車両のバッテリ充電装置
JPH09277847A (ja) * 1996-04-11 1997-10-28 Toyota Motor Corp ハイブリッド車両のエンジンブレーキ制御装置
US6367570B1 (en) * 1997-10-17 2002-04-09 Electromotive Inc. Hybrid electric vehicle with electric motor providing strategic power assist to load balance internal combustion engine
JP3381613B2 (ja) * 1998-03-20 2003-03-04 日産自動車株式会社 ハイブリッド車両の駆動制御装置
JP3412525B2 (ja) * 1998-07-13 2003-06-03 トヨタ自動車株式会社 動力出力装置及びその制御方法並びにハイブリッド車両
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
US6209672B1 (en) * 1998-09-14 2001-04-03 Paice Corporation Hybrid vehicle
JP3381185B2 (ja) * 1998-09-18 2003-02-24 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2000343965A (ja) * 1999-06-08 2000-12-12 Nissan Diesel Motor Co Ltd ハイブリッド車両
JP3607139B2 (ja) * 1999-10-29 2005-01-05 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2001146121A (ja) * 1999-11-19 2001-05-29 Toyota Motor Corp 変速機付きハイブリッド車両の制御装置
JP3775562B2 (ja) * 2000-03-07 2006-05-17 ジヤトコ株式会社 パラレルハイブリッド車両
US6877575B2 (en) * 2000-03-31 2005-04-12 Ford Global Technologies, Llc Method and apparatus for controlling the speed of an engine within a hybrid electric vehicle
US6657315B1 (en) * 2000-08-25 2003-12-02 Ford Global Technologies, Llc Method of operating a hybrid electric vehicle to reduce emissions
GB2367795B (en) * 2000-10-11 2004-07-14 Ford Motor Co A control system for a hybrid electric vehicle
US6494277B1 (en) * 2000-11-09 2002-12-17 Ford Motor Company Hybrid electric vehicle system
US6622804B2 (en) * 2001-01-19 2003-09-23 Transportation Techniques, Llc. Hybrid electric vehicle and method of selectively operating the hybrid electric vehicle
US6581705B2 (en) * 2001-06-29 2003-06-24 Ford Global Technologies, Llc Method for starting an engine in a parallel hybrid electric vehicle
JP3803269B2 (ja) * 2001-08-07 2006-08-02 ジヤトコ株式会社 パラレルハイブリッド車両
EP1415839A1 (de) * 2002-10-29 2004-05-06 STMicroelectronics S.r.l. Regelungssystem mit unscharfer Logik zur Antriebsmomentverteilung in einem Hybridfahrzeug
US6998727B2 (en) * 2003-03-10 2006-02-14 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods of operating a parallel hybrid vehicle having an internal combustion engine and a secondary power source
JP3934093B2 (ja) * 2003-08-12 2007-06-20 本田技研工業株式会社 ハイブリット車両の制御装置
US6876098B1 (en) * 2003-09-25 2005-04-05 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods of operating a series hybrid vehicle
US7030580B2 (en) * 2003-12-22 2006-04-18 Caterpillar Inc. Motor/generator transient response system
US7013213B2 (en) * 2004-05-12 2006-03-14 Ford Global Technologies, Llc Method for controlling starting of an engine in a hybrid electric vehicle powertrain
EP1619063B1 (de) * 2004-07-21 2009-10-14 Nissan Motor Company, Limited Verfahren und Vorrichtung zum Steuern des Drehmoments eines Elektromotors für ein Kraftfahrzeug
US7285869B2 (en) * 2004-07-29 2007-10-23 Ford Global Technologies, Llc Method for estimating engine power in a hybrid electric vehicle powertrain
US7295915B1 (en) * 2006-05-01 2007-11-13 Ford Global Technologies, Llc Method for compensating for accessory loading
US7276806B1 (en) * 2006-09-08 2007-10-02 Deere & Company System and method for boosting torque output of a drive train

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0930982A1 (de) * 1996-10-18 1999-07-28 Electromotive, Inc. Elektrisches hybridfahrzeug mit elektromotor zur bereitstellung von zusatzleistung für den lastausgleich einer brennkraftmaschine
EP0901930A1 (de) * 1997-09-15 1999-03-17 Honda Giken Kogyo Kabushiki Kaisha Vorrichtung zur Steuerung eines Hybridfahrzeuges
US6362580B1 (en) * 1999-03-10 2002-03-26 Suzuki Motor Corporation Controller of vehicle propulsion system
US6470983B1 (en) * 1999-04-27 2002-10-29 Hitachi, Ltd. Hybrid vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KARIN JONASSON: "Analysing Hybrid Drive System Topologies", 2002, LUND UNIVERSITY, ISBN: 91-88934-23-3, pages: 74

Also Published As

Publication number Publication date
US20070034425A1 (en) 2007-02-15
DE10318738A1 (de) 2004-11-11
JP2006525167A (ja) 2006-11-09

Similar Documents

Publication Publication Date Title
DE4344053B4 (de) Verfahren zum Betrieb eines Hybridfahrzeugs und Vorrichtung zum Durchführen des Verfahrens
EP1676738B1 (de) Verfahren und Vorrichtung zum Betreiben eines Hybridenergiespeichers in einem Fahrzeug mit einem Hybridantriebsystem
EP1805056B1 (de) Kraftfahrzeug mit einem rekuperationsgenerator
EP2528769B1 (de) Verfahren zur regelung des ladezustandes eines elektrischen energiespeichers
EP2605929B1 (de) Verfahren zum betrieb eines elektrofahrzeugs
DE102005016914B4 (de) Steuerung von Nebenaggregaten
DE10046631A1 (de) Verfahren zur Regelung der Generatorspannung in einem Kraftfahrzeug
EP1974979B1 (de) Flurförderzeug mit Hybridantrieb
DE102010003000A1 (de) Ansteuerung eines Range-Extenders in einem Elektrofahrzeug
EP2043897B1 (de) Verfahren zur regelung des ladezustandes eines energiespeichers für ein fahrzeug mit hybridantrieb
DE102020004796A1 (de) Verfahren zum Betrieb eines Hybridfahrzeuges oder eines Elektrofahrzeuges
DE102005041634A1 (de) Nachrüstsatz zur parallelen Ein- oder Auskopplung von mechanischer Energie in oder aus dem Antriebstrang eines Kraftfahrzeugs sowie Einbau- und Betriebsverfahren dafür
DE60218804T2 (de) Leistungssteuerungsverfahren in einem Kraftfahrzeug mit einer Brennkraftmaschine und einem Partikelfilter
WO2007107463A1 (de) Verfahren zum betrieb eines hybridantriebs für ein fahrzeug
DE102019203729A1 (de) Verfahren zum Betreiben eines Antriebsstrangs einer Arbeitsmaschine, Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine
DE102004044473B4 (de) Steuereinheit und Verfahren zur Ansteuerung der Antriebseinheit eines Kraftfahrzeugs
DE102008011407A1 (de) Antriebssystem
DE102005010960B4 (de) Niveauregulierungseinrichtung für ein Kraftfahrzeug
WO2004096599A1 (de) Steuerung eines elektromotors
DE102018218863A1 (de) Verfahren zum Betrieb eines Antriebssystems, Antriebssystem und Arbeitsmaschine
DE102022102574A1 (de) Verfahren zum Betrieb eines Nutzfahrzeug-Gespanns, und Nutzfahrzeug-Gespann
WO2007000362A1 (de) Fahrzeug mit hybridantrieb und verfahren zum betrieb eines solchen fahrzeugs
DE102007028700A1 (de) Verfahren zur Steuerung eines Betriebes eines Hybridfahrzeuges sowie Hybridfahrzeug
WO2007110011A1 (de) Hybridfahrzeug
DE102018211134A1 (de) Verfahren und Steuervorrichtung zum Betreiben eines Hybridelektrofahrzeugs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006504486

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2007034425

Country of ref document: US

Ref document number: 10554318

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10554318

Country of ref document: US