JP3381613B2 - Drive control device for hybrid vehicle - Google Patents

Drive control device for hybrid vehicle

Info

Publication number
JP3381613B2
JP3381613B2 JP07238898A JP7238898A JP3381613B2 JP 3381613 B2 JP3381613 B2 JP 3381613B2 JP 07238898 A JP07238898 A JP 07238898A JP 7238898 A JP7238898 A JP 7238898A JP 3381613 B2 JP3381613 B2 JP 3381613B2
Authority
JP
Japan
Prior art keywords
engine
clutch
vehicle
motor
started
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07238898A
Other languages
English (en)
Other versions
JPH11270376A (ja
Inventor
真一郎 北田
昇 服部
勇也 松尾
俊一 青山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP07238898A priority Critical patent/JP3381613B2/ja
Publication of JPH11270376A publication Critical patent/JPH11270376A/ja
Application granted granted Critical
Publication of JP3381613B2 publication Critical patent/JP3381613B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • Y10S903/918Continuously variable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/946Characterized by control of driveline clutch

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンおよび/
またはモーターを推進源とするハイブリッド車両の駆動
制御装置に関する。
TECHNICAL FIELD The present invention relates to an engine and / or
Alternatively, the present invention relates to a drive control device for a hybrid vehicle that uses a motor as a propulsion source.

【0002】[0002]

【従来の技術とその問題点】エンジンの回転速度と負荷
に応じて吸気バルブ閉時期(以下、IVC(IntakeValv
e Close)と呼ぶ)を制御する可変バルブタイミング制
御装置が実用に供されている。
2. Description of the Related Art Intake valve closing timing (hereinafter referred to as IVC (IntakeValv
The variable valve timing control device for controlling the (e Close) is used for practical use.

【0003】また、エンジンおよび/またはモーターを
車両の推進源とするハイブリッド車両が知られている
(例えば、特開平5−50865号公報参照)。この種
のハイブリッド車両では、エンジンの出力軸をクラッチ
を介してモーター軸と連結し、モーター軸から駆動輪に
動力を伝達している。また、燃料消費を節約するために
停車中はエンジンを停止する、”アイドリングストッ
プ”が行われており、モーターの駆動力で発進し、エン
ジン起動後にクラッチを締結してエンジンの駆動力で走
行している。
A hybrid vehicle using an engine and / or a motor as a propulsion source for the vehicle is also known (see, for example, Japanese Patent Laid-Open No. 5-50865). In this type of hybrid vehicle, the output shaft of the engine is connected to the motor shaft via a clutch, and power is transmitted from the motor shaft to the drive wheels. Also, in order to save fuel consumption, "idling stop" is performed to stop the engine while the vehicle is stopped. It starts with the driving force of the motor, and after the engine starts, the clutch is engaged and the vehicle runs with the driving force of the engine. ing.

【0004】ところが、エンジン起動直後は吸気管負圧
が発達していないためにトルク変動が大きく、エンジン
起動直後にクラッチを締結するとエンジンのトルク変動
が駆動輪へ伝達され、車両の前後方向に振動が発生して
乗り心地が悪くなるという問題がある。
However, since the intake pipe negative pressure is not developed immediately after the engine is started, the torque fluctuation is large, and when the clutch is engaged immediately after the engine is started, the torque fluctuation of the engine is transmitted to the drive wheels and the vehicle is vibrated in the longitudinal direction. There is a problem that the riding comfort is deteriorated due to the occurrence of.

【0005】本発明の目的は、モーター走行モードから
エンジン走行モードへ切り換える時のエンジンのトルク
変動を抑制することにある。
An object of the present invention is to suppress the torque fluctuation of the engine when switching from the motor drive mode to the engine drive mode.

【0006】[0006]

【課題を解決するための手段】一実施の形態の構成を示
す図1および図2に対応づけて本発明を説明すると、 (1) 請求項1の発明は、クラッチ3の入力軸にエン
ジン2と第1モーター1を連結するとともに、クラッチ
3の出力軸に第2モーター4と変速機5の入力軸を連結
し、変速機5の出力軸から駆動輪8へ動力を伝達する推
進機構と、エンジン2の温度を検出する温度検出手段3
5と、エンジン2の温度検出値が所定値以上の場合は、
車両停止時にクラッチ3を解放してエンジン2を停止
し、車両発進時に第2モーター4の駆動力で車両を発進
させるとともに、第1モーター1でエンジン2を起動し
てクラッチ3を締結する制御手段16とを備えたハイブ
リッド車両の駆動制御装置であって、クラッチ3解放時
は吸気バルブ閉時期を遅角側に調節し、クラッチ3締結
後は吸気バルブ閉時期を進角側に調節するバルブタイミ
ング調節手段16,32を備えることにより、上記目的
を達成する。 (2) 請求項2の発明は、バルブタイミング調節手段
16,32によって、エンジン2の起動前に吸気バルブ
閉時期を遅角位置に設定し、エンジン2起動後のクラッ
チ3締結時に吸気バルブの閉時期を徐々に進角側に調節
するようにしたものである。 (3) 請求項3の発明は、制御手段16によって、エ
ンジン2の温度検出値が所定値未満の場合は、車両停止
時にクラッチ3を解放してエンジン2の発火運転を継続
し、車両発進時にクラッチ3を半締結状態にしてエンジ
ン2と第2モーター4の駆動力により車両を発進させ、
バルブタイミング調節手段16,32は、クラッチ3の
解放と締結動作に拘わらず吸気バルブ閉時期を進角側に
調節するようにしたものである。
The present invention will be described with reference to FIGS. 1 and 2 showing the configuration of an embodiment. (1) The invention of claim 1 uses the engine 2 on the input shaft of the clutch 3 A propulsion mechanism that connects the first motor 1 and the first motor 1, and connects the second motor 4 and the input shaft of the transmission 5 to the output shaft of the clutch 3 to transmit power from the output shaft of the transmission 5 to the drive wheels 8. Temperature detecting means 3 for detecting the temperature of the engine 2
5 and the detected temperature value of the engine 2 is a predetermined value or more,
Control means for releasing the clutch 3 to stop the engine 2 when the vehicle is stopped, starting the vehicle with the driving force of the second motor 4 when the vehicle starts, and starting the engine 2 with the first motor 1 to engage the clutch 3. And a valve timing for adjusting the intake valve closing timing to a retard side when the clutch 3 is disengaged and to advancing the intake valve closing timing after the clutch 3 is engaged. By providing the adjusting means 16 and 32, the above-mentioned object is achieved. (2) In the invention of claim 2, the intake valve closing timing is set to the retard position before the engine 2 is started by the valve timing adjusting means 16 and 32, and the intake valve is closed when the clutch 3 is engaged after the engine 2 is started. The time is gradually adjusted to the advance side. (3) In the invention of claim 3, when the temperature detection value of the engine 2 is less than the predetermined value by the control means 16, the clutch 3 is released when the vehicle is stopped to continue the ignition operation of the engine 2 and when the vehicle starts. With the clutch 3 in the half-engaged state, the vehicle is started by the driving force of the engine 2 and the second motor 4,
The valve timing adjusting means 16 and 32 are adapted to adjust the intake valve closing timing to the advance side regardless of whether the clutch 3 is released or engaged.

【0007】上述した課題を解決するための手段の項で
は、説明を分かりやすくするために一実施の形態の構成
図を用いたが、これにより本発明が一実施の形態に限定
されるものではない。
In the section of the means for solving the above-mentioned problems, the configuration diagram of one embodiment is used for the sake of easy understanding of the description, but the present invention is not limited to this embodiment. Absent.

【0008】[0008]

【発明の効果】(1) 請求項1および請求項2の発明
によれば、吸気バルブ閉時期を遅角側に調節した状態で
エンジンを起動してクラッチを締結することになるの
で、エンジン起動直後に吸気管負圧が発達していなくて
も、エンジンの吸気量が少なく、エンジンのトルク変動
は小さい。したがって、この状態でクラッチを締結して
も、大きな車両の前後Gが発生せず、車両発進時の乗り
心地を向上させることができる。また、エンジンのトル
ク変動が小さいのでクラッチの滑りによる摩耗を少なく
することができる。さらに、エンジントルクが緩やかに
立ち上がり、車両をスムーズに発進させることができ
る。 (2) 請求項3の発明によれば、コールド時のエンジ
ンや車両の大きな摩擦損失に打ち勝つ大きな出力が得ら
れ、コールド時に車両をスムーズに発進させることがで
きる。
(1) According to the first and second aspects of the present invention, the engine is started and the clutch is engaged while the intake valve closing timing is adjusted to the retard side, so that the engine is started. Immediately after that, even if the intake pipe negative pressure is not developed, the intake amount of the engine is small and the torque fluctuation of the engine is small. Therefore, even if the clutch is engaged in this state, a large front-rear G of the vehicle does not occur, and the riding comfort when the vehicle starts can be improved. Further, since the torque fluctuation of the engine is small, it is possible to reduce wear due to slippage of the clutch. Further, the engine torque gradually rises, and the vehicle can be started smoothly. (2) According to the invention of claim 3, a large output that overcomes a large friction loss of the engine and the vehicle at the time of cold is obtained, and the vehicle can be smoothly started at the time of cold.

【0009】[0009]

【発明の実施の形態】図1は一実施の形態の構成を示す
図である。図において、太い実線は機械力の伝達経路を
示し、太い破線は電力線を示す。また、細い実線は制御
線を示し、二重線は油圧系統を示す。この車両のパワー
トレインは、モーター1、エンジン2、クラッチ3、モ
ーター4、無段変速機5、減速装置6、差動装置7およ
び駆動輪8から構成される。モーター1の出力軸、エン
ジン2の出力軸およびクラッチ3の入力軸は互いに連結
されており、また、クラッチ3の出力軸、モーター4の
出力軸および無段変速機5の入力軸は互いに連結されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a configuration of an embodiment. In the figure, a thick solid line indicates a mechanical force transmission path, and a thick broken line indicates a power line. Also, a thin solid line indicates a control line, and a double line indicates a hydraulic system. The power train of this vehicle includes a motor 1, an engine 2, a clutch 3, a motor 4, a continuously variable transmission 5, a speed reducer 6, a differential device 7, and drive wheels 8. The output shaft of the motor 1, the output shaft of the engine 2 and the input shaft of the clutch 3 are connected to each other, and the output shaft of the clutch 3, the output shaft of the motor 4 and the input shaft of the continuously variable transmission 5 are connected to each other. ing.

【0010】クラッチ3締結時はエンジン2とモーター
4が車両の推進源となり、クラッチ3解放時はモーター
4のみが車両の推進源となる。エンジン2および/また
はモーター4の駆動力は、無段変速機5、減速装置6お
よび差動装置7を介して駆動輪8へ伝達される。無段変
速機5には油圧装置9から圧油が供給され、ベルトのク
ランプと潤滑がなされる。油圧装置9のオイルポンプ
(不図示)はモーター10により駆動される。
When the clutch 3 is engaged, the engine 2 and the motor 4 are the propulsion sources of the vehicle, and when the clutch 3 is disengaged, only the motor 4 is the propulsion source of the vehicle. The driving force of the engine 2 and / or the motor 4 is transmitted to the drive wheels 8 via the continuously variable transmission 5, the reduction gear 6 and the differential gear 7. Pressure oil is supplied from the hydraulic device 9 to the continuously variable transmission 5, and the belt is clamped and lubricated. An oil pump (not shown) of the hydraulic device 9 is driven by a motor 10.

【0011】モータ1,4,10は三相同期電動機また
は三相誘導電動機などの交流機であり、モーター1は主
としてエンジン起動と発電に用いられ、モーター4は主
として車両の推進と制動に用いられる。また、モーター
10は油圧装置9のオイルポンプ駆動用である。なお、
モーター1,4,10には交流機に限らず直流電動機を
用いることもできる。また、クラッチ3締結時に、モー
ター1を車両の推進と制動に用いることもでき、モータ
ー4をエンジン起動や発電に用いることもできる。
The motors 1, 4, 10 are AC machines such as three-phase synchronous motors or three-phase induction motors, the motor 1 is mainly used for starting the engine and power generation, and the motor 4 is mainly used for propulsion and braking of the vehicle. . The motor 10 is for driving an oil pump of the hydraulic device 9. In addition,
The motors 1, 4 and 10 are not limited to AC machines, but DC motors can be used. Further, when the clutch 3 is engaged, the motor 1 can be used for propulsion and braking of the vehicle, and the motor 4 can be used for starting the engine and generating electricity.

【0012】クラッチ3はパウダークラッチであり、伝
達トルクを調節することができる。なお、このクラッチ
3に乾式単板クラッチや湿式多板クラッチを用いること
もできる。無段変速機5はベルト式やトロイダル式など
の無段変速機であり、変速比を無段階に調節することが
できる。
The clutch 3 is a powder clutch and can adjust the transmission torque. The clutch 3 may be a dry single plate clutch or a wet multi-plate clutch. The continuously variable transmission 5 is a continuously variable transmission such as a belt type or toroidal type, and can continuously adjust the gear ratio.

【0013】モーター1,4,10はそれぞれ、インバ
ーター11,12,13により駆動される。なお、モー
ター1,4,10に直流電動機を用いる場合には、イン
バーターの代わりにDC/DCコンバーターを用いる。
インバーター11〜13は共通のDCリンク14を介し
てメインバッテリー15に接続されており、メインバッ
テリー15の直流充電電力を交流電力に変換してモータ
ー1,4,10へ供給するとともに、モーター1,4の
交流発電電力を直流電力に変換してメインバッテリー1
5を充電する。なお、インバーター11〜13は互いに
DCリンク14を介して接続されているので、回生運転
中のモーターにより発電された電力をメインバッテリー
15を介さずに直接、力行運転中のモーターへ供給する
ことができる。メインバッテリー15には、リチウム・
イオン電池、ニッケル・水素電池、鉛電池などの各種電
池や、電機二重層キャパシターいわゆるパワーキャパシ
ターを用いることができる。
The motors 1, 4, 10 are driven by inverters 11, 12, 13 respectively. When a DC motor is used for the motors 1, 4 and 10, a DC / DC converter is used instead of the inverter.
The inverters 11 to 13 are connected to the main battery 15 via the common DC link 14, and convert the DC charging power of the main battery 15 into AC power and supply the AC power to the motors 1, 4, 10 and the motors 1, 1. Main battery 1 by converting AC generated power of 4 into DC power
Charge 5 Since the inverters 11 to 13 are connected to each other via the DC link 14, the electric power generated by the motor during the regenerative operation can be directly supplied to the motor during the power running operation without passing through the main battery 15. it can. The main battery 15 contains lithium
Various batteries such as ion batteries, nickel-hydrogen batteries and lead batteries, and electric double layer capacitors, so-called power capacitors, can be used.

【0014】コントローラー16は、マイクロコンピュ
ーターとその周辺部品や各種アクチュエータなどを備
え、エンジン2の回転速度やトルク、クラッチ3の伝達
トルク、モーター1,4,10の回転速度やトルク、無
段変速機5の変速比などを制御する。
The controller 16 is provided with a microcomputer and its peripheral parts, various actuators, etc., and is provided with the rotational speed and torque of the engine 2, the transmission torque of the clutch 3, the rotational speed and torque of the motors 1, 4, 10 and the continuously variable transmission. The gear ratio of 5 is controlled.

【0015】コントローラー16には、図2に示すよう
に、キースイッチ20、セレクトレバースイッチ21、
アクセルセンサー22、ブレーキスイッチ23、車速セ
ンサー24、バッテリー温度センサー25、バッテリー
SOC検出装置26、エンジン回転センサー27、スロ
ットル開度センサー28が接続される。キースイッチ2
0は、車両のキーがON位置またはSTART位置に設定され
ると閉路する(以下、スイッチの閉路をオンまたはON、
開路をオフまたはOFFと呼ぶ)。セレクトレバースイッ
チ21は、パーキングP、ニュートラルN、リバースR
およびドライブDを切り換えるセレクトレバー(不図
示)の設定位置に応じて、P、N、R、Dのいずれかの
スイッチがオンする。
As shown in FIG. 2, the controller 16 includes a key switch 20, a select lever switch 21,
An accelerator sensor 22, a brake switch 23, a vehicle speed sensor 24, a battery temperature sensor 25, a battery SOC detection device 26, an engine rotation sensor 27, and a throttle opening sensor 28 are connected. Key switch 2
0 closes when the vehicle key is set to the ON position or the START position (hereinafter, switch closing is ON or ON,
Called open or off). Select lever switch 21 is for parking P, neutral N, reverse R
Depending on the set position of a select lever (not shown) for switching the drive D, any one of P, N, R, and D switches is turned on.

【0016】アクセルセンサー22はアクセルペダルの
踏み込み量(アクセル開度)θを検出し、ブレーキスイ
ッチ23はブレーキペダルの踏み込み状態(この時、ス
イッチ オン)を検出する。車速センサー24は車両の
走行速度Vを検出し、バッテリー温度センサー25はメ
インバッテリー15の温度Tbを検出する。また、バッ
テリーSOC検出装置26はメインバッテリー15の充
電状態(以下、SOC(State Of Charge)と呼ぶ)を
検出する。さらに、エンジン回転センサー27はエンジ
ン2の回転速度Neを検出し、スロットル開度センサー
28はエンジン2のスロットルバルブ開度θthを検出す
る。
The accelerator sensor 22 detects the depression amount (accelerator opening) θ of the accelerator pedal, and the brake switch 23 detects the depression state of the brake pedal (at this time, the switch is turned on). The vehicle speed sensor 24 detects the traveling speed V of the vehicle, and the battery temperature sensor 25 detects the temperature Tb of the main battery 15. Further, the battery SOC detection device 26 detects the state of charge of the main battery 15 (hereinafter referred to as SOC (State Of Charge)). Further, the engine rotation sensor 27 detects the rotation speed Ne of the engine 2, and the throttle opening sensor 28 detects the throttle valve opening θth of the engine 2.

【0017】コントローラー16にはまた、エンジン2
の燃料噴射装置30、点火装置31、バルブタイミング
調節装置32、スロットルバルブ開度調節装置33、補
助バッテリー34、冷却水温度センサー35、油圧セン
サー36、IVCセンサー37などが接続される。コン
トローラー16は、燃料噴射装置30を制御してエンジ
ン2への燃料の供給と停止および燃料噴射量を調節する
とともに、点火装置31を制御してエンジン2の点火を
行う。また、コントローラー16はバルブタイミング調
節装置32を制御してエンジン2の吸気バルブの閉時期
を調節するとともに、スロットルバルブ開度調節装置3
3を制御してエンジン2のスロットルバルブ開度θthを
調節する。このスロットルバルブ開度調節装置33はア
クセルペダルと機械的に連結されておらず、その踏み込
み量θとは独立して開度θthを調節する。補助バッテリ
ー34はコントローラー16へ電源を供給する。冷却水
温度センサー35はエンジン2の冷却水温度Twを検出
し、油圧センサー36はエンジン2の油圧Peを検出す
る。また、IVCセンサー37はバルブタイミング調節
装置32により調節される吸気バルブの閉じ時期(IV
C)を検出する。
The controller 16 also includes the engine 2
The fuel injection device 30, the ignition device 31, the valve timing adjustment device 32, the throttle valve opening adjustment device 33, the auxiliary battery 34, the cooling water temperature sensor 35, the hydraulic pressure sensor 36, the IVC sensor 37, and the like are connected. The controller 16 controls the fuel injection device 30 to supply and stop the fuel to the engine 2 and adjust the fuel injection amount, and also controls the ignition device 31 to ignite the engine 2. Further, the controller 16 controls the valve timing adjusting device 32 to adjust the closing timing of the intake valve of the engine 2, and the throttle valve opening adjusting device 3
3 is controlled to adjust the throttle valve opening θth of the engine 2. The throttle valve opening adjustment device 33 is not mechanically connected to the accelerator pedal, and adjusts the opening θth independently of the depression amount θ. The auxiliary battery 34 supplies power to the controller 16. The cooling water temperature sensor 35 detects the cooling water temperature Tw of the engine 2, and the hydraulic pressure sensor 36 detects the hydraulic pressure Pe of the engine 2. Also, the IVC sensor 37 controls the intake valve closing timing (IV
C) is detected.

【0018】図3および図4はパワートレインの配置例
を示す図である。クラッチ3の入力側のモーター1とエ
ンジン2の配置は、図3に示すようにモーター1をエン
ジン2の上流に配置してもよいし、図4に示すようにモ
ーター1をエンジン2の下流に配置してもよい。図3に
示す配置例では、エンジン2の出力軸をクラッチ3の入
力軸と直結して1軸で構成するとともに、エンジン2の
出力軸をモーター1の出力軸とベルトや歯車により連結
する。また、図4に示す配置例では、エンジン2の出力
軸をモーター1のローターを貫通してクラッチ3の入力
軸と直結し、クラッチ3の入力側を1軸で構成する。
FIG. 3 and FIG. 4 are views showing an arrangement example of the power train. As for the arrangement of the motor 1 and the engine 2 on the input side of the clutch 3, the motor 1 may be arranged upstream of the engine 2 as shown in FIG. 3, or the motor 1 may be arranged downstream of the engine 2 as shown in FIG. You may arrange. In the arrangement example shown in FIG. 3, the output shaft of the engine 2 is directly connected to the input shaft of the clutch 3 to form a single shaft, and the output shaft of the engine 2 is connected to the output shaft of the motor 1 by a belt or a gear. Further, in the arrangement example shown in FIG. 4, the output shaft of the engine 2 penetrates the rotor of the motor 1 and is directly connected to the input shaft of the clutch 3, and the input side of the clutch 3 is configured by one shaft.

【0019】一方、クラッチ3の出力側のモーター4と
無段変速機5の配置は、図3に示すようにモーター4を
無段変速機5の上流に配置してもよいし、図4に示すよ
うにモーター4を無段変速機5の下流に配置してもよ
い。図3に示す配置例では、クラッチ3の出力軸をモー
ター4のローターを貫通して無段変速機5の入力軸と直
結し、クラッチ3の出力側を1軸で構成する。また、図
4に示す配置例では、クラッチ3の出力軸を無段変速機
5の入力軸を貫通してモーター4の出力軸と直結し、ク
ラッチ3の出力側を1軸で構成する。いずれの場合でも
モーター4を無段変速機5の入力軸に連結する。
On the other hand, the motor 4 and the continuously variable transmission 5 on the output side of the clutch 3 may be arranged upstream of the continuously variable transmission 5 as shown in FIG. The motor 4 may be arranged downstream of the continuously variable transmission 5 as shown. In the arrangement example shown in FIG. 3, the output shaft of the clutch 3 penetrates the rotor of the motor 4 and is directly connected to the input shaft of the continuously variable transmission 5, and the output side of the clutch 3 is constituted by one shaft. Further, in the arrangement example shown in FIG. 4, the output shaft of the clutch 3 penetrates the input shaft of the continuously variable transmission 5 and is directly connected to the output shaft of the motor 4, and the output side of the clutch 3 is constituted by one shaft. In either case, the motor 4 is connected to the input shaft of the continuously variable transmission 5.

【0020】なお、パワートレインの配置は図3および
図4に示す配置例に限定されず、クラッチ3の入力軸に
エンジン2とモーター1を連結するとともに、クラッチ
3の出力軸にモーター4と無段変速機5の入力軸を連結
し、無段変速機5の出力軸から減速装置6および差動装
置7を介して駆動輪8に動力を伝える推進機構であれ
ば、各機器がどのような配置でもよい。
The arrangement of the power train is not limited to the arrangement shown in FIGS. 3 and 4, and the engine 2 and the motor 1 are connected to the input shaft of the clutch 3 and the motor 4 is not connected to the output shaft of the clutch 3. If the propulsion mechanism connects the input shaft of the continuously variable transmission 5 and transmits the power from the output shaft of the continuously variable transmission 5 to the drive wheels 8 via the speed reducer 6 and the differential device 7, what kind of each device is? It may be arranged.

【0021】図5は、無段変速機にトロイダルCVTを
用いたパワートレインの配置例を示す。無段変速機5に
トロイダルCVTを用いた場合でも、モーター4とトロ
イダルCVT5のどちらをクラッチ3側に配置してもよ
い。しかし、いずれの場合でもモーター4を無段変速機
5の入力軸に連結する。
FIG. 5 shows an arrangement example of a power train using a toroidal CVT in a continuously variable transmission. Even when the toroidal CVT is used for the continuously variable transmission 5, either the motor 4 or the toroidal CVT 5 may be arranged on the clutch 3 side. However, in any case, the motor 4 is connected to the input shaft of the continuously variable transmission 5.

【0022】次に、この実施の形態のIVC制御方法を
説明する。この実施の形態では、エンジン2の暖機後
は、車両停止時にクラッチ3を解放してエンジン2を停
止する、いわゆるアイドリングストップを行う。発進時
はクラッチ3を解放したままモーター4の駆動力により
発進し、モーター1でエンジン2を起動させた後、クラ
ッチ3を締結する。エンジン2が暖機状態の時は、クラ
ッチ締結前は、図6に示すようにIVCをクラッチ締結
後に対して遅角させた位置に制御し、遅角位置でエンジ
ン2を起動する。そして、クラッチ締結後は、図7に示
すようにIVCをクラッチ締結前の位置より進角させた
位置に制御する。
Next, the IVC control method of this embodiment will be described. In this embodiment, after the engine 2 is warmed up, when the vehicle is stopped, the clutch 3 is released to stop the engine 2, so-called idling stop. At the time of starting, the vehicle is started by the driving force of the motor 4 with the clutch 3 released, the engine 2 is started by the motor 1, and then the clutch 3 is engaged. When the engine 2 is in the warm-up state, before clutch engagement, the IVC is controlled to a position retarded with respect to after clutch engagement as shown in FIG. 6, and the engine 2 is started at the retarded position. After the clutch is engaged, the IVC is controlled to a position advanced from the position before the clutch is engaged, as shown in FIG.

【0023】一方、エンジン2がコールド状態の時は、
車両停止時でもクラッチ3を解放してエンジン2の発火
運転を継続し、アイドリングストップを行わない。発進
時はクラッチ3を半締結状態にしてエンジン2とモータ
ー4の駆動力により発進する。エンジン2のコールド時
には、IVCの遅角制御を行わず、図8に示すようにク
ラッチ締結前から進角位置一定に制御する。
On the other hand, when the engine 2 is cold,
Even when the vehicle is stopped, the clutch 3 is released to continue the ignition operation of the engine 2 and the idling stop is not performed. At the time of starting, the clutch 3 is half-engaged and the engine 2 and the motor 4 drive the vehicle. When the engine 2 is cold, the retard angle control of the IVC is not performed, and the advance position is controlled to be constant before the clutch is engaged as shown in FIG.

【0024】図9はこの実施の形態のIVC制御を示す
図である。なお、図の左側のクラッチ作動域はエンジン
がコールド時の作動域を示し、右側のクラッチ作動域は
エンジン暖機後の作動域を示す。エンジン2のコールド
時には、クラッチ3のオン、オフに拘わらずIVCを常
に進角位置一定に制御する。一方、エンジン2の暖機後
は、IVCを遅角位置に設定してエンジン2を起動し、
エンジン2起動後にクラッチ3を締結しながらIVCを
徐々に進角させる。
FIG. 9 is a diagram showing the IVC control of this embodiment. The clutch operating range on the left side of the figure shows the operating range when the engine is cold, and the clutch operating range on the right side shows the operating range after the engine is warmed up. When the engine 2 is cold, the IVC is always controlled to a constant advance position regardless of whether the clutch 3 is on or off. On the other hand, after warming up the engine 2, the IVC is set to the retard position and the engine 2 is started,
After starting the engine 2, the IVC is gradually advanced while engaging the clutch 3.

【0025】この実施の形態のエンジン暖機後のIVC
制御による効果を説明する。 (1)エンジン起動直後は吸気管負圧が発達していない
ため、IVC進角位置でエンジンを起動してクラッチを
締結すると、エンジンの大きなトルク変動が駆動輪へ伝
達され、クラッチ締結時に車両の前後Gが発生して乗り
心地が悪くなる。この実施の形態によれば、IVC遅角
位置でエンジンを起動してクラッチを締結するので、エ
ンジン起動直後で吸気管負圧が発達していなくてもエン
ジンの吸気量が少なくなり、トルク変動自体が小さくな
る。したがって、クラッチを締結しても駆動輪へ大きな
トルク変動が伝わらず、クラッチ締結時の車両の前後G
の発生が抑制されて乗り心地がよくなる。また、クラッ
チ締結時のエンジンのトルク変動が小さいので、クラッ
チの滑りによる摩耗を少なくすることができる。
IVC after engine warm-up of this embodiment
The effect of control will be described. (1) Since the intake pipe negative pressure does not develop immediately after the engine starts, when the engine is started at the IVC advance position and the clutch is engaged, a large torque fluctuation of the engine is transmitted to the drive wheels, and the vehicle is not engaged when the clutch is engaged. Front / rear G occurs and riding comfort becomes poor. According to this embodiment, since the engine is started and the clutch is engaged at the IVC retard position, the intake amount of the engine is reduced even if the intake pipe negative pressure is not developed immediately after the engine is started, and the torque fluctuation itself. Becomes smaller. Therefore, even if the clutch is engaged, a large torque fluctuation is not transmitted to the drive wheels, and the front and rear G of the vehicle when the clutch is engaged
The occurrence of noise is suppressed and the riding comfort is improved. Further, since the torque fluctuation of the engine when the clutch is engaged is small, wear due to slipping of the clutch can be reduced.

【0026】(2)IVC遅角位置でエンジンを起動す
ることによって、実圧縮比が低下し燃焼速度も低下する
のでエンジントルクが緩やかに立ち上がり、車両をスム
ーズに発進させることができる。
(2) By starting the engine at the IVC retard position, the actual compression ratio and the combustion speed also decrease, so the engine torque rises gently and the vehicle can be started smoothly.

【0027】図10は、IVCを進角位置一定にした場
合(破線で示す)と、遅角位置から進角位置へ制御した
場合(実線で示す)の、発進の前後におけるエンジンの
発生トルク特性を示す図である。起動時はモーターによ
りエンジンを駆動するので、エンジンの発生トルクは負
になる。IVCを進角位置一定にしてエンジンを起動す
る場合には、起動後に大きなトルクが発生し、吸入負圧
が発達するにつれてトルクが低下する。
FIG. 10 shows the characteristics of the torque generated by the engine before and after starting when IVC is set to a constant advance position (shown by a broken line) and when the retard position is controlled to a advance position (shown by a solid line). FIG. At startup, the motor drives the engine, so the torque generated by the engine becomes negative. When the engine is started with the IVC constant advance position, a large torque is generated after the start, and the torque decreases as the suction negative pressure develops.

【0028】一方、IVCを遅角位置から進角位置へ制
御した場合には、起動直後は実圧縮比が低く燃焼速度も
低いので発生トルクが小さく、起動後のIVCの進角に
応じて発生トルクが徐々に増加する。したがって、エン
ジントルクが緩やかに立ち上がり、発進時の衝撃を小さ
くしてスムーズに発進させることができる。
On the other hand, when the IVC is controlled from the retard position to the advance position, the torque generated is small because the actual compression ratio is low and the combustion speed is low immediately after the start, and the torque is generated according to the advance of the IVC after the start. The torque gradually increases. Therefore, the engine torque rises gently, the impact at the time of starting can be reduced, and the vehicle can be started smoothly.

【0029】(3)クラッチ締結後はIVCを進角させ
ることによって、エンジンの吸入空気量と実圧縮比を増
加させることができ、加速に必要なトルクと良好な燃焼
を確保することができる。
(3) After the clutch is engaged, the intake air amount of the engine and the actual compression ratio can be increased by advancing the IVC, and the torque required for acceleration and good combustion can be secured.

【0030】図11は発進の前後における吸気管負圧の
変化を示し、図12は発進の前後におけるエンジン回転
速度を示す。なお、これらの図において、左側のクラッ
チ作動域はエンジンがコールド時の作動域を示し、右側
のクラッチ作動域はエンジン暖機後の作動域を示す。ク
ラッチ締結時点では吸気管負圧が発達中であり、IVC
を進角させてエンジン吸気量を増大させないとエンジン
の回転上昇が遅くなり、クラッチ締結時にエンストする
恐れがある。この実施の形態によれば、IVCを進角さ
せながらクラッチを締結するので、クラッチ締結時にエ
ンジンの吸入空気量と実圧縮比が増加し、エンジンの回
転速度とトルクが早く立ち上がる。
FIG. 11 shows changes in the intake pipe negative pressure before and after starting, and FIG. 12 shows engine rotation speeds before and after starting. In these figures, the left clutch operation area shows the operation area when the engine is cold, and the right clutch operation area shows the operation area after the engine is warmed up. At the time of clutch engagement, intake pipe negative pressure is developing, and IVC
If the engine is not advanced to increase the intake air amount of the engine, the rotation speed of the engine will be slowed, and the engine may stall when the clutch is engaged. According to this embodiment, since the clutch is engaged while advancing the IVC, the intake air amount of the engine and the actual compression ratio are increased when the clutch is engaged, and the engine rotation speed and torque rise quickly.

【0031】次に、エンジン・コールド時にクラッチ締
結前後でIVCを進角位置一定に制御する理由を説明す
る。コールド時は、エンジンの圧縮(燃焼)温度が低
く、IVCを遅角させると燃焼の悪化が大きい。また、
コールド時はエンジンや車両の摩擦損失が大きいため、
大きなエンジン出力が要求される。したがって、クラッ
チ締結前からIVCを進角位置に制御していないと、要
求出力を満たすだけの十分な出力を発生させることがで
きない。
Next, the reason why the IVC is controlled to a constant advance position before and after the clutch is engaged when the engine is cold will be described. During cold, the compression (combustion) temperature of the engine is low, and retarding the IVC causes great deterioration of combustion. Also,
When cold, the friction loss of the engine and vehicle is large,
Large engine output is required. Therefore, unless the IVC is controlled to the advanced position before the clutch is engaged, it is not possible to generate sufficient output to satisfy the required output.

【0032】また、すでに発火運転を継続しているので
吸気管負圧は発達しており、クラッチ締結時の吸入空気
量自体が少ないので駆動輪へのトルク変動の伝達が暖機
後よりも大幅に少ない。
Further, since the ignition operation is already continued, the intake pipe negative pressure is developed, and the intake air amount itself at the time of clutch engagement is small, so that the transmission of torque fluctuation to the drive wheels is greater than that after warming up. Very few.

【0033】図13、図14は、一実施の形態のIVC
制御プログラムを示すフローチャートである。これらの
フローチャートにより、一実施の形態の動作を説明す
る。コントローラー16は、セレクトレバーがD位置ま
たはR位置に設定されるとこのIVC制御プログラムの
実行を開始する。ステップ1において、冷却水温度セン
サー35により検出されたエンジン冷却水温度Twが所
定値T1以下かどうかを確認する。所定値T1以下の時
はエンジン2がコールド状態にあると判断し、ステップ
2〜9のコールド時のIVC制御を行う。一方、エンジ
ン冷却水温度Twが所定値T1を越えるときはエンジン
2が暖機状態にあると判断し、ステップ11〜21の暖
機後のIVC制御を行う。
13 and 14 show an IVC according to one embodiment.
It is a flow chart which shows a control program. The operation of one embodiment will be described with reference to these flowcharts. The controller 16 starts executing this IVC control program when the select lever is set to the D position or the R position. In step 1, it is confirmed whether the engine cooling water temperature Tw detected by the cooling water temperature sensor 35 is equal to or lower than a predetermined value T1. When the value is equal to or smaller than the predetermined value T1, it is determined that the engine 2 is in the cold state, and the cold IVC control in steps 2-9 is performed. On the other hand, when the engine cooling water temperature Tw exceeds the predetermined value T1, it is determined that the engine 2 is in the warm-up state, and the post-warm IVC control in steps 11 to 21 is performed.

【0034】コールド時のIVC制御は、まずステップ
2でエンジンコールド時のIVCマップを読み込む。こ
のエンジンコールド時のIVCマップは、エンジン2の
回転速度NeとトルクTeとに基づいて予め設定される
が、この実施の形態ではコールド時には遅角を行わずI
VCを常に一定値とするので、マップの図示を省略す
る。ステップ3でIVCセンサー37によりIVCを検
出し、目標値かどうかを確認する。IVCが目標値から
ずれている時は、ステップ4でバルブタイミング調節装
置32を制御してIVCを目標値に調節する。ステップ
5では、車速Vとアクセルペダル踏み込み量θとに基づ
いて予め設定されたマップを参照してクラッチ3を締結
するか否かを判定する。クラッチ締結の判定がなされた
場合は、ステップ6でエンジン2の出力と回転速度を調
節し、続くステップ7でクラッチ3を締結する。ステッ
プ8ではIVCセンサー37によりIVCが目標値かど
うかを確認し、IVCが目標値からずれている場合はス
テップ9へ進み、バルブタイミング調節装置32を制御
してIVCを目標値に調節する。
In cold IVC control, first in step 2, the IVC map at engine cold is read. The IVC map at the time of engine cold is set in advance based on the rotation speed Ne and the torque Te of the engine 2. In this embodiment, no retard is performed at cold.
Since VC is always a constant value, illustration of the map is omitted. In step 3, the IVC is detected by the IVC sensor 37 and it is confirmed whether it is a target value. If the IVC deviates from the target value, the valve timing adjusting device 32 is controlled in step 4 to adjust the IVC to the target value. In step 5, it is determined whether or not to engage the clutch 3 by referring to a preset map based on the vehicle speed V and the accelerator pedal depression amount θ. If it is determined that the clutch is engaged, the output and the rotation speed of the engine 2 are adjusted in step 6, and the clutch 3 is engaged in step 7, which follows. In step 8, the IVC sensor 37 confirms whether the IVC is the target value. If the IVC deviates from the target value, the process proceeds to step 9 to control the valve timing adjusting device 32 to adjust the IVC to the target value.

【0035】エンジン暖機後のIVC制御は、まずステ
ップ11でエンジン暖機後のIVCマップを読み込む。
このエンジン暖機後のIVCマップは、図15に示すよ
うに、エンジン回転速度NeとエンジントルクTeとに基
づいて予め設定される。ステップ12において、車速V
とアクセルペダル踏み込み量θとに基づいて予め設定さ
れたマップを参照してエンジン2を起動するか否かを判
定する。エンジン起動の判定がなされた時は、ステップ
13でモーター1によりエンジン2を駆動して起動す
る。ステップ14ではIVCセンサー37によりIVC
が目標値かどうかを確認し、IVCがその目標値になっ
ている時はステップ17へ進み、目標値からずれている
時はステップ15へ進む。ステップ15では油圧センサ
ー36によりエンジン2の油圧Peが所定値まで立ち上
がったかどうかを確認する。油圧が不十分な場合はステ
ップ14へ戻り、油圧が所定値以上の時はステップ16
へ進む。ステップ16では、バルブタイミング調節装置
32によりIVCを目標値に調節する。
In IVC control after engine warm-up, first in step 11, the IVC map after engine warm-up is read.
The IVC map after the engine is warmed up is preset based on the engine rotation speed Ne and the engine torque Te, as shown in FIG. In step 12, vehicle speed V
Based on the accelerator pedal depression amount θ and a map set in advance, it is determined whether or not the engine 2 is started. When it is determined to start the engine, the engine 1 is driven by the motor 1 and started in step 13. In step 14, the IVC is detected by the IVC sensor 37.
Is a target value, the process proceeds to step 17 when the IVC is the target value, and proceeds to step 15 when the IVC deviates from the target value. In step 15, the oil pressure sensor 36 confirms whether the oil pressure Pe of the engine 2 has risen to a predetermined value. If the oil pressure is insufficient, return to step 14, and if the oil pressure is equal to or higher than the predetermined value, step 16
Go to. In step 16, the valve timing adjusting device 32 adjusts the IVC to the target value.

【0036】ステップ17において、予め車速Vとアク
セルペダル踏み込み量θとに基づいて設定されたマップ
を参照し、クラッチ3を締結するか否かを判定する。ク
ラッチ締結の判定がなされた場合は、ステップ18でク
ラッチ3を締結する。次にステップ19で、IVCマッ
プとエンジン回転速度NeとエンジントルクTeとに基づ
いて目標IVCを演算する。ステップ20でIVCセン
サー37によりIVCが目標値かどうかを確認し、目標
値からずれている場合はステップ21へ進み、バルブタ
イミング調節装置32を制御してIVCを目標値に設定
する。
In step 17, it is determined whether or not the clutch 3 is to be engaged by referring to a map which is set based on the vehicle speed V and the accelerator pedal depression amount θ in advance. If it is determined that the clutch is engaged, the clutch 3 is engaged in step 18. Next, at step 19, the target IVC is calculated based on the IVC map, the engine speed Ne and the engine torque Te. In step 20, the IVC sensor 37 confirms whether the IVC is the target value. If the IVC deviates from the target value, the process proceeds to step 21, and the valve timing adjusting device 32 is controlled to set the IVC to the target value.

【0037】以上の一実施の形態の構成において、モー
ター1が第1モーターを、モーター4が第2モーター
を、無段変速機5が変速機を、冷却水温度センサー35
が温度検出手段を、コントローラー16が制御手段を、
コントローラー16およびバルブタイミング調節装置3
2がバルブタイミング調節手段をそれぞれ構成する。
In the structure of the above-described embodiment, the motor 1 is the first motor, the motor 4 is the second motor, the continuously variable transmission 5 is the transmission, and the cooling water temperature sensor 35.
Is the temperature detecting means, the controller 16 is the controlling means,
Controller 16 and valve timing adjustment device 3
2 constitutes the valve timing adjusting means.

【図面の簡単な説明】[Brief description of drawings]

【図1】 一実施の形態の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment.

【図2】 図1に続く、一実施の形態の構成を示す図で
ある。
FIG. 2 is a diagram showing a configuration of one embodiment following FIG.

【図3】 一実施の形態のパワートレインの配置例を示
す図である。
FIG. 3 is a diagram showing an arrangement example of a power train according to an embodiment.

【図4】 一実施の形態のパワートレインの他の配置例
を示す図である。
FIG. 4 is a diagram showing another arrangement example of the power train according to the embodiment.

【図5】 一実施の形態のパワートレインの他の配置例
を示す図である。
FIG. 5 is a diagram showing another arrangement example of the power train according to the embodiment.

【図6】 エンジン暖機後のエンジン起動前且つクラッ
チ締結前のIVCを示す図である。
FIG. 6 is a diagram showing an IVC before engine startup and before clutch engagement after engine warm-up.

【図7】 エンジン暖機後のクラッチ締結後のIVCを
示す図である。
FIG. 7 is a diagram showing IVC after clutch engagement after engine warm-up.

【図8】 エンジンコールド時のIVCを示す図であ
る。
FIG. 8 is a diagram showing an IVC at the time of engine cold.

【図9】 一実施の形態のIVC制御を示す図である。FIG. 9 is a diagram showing IVC control according to an embodiment.

【図10】 発進前後のIVC制御に対するエンジン発
生トルクを示す図である。
FIG. 10 is a diagram showing engine-generated torque for IVC control before and after starting.

【図11】 発進前後のエンジンコールド時と暖機後の
エンジン回転速度の変化を示す図である。
FIG. 11 is a diagram showing a change in engine speed before and after starting the engine and after warming up.

【図12】 発進前後のエンジンコールド時と暖機後の
エンジンの吸入負圧の変化を示す図である。
FIG. 12 is a diagram showing changes in intake negative pressure of the engine before and after a cold start and after warm-up.

【図13】 一実施の形態のIVC制御を示すフローチ
ャートである。
FIG. 13 is a flowchart showing IVC control according to an embodiment.

【図14】 図13に続く、一実施の形態のIVC制御
を示すフローチャートである。
FIG. 14 is a flowchart showing IVC control of one embodiment, following FIG. 13.

【図15】 エンジン暖機後のIVCマップを示す図で
ある。
FIG. 15 is a diagram showing an IVC map after engine warm-up.

【符号の説明】[Explanation of symbols]

1、4、10 モーター 2 エンジン 3 クラッチ 5 無段変速機 6 減速装置 7 差動装置 8 駆動輪 9 油圧装置 11〜13 インバーター 14 DCリンク 15 メインバッテリー 16 コントローラー 20 キースイッチ 21 セレクトレバースイッチ 22 アクセルセンサー 23 ブレーキスイッチ 24 車速センサー 25 バッテリー温度センサー 26 バッテリーSOC検出装置 27 エンジン回転センサー 28 スロットル開度センサー 30 燃料噴射装置 31 点火装置 32 バルブタイミング調節装置 33 スロットルバルブ開度調節装置 34 補助バッテリー 35 冷却水温度センサー 36 油圧センサー 37 IVCセンサー 1, 4, 10 motor 2 engine 3 clutch 5 continuously variable transmission 6 Reduction gear 7 Differential 8 drive wheels 9 Hydraulic system 11-13 Inverter 14 DC link 15 Main battery 16 controller 20 key switch 21 Select lever switch 22 Accelerator sensor 23 Brake switch 24 vehicle speed sensor 25 Battery temperature sensor 26 Battery SOC detection device 27 Engine rotation sensor 28 Throttle opening sensor 30 Fuel injection device 31 Ignition device 32 valve timing adjustment device 33 Throttle valve opening adjustment device 34 Auxiliary battery 35 Cooling water temperature sensor 36 Oil pressure sensor 37 IVC sensor

フロントページの続き (51)Int.Cl.7 識別記号 FI B60K 41/02 B60K 41/02 B60L 11/14 B60L 11/14 F02D 13/02 F02D 13/02 J (72)発明者 松尾 勇也 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 平10−212983(JP,A) 特開 平10−35301(JP,A) 特開 平9−24752(JP,A) 特開 平8−232817(JP,A) 特開 平8−193531(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 29/02 B60K 41/02 B60L 11/14 F02D 13/02 F02N 11/04 B60K 6/02 - 6/04 Front page continuation (51) Int.Cl. 7 Identification code FI B60K 41/02 B60K 41/02 B60L 11/14 B60L 11/14 F02D 13/02 F02D 13/02 J (72) Inventor Yuya Matsuo Yokohama, Kanagawa Prefecture Nissan Motor Co., Ltd. 2 Takaracho, Kanagawa-ku, Japan (56) References JP-A-10-212983 (JP, A) JP-A-10-35301 (JP, A) JP-A-9-24752 (JP, A) JP-A-8-232817 (JP, A) JP-A-8-193531 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F02D 29/02 B60K 41/02 B60L 11/14 F02D 13/02 F02N 11/04 B60K 6/02-6/04

Claims (3)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】 クラッチの入力軸にエンジンと第1モー
    ターを連結するとともに、前記クラッチの出力軸に第2
    モーターと変速機の入力軸を連結し、前記変速機の出力
    軸から駆動輪へ動力を伝達する推進機構と、 前記エンジンの温度を検出する温度検出手段と、 前記エンジンの温度検出値が所定値以上の場合は、車両
    停止時に前記クラッチを解放して前記エンジンを停止
    し、車両発進時に前記第2モーターの駆動力で車両を発
    進させるとともに、前記第1モーターで前記エンジンを
    起動して前記クラッチを締結する制御手段とを備えたハ
    イブリッド車両の駆動制御装置であって、 前記クラッチ解放時は吸気バルブ閉時期を遅角側に調節
    し、前記クラッチ締結後は吸気バルブ閉時期を進角側に
    調節するバルブタイミング調節手段を備えることを特徴
    とするハイブリッド車両の駆動制御装置。
    1. An engine and a first motor are connected to an input shaft of a clutch, and a second shaft is connected to an output shaft of the clutch.
    A propulsion mechanism that connects a motor and an input shaft of the transmission and transmits power from the output shaft of the transmission to the drive wheels, a temperature detection unit that detects the temperature of the engine, and a temperature detection value of the engine is a predetermined value. In the above case, the clutch is released to stop the engine when the vehicle is stopped, the vehicle is started by the driving force of the second motor when the vehicle starts, and the engine is started by the first motor to start the clutch. A drive control device for a hybrid vehicle, comprising: a control means for engaging the valve, wherein the intake valve closing timing is adjusted to a retard side when the clutch is disengaged, and the intake valve closing timing is advanced to a retard side after the clutch is engaged. A drive control device for a hybrid vehicle, comprising a valve timing adjusting means for adjusting.
  2. 【請求項2】 請求項1に記載のハイブリッド車両の駆
    動制御装置において、 前記バルブタイミング調節手段は、前記エンジンの起動
    前に吸気バルブ閉時期を遅角位置に設定し、前記エンジ
    ン起動後の前記クラッチ締結時に吸気バルブの閉時期を
    徐々に進角側に調節することを特徴とするハイブリッド
    車両の駆動制御装置。
    2. The drive control device for a hybrid vehicle according to claim 1, wherein the valve timing adjusting means sets an intake valve closing timing to a retard position before starting the engine, and the valve timing adjusting means after the engine starts. A drive control device for a hybrid vehicle, wherein the closing timing of an intake valve is gradually adjusted to an advanced side when a clutch is engaged.
  3. 【請求項3】 請求項1または請求項2に記載のハイブ
    リッド車両の駆動制御装置において、 前記制御手段は、前記エンジンの温度検出値が前記所定
    値未満の場合は、車両停止時に前記クラッチを解放して
    前記エンジンの発火運転を継続し、車両発進時に前記ク
    ラッチを半締結状態にして前記エンジンと前記第2モー
    ターの駆動力により車両を発進させ、 前記バルブタイミング調節手段は、前記クラッチの解放
    と締結動作に拘わらず吸気バルブ閉時期を進角側に調節
    することを特徴とするハイブリッド車両の駆動制御装
    置。
    3. The drive control device for a hybrid vehicle according to claim 1, wherein the control means releases the clutch when the vehicle is stopped when the detected temperature value of the engine is less than the predetermined value. Then, the ignition operation of the engine is continued, the clutch is half-engaged when the vehicle is started, and the vehicle is started by the driving force of the engine and the second motor, and the valve timing adjustment means releases the clutch. A drive control device for a hybrid vehicle, which adjusts an intake valve closing timing to an advance side regardless of a fastening operation.
JP07238898A 1998-03-20 1998-03-20 Drive control device for hybrid vehicle Expired - Fee Related JP3381613B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07238898A JP3381613B2 (ja) 1998-03-20 1998-03-20 Drive control device for hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP07238898A JP3381613B2 (ja) 1998-03-20 1998-03-20 Drive control device for hybrid vehicle
US09/271,326 US6026921A (en) 1998-03-20 1999-03-18 Hybrid vehicle employing parallel hybrid system, using both internal combustion engine and electric motor for propulsion

Publications (2)

Publication Number Publication Date
JPH11270376A JPH11270376A (ja) 1999-10-05
JP3381613B2 true JP3381613B2 (ja) 2003-03-04

Family

ID=13487862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07238898A Expired - Fee Related JP3381613B2 (ja) 1998-03-20 1998-03-20 Drive control device for hybrid vehicle

Country Status (2)

Country Link
US (1) US6026921A (ja)
JP (1) JP3381613B2 (ja)

Families Citing this family (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289610A (ja) * 1998-04-01 1999-10-19 Nissan Motor Co Ltd Auxiliary braking device for hybrid vehicles
US7011498B2 (en) * 1998-04-03 2006-03-14 Athena Technologies, Inc. Optimization method for power generation systems
US6171055B1 (en) * 1998-04-03 2001-01-09 Aurora Flight Sciences Corporation Single lever power controller for manned and unmanned aircraft
US9506405B2 (en) 1998-04-03 2016-11-29 Rockwell Collins Control Technologies, Inc. Apparatus and method for controlling power generation system
US6232733B1 (en) * 1998-07-28 2001-05-15 Denso Corporation Engine-motor hybrid vehicle control apparatus and method having power transmission device operation compensation function
JP3668830B2 (ja) * 1998-08-28 2005-07-06 トヨタ自動車株式会社 Power transmission device and hybrid vehicle using the same
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
US6186253B1 (en) * 1998-09-23 2001-02-13 Navistar International Transportation Corp. Brake activated torque disable in hybrid electric vehicles
JP4216932B2 (ja) * 1998-11-05 2009-01-28 富士重工業株式会社 車両用駆動装置
WO2000032433A1 (en) * 1998-12-01 2000-06-08 Hitachi, Ltd. Drive device and vehicle
DE19903443A1 (de) * 1999-01-29 2000-08-03 Sram De Gmbh Drive unit for an electrically powered vehicle
US6338391B1 (en) 1999-03-01 2002-01-15 Paice Corporation Hybrid vehicles incorporating turbochargers
JP3746644B2 (ja) * 1999-09-16 2006-02-15 本田技研工業株式会社 Control device for hybrid vehicle
JP3458795B2 (ja) * 1999-10-08 2003-10-20 トヨタ自動車株式会社 Hybrid drive
JP2001107765A (ja) * 1999-10-08 2001-04-17 Honda Motor Co Ltd Hybrid vehicle control device
JP3753299B2 (ja) * 2000-02-28 2006-03-08 スズキ株式会社 車両用モータアシスト装置
JP3460665B2 (ja) * 2000-03-06 2003-10-27 日産自動車株式会社 Automatic transmission for hybrid vehicles
US6263267B1 (en) * 2000-05-09 2001-07-17 Ford Global Technologies, Inc. Traction control system for a hybrid electric vehicle
DE10192542B4 (de) * 2000-06-23 2017-07-06 Schaeffler Technologies AG & Co. KG Method and control device for controlling operating characteristics of a drive train
JP3536798B2 (ja) * 2000-09-06 2004-06-14 日産自動車株式会社 車両用内燃機関の制御装置
GB2367795B (en) * 2000-10-11 2004-07-14 Ford Motor Co A control system for a hybrid electric vehicle
GB2370130B (en) * 2000-10-11 2004-10-06 Ford Motor Co A control system for a hybrid electric vehicle
US6336063B1 (en) * 2000-10-31 2002-01-01 Volvo Car Corporation Method and arrangement in a hybrid vehicle for improving battery state-of-charge control and minimizing driver perceptible disturbances
US6622804B2 (en) * 2001-01-19 2003-09-23 Transportation Techniques, Llc. Hybrid electric vehicle and method of selectively operating the hybrid electric vehicle
US6615118B2 (en) * 2001-03-27 2003-09-02 General Electric Company Hybrid energy power management system and method
US7231877B2 (en) * 2001-03-27 2007-06-19 General Electric Company Multimode hybrid energy railway vehicle system and method
US20060005736A1 (en) * 2001-03-27 2006-01-12 General Electric Company Hybrid energy off highway vehicle electric power management system and method
US6612245B2 (en) * 2001-03-27 2003-09-02 General Electric Company Locomotive energy tender
US7448328B2 (en) * 2001-03-27 2008-11-11 General Electric Company Hybrid energy off highway vehicle electric power storage system and method
US6973880B2 (en) 2001-03-27 2005-12-13 General Electric Company Hybrid energy off highway vehicle electric power storage system and method
US9151232B2 (en) 2001-03-27 2015-10-06 General Electric Company Control system and method
US6591758B2 (en) 2001-03-27 2003-07-15 General Electric Company Hybrid energy locomotive electrical power storage system
US9193268B2 (en) 2001-03-27 2015-11-24 General Electric Company Hybrid energy power management system and method
US7430967B2 (en) * 2001-03-27 2008-10-07 General Electric Company Multimode hybrid energy railway vehicle system and method
US6612246B2 (en) 2001-03-27 2003-09-02 General Electric Company Hybrid energy locomotive system and method
US6644427B2 (en) 2001-04-06 2003-11-11 Ise Research Corporation System and method for providing parallel power in a hybrid-electric vehicle
US6581705B2 (en) 2001-06-29 2003-06-24 Ford Global Technologies, Llc Method for starting an engine in a parallel hybrid electric vehicle
US20030020337A1 (en) * 2001-07-26 2003-01-30 Joachim Jon B. Electric machine rotor with crankshaft torsional damper
JP3673200B2 (ja) * 2001-09-14 2005-07-20 本田技研工業株式会社 Control device for hybrid vehicle
JP3653028B2 (ja) * 2001-10-17 2005-05-25 本田技研工業株式会社 Power transmission control device for vehicle
US20030116368A1 (en) * 2001-12-20 2003-06-26 Winkelman James R. Accessory drive for vehicle with hybrid drive system
US6781252B2 (en) * 2002-03-14 2004-08-24 Ford Global Technologies, Llc Method and apparatus for starting an engine using a starter/alternator and an accessory drive
US6705686B2 (en) * 2002-03-26 2004-03-16 Ford Motor Company Method and apparatus for braking a hybrid electric vehicle
NL1020498C2 (nl) * 2002-04-26 2003-10-28 Skf Ab Continuously variable transmission system and method for operating that system.
US7231959B2 (en) * 2002-05-02 2007-06-19 International Truck Intellectual Property Company, Llc Vehicle energy management system
US6842673B2 (en) * 2002-06-05 2005-01-11 Visteon Global Technologies, Inc. Engine engagement control for a hybrid electric vehicle
US6682458B2 (en) * 2002-06-19 2004-01-27 Ford Motor Company Method for operating a vehicle and a vehicle which incorporates the method
JP3901041B2 (ja) * 2002-07-10 2007-04-04 日産自動車株式会社 Torque control device for hybrid vehicle
JP3809824B2 (ja) * 2002-09-10 2006-08-16 トヨタ自動車株式会社 Hybrid car
US6845305B1 (en) 2002-09-11 2005-01-18 Ford Motor Company Engine torque control for a hybrid electric vehicle using estimated engine torque
EP1415837A1 (en) * 2002-10-29 2004-05-06 STMicroelectronics S.r.l. Parallel configuration system for hybrid vehicles
EP1415839A1 (en) * 2002-10-29 2004-05-06 SGS-THOMSON MICROELECTRONICS S.r.l. Fuzzy logic control system for torque distribution in hybrid vehicles
US6727670B1 (en) 2002-12-12 2004-04-27 Ford Global Technologies, Llc Battery current limiter for a high voltage battery pack in a hybrid electric vehicle powertrain
US6769400B1 (en) * 2003-01-24 2004-08-03 General Motors Corporation Method for controlling emissions
US7315090B2 (en) * 2003-02-12 2008-01-01 Tai-Her Yang Series-parallel dual power hybrid driving system
US6998727B2 (en) * 2003-03-10 2006-02-14 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods of operating a parallel hybrid vehicle having an internal combustion engine and a secondary power source
DE10318738A1 (de) * 2003-04-25 2004-11-11 Daimlerchrysler Ag Control of an electric motor
US7061131B2 (en) * 2003-06-13 2006-06-13 General Electric Company Method and system for optimizing energy storage in hybrid off-highway vehicle systems and trolley connected OHV systems
US6926639B2 (en) * 2003-07-02 2005-08-09 Visteon Global Technologies, Inc. Vehicle control method
US7143851B2 (en) * 2003-09-10 2006-12-05 Ford Global Technologies, Llc Method for controlling a wheel drive system of a hybrid vehicle
US6907325B1 (en) 2003-09-24 2005-06-14 Ford Global Technologies, Llc Method of operating a hybrid electric vehicle to limit noise, vibration, and harshness
US6876098B1 (en) * 2003-09-25 2005-04-05 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods of operating a series hybrid vehicle
ITTO20040054A1 (it) 2004-02-04 2004-05-04 Fiat Ricerche Architetture innovative di sistemi di generazione e distribuzione di energia a bordo di autoveicoli
JP2005222417A (ja) * 2004-02-06 2005-08-18 Pioneer Electronic Corp ポイント管理装置、車両、ポイント算出方法およびポイント算出プログラム
US7449793B2 (en) * 2004-02-18 2008-11-11 Bluwav Systems, Llc Portable range extender with autonomous control of starting and stopping operations
US7079935B2 (en) * 2004-03-19 2006-07-18 Ford Global Technologies, Llc Valve control for an engine with electromechanically actuated valves
US7243011B2 (en) * 2004-05-21 2007-07-10 General Motors Corporation Hybrid transmission launch algorithm
TR200401163A2 (tr) 2004-05-25 2005-12-21 Tofaş Türk Otomobi̇l Fabri̇kasi Anoni̇m Şi̇rketi̇ Paralel hibrid araç
US7537070B2 (en) * 2004-06-22 2009-05-26 Bluwav Systems Llc Autonomous portable range extender
AU2005272903A1 (en) * 2004-08-09 2006-02-23 Railpower Technologies Corp. Locomotive power train architecture
US7635932B2 (en) * 2004-08-18 2009-12-22 Bluwav Systems, Llc Dynamoelectric machine having heat pipes embedded in stator core
US7687945B2 (en) 2004-09-25 2010-03-30 Bluwav Systems LLC. Method and system for cooling a motor or motor enclosure
US7448460B2 (en) * 2004-09-28 2008-11-11 Oshkosh Corporation Power takeoff for an electric vehicle
JP4627425B2 (ja) * 2004-09-29 2011-02-09 本田技研工業株式会社 無段変速機の変速制御装置
DE102005054212A1 (de) * 2004-11-15 2006-06-08 Denso Corp., Kariya Start control device for an internal combustion engine
CN100362265C (zh) * 2004-12-30 2008-01-16 财团法人工业技术研究院 一种复合动力车的排档式变速箱的换档控制方法
JP4301197B2 (ja) * 2005-04-22 2009-07-22 トヨタ自動車株式会社 Vehicle control device
CN101291823B (zh) * 2005-10-14 2012-04-25 沃尔沃建筑设备公司 作业机械
US20080223631A1 (en) * 2005-10-14 2008-09-18 Volvo Construction Equipment Ab Working Machine
JP4325615B2 (ja) * 2005-12-12 2009-09-02 日産自動車株式会社 Engine stop control device for hybrid vehicle
TWI287513B (en) * 2005-12-19 2007-10-01 Ind Tech Res Inst Hybrid power system for vehicle
WO2007079510A2 (de) * 2006-01-10 2007-07-19 Avl List Gmbh Brennkraftmaschine
WO2007105663A1 (en) * 2006-03-15 2007-09-20 Semiconductor Energy Laboratory Co., Ltd. Electric power supply system and electric power supply system for motor vehicle
JP4779800B2 (ja) * 2006-05-23 2011-09-28 トヨタ自動車株式会社 Vehicle and control method thereof
JP4064428B2 (ja) * 2006-05-24 2008-03-19 本田技研工業株式会社 Control device for internal combustion engine
US8132026B2 (en) * 2006-06-02 2012-03-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device and mobile electronic device having the same
US7568990B2 (en) * 2006-08-04 2009-08-04 Gm Global Technology Operations, Inc. Method and apparatus to control operation of a hydraulic control circuit for an electro-mechanical transmission
US8485291B2 (en) * 2006-08-22 2013-07-16 John William O'Neill Self frequency ramping alternating current wheel motor system for hybrid vehicles
US8234025B2 (en) * 2006-11-28 2012-07-31 GM Global Technology Operations LLC Control system for a hybrid powertrain system
JP4525698B2 (ja) * 2007-04-11 2010-08-18 トヨタ自動車株式会社 可変バルブタイミング機構の制御装置および制御方法
DE102007023553B3 (de) * 2007-05-21 2008-12-04 Continental Automotive Gmbh Device and method for controlling a drive unit
GB2449873B (en) * 2007-06-05 2009-07-29 Gm Global Tech Operations Inc Hybrid drive system for a vehicle and method of operating a hybrid drive system
US7940018B2 (en) * 2007-06-25 2011-05-10 Mazda Motor Corporation Control system for a hybrid electric vehicle and a method for controlling a hybrid electric vehicle
US8142328B2 (en) * 2007-07-05 2012-03-27 Schaeffler Technologies AG & Co. KG Method for controlling a starting clutch
JP2009083583A (ja) 2007-09-28 2009-04-23 Toyota Motor Corp Vehicle control device
US8406945B2 (en) * 2007-10-26 2013-03-26 GM Global Technology Operations LLC Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission
JP4453746B2 (ja) * 2007-11-21 2010-04-21 トヨタ自動車株式会社 POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
CN101468597B (zh) * 2007-12-28 2011-09-07 重庆长安汽车股份有限公司 并联式汽车油电混合动力系统
FR2926256B1 (fr) * 2008-01-10 2010-05-07 Peugeot Citroen Automobiles Sa Chaine cinematique electrique et groupe d'entrainement pour vehicule automobile hybride comprenant une telle chaine.
DE102008000464A1 (de) * 2008-02-29 2009-09-03 Robert Bosch Gmbh Clutch and hybrid drive with clutch
US8261864B2 (en) * 2008-06-17 2012-09-11 GM Global Technology Operations LLC Hybrid powertrain auto start control system with engine pulse cancellation
WO2010022464A1 (en) * 2008-08-29 2010-03-04 Nt Consulting International Pty Limited Hybrid marine drivetrain
US7857080B2 (en) * 2009-01-19 2010-12-28 Hitachi Automotive Products (Usa), Inc. System for selectively consuming and storing electrical energy in a hybrid vehicle
JP5476748B2 (ja) * 2009-03-09 2014-04-23 日産自動車株式会社 Hybrid vehicle
US20100240491A1 (en) * 2009-03-17 2010-09-23 Parag Vyas System for vehicle propulsion having and method of making same
JP5039098B2 (ja) * 2009-07-24 2012-10-03 日産自動車株式会社 Control device for hybrid vehicle
EP2477832A2 (en) 2009-09-15 2012-07-25 Kpit Cummins Infosystems Limited Method of converting vehicle into hybrid vehicle
BR112012005366A2 (pt) * 2009-09-15 2020-09-15 Kpit Cummins Infosystems Ltd. engine assistance method for a hybrid vehicle based on user input, its system and device
EP2477834A2 (en) * 2009-09-15 2012-07-25 Kpit Cummins Infosystems Limited Hybrid drive system for vehicle having engine as prime mover
US8423214B2 (en) 2009-09-15 2013-04-16 Kpit Cummins Infosystems, Ltd. Motor assistance for a hybrid vehicle
BR112012005362A2 (pt) 2009-09-15 2020-09-15 Kpit Cummins Infosystems Ltd. METHOD OF ENGINE ASSISTANCE SUPPLIES FOR A BASEADAN HYBRID VEHICLE EXPECTED RANGE OF PROPULSAN
EP2477836A2 (en) * 2009-09-15 2012-07-25 Kpit Cummins Infosystems Ltd. Hybrid drive system with reduced power requirement for vehicle
DE112009005481T5 (de) * 2009-12-26 2012-10-04 Toyota Jidosha K.K. Control device for a vehicle power transmission system
JP5446921B2 (ja) * 2010-01-22 2014-03-19 マツダ株式会社 電気自動車の車両構造
CN105162260B (zh) * 2010-02-05 2018-02-09 株式会社半导体能源研究所 移动体、无线供电系统及无线供电方法
JP2011188733A (ja) 2010-02-12 2011-09-22 Semiconductor Energy Lab Co Ltd Mobile object, wireless power supply system, and wireless power supply method
JP5143170B2 (ja) * 2010-03-17 2013-02-13 日立オートモティブシステムズ株式会社 内燃機関の制御方法
JP5779415B2 (ja) 2010-06-25 2015-09-16 株式会社半導体エネルギー研究所 電子装置の駆動方法
JP5699520B2 (ja) * 2010-10-18 2015-04-15 日産自動車株式会社 車両のアイドル制御装置
US8549838B2 (en) 2010-10-19 2013-10-08 Cummins Inc. System, method, and apparatus for enhancing aftertreatment regeneration in a hybrid power system
AT509986B1 (de) 2010-10-21 2012-01-15 Avl List Gmbh DRIVE TRAIN FOR A HYBRID VEHICLE
JP5764310B2 (ja) * 2010-10-27 2015-08-19 ヤンマー株式会社 動力伝達装置
EP2638309A1 (en) 2010-11-09 2013-09-18 Aram Novikov Multi-core electric machines
US8742701B2 (en) 2010-12-20 2014-06-03 Cummins Inc. System, method, and apparatus for integrated hybrid power system thermal management
US8833496B2 (en) 2010-12-20 2014-09-16 Cummins Inc. System, method, and apparatus for battery pack thermal management
US8678116B2 (en) * 2010-12-31 2014-03-25 Cummins Inc. Accessory drive configuration
US9096207B2 (en) 2010-12-31 2015-08-04 Cummins Inc. Hybrid vehicle powertrain cooling system
US8473177B2 (en) 2010-12-31 2013-06-25 Cummins, Inc. Apparatuses, methods, and systems for thermal management of hybrid vehicle SCR aftertreatment
US8821342B2 (en) 2010-12-31 2014-09-02 Cummins Inc. Accessory drive motor configuration
US9043060B2 (en) 2010-12-31 2015-05-26 Cummins Inc. Methods, systems, and apparatuses for driveline load management
CN106926839B (zh) 2011-01-13 2019-08-06 卡明斯公司 用于控制混合动力传动系中的功率输出分布的系统、方法和装置
US8514037B2 (en) * 2011-01-14 2013-08-20 GM Global Technology Operations LLC Dual bipolar magnetic field for rotary high-voltage contactor in automotive lithium-ion battery systems
JP5708041B2 (ja) * 2011-03-03 2015-04-30 日産自動車株式会社 内燃機関の制御装置
US9132725B2 (en) * 2011-05-09 2015-09-15 Cummins Inc. Vehicle and hybrid drive system
US20130065718A1 (en) * 2011-09-08 2013-03-14 Ford Global Technologies, Llc Counter-Rotation Electric Machine
EP2578871B1 (en) * 2011-10-03 2016-09-21 C.R.F. Società Consortile per Azioni Method for controlling a motor-vehicle provided with an internal combustion engine having a system for variable actuation of the intake valves
GB201120114D0 (en) * 2011-11-22 2012-01-04 Land Rover Hybrid electric vehicle and method of control thereof
JP5825357B2 (ja) * 2011-11-25 2015-12-02 日産自動車株式会社 ハイブリッド車両の制御装置
KR101684500B1 (ko) * 2011-12-06 2016-12-09 현대자동차 주식회사 하이브리드 차량의 엔진 제어 방법
US9114709B2 (en) 2012-02-24 2015-08-25 Ford Global Technologies, Llc Limited operating strategy for an electric vehicle
US8831808B2 (en) * 2012-02-24 2014-09-09 Ford Global Technologies, Llc Controlled shutdown of an electric vehicle
US9068546B2 (en) * 2012-05-04 2015-06-30 Ford Global Technologies, Llc Methods and systems for engine cranking
KR101371482B1 (ko) * 2012-11-23 2014-03-10 기아자동차주식회사 Transmission torque learning system and method of engine clutch of hybrid vehicle
US9126578B2 (en) * 2013-01-25 2015-09-08 Caterpillar Inc. Cooling-based power limiting system and method
US9045136B2 (en) 2013-02-08 2015-06-02 Efficient Drivetrains, Inc. Systems and methods for implementing dynamic operating modes and control policies for hybrid electric vehicles
US9421856B2 (en) 2013-02-08 2016-08-23 Efficient Drivetrains Inc. Powertrain configurations for two-motor, two-clutch hybrid electric vehicles
US10836375B2 (en) 2013-02-08 2020-11-17 Cummins Electrified Power Na Inc. Powertrain configurations for single-motor, two-clutch hybrid electric vehicles
US10384527B2 (en) * 2013-02-08 2019-08-20 Cummins Electrified Power Na Inc. Four wheel drive powertrain configurations for two-motor, two-clutch hybrid electric vehicles
WO2015026903A1 (en) * 2013-08-20 2015-02-26 General Electric Company Vehicle temperature regulation system and method
JP5939221B2 (ja) * 2013-09-20 2016-06-22 トヨタ自動車株式会社 ハイブリッド車両の制御装置およびハイブリッド車両の制御方法
KR101567231B1 (ko) * 2014-07-29 2015-11-06 현대자동차주식회사 하이브리드 자동차의 엔진클러치 제어 장치 및 방법
WO2016108103A1 (en) * 2014-12-29 2016-07-07 Husqvarna Ab System and method for proximity-based control of outdoor power machines
US10391854B1 (en) * 2015-06-15 2019-08-27 Hydro-Gear Limited Partnership Drive and cooling system for utility vehicle
US20170107804A1 (en) * 2015-10-14 2017-04-20 David A. Krug Hybrid prime motivator for rod pump hydraulic surface unit
US10343677B2 (en) * 2016-12-14 2019-07-09 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method
US10479180B2 (en) 2016-12-14 2019-11-19 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method
US10486690B2 (en) 2016-12-14 2019-11-26 Bendix Commerical Vehicle Systems, Llc Front end motor-generator system and hybrid electric vehicle operating method
US10220830B2 (en) 2016-12-14 2019-03-05 Bendix Commercial Vehicle Systems Front end motor-generator system and hybrid electric vehicle operating method
US10112603B2 (en) 2016-12-14 2018-10-30 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method
US10363923B2 (en) 2016-12-14 2019-07-30 Bendix Commercial Vehicle Systems, Llc Front end motor-generator system and hybrid electric vehicle operating method
US10640103B2 (en) 2016-12-14 2020-05-05 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method
US10532647B2 (en) 2016-12-14 2020-01-14 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method
US10220831B2 (en) 2016-12-14 2019-03-05 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method
US10630137B2 (en) 2016-12-14 2020-04-21 Bendix Commerical Vehicle Systems Llc Front end motor-generator system and modular generator drive apparatus
US10308240B2 (en) 2016-12-14 2019-06-04 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method
US10543735B2 (en) 2016-12-14 2020-01-28 Bendix Commercial Vehicle Systems Llc Hybrid commercial vehicle thermal management using dynamic heat generator
US10239516B2 (en) 2016-12-14 2019-03-26 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method
JP6607984B2 (ja) * 2018-03-05 2019-11-20 本田技研工業株式会社 Power equipment
US10663006B2 (en) 2018-06-14 2020-05-26 Bendix Commercial Vehicle Systems Llc Polygon spring coupling

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157204B2 (ja) * 1979-03-20 1986-12-05 Daihatsu Motor Co Ltd
JPH0550865A (ja) * 1991-08-19 1993-03-02 Aisin Aw Co Ltd 車両用電動装置
US5697466A (en) * 1992-11-12 1997-12-16 Kabushikikaisha Equos Research Hybrid vehicle
US5624347A (en) * 1994-10-03 1997-04-29 Yang; Tai-Her Electrical machine system capable of load driving and power generation functions and including at least two electrical mechines
US5823280A (en) * 1995-01-12 1998-10-20 Nevcor, Inc. Hybrid parallel electric vehicle
JP2794272B2 (ja) * 1995-02-28 1998-09-03 アイシン・エィ・ダブリュ株式会社 Hybrid vehicle and hybrid vehicle control method
JP2860772B2 (ja) * 1995-06-06 1999-02-24 株式会社エクォス・リサーチ Hybrid vehicle
JP3453976B2 (ja) * 1995-12-27 2003-10-06 トヨタ自動車株式会社 Vehicle control device
US5845731A (en) * 1996-07-02 1998-12-08 Chrysler Corporation Hybrid motor vehicle

Also Published As

Publication number Publication date
JPH11270376A (ja) 1999-10-05
US6026921A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
US9446761B2 (en) Control device
EP2532549B1 (en) Engine start control device for hybrid vehicle
JP6048585B2 (ja) Start-up control device and start-up control method for hybrid vehicle
US9476395B2 (en) Control device for a hybrid vehicle
JP4325615B2 (ja) Engine stop control device for hybrid vehicle
US7770675B2 (en) Engine controlling device and method for a hybrid vehicle
US5788006A (en) Hybrid vehicle
US6296593B1 (en) Electromagnetic clutch control device and control method for hybrid drive vehicle
US6616569B2 (en) Torque control system for a hybrid vehicle with an automatic transmission
US7848867B2 (en) Coasting deceleration control for a vehicle
US6881167B2 (en) Torque controlling apparatus and method for hybrid vehicle
JP5171799B2 (ja) ベルト式無段変速機の制御装置
EP1122111B1 (en) A power transmission apparatus for hybrid vehicles
US8065047B2 (en) Control apparatus of a hybrid vehicle and method for controlling the same
US6186255B1 (en) Hybrid vehicle
US6746366B2 (en) Control system and control method for a hybrid electric vehicle powertrain
EP0962352B1 (en) Drive power control device for hybrid vehicle
US8370010B2 (en) Control apparatus for power transmission system of hybrid vehicle
US7770678B2 (en) Hybrid vehicle drive control system
JP4050002B2 (ja) Parallel hybrid vehicle
JP3706290B2 (ja) Control device for hybrid vehicle
US7576501B2 (en) Method for controlling a hybrid electric vehicle powertrain with divided power flow paths
JP3947082B2 (ja) Control method of hybrid electric vehicle to obtain maximum fully open acceleration performance
US9108635B2 (en) Control device of hybrid vehicle
US6175785B1 (en) Hybrid vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees