WO2007000362A1 - Fahrzeug mit hybridantrieb und verfahren zum betrieb eines solchen fahrzeugs - Google Patents

Fahrzeug mit hybridantrieb und verfahren zum betrieb eines solchen fahrzeugs Download PDF

Info

Publication number
WO2007000362A1
WO2007000362A1 PCT/EP2006/061895 EP2006061895W WO2007000362A1 WO 2007000362 A1 WO2007000362 A1 WO 2007000362A1 EP 2006061895 W EP2006061895 W EP 2006061895W WO 2007000362 A1 WO2007000362 A1 WO 2007000362A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
optimized
vehicle
energy
electric machine
Prior art date
Application number
PCT/EP2006/061895
Other languages
English (en)
French (fr)
Inventor
Richard Aumayer
Karsten Mann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2007000362A1 publication Critical patent/WO2007000362A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to a vehicle, in particular a motor vehicle, with a hybrid drive according to the preamble of claim 1, and to a method for operating such a vehicle according to the preamble of claim 5.
  • Motor vehicles with hybrid drive have, in addition to an internal combustion engine, at least one electric machine which can be coupled to a drive train of the motor vehicle, a drive battery from which the electric motor draws the required electrical energy during engine operation and which is recharged by the electric machine in generator operation, and one to Regulation of the discharge and charging cycles of the drive battery battery control serving to prevent exceeding predetermined limits of state of charge or charging current of the drive battery.
  • motor vehicles with hybrid drive usually have another battery designed as a lead / acid battery to supply their 12 V vehicle electrical system. In the design of batteries, either optimization in the direction of energy or in the direction of performance is generally possible, since for each direction certain measures are required that make simultaneous optimization in the other direction more difficult.
  • the vehicle according to the invention offers the advantage that by using a drive battery from an energy-optimized and a power-optimized battery optimization of the overall system in both the direction of energy and in the direction of performance is possible.
  • the design of the overall system is simplified if it includes two batteries, each with only a single optimization criterion, i. Power or energy, must be considered.
  • another advantage of the vehicle according to the invention is that the life of the drive battery can be extended.
  • a preferred embodiment of the invention provides that the vehicle comprises a battery control, which connects depending on an instantaneous operating state of the vehicle and / or the respective state of charge either the power-optimized battery or the energy-optimized battery with the electric machine to feed the latter in engine operation or in generator mode, charge the battery connected to the electric machine.
  • distribution rules are set up according to the method according to the invention, ie rules that determine the operation of the vehicle with hybrid drive, under which conditions the power-optimized battery or the energy-optimized battery should be recharged or used to power the electric machine, in addition the instantaneous state of charge of the batteries, as in conventional hybrid vehicles, especially the power required or generated by the electric machine is used as a distribution criterion.
  • the power-optimized battery is always charged by the electric machine when the speed of the vehicle exceeds a predetermined value, which is preferably about 50 km / h, and the vehicle at this speed is braked with recovery of electrical energy.
  • a predetermined value which is preferably about 50 km / h
  • the vehicle at this speed is braked with recovery of electrical energy.
  • the predetermined time may either be a fixed period of time, which is for example about 3 seconds, but alternatively may also be dependent on the starting speed at the beginning of the braking process, being longer at a high output speed and shorter at a lower output speed.
  • the power supply of the electric machine operating during engine operation it is preferably fed from the energy-optimized battery under normal loads and short-term high loads from the power-optimized battery, for example by measuring the current consumption of the electric machine during engine operation and when exceeding a predetermined current value
  • the electric machine is connected to the power optimized battery.
  • the energy-optimized battery in the normal cyclical driving of the vehicle that is at the usual city traffic speeds of 50 to 60 km / h, be connected to the energy-optimized battery, since under these conditions hardly operating conditions occur by their life as a result excessive charging or discharging current or may be affected as a result of a change in their state of charge of more than +/- 5%.
  • At least the energy-optimized battery as in conventional hybrid vehicles always recharged when their state of charge falls below a predetermined threshold, whereupon the electric machine can be operated in overrun operation of the internal combustion engine as a generator to the electrical energy generated by it in the e- nergieoptimising To supply battery.
  • the power-optimized battery for recharging the energy-optimized battery is used by the performance-optimized battery a limited charging current in the energy-optimized battery is supplied when the state of charge of the latter falls below a predetermined value and possibly the state of charge of the former exceeds a predetermined value.
  • the two batteries can be operated in the vicinity of the optimum of their charging current absorption, wherein at cyclic loading the power-optimized battery preferably supports the energy-optimized battery in such a way that the change of the charge state of the latter is preferably always less than maximum +/- 5% remains.
  • the more expensive energy-optimized battery can also be spared if, in the case of high energy flows, such as high-current recharging or high-current recharging, the battery with the optimized performance is connected to the electric machine.
  • Figure 1 is a schematic view of a motor vehicle according to the invention with hybrid drive
  • FIG. 2 shows a schematic view of the operating voltages of various components of the motor vehicle from FIG. 1. Description of the embodiment
  • the motor vehicle 2 shown in Figure 1 has a hybrid drive with an internal combustion engine 4 and an electric machine 6, which can be coupled in a known manner via a transmission 8 with a drive axle 10 of the motor vehicle 2. While the internal combustion engine 4 is connected to a fuel tank 14 via a fuel line 12, the electric machine 6 can be selectively connected via an inverter 16 either to an energy-optimized battery 18 or to a power-optimized battery 20, which together form a drive battery 22 of the motor vehicle 2.
  • the motor vehicle 2 further comprises an engine control unit 24, which controls the internal combustion engine 4, and a battery control 26 which, depending on an instantaneous operating state of the motor vehicle 2 and / or on a respective state of charge of the batteries 18, 20 via the inverter 16, either energy-optimized battery 18 or the power-optimized battery 20 connects to the electric machine 6.
  • a higher-level controller 28 controls the interaction of the internal combustion engine 4 and the electric machine 6, that is, which of the two machines 4, 6 is currently being used as a drive for the motor vehicle 2, and determines in cooperation with the battery controller 26 whether the electric machine 6 is operated in motor or generator mode.
  • the motor vehicle 2 further comprises a lead / acid battery 30, which is recharged via a DC voltage transformer 32 from the energy-optimized battery 18.
  • the first-mentioned voltage of 14 V represents the nominal voltage of the lead / acid battery 30 and of an on-board network of the motor vehicle 2 supplied by it, while the latter voltage is the nominal voltage of the energy-optimized battery consisting of a NiMH battery 18 or which consists of a super cap battery power optimized battery 20 is.
  • an operating voltage of 14 V is provided by the lead / acid battery 30 is provided
  • electric motors 40 of pumps, fans or windshield wipers can be operated either with an operating voltage of 14 V or with an operating voltage of 42 V, which by means of the transformer 32 from the voltage of> 250 V is generated, the current being supplied by the energy-optimized battery 20 due to the moderate current levels according to the current demand, so that no memory is required for this voltage.
  • An electric power steering 42 of the motor vehicle 2, a valve control 44 of the internal combustion engine 4, as well as an electrohydraulic brake 46 and e- ventuelle electrical auxiliary heaters 48 of the vehicle are also operated at this voltage of 42 V and the energy-optimized battery 18 via the transformer 32nd while an electromotive brake 50 is preferably operated at a voltage of> 250 V and is supplied by the power-optimized battery 20 because of the high current levels during operation. If the electromotive brake 50 and / or an electric steering 52 are formed as XBW components, and the energy-optimized battery 18 are designed for high-current discharge to provide for a failure of the power-optimized battery 20 for redundancy.
  • the electric steering 52 is not operated with a voltage of 42 V as shown but as the electromotive brake 50 with a voltage of> 250 V, the remaining components 42, 44, 48, 46 are operated with a voltage of 14 V, whereby one stage of the transformer 32 is unnecessary.
  • the energy-optimized battery 18 is used in the cyclical driving mode of the motor vehicle 2, since under such operating conditions it can be discharged or recharged under medium current load.
  • the power-optimized battery 20 is used especially in the case of a brief high-current discharge or recharging, as occurs, for example, when in engine operation of the electric machine 6 a greater acceleration of the motor vehicle 2 is required or if the motor vehicle 2 at high Travel speed braked while a large electrical power is output from the working in the generator mode electric machine 6.
  • the use of the respectively desired battery 18 or 20 is made possible by means of two controlled by the battery controller 26 switches 54, 56 ( Figure 1) between the inverter 16 and the battery 18 and 20, each of which is always one closed and the other is open.
  • the battery controller 26 closes the switch 54 between the energy-optimized battery 18 and the inverter 16 and opens the switch 56 between the power-optimized battery 20 and the inverter 16 when the motor vehicle 2 is moving at a speed of less than about 50 km / h, as is typically the case in city traffic. Since the operating conditions occurring in city traffic usually in the discharge or in the recharging of the drive battery 22 high energy flows, the energy-optimized battery 18 is used there to feed the operating in motor operation electric machine 6, and vice versa from this again charged.
  • the motor vehicle 2 is faster than about 50 km / h and is decelerated by the electric machine 6, which thereby converts a portion of the kinetic energy of the motor vehicle 2 into electrical energy, it could occur during recharging of the energy-optimized battery 18 that their charge state changed by more than 5%, whereby the life of the battery 20 can decrease.
  • the switch 54 between the energy-optimized battery 18 and the inverter 16 is opened and the switch 56 between the power-optimized battery 20 and the inverter 16 is closed, as shown in Figure 1, so that at least during the initial phase of the deceleration, the power-optimized battery 20 is recharged by the electric machine 6.
  • the switch 56 is again opened and the switch 54 is closed in order to recharge the energy-optimized battery 18 during an optionally subsequent final phase of the deceleration.
  • the energy-optimized battery 18 can, by means of the abovementioned distribution rules, be close to its optimum of charging.
  • Current consumption are operated, ie a state of charge with optimal power handling capacity, taking into account their low tempera- behavior, with their state of charge change can be limited to a maximum of +/- 5% to provide a long useful life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Fahrzeug, insbesondere ein Kraftfahrzeug (2) mit einem Hybridantrieb, der einen Verbrennungsmotor (4) und mindestens eine Elektromaschine (6) umfasst, sowie mit einer Antriebsbatterie (22) zur Speisung der im Motorbetrieb arbeitenden Elektromaschine (6) und zur Wiederaufladung durch die im Generatorbetrieb arbeitende Elektromaschine (6). Die Erfindung betrifft weiter ein Verfahren zum Betrieb eines solchen Fahrzeugs. Es ist vorgesehen, dass die Antriebsbatterie (22) eine leistungsoptimierte Batterie (18) und eine energieoptimierte Batterie (20) umfasst, von denen in Abhängigkeit von einem augenblicklichen Betriebszustand des Fahrzeugs (2) entweder die energieoptimierte Batterie (18) oder die leistungsoptimierte Batterie (20) zur Speisung der Elektromaschine (6) eingesetzt bzw. von dieser wieder aufgeladen wird.

Description

Fahrzeug mit Hybridantrieb und Verfahren zum Betrieb eines solchen Fahrzeugs
Die Erfindung betrifft ein Fahrzeug, insbesondere ein Kraftfahrzeug, mit einem Hybridantrieb gemäß dem Oberbegriff des Anspruchs 1 , sowie ein Verfahren zum Betrieb eines solchen Fahrzeugs gemäß dem Oberbegriff des Anspruchs 5.
Stand der Technik
Kraftfahrzeuge mit Hybridantrieb besitzen neben einer Verbrennungskraftmaschine mindestens eine Elektromaschine, die mit einem Antriebsstrang des Kraftfahrzeugs koppelbar ist, eine Antriebsbatte- rie, aus der die Elektromaschine im Motorbetrieb die benötigte elektrische Energie entnimmt und die von der Elektromaschine im Generatorbetrieb wieder aufgeladen wird, sowie eine zur Regelung der Entlade- und Aufladezyklen der Antriebsbatterie dienende Batteriesteuerung, die eine Überschreitung vorgegebener Grenzwerte des Ladezustandes bzw. Ladestroms der Antriebsbatterie verhindern soll. Neben der zumeist als NiMH-Batterie ausgebildeten Antriebsbatterie weisen Kraftfahrzeuge mit Hybridantrieb in der Regel noch eine weitere, als Blei-/Säure-Batterie ausgebildete Batterie zur Versorgung ihres 12 V-Bordnetzes auf. Bei der Auslegung von Batterien ist allgemein entweder eine Optimierung in Richtung Energie oder in Richtung Leistung möglich, da für jede Richtung bestimmte Maßnahmen erforderlich sind, die eine gleichzeitige Optimierung in der anderen Richtung erschweren. Es wird daher zumeist ein Kompromiss gewählt, der sowohl eine gewisse Energie- und Leistungsoptimierung ermöglicht. Solche Kompromisse sind jedoch nur in einem begrenzten Ausmaß möglich, da die Lebensdauer der Batterien unter den jeweils vorgegebenen Betriebsbedingungen von den verwendeten Konstruktionsparametern der Batterien, wie Elektrodenmaterial, Elektrodenfläche und Gewicht beeinflusst wird. Bei zentralen Antriebsbatterien von Kraftfahrzeugen mit Hybridantrieb sind zudem der Stromaufnahme bei der Wiederaufladung (Rekuperation) enge Grenzen gesetzt.
Vorteile der Erfindung
Das erfindungsgemäße Fahrzeug mit den im Anspruch 1 genannten Merkmalen bietet demgegenüber den Vorteil, dass durch die Verwendung einer Antriebsbatterie aus einer energieoptimierten und einer leistungsoptimierten Batterie eine Optimierung des Gesamtsystems sowohl in Richtung Energie als auch in Richtung Leistung ermöglicht wird. Außerdem wird auch die Auslegung des Gesamtsystems vereinfacht, wenn dieses zwei Batterien umfasst, bei denen jeweils nur ein einziges Optimierungskriterium, d.h. Leistung oder Energie, berücksichtigt werden muss. Darüber hinaus besteht ein weiterer Vorteil des erfindungsgemäßen Fahrzeugs darin, dass die Lebensdauer der Antriebsbatterie verlängert werden kann.
Als energieoptimierte Batterie wird im Rahmen dieser Erfindung ein hinsichtlich seines Energiespeichervermögens optimiertes robustes elektrochemisches System mit relativ wenigen aber dicken Elektrodenplatten, einem verhältnismäßig großen Energieinhalt aber einer begrenzten Anzahl von möglichen Ladezyklen bezeichnet, das bei dem erfindungsgemäßen Fahrzeug vorzugsweise von einer NiMH- Batterie gebildet wird, während als leistungsoptimierte Batterie ein hinsichtlich seiner Leistungsaufnahme bzw. Leistungsabgabe optimiertes kondensatorähnliches System mit großer Elektrodenfläche, einer im Verhältnis größeren Energiedichte und einer sehr viel höheren Anzahl von möglichen Ladezyklen bezeichnet wird, das bei dem erfindungsgemäßen Fahrzeug vorzugsweise von einer Supercap- Batterie gebildet wird.
Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass das Fahrzeug eine Batteriesteuerung umfasst, die in Abhängigkeit von einem augenblicklichen Betriebszustand des Fahrzeugs und/oder vom jeweiligen Ladezustand entweder die leistungsoptimierte Batterie oder die energieoptimierte Batterie mit der Elektromaschine verbindet, um diese letztere im Motorbetrieb zu speisen bzw. im Generatorbetrieb die mit der Elektromaschine verbundene Batterie aufzu- laden.
Dazu werden entsprechend dem erfindungsgemäßen Verfahren Verteilungsregeln aufgestellt, d.h. Regeln, mit denen für den Betrieb des Fahrzeugs mit Hybridantrieb festgelegt wird, unter welchen Bedin- gungen die leistungsoptimierte Batterie bzw. die energieoptimierte Batterie wiederaufgeladen bzw. zur Speisung der Elektromaschine eingesetzt werden soll, wobei neben dem augenblicklichen Ladezustand der Batterien, wie bei herkömmlichen Hybridfahrzeugen, vor allem die von der Elektromaschine benötigte bzw. erzeugte Leistung als Verteilungskriterium herangezogen wird. - A -
In bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens ist dabei vorgesehen, dass von der Elektromaschine immer dann die leistungsoptimierte Batterie aufgeladen wird, wenn die Geschwindig- keit des Fahrzeugs einen vorbestimmten Wert übersteigt, der vorzugsweise bei etwa 50 km/h liegt, und das Fahrzeug bei dieser Geschwindigkeit unter Rückgewinnung von elektrischer Energie abgebremst wird. Da die kinetische Energie des Fahrzeugs mit der Geschwindigkeit des Fahrzeugs steigt, wird beim Bremsen des mit ho- her Geschwindigkeit fahrenden Fahrzeugs in kurzer Zeit viel elektrische Energie erzeugt, die von der leistungsoptimierten Batterie problemlos aufgenommen werden kann, während eine Zufuhr in die e- nergieoptimierte Batterie infolge eines übermäßig hohen Ladestroms oder einer übermäßig hohen Änderung des Ladezustands zu einer Verminderung der Lebensdauer führen könnte.
Um andererseits jedoch auch das große Energiespeichervermögen der energieoptimierten Batterie optimal auszunutzen, wird diese immer dann aufgeladen, wenn beim Abbremsen des Fahrzeugs die Dauer des Bremsvorgangs eine vorbestimmte Zeit übersteigt und damit der anfänglich hohe Energiefluss auf ein Niveau abgesunken ist, das weder zu einem übermäßig hohen Ladestrom noch zu einer übermäßigen Änderung des Ladezustands der energieoptimierten Batterie führt. Die vorbestimmte Zeit kann entweder eine festgelegte Zeitspanne sein, die zum Beispiel etwa 3 Sekunden beträgt, kann jedoch alternativ auch von der Ausgangsgeschwindigkeit zu Beginn des Bremsvorgangs abhängig sein, wobei sie bei einer hohen Ausgangsgeschwindigkeit länger und bei einer niedrigeren Ausgangsgeschwindigkeit kürzer ist. Was die Stromversorgung der im Motorbetrieb arbeitenden Elektro- maschine angeht, so wird diese vorzugsweise bei normalen Belastungen aus der energieoptimierten Batterie und bei kurzzeitigen hohen Belastungen aus der leistungsoptimierten Batterie gespeist, zum Beispiel indem die Stromaufnahme der Elektromaschine im Motorbetrieb gemessen und bei Überschreiten eines vorgegebenen Stromwerts die Elektromaschine mit der leistungsoptimierten Batterie verbunden wird.
Allgemein wird die energieoptimierte Batterie im normalen zyklischen Fahrbetrieb des Fahrzeugs, das heißt bei den im Stadtverkehr üblichen Geschwindigkeiten von maximal 50 bis 60 km/h, mit der energieoptimierten Batterie verbunden sein, da unter diesen Bedingen kaum Betriebszustände auftreten, durch die ihre Lebensdauer infolge eines übermäßigen Lade- oder Entladestroms oder infolge einer Veränderung ihres Ladezustands von mehr etwa +/- 5 % beeinträchtigt werden kann.
Selbstverständlich wird mindestens die energieoptimierte Batterie ähnlich wie bei konventionellen Hybridfahrzeugen auch immer dann wieder aufgeladen, wenn ihr Ladezustand einen vorbestimmten Grenzwert unterschreitet, woraufhin die Elektromaschine im Schubbetrieb der Verbrennungskraftmaschine als Generator betrieben werden kann, um die von ihr erzeugte elektrische Energie in die e- nergieoptimierte Batterie zuzuführen.
Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung kann auch vorgesehen werden, dass die leistungsoptimierte Batterie zur Wiederaufladung der energieoptimierten Batterie dient, indem aus der leistungsoptimierten Batterie ein begrenzter Ladestrom in die energieoptimierte Batterie zugeführt wird, wenn der Ladezustand der letzteren einen vorbestimmten Wert unterschreitet und ggf. der Ladezustand der ersteren einen vorbestimmten Wert übersteigt.
Durch die vorgenannten Maßnahmen können die beiden Batterien in der Nähe des Optimums ihrer Ladestromaufnahme betrieben werden, wobei bei einer zyklischen Belastung die leistungsoptimierte Batterie die energieoptimierte Batterie vorzugsweise derart unterstützt, dass die Änderung des Ladezustands der letzteren vorzugs- weise immer kleiner als maximal +/- 5 % bleibt.
Durch den Einsatz der preiswerteren leistungsoptimierten Batterie kann zudem die teurere energieoptimierte Batterie geschont werden, wenn im Falle hoher Energieflüsse, wie bei einer Hochstromentla- düng oder einer Hochstromwiederaufladung, die leistungsoptimierte Batterie von der Batteriesteuerung mit der Elektromaschine verbunden wird.
Zeichnung
Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnung näher erläutert. Es zeigen:
Figur 1 eine schematische Ansicht eines erfindungsgemäßen Kraftfahrzeugs mit Hybridantrieb;
Figur 2 eine schematische Ansicht der Betriebsspannungen verschiedener Komponenten des Kraftfahrzeugs aus Figur 1. Beschreibung des Ausführungsbeispiels
Das in Figur 1 dargestellte Kraftfahrzeug 2 besitzt einen Hybridantrieb mit einer Verbrennungskraftmaschine 4 und einer Elektroma- schine 6, die in bekannter Weise über ein Getriebe 8 mit einer Antriebsachse 10 des Kraftfahrzeugs 2 koppelbar sind. Während die Verbrennungskraftmaschine 4 über eine Kraftstoffleitung 12 mit einem Kraftstofftank 14 verbunden ist, ist die Elektromaschine 6 über einen Wechselrichter 16 wahlweise entweder mit einer energieopti- mierten Batterie 18 oder einer leistungsoptimierten Batterie 20 verbindbar, die gemeinsam eine Antriebsbatterie 22 des Kraftfahrzeugs 2 bilden. Das Kraftfahrzeug 2 umfasst weiter ein Motorsteuergerät 24, das die Verbrennungskraftmaschine 4 steuert, sowie eine Batteriesteuerung 26, die in Abhängigkeit von einem augenblicklichen Be- triebszustand des Kraftfahrzeugs 2 und/oder von einem jeweiligen Ladezustand der Batterien 18, 20 über den Wechselrichter 16 entweder die energieoptimierte Batterie 18 oder die leistungsoptimierte Batterie 20 mit der Elektromaschine 6 verbindet. Eine übergeordnete Steuerung 28 steuert das Zusammenwirken der Verbrennungskraft- maschine 4 und der Elektromaschine 6, das heißt welche der beiden Maschinen 4, 6 gerade als Antrieb für das Kraftfahrzeug 2 eingesetzt wird, und legt im Zusammenwirken mit der Batteriesteuerung 26 fest, ob die Elektromaschine 6 im Motor- oder Generatorbetrieb betrieben wird. Das Kraftfahrzeug 2 umfasst weiter eine Blei-/Säure-Batterie 30, die über einen Gleichspannungstransformator 32 von der energieoptimierten Batterie 18 wiederaufgeladen wird.
Wie am besten in Figur 2 dargestellt, werden elektrische Komponenten des Kraftfahrzeugs 2 mit einer von drei verschiedenen Gleich- Spannungen betrieben, nämlich mit 14 V, 42 V oder > 250 V. Die zu- erst genannte Spannung von 14 V stellt die Nennspannung der Blei- /Säure-Batterie 30 und eines von dieser gespeisten Bordnetzes des Kraftfahrzeugs 2 dar, während es sich bei der zuletzt genannten Spannung um die Nennspannung der aus einer NiMH-Batterie be- stehenden energieoptimierten Batterie 18 bzw. der aus einer Super- cap-Batterie bestehenden leistungsoptimierten Batterie 20 handelt.
Während für eine Beleuchtung 34 des Kraftfahrzeugs, für Stellmotoren 36 von Fensterhebern, Außenspiegeln, Schiebedächern oder dergleichen, für Multimediageräte 38 und für Steuergeräte, wie das Motorsteuergerät 24, die Batteriesteuerung 26 und die Steuerung 28, eine Betriebsspannung von 14 V vorgesehen ist, die von der Blei- /Säure-Batterie 30 bereitgestellt wird, können Elektromotoren 40 von Pumpen, Lüftern oder Scheibenwischern entweder mit einer Be- triebsspannung von 14 V oder mit einer Betriebsspannung von 42 V betrieben werden, die mittels des Transformators 32 aus der Spannung von > 250 V erzeugt wird, wobei der Strom wegen der mäßigen Stromstärken entsprechend dem augenblicklichen Bedarf von der energieoptimierten Batterie 20 geliefert wird, so dass für diese Span- nung kein Speicher benötigt wird. Eine elektrische Servolenkung 42 des Kraftfahrzeugs 2, eine Ventilsteuerung 44 der Verbrennungskraftmaschine 4, sowie eine elektrohydraulische Bremse 46 und e- ventuelle elektrische Zusatzheizungen 48 des Fahrzeugs werden ebenfalls mit dieser Spannung von 42 V betrieben und von der ener- gieoptimierten Batterie 18 über den Transformator 32 versorgt, während eine elektromotorische Bremse 50 vorzugsweise bei einer Spannung von > 250 V betrieben und wegen der hohen Stromstärken im Betrieb von der leistungsoptimierten Batterie 20 versorgt wird. Sofern die elektromotorische Bremse 50 und/oder eine elektrische Lenkung 52 als XBW-Komponenten ausgebildet sind, muss auch die energieoptimierte Batterie 18 auf eine Hochstromentladung ausgelegt werden, um bei einem Ausfall der leistungsoptimierten Batterie 20 für eine Redundanz zu sorgen. Wenn die elektrische Lenkung 52 nicht wie dargestellt mit einer Spannung von 42 V sondern wie die elektromotorische Bremse 50 mit einer Spannung von > 250 V betrieben wird, können die übrigen Komponenten 42, 44, 48, 46 mit einer Spannung von 14 V betrieben werden, wodurch eine Stufe des Transformators 32 entbehrlich wird.
Zur Versorgung der im Motorbetrieb arbeitenden Elektromaschine 6 wird im zyklischen Fahrbetrieb des Kraftfahrzeugs 2 vor allem die energieoptimierte Batterie 18 eingesetzt, da sie unter solchen Be- triebszuständen unter mittlerer Strombelastung entladen bzw. wieder aufgeladen werden kann. Demgegenüber wird die leistungsoptimier- te Batterie 20 vor allem im Fall einer kurzzeitigen Hochstrom- Entladung bzw. Wiederaufladung eingesetzt, wie sie zum Beispiel auftritt, wenn im Motorbetrieb der Elektromaschine 6 eine stärkere Beschleunigung des Kraftfahrzeugs 2 angefordert wird bzw. wenn das Kraftfahrzeug 2 bei hoher Fahrtgeschwindigkeit abgebremst und dabei von der im Generatorbetrieb arbeitenden Elektromaschine 6 eine große elektrische Leistung abgegeben wird. Der Einsatz der jeweils gewünschten Batterie 18 bzw. 20 wird mit Hilfe von zwei durch die Batteriesteuerung 26 angesteuerten Schaltern 54, 56 (Figur 1 ) zwischen dem Wechselrichter 16 und der Batterie 18 bzw. 20 ermöglicht, von denen jeweils immer einer geschlossen und der andere geöffnet ist.
Zum Beispiel schließt die Batteriesteuerung 26 den Schalter 54 zwischen der energieoptimierten Batterie 18 und dem Wechselrichter 16 und öffnet den Schalter 56 zwischen der leistungsoptimierten Batte- rie 20 und dem Wechselrichter 16, wenn sich das Kraftfahrzeug 2 mit einer Geschwindigkeit von weniger als etwa 50 km/h bewegt, wie dies typischerweise im Stadtverkehr der Fall ist. Da bei den im Stadtverkehr auftretenden Betriebszuständen in der Regel weder bei der Entladung noch bei der Wiederaufladung der Antriebsbatterie 22 hohe Energieflüsse auftreten, wird dort die energieoptimierten Batterie 18 eingesetzt, um die im Motorbetrieb arbeitende Elektromaschine 6 zu speisen, und wird umgekehrt von dieser auch wieder aufgeladen.
Wenn hingegen das Kraftfahrzeug 2 schneller als etwa 50 km/h fährt und durch die Elektromaschine 6 abgebremst wird, die dabei einen Teil der kinetischen Energie des Kraftfahrzeugs 2 in elektrische E- nergie umwandelt, könnte es bei einer Wiederaufladung der energieoptimierten Batterie 18 vorkommen, dass sich deren Ladezustand um mehr als 5 % verändert, wodurch die Lebensdauer der Batterie 20 abnehmen kann. Wenn das Kraftfahrzeug 2 in einem solchen Betriebszustand abgebremst wird, wird daher der Schalter 54 zwischen der energieoptimierten Batterie 18 und dem Wechselrichter 16 geöffnet und der Schalter 56 zwischen der leistungsoptimierten Batterie 20 und dem Wechselrichter 16 geschlossen, wie in Figur 1 dargestellt, so dass zumindest während der Anfangsphase der Abbremsung die leistungsoptimierte Batterie 20 von der Elektromaschine 6 wiederaufgeladen wird. Nach der Anfangsphase der Abbremsung, d.h. zum Beispiel 3 Sekunden nach dem Beginn des Bremsvor- gangs, wird erneut der Schalter 56 geöffnet und der Schalter 54 geschlossen, um während einer ggf. anschließenden Endphase der Abbremsung die energieoptimierte Batterie 18 wiederaufzuladen.
Durch die vorgenannten Verteilungsregeln kann vor allem die ener- gieoptimierte Batterie 18 in der Nähe ihres Optimums der Lade- Stromaufnahme betrieben werden, d.h. einem Ladezustand mit optimaler Stromaufnahmefähigkeit unter Berücksichtigung ihres Tieftem- peraturverhaltens, wobei ihre Ladezustandsänderung auf maximal +/- 5 % begrenzt werden kann, um für eine lange Nutzlebensdauer zu sorgen.

Claims

Patentansprüche
1. Fahrzeug, insbesondere Kraftfahrzeug, mit einem Hybridantrieb, der einen Verbrennungsmotor und mindestens eine Elektroma- schine umfasst, sowie mit einer Antriebsbatterie zur Speisung der im Motorbetrieb arbeitenden Elektromaschine und zur Wiederaufladung durch die im Generatorbetrieb arbeitende Elektromaschine, dadurch gekennzeichnet, dass die Antriebsbatterie (22) einen leistungsopti- mierten elektrischen Speicher (18) und einen energieoptimierten e- lektrischen Speicher (20) umfasst.
2. Fahrzeug nach Anspruch 1 , dadurch gekennzeichnet, dass der leistungsoptimierte elektrische Speicher (20) eine Supercap- Batterie ist.
3. Fahrzeug nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die energieoptimierte Batterie (18) eine Ni M H -Batterie oder eine
Blei-Batterie, oder eine Li-Ionen-Batterie ist.
4. Fahrzeug nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine Batteriesteuerung (26), die in Abhängig- keit von einem augenblicklichen Betriebszustand des Fahrzeugs (2) entweder die leistungsoptimierte Batterie (18) oder die energieoptimierte Batterie (20) mit der Elektromaschine (6) verbindet.
5. Verfahren zum Betrieb eines Fahrzeugs mit einem Hybridan- trieb nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in Abhängigkeit von einem augenblicklichen Betriebszustand des Fahrzeugs (2) entweder die energieoptimierte Batterie (18) oder die leistungsoptimierte Batterie (20) aufgeladen wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die leistungsoptimierte Antriebsbatterie (20) aufgeladen wird, wenn die Geschwindigkeit des Fahrzeugs (2) einen vorbestimmten Wert übersteigt und das Fahrzeug (2) abgebremst wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die energieoptimierte Antriebsbatterie (18) aufgeladen wird, sobald die Dauer des Bremsvorgangs eine vorbestimmte Zeit übersteigt.
8. Verfahren zum Betrieb eines Fahrzeugs mit einem Hybridan- trieb nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die im Motorbetrieb arbeitende Elektromaschine (6) in Abhängigkeit von einem augenblicklichen Betriebszustand des Fahrzeugs (2) entweder von der energieoptimierten Batterie (18) oder von der leistungsoptimierten Batterie (20) gespeist wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Elektromaschine (6) bei kurzzeitigen hohen Belastungen von der leistungsoptimierten Batterie (20) gespeist wird.
10. Verfahren nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass im zyklischen Fahrbetrieb bei mittlerer Last die energieoptimierte Antriebsbatterie (18) zur Speisung der im Motorbetrieb arbeitenden Elektromaschine (6) eingesetzt bzw. von der im Generatorbetrieb arbeitenden Elektromaschine (6) aufgeladen wird.
PCT/EP2006/061895 2005-06-27 2006-04-27 Fahrzeug mit hybridantrieb und verfahren zum betrieb eines solchen fahrzeugs WO2007000362A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029836.2 2005-06-27
DE102005029836A DE102005029836A1 (de) 2005-06-27 2005-06-27 Fahrzeug mit Hybridantrieb und Verfahren zum Betrieb eines solchen Fahrzeugs

Publications (1)

Publication Number Publication Date
WO2007000362A1 true WO2007000362A1 (de) 2007-01-04

Family

ID=36694060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/061895 WO2007000362A1 (de) 2005-06-27 2006-04-27 Fahrzeug mit hybridantrieb und verfahren zum betrieb eines solchen fahrzeugs

Country Status (2)

Country Link
DE (1) DE102005029836A1 (de)
WO (1) WO2007000362A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010012167U1 (de) 2010-09-03 2010-12-30 Grabosch, Thomas, Dipl.-Ing. Inselanlage zur Belüftung von Gewässern

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631930B2 (ja) * 2008-05-14 2011-02-16 トヨタ自動車株式会社 車両の電源装置
DE102010024235B4 (de) * 2010-06-18 2016-11-10 Continental Automotive Gmbh Akkumulatorzelle und Batterie
DE102012014347B4 (de) * 2012-07-20 2017-05-18 Audi Ag Batterieanordnung und Kraftfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309002A (ja) * 1997-04-28 1998-11-17 Fuji Heavy Ind Ltd ハイブリッド車のエネルギ回生装置
DE19857645A1 (de) * 1997-12-15 1999-06-17 Fuji Electric Co Ltd Elektrisches System für Elektrofahrzeug
US5925938A (en) * 1997-03-05 1999-07-20 Ford Global Technologies, Inc. Electrical system for a motor vehicle
DE10213105A1 (de) * 2001-03-31 2002-11-07 Heinz Leiber Antrieb für ein Kraftfahrzeug
DE10315928A1 (de) * 2002-04-08 2003-10-30 Visteon Global Tech Inc Ein System zur Energieversorgung eines elektrischen Systems in einem Fahrzeug
DE102004046148A1 (de) * 2003-09-24 2005-05-04 Ford Global Tech Llc Stabilisiertes elektrisches Verteilungs-System für ein Fahrzeug mit Antriebsverstärkung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925938A (en) * 1997-03-05 1999-07-20 Ford Global Technologies, Inc. Electrical system for a motor vehicle
JPH10309002A (ja) * 1997-04-28 1998-11-17 Fuji Heavy Ind Ltd ハイブリッド車のエネルギ回生装置
DE19857645A1 (de) * 1997-12-15 1999-06-17 Fuji Electric Co Ltd Elektrisches System für Elektrofahrzeug
DE10213105A1 (de) * 2001-03-31 2002-11-07 Heinz Leiber Antrieb für ein Kraftfahrzeug
DE10315928A1 (de) * 2002-04-08 2003-10-30 Visteon Global Tech Inc Ein System zur Energieversorgung eines elektrischen Systems in einem Fahrzeug
DE102004046148A1 (de) * 2003-09-24 2005-05-04 Ford Global Tech Llc Stabilisiertes elektrisches Verteilungs-System für ein Fahrzeug mit Antriebsverstärkung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 02 26 February 1999 (1999-02-26) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010012167U1 (de) 2010-09-03 2010-12-30 Grabosch, Thomas, Dipl.-Ing. Inselanlage zur Belüftung von Gewässern

Also Published As

Publication number Publication date
DE102005029836A1 (de) 2007-01-11

Similar Documents

Publication Publication Date Title
DE69815471T2 (de) Elektrohybridfahrzeug mit verringerter Leistungszufuhr zur Batterie während einer Nutzbremsung
DE102005040077B4 (de) Fahrzeug-Leistungsversorgungsgerät mit zwei Leistungsversorgungen
DE102007007126B4 (de) Steuersystem für ein Hybrid-Elektrisches Fahrzeug
DE102011018457B4 (de) Ladestation zum Laden von Fahrzeugen mit elektrischem Antrieb mittels mechanischer Leistungsübertragung
EP2387524B1 (de) Bordnetz und Spannungswandler für ein Fahrzeug und Verfahren zum Antreiben eines Mehrspannungsbordnetzes
DE69719626T2 (de) Steuerungssystem für Hybridfahrzeug
DE102004052457A1 (de) Kraftfahrzeug-Stromversorgungssystem zur Sicherung der Stabilität der Aufladung von Speicherbatterien
EP2714482B1 (de) Hybridfahrzeug sowie verfahren zum betreiben einer einrichtung zum aufladen einer batterie in einem hybridfahrzeug
DE102005016300A1 (de) Antriebssystem und Verfahren zum Betrieb eines Antriebssystems für ein elektrisch betriebenes Fahrzeug
DE112007002001B4 (de) Mobiler Aufbau mit einer Steuervorrichtung zur Antriebssteuerung beim Anfahren an einem Gefälle
EP2043897B1 (de) Verfahren zur regelung des ladezustandes eines energiespeichers für ein fahrzeug mit hybridantrieb
WO2005044610A1 (de) Verfahren zur regelung des ladezustands eines energiespeichers bei einem fahrzeug mit hybridantrieb
WO2016206800A1 (de) Kran sowie verfahren zu dessen steuerung
DE102004010988A1 (de) Hybridantriebssystem für einen Portalhubstapler
DE102019115210B4 (de) Elektrofahrzeug mit rad- oder achsweisem elektrischem Antrieb aus jeweiligen Fahrbatterien und Verfahren zum Betrieb eines solchen Elektrofahrzeugs
WO2007000362A1 (de) Fahrzeug mit hybridantrieb und verfahren zum betrieb eines solchen fahrzeugs
WO2010063360A1 (de) Verfahren zur regelung bzw. steuerung des ladezustands eines elektrischen energiespeichers eines hybridfahrzeugs
WO2004106104A1 (de) Kraftfahrzeug und elektronische steuereinrichtung dafür
WO2002080334A2 (de) Antrieb für ein kraftfahrzeug
EP2397354A1 (de) Schwerlastfahrzeug mit Schwungmassenspeicherantrieb
WO2014044340A2 (de) Verfahren zum betreiben eines brennstoffzellensystems
WO2008087103A1 (de) Verfahren zum betreiben eines kfz-generators mit variabler spannung
DE102016214997A1 (de) Verfahren zum Betrieb eines Kraftfahrzeugs mit einem Brennstoffzellensystem und mit mindestens einer Energiespeichereinrichtung
EP1283121A2 (de) Verfahren und Vorrichtung zur Durchführung eines automatischen Ladezustandsausgleichs
DE10139048A1 (de) Verfahren und Vorrichtung zur Durchführung eines automatischen Ladezustandsausgleichs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06754903

Country of ref document: EP

Kind code of ref document: A1