WO2004092792A1 - 光導波路デバイス - Google Patents

光導波路デバイス Download PDF

Info

Publication number
WO2004092792A1
WO2004092792A1 PCT/JP2003/004845 JP0304845W WO2004092792A1 WO 2004092792 A1 WO2004092792 A1 WO 2004092792A1 JP 0304845 W JP0304845 W JP 0304845W WO 2004092792 A1 WO2004092792 A1 WO 2004092792A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
substrate
light
output
waveguide device
Prior art date
Application number
PCT/JP2003/004845
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Ohmori
Shinji Maruyama
Tetsuo Ishizaka
Masaharu Doi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/004845 priority Critical patent/WO2004092792A1/ja
Priority to JP2004570888A priority patent/JP3967356B2/ja
Publication of WO2004092792A1 publication Critical patent/WO2004092792A1/ja
Priority to US11/248,232 priority patent/US7386198B2/en
Priority to US12/149,748 priority patent/US7787717B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12104Mirror; Reflectors or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12154Power divider
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12159Interferometer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector

Definitions

  • the present invention relates to an optical waveguide device used in an optical communication system, and more particularly to an optical waveguide structure effective for miniaturizing an optical circuit for monitoring optical output.
  • Optical waveguide devices are devices that realize various functions using optical waveguides that confine light to a high refractive index portion formed in a dielectric medium and propagate the light.
  • lithium niobate Li Nb_ ⁇ 3: hereinafter LN as hereinafter
  • LN lithium niobate
  • an electro-optical constant is very high
  • the thermo-optic Since the response speed is faster than devices with the Thermal Optic (TO) effect, they are widely used as optical modulators, optical switches, and variable optical attenuators.
  • an optical waveguide device using a dielectric substrate such as LN as described above has a phenomenon called a temperature drift in which the operating point shifts due to a temperature change, and a DC drift in which the operating point shifts when a DC signal flows. It is known that a so-called phenomenon can potentially occur. If the operating point shifts due to the occurrence of temperature drift or DC drift, the optical output characteristics of the optical waveguide device fluctuate. For example, an optical modulator cannot perform modulation in a constant state.
  • the optical output of a Mach-Zehnder optical modulator changes according to cos 2 ( ⁇ / 2).
  • ne is the refractive index of the optical waveguide
  • 1 is two parallel optical waveguides on the provided et the length of the electrode
  • lambda is optical wavelength
  • d is the distance between the electrodes
  • V is an applied voltage.
  • the optical output characteristic of this optical modulator is a curve as shown in Fig. 19, where the horizontal axis is applied voltage V. You.
  • the desired operating point is generally adjusted by applying a DC bias.However, the operating point adjusted by the DC bias is described above. Such DC drift causes shift. Therefore, in order to stably achieve the desired operating point, it is necessary to constantly monitor the optical output and control the DC bias based on the result.
  • the monitoring of such optical output is not limited to the use of optical modulators. For example, even in the case of Mach-Zeng type variable optical attenuators, it is necessary to adjust the optical attenuation in response to temperature changes. It is necessary.
  • Patent Document 1
  • the conventional optical waveguide device has a configuration in which the main signal light emitted from the end face of the optical waveguide is guided to the output optical fiber via the lens coupling system, or the end face of the optical waveguide is directly abutted with the output optical fiber.
  • Butt joint type is known.
  • In the configuration using the lens coupling system there is a required space between the side surface of the substrate where the main signal light of the optical waveguide device is output and the lens coupling system. Of light receiving elements can be arranged, and sufficient monitor light can be received.
  • the output optical fiber is very thin, so simply bonding the fiber to the end face of the optical waveguide will not have sufficient strength.
  • a fiber fixing member 120 such as a grooved fiber block or glass ferrule.
  • Such a fiber fixing member 1 2 0 When the light receiving element 130 for monitoring the optical output is arranged on the back side of the fiber fixing member 120 (the side opposite to the optical waveguide device), the fiber fixing member 120 interferes with the monitor. It becomes difficult to sufficiently receive the monitor light emitted from the optical waveguide 101B on the side.
  • the shape and the like of the fiber fixing member 120 must be complicated.
  • the reinforcing cavities disclosed in Patent Document 1 described above are considered as an example of a fiber fixing member having a more complicated shape.
  • Such complication of the fiber fixing member causes problems such as an increase in the cost of the optical waveguide device.
  • one side of the substrate that is different from the side where the main signal light of the optical waveguide device is output Specifically, in the configuration shown in FIG. 20, it is effective to guide the monitor light from the front side or the back side).
  • it is necessary to solve the following issues.
  • the first problem is that, as shown in FIG. 21, for example, when monitor light is derived using a bent waveguide, reflection and radiation loss on the side surface of the substrate become problems. That is, when an LN modulator is considered as a specific example, the width w of the substrate 100 of a normally used LN modulator is about 1 mm to 2 mm. For this reason, in order to allow the light that has propagated through the curved waveguide 101 B on the monitor side to be guided at an angle that does not cause total reflection on the side surface of the substrate, the radius of curvature R c of the curved waveguide 101 B is set to l mm. It must be about 2 mm.
  • the radius of curvature Rc at which no radiation loss occurs in the bent waveguide 101B must be 30 mm or more. Therefore, as shown in Fig. 21 (A), if a radius of curvature Rc of 30 mm or more is secured to prevent radiation loss in the bent waveguide 101B, the monitor light is totally reflected on the side of the substrate. In addition to this, the size of the substrate is increased. Also, as shown in Fig. 21 (B), if the radius of curvature Rc of the bent waveguide 101B is set to 2 mm or less to prevent total reflection on the side of the substrate, the monitor light will bend and guide. It is radiated out of the waveguide in the middle of the waveguide 101B. Therefore, it is difficult to receive sufficient monitor light by simply forming a bent waveguide.
  • the second problem is that chipping generated on the surface of the substrate This makes it difficult to receive the monitor light. That is, a chip forming an LN modulator or the like can be obtained by pressing a substrate material using a dicing device or the like, but when cutting, several tens of irregularities occur on the upper and lower surfaces of the chip. . This unevenness is also called chipping.
  • an optical waveguide is formed on the upper surface of the chip by diffusion processing such as Ti, and if there is chipping on the substrate side from which the monitor light is led, sufficient monitor light can be obtained. Becomes difficult. Therefore, it is necessary to take measures against chipping on the side of the board from which the monitor light is extracted.
  • a third problem is that it may be difficult to reliably mount a light receiving element for receiving monitor light. That is, as one of the mounting methods of the light receiving element for the monitor light, a method of attaching the light receiving element to the side surface of the substrate from which the monitor light is led can be considered. If the light-receiving element is attached to the side of the substrate when the optical waveguide is formed on the substrate, the light-receiving element protrudes from the upper surface of the chip as shown in FIG. For this reason, it is extremely difficult to attach the light receiving element, and problems including reliability occur.
  • the present invention has been made in view of the above-mentioned problems, and an optical waveguide device capable of guiding light transmitted through an optical waveguide from a desired side surface of a substrate while maintaining sufficient power within a limited substrate size.
  • the primary purpose is to provide It is a second object of the present invention to provide an optical waveguide device in which the influence of chipping generated on the substrate surface is suppressed. Further, a third object is to provide an optical waveguide device capable of reliably mounting a light receiving element for receiving light guided from a substrate on the substrate. Disclosure of the invention
  • one aspect of the optical waveguide device is an optical waveguide device including an optical waveguide formed on a substrate, wherein an end of the optical waveguide on the optical output side with respect to the substrate is provided. It has a groove formed in the vicinity, reflects light output from the optical waveguide using the side wall of the groove as a reflection surface, and emits the reflected light from the side surface of the substrate.
  • the light output from the end of the optical waveguide formed on the substrate is reflected by the reflection surface of the groove, and the propagation direction is switched.
  • Light propagates through the substrate and is emitted from the side surface of the substrate. This avoids the problems of reflection and radiation loss on the side of the substrate as in the case of using the bent waveguide described above, and allows sufficient light to be transmitted to the desired side of the substrate without increasing the size of the substrate. Can be derived.
  • the reflecting surface of the groove is formed obliquely to a direction perpendicular to the surface of the substrate, and the light propagating along the substrate surface after being output from the optical waveguide is formed below the substrate surface.
  • the light may be reflected in a deviated direction.
  • optical waveguide device including an optical waveguide formed on a substrate, wherein a part of the optical waveguide has a bent waveguide reaching a side surface of the substrate, A groove formed at least radially outside the bent waveguide, and formed along the longitudinal direction of the bent waveguide, wherein the refractive index in the groove is the refractive index of a portion of the substrate other than the optical waveguide. It is set to be smaller than.
  • the optical waveguide device having the above-described configuration, light propagating through the optical waveguide is bent and emitted from the desired side surface of the substrate through the waveguide.
  • a groove having a refractive index smaller than the refractive index of the substrate is formed in the bent waveguide at least radially outward along the longitudinal direction, and the bent waveguide propagates through the bent waveguide due to the light confinement effect of the groove. The radiation loss of light is suppressed. As a result, even if a curved waveguide having a small radius of curvature is used, light with sufficient power can be led to a desired substrate end face.
  • a block member for preventing occurrence of chipping on the substrate surface may be provided above the side surface of the substrate from which the light propagated through the bent waveguide is emitted. This makes it possible to avoid a decrease in optical power due to the effect of chipping. Further, a light receiving element for receiving light emitted from the side surface of the substrate may be attached to the side surface of the substrate using the above-described block material. No. This makes it possible to easily and reliably mount the light receiving element on the side surface of the substrate.
  • another aspect of the optical waveguide device includes: a first optical waveguide formed on a substrate; a block member provided on the first optical waveguide above an end surface of the substrate; A second optical waveguide branched from the first optical waveguide and having an end portion of the optical waveguide at an end surface different from the end surface of the substrate where the end portion of the first optical waveguide is located, and under the block material; And.
  • FIG. 1 is a perspective view showing the configuration of the optical waveguide device according to the first embodiment of the present invention.
  • Fig. 2 is an enlarged view of the cross section A-A in Fig. 1.
  • FIG. 3 is a diagram illustrating a process of forming an optical waveguide according to the first embodiment.
  • FIG. 4 is a diagram illustrating a process of forming the reflection groove in the first embodiment.
  • FIG. 5 is a diagram showing a step of forming an electrode in the first embodiment.
  • FIG. 6 is a diagram showing a substrate material before cutting the LN chip in the first embodiment.
  • FIG. 7 is a cross-sectional view illustrating another example of the configuration of the reflection groove related to the first embodiment.
  • FIG. 8 is a perspective view showing an application example of the optical waveguide device related to the reflection groove of FIG.
  • FIG. 9 is a perspective view showing an improved example related to the application example of FIG.
  • FIG. 10 shows a configuration example when a Y-branch force bra is used in connection with the first embodiment.
  • FIG. 11 is a perspective view showing the configuration of the optical waveguide device according to the second embodiment of the present invention.
  • FIG. 12 is an enlarged top view showing the vicinity of the output side power blur and the monitor light output waveguide of FIG. 11.
  • FIG. 13 is an enlarged view of a BB ′ section of FIG.
  • FIG. 14 is a diagram showing a simulation result for confirming the effect of confining monitor light in the second embodiment.
  • FIG. 15 is a diagram showing an experimental result for confirming the monitor light confinement effect in the second embodiment.
  • FIG. 16 is a perspective view showing an application example of the optical waveguide device according to the second embodiment.
  • FIG. 17 is a perspective view showing an improved example related to the application example of FIG.
  • FIG. 18 is a perspective view showing a configuration example when a Y-branch force bra is used in connection with the second embodiment.
  • FIG. 19 is a diagram showing an optical output characteristic of a general Mach-Zehnder type optical modulator.
  • FIG. 20 is a diagram for explaining a problem with the conventional putt joint type.
  • FIG. 21 is a diagram illustrating a problem when a bent waveguide is applied.
  • FIG. 22 is a diagram illustrating the effect of chipping on monitor light.
  • FIG. 23 is a diagram for explaining a problem of a conventional mounting method of a monitor light receiving element.
  • FIG. 1 is a perspective view showing the configuration of the optical waveguide device according to the first embodiment of the present invention.
  • an optical waveguide device of the present embodiment includes, for example, a Mach-Zeng type optical waveguide 11 formed on the surface of a substrate 10, and a substrate 1 along the optical waveguide 11.
  • the electrode 12 formed on the surface of the optical waveguide 11, the reflection groove 13 formed near the end of the optical waveguide 11 on the monitor light output side, and reflected by the reflection groove 13 are emitted from the side surface of the substrate 10.
  • a light receiving element 14 for receiving monitor light and a block member 15 for preventing the influence of chipping at the optical input / output end are provided.
  • the optical waveguide 11 is composed of an input waveguide 11 A, an input-side power blur 11 B, a parallel waveguide 11 C, 11 D, an output-side power blur 11 E, a main signal light output waveguide 11 F and
  • the Mach-Zehnder interferometer is composed of 11 G monitor light output waveguides.
  • the input waveguide 11A receives light L from one end facing one side surface (left side surface in FIG. 1) of the substrate 10 and the other end has one of two input ports of the input-side force bra 11B. It is connected to the.
  • the input side power blur 11B splits the light L from the input waveguide 11A into two and gives it to the parallel waveguides 11C and 1ID.
  • the output side power blur 11E splits into the main signal light Ls and the monitor light Lm, and then splits into the main signal light output waveguide 11F and the module. It is given to each of the two light output waveguides 11G.
  • a directional coupler or a multimode interference (MM I) force blur is used as the input and output force blurs 11 B and 1 IE.
  • the electrode 12 is composed of, for example, electrode patterns 12A and 12B and an electrode pad 12C.
  • the electrode pattern 12A is patterned into a required shape passing on the parallel waveguide 11D.
  • the electrode pattern 12B is patterned into a required shape passing on the parallel waveguide 11C at a certain distance from the electrode pattern 12A.
  • the electrode pad 12C corresponds to a terminal for applying a high-frequency electric signal to each of the electrode patterns 12A and 12B.
  • the side of the substrate from which the monitor light is led see FIG. 1). (The back side).
  • the electrode pad is connected to the ground terminal.
  • the reflection groove 13 is formed, for example, by a photolithography method or the like by providing a groove of a desired shape at a predetermined position on the surface of the substrate 10 so that the substrate 10 10 A reflective surface 13A is formed to reflect the monitor light Lm radiated into the inside, and the reflected light Lm 'propagates toward the side surface of the substrate (the side surface located on the far side in Fig. 1) It is intended to be carried.
  • the reflecting groove 13 has a reflecting surface 13A that is inclined obliquely to the vertical direction of the substrate 10 as shown in, for example, a sectional view taken along the line A-A 'in FIG.
  • the reflected light L m ′ of the monitor light L m propagating through the substrate 10 is slightly deviated below the substrate 10 and propagates.
  • Reference numeral 16 in FIG. 2 indicates a buffer layer formed on the entire surface of the substrate 10, and reference numeral 17 indicates an Si film formed on the buffer layer 16.
  • the buffer layer 16 is for preventing light absorption loss by the electrode 12 and for achieving impedance matching, and is specifically made of SiO 2 or the like. Further, the Si film 17 is for suppressing the temperature drift.
  • the light receiving element 14 receives the monitor light Lm 'reflected from the reflection groove 13 and emitted from the side surface of the substrate, and generates an electric signal that changes according to the power of the monitor light Lm'.
  • the light receiving element 14 can be arranged at any position where the monitor light L m ′ emitted from the side of the substrate can be received.
  • the light receiving element 14 may be attached to the side of the substrate. It may be mounted at a distance.
  • the block material 15 is provided on both opposing sides of the substrate 10 (the left and right sides in FIG. 1) so that the above-described chipping generated on the surface of the substrate 10 does not affect the input / output light. Glass, LN block, etc. are attached to the upper part of each side. However, this block material 15 can be omitted when the influence of chipping on input / output light is small.
  • a fiber for fixing an output optical fiber that is putt-joint to one end of the main signal light output waveguide 11F is omitted.
  • a fixing member for example, V-groove fiber block or glass ferrule is provided (see Fig. 20).
  • the optical waveguide 11 is formed on the LN substrate 10 according to, for example, each step shown in FIG. Specifically, titanium (Ti) or the like to become the optical waveguide 11 is deposited on the LN substrate 10 to form a Ti film of about 100 A (FIG. 3 (A) And (B)). Then, after applying a photoresist of about 1 m on the Ti layer, the photoresist is applied to a Mach-Zehnder interferometer by a general photolithography method. The resist is masked and the Ti film is patterned using the resist as a mask (Fig. 3 (C)). In the above patterning, dry etching or jet etching may be applied. When the patterning of the Ti film is completed, Ti is diffused into the LN substrate 10 at 1000 ° C to 1100 ° C to form a Mach-Zehnder type optical waveguide 11 near the surface (Fig. 3 (D) ).
  • the optical waveguide 11 is formed on the LN substrate 10 by thermally diffusing Ti, but for example, Mg may be used instead of Ti.
  • the optical waveguide 11 can be formed by using a proton exchange method.
  • the reflection groove 13 is formed, for example, according to each step shown in FIG. First, in the same manner as in the formation of the optical waveguide 11, a pattern for forming a reflection groove is formed at a predetermined position on the substrate 10 by a photolithography method. At this time, in order to form the reflecting surface 13A of the reflecting groove 13 obliquely with respect to the vertical direction of the substrate 10, for example, the resist is shifted stepwise to achieve an oblique resist (FIG. 4 (A )). Then, using this resist as a mask, a reflection groove 13 is formed in the substrate 10 by dry etching (FIG. 4B).
  • the electrode 12 is formed according to, for example, each step shown in FIG.
  • a buffer layer 16 for preventing absorption loss of light by electrodes and for matching impedance is formed on the surface of the substrate 10 by using a sputter or an electron beam (EB) evaporator.
  • Figures 5 (A) and (B) The thickness of this buffer layer is optimized according to the required bandwidth and the amount of electrical reflection. ⁇ 1.0 m is common.
  • an Si film 17 for suppressing temperature drift is deposited on the buffer layer 16 by sputtering or the like (FIG. 5C).
  • the thickness of the Si film 17 is preferably about 0.1 m.
  • gold (Au) is deposited as a base for forming an electrode. This gold deposition is performed to a thickness of about 0.1 m using an EB evaporator or the like.
  • etching is performed after patterning the resist, and gold plating for an electrode is performed (FIG. 5D).
  • the thickness of this gold plating is also the thickness of the buffer layer Similarly to the above, it is optimized according to the required band and the amount of electric reflection, but is generally about 5 to 20 / xm.
  • FIG. 6 is a top view of the substrate material to which the block material 15 is attached. After applying force using a dicing device or the like to the dotted line part on the block material of this substrate material and the boundary part of each LN chip, attach the light receiving element 14 to a predetermined position on the side of the substrate from which the monitor light is led .
  • the light L applied to the light input side surface of the substrate 10 propagates through the input waveguide 11A and is input to the input side force blur 11B by the input side force blur 11B.
  • each light is branched and propagates through each of the parallel waveguides 11C and 1ID.
  • a phase difference is given to the light propagating through each of the parallel waveguides 11 C and 11 D according to the electric signals applied to the electrode patterns 12 A and 12 B, and the output side power
  • each light is multiplexed by E, it is branched into a main signal light Ls and a monitor light Lm.
  • the main signal light Ls propagates through the main signal optical waveguide 11F, exits from the side surface of the substrate 10, and is guided to an output optical fiber butt-joined to the end face of the main signal optical waveguide 11F.
  • the monitor light Lm branched by the output side power blur 11E propagates through the monitor light output waveguide 11G, is radiated from its end face into the substrate 10 and is reflected by the reflection surface of the reflection groove 13. It reaches 13 A and is reflected.
  • the monitor light L m ′ reflected by the reflection surface 13 A is reflected on the substrate 10 because the reflection surface 13 A is oblique to the vertical direction of the substrate 10 as shown in FIG.
  • the light propagates through the substrate 10 in a direction deviated downward with respect to the surface of the substrate, and is guided to a substrate side different from the emission side of the main signal light Ls.
  • the monitor light L m ′ that has reached the side surface of the substrate is emitted from a position below the tubing generated on the surface of the substrate, and is received by the light receiving element 14 without being affected by the tubing.
  • the inclination of the reflection surface 13 A is adjusted so that the monitor light L m ′ reaching the side surface of the substrate is derived from the middle of the chipping on the front and back surfaces. It is desirable to set the angle.
  • the received monitor light L m ′ is converted into an electric signal,
  • the electric signal is sent to a control unit (not shown) and used for feedback control of the operating point of the optical waveguide device.
  • the reflection groove 13 is provided at the tip of the monitor light output waveguide so as to reflect the monitor light Lm, thereby increasing the size of the substrate.
  • the monitor light L m ′ can be led to the side of the substrate different from the side of emission of the main signal light Ls without inviting.
  • sufficient monitoring light can be received by the light receiving element 14 and feedback control of the operating point of the optical waveguide device and the like can be reliably performed.
  • the reflecting surface 13A oblique to the direction perpendicular to the surface of the substrate 10, even if chipping occurs on the side surface of the substrate from which the monitor light is led, the chipping is performed from below the chipping.
  • the monitor light is emitted, it is possible to avoid a decrease in the monitor light due to the influence of chipping. Furthermore, the monitor light is led out to the side of the board located on the same side as the side where the electrode pads 12 C of the electrodes 12 are arranged, so that the interface with the outside of the electric signal wiring is connected to the board 10. Since they can be collected on one side, the optical waveguide device can be efficiently mounted on an external circuit or the like. Such an optical waveguide device is useful, for example, for applications such as an optical modulator / optical switch and a variable optical attenuator.
  • the oblique reflection surface 13A is provided in consideration of the effect of chipping on the side surface of the substrate that guides the monitor light.
  • FIG. 7A—A 'As shown in the sectional view a reflecting surface 13A is formed perpendicular to the surface of the substrate 10, and the monitor light Lm' reflected by the reflecting surface 13A is reflected on the substrate surface. It may be made to propagate along.
  • a vertical reflecting surface 13A as shown in FIG. 7 is provided, for example, as shown in FIG. 8, a block material 16 is attached to an upper portion of a side surface of a substrate from which monitor light is guided.
  • the light receiving element 14 can be attached to the side of the substrate using the block material 16, so that the light receiving element 14 can be easily mounted and the reliability can be improved. become. Further, as shown in FIG. 9, for example, a position is located below a block member 15 provided above the output side surface of the main signal light Ls. By designing the shape of the block material 15 and the arrangement of the reflection grooves 13 so that the monitor light is led out from the side of the board, the number of parts of the block material can be reduced and the cost can be reduced. Become.
  • the entire surface of the light-receiving element 14 can be attached to the side of the board and the block material. Therefore, the light receiving element 14 can be mounted more stably.
  • the directional coupler or the MMI power bra is used as each of the input side and output side power blurs 11 B and 11 E configuring the Mach-Zehnder type optical waveguide 11.
  • the present invention is also effective when a Mach-Zeng type optical waveguide 11 is configured by using Y-branch type couplers 11 B ′ and 11 E ′. .
  • the light propagating through each of the parallel waveguides 11C and 1ID is given a phase difference of an odd multiple of 7t, the lights are multiplexed by the output-side power blur 11E, so that they are mutually coupled.
  • the main signal light Ls is cancelled and turned off.
  • the canceled light leaks out of the output waveguide 11 F and is radiated into the substrate 10.
  • a part of the radiation mode light propagating in the substrate 10 outside the output waveguide 11 F (in FIG. 10, the light radiated into the substrate deeper than the output waveguide 11 F) is monitored by the monitor light L
  • the monitor light L By reflecting the reflected light L m ′ on the substrate side different from the output side of the main signal light Ls as m, the same operation and effect as in the first embodiment described above can be obtained. Can be obtained.
  • FIG. 11 is a perspective view showing the configuration of the optical waveguide device of the second embodiment.
  • the part of the configuration of the optical waveguide device of this embodiment different from that of the first embodiment shown in FIG. 1 described above is that the monitor optical output waveguide 11G has a curved guide with a small radius of curvature. This is a portion where a waveguide is applied and a groove 20 is formed radially outside the bent waveguide.
  • the configuration of other parts other than the above is the same as that of the first embodiment. For this reason, the configurations of the monitor light output waveguide 11 G and the groove 20 will be described in detail here.
  • FIG. 12 is an enlarged top view showing the vicinity of the output-side power blur 11 E and the monitor light output waveguide 11 G in FIG. 11.
  • Fig. 13 is a cross section taken along line B-B 'in Fig. 12.
  • the monitor light output waveguide 11 G is composed of a straight line portion connected to one output port of the output side force blur 11 E and a bent portion connected to the end of the straight line portion. Is done.
  • the bent portion of the monitor light output waveguide 11 G has a constant radius of curvature Rc, and its tip extends to a substrate side different from the output side of the main signal light.
  • the curvature radius Rc is set to a small value, for example, about 0.5 to 5 mm, so that the monitor light is not totally reflected on the side surface of the substrate without increasing the size of the substrate even with a narrow substrate 10. Has become.
  • the groove portion 20 is obtained by removing the peripheral substrate 10 located on the radially outside of the bent waveguide along the longitudinal direction of the bent waveguide.
  • the groove 20 is formed, for example, so that the upper end of one of the side walls formed by removing the substrate 10 is in contact with the monitor light output waveguide 11G as shown in the section 8—; 6 ′ in FIG. ing.
  • Such grooves 20 increase the effect of confining monitor light propagating in a curved waveguide having a small radius of curvature Rc.
  • the groove 20 is formed by removing the LN substrate around the bent waveguide, in particular, the LN substrate located radially outside the bent waveguide, to form the groove 20.
  • the refractive index is ideally reduced to the refractive index of air 1.0, thereby increasing the effect of confining the monitor light Lm propagating through the bent waveguide.
  • the buffer layer 16 and the adhesive are present on the upper part of the groove 20, but the refractive index of these is 1.4 to 1.5.
  • Fig. 14 shows an example of the above contents confirmed by simulation.
  • the bent waveguide is regarded as a straight waveguide having a refractive index distribution equivalent to it (see the change in the refractive index in the a-a 'section), and Is calculated.
  • the simulation results shown in the middle part of Fig. 14 show that, for the conventional curved waveguide as shown in Fig. 21 (B) above, the radius of curvature is lmm, the width of the waveguide w is 7m, and the area around the waveguide is This is an example of calculation with the refractive index set to 2.2.
  • the conventional bent waveguide almost all light leaked out of the waveguide at about 10 m after light propagation.
  • the simulation results shown in the lower part of Fig. 14 show an example of a case where the refractive index around the curved waveguide is reduced, where the radius of curvature is 0.5 mm, the width w of the waveguide is 5 ⁇ m, and the area around the waveguide is This is an example in which the calculation was performed with the refractive index of 1.0 set to 1.0. As shown in the simulation results, even when the radius of curvature is reduced to 0.5 mm, light propagates along the bent waveguide, and it can be seen that a sufficient light confinement effect can be obtained.
  • the experimental result shown in FIG. 15 is an example of measuring how the radiation loss changes when the formation position of the groove portion 20 on the radially outer side of the bent waveguide is changed.
  • the distance between the center of the bent waveguide and the upper end of the side wall of the groove 20 was Rws, and the value of Rws and the radius of curvature Rc of the bent waveguide were changed.
  • the loss of the bent waveguide is measured.
  • the measurement data shown in the middle part of Fig. 15 shows that the width D of the bent waveguide is fixed at 6 m, and the distance Rws between the bent waveguide and the groove 20 is stepwise in the range of 0 m to 3.
  • the optical waveguide device of the second embodiment the optical waveguide device having a small radius of curvature disposed in the latter half of the monitor optical output waveguide 11 G
  • the monitor light Lm propagating in the bent waveguide can be effectively confined in the waveguide, and in particular, the groove portion 20 is provided at a position in contact with the bent waveguide.
  • the monitor light can be guided to the side of the substrate different from the side of emission of the main signal light Ls without increasing the size of the substrate.
  • the light receiving element 14 can receive a sufficient amount of light.
  • the monitor light is led out to the side of the board located on the same side as the side where the electrode pads 12 C of the electrodes 12 are arranged, so that the interface with the outside of the electric signal wiring is connected to the board 10. Since the optical waveguide device can be collected on one side, it is possible to efficiently mount the optical waveguide device on an external circuit or the like. Such an optical waveguide device is useful for applications such as an optical modulator, an optical switch, and a variable optical attenuator.
  • FIGS. 16 and 17 show configurations of application examples of the second embodiment corresponding to FIGS. 8 and 9 above, respectively. deep.
  • the groove 20 is formed only on the radially outer side of the bent waveguide.
  • the same groove as on the outer side is formed on the radially inner side of the bent waveguide.
  • a bent waveguide having a cross-sectional shape similar to that of a so-called ridge waveguide can be used.
  • the Y-branch type power brass are used as the input-side and output-side power brass constituting the Mach-Zehnder optical waveguide 11. It is also possible to cope with an optical waveguide device using. Specifically, for example, as shown in FIG. 18, the main signal light is applied to an optical waveguide device in which a Mach-Zehnder optical waveguide 11 is configured by using Y-branch type force brass 11 ⁇ ′ and 11 E ′.
  • a set of bent grooves 20 ⁇ and 20 ⁇ for guiding a part of the radiation mode light leaking out of the output waveguide 11 F when L s is turned off to the side of the substrate as monitor light is LN.
  • the LN substrate portion sandwiched between the curved grooves 20A and 20B has a higher refractive index (2.1 to 2.2) than the curved grooves 20A and 20B, it is used for monitor light. Thus, the same function and effect as in the case of the above-described second embodiment can be obtained.
  • the reflection groove 13 is formed on the substrate 10 or the groove is formed outside the bent waveguide.
  • a configuration using the reflection groove 13 and the groove portion 20 can be used to guide light other than monitor light to a desired substrate side surface within a limited substrate size range.
  • the main signal light L s can be seen from the longitudinal side surface in the narrow LN substrate. Can be taken out.
  • an example using a Z-cut LN substrate has been described.
  • the present invention is not limited to this, and an optical waveguide device using an X-cut LN substrate may be used. This is also effective for optical waveguide devices using various substrates other than the LN substrate.
  • the present invention provides a desired substrate without increasing the substrate size by providing a groove in the substrate to form a reflection surface, or by providing a groove at least radially outside the bent waveguide. It is possible to provide an optical waveguide device that can guide light of sufficient power to the side surface, and to use a simple configuration to avoid the effect of chipping that occurs near the side surface of the substrate. Waveguide devices have been realized, and such optical waveguide devices are useful as, for example, optical modulators and switches used in optical communication systems, variable optical attenuators, etc., and have industrial applicability. Is big.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本発明は、光導波路を伝搬した光を限られた基板サイズの範囲内で十分なパワーを保って所望の基板側面から導き出すことのできる光導波路デバイスを提供すること目的とする。このため、本発明の光導波路デバイスは、光導波路の形成された基板に対して、光導波路の光出力側の端部近傍に溝を形成し、その溝の側壁を反射面として光導波路から出力される光を反射して、当該反射光が所望の基板側面から出射されるようにしたものである。

Description

明 細 書 光導波路デバイス 技術分野
本発明は、 光通信システムに用いられる光導波路デバイスに関し、 特に、 光出 力をモニタするための光回路の小型化などに有効な光導波路の構造に関する。 背景技術
光導波路デバイスは、 誘電体媒質中に形成された屈折率の高い部分に光を閉じ 込めて伝搬させる光導波路を使用して様々な機能を実現したデバイスである。 例 えば、 ニオブ酸リチウム (L i Nb〇3 :以下 LNと表記する) 等の誘電体を使 用してマッハツエンダ干渉計を構成した光導波路デバィスは、 電気光学定数が非 常に高く、 熱光学 (Thermal Optic: TO) 効果をもつデバイスと比較して応答 速度が速いため、 光変調器や光スィッチ、 可変光アツテネ一夕などとして広く用 いられている。
しかし、 上記のような LN等の誘電体基板を用いた光導波路デバイスは、 温度 変化により動作点がシフトする温度ドリフトと呼ばれる現象や、 直流信号を流す ことにより動作点がシフ卜する D Cドリフトと呼ばれる現象が潜在的に発生する ことが知られている。 温度ドリフ卜や D Cドリフトの発生により動作点がシフト すると、 光導波路デバイスの光出力特性が変動してしまうため、 例えば光変調器 においては常に一定な状態で変調を行うことができなくなる。
具体的に、 マッハツエンダ型の光変調器の光出力は c o s 2 (Δφ/2) に従 つて変化する。 上記のパラメ一夕 Δφは、 マッハツェング干渉計の相互作用部で 与えられる位相変化量であり、 Z—カツ卜の LN基板を用いた場合には Δ φ = {π · n e3 · r33 * 1/ · d)} · Vの関係で表される。 ただし、 n eは光 導波路の屈折率、 ァ33は電気光学定数、 1は 2本の平行な光導波路上に設けら れた電極の長さ、 λは光波長、 dは電極間の距離、 Vは印加電圧である。 この光 変調器の光出力特性は、 横軸を印加電圧 Vとすると図 19に示すような曲線とな る。
上記のような光変調器については、 通常、 電極への印加電圧が 0 Vの時にオン とオフの中間の状態となるように動作点を設定することが望まれる。 しかし、 実 際の動作点は、 製造誤差や様々な応力などが原因で所望の動作点からずれてしま うことが多い。 この動作点のずれに対しては、 直流バイアスを印加することによ つて所望の動作点への調整が行われることが一般的であるが、 直流バイアスによ り調整された動作点は前述したような D Cドリフトによりシフトしてしまう。 こ のため、 所望の動作点を安定して実現するには、 光出力を常にモニタしてその結 果を基に直流バイァスを制御することが必要となる。 このような光出力のモニタ は、 光変調器の用途だけに限られるものではなく、 例えばマッハツェング型の可 変光アツテネ一夕などでも、 温度変化等に対応して光減衰量を調整するために必 要となる。
上記のような光出力モニタの必要性に対応して、 従来、 光導波路デバイスの内 部に光出力モニタ用の受光素子を設ける技術が提案されている (例えば、 特許文 献 1参照)。
特許文献 1
特開 2 0 0 2— 1 8 2 0 5 0号公報
ところで、 従来の光導波路デバイスは、 光導波路の端面から出射される主信号 光をレンズ結合系を介して出力光ファイバに導く構成のものや、 光導波路の端面 と出力光ファイバとを直接突き合わせるバットジョイント (but t joint) 型のも のが知られている。 レンズ結合系を用いた構成では、 光導波路デバイスの主信号 光が出力される基板側面とレンズ結合系との間には所要のスペースが存在するた め、 そのスペースを利用して光出力モニタ用の受光素子を配置することができ、 十分なモニタ光を受光することが可能である。
一方、 バッ卜ジョイント型の場合では、 出力光ファイバが非常に細いので光導 波路の端面にファイバを単純に接着しただけでは強度が不足するため、 例えば図 2 0 (A) に示すように、 V溝ファイバプロックやガラスフェル一ル等のフアイ バ固定部材 1 2 0を使用して、 出力光ファイバ 1 1 0を主信号光出力側の光導波 路 1 0 1 Aの端面に固定させる必要がある。 このようなファイバ固定部材 1 2 0 を使用した構成において、 光出力モニタ用の受光素子 1 3 0をファイバ固定部材 1 2 0の裏側 (光導波路デバイスとは反対側) に配置すると、 ファイバ固定部材 1 2 0が邪魔になってモニタ側の光導波路 1 0 1 Bから出射されるモニタ光を十 分に受光することが難しくなつてしまう。 これを回避するためには、 例えば図 2 0 ( B ) に示すように、 ファイバ固定部材 1 2 0の形状等を複雑なものにしなけ ればならない。 前述した特許文献 1に示されている補強用キヤビラリは、 より複 雑な形状のファィバ固定部材の一例と考えられる。 このようなフアイパ固定部材 の複雑化は、 光導波路デバイスのコスト上昇を招いてしまうなどの問題点がある。 上記のようなバットジョイント型の構成における問題点を解消して光出力モニ 夕を確実に行うための 1つの方策として、 光導波路デバイスの主信号光が出力さ れる基板側面とは異なる基板側面 (具体的に図 2 0に示した構成では手前または 奥に位置する側面) からモニタ光を導き出すようにするのが有効である。 しかし、 このような構成を実現するためには、 次のような課題を解決する必要がある。 第 1の課題は、 例えば図 2 1に示したように、 曲がり導波路を使用してモニタ 光を導き出した場合に、 基板側面での反射および放射損失が問題となることであ る。 すなわち、 具体例として L N変調器を考えると、 通常使用される L N変調器 の基板 1 0 0の幅 wは l mm〜2 mm程度である。 このため、 モニタ側の曲がり 導波路 1 0 1 Bを伝搬した光が基板側面で全反射しない角度で導き出されるよう にするためには、 曲がり導波路 1 0 1 Bの曲率半径 R cを l mm〜2 mm前後と する必要がある。 一方、 曲がり導波路 1 0 1 Bにおいて放射損失の発生しない曲 率半径 R cは 3 0 mm以上が必要である。 このため、 図 2 1 (A) に示したよう に、 曲がり導波路 1 0 1 Bでの放射損失を防ぐために 3 0 mm以上の曲率半径 R cを確保すると、 モニタ光が基板側面で全反射してしまうと共に、 基板サイズの 大型化を招くことにもなる。 また、 図 2 1 (B ) に示したように、 基板側面での 全反射を防ぐために曲がり導波路 1 0 1 Bの曲率半径 R cを 2 mm以下に設定す ると、 モニタ光が曲がり導波路 1 0 1 Bの途中で導波路外に放射されてしまう。 従って、 単純に曲がり導波路を形成したのでは十分なモニタ光を受光することが 困難となる。
第 2の課題は、 例えば図 2 2に示すように、 基板の表面に発生したチッビング が原因となってモニタ光の受光が難しくなることである。 すなわち、 L N変調器 等を形成するチップは、 ダイシング装置などを利用して基板材料を力ットして得 られるが、 そのカツトの際にチップの上面や下面に数十/ の凹凸が発生する。 この凹凸はチッピングとも言われる。 L N変調器チップは、 T i等の拡散処理に よりチップの上面に光導波路が形成されており、 モニタ光が導き出される基板側 面にチッビングが発生していると、 十分なモニタ光を得ることが難しくなる。 従 つて、 モニタ光を取り出す基板側面についてチッピング対策等を行う必要がある。 第 3の課題は、 モニタ光を受光するための受光素子を確実に搭載することが困 難な場合が生じることである。 すなわち、 モニタ光用の受光素子の搭載方法の 1 つとして、 モニタ光を導き出す基板側面に受光素子を張り付ける方法が考えられ るが、 受光素子の大きさが 3 0 0 以上あるため、 前述したように光導波路が 基板上部に形成されている場合に受光素子を基板側面に張り付けると、 図 2 3に 示すように受光素子がチップの上面からはみ出してしまう。 このため、 受光素子 の張り付けが非常に難しくなり信頼度を含めた問題が発生する。
本発明は上記の各課題に着目してなされたもので、 光導波路を伝搬した光を限 られた基板サイズの範囲内で十分なパワーを保って所望の基板側面から導き出す ことのできる光導波路デバイスを提供することを第 1の目的とする。 また、 基板 表面に発生するチッビングの影響を抑えた光導波路デバイスを提供することを第 2の目的とする。 さらに、 基板から導き出される光を受ける受光素子を基板に確 実に搭載することのできる光導波路デバィスを提供することを第 3の目的とする。 発明の開示
このため、 本発明に係る光導波路デバイスの 1つの態様は、 基板に形成した光 導波路を備えて構成される光導波路デバイスにおいて、 前記基板に対して前記光 導波路の光出力側の端部近傍に形成した溝を有し、 該溝の側壁を反射面として前 記光導波路から出力される光を反射し、 当該反射光が基板側面から出射されるも のである。
上記のような構成の光導波路デバイスでは、 基板に形成された光導波路の端部 から出力される光が溝の反射面で反射されて伝搬方向が切り替えられ、 その反射 光が基板内を伝搬して基板側面から出射されるようになる。 これにより、 前述し た曲がり導波路を用いる場合のような基板側面での反射や放射損失の問題を回避 して、 基板サイズの大型化を招くことなく所望の基板側面に十分なパヮ一の光を 導き出すことが可能になる。
上記の光導波路デバイスについて、 溝の反射面は、 基板の表面に垂直な方向に 対して斜めに形成され、 光導波路から出力された後に基板表面に沿って伝搬する 光を、 基板表面の下方に逸れた方向に反射するようにしてもよい。 これにより、 光導波路を伝搬した光が出射される基板側面近くの表面に凹 ώ (チッビング) が 発生していても、 そのチッピングよりも下方の基板側面から光が出射されるよう になるため、 チッビングの影響による光パワーの低下を回避することが可能にな る。
また、 本発明に係る光導波路デバイスの他の態様は、 基板に形成した光導波路 を備えて構成される光導波路デバイスにおいて、 前記光導波路の一部に基板側面 まで達する曲がり導波路を有すると共に、 該曲がり導波路の少なくとも半径方向 外側に位置し、 かつ、 前記曲がり導波路の長手方向に沿って形成した溝部を備え、 該溝部内の屈折率が、 前記基板の光導波路以外の部分の屈折率よりも小さくなる ように設定されたものである。
上記のような構成の光導波路デバイスでは、 光導波路を伝搬する光は曲がり導 波路を通って所望の基板側面から出射されるようになる。 この曲がり導波路には、 少なくとも半径方向外側に、 基板の屈折率よりも小さな屈折率をもつ溝部が長手 方向に沿って形成されていて、 この溝部による光の閉じ込め効果によって曲がり 導波路を伝搬する光の放射損失が抑えられる。 これにより、 曲率半径の小さな曲 がり導波路を用いても十分なパワーの光を所望の基板端面に導き出すことが可能 になる。
また、 上記の光導波路デバイスについては、 曲がり導波路を伝搬した光が出射 される基板側面の上部に、 基板表面でのチッビングの発生を防ぐブロック材を備 えるようにしてもよい。 これにより、 チッビングの影響による光パワーの低下を 回避することが可能になる。 さらに、 基板側面から出射される光を受光するため の受光素子を上記のブロック材を利用して基板側面に張り付けるようにしてもよ い。 これにより、 基板側面への受光素子の搭載を容易かつ確実に行うことができ るようになる。
また、 本発明に係る光導波路デバイスの別の態様は、 基板上に形成されている 第 1光導波路と、 前記基板の端面の上部で前記第 1光導波路上に設けたプロック 材と、 前記第 1光導波路から分岐すると共に、 前記第 1光導波路の端部が位置す る前記基板の端面とは異なる端面で、 かつ、 前記ブロック材の下に、 光導波路の 端部を有する第 2光導波路と、 を備えて構成されるものである。
上記のような構成の光導波路デバイスでは、 第 1光導波路の端部が位置する基 板端面でのチッビングの発生と、 それとは異なる第 2光導波路の端部が位置する 基板端面でのチッビングの発生とが共通のブロック材によりそれぞれ防止される ようになるため、 第 1および第 2光導波路から出力される光に対するチッピング の影響を簡略な構成により抑えることが可能になる。
なお、 本発明の他の目的、 特徴および利点は、 添付図面に関連する実施態様に ついての以下の説明で明らかになるであろう。 図面の簡単な説明
図 1は、 本発明の第 1実施形態による光導波路デバイスの構成を示す斜視図で ある。
図 2は、 図 1の A— A, 断面を拡大して示した図である。
図 3は、 第 1実施形態における光導波路の形成工程を示す図である。
図 4は、 第 1実施形態における反射溝の形成工程を示す図である。
図 5は、 第 1実施形態における電極の形成工程を示す図である。
図 6は、 第 1実施形態において L Nチップをカットする前の基板材料を示す図 である。
図 7は、 第 1実施形態に関連した反射溝の他の構成例を示す断面図である。 図 8は、 図 7の反射溝に関連した光導波路デバイスの応用例を示す斜視図であ る。
図 9は、 図 8の応用例に関連した改良例を示す斜視図である。
図 1 0は、 第 1実施形態に関連して Y分岐力ブラを使用した場合の構成例を示 す斜視図である。
図 1 1は、 本発明の第 2実施形態による光導波路デバイスの構成を示す斜視図 である。
図 1 2は、 図 1 1の出力側力ブラおよびモニタ光出力導波路付近を拡大して示 した上面図である。
図 1 3は、 図 1 2の B— B ' 断面を拡大して示した図である。
図 1 4は、 第 2実施形態におけるモニタ光の閉じ込め効果を確認するためのシ ミュレーション結果を示す図である。
図 1 5は、 第 2実施形態におけるモニタ光の閉じ込め効果を確認するための実 験結果を示す図である。
図 1 6は、 第 2実施形態に関連した光導波路デバイスの応用例を示す斜視図で ある。
図 1 7は、 図 1 6の応用例に関連した改良例を示す斜視図である。
図 1 8は、 第 2実施形態に関連して Y分岐力ブラを使用した場合の構成例を示 す斜視図である。
図 1 9は、 一般的なマッハツエンダ型光変調器の光出力特性を示す図である。 図 2 0は、 従来のパットジョイント型についての問題点を説明する図である。 図 2 1は、 曲がり導波路を適用した場合の課題を説明する図である。
図 2 2は、 モニタ光に対するチッビングの影響を説明する図である。
図 2 3は、 従来のモニタ光用受光素子の搭載方法の問題点を説明する図である。 発明を実施するための最良の形態
以下、 本発明に係る光導波路デバイスの実施形態について添付図面に基づいて 説明する。 なお、 全図を通して同一の符号は同一または相当部分を示すものとす る。
図 1は、 本発明の第 1実施形態による光導波路デバイスの構成を示す斜視図で ある。
図 1において、 本実施形態の光導波路デバイスは、 例えば、 基板 1 0の表面に 形成したマッハツェング型の光導波路 1 1と、 その光導波路 1 1に沿って基板 1 0の表面に形成した電極 1 2と、 光導波路 1 1のモニタ光出力側の端部近傍に形 成した反射溝 1 3と、 その反射溝 1 3で反射され基板 1 0の側面から出射される モニタ光を受光する受光素子 1 4と、 光入出力端でのチッビングの影響を防ぐプ ロック材 1 5と、 を備えて構成される。
基板 1 0は、 例えば Z—カツ卜の L N基板等が使用される。 光導波路 1 1は、 入力導波路 1 1 A、 入力側力ブラ 1 1 B、 平行導波路 1 1 C , 1 1 D、 出力側力 ブラ 1 1 E、 主信号光出力導波路 1 1 Fおよびモニタ光出力導波路 1 1 Gからな り、 マッハツエンダ干渉計を構成している。 入力導波路 1 1 Aは、 基板 1 0の一 側面 (図 1中の左側側面) に臨む一端から光 Lが入力され、 他端が入力側力ブラ 1 1 Bの 2つの入力ポートうちの一方に接続されている。 入力側力ブラ 1 1 Bは、 入力導波路 1 1 Aからの光 Lを 2つに分岐して各平行導波路 1 1 C, 1 I Dに与 える。 出力側力ブラ 1 1 Eは、 各々の平行導波路 1 1 C, 1 I Dを合波した後に 主信号光 L sおよびモニタ光 L mに分岐して主信号光出力導波路 1 1 Fおよびモ 二夕光出力導波路 1 1 Gにそれぞれ与える。 ここでは、 入力側および出力側の力 ブラ 1 1 B, 1 I Eとして、 例えば方向性結合器またはマルチモード干渉 (MM I ) 力ブラが使用される。
電極 1 2は、 例えば、 電極パターン 1 2 A, 1 2 Bおよび電極パッド 1 2 Cか ら構成される。 電極パターン 1 2 Aは、 平行導波路 1 1 D上を通る所要の形状に パ夕一ニングされている。 一方、 電極パターン 1 2 Bは、 電極パターン 1 2 Aと は一定の距離を隔てて、 平行導波路 1 1 C上を通る所要の形状にパターニングさ れている。 電極パッド 1 2 Cは、 各電極パターン 1 2 A, 1 2 Bに高周波電気信 号を印加するための端子に相当するものであり、 ここではモニタ光が導き出され る基板側面 (図 1中の奥側に位置する側面) の近くに配置されている。 なお、 一 方の電極パターンを接地電極として使用する場合には、 その電極パッドを接地端 子に接続する。
反射溝 1 3は、 例えばフオトリソグラフィ一法などを利用して、 基板 1 0表面 の所定の位置に所望の形状の溝を設けることによって、 モニタ光出力導波路 1 1 Gの終端から基板 1 0内に放射されるモニタ光 L mを反射する反射面 1 3 Aを形 成し、 その反射光 L m' が基板側面 (図 1中の奥側に位置する側面) に向けて伝 搬するようにしたものである。 この反射溝 1 3は、 例えば図 2の A— A ' 断面図 に示すように、 反射面 1 3 Aが基板 1 0の垂直方向に対して斜めに傾いており、 基板 1 0の表面に沿って伝搬するモニタ光 L mの反射光 L m ' が基板 1 0の下方 に若干逸れて伝搬するようになっている。
なお、 図 2中の符号 1 6は、 基板 1 0の表面全体に形成したバッファ層を示し ており、 符号 1 7は、 バッファ層 1 6上に形成した S i膜を示している。 バッフ ァ層 1 6は、 電極 1 2による光の吸収損失防止とインピーダンス整合とを実現す るためのものであり、 具体的には S i 02等からなる。 また、 S i膜 1 7は、 温 度ドリフトを抑圧するためのものである。
受光素子 1 4は、 反射溝 1 3で反射されて基板側面から出射されるモニタ光 L m' を受光し、 モニタ光 Lm' のパワーに応じて変化する電気信号を発生する。 この受光素子 1 4は、 基板側面から出射されるモニタ光 L m ' を受光可能な任意 の位置に配置することができ、 例えば、 基板側面に張り付けてもよく、 また、 基 板側面から所要の距離隔てた位置に取り付けてもよい。
ブロック材 1 5は、 上述したような基板 1 0の表面に発生するチッビングが入 出力光に影響を与えないようにするために、 基板 1 0の対向する両側面 (図 1中 の左側および右側の各側面) の上部にガラスや L Nブロック等を張り付けたもの である。 ただし、 このブロック材 1 5は、 入出力光に対するチッピングの影響が 小さい場合には省略することも可能である。
なお、 主信号光 L sが出力される基板 1 0の側面には、 図示を省略したが、 主 信号光出力導波路 1 1 Fの一端にパットジョイントされる出力光ファイバを固定 するためのファイバ固定部材 (例えば、 V溝ファイバプロックやガラスフェルー ル等) が設けられている (図 2 0参照)。
ここで、 上記のような光導波路デバイスの製造方法について具体的に説明する。 まず、 例えば図 3に示す各工程に従って、 L N基板 1 0に対する光導波路 1 1 の形成を行う。 具体的には、 L N基板 1 0に対して光導波路 1 1となるべきチタ ン (T i ) 等の蒸着を行い、 1 0 0 0 A程度の T i膜を形成する (図 3 (A) お よび (B ))。 そして、 その T i層上にフォトレジストを 1 m前後塗布した後、 一般的なフォトリソグラフィ一法によりマッハツエンダ干渉計に対応させてレジ ストをパ夕一ニングし、 さらに、 そのレジストをマスクとして T i膜のパターン 化を行う (図 3 (C))。 なお、 上記のパターン化に際しては、 ドライエッチング を適用してもゥエツ卜エッチングを適用してもよい。 T i膜のパターン化が終わ ると、 T iを 1000°C〜1100°CにてLN基板10内に拡散して表面近傍に マッハツエンダ型の光導波路 1 1を形成する (図 3 (D))。
なお、 上記の工程では、 T iを熱拡散させて LN基板 10に光導波路 11を形 成する一例を示したが、 例えば、 T iに代えて Mgを用いてもよい。 また、 T i 膜をパターン化した後にプロトン交換法を用いて光導波路 11を形成することも 可能である。
次に、 例えば図 4に示す各工程に従って反射溝 13の形成を行う。 まず、 上記 光導波路 11の形成の場合と同様にして、 フォトリソグラフィ一法により基板 1 0上の所定の位置に反射溝形成用のパターンを作成する。 その際、 反射溝 13の 反射面 13 Aを基板 10の垂直方向に対して斜めに形成するべく、 例えば、 レジ ストを段階状にずらしてパターニングして斜めのレジストを実現する (図 4 (A))。 そして、 このレジス卜をマスクとして、 ドライエッチングにより基板 1 0に対して反射溝 13を形成する (図 4 (B))。 このとき、 レジストが斜めに形 成されているので反射溝 13の側壁は斜めに形成されるようになる (図 4 (C))。 光導波路 1 1および反射溝 13の形成が終わると、 次に、 例えば図 5に示す各 工程に従って電極 12の形成を行う。 まず、 電極による光の吸収損失を防止する と共にインピーダンスの整合をとるためのバッファ層 16を、 スパッ夕や電子ビ —ム (EB) 蒸着器等を使用して、 基板 10の表面に形成する (図 5 (A) およ び (B))。 このバッファ層の厚さは、 必要帯域や電気反射量に応じて最適化され るが、 0. 5 Π!〜 1. 0 mが一般的である。 バッファ層 16が形成されると、 温度ドリフトを抑圧するための S i膜 17を、 スパッ夕等にてバッファ層 16上 に蒸着する (図 5 (C))。 S i膜 17の厚さは、 0. 1 m前後とするのがよレ^ 次に、 電極形成用の下地として金 (Au) の蒸着を行う。 この金の蒸着は EB蒸 着器等を用いて 0. 1 m程度の厚さで行う。 そして、 前述の光導波路 11の形 成の場合と同様にしてレジストのパターン化後にエッチングを行い、 さらに、 電 極用の金メッキを行う (図 5 (D))。 この金メッキの厚さも、 バッファ層の厚さ と同様に、 必要帯域や電気反射量に応じて最適化されるが、 5〜2 0 /x m程度が 一般的である。
上記のようにして基板 1 0に対する光導波路 1 1、 反射溝 1 3、 バッファ層 1 6、 S i膜 1 7および電極 1 2の形成が終わると、 次に、 基板 1 0の光入出力端 の上部にチッビング防止用のブロック材 1 5を張り付ける。 図 6は、 プロック材 1 5が張り付けられた基板材料の上面図である。 この基板材料のブロック材上の 点線部分と各 L Nチップの境界部とをダイシング装置などを利用して力ットした 後、 モニタ光が導き出される基板側面の所定の位置に受光素子 1 4を取り付ける。 上述したような一連の工程により製造された光導波路デバイスでは、 基板 1 0 の光入力側面に与えられた光 Lが、 入力導波路 1 1 Aを伝搬して入力側力ブラ 1 1 Bで 2分岐され、 各平行導波路 1 1 C, 1 I Dをそれぞれ伝搬する。 このとき、 電極パターン 1 2 A, 1 2 Bに印加される電気信号に応じて、 各平行導波路 1 1 C , 1 1 Dを伝搬する光に位相差が与えられ、 出力側力ブラ 1 1 Eで各々の光が 合波された後に主信号光 L sおよびモニタ光 Lmにそれぞれ分岐される。 主信号 光 L sは、 主信号光導波路 1 1 Fを伝搬して基板 1 0の側面から出射され、 主信 号光導波路 1 1 Fの端面にバットジョイントされた出力光ファイバに導かれる。 一方、 出力側力ブラ 1 1 Eで分岐されたモニタ光 L mは、 モニタ光出力導波路 1 1 Gを伝搬して、 その端面から基板 1 0内に放射され、 反射溝 1 3の反射面 1 3 Aに到達して反射される。 反射面 1 3 Aで反射されたモニタ光 L m' は、 前述 の図 2に示したように反射面 1 3 Aが基板 1 0の垂直方向に対して斜めになつて いるので、 基板 1 0の表面に対して下方に逸れた方向に向けて基板 1 0内を伝搬 し、 主信号光 L sの出射側面とは異なる基板側面に導き出される。 このため、 基 板側面に到達したモニタ光 L m' は、 基板表面に発生するチッビングよりも下方 の位置から出射されるようになり、 チッビングの影響を受けることなく受光素子 1 4で受光されるようになる。 なお、 チッピングは基板の表面だけでなく裏面に も発生するため、 基板側面に到達するモニタ光 L m ' が表裏面のチッビングの中 間の位置から導き出されるように、 反射面 1 3 Aの傾斜角度を設定するのが望ま しい。
そして、 受光素子 1 4では、 受光したモニタ光 L m' が電気信号に変換され、 その電気信号が図示しない制御部等に送られて光導波路デバイスの動作点などの フィードバック制御に利用される。
このように第 1実施形態の光導波路デバイスによれば、 モニタ光出力導波路の 先に反射溝 1 3を設けてモニタ光 L mを反射させるようにしたことで、 基板サイ ズの大型化を招くことなく主信号光 L sの出射側面とは異なる基板側面にモニタ 光 L m 'を導き出すことができるようになる。 これにより、 バットジョイント型 の場合においても受光素子 1 4で十分なモニタ光を受光することができ、 光導波 路デバイスの動作点などのフィードバック制御を確実に行うことが可能になる。 また、 基板 1 0の表面に垂直な方向に対して斜めの反射面 1 3 Aを形成したこと で、 モニタ光が導き出される基板側面にチッビングが発生していても、 そのチッ ビングよりも下方からモニタ光が出射されるようになるため、 チッビングの影響 によるモニタ光の低下を回避することができる。 さらに、 電極 1 2の電極パッド 1 2 Cが配置される側と同じ側に位置する基板側面にモニタ光を導き出すように したことで、 電気信号配線の外部とのインタ一フェースを基板 1 0の 1つの側面 に集めることができるため、 光導波路デバイスを外部回路等に効率的に搭載する ことが可能になる。 このような光導波路デバイスは、 例えば光変調器ゃ光スイツ チ、 可変光アツテネ一夕などの用途に有用である。
なお、 上記の第 1実施形態では、 モニタ光を導き出す基板側面でのチッピング の影響を考慮して斜めの反射面 1 3 Aを設けるようにしたが、 チッビングの影響 が小さい場合には、 例えば図 7の A— A ' 断面図に示すように基板 1 0の表面に 垂直となるような反射面 1 3 Aを形成して、 反射面 1 3 Aで反射されたモニタ光 Lm' が基板表面に沿って伝搬されるようにしても構わない。 また、 図 7のよう な垂直な反射面 1 3 Aを設けた場合の応用例として、 例えば図 8に示すように、 モニタ光が導き出される基板側面の上部にブロック材 1 6を張り付けるようにす れば、 主信号光 L sの出力側面と同様にして、 モニタ光に対するチッビングの影 響を抑えることが可能である。 この場合、 プロック材 1 6を利用して受光素子 1 4を基板側面に張り付けることが可能になるため、 受光素子 1 4の搭載を容易に 行うことができ信頼度の向上を図ることも可能になる。 さらに、 例えば図 9に示 すように、 主信号光 L sの出力側面の上部に設けたブロック材 1 5の下方に位置 する基板側面からモニタ光が導き出されるように、 ブロック材 1 5の形状や反射 溝 1 3の配置などを設計することにより、 プロック材の部品点数を減らしてコス 卜の削減を図ることが可能になる。 加えて、 上記図 8や図 9の構成において、 厚 さが 3 0 0 m以上のブロック材を使用するようにすれば、 基板側面およびプロ ック材に対して受光素子 1 4の全面を張り付けることができるため、 一層安定し た受光素子 1 4の取り付けが可能になる。
また、 上記の第 1実施形態では、 マッハツエンダ型の光導波路 1 1を構成する 入力側および出力側の各力ブラ 1 1 B , 1 1 Eとして方向性結合器または MM I 力ブラを使用する場合を説明したが、 例えば図 1 0に示すように、 Y分岐型カブ ラ 1 1 B ', 1 1 E ' を用いてマッハツェング型の光導波路 1 1を構成したとき にも本発明は有効である。 この場合、 各平行導波路 1 1 C, 1 I Dを伝搬する光 に 7tの奇数倍の位相差が与えられると、 各々の光は出力側力ブラ 1 1 E, で合波 されることで互いに打ち消し合って主信号光 L sがオフ状態となる。 このとき、 打ち消し合った光は出力導波路 1 1 Fの外に漏れ出して基板 1 0内に放射される ことになる。 この出力導波路 1 1 F外の基板 1 0内を伝搬する放射モード光の一 部 (図 1 0では出力導波路 1 1 Fよりも奥側の基板内に放射された光) をモニタ 光 L mとして反射溝 1 3で反射させ、 その反射光 L m' を主信号光 L sの出力側 面とは異なる基板側面に導き出すことで、 前述の第 1実施形態の場合と同様の作 用効果を得ることが可能になる。
次に、 本発明の第 2実施形態について説明する。
図 1 1は、 第 2実施形態の光導波路デバイスの構成を示す斜視図である。 図 1 1において、 本実施形態の光導波路デバイスの構成が上述の図 1に示した 第 1実施形態の場合と異なる部分は、 モニタ光出力導波路 1 1 Gに曲率半径の小 さな曲がり導波路を適用すると共に、 その曲がり導波路の半径方向外側に溝部 2 0を形成した部分である。 上記以外の他の部分の構成は第 1実施形態の場合と同 様である。 このため、 ここではモニタ光出力導波路 1 1 Gおよび溝部 2 0の構成 について詳しく説明する。
図 1 2は、 図 1 1における出力側力ブラ 1 1 Eおよびモニタ光出力導波路 1 1 G付近を拡大して示した上面図である。 また、 図 1 3は、 図 1 2の B— B ' 断面 を示す図である。
モニタ光出力導波路 1 1 Gは、 図 1 2に示すように、 出力側力ブラ 1 1 Eの一 方の出力ポー卜に繋がる直線部分と、 その直線部分の先に繋がる曲がり部分とか ら構成される。 モニタ光出力導波路 1 1 Gの曲がり部分は、 ここでは一定の曲率 半径 R cを有し、 その先端が主信号光の出力側面とは異なる基板側面まで伸びて いる。 上記の曲率半径 R cは、 例えば 0 . 5〜 5 mm程度の小さな値に設定され、 幅の狭い基板 1 0でも基板サイズの大型化を招くことなく基板側面でモニタ光が 全反射しないようになっている。
溝部 2 0は、 上記曲がり導波路の半径方向外側に位置する周囲の基板 1 0を曲 がり導波路の長手方向に沿って除去したものである。 この溝部 2 0は、 例えば図 1 3の8—;6 ' 断面図に示すように、 基板 1 0を取り除いて形成した一方の側壁 の上端がモニタ光出力導波路 1 1 Gに接するようになつている。 このような溝部 2 0は、 曲率半径 R cの小さな曲がり導波路を伝搬するモニタ光の閉じ込め効果 を増大させる。
ここで、 上記の溝部 2 0によるモニタ光の閉じ込め効果について具体的に説明 する。
上述の図 2 1 (B ) に示したような曲率半径 R cの小さな曲がり導波路につい ては、 放射損失の発生を限りなく小さくすることが重要となる。 放射損失の低減 を図るための 1つの手段として、 曲がり導波路の周囲の屈折率を小さくして曲が り導波路における光の閉じ込め効果を大きくすることが有効である。 具体的に、 L N基板上に形成された曲がり導波路の場合、 曲がり導波路の周りを囲む L N基 板の屈折率は一般的に 2 . 1〜2 . 2であり、 この屈折率をできるだけ小さくす ることで放射損失を低減させることが可能となる。 このため、 第 2実施形態では、 曲がり導波路の周囲の L N基板、 特に、 曲がり導波路の半径方向外側に位置する L N基板を除去して溝部 2 0を形成することで、 その溝部 2 0の屈折率が理想的 には空気の屈折率 1 . 0にまで小さくなるようにして、 曲がり導波路を伝搬する モニタ光 L mの閉じ込め効果を増大させている。 実際には、 図 1 3の断面図に示 したように、 溝部 2 0の上部にはバッファ層 1 6や接着剤が存在することになる が、 これらの屈折率は 1 . 4〜1 . 5程度であり L N基板の屈折率に比べて十分 に小さいため、 光の閉じ込め効果は大きい。 上記の内容をシミュレーションによ り確認した一例を図 14に示す。
上記のシミュレーションでは、 図 14の上段に示すように、 曲がり導波路を、 それと等価な屈折率分布 (a— a' 断面における屈折率の変化を参照) を有する 直線導波路に見立てて、 導波路を伝搬する光の強度を計算している。 図 14の中 段に示すシミユレーション結果は、 上述した図 21 (B) に示したような従来の 曲がり導波路について、 曲率半径を lmm、 導波路の幅 wを 7 m、 導波路周囲 の屈折率を 2. 2に設定して計算を行った一例である。 このシミュレーション結 果に示すように、 従来の曲がり導波路では、 光の伝搬後 10 m程度で殆ど全て の光が導波路外に漏れ出していることが分かる。 一方、 図 14の下段に示すシミ ユレーシヨン結果は、 曲がり導波路の周囲の屈折率を小さくした場合の一例とし て、 曲率半径を 0. 5mm、 導波路の幅 wを 5^m、 導波路周囲の屈折率を 1. 0に設定して計算を行った一例である。 このシミュレーション結果に示すように、 曲率半径を 0. 5mmまで小さくした場合でも、 曲がり導波路に沿って光が伝搬 しており、 十分な光の閉じ込め効果が得られることが分かる。
また、 図 15に示す実験結果は、 曲がり導波路の半径方向外側における溝部 2 0の形成位置を変化させた場合に放射損失がどのように変化するかを測定した一 例である。 ここでの実験は、 図 15の上段に示すように、 曲がり導波路の中心と 溝部 20の側壁の上端との間の距離を Rwsとし、 その Rwsの値および曲がり 導波路の曲率半径 Rcを変化させて、 曲がり導波路の損失の測定を行っている。 具体的に、 図 15の中段に示した測定データは、 曲がり導波路の幅 Dを 6 mに 固定し、 曲がり導波路と溝部 20の間の距離 Rwsを 0 m〜3 の範囲で段 階的に設定したときに得られる、 曲率半径 Rcに対する損失をまとめたものであ る。 この測定データより、 Rwsを 3 mに設定したとき、 すなわち、 溝部 20 の側壁の上端が曲がり導波路に接するような位置関係の場合に損失が最も減少す ることが分かる。 また、 Rwsを 3 mよりも短くしたとき、 すなわち、 曲がり 導波路の一部を除去した状態においても、 曲率半径 R cの設定によっては損失を 比較的小さな値に抑えることができることも分かる。 さらに、 図 15の下段に示 した測定データは、 曲率半径 Rcを lmmに固定し、 曲がり導波路の幅 Dを 6 m〜l 0 i mの範囲で段階的に設定したときに得られる、 Rw sに対する損失を まとめたものである。 この測定データからは、 例えば曲がり導波路の幅を 6 t m とした場合に顕著なように、 尺3 が3 111を超ぇる、 すなわち、 曲がり導波路 と溝部 2 0が接した状態 (R s w- S ^ m) から離れて行くと、 損失が増大する 傾向にあることが分かる。
上記のようなシミュレ一ションおよび実験の結果より、 第 2実施形態の光導波 路デバイスによれば、 モニタ光出力導波路 1 1 Gの後半に配置された曲率半径の 小さな曲がり導波路に対して溝部 2 0を形成することによって、 曲がり導波路を 伝搬するモニタ光 L mを導波路内に効果的に閉じ込めておくことができ、 特に、 曲がり導波路に接するような位置に溝部 2 0を設けるようにすれば、 モニタ光出 力導波路 1 1 Gの曲がり部分での放射損失をより効果的に低減することが可能に なる。 従って、 第 1実施形態の場合に得られる効果と同様に、 基板サイズの大型 化を招くことなく主信号光 L sの出射側面とは異なる基板側面にモニタ光を導き 出すことができ、 バットジョイント型の場合においても受光素子 1 4で十分なモ 二夕光を受光することが可能になる。 また、 電極 1 2の電極パッド 1 2 Cが配置 される側と同じ側に位置する基板側面にモニタ光を導き出すようにしたことで、 電気信号配線の外部とのィン夕ーフェースを基板 1 0の 1つの側面に集めること ができるため、 光導波路デバイスを外部回路等に効率的に搭載することが可能に なる。 このような光導波路デバイスは、 例えば光変調器や光スィッチ、 可変光ァ ッテネー夕などの用途に有用である。
なお、 上記の第 2実施形態では、 モニタ光に対するチッビングの影響について 特に考慮していないが、 上述の図 8に示した場合と同様にして、 モニタ光が導き 出される基板側面の上部にブロック材 1 6を張り付けて、 モニタ光に対するチッ ビングの影響を抑えるようにすることも勿論可能である。 また、 上述の図 9に示 した場合と同様にして、 主信号光 L sの出力側面の上部に設けたブロック材 1 5 の下方に位置する基板側面からモニタ光が導き出されるように、 ブロック材 1 5 およびモニタ光出力導波路 1 1 Gの形状を設計することにより、 ブロック材の部 品点数を減らしてコストの削減を図ることが可能になる。 上記の図 8および図 9 に対応した第 2実施形態の応用例の構成を図 1 6および図 1 7にそれぞれ示して おく。
また、 上記の第 2実施形態では、 曲がり導波路の半径方向外側にだけ溝部 2 0 を形成するようにしたが、 曲がり導波路の半径方向内側についても、 外側と同様 の溝部を形成するようにして、 いわゆるリッジ導波路と同様な断面形状を有する 曲がり導波路とすることも可能である。
加えて、 上記のような曲がり導波路の両側に溝部を形成する構成を応用するこ とにより、 マッハツエンダ型の光導波路 1 1を構成する入力側および出力側の各 力ブラとして Y分岐型力ブラを用いた光導波路デバイスについても対応すること が可能である。 具体的には、 例えば図 1 8に示すように、 Y分岐型力ブラ 1 1 Β ' , 1 1 E ' を用いてマッハツエンダ型の光導波路 1 1を構成した光導波路デ バイスについて、 主信号光 L sがオフ状態となるときに出力導波路 1 1 Fの外に 漏れ出す放射モード光の一部をモニタ光として基板側面に導き出すための 1組の 曲がり溝部 2 0 Α, 2 0 Βを L N基板 1 0に形成する。 曲がり溝部 2 0 A, 2 0 Bによって挟まれた L N基板部分は、 曲がり溝部 2 0 A, 2 0 Bに比べて高い屈 折率 (2 . 1〜2 . 2 ) を有するため、 モニタ光用の曲がり導波路として機能す るようになり、 前述した第 2実施形態の場合と同様の作用効果を得ることが可能 になる。
また、 上述した第 1および第 2実施形態では、 十分なモニタ光を所望の基板側 面に導き出すために、 基板 1 0に対して反射溝 1 3を形成したり、 曲がり導波路 の外側に溝部 2 0を設けたりしたが、 このような反射溝 1 3や溝部 2 0を利用し た構成は、 モニタ光以外の光を限られた基板サイズの範囲内で所望の基板側面に 導き出す場合にも応用可能である。 例えば、 上述した各実施形態の主信号光 L s 側の出力導波路についてモニタ光側と同様の構成を適用することにより、 幅の狭 い L N基板内の長手方向の側面から主信号光 L sを取り出すことが可能になる。 加えて、 上述した第 1および第 2実施形態では、 Z—カットの L N基板を使用 した一例について説明したが、 本発明はこれに限らず、 X—カットの L N基板を 使用した光導波路デバイスに対しても有効であり、 さらには、 L N基板以外の各 種の基板を用いた光導波路デバイスについても適用することが可能である。 産業上の利用可能性
本発明は、 基板に対して溝を設けて反射面を形成し、 あるいは、 曲がり導波路 の少なくとも半径方向外側に溝部を設けるようにしたことで、 基板サイズの大型 化を招くことなく所望の基板側面に十分なパワーの光を導き出すことの可能な光 導波路デバイスを提供することができ、 また、 基板側面付近に発生するチッピン グの影響も簡略な構成によつて回避することが可能な光導波路デバイスが実現さ れ、 このような光導波路デバイスは、 例えば、 光通信システムに用いられる光変 調器や光スィッチ、 可変光アツテネ一夕などとして有用であり、 産業上の利用可 能性が大である。

Claims

請 求 の 範 囲
1 . 基板に形成した光導波路を備えて構成される光導波路デバイスにおいて、 前記基板に対して前記光導波路の光出力側の端部近傍に形成した溝を有し、 該 溝の側壁を反射面として前記光導波路から出力される光を反射し、 当該反射光が 基板側面から出射されることを特徴とする光導波路デバイス。
2 . 請求項 1に記載の光導波路デバイスであって、
前記光導波路は、 入力導波路と、 該入力導波路を伝搬した光を 2つに分岐する 入力側力ブラと、 該入力側力ブラで分岐された各光が与えられる一対の平行導波 路と、 該各平行導波路を伝搬した光を合波する出力側力ブラと、 該出力側力ブラ を伝搬した光が与えられる出力導波路とを備え、 マッハツエンダ干渉計を構成し、 前記溝は、 前記出力導波路のモニタ光が出力される端部近傍に形成され、 前記 反射面で反射したモニタ光を基板側面に導き出すことを特徴とする光導波路デバ イス。
3 . 請求項 1に記載の光導波路デバイスであつて、
前記溝の反射面は、 前記基板の表面に垂直な方向に対して斜めに形成され、 前 記光導波路から出力された後に基板表面に沿って伝搬する光を、 基板表面の下方 に逸れた方向に反射することを特徴とする光導波路デバイス。
4. 請求項 3に記載の光導波路デバイスであって、
前記溝の反射面は、 基板表面および基板裏面から予め設定した距離だけそれぞ れ離れた領域内に位置する前記基板側面から反射光が出射されるように、 前記基 板の表面に垂直な方向に対して斜めに形成されることを特徴とする光導波路デバ イス。
5 . 請求項 1に記載の光導波路デバイスであって、
前記光導波路から出力され前記溝で反射された光が出射される基板側面の上部 に、 基板表面でのチッビングの発生を防ぐブロック材を備えたことを特徴とする 光導波路デバイス。
6 . 請求項 2に記載の光導波路デバィスであって、
前記出力導波路から出力され前記溝で反射されたモニタ光が出射される基板側 面の上部と、 前記出力導波路を伝搬した主信号光が出射される基板側面の上部と に、 基板表面でのチッビングの発生を防ぐブロック材をそれぞれ備えたことを特 徵とする光導波路デパイス。
7 . 請求項 6に記載の光導波路デバイスであって、
前記溝で反射されたモニタ光が、 主信号光側に対応する前記プロック材の下方 に位置する基板側面から出射されるようにして、 モニタ光側に対応する前記プロ ック材を主信号光側と共通化したことを特徴とする光導波路デバイス。
8 . 請求項 6に記載の光導波路デバイスであって、
モニタ光を受光するための受光素子を備え、 該受光素子が、 前記ブロック材を 利用してモニタ光が出射される基板側面に張り付けられたことを特徴とする光導 波路デバイス。
9 . 請求項 2に記載の光導波路デバィスであって、
前記出力側力ブラが、 方向性結合器およびマルチモード干渉力ブラのいずれか であり、
前記出力導波路は、 前記出力側力ブラの主信号光が出力されるポートに接続す る主信号光出力導波路と、 前記出力側力ブラのモニタ光が出力されるポートに接 続するモニタ光出力導波路と、 を有することを特徴とする光導波路デバイス。
1 0 . 請求項 2に記載の光導波路デバイスであって、
前記出力側力ブラが、 Y分岐力ブラであり、 該 Y分岐力ブラの合波ポー卜に前 記出力導波路が接続し、 主信号光がオフ状態になるときに前記出力導波路外に漏 れ出す光をモニタ光として使用することを特徴とする光導波路デバイス。
1 1 . 請求項 2に記載の光導波路デバイスであって、
前記平行導波路に対応させて設けられた電極を有し、 該電極に外部より電気信 号を印加するための電極パッドが配置される側の基板側面に、 前記溝で反射され た光が出射されることを特徴とする光導波路デバイス。
1 2 . 基板に形成した光導波路を備えて構成される光導波路デバイスにおいて、 前記光導波路の一部に基板側面まで達する曲がり導波路を有すると共に、 該曲 がり導波路の少なくとも半径方向外側に位置し、 かつ、 前記曲がり導波路の長手 方向に沿って形成した溝部を備え、 該溝部内の屈折率が、 前記基板の光導波路以 外の部分の屈折率よりも小さくなるように設定されていることを特徴とする光導 波路デバイス。
1 3 . 請求項 1 2に記載の光導波路デバイスであって、
前記光導波路は、 入力導波路と、 該入力導波路を伝搬した光を 2つに分岐する 入力側力ブラと、 該入力側力ブラで分岐された各光が与えられる一対の平行導波 路と、 該各平行導波路を伝搬した光を合波する出力側力ブラと、 該出力側力ブラ から出力される主信号光が与えられる主信号光出力導波路と、 前記出力側力ブラ から出力されるモニタ光が与えられるモニタ光出力導波路と、 を備え、 マツハツ エング干渉計を構成し、
前記モニタ光出力導波路の一部に前記曲がり導波路を有し、 該曲がり導波路を 伝搬したモニタ光が基板側面から出射されることを特徴とする光導波路デバイス。
1 4 . 請求項 1 2に記載の光導波路デバイスであって、
前記溝部は、 その側壁が前記曲がり導波路に接する位置に形成されることを特 徵とする光導波路デバイス。
1 5 . 請求項 1 2に記載の光導波路デバイスであって、
前記曲がり導波路を伝搬した光が出射される基板側面の上部に、 基板表面での チッビングの発生を防ぐブロック材を備えたことを特徴とする光導波路デバイス。
1 6 . 請求項 1 3に記載の光導波路デバイスであって、
前記モニタ光出力導波路を伝搬したモニタ光が出射される基板側面の上部と、 前記主信号光出力導波路を伝搬した主信号光が出射される基板側面の上部とに、 基板表面でのチッピングの発生を防ぐブロック材をそれぞれ備えたことを特徴と する光導波路デバイス。
1 7 . 請求項 1 6に記載の光導波路デバイスであって、
前記モニタ光出力導波路を伝搬したモニタ光が、 主信号光側に対応する前記ブ ロック材の下方に位置する基板側面から出射されるようにして、 モニタ光側に対 応する前記プロック材を主信号光側と共通化したことを特徴とする光導波路デバ イス。
1 8 . 請求項 1 6に記載の光導波路デバイスであって、
モニタ光を受光するための受光素子を備え、 該受光素子が、 前記ブロック材を 利用してモニタ光が出射される基板側面に張り付けられたことを特徴とする光導 波路デバイス。
1 9 . 請求項 1 3に記載の光導波路デバィスであって、
前記出力側力ブラが、 方向性結合器およびマルチモード干渉力ブラのいずれか であることを特徴とする光導波路デバイス。
2 0 . 請求項 1 3に記載の光導波路デバイスであって、
前記平行導波路に対応させて設けられた電極を有し、 該電極に外部より電気信 号を印加するための電極パッドが配置される側の基板側面に、 前記曲がり導波路 を伝搬したモニタ光が出射されることを特徴とする光導波路デバイス。
2 1 . 基板に形成した光導波路を備えて構成される光導波路デバイスにおいて、 前記光導波路は、 入力導波路と、 該入力導波路を伝搬した光を 2つに分岐する 入力側力ブラと、 該入力側力ブラで分岐された各光が与えられる一対の平行導波 路と、 該各平行導波路を伝搬した光を合波する Y分岐力ブラと、 該 Y分岐力ブラ から出力される主信号光が与えられる出力導波路と、 を備え、 マッハツェング干 渉計を構成し、
前記出力導波路から漏れ出す光をモニタ光として、 前記出力導波路を伝搬した 主信号光が出射される基板側面とは異なる基板側面に前記モニタ光を導き出すた めの 1組の曲がり溝部を前記基板に形成し、 該各曲がり溝部内の屈折率が、 各々 の曲がり溝部の間に位置する前記基板の屈折率よりも小さくなるように設定され ていることを特徴とする光導波路デバイス。
2 2 . 基板上に形成した第 1光導波路と、
前記基板の端面の上部で前記第 1光導波路上に設けたプロック材と、
前記第 1光導波路から分岐すると共に、 前記第 1光導波路の端部が位置する前 記基板の端面とは異なる端面で、 かつ、 前記ブロック材の下に、 光導波路の端部 を有する第 2光導波路と、 を備えて構成されることを特徴とする光導波路デバィ ス。
PCT/JP2003/004845 2003-04-16 2003-04-16 光導波路デバイス WO2004092792A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2003/004845 WO2004092792A1 (ja) 2003-04-16 2003-04-16 光導波路デバイス
JP2004570888A JP3967356B2 (ja) 2003-04-16 2003-04-16 光導波路デバイス
US11/248,232 US7386198B2 (en) 2003-04-16 2005-10-13 Optical waveguide device
US12/149,748 US7787717B2 (en) 2003-04-16 2008-05-07 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/004845 WO2004092792A1 (ja) 2003-04-16 2003-04-16 光導波路デバイス

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/248,232 Continuation US7386198B2 (en) 2003-04-16 2005-10-13 Optical waveguide device

Publications (1)

Publication Number Publication Date
WO2004092792A1 true WO2004092792A1 (ja) 2004-10-28

Family

ID=33193239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004845 WO2004092792A1 (ja) 2003-04-16 2003-04-16 光導波路デバイス

Country Status (3)

Country Link
US (2) US7386198B2 (ja)
JP (1) JP3967356B2 (ja)
WO (1) WO2004092792A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064936A (ja) * 2006-09-06 2008-03-21 Fujitsu Ltd 光変調器
JP2008176145A (ja) * 2007-01-19 2008-07-31 Furukawa Electric Co Ltd:The 平面光波回路
JP2009003211A (ja) * 2007-06-22 2009-01-08 Fujitsu Ltd 光デバイス
JP2012215901A (ja) * 2012-07-02 2012-11-08 Sumitomo Osaka Cement Co Ltd 光導波路素子
US8909006B2 (en) 2010-09-30 2014-12-09 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device
JP2014235218A (ja) * 2013-05-31 2014-12-15 富士通オプティカルコンポーネンツ株式会社 光変調器
JP2018200333A (ja) * 2017-05-25 2018-12-20 新光電気工業株式会社 光導波路装置及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762679B2 (ja) * 2005-11-02 2011-08-31 住友大阪セメント株式会社 光変調器
JP5070853B2 (ja) * 2006-07-19 2012-11-14 富士通オプティカルコンポーネンツ株式会社 光デバイス
US7764851B2 (en) * 2007-11-01 2010-07-27 Ngk Insulators, Ltd. Optical modulators
JP5045416B2 (ja) * 2007-12-17 2012-10-10 富士通株式会社 光導波路素子およびそれを用いた光学装置
JP5270998B2 (ja) * 2008-07-30 2013-08-21 Nttエレクトロニクス株式会社 平面光導波回路
JP5716714B2 (ja) * 2012-08-09 2015-05-13 住友大阪セメント株式会社 光導波路素子
JP2014194478A (ja) * 2013-03-28 2014-10-09 Fujitsu Optical Components Ltd 光デバイスおよび送信機
US9377596B2 (en) * 2014-07-22 2016-06-28 Unimicron Technology Corp. Optical-electro circuit board, optical component and manufacturing method thereof
JP2016142755A (ja) * 2015-01-29 2016-08-08 富士通オプティカルコンポーネンツ株式会社 光変調器
JP6227069B1 (ja) * 2016-07-27 2017-11-08 富士通オプティカルコンポーネンツ株式会社 光変調器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756036A (ja) * 1993-08-13 1995-03-03 Fujitsu Ltd 光導波路デバイス及びその製造方法
JPH11167032A (ja) * 1997-12-03 1999-06-22 Nippon Telegr & Teleph Corp <Ntt> 曲がり光導波路回路
US20010009594A1 (en) * 2000-01-26 2001-07-26 Toru Hosoi Optical modulator with monitor having 3-dB directional coupler or 2-input , 2-output multimode interferometric optical waveguide
JP2001281507A (ja) * 2000-03-31 2001-10-10 Sumitomo Osaka Cement Co Ltd 出力光モニタ付光導波路型光変調器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781424A (en) * 1986-07-28 1988-11-01 Nippon Telegraph And Telephone Corporation Single mode channel optical waveguide with a stress-induced birefringence control region
US6044184A (en) * 1998-03-31 2000-03-28 Litton Systems Inc. Integrated optics chip with reduced thermal errors due to pyroelectric effects
DE60132056T2 (de) 2000-03-15 2008-12-18 Sumitomo Osaka Cement Co., Ltd. Optischer wellenleitermodulator mit ausgangslichtmonitor
JP3690983B2 (ja) 2000-12-14 2005-08-31 住友大阪セメント株式会社 出力光モニタ付光導波路型素子
JP2002023123A (ja) 2000-07-11 2002-01-23 Fujitsu Ltd 非主要光を導波する光導波路を備える光回路
CN101052906A (zh) 2000-10-13 2007-10-10 马萨诸塞州技术研究院 带有沟槽结构的光波导
JP2003004992A (ja) * 2001-06-25 2003-01-08 Matsushita Electric Ind Co Ltd 光送受信モジュールとその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756036A (ja) * 1993-08-13 1995-03-03 Fujitsu Ltd 光導波路デバイス及びその製造方法
JPH11167032A (ja) * 1997-12-03 1999-06-22 Nippon Telegr & Teleph Corp <Ntt> 曲がり光導波路回路
US20010009594A1 (en) * 2000-01-26 2001-07-26 Toru Hosoi Optical modulator with monitor having 3-dB directional coupler or 2-input , 2-output multimode interferometric optical waveguide
JP2001281507A (ja) * 2000-03-31 2001-10-10 Sumitomo Osaka Cement Co Ltd 出力光モニタ付光導波路型光変調器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064936A (ja) * 2006-09-06 2008-03-21 Fujitsu Ltd 光変調器
JP2008176145A (ja) * 2007-01-19 2008-07-31 Furukawa Electric Co Ltd:The 平面光波回路
JP2009003211A (ja) * 2007-06-22 2009-01-08 Fujitsu Ltd 光デバイス
US7643712B2 (en) 2007-06-22 2010-01-05 Fujitsu Limited Optical module and optical switching device
US8909006B2 (en) 2010-09-30 2014-12-09 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device
JP2012215901A (ja) * 2012-07-02 2012-11-08 Sumitomo Osaka Cement Co Ltd 光導波路素子
JP2014235218A (ja) * 2013-05-31 2014-12-15 富士通オプティカルコンポーネンツ株式会社 光変調器
JP2018200333A (ja) * 2017-05-25 2018-12-20 新光電気工業株式会社 光導波路装置及びその製造方法

Also Published As

Publication number Publication date
US7787717B2 (en) 2010-08-31
JPWO2004092792A1 (ja) 2006-07-06
US20060051011A1 (en) 2006-03-09
US20080247708A1 (en) 2008-10-09
US7386198B2 (en) 2008-06-10
JP3967356B2 (ja) 2007-08-29

Similar Documents

Publication Publication Date Title
US7386198B2 (en) Optical waveguide device
US7079732B2 (en) Optical device
JP4658658B2 (ja) 光変調器
JP4911529B2 (ja) 光変調器
EP1335242A1 (en) Optical waveguide device and optical modulator
WO2011111726A1 (ja) 光導波路素子
US20090190876A1 (en) Waveguide polarizer and optical waveguide device
JP4468397B2 (ja) 光導波路デバイス
JP7322784B2 (ja) 光導波路素子とそれを用いた光変調デバイス並びに光送信装置
US7474812B2 (en) Monitor photodetector equipped optical modulator
JP7293605B2 (ja) 光導波路素子および光変調器
JP2006047956A (ja) 導波路型光デバイス
US7373025B2 (en) Waveguide-type optical device
WO2015147276A1 (ja) 光導波路デバイス
JP4917977B2 (ja) モニタフォトディテクタ付き光変調器
JP5133930B2 (ja) 光変調器モジュール
JP6260631B2 (ja) 光導波路デバイス
JPH08194195A (ja) 光導波路素子
JP4756011B2 (ja) 光デバイス
JP5308416B2 (ja) 光変調器
JP5463832B2 (ja) 光変調器
JP2005316041A (ja) 光変調器
JPH02300726A (ja) 光切替部品
JP2000081596A (ja) 光部品
JP2004246002A (ja) 光変調素子及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004570888

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11248232

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11248232

Country of ref document: US

122 Ep: pct application non-entry in european phase