CN101052906A - 带有沟槽结构的光波导 - Google Patents

带有沟槽结构的光波导 Download PDF

Info

Publication number
CN101052906A
CN101052906A CNA018191320A CN01819132A CN101052906A CN 101052906 A CN101052906 A CN 101052906A CN A018191320 A CNA018191320 A CN A018191320A CN 01819132 A CN01819132 A CN 01819132A CN 101052906 A CN101052906 A CN 101052906A
Authority
CN
China
Prior art keywords
nucleus
configuration
trench region
waveguide
coating zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA018191320A
Other languages
English (en)
Inventor
L·C·基默林
K·瓦达
H·A·豪斯
M·波波维奇
S·阿基亚马
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of CN101052906A publication Critical patent/CN101052906A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12119Bend
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12195Tapering

Abstract

用空气沟槽包覆层的配置能将拖尾减到最小以抑制光耦合到辐射模式,产生低损耗弯头和分离器。用这样的空气沟槽包覆层提供包括没有传输损耗的急剧弯头和T-分离器,没有串话的交叉以及来自/通向光纤和没有实质损耗的平面外波导的耦合器在内的结构。波导的空气沟槽侧壁包覆层将拖尾推向顶部和底部包覆层以增强垂直定位的波导之间的耦合。也提供了应用晶片黏结技术的制造工艺。

Description

带有沟槽结构的光波导
优先权信息
本申请对申请于2000年10月13日的序列号为60/240,282的临时申请要求优先权。
发明背景
1.发明领域
本发明制作在低折射率差波导中可能用到的,另外也用于来自/通向光纤和两个垂直定位的波导之间的高效耦合的小弯曲半径的弯头(bends)。这种光学互连能提高光学元件在一个芯片上的集成密度。
2.现有技术
波导弯头,分离器耦合器是光路上的基本元件。成熟开发的“二氧化硅台阶”技术适用于多路复用的和解多路复用及其他光学元件的波导干涉滤波器。在波导核心和包覆层之间折射率的反差很小,导致波导相对大的剖面和折射率的匹配,以便使来自和通向光纤的耦合只有很低的插入损耗。这是这项技术被广泛应用的一个原因。然而鉴于下述事实光学元件的集成密度受到限制:对于通过小折射率反差形成的波导,弯头必须具有相对大的弯曲半径以使辐射损耗保持在可接受的范围内。
核心和包覆层之间的折射率之差Δn主要由二氧化硅台阶技术中的诸如Ge,B等的杂质的掺杂控制。这样,Δn通常被控制到0.01或更小,导致弯头曲率处在mm数量级。因为一个90度的波导分离器由两个弯头构成,该结构要求和弯头一样大的曲率。这样,二氧化硅台阶集成的光路就具有约10×10平方厘米的面积。
很明显,在台阶中增加Δn将降低弯头和分离器的曲率。然而,难以找到折射率低于二氧化硅的包覆层材料,因为二氧化硅核心的折射率要低到~1.5。这样,二氧化硅技术就停留在相对大的台阶上的低密度光路上。
除了上述原因外,即使在集成光路中采用了高折射率反差系统,光纤和集成光路之间的模式尺寸之差也变得很大,光纤和集成光路之间的界面上的菲涅尔反射也带来巨大的连接损耗。
为了增加核心和包覆层之间的折射率之差,采用空气包覆层是有效的。关于空气包覆层,授予Marcatili等人的专利号为3,712,705的美国专利显示了在光纤中的情形。该空气包覆层光纤被叙述成包括一个低损耗电介质核心,有一个设置在在光路外套内的多边形截面。因为其形状,核心实际上完全被空气包围,从而使Δn变大。
发明概述
在本发明中提供了一种有两个或更多和空气沟槽包覆层交界的侧壁的波导弯头。本发明应用了折射率引导,绝热转变以及向反菲涅尔反射诱导的连接损耗的模式匹配的原理。
本发明的一个目的是提供一种有相对小曲率的波导的弯头和分离器,以及提供一种来自/通向光纤和平面外波导之间的耦合器。本发明的另一个目的是提供一种该结构的制造方法。晶片黏结允许将空气作为低折射率材料而相结合。
本发明用弯头和交叉上的局部空气沟槽处理低折射率反差波导的波导弯头和交叉,这些空气沟槽取决于核心折射率而局部将折射率之差增加到0.5或更大。在本发明中,空气作为一个实例被选作为低折射率材料,但是包括低折射率聚合物和绝缘体在内的其他材料也能被用来替代沟槽中的空气。
附图简述
图1是根据本发明的波导弯头配置的顶视示意图;
图2A是取自图1的A-A’线的波导弯头配置的剖面图;图2B是取自图1的A-A’线的波导弯头配置的一个替代实施例的剖面图;
图3是显示波导弯头的模拟结果的曲线图;
图4是根据本发明的T-分离器500的顶视示意图;
图5A和5B分别显示了不带有和带有本发明的沟槽结构的模式的模拟结果;
图6A-6G是显示制造图2A中显示的空气沟槽结构的工艺流程的示意图;和
图7A-7H是显示制造图2B中显示的空气沟槽结构的工艺流程的示意图。
本发明的详细描述
图1是根据本发明的波导弯头配置100的示意性顶视方框图。波导弯头由一个核心区域102,第一104和第二106空气沟槽区域和一个周围包覆层区域108限定。空气沟槽波导弯头的性能通过适当的锥形长度部分,弯头半径,以及被弯曲的波导的宽度和偏移而优化。弯曲波导的宽度及其从(直线)锥形输出的横向偏移在图1中显示和选择以便于将锥形输出处的光最优化地和弯头的最低顺序泄漏模式匹配。
对于适当的结构尺寸,带有或不带有弯头处的偏移,各种模拟显示了所提出的空气沟槽弯头有大于98%(每角弯头小于0.1dB损耗)的传输效率。对于7%和0.7%(D=Δn/n)的折射率反差,该模拟分别显示了长度上一个4和30的系数的尺寸减少(和一个相同折射率反差的正规波导弯头相比),对应于面积上16到900倍的减少。推断出可以预期有更低的,光纤类的折射率反差接近0.25%,边缘长度系数大到50,或面积上大到2500的更紧凑的弯头。
该弯头包括三个部分,即波导部分(1),(2)和(3)。波导部分(0)和(3)是单模的。虽然波导部分(1)和(2)是多模的稳定状态,但它们在这样一个短距离内保持了作为一个短暂模式的准单模。由于模式失配引起的传输损耗可被忽略。
对于整个配置,核心区域的折射率保持不变。波导部分(1)包括核心和周围的包覆层,其折射率差为0.05。波导部分(2)和(3)分别是锥形的和弯曲的,两者都用空气沟槽区域作为在其内遏制光和减少辐射损耗的机构。
图2A是取自图1的A-A’线的波导弯头配置的剖面图。该结构包括被第一(104)和第二(106)空气沟槽区域实际包围的核心102,该核心区域又包括上沟槽(200)和下沟槽(202)。核心102由包覆层108的第一延伸(204)和第二延伸(206)支撑。在这种构型中,核心实际上被悬浮在空气包覆层中。因为该构型在弯头内因由空气沟槽区域形成的“空气壁”而限定了一个局部的高折射率差,从侧壁延伸的传播模式的拖尾(evanescent tail)被减到最小。沟槽200,202被这样构型,使它们的深度d大于拖尾的长。因此,在弯头内光不能有实际意义地耦合到辐射模式。虽然存在进入上下包覆层的长拖尾,它们也因为空气沟槽区域104,106(即它们的上下延伸,诸如区域200,202)而不能耦合到辐射模式。
图2B是取自图1的A-A’线的波导弯头配置100的一个替代实施例的剖面图。该结构包括被第一(104)和第二(106)空气沟槽区域实际包围的核心102,该核心区域又包括下208沟槽。核心102仅由包覆层108的一个延伸210支撑。在这种构型中,核心实际上也被悬浮在空气包覆层中。这样,核心在其顶表面有一个空气包覆层以及两个侧壁。虽然一个长场拖尾延伸进下包覆层,向辐射模式的耦合仍由下空气沟槽(208)遏制。
光波从波导的一端到另一端的透射比如在图3的曲线图中显示的模拟结果预测的那样约为97%或更高。模式的形状在插画中显示。这里,假设核心折射率为1.5,包覆层折射率为1.45(Δn=0.05),在空气沟槽中Δn增加到0.5。然而,对于0.001<Δn/n<0.1,所提出的原理在减少弯头尺寸上还是有效的。
波导T型分离器也能遵照这里叙述的两个原理中的任一个而构型。图1的锥形波导和空气沟槽区域能被修改成具有如图4显示的两个输出。图4是根据本发明的T-分离器配置400的顶视示意方框图。T-分离器包括三个波导402,404,406。每一个波导包括各自的由一个包覆层408包围的核心区域403,405,407。该T-分离器配置400也包括在波导中的空气沟槽区域410,412,414。
在入口波导402的光通过一个小的T-分离器部分的三个渐变的锥形分离而进入两个波导404,406。弯头的半径可以因由空气沟槽提供的空气包覆层而变小。在这种方式中,T-分离器可以实现得有比当前能得到的分离器更小的尺寸。
因为本发明包括在有效的Δn逐渐增加下的波导锥体,该锥体单独作为一个从光纤到波导的耦合器而工作。其最初的效果是消除了在低和高折射率反差(Δn)区域之间的连接损耗。耦合器很明显是双向的,如在图3显示的弯头中达到的高传输效率所显示的那样。
空气沟槽区域通过被增加的折射率差的优点而起到在侧壁方向抑制水平延伸的拖尾的作用。在结构中模式挤压的存在同时扩展了在平面外方向上模式的垂直拖尾。这将模式的剖面形状从圆形转变到椭圆形。这样,增强了在平面外多层波导中的垂直耦合。
为了垂直(平面内)耦合的目的,图5A和5B分别显示不带有或带有空气沟槽侧壁的模式的模拟结果。图5A显示了不带空气沟槽的模式是圆形的。然而在带有空气沟槽的配置中模式变成椭圆的,而且仅朝向顶部和底部包覆层带有长拖尾,如图5B所示。这说明,平面外耦合变得更高效。
图6A-6G是显示制造图2A中显示的空气沟槽结构的工艺流程的示意图。在Si晶片600上通过常规的工艺(a)形成一个SiO2层602(图6A-6B)。工艺可以是热氧化,CVD(化学气相淀积),火焰水解等。SiO2层602被用作下包覆层。602层可以是B掺杂的SiO2,P掺杂的SiO2等。然后通过常规工艺(b)在SiO2层602上形成波导核心材料604(图6C)。材料604可以是Ge掺杂的SiO2,通过经选择的Δn(例如0.01)其折射率比602层高。在604层上通过常规的工艺(c)形成另一层SiO2层606(图6D)。606层是上包覆层并且可以和602层一样。波导和沟槽可以用常规的光刻工艺制造。然后该结构通过常规的工艺(d)刻蚀(图6E)。最后晶片600和另一晶片608(图6F)(光的硅晶片)黏结在一起以形成如图2A所示的空气沟槽结构610。
所叙述的工艺和材料仅是制造该结构的实例,这样本发明就不被上面提及的方法所限制。例如,602,604和606层的材料可以通过B,P和Ge杂质的注入而形成。核心和包覆层之间的低折射率差~0.01也可以通过选择构成的Si3N4核心和SixNyOz达到。此外,也可以通过用选择构成的Six’Ny’Oz’核心和SixNyOz达到。虽然0.5是用空气沟槽的SiO2核心中的最大的折射率差,但对于SiNO核心的空气沟槽结构有甚至更大的不超过1.0的折射率差。
图7A-7H是显示制造图2B中显示的空气沟槽结构的工艺流程的示意图。通过常规的工艺(a)和(b),在晶片700上形成了一个带有一个波导层704和一个下包覆层702的结构(图7A-7C)。通过常规的工艺(d)在晶片706上形成上包覆层708(图7E-7F)。光刻以后,通过常规的工艺(c)和(e)制作波导和沟槽结构710和712(图7D和7G)。最后该结构710和712被黏结在一起以形成一个如图2B显示的空气沟槽结构714。
概括地说,图1和4中的结构举例说明了避免连接损耗损失的折射率导引和绝热模式形状。从入口波导传输的光被成形而进入另一个其侧壁包覆层是空气的波导。这样,因为短拖尾,传输波几乎不耦合到辐射模式。光通过弯头以后,波导构型恢复到初始的包覆层,光以出口波导的基础模式被重新捕获。T-分离器根据同样的原理工作。
在所述本发明的实施例中,空气被选择作为低折射率材料的一个实例,但包括低折射率的聚合物和绝缘体的其他材料也能被用于代替沟槽中的空气。
虽然本发明通过其几个优选实施例进行了显示和叙述,但可以进行不背离本发明的精神和范围的各种变化,形式和细节上的省略和添加。

Claims (21)

1.一种波导配置,其特征在于,该配置包括:
一个具有从底部表面向顶部表面延伸的第一和第二侧壁的核心区域;
和所述核心区域相邻的第一和第二沟槽区域,该沟槽区域分别纵向沿所述第一和第二侧壁延伸,并且在所述顶部和底部表面的上下垂直延伸一个预先确定的深度,所述深度大于在所述核心传播的光的拖尾的长度;和
一个包围所述核心区域和沟槽区域的包覆区域。
2.如权利要求1所述的配置,其特征在于,其中所述核心区域和所述沟槽区域之间折射率的差远大于所述核心区域和所述包覆区域之间折射率的差。
3.如权利要求1所述的配置,其特征在于,其中所述沟槽区域包括一种低折射率材料。
4.如权利要求3所述的配置,其特征在于,其中所述低折射率材料包括空气。
5.如权利要求1所述的配置,其特征在于,其中所述核心区域用从所述包覆区域到所述核心区域的所述底部表面的一个支撑延伸支撑在所述沟槽区域之间。
6.如权利要求5所述的配置,其特征在于,其中所述核心区域用从所述包覆区域到所述核心区域的所述顶部表面的一个支撑延伸进一步支撑在所述沟槽区域之间。
7.如权利要求5所述的配置,其特征在于,其中所述沟槽区域连续相邻于所述核心区域的所述顶部表面。
8.作为一个波导弯头实施的如权利要求1所述的配置。
9.作为一个波导T-分离器实施的如权利要求1所述的配置。
10.作为一个光纤耦合器实施的如权利要求1所述的配置。
11.一种波导配置,其特征在于,该配置包括:
第一部分,具有一个宽度为w1,有第一和第二侧壁以及顶部和底部表面的核心区域和一个包围所述核心区域的包覆区域的;
第二部分,在该第二部分内所述核心区域从宽度w1到宽度w2成为锥形,相邻于所述核心区域的第一和第二沟槽区域纵向分别沿所述第一和第二侧壁延伸,并在所述顶部和底部表面上下垂直延伸一个预先确定的深度,所述深度大于在所述核心传播的光的拖尾的长度,所述包覆区域包围所述核心区域和所述沟槽区域;和
第三部分,包括所述宽度为w2的核心区域,所述第一和第二沟槽区域相邻于所述核心区域,以及所述包覆区域包围所述核心区域和所述沟槽区域。
12.如权利要求11所述的配置,其特征在于,其中所述核心区域和所述沟槽区域之间折射率的差远大于所述核心区域和所述包覆区域之间折射率的差。
13.如权利要求11所述的配置,其特征在于,其中所述沟槽区域包括一种低折射率材料。
14.如权利要求13所述的配置,其特征在于,其中所述低折射率材料包括空气。
15.如权利要求11所述的配置,其特征在于,其中所述核心区域用从所述包覆区域到所述核心区域的所述底部表面的一个支撑延伸支撑在所述沟槽区域之间。
16.如权利要求15所述的配置,其特征在于,其中所述核心区域用从所述包覆区域到所述核心区域的所述顶部表面的一个支撑延伸进一步支撑在所述沟槽区域之间。
17.如权利要求15所述的配置,其特征在于,其中所述沟槽区域连续相邻于所述核心区域的所述顶部表面。
18.作为一个波导弯头实施的如权利要求11所述的配置。
19.作为一个波导T-分离器实施的如权利要求11所述的配置。
20.作为一个光纤耦合器实施的如权利要求11所述的配置。
21.如权利要求11所述的配置,其特征在于,在所述第一部分中所述相邻于所述核心区域的所述侧壁的包覆区域被所述沟槽区域包围并且向内成锥形,以便于向所述核心区域提供一个逐渐增加的折射率差。
CNA018191320A 2000-10-13 2001-10-15 带有沟槽结构的光波导 Pending CN101052906A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24028200P 2000-10-13 2000-10-13

Publications (1)

Publication Number Publication Date
CN101052906A true CN101052906A (zh) 2007-10-10

Family

ID=22905920

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA018191320A Pending CN101052906A (zh) 2000-10-13 2001-10-15 带有沟槽结构的光波导

Country Status (8)

Country Link
US (1) US6621972B2 (zh)
EP (1) EP1368680A2 (zh)
JP (1) JP2004512551A (zh)
KR (1) KR20030051717A (zh)
CN (1) CN101052906A (zh)
AU (1) AU2002213212A1 (zh)
CA (1) CA2425600A1 (zh)
WO (1) WO2002033457A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587207B (zh) * 2008-05-21 2010-12-29 中国科学院半导体研究所 一种提高波导与光纤耦合效率的方法
CN104781708A (zh) * 2012-10-18 2015-07-15 Vttoy技术研究中心 弯曲光波导
CN108604723A (zh) * 2016-02-01 2018-09-28 安费诺富加宜(亚洲)私人有限公司 高速数据通信系统
CN109425933A (zh) * 2017-09-05 2019-03-05 瑞萨电子株式会社 半导体器件
TWI717994B (zh) * 2019-02-08 2021-02-01 美商斐尼莎公司 波導管佈線組態及方法
US11056841B2 (en) 2015-09-11 2021-07-06 Fci Usa Llc Selectively plated plastic part

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU776921C (en) * 1999-05-21 2005-07-14 Ipg Photonics Corporation Arrayed waveguide gratings
GB2367904B (en) * 2000-10-09 2004-08-04 Marconi Caswell Ltd Guided wave spatial filter
US7006744B2 (en) 2000-10-27 2006-02-28 Pirelli Cavi E Sistemi S.P.A. Hybrid buried/ridge planar waveguides
US6785458B2 (en) * 2001-02-11 2004-08-31 Georgia Tech Research Corporation Guided-wave optical interconnections embedded within a microelectronic wafer-level batch package
US6807352B2 (en) * 2001-02-11 2004-10-19 Georgia Tech Research Corporation Optical waveguides with embedded air-gap cladding layer and methods of fabrication thereof
US6934427B2 (en) * 2002-03-12 2005-08-23 Enablence Holdings Llc High density integrated optical chip with low index difference waveguide functions
US6832034B2 (en) * 2002-06-21 2004-12-14 3M Innovative Properties Company Optical waveguide
JP2004287093A (ja) 2003-03-20 2004-10-14 Fujitsu Ltd 光導波路、光デバイスおよび光導波路の製造方法
JP3967356B2 (ja) 2003-04-16 2007-08-29 富士通株式会社 光導波路デバイス
US20040208465A1 (en) * 2003-04-18 2004-10-21 Yury Logvin Planar waveguide structure with tightly curved waveguides
US7206470B2 (en) * 2003-10-24 2007-04-17 University Of Alabama In Huntsville Planar lightwave circuit waveguide bends and beamsplitters
US7218812B2 (en) * 2003-10-27 2007-05-15 Rpo Pty Limited Planar waveguide with patterned cladding and method for producing the same
US20070071394A1 (en) * 2003-12-24 2007-03-29 Faccio Daniele F A Low loss microring resonator device
ITRM20040445A1 (it) 2004-09-17 2004-12-17 St Microelectronics Srl Processo per scavare trincee in un dispositivo ottico integrato.
US8032027B2 (en) 2005-07-25 2011-10-04 Massachusetts Institute Of Technology Wide free-spectral-range, widely tunable and hitless-switchable optical channel add-drop filters
TWI427985B (zh) 2005-12-06 2014-02-21 Lg Electronics Inc 使用複數載波來傳輸資料之設備及方法
JP2007173353A (ja) * 2005-12-20 2007-07-05 Kyoto Univ フォトニック結晶発光ダイオード及びその製造方法
US8105758B2 (en) * 2006-07-11 2012-01-31 Massachusetts Institute Of Technology Microphotonic maskless lithography
US8111994B2 (en) * 2006-08-16 2012-02-07 Massachusetts Institute Of Technology Balanced bypass circulators and folded universally-balanced interferometers
US7526169B2 (en) * 2006-11-29 2009-04-28 Corning Incorporated Low bend loss quasi-single-mode optical fiber and optical fiber line
US7853108B2 (en) * 2006-12-29 2010-12-14 Massachusetts Institute Of Technology Fabrication-tolerant waveguides and resonators
US7349616B1 (en) 2007-01-12 2008-03-25 Corning Cable Systems Llc Fiber optic local convergence points for multiple dwelling units
WO2008118465A2 (en) * 2007-03-26 2008-10-02 Massachusetts Institute Of Technology Hitless tuning and switching of optical resonator amplitude and phase responses
GB0707304D0 (en) 2007-04-16 2007-05-23 Univ Southampton Evanescent field optical waveguide devices
US7668420B2 (en) * 2007-07-26 2010-02-23 Hewlett-Packard Development Company, L.P. Optical waveguide ring resonator with an intracavity active element
WO2009055440A2 (en) * 2007-10-22 2009-04-30 Massachusetts Institute Of Technology Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays
JP2009205086A (ja) * 2008-02-29 2009-09-10 Oki Electric Ind Co Ltd 光導波路素子及びその製造方法
US7920770B2 (en) 2008-05-01 2011-04-05 Massachusetts Institute Of Technology Reduction of substrate optical leakage in integrated photonic circuits through localized substrate removal
EP2290415A4 (en) * 2008-06-10 2014-09-10 Sumitomo Bakelite Co ELECTRONIC DEVICE, MOBILE PHONE, FLEXIBLE CABLE AND METHOD FOR PRODUCING AN OPTICAL WAVE-LEADING BODY
WO2010065710A1 (en) * 2008-12-03 2010-06-10 Massachusetts Institute Of Technology Resonant optical modulators
JP2010151973A (ja) * 2008-12-24 2010-07-08 Fujitsu Ltd 光半導体装置及びその製造方法、光伝送装置
WO2010138849A1 (en) 2009-05-29 2010-12-02 Massachusetts Institute Of Technology Cavity dynamics compensation in resonant optical modulators
US8731343B2 (en) 2011-02-24 2014-05-20 Xyratex Technology Limited Optical printed circuit board, a method of making an optical printed circuit board and an optical waveguide
WO2013096521A1 (en) 2011-12-19 2013-06-27 Cornell University Controlled inter-mode cross-talk in optical waveguides
US8903205B2 (en) * 2012-02-23 2014-12-02 Karlsruhe Institute of Technology (KIT) Three-dimensional freeform waveguides for chip-chip connections
US9034222B2 (en) 2012-02-23 2015-05-19 Karlsruhe Institut Fuer Technologie Method for producing photonic wire bonds
JP2013246322A (ja) * 2012-05-25 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> 光配線構造
US10191213B2 (en) * 2014-01-09 2019-01-29 Globalfoundries Inc. Shielding structures between optical waveguides
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10571631B2 (en) 2015-01-05 2020-02-25 The Research Foundation For The State University Of New York Integrated photonics including waveguiding material
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9866309B2 (en) * 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9470844B1 (en) * 2015-06-30 2016-10-18 Coriant Advanced Technology, LLC Low loss high extinction ratio on-chip polarizer
US9746609B2 (en) 2015-06-30 2017-08-29 Elenion Technologies, Llc Integrated on-chip polarizer
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
WO2017112663A1 (en) * 2015-12-21 2017-06-29 University Of Central Florida Research Foundation, Inc. Optical waveguide, fabrication methods, and applications
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10976491B2 (en) 2016-11-23 2021-04-13 The Research Foundation For The State University Of New York Photonics interposer optoelectronics
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10698156B2 (en) 2017-04-27 2020-06-30 The Research Foundation For The State University Of New York Wafer scale bonded active photonics interposer
CN111465879A (zh) * 2017-10-26 2020-07-28 光研公司 导光装置、光波导装置、多波长光源模块及光波导装置的制造方法
JP2021527839A (ja) 2018-04-04 2021-10-14 ザ リサーチ ファンデーション フォー ザ ステート ユニバーシティ オブ ニューヨーク 集積フォトニクスプラットフォーム上の異質構造体
US10816724B2 (en) 2018-04-05 2020-10-27 The Research Foundation For The State University Of New York Fabricating photonics structure light signal transmission regions
CN112534321B (zh) 2018-05-22 2023-07-21 弗卢库斯有限公司 波导结构的制造
US11029466B2 (en) 2018-11-21 2021-06-08 The Research Foundation For The State University Of New York Photonics structure with integrated laser
US11550099B2 (en) 2018-11-21 2023-01-10 The Research Foundation For The State University Of New York Photonics optoelectrical system
CN110441862A (zh) * 2019-08-02 2019-11-12 桂林电子科技大学 一种低插入损耗的串扰抑制型多芯光纤分束器
US10989872B1 (en) * 2019-10-18 2021-04-27 Globalfoundries U.S. Inc. Waveguide bends with mode confinement
WO2021106091A1 (ja) * 2019-11-26 2021-06-03 日本電信電話株式会社 光導波路
CN112379478B (zh) * 2020-11-24 2023-04-18 华南师范大学 一种基于亚波长光栅结构的弯曲波导及设计方法
CN115390186A (zh) * 2022-08-29 2022-11-25 赛丽科技(苏州)有限公司 一种低插损端面耦合器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633401B1 (fr) 1988-06-24 1990-10-05 Labo Electronique Physique Dispositif semiconducteur comprenant un guide de lumiere integre qui presente au moins une partie rectiligne et une partie courbe
US5926496A (en) * 1995-05-25 1999-07-20 Northwestern University Semiconductor micro-resonator device
EP1058136A1 (en) 1999-05-21 2000-12-06 BRITISH TELECOMMUNICATIONS public limited company Planar silica optical waveguide with grooves

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587207B (zh) * 2008-05-21 2010-12-29 中国科学院半导体研究所 一种提高波导与光纤耦合效率的方法
CN104781708A (zh) * 2012-10-18 2015-07-15 Vttoy技术研究中心 弯曲光波导
US11056841B2 (en) 2015-09-11 2021-07-06 Fci Usa Llc Selectively plated plastic part
US11600957B2 (en) 2015-09-11 2023-03-07 Fci Usa Llc Selectively plated plastic part
CN108604723A (zh) * 2016-02-01 2018-09-28 安费诺富加宜(亚洲)私人有限公司 高速数据通信系统
US11018402B2 (en) 2016-02-01 2021-05-25 Fci Usa Llc High speed data communication system
US11855326B2 (en) 2016-02-01 2023-12-26 Fci Usa Llc Electrical connector configured for connecting a plurality of waveguides between mating and mounting interfaces
CN109425933A (zh) * 2017-09-05 2019-03-05 瑞萨电子株式会社 半导体器件
CN109425933B (zh) * 2017-09-05 2022-07-01 瑞萨电子株式会社 半导体器件
TWI717994B (zh) * 2019-02-08 2021-02-01 美商斐尼莎公司 波導管佈線組態及方法

Also Published As

Publication number Publication date
JP2004512551A (ja) 2004-04-22
WO2002033457A3 (en) 2003-08-28
KR20030051717A (ko) 2003-06-25
WO2002033457A8 (en) 2003-10-23
AU2002213212A1 (en) 2002-04-29
EP1368680A2 (en) 2003-12-10
US20020076188A1 (en) 2002-06-20
US6621972B2 (en) 2003-09-16
WO2002033457A2 (en) 2002-04-25
CA2425600A1 (en) 2002-04-25

Similar Documents

Publication Publication Date Title
CN101052906A (zh) 带有沟槽结构的光波导
US10197734B2 (en) Spot-size converter for optical mode conversion and coupling between two waveguides
CN101120273B (zh) 多芯平面型光波导及制作和使用该光波导的方法
US8718423B2 (en) Optical branching element and optical branching circuit
JP3318406B2 (ja) 光導波路、光導波路と光ファイバの接続装置
RU2489741C2 (ru) Многосердцевинный волоконный световод (варианты)
US6571039B1 (en) Optical waveguide having a weakly-confining waveguide section and a strongly-confining waveguide section optically coupled by a tapered neck
JP3581224B2 (ja) 平面型光学導波路素子
EP1356327B1 (en) Optical mode size converter with vertical and horizontal mode shaping
CN1398356A (zh) 具有高折射率的平面波导
EP1656573A1 (en) Integrated optics spot size converter and manufacturing method
US20070031083A1 (en) Planar waveguide structure with tightly curved waveguides
CN114895402B (zh) 一种偏移绝热导波系统
CN113359238B (zh) 基于模式演化的两臂不等高非对称波导光纤端面耦合器
JP2003315572A (ja) 光導波路及びそれを用いた光学素子
CN115390189A (zh) 一种基于伴随法的平面光交叉波导
JP2024506164A (ja) マルチチャンネル光結合器アレイ
CN107132612A (zh) 一种矩形芯子光纤
CN1589415A (zh) 具有垂直及水平模成形的光波导终端
US7046890B2 (en) Optical fiber with low taper induced loss
KR100322126B1 (ko) 광도파로 제작용 기판 및 그 제작방법
US11966091B2 (en) Multichannel optical coupler array
JP2000206352A (ja) スポットサイズ変換コア構造を有する光導波路及びその製造方法
CN112099130A (zh) 一种低芯间串扰的斜坡型折射率分布多芯光纤
JP2001033642A (ja) 光導波路構造

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication