CN114895402B - 一种偏移绝热导波系统 - Google Patents

一种偏移绝热导波系统 Download PDF

Info

Publication number
CN114895402B
CN114895402B CN202210546766.4A CN202210546766A CN114895402B CN 114895402 B CN114895402 B CN 114895402B CN 202210546766 A CN202210546766 A CN 202210546766A CN 114895402 B CN114895402 B CN 114895402B
Authority
CN
China
Prior art keywords
section
layer
middle layer
top layer
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210546766.4A
Other languages
English (en)
Other versions
CN114895402A (zh
Inventor
梁图禄
荣巍巍
周沁蓓
陆芊杏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202210546766.4A priority Critical patent/CN114895402B/zh
Publication of CN114895402A publication Critical patent/CN114895402A/zh
Application granted granted Critical
Publication of CN114895402B publication Critical patent/CN114895402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种偏移绝热导波系统,包括芯硅和包层。在垂直光束传播方向上,将所述芯硅从上而下划分为顶层、中层以及底层,顶层厚h 1,中层厚h 2,底层硅厚h 3;在光束传播方向上,从输入端到输出端,将芯硅划分成两端段,第一段的顶层的上边界是直线段,下边界为斜线段,第一段的顶层宽从w L缩小到w R,中层宽保持w L不变;第二段的顶层宽保持w R不变,中层的上下边界为对称的斜线段,第二段的中层宽从w L逐渐增大到W R。本发明采用了数值化的思想,将需要设计的结构在光波传播方向上分成了若干片段,对每一片段分别进行设计,获得偏移绝热导波结构的数值化结果,大幅缩短整个结构的长度,实现光子集成芯片更高集成度的目标。

Description

一种偏移绝热导波系统
技术领域
本发明涉及一种偏移绝热导波系统。
背景技术
光子器件技术的进步可以使越来越小的光子器件集成到芯片上。绝热器件的最新发展为亚波长或亚微米尺寸级的集成光子器件提供了可能,这些器件对近场光学成像、高密度光数据存储以及低功率光信号互连等技术的发展有重要作用。绝热器件(adiabaticdevices)是光子集成芯片中连接各种光学功能单元的“连接器”,为提高集成度实现更小尺寸以满足新一代信息技术发展的需求,绝热器件的优化设计在未来大规模光子集成芯片中占有举足轻重的地位。
基于绝缘体上硅(Silicon-on Insulator, SOI)结构的硅波导由于能够实现低成本、良好的模式限制以及与CMOS工艺技术的兼容性而备受关注。因此,可以实现光学元件的高密度集成和大规模生产。SOI脊形波导是光子集成芯片的基本组件之一。脊形波导和条形波导之间存在显着差异,通过根据应用需求选择不同的上包层材料,条形波导在垂直方向上可以对称或不对称。对于脊形波导,它在垂直方向上总是不对称的。脊形波导本身是多模的,通常要将需要的模式能够在短距离内以绝热方式移动,从而在空间上将脊形波导中的模态功率传输到另一个波导,同时将其他不必要的耦合降到最低。
发明内容
发明目的:针对上述现有技术,提出一种偏移绝热导波系统,用于光子集成芯片中波导有偏移时的波导结构连接。
技术方案:一种偏移绝热导波系统,包括芯硅,在垂直光束传播方向上,将所述芯硅从上而下划分为顶层、中层以及底层,顶层厚h 1,中层厚h 2,底层硅厚h 3;在光束传播方向上,从输入端到输出端,将所述芯硅划分成两端段,第一段的顶层的上边界是直线段,下边界为斜线段,第一段的顶层宽从w L缩小到w R,中层宽保持w L不变;第二段的顶层宽保持w R不变,中层的上下边界为对称的斜线段,第二段的中层宽从w L逐渐增大到W R
进一步的,在所述芯硅外设有包层,所述包层材料为SiO2
有益效果:当光子集成芯片中波导的一部分或者多个部分有偏移时,设计复杂程度将会大幅增加。本发明采用了数值化的思想,将需要设计的结构在光波传播方向上分成了若干片段,对每一片段分别进行设计,获得偏移绝热导波结构的数值化结果,不仅大幅缩短整个结构的长度,而且结构简单从而易加工,从而实现光子集成芯片更高集成度的目标。
附图说明
图1为本发明偏移绝热导波系统的俯视结构示意图,图中省略了底层结构;
图2为图1中各分段对应的剖面图;
图3为实施例中偏移绝热导波系统的传输曲线。
具体实施方式
下面结合附图对本发明做更进一步的解释。
如图1所示,一种偏移绝热导波系统,包括芯硅1和包层2,包层2材料为SiO2,其中SiO2折射率n SiO2 = 3.455,Si折射率n Si= 3.455。光束的波长为1.55 μm。
一般情况下,波导结构的厚度和宽度都是根据要求预先选择好的,如只支持单一的TE和TM波导模。在光子集成芯片中,通常需要连接两个不同的波导结构,当两个波导结构不在一条水平线上时,这时要设计出合适的绝热导波系统实现能量的无损耗传输是极难的。本发明为了实现这种情况下的绝热传输,设计出一种偏移绝热导波系统,该系统可以将图2中(a)的脊波导和图2中(e)的脊波导连接起来,实现能量的绝热传输。
如图1、图2的(a)所示,本实施例中,偏移绝热导波系统输入端的脊波导为平行板波导,其顶层和中层硅的宽度都为w L,平行板波导长度L a。如图1、图2的(d)所示,偏移绝热导波系统输出端的脊波导为平行板波导,顶层硅宽度为w R,中层硅的宽度为W R,平行板波导长度L d
本实施例实现两种波导之间的无损耗能量传输采用绝热模式演化方式,并结合区域分解技术,如下:
在垂直光束传播方向上,将芯硅1从上而下划分为顶层、中层以及底层,顶层厚h 1,中层厚h 2,底层硅厚h 3;在光束传播方向上,从输入端到输出端,将芯硅1划分成两端段,如图1、图2的(b)所示,第一段的顶层的上边界是直线段,下边界为斜线段,第一段的顶层宽从w L缩小到w R,图中w 1为顶层截面宽,这么做的原因是保持一边不变可以尽可能的减小器件结构变化对传播模式的扰动,从而更好的实现能量的绝热传输,也就实现了更短距离的无损耗传输,可以实现光子集成芯片更高集成度的目标;第一段的中层宽保持w L不变,第一段的长度L b。如图1、图2的(c)所示,第二段的顶层宽保持w R不变,中层的上下边界为对称的斜线段,第二段的中层宽从w L逐渐增大到W R,即第二段的中层宽保持锥形变化,图中W 1为中层截面宽;第二段的长度L c。第一段和第二段的底层宽保持W R不变。
通过以上的布置,各个片段的长度可以任意选择,均可实现光能量的绝热传输。“绝热”模式演化意味着光束模式沿传播方向缓慢变化,其他模式几乎不会激发,能以尽可能短的距离将左端的光能量无损耗的传输的右端,实现绝热模式传输。本发明的偏移绝热导波系统获得的结构尺寸小且结构简单。
下面列出了本实施例设计的偏移绝热导波系统,其结构示意图如图1和图2所示。本实施例中:偏移绝热导波系统在整体上分析,顶层硅宽从w L= 3.5μm化变化到w R = 2.85μm,顶层硅厚h 1 = 80 nm;中层硅宽度从w L= 3.5μm化变化到W R = 7μm,中层硅厚h 2 = 200nm;底层硅宽度W R = 7μm,底层硅厚h 3 = 220nm;各个片段的长度可以任意选择,均可实现绝热模式传输。由于左端和右端的脊波导是平行板波导,长度的选择对整个结构的传输没有影响,所以固定为L a = L d= 5μm。本发明以L b = 70μm,L c = 130μm为例,传输效率如图3所示,从图上可以看出,总长度80 μm就可以实现99%的传输效率,满足绝热模式传输,实现光子集成芯片更高集成度的目标。需要说明的是,L aL bL cL d是每个片段的设计长度,将它们作为各自独立完整的结构拼接在一起形成最终的导波系统,不同的L aL bL cL d值影响的是每个片段的“绝对长度”,而最终导波系统的“整体形状”是由各个片段的“相对长度”决定的,通过仿真扫描“绝对长度”就可以获得最终导波系统的“相对长度”,比如这里总长度80μm实现99%的传输效率就是最终导波系统的“相对长度”,这个长度就可用于实际的加工制造,测试传输效率就可以达到99%。如果需要更高的传输效率,比如需要实现99.9%的传输效率,只要通过图3就可以获得对应的值,也就是这里的“相对长度”。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种偏移绝热导波系统,其特征在于,包括芯硅(1),在垂直光束传播方向上,将所述芯硅(1)从上而下划分为顶层、中层以及底层,顶层厚h 1,中层厚h 2,底层硅厚h 3;在光束传播方向上,从输入端到输出端,将所述芯硅(1)划分成两端段,第一段的顶层的上边界是直线段,下边界为斜线段,第一段的顶层宽从w L缩小到w R,中层宽保持w L不变;第二段的顶层宽保持w R不变,中层的上下边界为对称的斜线段,第二段的中层宽从w L逐渐增大到W R;第一段和第二段的底层宽保持W R不变,第一段的长度为L b,第二段的长度为L c;通过对参数h 1h 2h 3w RL bL c的调整和设计,实现顶层和中层宽度均为w L的脊波导与顶层宽度为w R,中层宽度为W R的脊波导之间能量的绝热传输。
2.根据权利要求1所述的偏移绝热导波系统,其特征在于,在所述芯硅(1)外设有包层(2),所述包层(2)材料为SiO2
CN202210546766.4A 2022-05-18 2022-05-18 一种偏移绝热导波系统 Active CN114895402B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210546766.4A CN114895402B (zh) 2022-05-18 2022-05-18 一种偏移绝热导波系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210546766.4A CN114895402B (zh) 2022-05-18 2022-05-18 一种偏移绝热导波系统

Publications (2)

Publication Number Publication Date
CN114895402A CN114895402A (zh) 2022-08-12
CN114895402B true CN114895402B (zh) 2023-07-18

Family

ID=82722890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210546766.4A Active CN114895402B (zh) 2022-05-18 2022-05-18 一种偏移绝热导波系统

Country Status (1)

Country Link
CN (1) CN114895402B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494586B (zh) * 2022-10-26 2023-06-30 南通大学 一种双波导绝热耦合器
CN116482806B (zh) * 2022-10-31 2023-11-17 南通大学 一种适用于tm0和te3模式转换的绝热模式转换器
CN115718347B (zh) * 2022-12-05 2023-06-27 南通大学 一种适用于te1和te3模式之间转换的绝热模式转换连接器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044118A1 (en) * 2000-10-20 2003-03-06 Phosistor Technologies, Inc. Integrated planar composite coupling structures for bi-directional light beam transformation between a small mode size waveguide and a large mode size waveguide
JP6581195B2 (ja) * 2014-11-11 2019-09-25 フィニサー コーポレイション 2段の断熱結合されたフォトニック・システム
CN106483600B (zh) * 2016-11-21 2019-08-13 华中科技大学 一种具有大制作容差的超短垂直波导耦合器
JPWO2020226120A1 (zh) * 2019-05-09 2020-11-12
CN114488389B (zh) * 2022-02-24 2023-09-29 南通大学 一种绝热导波系统

Also Published As

Publication number Publication date
CN114895402A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN114895402B (zh) 一种偏移绝热导波系统
US10663663B2 (en) Spot-size converter for optical mode conversion and coupling between two waveguides
US10197734B2 (en) Spot-size converter for optical mode conversion and coupling between two waveguides
Morichetti et al. Box-shaped dielectric waveguides: A new concept in integrated optics?
EP3111262B1 (en) High index element-based spot-size converter for optical mode conversion and evanescent coupling between two waveguides
Danaie et al. Design of a high-bandwidth Y-shaped photonic crystal power splitter for TE modes
WO2022088228A1 (zh) 端面耦合器和半导体器件
Tekeste et al. High efficiency photonic crystal based wavelength demultiplexer
CN103345022A (zh) 一种基于少模光纤的非对称平面光波导模式复用/解复用器
CN108027476A (zh) 一种波导交叉
CN108508539B (zh) 基于锥形非对称定向耦合器的硅基波分复用器
CN110515159B (zh) 基于光纤端面微结构的LP01-LPmn全光纤模式转换器及其制备方法
Dai et al. Optimization of ultracompact polarization-insensitive multimode interference couplers based on Si nanowire waveguides
Gerace et al. Low-loss guided modes in photonic crystal waveguides
Chien et al. The comparison between the graded photonic crystal coupler and various couplers
Kok et al. Reduction of propagation loss in pillar-based photonic crystal waveguides
JP7401823B2 (ja) 光導波路部品およびその製造方法
CN106094119A (zh) 基于光子晶体的三模式模分复用与解复用器
Kawakami et al. 3-D photonic-crystal heterostructures: fabrication and in-line resonator
Yamada et al. Si photonic wire waveguide devices
Martinez et al. Planar photonic crystal structure with inherently single-mode waveguides
JP4372589B2 (ja) 光制御素子
CN116482806B (zh) 一种适用于tm0和te3模式转换的绝热模式转换器
WO2024034131A1 (ja) 光導波回路および光導波回路の製造方法
Sharkawy et al. Implementations of optical vias in high-density photonic crystal optical networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant