WO2022044101A1 - 光導波路部品およびその製造方法 - Google Patents

光導波路部品およびその製造方法 Download PDF

Info

Publication number
WO2022044101A1
WO2022044101A1 PCT/JP2020/031934 JP2020031934W WO2022044101A1 WO 2022044101 A1 WO2022044101 A1 WO 2022044101A1 JP 2020031934 W JP2020031934 W JP 2020031934W WO 2022044101 A1 WO2022044101 A1 WO 2022044101A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
core
optical
layer
refractive index
Prior art date
Application number
PCT/JP2020/031934
Other languages
English (en)
French (fr)
Inventor
祥江 森本
賢哉 鈴木
摂 森脇
優生 倉田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022544918A priority Critical patent/JP7401823B2/ja
Priority to US18/005,711 priority patent/US20230280524A1/en
Priority to PCT/JP2020/031934 priority patent/WO2022044101A1/ja
Publication of WO2022044101A1 publication Critical patent/WO2022044101A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12088Monomode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Definitions

  • the present invention relates to an optical waveguide component that utilizes optical communication.
  • a silicon optical circuit which is an optical transmission medium in silicon photonics technology, is composed of a silicon thin wire waveguide having Si as a core and SiO 2 as a cladding.
  • the difference in the specific refractive index between the core and the cladding is about 40%, and light propagation is possible within a very small cross-sectional region of several hundred nm square in the vicinity of 1550 nm, which is the wavelength band used for single mode communication. Is. Since the allowable bending radius is as small as several ⁇ m, it is possible to form a complicated wiring pattern in a narrow area, and large-scale integration of optical circuits by silicon photonics technology is expected.
  • the silicon optical circuit is usually formed on an SOI (Silicon On Insulator) substrate, the silicon optical circuit and the electronic circuit can be monolithically integrated. From the viewpoint of manufacturing technology, mature semiconductor microfabrication technology can be applied, so that a fine pattern can be easily formed. By combining silicon photonics technology with semiconductor technology and electronic circuit technology, it is expected that optoelectronic integrated devices will be realized.
  • SOI Silicon On Insulator
  • the silicon optical circuit had a problem in terms of connection with other optical elements.
  • connection When connecting optical elements to each other, it is important to match the mode fields of light propagating in the optical elements in order to reduce the loss at the connection point.
  • the mode field diameter (MFD) of the silicon optical circuit is about 300 nm.
  • SMF single mode fiber
  • the MFD of a general SMF used for long-distance transmission is about 9 ⁇ m
  • the MFD of an SMF designed for a high specific refractive index difference for connection with a small optical waveguide of the MFD is about 4 ⁇ m.
  • the MFD of the silicon optical circuit is 10 to several tens of times smaller than the MFD of the SMF, and when the silicon optical circuit and the SMF are directly connected, a large coupling loss occurs due to the inconsistency of the MFD.
  • the silicon optical waveguide is capable of light propagation within a very small cross-sectional region of several hundred nm square. Therefore, even when arranging a plurality of channels on a silicon optical circuit, the pitch between the cores can be reduced to about several ⁇ m, and high-density wiring can be performed.
  • SMF including a plurality of optical fibers the pitch between cores of 125 ⁇ m and 250 ⁇ m has already been standardized, and the corresponding products are widely distributed in the market.
  • the core-to-core pitch must be aligned between the silicon optical circuit and the SMF.
  • this pitch conversion wiring pattern it is necessary to expand the core-to-core pitch of several ⁇ m, which was originally arranged at high density, to 100 ⁇ m or more for SMF connection, and the silicon optical circuit becomes large and the wiring length becomes long. Resulting in.
  • Silicon photonics are excellent for high-density integration of optical circuits, but the propagation loss of silicon thin waveguides reaches 3 dB / cm. Propagation loss, which was not a problem in the extremely small region in the silicon optical circuit, has become a serious problem as the entire optical circuit becomes larger and the wiring length becomes longer.
  • SSC spot size conversion structure
  • FIG. 5 is a diagram showing the configuration of the spot size conversion (SSC) structure of the prior art.
  • FIG. 5 is a top view of a silicon optical circuit 500 having two optical waveguide cores 501, 502 with different MFDs and including an SSC structure 530 for mitigating the effects of MFD differences, and a-a line cut.
  • the cross-sectional view is shown. Referring to the cross-sectional view looking at the xz plane, the underclad layer 504 is configured on the Si substrate 503, and the core 501 of the silicon thin wire waveguide having a small MFD is further formed on the underclad layer 504. It is formed.
  • the silicon optical circuit 500 is further entirely covered with an overclad layer 505.
  • the Si substrate 503, the underclad 504, and the Si core 501 are manufactured by using the SOI substrate as a common substrate. The configuration of the silicon optical circuit including this SSC structure will be described later together with the problems.
  • the tip of the core 501-2 is a tapered reverse taper portion 501-1
  • the planar optical waveguide core 502 is arranged so as to cover the reverse taper portion 501-1.
  • the difference in the specific refractive index between the planar optical waveguide core 502 and the underclad layer 504 and the overcladed layer 505 is larger than the difference in the specific refractive index between the core 501-2 of the silicon thin wire waveguide and the underclad layer 504 and the overcladed layer 505. small.
  • the planar optical waveguide core 502 has a larger core cross-sectional area and MFD than the core 501 of the silicon thin wire waveguide.
  • the light in the core 501-2 of the silicon thin wire waveguide cannot be completely confined in the core of the reverse taper shape as it approaches the core tip by the reverse taper part 501-1 of the SSC structure part 530, and the reverse taper part 501- It leaks to the cladding around 1.
  • the light leaked from the reverse taper portion 501-1 adiabatically transitions to the planar optical waveguide core 502 covering the silicon thin wire waveguide core 501-2. Since this light transition process is adiabatic, theoretically no loss of light energy occurs.
  • a quartz-based optical waveguide having SiO X as a core and SiO 2 as a clad material, a polymer optical waveguide using a polymer material as a core, and a polymer optical waveguide using a polymer material as a clad material are used. Be done. In any combination of these plane optical waveguide materials, the difference in specific refractive index is about 1 to several%.
  • a quartz-based optical waveguide which is a quartz-based material similar to optical fiber, is used as the planar optical waveguide 502, it has low loss in the communication wavelength band, low temperature dependence and polarization dependence, and high reliability and high reliability. A high-performance optical device can be obtained.
  • Planar optical waveguides such as quartz-based optical waveguides have a larger core size than Si cores.
  • Propagation loss in a planar optical waveguide ranges from 0.1 dB / cm or less to 0. It stays at about several dB / cm and can be realized without a large propagation loss even if the wiring length exceeds several tens of cm. Further, it is possible to cope with a wide range of inter-core pitches of about several tens of ⁇ m to several hundreds of ⁇ m, and it is possible to form a pitch conversion structure with an increase in the size of the entire optical circuit and an increase in wiring length without a large propagation loss.
  • Non-Patent Document 1 a planar optical waveguide typified by a quartz-based optical waveguide with a silicon optical circuit.
  • the conventional optical circuit that combines optical waveguides with different MFDs still has problems of complexity and cost in the manufacturing process.
  • Hybrid integration is a method in which a silicon optical circuit and a planar optical waveguide having optical waveguides with different MFDs are manufactured on different substrates, and then integrated.
  • a step also called a centering step
  • the silicon thin-wire waveguide core and the planar optical waveguide core is required.
  • optical waveguides with a very thin core of several hundred nm, such as the silicon thin wire waveguide core of a silicon optical circuit there is a high demand for alignment accuracy, and a high-precision alignment process is costly. Was the problem.
  • Monolithic integration is a manufacturing method in which different materials of a silicon optical circuit and a planar optical waveguide are integrated on the same substrate, and the above-mentioned problem of hybrid integration can be solved.
  • monolithic integration by simultaneously integrating a silicon optical circuit and a planar optical waveguide on a common SOI substrate, a complicated alignment process is not required, and deterioration of coupling efficiency due to misalignment can be minimized.
  • monolithic integration there is a problem with the connectivity between the silicon thin wire waveguide and the planar optical waveguide.
  • FIG. 5 again, the problem of connectivity in the case of monolithic integration will be described.
  • the spot size is converted by the SSC structure unit 530, and the coupling loss due to the inconsistency of the MFD is suppressed.
  • the thickness of the silicon thin wire waveguide core 501 of the optical circuit 500 shown in FIG. 5 is several hundred nm, and the thickness of the planar optical waveguide core 502 is about several ⁇ m.
  • the difference in the relative dimensions of the thicknesses of the two cores is compressed to make each part easier to see, but the center height of the core 501 and the center height of the core 502 do not match. It is clear that it has become.
  • the adiabatic coupling from the silicon thin wire waveguide core 501 to the planar optical waveguide core 502 is used, complete coupling is theoretically possible even if the center heights of the cores do not match.
  • the adiabatic coupling efficiency depends on the dimensional accuracy of the silicon thin waveguide core and the optical characteristics of the planar optical waveguide core. For this reason, not all light energies make adiabatic coupling to all optical circuits manufactured in the same process.
  • the coupling efficiency is determined by the overlap integral of the mode field of the optical element to be connected. Therefore, when the center heights of the two connected cores are different as shown in FIG. 5, the coupling is performed. Efficiency may be reduced.
  • One embodiment of the present invention is an optical waveguide component in which optical waveguides having different mode field diameters (MFDs) are formed on a substrate, the first core made of a first material, and the first aspect.
  • MFDs mode field diameters
  • the region of the first core is included in the region of the second core, and the first material has the highest refractive index, and the first material has the highest refractive index.
  • the material of No. 3 is an optical waveguide component characterized by having the smallest refractive index.
  • Another embodiment of the present invention is a method of manufacturing an optical waveguide component including a first optical waveguide and a second optical waveguide having different mode field diameters (MFD), which is a lower clad on a substrate.
  • a step of forming the first layer a step of forming a second layer for the lower core of the second optical waveguide with a material having a higher refractive index than the first layer, and the first.
  • a method of manufacturing an optical waveguide component comprising a step of forming a fifth layer to be an upper clad.
  • the optical waveguide components of the present disclosure provide a configuration in which optical waveguides of different materials can be monolithically integrated on a common single substrate, and two types of optical waveguides having different mode field sizes are connected with low loss. ..
  • the optical waveguide component of the present disclosure is configured to have a double structure in which the core region of the first optical waveguide is included in the core region of the second optical waveguide in a cross section perpendicular to the length direction of the optical waveguide. Will be done.
  • the refractive index of the first material of the core of the first optical waveguide is larger than the refractive index of the second material of the core of the second optical waveguide.
  • the refractive index of the second material constituting the core of the second optical waveguide is larger than the refractive index of the third material constituting the clad of the second optical waveguide.
  • FIG. 1 is a diagram showing the configuration of an optical waveguide component including the dual structure of the present disclosure.
  • FIG. 1 is a top view of the two optical waveguides 110 and 120 toward the plane (xy plane) of the substrate 101, and a side view (x-) passing through the center of each core 104 and 103 of the two optical waveguides.
  • the z-plane includes two end views (yz-plane) of a cross section vertically cut in the length direction of the optical waveguide.
  • the optical waveguide component 100 of FIG. 1 has a first optical waveguide having a first core size and a corresponding MFD formed on a common substrate 101 and a second having a second core size and a corresponding MFD.
  • FIG. 1 shows two optical waveguides 110 and 120 obtained by cutting out only a part of an optical circuit monolithically integrated on a substrate 101, the number of optical waveguides is not limited to this, and other optical waveguides are optical. It may be included in the waveguide component 100. In the top view (xy plane) of FIG. 1, the clad 105 at the uppermost portion is removed.
  • the core 104 is formed of the first material
  • the clad 103-1 is formed of the second material
  • the core 103-2 is the second material
  • the clad 105. 102 is made of a third material.
  • the relationship between the refractive indexes n 1 , n 2 , and n 3 of the first material, the second material, and the third material has the highest refractive index n 1 of the first material.
  • the refractive index n 3 of the third material is the lowest is satisfied, the type of the material of each optical waveguide does not matter. In short, it suffices that the following equation holds for the refractive indexes n 1 , n 2 , and n 3 of the three materials.
  • the core 104 of the first optical waveguide 110 is the second optical waveguide. It can be seen that it is contained in the core 103 of the waveguide.
  • the boundaries are shown by using dotted lines in order to distinguish the regions of the two optical waveguides, but as is clear from the fabrication process described later, the two optical waveguides are shown. There is no physical boundary between them.
  • the clad 103-1 (103-1a, 103-1b) of the first optical waveguide and the core 103-2 (103-2a, 103-2b) of the second optical waveguide have two optical waveguides. Through 110 and 120, it can be regarded as one. Looking at the cross section perpendicular to the length direction of the optical waveguide, the relationship is such that the core region of the first optical waveguide is contained inside the core region of the second optical waveguide, as if it were a pencil and its core. be. Further, in the optical waveguide component 100 of FIG. 1, when viewed in a cross section perpendicular to the length direction of the optical waveguide, the core region of the first optical waveguide is included in the core region of the second optical waveguide, and the two cores are included. It is configured so that the center heights of the are the same. Such a "double structure” or “nested structure” of the optical waveguide can solve the problem of loss due to the deviation of the center height position of the core in the conventional monolithic integration shown in FIG.
  • the first material is Si
  • the second material is SiO 2 having a relatively high refractive index
  • the third material is SiO 2 having a relatively low refractive index.
  • the magnitude of the refractive index can be expressed by the relationship of Si> high refractive index SiO 2 > low refractive index SiO 2 .
  • the materials that can be used for each part of the two types of optical waveguides are not limited to these, and for example, Si, SiN, SiON, and the like can be used as the first material. Further, SiO 2 , SiOx, a polymer and the like can be used as the second material and the third material.
  • the structure of the optical waveguide component of FIG. 1 will be described by taking the above-mentioned specific material as an example.
  • the optical waveguide component 100 is configured on the substrate 101.
  • the substrate 101 is a substrate having a smooth surface on which two SiO layers can be formed.
  • a SiO 2 layer 102 which is a third material having the lowest refractive index, is provided.
  • a first optical waveguide 110 and a second optical waveguide 120 are configured on the substrate 101.
  • the first optical waveguide 110 includes a Si core 104 having the highest refractive index, and as shown in the top view, the Si core 104-2 and the tapered waveguide 104-1 whose width narrows toward the second optical waveguide 120. It consists of.
  • the Si core 104 is formed on the lower SiO 2 core portion 103-1a, and the upper SiO 2 core portion 103-1b is formed so as to cover the Si core 104. ing.
  • the second optical waveguide 120 includes a SiO 2 core 103 on the SiO 2 layer 102, and the SiO 2 core 103 has an upper SiO 2 core portion 103-2b and a lower SiO 2 core portion according to the side view. It consists of two parts, 103-2a.
  • SiO 2 core 103 when the description is made as SiO 2 core 103 for the sake of simplicity, the entire SiO 2 region of the four core portions 103-1a, 103-1b, 103-2a, and 103-2b spanning the two optical waveguides. Shall point to.
  • the SiO 2 core 103 will be composed of a second material having an intermediate refractive index.
  • the SiO 2 core 103 is configured to have substantially the same refractive index so that the upper and lower core portions 103-2a and 103-2b literally function as the "core" of the optical waveguide. ..
  • the upper and lower core portions 103-1a and 103-1b actually function as "clad" of the optical waveguide.
  • the materials in the upper layer clad 103-1b and the lower layer clad 103-1a of the first optical waveguide 110 which is a high refractive index difference waveguide, are used as the second optical waveguide, which is a low refractive index difference waveguide.
  • the material of the core 103 of the optical waveguide 120 is the same.
  • the SiO 2 regions (103-a) of the lower core portions 103-1a and 103-2a of the SiO 2 core 103 composed of the four core portions are created in one step. Will be done.
  • the SiO 2 region (103-b) of the upper core portions 103-1b and 103-2b is also created in one step.
  • the optical waveguide component 100 of the present disclosure can realize a configuration in which two types of optical waveguides having cores having different refractive indexes are connected with low loss by a simple process equivalent to the production of the optical waveguide component by a general laminating process. ..
  • the entire two optical waveguides 110, 120 are covered with an upper cladding of the SiO 2 layer 105 made of a third material having the lowest refractive index. Therefore, it should also be noted that the Si core 104 of the first optical waveguide 110 is surrounded by a clad of a double structure.
  • the relationship is Si core 104 ⁇ SiO 2 core 103 ⁇ SiO 2 clad 102, 105. That is, the refractive index of the SiO 2 core portions 103-2a and 103-2b is larger than the refractive index of the cladding of the SiO 2 layer 102 and the SiO 2 layer 105. It should be noted here that the refractive indexes of the SiO 2 layer 102 and the SiO 2 layer 105 do not have to be the same.
  • the second optical waveguide 120 can confine light in the core and function as an optical waveguide. be.
  • the “double structure” of each part of the optical waveguide component and the core of FIG. 1 will be described in more detail.
  • First Embodiment: Configuration of optical waveguide There are two types of optical waveguides in the optical waveguide component 100 of FIG. That is, one is a first optical waveguide 110 having a SiO 2 core portion 103-1a as an underclad, a Si core 104 as a core, and a SiO 2 core portion 103-1b as an overclad. The other is a second optical waveguide 120 in which the SiO 2 layer 102 is under-clad, the SiO 2 core 103 is the core, and the SiO 2 layer 105 is over-clad.
  • the Si core 104 is sandwiched between the SiO 2 core portion 103-1a and the SiO 2 core portion 103-1b, which function as a "clad", and the width of the Si core 104 is SiO 2 .
  • the structure is narrower than the width of the core portion 103-1. Therefore, although the optical waveguide component 100 is a planar optical circuit, the cross-sectional area of the Si core 104 of the first optical waveguide completely fits within the cross-sectional area of the SiO 2 core 103 of the second optical waveguide. It has a "double structure". Further, as is clear from the left end view of FIG.
  • the Si core 104 in the first optical waveguide 110 includes an inner clad by the SiO 2 core portion 103-1 and an outer clad by the SiO 2 layers 103 and 105. , It can be said that it has a "double structure" of clad.
  • the present invention is an optical waveguide component in which optical waveguides having different mode field diameters (MFDs) are formed on a substrate 101, the first core 104 made of a first material, and the first core.
  • the first optical waveguide 110 including the clads 103-1a and 103-1b made of the second material formed above and below the first core, and the first formed extending from the clad along the first core.
  • a second core 103 made of the second material, a lower clad 102 made of the third material configured between the substrate and the second core, and an upper clad 105 configured on top of the second core.
  • the region of the first core 104 is included in the region 103 of the second core.
  • the first material can be implemented as an optical waveguide component characterized by having the highest refractive index and the third material having the lowest refraction.
  • the optical waveguide component 100 needs to have the above-mentioned double structure of the core in the SSC region 130 that gradually expands the MFD of the light propagating in the core. That is, it is desirable that the SSC region 130, which gradually expands the MFD of the light propagating in the core, is formed in the double structure portion of the core in the first optical waveguide.
  • the structure for the SSC function is not limited to a specific one, but the Si core 104 is realized by a structure that passes from a core 104-2 having a constant width to a tapered tapered portion 104-1 as shown in the SSC region 130 in FIG. can.
  • the Si core 104 may have a tapered shape in the vertical direction (z-axis direction) of the substrate in which the height of the Si core 104 gradually decreases.
  • the Si core 104 can also be realized by a segmented structure divided in the light propagation direction (x-axis direction). That is, by segmenting the Si core 104 so that the region (segment) in which the core is formed and the region in which the core is not formed are alternately repeated, the light confinement is gradually weakened and an adiabatic transition is generated. Further, both the tapered shape and the segment shape may be combined to form the SSC region.
  • the first optical waveguide 110 and the second optical waveguide 120 of FIG. 1 May make a transition from each structure to another structure.
  • FIG. 2 is a diagram showing the configuration of an optical waveguide component including a double structure and another waveguide structure.
  • (A) and (b) of FIG. 2 show the configuration of a modification of the optical waveguide component of FIG. 1, respectively, and are a top view of the substrate surface (xy plane), which is perpendicular to the substrate surface including the optical waveguide. Includes a side view of a cross section (x-z plane) and an end view of a cross section (yz plane) perpendicular to the length of the optical waveguide. Further, each top view shows the clad 105 at the uppermost portion removed.
  • the core portion 103-1b that functions as an overclad of the first optical waveguide 110 is limited to only on the tapered shape portion 104-1 in the SSC region 130. I am preparing for it. That is, the rectangular Si core 104-2 of the first optical waveguide 110 is directly covered with the SiO 2 layer 105 that functions as an overclad.
  • the function as an optical waveguide is no different from that of the first optical waveguide 110 in FIG.
  • the optical circuit of the silicon thin wire waveguide is configured, so that the patterning for the core 103 of the second material is eliminated.
  • an optical circuit of a silicon thin wire waveguide is configured. In the optical circuit section, it is not necessary to form or pattern the material layer of the planar optical waveguide core on the silicon thin wire waveguide core, so that the factors that deteriorate the silicon circuit are reduced.
  • the core portion 103-1b that functions as an overclad of the first optical waveguide 110 is limited to only on the tapered shape portion 104-1 in the SSC region 130. I am prepared.
  • the Si core 104 is exposed.
  • the Si core 104 outside the SSC region 130 light is confined by the underclad by the SiO 2 core portion 103-1a of the second material and the air having a large refractive index difference from the Si core.
  • the silicon thin wire waveguide at the tip of the Si core 104 of the optical waveguide component 100-2 of FIG. 2B there is an advantage that light can be trapped more strongly, the core can be made thinner, and the bending radius can be made smaller.
  • the form of the optical waveguide can be changed as shown in FIGS. 2A and 2B, and the tip of the second optical waveguide 120 can be changed. It is also possible to change the form of the optical waveguide in.
  • the double structure of the cores of two optical waveguides having different core sizes in the optical waveguide component of the present disclosure is necessary in the SSC region 130, and the optical waveguide component 100 of FIG. 1 is a part of an integrated optical circuit. Please note that. [Thickness of each layer, center height adjustment structure] Returning to the optical waveguide component 100 of FIG.
  • the thickness of the underclad SiO 2 layer 102 and the overclad SiO 2 layer 105 is the light propagating in the SiO 2 core 103 of the second optical waveguide 120. It suffices if the mode field of is sufficiently accommodated. That is, the clad layers 102 and 105 may have a thickness such that the mode field of light propagating through the second optical waveguide 120 does not seep into the air layer directly above the substrate 101 and the overclad SiO 2 layer 105. Generally, it is sufficient that the thickness of the clad SiO 2 layers 102 and 105 is about several tens of ⁇ m.
  • the center height of the Si core 104 of the first optical waveguide 110 and the center height of the SiO 2 core 103 of the second optical waveguide 120 should be matched by setting as follows. Can be done. That is, the thickness of the lower SiO 2 layers 103-1a and 103-2a is set to the difference between 1/2 of the total height of the SiO 2 core 103 and 1/2 of the height of the Si core 104. Just do it. At this time, it is possible to completely match the center heights of the cores of the two optical waveguides, and solve the problems of connectivity due to incomplete adiabatic coupling in the SSC structure of the prior art and deterioration of butt coupling efficiency. ..
  • neither the first optical waveguide 110 nor the second optical waveguide 120 has an upper limit on the core cross-sectional size, and a plurality of modes of light are emitted with respect to the wavelength of the optical signal to be used. It can also be a multi-mode optical waveguide to propagate. Further, by reducing the core cross-sectional size, it is possible to obtain a single-mode optical waveguide that propagates only the lowest-order mode.
  • the Si layer is the core 104
  • the SiO 2 layers 103-1a and 103-1b are clad as shown in FIG. 1, or the air is clad as shown in FIG. 2 (b), and the core-clad section is used.
  • the difference in refractive index is large. Therefore, the cross-sectional size of the core can be reduced to several hundred nm.
  • the second optical waveguide 120 using the SiO 2 layer as the material of the core and the clad has a smaller difference in refractive index between the core and the clad than the first optical waveguide 110. Therefore, the core cross-sectional size of the second optical waveguide 120 is about several ⁇ m to 10 ⁇ m square.
  • the core cross-sectional size is about several hundred nm for the first optical waveguide and several ⁇ m to several ⁇ m for the second optical waveguide 120. It will be about 10 ⁇ m. Therefore, the MFDs of the light propagating in the cores of the two optical waveguides are remarkably different, and the MFD of the second optical waveguide 120 becomes a larger value than the MFD of the first optical waveguide 110.
  • the method of connecting the cores of the optical waveguide in the single mode is roughly classified into two types.
  • connection method is adiabatic coupling, in which both cores of the two optical waveguides are arranged so as to be in contact with each other in the propagation direction, and one optical waveguide core is made into a tapered tapered shape to propagate in the core. Gradually reduce the equivalent index of refraction of the mode. With such a configuration, the light energy of the mode that can no longer be confined is adiabatically transferred to the other adjacent optical waveguide core.
  • the other connection method is butt coupling, in which the end faces of the cores are abutted and arranged, and the coupling efficiency is defined by the overlap integral of the mode profiles existing in both cores of the two optical waveguides.
  • both the first optical waveguide 110 and the second optical waveguide 120 are single-mode optical waveguides
  • adiabatic coupling and butting are performed in the SSC region 130 connecting the two types of optical waveguides. Use one or both of the coupling methods.
  • the second optical waveguide 120 exhibits a larger MFD than the first optical waveguide 110.
  • the MFD of the first optical waveguide 110 is gradually expanded to match the MFD of the second optical waveguide 120.
  • the structure that realizes this MFD enlargement function is not limited, but for example, there is a structure in which the Si core has a tapered tapered shape 104-1 as in the SSC region 130 of FIG.
  • the equivalent refractive index of the mode in the Si core 104 may be gradually reduced.
  • the equivalent refractive index can be reduced as it approaches the second optical waveguide 120.
  • the equivalent refractive index is reduced by the tapered Si core, which is one of the optical energies in the Si core. All or all of them are adiabatically transitioned to the SiO 2 core 103 of the second optical waveguide 120.
  • Part of the light energy in the Si core 104 can propagate in the Si core 104 without adiabatic coupling with the SiO 2 core 103 and reach the boundary between the first optical waveguide and the second optical waveguide. be.
  • the Si core 104 of the first optical waveguide 110 is butt-coupled with the SiO 2 core 103 of the second optical waveguide 120 at the boundary.
  • a part of the light energy that has not been adiabatically coupled in the Si core 104 can be efficiently coupled by manufacturing the optical waveguide component 100 so that the center heights of the Si core 104 and the SiO 2 core 103 match.
  • the butt coupling efficiency defined by the overlap integral of the mode field can be kept high and the light energy can be coupled with low loss between the two optical waveguides.
  • optical waveguides of different materials can be monolithically integrated on a common single substrate, and two types of optical waves having different mode field sizes can be integrated. Configurations can be provided that connect the waveguide with low loss.
  • two optical waveguides are coupled to each other with low loss to form a continuous single optical waveguide, but a plurality of optical waveguides made of different materials are coupled to each other with low loss. You can also. [Second embodiment: pitch conversion]
  • FIG. 3 is a diagram showing the configuration of the optical waveguide component of the second embodiment.
  • the plurality of first optical waveguides and the same number of second optical waveguides are coupled with low loss.
  • the structure between the first optical waveguide and the corresponding second optical waveguide among the plurality of first optical waveguides is the same as that of the optical waveguide component 100 of the first embodiment shown in FIG. Therefore, the description thereof will be omitted.
  • the Si core 104 of the first optical waveguide can confine light in a very small cross section as compared with the second optical waveguide. Therefore, when it is desired to create many core patterns for a plurality of Si cores 104 in a narrow region, the pitch between cores can be narrowed to about several ⁇ m.
  • the second optical waveguide having a core size larger than that of the first optical waveguide needs to have a core cross-sectional size of at least several ⁇ m to 10 ⁇ m square even when the core width is made as narrow as possible. Therefore, the core-to-core pitch assumed when arranging the SiO 2 cores 103 of the plurality of second optical waveguides is several tens of ⁇ m to several hundreds of ⁇ m.
  • the plurality of Si cores 104 and the plurality of SiO 2 cores 103 are the same. It is necessary to form at the pitch between cores.
  • the inter-core pitch at that time is arbitrary, but in the case of high-density wiring, it is desirable to set it to, for example, several tens of ⁇ m in accordance with the minimum inter-core pitch of the second optical waveguide.
  • another end face 107 of the second optical waveguide on the substrate may have a core-to-core pitch different from that of the connection.
  • the core-to-core pitch of the SiO 2 core 103 near the end face 107 of the second optical waveguide is determined according to 125 ⁇ m or 250 ⁇ m, which is the standard for the inter-core pitch of the optical fiber. ..
  • the distance between the waveguides is extended with respect to the SiO 2 core 103 of the second optical waveguide from the vicinity of the connection portion with the first optical waveguide to another end surface 107 away from the connection portion.
  • the region 108 that extends the spacing between waveguides is configured by patterning that includes straight lines, curves, or combinations of straight lines and curves.
  • the region 108 that extends the spacing between the waveguides smoothly extends the second optical waveguide from the plurality of first optical waveguides to another end face 107 of the substrate of the second optical waveguide to the optical fiber array 106. Can be connected optically.
  • FIG. 4 is a diagram illustrating a process of a method for manufacturing an optical waveguide component of the present disclosure. This embodiment is the method for manufacturing the optical waveguide component shown in the first embodiment and the second embodiment, and the structure of the optical waveguide component to be manufactured is the first embodiment and the second embodiment. Since it is as described in the above, the description thereof will be omitted. (A) to (e) of FIG. 4 show the steps in order until the optical waveguide component 100 of FIG. 1 is manufactured.
  • the SiO 2 layer 102 (first layer) is formed on the substrate 101 whose surface is smooth enough to form a SiO 2 layer on the substrate 101.
  • the substrate 101 include a glass substrate and the like, and a Si substrate is particularly suitable.
  • the method for forming the SiO 2 layer 102 is not limited as long as it can form a uniform and smooth layer so that another layer can be formed directly on the formed layer.
  • there is a film formation method of a SiO 2 layer such as a flame deposition method.
  • a SiO 2 layer 203-a (second layer) having a higher refractive index than the SiO 2 layer 102 is formed.
  • the refractive index may be controlled by adding GeO 2 , ZrO 2 , HfO 2 , P 2 O 5 or B 2 O 3 .
  • a Si layer 204 (third layer) is formed directly above the SiO 2 layer 203-a and flattened. ..
  • the above-mentioned SiO 2 layer 203-a of the four core portions 103-1a, 103-1b, 103-2a, 103-2b extending over the two optical waveguides of FIG. 1 It is a layer for the lower 103-1a and 103-2a in the SiO 2 region.
  • a film may be formed by sputtering of amorphous silicon or the like, or after another Si substrate is bonded to the upper surface of the substrate 101 (on the SiO 2 layer 203-a), the desired Si is formed.
  • the film thickness may be obtained.
  • a general SOI substrate instead of forming a single SiO 2 layer, that is, a BOX (Buried OXide) layer under the surface Si layer, two SiO 2 layers having different refractive indexes are formed. That is, it can be said that the SiO 2 layer 102 and the SiO 2 layer 203-a are formed.
  • the Si layer 204 is processed so as to be able to propagate light as an optical waveguide core, and the Si core 104 of the first optical waveguide is manufactured.
  • an optical circuit of Si photonics beyond the Si core 104 may be formed in combination with the formation of the Si core 104.
  • the SiO 2 layer 203-b (fourth layer) is formed directly above the SiO 2 layer 203-a and the Si core 104.
  • the SiO 2 layer 203-b has a refractive index similar to that of the SiO 2 layer 203-a.
  • the above-mentioned SiO 2 layer 203-b is the SiO 2 of the four core portions 103-1a, 103-1b, 103-2a, 103-2b that span the two optical waveguides of FIG. It is a layer for the upper 103-1b and 103-2b in the region.
  • SiO 2 capable of collectively processing the SiO 2 layer 203-a and the SiO 2 layer 203-b to propagate light as the core of the second optical waveguide.
  • a core 103 core portions 103-2a, 103-2b
  • core portions 103-1a and 103-1b are also formed as "clads" of the first optical waveguide.
  • it is desirable that the width of the SiO 2 core 103 to be collectively processed is wider than the width of the Si core 104 that has already been processed. This is because the side wall of the Si core 104 that has already been machined is not affected when the SiO 2 core 103 is machined.
  • the optical waveguide component 100 can be manufactured by forming the SiO 2 layer 105 (fifth layer) having a refractive index lower than that of the SiO 2 core 103.
  • the present invention is a method of manufacturing an optical waveguide component 100 including a first optical waveguide 110 and a second optical waveguide 120 having different mode field diameters (MFDs), on a lower side on a substrate 101.
  • the step of forming the core 104 of the first optical waveguide and the fourth layer for the upper core of the second optical waveguide by the material having the same refractive index as the second layer The step of forming 203-b, the step of processing the second layer and the fourth layer collectively to form the core 103 of the second optical waveguide, and the second layer and the above. It can be carried out as a method for manufacturing an optical waveguide component including a step of forming a fifth layer 103 to be an upper clad by using a material having a refractive index lower than that of the fourth layer.
  • the method for manufacturing the optical waveguide component of the first and second embodiments and the optical waveguide component of the third embodiment it is equivalent to the optical waveguide component manufacturing process by a general laminating process.
  • this simple process two types of optical waveguides with cores with different refractive indexes can be connected with low loss.
  • by making the structure so that the core center heights of the two optical waveguides match each other it is possible to connect with lower loss.
  • INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an optical waveguide component capable of easily connecting optical waveguides having significantly different MFDs.
  • the present invention can be used for a device using optical communication.

Abstract

本開示の光導波路部品は、異なる材料の光導波路を共通の単一の基板上にモノリシック集積可能であり、モードフィールドの大きさが異なる2種類の光導波路を低損失に接続する構成を提供する。本開示の光導波路部品は、光導波路の長さ方向に垂直な断面で、第1の光導波路のコア領域が、第2の光導波路のコア領域に内包される二重構造を持つように構成される。第1の光導波路のコアの第1の材料の屈折率は、第2の光導波路のコアの第2の材料の屈折率より大きい。また第2の光導波路のコアを構成する第2の材料の屈折率は、第2の光導波路のクラッドを構成する第3の材料の屈折率より大きい。第1の光導波路のコアの中心高さと、第2の光導波路のコアの中心高さを揃えることで、従来技術のSSC構造部における断熱結合の不完全さや、突合せ結合効率の悪化による接続性の問題を解消する。

Description

光導波路部品およびその製造方法
 本発明は、光通信を利用する光導波路部品に関する。
 近年のデータセンタ内通信のトラフィック増大に伴い、コンピュータ筐体内素子の光配線化技術の重要性が高まっている。中でも、多数の光回路を高密度に集積可能なシリコンフォトニクス技術が注目を集めている。
 シリコンフォトニクス技術において光伝送媒体となるシリコン光回路は、SiをコアとしSiOをクラッドとするシリコン細線導波路によって構成される。シリコン細線導波路ではコアとクラッドの間の比屈折率差が40%程度であり、シングルモード通信の使用波長帯である1550nm付近において、数百nm角という極小断面領域内での光伝搬が可能である。許容曲げ半径も数μm程度と小さいため、狭い領域内に複雑な配線パターンを形成可能で、シリコンフォトニクス技術による光回路の大規模集積化が期待される。
 シリコン光回路は通常SOI(Silicon On Insulator)基板上に形成されるため、シリコン光回路および電子回路をモノリシック集積することもできる。製造技術の観点では、成熟した半導体微細加工技術を適用できるため、微細パターンを簡単に形成できる。シリコンフォトニクス技術を半導体技術や電子回路技術と組み合わせることで、光電子集積型デバイスの実現が期待される。
 一方でシリコン光回路は、他の光素子との接続という観点で問題を抱えていた。光素子同士を接続する際には、接続点における損失を低減する上で、光素子内を伝搬する光のモードフィールドを合わせることが重要である。二つの光素子を突き合わせて接続させた場合、伝搬光の結合効率は両者のモードフィールドの重なり積分によって決定づけられる。シリコン光回路のモードフィールド径(Mode Field Diameter:MFD)は300nm程度である。ここで、コンピュータ筐体内にて回路外部の光伝送媒体として使用されているシングルモードファイバ(Single Mode Fiber:SMF)との接続を考える。長距離伝送にも用いられる一般的なSMFのMFDは9μm程度であり、MFDの小さな光導波路などとの接続用の高比屈折率差設計のSMFでもMFDは4μm程度である。このようにシリコン光回路のMFDは、SMFのMFDと比べて10~数十倍も小さく、シリコン光回路およびSMFを直接接続した場合、MFDの不整合よって大きな結合損失が生じてしまう。
 さらに、複数チャネルを含むシリコン光回路と複数のSMFとを接続する際には、シリコン光回路およびSMFの間でのコア間ピッチの違いの問題もあった。上述のように、シリコン光導波路は、数百nm角の極小断面領域内での光伝搬が可能である。このためシリコン光回路上で複数チャネルを配列させる場合も、そのコア間ピッチを数μm程度にまで減らして、高密度に配線できる。一方、複数の光ファイバを含むSMFでは、125μmや250μmのコア間ピッチが既に規格化されており、対応する製品も市場に広く流通している。したがって、シリコン光回路内で高い配線密度を維持しながら、その端部で規格化されたピッチの複数のSMFと接続するためには、シリコン光回路とSMFとの間でコア間ピッチを揃えなければならない。すなわち、シリコン光回路のSMFとの接続部付近で、SMFのコア間ピッチに一致するよう、シリコン細線導波路のコア間ピッチを拡大するピッチ変換配線パターンを構成する必要がある。 
 このピッチ変換配線パターンでは、元々高密度に配置された数μmのコア間ピッチをSMF接続のために100μm以上にまで拡大させる必要があり、シリコン光回路が大型化したり、配線長が長くなったりしてしまう。シリコンフォトニクスは光回路の高密度集積化には優れているが、シリコン細線導波路の伝搬損失は3dB/cmに及ぶ。シリコン光回路内の極小領域では問題とならなかった伝搬損失が、今度は、光回路全体が大型化し配線長が長距離化することで、深刻な問題となっていた。このようなシリコン光回路とSMFの間の接続性に関する問題を解決するために、スポットサイズ変換構造(Spot Size Conversion:SSC)およびピッチ変換構造を挿入する手法が提案されていた。
 図5は、従来技術のスポットサイズ変換(SSC)構造の構成を示す図である。図5は、異なるMFDを持つ2つの光導波路コア501、502を有し、MFDの差異の影響を緩和するためのSSC構造部530含むシリコン光回路500の上面図、およびa-a線を切った断面図を示している。x-z面を見ている断面図を参照すれば、Si基板503の上に、アンダークラッド層504が構成され、さらにアンダークラッド層504の上に、MFDの小さいシリコン細線導波路のコア501が形成されている。シリコン光回路500は、さらに全体がオーバークラッド層505により覆われている。図5においてSi基板503、アンダークラッド504、Siコア501は、SOI基板を共通の基板として利用し作製される。このSSC構造を含むシリコン光回路の構成については、課題とともに後述する。
 SSC構造部530では、コア501-2の先端を先細りの逆テーパ部501-1とし、逆テーパ部501-1を覆うように平面光導波路コア502を配置している。平面光導波路コア502とアンダークラッド層504およびオーバークラッド層505との比屈折率差は、シリコン細線導波路のコア501-2とアンダークラッド層504およびオーバークラッド層505との比屈折率差よりも小さい。また平面光導波路コア502は、シリコン細線導波路のコア501よりもコア断面積およびMFDが大きい。シリコン細線導波路のコア501-2内の光は、SSC構造部530の逆テーパ部501-1でコア先端に近づくにしたがい、逆テーパ形状のコア内には閉じ込めきれなくなり、逆テーパ部501-1の周囲のクラッドへ漏洩する。逆テーパ部501-1から漏洩した光は、シリコン細線導波路コア501-2を覆う平面光導波路コア502へと断熱的に遷移する。この光の遷移過程は断熱的であるので、理論上は光エネルギーの損失を発生しない。
 図5におけるSiコアよりもMFDの大きい平面光導波路502としては、SiOをコア、SiOをクラッド材料とする石英系光導波路や、ポリマー材料をコア、クラッド材料とするポリマー光導波路などが用いられる。これら平面光導波路の材料の組み合わせのいずれも、比屈折率差は1~数%程度である。SSC構造部530によって、数百nm角程度のSiコア501-2から、数μm程度の平面光導波路コア502に断面を拡大することで、SMFとの結合効率を改善できる。特に平面光導波路502として、光ファイバと同様の石英系材料である石英系光導波路を採用すれば、通信波長帯で低損失であり、温度依存性や偏波依存性が低く、高信頼・高性能な光デバイスが得られる。
 石英系光導波路などの平面光導波路はSiコアと比べてコアサイズが大きい。平面光導波路における伝搬損失は0.1dB/cm以下から0.数dB/cm程度に留まり、数10cmを超える配線長であっても大きな伝搬損失無しに実現できる。さらに、数10μmから数百μm程度の幅広いコア間ピッチにも対応可能であり、大きな伝搬損失無しに、光回路全体の大型化や配線長の増大を伴うピッチ変換構造を形成することもできる。
 上述のように、シリコン光回路に対して石英系光導波路を代表とする平面光導波路を組み合わせることで、MFDの異なる2種類の光導波路を低損失に接続し、シリコンフォトニクス技術の接続性を向上していた(非特許文献1)。
B. Ben Bakir, et al., "Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers", 2010年6月1日、IEEE Photon. Technol. Lett., Vol. 22, No. 11, pp. 739-741
 しかしながらMFDの異なる光導波路を組み合わせた従来技術の光回路では、依然として、製造工程の煩雑さやコストの問題が残っている。MFDの異なる光導波路を有するシリコン光回路と平面光導波路とを組み合わせる光回路の作製方法には、大別して2つのアプローチがある。1つは、別々の基板を組み合わせるハイブリッド集積であり、もう1つは、単一の共通基板を用いるモノリシック集積である。
 ハイブリッド集積は、別基板上にMFDの異なる光導波路を有するシリコン光回路と平面光導波路をそれぞれ作製し、その後に集積化する方法である。ハイブリッド集積の場合、シリコン細線導波路コアと平面光導波路コアを正確に位置合わせする工程(調心工程とも言う)が必要となる。シリコン光回路のシリコン細線導波路コアのように数百nmという非常に細いコアを有する光導波路に対しては、調心精度への要求が高く、高精度な調心プロセスにはコストが掛かることが問題であった。
 モノリシック集積は、シリコン光回路および平面光導波路のそれぞれの異種材料を同一基板上に集積する作製方法であって、上述のハイブリッド集積の問題を解消できる。モノリシック集積では、シリコン光回路と平面光導波路を共通のSOI基板上に同時集積することで、煩雑な調心プロセスを不要とし、位置ずれによる結合効率の悪化を最低限に抑えられる。しかしながらモノリシック集積によって作製した場合でも、シリコン細線導波路と平面光導波路間の接続性に関して問題が生じる。ここで再び図5を参照しながら、モノリシック集積した場合の接続性の問題を説明する。先に説明をしたように、図5のシリコン光回路500では、SSC構造部530によってスポットサイズを変換し、MFDの不整合による結合損失を抑えていた。
 図5に示した光回路500のシリコン細線導波路コア501の厚さは数百nm、平面光導波路コア502の厚さは数μm程度である。図5の断面図では各部を見やすくするために2つのコアの厚さの相対寸法の差を圧縮して描いているが、コア501の中心高さと、コア502の中心高さが一致しない構造となっていることは明らかである。シリコン細線導波路コア501から平面光導波路コア502への断熱結合を利用する場合、コア同士の中心高さが一致していなくとも理論的には完全結合が可能である。しかし実際には、断熱結合効率はシリコン細線導波路コアの寸法精度や平面光導波路コアの光学特性によって左右される。このため、同じプロセスで製造されるすべての光回路に対して、全光エネルギーが断熱結合をするとは限らない。
 断熱結合が不完全な場合、断熱結合せずに残った光エネルギーは、シリコン光回路510の終端、すなわちSSC構造部530において、平面光導波路520へと突合せ結合されることになる。一般に突合せ結合では、接続される光素子のモードフィールドの重なり積分にて結合効率が決定されるため、図5に示したように接続される2つのコアの中心高さが異なっている場合、結合効率が悪化する場合がある。
 上述の突合せ結合効率を改善するために、SOI基板上に作製されたシリコン光回路コアおよび平面光導波路コアの中心高さを合わせる方法も検討されている。この場合、SOI基板のBOX層を削り取るエッチング処理が必要になる。図5の構成の場合では、平面光導波路520においてアンダークラッド層504の一部を除去することになり、作製工程が煩雑となる問題があった。このように、共通の1つの基板上に異なる材料の光導波路をモノリシック集積した光回路において、MFDの大きく異なる2種類の光導波路を低損失に接続できる光導波路部品およびその簡便な製造方法が望まれている
 本発明はこのような問題に鑑みなされたものであり、異なる材料の異なる光導波路を低損失で低コストに提供できる新規な光導波路構造およびその製造方法を提供する。
 本発明の1つの実施態様は、基板の上に、異なるモードフィールド径(MFD)を有する光導波路を形成した光導波路部品であって、第1の材料による第1のコア、および前記第1のコアの上下に形成された、第2の材料によるクラッドを含む第1の光導波路と、前記第1のコアに沿って、前記クラッドから延長して形成された前記第2の材料による第2のコア、前記基板と前記第2のコアの間に構成された、第3の材料による下側クラッド、および前記第2のコアの上に構成された上側クラッドを含む第2の光導波路とを備え、前記光導波路の長さ方向に垂直な断面において、前記第1のコアの領域は、前記第2のコアの領域に内包されており、前記第1の材料は最も屈折率が大きく、前記第3の材料は最も屈折率が小さいことを特徴とする光導波路部品である。
 本発明の別の実施態様は、異なるモードフィールド径(MFD)を有する第1の光導波路および第2の光導波路を含む光導波路部品の製造方法であって、基板上に、下側クラッドとなる第1の層を形成するステップと、前記第1の層よりも高い屈折率を有する材料により、前記第2の光導波路の下側コアのための第2の層を形成するステップと、前記第2の層よりもさらに高い屈折率を有する材料により、前記第1の光導波路のコアのための第3の層を形成するステップと、前記第3の層を加工して、前記第1の光導波路のコアを形成するステップと、前記第2の層と同程度の屈折率を有する材料により、前記第2の光導波路の上側コアのための第4の層を形成するステップと、前記第2の層および前記第4の層を一括して加工して、前記第2の光導波路のコアを形成するステップと、前記第2の層および前記第4の層よりも低い屈折率を有する材料により、上側クラッドとなる第5の層を形成するステップとを備える光導波路部品の製造方法である。
 本発明により、異なる材料の異なる光導波路を低損失で接続する光導波路の構造およびその製造方法が得られる。
本開示の第1の実施形態の光導波路部品の構成を示す図である。 二重構造および別の導波路構造を含む光導波路部品の構成を示す図である。 本開示の第2の実施形態の光導波路部品の構成を示す図である。 本開示の光導波路部品の製造方法の各プロセスを説明する図である。 従来技術のスポットサイズ変換構造の構成を示す図である。
 本開示の光導波路部品は、異なる材料の光導波路を共通の単一の基板上にモノリシック集積可能であり、モードフィールドの大きさが異なる2種類の光導波路を低損失に接続する構成を提供する。本開示の光導波路部品は、光導波路の長さ方向に垂直な断面で、第1の光導波路のコア領域が、第2の光導波路のコア領域に内包される二重構造を持つように構成される。第1の光導波路のコアの第1の材料の屈折率は、第2の光導波路のコアの第2の材料の屈折率より大きい。また第2の光導波路のコアを構成する第2の材料の屈折率は、第2の光導波路のクラッドを構成する第3の材料の屈折率より大きい。基板面に垂直な方向で、第1の光導波路のコアの中心高さと、第2の光導波路のコアの中心高さを揃えることで、従来技術のSSC構造部における断熱結合の不完全さや、突合せ結合効率の悪化による接続性の問題を解消する。
 図1は、本開示の二重構造を含む光導波路部品の構成を示す図である。図1は、基板101の面(x-y面)に向かって2つの光導波路110、120を見た上面図、2本の光導波路の各コア104、103の中心を通る側面図(x-z面)、光導波路の長さ方向を垂直に切った断面の2つの端面図(y-z面)を含む。図1の光導波路部品100は、共通の基板101の上に形成された第1のコアサイズおよび対応するMFDを持つ第1の光導波路と、第2のコアサイズおよび対応するMFDを持つ第2の光導波路とが、光学的に接続された構造を備えている。第2の光導波路の第2のコアサイズは、第1の光導波路の第1のコアサイズよりも大きい。図1は2つの光導波路110、120が基板101上にモノリシック集積された光回路の一部だけを切り出して示しており、光導波路の数はこれに限られないし、また他の光導波路が光導波路部品100内に含まれていても良い。尚、図1の上面図(x-y面)では、最上部にあるクラッド105を取り除いて示している。
 2つの光導波路のより具体的な構成は、以下の通りである。第1の光導波路110では、コア104は第1の材料、クラッド103-1は第2の材料で形成し、第2の光導波路120では、コア103-2は第2の材料、クラッド105、102は第3の材料で形成する。本開示の光導波路部品100では、第1の材料、第2の材料および第3の材料の屈折率n、n、nの関係が、第1の材料の屈折率nが最も高く、第3の材料の屈折率nが最も低いという関係を満たしていれば、各光導波路の材料の種類は問わない。要するに3つの材料の屈折率n、n、nに、次式が成立していれば良い。
  n > n > n    式(1)
 光導波路の長さ方向に垂直に切った断面(端面図)を見たとき、光学的に接続される2つの光導波路110、120は、第1の光導波路110のコア104が第2の光導波路のコア103に内包されていることがわかる。図1の上面図および側面図では、2つの光導波路の領域を区別して示すために、点線を用いて境界を示しているが、後述する作製プロセスを参照すれば明らかなように2つの光導波路の間に物理的な境界は存在しない。第2の材料について、第1の光導波路のクラッド103-1(103-1a、103-1b)および第2の光導波路のコア103-2(103-2a、103-2b)は2つの光導波路110、120を通して、一体とみなすことができる。光導波路の長さ方向に垂直な断面を見て、あたかも鉛筆とその芯のように、第2の光導波路のコア領域の内部に、第1の光導波路のコア領域が内包されている関係にある。さらに図1の光導波路部品100では、光導波路の長さ方向に垂直な断面で見たとき、第1の光導波路のコア領域は第2の光導波路のコア領域内に含まれ、2つのコアの中心高さが一致するように構成されている。このような光導波路の「二重構造」または「入れ子様構造」によって、図5に示した従来技術のモノリシック集積におけるコアの中心高さ位置のずれによる損失の問題を解消できる。
 以下の実施形態の説明では具体例として、第1の材料がSi、第2の材料が相対的に屈折率の高いSiO、第3の材料が相対的に屈折率の低いSiOの場合で説明する。この材料例の場合、屈折率の大きさを、Si > 高屈折率SiO > 低屈折率SiOの関係で表せる。2種類の光導波路の各部に使用できる材料はこれらだけに限られず、例えば第1の材料としてSi、SiN、SiONなどを使用することができる。また、第2の材料および第3の材料としてSiO、SiOx、ポリマーなどを使用できる。以下、上述の具体的な材料を例に図1の光導波路部品の構造を説明する。
 再び図1に戻ると、光導波路部品100は基板101上に構成されている。基板101は、その直上にSiO層を成膜可能な、表面が平滑な基板である。基板101の上には、屈折率の最も小さい第3の材料であるSiO層102を備える。図1の上面図を参照すると、基板101の上に、第1の光導波路110および第2の光導波路120が構成されている。第1の光導波路110は、屈折率の最も大きいSiコア104を備え、上面図にあるようにSiコア104-2と、第2の光導波路120に向かって幅が狭まるテーパ導波路104-1とからなる。断面図を参照すれば、Siコア104は、下側のSiOコア部103-1aの上に作製され、さらにSiコア104の上を覆うように上側のSiOコア部103-1bが作製されている。
 第2の光導波路120は、SiO層102上のSiOコア103を備え、側面図を参照すればSiOコア103は上側のSiOコア部103-2bと、下側のSiOコア部103-2aの2つの部分から成る。以下の説明では、簡単のためSiOコア103と記載する場合は、2つの光導波路に渡った4つのコア部103-1a、103-1b、103-2a、103-2bのSiO領域の全体を指すものとする。SiOコア103は、屈折率が中間の値を持つ第2の材料から構成されることになる。後述するように、上下のコア部103-2a、103-2bは別の工程により作製されるため、厳密に完全に同一の屈折率にするのが難しい場合もある。しかしながら、SiOコア103は第2の光導波路120では、上下のコア部103-2a、103-2bが文字通り光導波路の「コア」として機能するよう、概ね同一の屈折率となるよう構成される。一方、第1の光導波路110では、上下のコア部103-1a、103-1bが実際には光導波路の「クラッド」として機能している点に留意されたい。
 本開示の光導波路部品100では、高屈折率差導波路である第1の光導波路110の上層クラッド103-1b、下層クラッド103-1aにおける材料を、低屈折率差導波路である第2の光導波路120のコア103の材料と同一にしている点に注目すべきである。図4とともに後述する製造方法でも述べる通り、4つのコア部からなるSiOコア103の内、下層のコア部103-1a、103-2aのSiO領域(103-a)が1つの工程で作成される。また、4つのコア部からなるSiOコア103の内、上層のコア部103-1b、103-2bのSiO領域(103-b)も、1つの工程で作成される。本開示の光導波路部品100は、一般的な積層工程による光導波路部品の作製と同等の簡単なプロセスで、屈折率の異なるコアを有する2種類の光導波路を低損失に接続する構成を実現できる。図5の従来技術のSSC構造部で説明したような、SOI基板のBOX層を削り取るエッチング処理などは不要である。
 2つの光導波路110、120の全体は、屈折率の最も小さい第3の材料によるSiO層105の上側クラッドで覆われている。したがって、第1の光導波路110のSiコア104は、二重構造のクラッドによって囲まれている点にも留意されたい。
 図1の光導波路部品の構成で屈折率の大きいものから順に並べれば、Siコア104 → SiOコア103 → SiOクラッド102、105の関係となる。すなわちSiOコア部103-2a、103-2bの屈折率は、SiO層102およびSiO層105のクラッドの屈折率よりも大きい関係にある。ここでSiO層102およびSiO層105の屈折率は、同じである必要は無いことに留意されたい。すなわちSiO層102、105の屈折率が、第2の光導波路のSiOコア103-2よりも小さい限り、第2の光導波路120で光をコア内に閉じ込めて光導波路として機能できるからである。以下、図1の光導波路部品の各部およびコアの「二重構造」について、さらに詳細に説明する。
 [第1の実施形態:光導波路の構成]
 図1の光導波路部品100には、2種類の光導波路が存在している。すなわち1つは、SiOコア部103-1aをアンダークラッド、Siコア104をコア、SiOコア部103-1bをオーバークラッドとする第1の光導波路110である。もう1つは、SiO層102をアンダークラッド、SiOコア103をコア、SiO層105をオーバークラッドとする第2の光導波路120である。
 第1の光導波路110において、Siコア104は「クラッド」として機能するSiOコア部103-1aとSiOコア部103-1bの間に挟まれており、さらにSiコア104の幅はSiOコア部103-1の幅よりも狭い構造となっている。したがって光導波路部品100は、平面光回路でありながら、第1の光導波路のSiコア104の断面領域が、第2の光導波路のSiOコア103の断面領域内に完全に収まるようなコアの「二重構造」を持っている。また図1の左側の端面図から明らかなように、第1の光導波路110におけるSiコア104は、SiOコア部103-1による内側クラッド、さらにSiO層103、105による外側クラッドを備えた、クラッドの「二重構造」を持っているとも言える。
 したがって本発明は、基板101の上に、異なるモードフィールド径(MFD)を有する光導波路を形成した光導波路部品であって、第1の材料による第1のコア104、および、前記第1のコアの上下に形成された、第2の材料によるクラッド103-1a、103-1bを含む第1の光導波路110と、前記第1のコアに沿って、前記クラッドから延長して形成された前記第2の材料による第2のコア103、前記基板と前記第2のコアの間に構成された、第3の材料による下側クラッド102、および前記第2のコアの上に構成された上側クラッド105を含む第2の光導波路120とを備え、前記光導波路の長さ方向に垂直な断面において、前記第1のコア104の領域は、前記第2のコアの領域103に内包されており、前記第1の材料は最も屈折率が大きく、前記第3の材料は最も屈折が小さいことを特徴とする光導波路部品として実施できる。
 光導波路部品100では、コア内を伝搬する光のMFDを徐々に拡大させるSSC領域130において、上述のコアの二重構造を備えている必要がある。すなわち、コア内を伝搬する光のMFDを徐々に拡大させるSSC領域130は、第1の光導波路内のコアの二重構造部分に形成することが望ましい。SSC機能のための構造は特定のものに限定されないが、図1のSSC領域130のように、Siコア104を一定幅のコア104-2から先細りのテーパ形状部104-1を経る構造によって実現できる。またSiコア104の高さが徐々に低くなる基板垂直方向(z軸方向)のテーパ形状を有しても良い。Siコア104が光の伝搬方向(x軸方向)に分断されたセグメント状の構造によって実現することもできる。すなわちSiコア104を、コアが形成されている領域(セグメント)と形成されていない領域が交互に繰り返されるようにセグメント化することで、光の閉じ込めを次第に弱くし、断熱遷移を生じさせる。さらに、テーパ形状およびセグメント形状の両方を組み合わせて、SSC領域を構成しても良い。
 一方、第1の光導波路110においてSSC機能の無い、接続部の境界から離れた領域においては、必ずしも上述のコアの二重構造を備えている必要は無い。光導波路部品100で、第1の光導波路110および第2の光導波路120の接続部付近から遠ざかった図1に示さない領域では、図1の第1の光導波路110および第2の光導波路120は、それぞれの構造から別の構造へ遷移をしていっても良い。
 図2は、二重構造および別の導波路構造を含む光導波路部品の構成を示す図である。図2の(a)、(b)は、それぞれ図1の光導波路部品の変形例の構成を示し、基板面(x-y面)を見た上面図、光導波路を含む基板面に垂直な断面(x-z面)を見た側面図、光導波路の長さ方向に垂直な断面(y-z面)を見た端面図を含む。また各上面図は、最上部にあるクラッド105を取り除いて示している。
 図2の(a)の光導波路部品100-1は、第1の光導波路110のオーバークラッドとして機能するコア部103-1bを、SSC領域130内のテーパ形状部104-1の上だけに限定して備えている。すなわち、第1の光導波路110の矩形のSiコア104-2の上は、オーバークラッドとして機能するSiO層105で直接覆われている。図2の(a)の構造の場合、SSC領域130の外におけるSiコア104では、第2の材料のSiOコア部103-1aのアンダークラッドおよび第3の材料のSiO層105のオーバークラッドによって光が閉じ込められる。光導波路としての機能は、図1の第1の光導波路110の場合と何ら変わりがない。図2(a)の光導波路部品100-1のSiコア104の先では、シリコン細線導波路の光回路が構成されることになるため、第2の材料のコア103のためのパターンニングが無くなり、Siコア104の先では、シリコン細線導波路の光回路が構成されることになる。その光回路部においては、シリコン細線導波路コアの上で、平面光導波路コアの材料層を形成したりパターニングしたりする必要がないため、シリコン回路を劣化させる要因が減る。
 図2の(b)の光導波路部品100-2は、第1の光導波路110のオーバークラッドとして機能するコア部103-1bをSSC領域130内のテーパ形状部104-1の上だけに限定して備えている。図2の(b)の構成では、第1の光導波路110の矩形のSiコア104-2の上にはオーバークラッドが無く、Siコア104がむき出しになった構成である。この構造でも、SSC領域130外のSiコア104では、第2の材料のSiOコア部103-1aによるアンダークラッドおよびSiコアとの屈折率差の大きい空気によって光が閉じ込められる。図2(b)の光導波路部品100-2のSiコア104の先にあるシリコン細線導波路において、より強く光を閉じ込め、コアをより細くし、曲げ半径をより小さくできるメリットがある。
 上述のように、図1の第1の光導波路110の先において、図2の(a)、(b)の様に光導波路の形態を変えることもできるし、第2の光導波路120の先において光導波路の形態を変えることもできる。本開示の光導波路部品におけるコアサイズの異なる2つの光導波路のコアの二重構造は、SSC領域130において必要なものであって、図1の光導波路部品100は集積化した光回路の一部であることに留意されたい。
[各層の厚み、中心高さ合わせ構造]
 ここで再び図1の光導波路部品100に戻ると、アンダークラッドのSiO層102およびオーバークラッドのSiO層105の厚さは、第2の光導波路120のSiOコア103内を伝搬する光のモードフィールドが十分収まるものであれば良い。すなわちクラッド層102、105は、第2の光導波路120を伝搬する光のモードフィールドが、基板101やオーバークラッドSiO層105直上の空気層にまで染み出さない程度の厚さであれば良い。一般的には、クラッドSiO層102、105の厚さは数10μm程度であれば十分である。
 基板に垂直な方向において、第1の光導波路110のSiコア104の中心高さと、第2の光導波路120のSiOコア103の中心高さは、次の様に設定することで一致させることができる。すなわち、下側のSiO層103-1a、103-2aの厚さを、SiOコア103の全体の高さの1/2およびSiコア104の高さの1/2の間の差に設定すれば良い。このとき2つの光導波路のコア同士の中心高さを完全に一致させることが可能で、従来技術のSSC構造部における断熱結合の不完全さや、突合せ結合効率の悪化による接続性の問題を解消する。
[モード数の非限定、コアサイズ、シングルモードの場合のMFD]
 図1の光導波路部品100において、第1の光導波路110および第2の光導波路120のいずれも、コア断面サイズに上限はなく、使用する光信号の波長に対して、複数のモードの光を伝搬させるマルチモードの光導波路とすることもできる。また、コア断面サイズを小さくすることで、最低次のモードのみを伝搬させるシングルモードの光導波路とすることもできる。
 第1の光導波路110はSi層をコア104とし、図1のようにSiO層103-1a、103-1bを、または図2の(b)のように空気をクラッドとし、コア-クラッド間の屈折率差が大きい。このため、コア断面サイズを数百nmまで小さくすることができる。一方、コアおよびクラッドの材料としてSiO層を用いる第2の光導波路120は、第1の光導波路110に比べてコア-クラッド間の屈折率差が小さい。このため、第2の光導波路120のコア断面サイズは、数μm~10μm角程度までとなる。
 第1の光導波路110、第2の光導波路120のいずれもシングルモードの光導波路である場合、コア断面サイズは第1の光導波路で数百nm程度、第2の光導波路120で数μm~10μm程度となる。このため、2つの光導波路のコア内を伝搬する光のMFDは著しく異なり、第2の光導波路120のMFDが第1の光導波路110のMFDに比べて大きな値となる。
[結合方式]
 シングルモードとなる光導波路のコア同士を接続させる方式は、2種類に大別される。1つの接続方式は断熱結合であり、伝搬方向に対して、2つの光導波路の両コアが接するように配置し、一方の光導波路コアを、先細りのテーパ形状にするなどしてコア内を伝搬するモードの等価屈折率を徐々に減少させる。このような構成により、もはや閉じ込めきれなくなったモードの光エネルギーが、隣接する他方の光導波路コアへと断熱的に遷移する。もう1つの接続方式は突合せ結合であり、コアどうしの端面を突き合わせて配置し、2つの光導波路の両コアに存在するモードプロファイルの重なり積分でその結合効率が規定される。
 本開示の光導波路部品100で、第1の光導波路110および第2の光導波路120のいずれもシングルモード光導波路である場合、2種類の光導波路を接続するSSC領域130において、断熱結合および突合せ結合の一方または両方の接続方式を利用する。
 第2の光導波路120は、第1の光導波路110に比べて大きなMFDを示す。第1の光導波路110および第2の光導波路120を低損失に接続するためには、2種類の光導波路の境界近傍でMFDを整合させることが望ましい。MFDの整合を実現するため、第1の光導波路110のMFDを、第2の光導波路120のMFDへ合わせるように徐々に拡大させる。このMFD拡大機能を実現する構造は問わないが、例えば、図1のSSC領域130のようにSiコアを先細りのテーパ形状104-1とする構造がある。Siコア104のMFDを徐々に拡大させるには、Siコア104内のモードの等価屈折率を徐々に減少させれば良い。SSC領域130のSiコアを、先細りのテーパ形状部分104-1とすることで、第2の光導波路120に近づくにつれ等価屈折率を減少させることができる。Siコア104-1が上下のSiOコア部103-1a、103-1bに挟まれている領域において、テーパ形状のSiコアにより等価屈折率を減少させることで、Siコア内の光エネルギーの一部またはすべてを、第2の光導波路120のSiOコア103へと断熱的に遷移させられる。
 Siコア104内の光エネルギーの一部は、SiOコア103との断熱結合をしないでSiコア104内を伝搬し、第1の光導波路と第2の光導波路の境界にまで到達することがある。このような場合、第1の光導波路110のSiコア104は境界において第2の光導波路120のSiOコア103と突合せ結合される。Siコア104内で断熱結合をしなかった光エネルギーの一部分は、Siコア104とSiOコア103の中心高さが一致するように光導波路部品100を作製することで効率的に結合できる。2つのコアの中心高さを一致させることにより、モードフィールドの重なり積分で規定される突合せ結合効率を高く保ち、2つの光導波路間で低損失に光エネルギーを結合させることができる。
 以上詳細に述べたように、実施形態の光導波路部品100によれば、異なる材料の光導波路を共通の単一の基板上にモノリシック集積可能であり、モードフィールドの大きさが異なる2種類の光導波路を低損失に接続する構成を提供できる。上述の図1の実施形態では、2つの光導波路を低損失に結合して、連続した単一の光導波路を構成していたが、異なる材料の複数の光導波路同士を低損失に結合させることもできる。
[第2の実施形態:ピッチ変換]
 図3は、第2の実施形態の光導波路部品の構成を示す図である。第2の実施形態の光導波路部品300では、複数の第1の光導波路と、同数の第2の光導波路とを低損失に結合する。複数の第1の光導波路の内の1つの第1の光導波路と、対応する第2の光導波路との間の構造は、図1に示した第1の実施形態の光導波路部品100と同様であり、説明を省略する。
 第1の実施形態で説明した通り、第1の光導波路のSiコア104では、第2の光導波路と比較して極小断面内に光を閉じ込め可能である。したがって狭い領域に複数のSiコア104のための多くのコアパターンを作成したい場合、コア間ピッチを数μm程度にまで狭めることができる。一方、第1の光導波路より大きいコアサイズを持つ第2の光導波路は、できるだけコア幅を細くした場合でも、少なくとも数μm~10μm角程度のコア断面サイズが必要である。このため、複数の第2の光導波路のSiOコア103を配列する場合に想定されるコア間ピッチは、数10μm~数100μmとなる。
 図3の光導波路部品300において、複数の第1の光導波路と同数の対応する第2の光導波路の接続を高密度で行う場合、複数のSiコア104と複数のSiOコア103を、同一のコア間ピッチにて形成する必要がある。その際のコア間ピッチは任意であるが、高密度に配線する場合、第2の光導波路の最小コア間ピッチに合わせて、たとえば数10μmとすることが望ましい。
 一方、第1の光導波路との接続部から離れた、例えば基板上の第2の光導波路の別の端面107では、接続部とは異なるコア間ピッチとする場合がある。光ファイバアレイに接続する場合であれば、光ファイバのコア間ピッチの規格である125μmや250μmに合わせ、第2の光導波路の端面107付近でのSiOコア103のコア間ピッチが決定される。このような場合、第1の光導波路との接続部付近から、接続部から離れた別の端面107まで、第2の光導波路のSiOコア103に対して、導波路間間隔を拡張する。導波路間間隔を拡張する領域108は、直線、曲線、または、直線および曲線の組み合わせを含むパターニングにより構成される。この導波路間間隔を拡張する領域108により、複数の第1の光導波路から第2の光導波路の基板の別の端面107まで、第2の光導波路は滑らかに延長され、光ファイバアレイ106まで光学的に接続することができる。
 以上、本実施形態によれば、MFDが大きく異なる2種類の光導波路について、複数の光導波路の接続部が配列される場合にも、本開示の接続部の構成で両導波路を低損失に接続する光導波路部品を提供できる。
[第3の実施形態:製造方法]
 図4は、本開示の光導波路部品の製造方法のプロセスを説明する図である。本実施形態は、第1の実施形態および第2の実施形態で示した光導波路部品の製造方法であり、作製される光導波路部品の構造については、第1の実施形態および第2の実施形態に記載の通りであるため、説明を省略する。図4の(a)~(e)は、図1の光導波路部品100が作製されるまでステップを順に示している。
 図4の(a)を参照すると、その上にSiO層を成膜可能な程度に表面が平滑な基板101の上に、SiO層102(第1の層)を形成する。基板101の具体例として、ガラス基板等が挙げられるが、特にSi基板が好適である。SiO層102の形成方法については、形成した層の直上にさらに他の層を形成可能な程に、均一かつ平滑な層を形成できればその方法は問わない。一例を挙げれば、火炎堆積法などのSiO層の成膜方法がある。SiO層102の直上には、SiO層102よりも高い屈折率を有するSiO層203-a(第2の層)を形成する。SiO層203-aの形成にあたっては、GeO、ZrO、HfO、PやBなどを添加することでその屈折率を制御しても良い。SiO層203-aをCMP(Chemical Mechanical Polishing)などの手段により平坦化する工程を経たのち、SiO層203-aの直上にSi層204(第3の層)を形成し、平坦化する。
 ここで図1を再び参照すれば、上述のSiO層203-aが、図1の2つの光導波路に渡った4つのコア部103-1a、103-1b、103-2a、103-2bのSiO領域の内の、下側の103-1a、103-2aのための層となる。
 Si層204の形成にあたっては、アモルファスシリコンのスパッタリングなどで製膜をしても良いし、別のSi基板を基板101の上面(SiO層203-a上)に貼り合わせた後に、所望のSi膜厚を得ても良い。(a)の状態は、一般的なSOI基板において、表層のSi層の下に単層のSiO層すなわちBOX(Buried OXide)層を形成する代わりに、屈折率の異なる2層のSiO層、すなわちSiO層102およびSiO層203-aが形成されたものと言える。
 次に図4の(b)を参照すると、Si層204を、光導波路コアとして光を伝搬させることができるように加工して、第1の光導波路のSiコア104を作製する。図4の(b)には示されていないが、Siコア104の形成と併せて、Siコア104の先のSiフォトニクスの光回路を形成しても良い。
 さらに図4の(c)を参照すると、SiO層203-aおよびSiコア104の直上に、SiO層203-b(第4の層)を形成する。このSiO層203-bは、SiO層203-aと同程度の屈折率を有する。図1を再び参照すれば、上述のSiO層203-bが、図1の2つの光導波路に渡った4つのコア部103-1a、103-1b、103-2a、103-2bのSiO領域の内、上側の103-1b、103-2bのための層となる。
 次に図4の(d)を参照すると、SiO層203-aとSiO層203-bを一括して加工して、第2の光導波路のコアとして光を伝搬させることができるSiOコア103(コア部103-2a、103-2b)を得る。同時に第1の光導波路の「クラッド」としてコア部103-1a、103-1bも形成される。この段階で、すでに加工されているSiコア104の幅に比べて、一括加工されるSiOコア103の幅が広いことが望ましい。これは、SiOコア103の加工時に、既に加工されているSiコア104の側壁に影響を与えないためである。
 最後に図4の(e)を参照すると、SiOコア103よりも低い屈折率を有するSiO層105(第5の層)を形成することで、光導波路部品100を作製することができる。
 上述のように本発明は、異なるモードフィールド径(MFD)を有する第1の光導波路110および第2の光導波路120を含む光導波路部品100の製造方法であって、基板101上に、下側クラッドとなる第1の層102を形成するステップと、前記第1の層よりも高い屈折率を有する材料により、前記第2の光導波路の下側コアのための第2の層203-aを形成するステップと、前記第2の層よりもさらに高い屈折率を有する材料により、前記第1の光導波路のコアのための第3の層204を形成するステップと、前記第3の層を加工して、前記第1の光導波路のコア104を形成するステップと、前記第2の層と同程度の屈折率を有する材料により、前記第2の光導波路の上側コアのための第4の層203-bを形成するステップと、前記第2の層および前記第4の層を一括して加工して、前記第2の光導波路のコア103を形成するステップと、前記第2の層および前記第4の層よりも低い屈折率を有する材料により、上側クラッドとなる第5の層103を形成するステップとを備える光導波路部品の製造方法として実施できる。
 上述のように、本実施形態によれば、第1の実施形態および第2の実施形態に示した光導波路部品の簡単な製造方法を提供することができる。
 以上詳細に説明したように、第1、第2の実施形態の光導波路部品および第3の実施形態の光導波路部品の製造方法によれば、一般的な積層工程による光導波路部品作製プロセスと同等の簡単なプロセスで、屈折率の異なるコアを有する2種類の光導波路を低損失に接続できる。特に、2つの光導波路のコア中心高さが互いに一致するような構造とすることで、より低損失に接続することができる。本発明により、MFDの大きく異なる光導波路同士を簡易に接続できる光導波路部品を提供することができる。
 本発明は、光通信を用いる装置に利用できる。

Claims (8)

  1.  基板の上に、異なるモードフィールド径(MFD)を有する光導波路を形成した光導波路部品であって、
      第1の材料による第1のコア、および
      前記第1のコアの上下に形成された、第2の材料によるクラッド
    を含む第1の光導波路と、
      前記第1のコアに沿って、前記クラッドから延長して形成された前記第2の材料による第2のコア、
      前記基板と前記第2のコアの間に構成された、第3の材料による下側クラッド、および、
      前記第2のコアの上に構成された上側クラッド
    を含む第2の光導波路とを備え、
     前記光導波路の長さ方向に垂直な断面において、前記第1のコアの領域は、前記第2のコアの領域に内包されており、
     前記第1の材料は最も屈折率が大きく、前記第3の材料は最も屈折率が小さいことを特徴とする光導波路部品。
  2.  前記第1のコアの下に形成された前記クラッドの厚さは、前記第2のコアの高さの1/2および前記第1のコアの高さの1/2の間の差に設定されており、
     前記第1のコアの中心高さおよび前記第2のコアの中心高さが一致することを特徴とする請求項1に記載の光導波路部品。
  3.  前記第1の光導波路および前記第2の光導波路は、導波する光信号波長に対してシングルモード導波路であることを特徴とする請求項1または2に記載の光導波路部品。
  4.  前記第1のコアの先端部は、前記第1の光導波路を伝搬する光信号のMFDを変化させる構造を有することを特徴とする請求項1乃至3いずれかに記載の光導波路部品。
  5.  前記MFDを変化させる構造は、
     前記第2の光導波路に向かって、前記先端部の前記基板に平行な方向の幅もしくは垂直な方向の高さを変化させたテーパ、または、
     前記第1のコアが断続的に形成されたセグメント、
     または前記テーパおよび前記セグメントを組み合わせた構造であることを特徴とする請求項4に記載の光導波路部品。
  6.  複数の前記第1の光導波路と、
     前記複数の第1の光導波路の各々に対応し、導波路間間隔を拡張する領域を経て、前記複数の第1の光導波路の間隔とは異なる間隔で配置されている複数の前記第2の光導波路と
     を備えた請求項1乃至5いずれかに記載の光導波路部品。
  7.  前記第1の材料、前記第2の材料および前記第3の材料は、Si、SiN、SiON、SiO、ポリマーのいずれかを母材とし、
     前記母材の違いによって屈折率の違いが生じたもの、または、
     前記母材への不純物の添加量の違いによって屈折率の違いが生じたもののいずれかであること特徴とする請求項1乃至6いずれかに記載の光導波路部品。
  8.  異なるモードフィールド径(MFD)を有する第1の光導波路および第2の光導波路を含む光導波路部品の製造方法であって、
     基板上に、下側クラッドとなる第1の層を形成するステップと、
     前記第1の層よりも高い屈折率を有する材料により、前記第2の光導波路の下側コアのための第2の層を形成するステップと、
     前記第2の層よりもさらに高い屈折率を有する材料により、前記第1の光導波路のコアのための第3の層を形成するステップと、
     前記第3の層を加工して、前記第1の光導波路のコアを形成するステップと、
     前記第2の層と同程度の屈折率を有する材料により、前記第2の光導波路の上側コアのための第4の層を形成するステップと、
     前記第2の層および前記第4の層を一括して加工して、前記第2の光導波路のコアを形成するステップと、
     前記第2の層および前記第4の層よりも低い屈折率を有する材料により、上側クラッドとなる第5の層を形成するステップと
     を備える光導波路部品の製造方法。
     
PCT/JP2020/031934 2020-08-25 2020-08-25 光導波路部品およびその製造方法 WO2022044101A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022544918A JP7401823B2 (ja) 2020-08-25 2020-08-25 光導波路部品およびその製造方法
US18/005,711 US20230280524A1 (en) 2020-08-25 2020-08-25 Optical Waveguide Device and Method for Manufacturing the Same
PCT/JP2020/031934 WO2022044101A1 (ja) 2020-08-25 2020-08-25 光導波路部品およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031934 WO2022044101A1 (ja) 2020-08-25 2020-08-25 光導波路部品およびその製造方法

Publications (1)

Publication Number Publication Date
WO2022044101A1 true WO2022044101A1 (ja) 2022-03-03

Family

ID=80352802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031934 WO2022044101A1 (ja) 2020-08-25 2020-08-25 光導波路部品およびその製造方法

Country Status (3)

Country Link
US (1) US20230280524A1 (ja)
JP (1) JP7401823B2 (ja)
WO (1) WO2022044101A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483159B1 (ja) 2023-05-24 2024-05-14 三菱電機株式会社 スポットサイズ変換器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249331A (ja) * 1992-01-09 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> 導波路形ビームスポット変換素子およびその製造方法
JP2004258610A (ja) * 2003-02-04 2004-09-16 Tdk Corp スポットサイズ変換素子及びその製造方法並びにスポットサイズ変換素子を用いた導波路埋め込み型光回路
JP2005538426A (ja) * 2002-08-20 2005-12-15 エルエヌエル・テクノロジーズ・インコーポレイテッド 埋め込みモードコンバータ
US20090297093A1 (en) * 2008-05-28 2009-12-03 Lightwire, Inc. Low index, large mode field diameter optical coupler
WO2012114866A1 (ja) * 2011-02-21 2012-08-30 日本電気株式会社 スポットサイズ変換器及びその製造方法
JP2016018191A (ja) * 2014-07-11 2016-02-01 沖電気工業株式会社 スポットサイズ変換器及びその製造方法
US20190310423A1 (en) * 2018-04-04 2019-10-10 Finisar Corporation Adiabatically coupled photonic systems with fan-out interposer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249331A (ja) * 1992-01-09 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> 導波路形ビームスポット変換素子およびその製造方法
JP2005538426A (ja) * 2002-08-20 2005-12-15 エルエヌエル・テクノロジーズ・インコーポレイテッド 埋め込みモードコンバータ
JP2004258610A (ja) * 2003-02-04 2004-09-16 Tdk Corp スポットサイズ変換素子及びその製造方法並びにスポットサイズ変換素子を用いた導波路埋め込み型光回路
US20090297093A1 (en) * 2008-05-28 2009-12-03 Lightwire, Inc. Low index, large mode field diameter optical coupler
WO2012114866A1 (ja) * 2011-02-21 2012-08-30 日本電気株式会社 スポットサイズ変換器及びその製造方法
JP2016018191A (ja) * 2014-07-11 2016-02-01 沖電気工業株式会社 スポットサイズ変換器及びその製造方法
US20190310423A1 (en) * 2018-04-04 2019-10-10 Finisar Corporation Adiabatically coupled photonic systems with fan-out interposer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483159B1 (ja) 2023-05-24 2024-05-14 三菱電機株式会社 スポットサイズ変換器

Also Published As

Publication number Publication date
JPWO2022044101A1 (ja) 2022-03-03
JP7401823B2 (ja) 2023-12-20
US20230280524A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
KR101121459B1 (ko) 광섬유 및 평면 광학 도파관을 치밀하게 결합하는 방법 및장치
US9128240B2 (en) Spot-size converter, manufacturing method thereof, and integrated optical circuit device
CA2734614C (en) Optical mode transformer, in particular for coupling an optical fiber and a high-index contrast waveguide
US20190265415A1 (en) Optical apparatus and methods of manufacture thereof
JP3794327B2 (ja) 光結合器及びその製造方法
US10802215B2 (en) Optical waveguide, corresponding coupling arrangement, apparatus and method
CN112255727A (zh) 端面耦合器和半导体器件
JP2002122750A (ja) 光導波路接続構造
JP6706859B2 (ja) 光学モジュール
CN112630886A (zh) 端面耦合器及其制造方法
CN112470047B (zh) 用于混合器件的二氧化硅到氮化硅plc波型变换器
WO2022044101A1 (ja) 光導波路部品およびその製造方法
JP2005301301A (ja) 光結合器
JPH095549A (ja) 光回路及びその作製方法
US20230142315A1 (en) Photonic chip with edge coupler and method of manufacture
WO2021178727A1 (en) Evanescent coupler mode converters
WO2022254701A1 (ja) 光導波回路およびその製造方法
WO2023243014A1 (ja) 光導波路接続構造
WO2024034131A1 (ja) 光導波回路および光導波回路の製造方法
WO2023234111A1 (ja) 光学素子および光学素子の製造方法
WO2023171581A1 (ja) 光導波路及び光導波路の製造方法
CN116643350B (zh) 端面耦合器及光芯片系统
US20230266534A1 (en) Optical Waveguide Device and Method for Manufacturing the Same
JPH08152538A (ja) 光導波路の結合構造
US20240036263A1 (en) Diamond spot size converter for fiber edge coupling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951356

Country of ref document: EP

Kind code of ref document: A1