WO2004091829A1 - 鋼の連続鋳造方法 - Google Patents

鋼の連続鋳造方法 Download PDF

Info

Publication number
WO2004091829A1
WO2004091829A1 PCT/JP2004/000864 JP2004000864W WO2004091829A1 WO 2004091829 A1 WO2004091829 A1 WO 2004091829A1 JP 2004000864 W JP2004000864 W JP 2004000864W WO 2004091829 A1 WO2004091829 A1 WO 2004091829A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
molten steel
mass
steel
mold
Prior art date
Application number
PCT/JP2004/000864
Other languages
English (en)
French (fr)
Inventor
Yuji Miki
Shuji Takeuchi
Akira Yamauchi
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003108344A external-priority patent/JP4348988B2/ja
Priority claimed from JP2003117340A external-priority patent/JP4539024B2/ja
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to DE602004005978T priority Critical patent/DE602004005978T2/de
Priority to EP04706310A priority patent/EP1623777B1/en
Priority to US10/552,414 priority patent/US7448431B2/en
Publication of WO2004091829A1 publication Critical patent/WO2004091829A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets

Definitions

  • the present invention relates to a method for continuously producing steel, and more particularly, to a method for continuously producing steel by applying a magnetic field without blowing an inert gas from a nozzle for supplying molten steel to a mold for continuous production (hereinafter referred to as a mold).
  • the present invention relates to a method for continuously producing steel for improving the flow of molten steel in a steel plate.
  • Japanese Unexamined Patent Application Publication No. 11-100611 discloses a method of reducing the melting point of inclusions contained in molten steel to reduce the melting point of immersion nozzles for supplying molten steel to a rust mold. There is disclosed a gas-less production technique for continuously producing molten steel without preventing clogging and blowing an inert gas such as argon (Ar) from a nozzle.
  • Japanese Unexamined Patent Publication No. Hei 10-305353 discloses that two upper and lower magnetic poles sandwiching a long side of a ⁇ type are arranged on the back of a long side of a ⁇ type. a) A magnetic field in which a DC static magnetic field and an AC moving magnetic field are superimposed on a magnetic pole arranged on the lower side, or (b) A DC static magnetic field and an AC moving magnetic field are superimposed on a magnetic pole arranged in an upper side
  • a method for controlling the flow of molten steel in a type III in which a direct current static magnetic field is applied to a magnetic pole disposed on the lower side as a magnetic field is disclosed.
  • Japanese Patent No. 3067916 discloses an apparatus for controlling the flow of molten steel in a mold by supplying an appropriate linear drive AC current and a braking DC current to a plurality of installed electric coils.
  • Japanese Patent Application Laid-Open No. 5-154623 discloses a flow control method in a mold which superimposes an AC moving magnetic field having a phase shift of 120 degrees and a DC static magnetic field.
  • a magnet placed above the immersion nozzle discharge hole causes a static magnetic field and a high-frequency magnetic field to be superimposed and act on the entire region in the width direction, and a magnet placed below the discharge hole.
  • a method for producing steel by applying a static magnetic field is disclosed.
  • JP-A-61-193755 discloses that a static magnetic field is applied to a position surrounding a molten steel flow discharged from an immersion nozzle to reduce the flow velocity.
  • an electromagnetic stirring method in which an electromagnetic stirring device is installed at a position downstream of a static magnetic field to stir horizontally.
  • (C) As a combination of an upper moving magnetic field and a lower DC magnetic field, disclosed in Japanese Unexamined Patent Publication No. Hei 6-226409, a magnet having a pole center located between a molten metal surface and a discharge hole (downward at least 50 degrees). A manufacturing method is disclosed in which a magnetic field is applied and a static magnetic field is applied by a magnet whose center is located below a dipping nozzle. Also, in Japanese Patent Application Laid-Open No. 9-262651, a magnet for electromagnetic stirring is installed above the lower end of the immersion nozzle, and a magnet that can apply a moving magnetic field and a static magnetic field is installed below the lower end of the immersion nozzle. There is disclosed a manufacturing method in which a static magnetic field and a moving magnetic field are selectively used according to the speed.
  • Japanese Patent Application Laid-Open No. 61-140355 discloses a static magnetic field arranged on the long side of a mold so as to control a molten steel current supplied into the mold, and a moving magnetic field generator is arranged above the mold.
  • a type I and a structure above a type II in which the upper surface of molten steel flows from the center of the horizontal cross section to the shorter side are disclosed.
  • JP-A-63-119959 an electromagnetic stirrer was installed at the top of the mold to generate horizontal flow in molten steel, and an electromagnetic brake was installed at the bottom of the mold to slow down the discharge flow from the immersion nozzle.
  • a technique for controlling a discharge flow from an immersion nozzle is disclosed.
  • a static magnetic field is used on the surface of molten steel in a mold
  • a straight nozzle is used as a connecting nozzle
  • a traveling magnetic field is used in a discharge port
  • a static magnetic field is used in a lower part thereof.
  • Japanese Unexamined Patent Publication No. 3-258442 discloses an electromagnetic field in which a static magnetic field is applied by an electromagnet having a length substantially equal to the long side, which is installed to face the long side of the ⁇ type. A brake is disclosed.
  • a magnetic pole bent or inclined upward from the center of the width of the mold or from the predetermined position inside the short side of the mold to the vicinity of both ends is provided at the center of the width.
  • a DC magnetic field having a substantially uniform magnetic flux density distribution over the entire width of the ⁇ type is applied in the thickness direction of the ⁇ type to control the discharge flow from the immersion nozzle.
  • a technique for controlling the meniscus flow velocity to 0.20 to 0.40 m / s has been disclosed.
  • Japanese Patent Application Laid-Open No. 2-284750 discloses that a uniform static magnetic field in the thickness direction of the mold is applied to the upper and lower portions of the discharge nozzle of the immersion nozzle to apply an effective braking force to the molten steel discharge flow. A technique for equalizing the flow is disclosed.
  • Japanese Patent Application Laid-Open No. 9-262650 discloses a method of applying a static magnetic field by applying a DC current to a plurality of coils provided below an immersion nozzle discharge hole, There is disclosed a manufacturing method for controlling the flow of molten steel by applying a moving magnetic field by flowing an electric current.
  • Japanese Patent Application Laid-Open No. 8-19840 discloses that when controlling molten steel flow in a mold by electromagnetic induction, a static AC magnetic field with a frequency of 1 to 15 Hz is applied to molten steel. A technique for applying is disclosed.
  • an object of the present invention is to provide a continuous steel production method capable of suppressing inclusions and bubbles from being trapped in solidification nuclei and improving the surface quality of the piece.
  • the flow velocity distribution of the unsolidified molten steel in the mold ⁇ is regulated.
  • the molten steel flow velocity is reduced near the center of the thickness of the ⁇ piece (that is, in the short side direction of the ⁇ ) to suppress mold flux entrainment, while the molten steel flow rate is increased near the solidified interface near the ⁇ type wall.
  • the distribution of molten steel flow velocity in the direction of the short side of the ⁇ type (that is, the thickness of the ⁇ piece) is specified. That is, (1) near the center of the thickness of the piece, the flow rate of molten steel is reduced to suppress entrainment of mold flux, and (2) local flow is given to molten steel at the solidification interface near the wall of the mold to prevent trapping of bubbles and inclusions And reduce surface defects of the piece.
  • a coil for passing an alternating current through a comb-shaped iron core 22 having three or more magnetic poles in the width direction of the piece is wound.
  • the magnetic field in the width direction can be oscillated by substantially inverting the phases of the currents adjacent to each other.
  • 10 is the ⁇ type
  • 12 is the immersion nozzle
  • 14 is the molten steel (the shaded area is the low-speed range). If the frequency of the alternating current at that time is too low, sufficient flow will not be excited, and if it is too high, the molten steel will not follow the electromagnetic field, so the range of 1 Hz to 8 Hz is appropriate.
  • Fig. 2 front view
  • Fig. 3 horizontal section along line III-III in Fig. 2
  • Fig. 4 vertical cross section along line IV-IV in Fig. 2
  • the line III-III in FIG. 2 passes through the center of the magnetic pole 28.
  • arrow a in Fig. 2 indicates the direction of the structure
  • b indicates the direction of the long side of the type II
  • c indicates the local flow of the molten steel 14.
  • Arrow d in FIG. 3 indicates the direction of the short side of the triangle.
  • J is the induced current and B is the magnetic field.
  • the phase of the magnetic field can be reversed even if the phase of the current is the same.
  • a low-frequency alternating static magnetic field that does not move over time is applied to excite low-frequency electromagnetic vibrations on the solidification front, thereby breaking the columnar dendrite on the solidification front and causing it to float in molten steel.
  • a method has been disclosed aiming at miniaturization of the solidified structure and reduction of the central deviation, but when a large electromagnetic force is applied to break the dendrite, the mold flux on the upper surface of the molten metal is involved to improve the surface quality. It will deteriorate. Therefore, the magnetic flux density of the AC oscillating magnetic field is desirably less than 1000 Gauss. In some cases, depending on the coil arrangement, dendrite can be prevented from being broken even at 100 gauss or more.
  • only the solidification interface can be efficiently vibrated to suppress trapping of bubbles and inclusions, so that the surface quality of the piece can be significantly improved.
  • the oscillating magnetic field acts on the molten steel in the mold, and the short side of the mold (ie, the thickness of the piece). It was found that superimposing a static magnetic field in the direction was also effective.
  • a coil 34 (hereinafter, referred to as a DC coil) for flowing a DC current may be added to the coil illustrated in FIG.
  • the Lorentz force F can be increased to increase the size.However, the direction of the Lorentz force is significantly different from the case where it does not overlap, the molten steel flow also changes, and the flow in the width direction of the piece and the flow in the forming direction The effect of cleaning bubbles and inclusions trapped at the solidification interface can be expected.
  • Fig. 7 front view
  • Fig. 8 horizontal cross section along line III-III in Fig. 7
  • Fig. 9 vertical cross section along line IV-IV in Fig. 7
  • the arrow a in Fig. 7 indicates the direction of the forging
  • b indicates the direction of the long side of the ⁇ type
  • c indicates the local flow of the molten steel 14.
  • Arrow d in FIG. 8 indicates the short side of the triangle.
  • Figure 10 front view
  • Figure 11 horizontal sectional view along line VI-VI in Figure 10
  • Figure 12 vertical view along line VII-VII in Figure 10
  • J is the induced current
  • Bt is the total magnetic field
  • Bdc is the DC magnetic field
  • Bac is the AC magnetic field.
  • the frequency of the alternating current for oscillating the magnetic field is appropriately in the range of 1 Hz to 8 Hz as described above.
  • Macro flow caused by a moving magnetic field suppresses trapping of bubbles and inclusions at the solidification interface, Occasionally, the quality of the mold is degraded due to the increased entrainment of the mold flux.
  • the oscillating magnetic field means a magnetic field in which the direction of the Lorentz force reverses with time.
  • FIG. 15 to FIG. 18 are explanatory diagrams of the phase given to each of such coils.
  • the numbers next to the coils of the AC coils 24a and 24b in the figure indicate the phase angle (degrees) of the current of the AC coil at a certain time.
  • Fig. 15 to Fig. 17 show the case of two-phase AC
  • Fig. 18 shows the case of three-phase AC
  • Fig. 15 shows the moving magnetic field
  • Fig. 16 shows the oscillating magnetic field
  • Fig. 17 and Fig. 18 show the peak position of the oscillating magnetic field.
  • An example in which is moved locally is shown.
  • three or more electromagnets are arranged in the direction of the long side of the triangle (that is, the width of the piece), and the phase of the current flowing to adjacent magnets increases in one direction. Or by setting the middle phase to be at least later than the phases on either side without any decrease, so that the magnetic field moves locally, oscillating, rather than simply moving in one direction become.
  • the phase of the array is n, 2 n, n or n, 3 n, 2 n (where n is 90 ° for two-phase AC, 60 ° or 120 ° for three-phase AC).
  • the peak position of the oscillating magnetic field can be moved locally.
  • the number of comb teeth of the AC coil is 12 is shown.
  • the number of comb teeth can be selected from 4, 6, 8, 10, 0, 12, and 16 and the like.
  • the alternating current may be either two-phase or three-phase.
  • the phases of the coils mounted on the adjacent electromagnets among the three or more electromagnets have n, 2 n, n or n, 3 n, 2 n array portions.
  • the molten steel whose inclusions have a low melting point is C ⁇ 0.020 mass%, Si ⁇ 0.2 mass%, Mn ⁇ 1.0 mass%, S ⁇ 0.050 mass%, Ti ⁇ Ultra-low carbon Ti deoxidized steel containing 0.010% by mass and having a composition satisfying the condition of A 1 ⁇ [% by mass Ti] / 5 is preferable.
  • [% by mass T i] refers to the content (% by mass) of T i.
  • the molten steel is first decarburized by a vacuum degassing device, then deoxidized by a Ti-containing alloy, and then Ca ⁇ 10% by mass and REM ⁇ 5 in the deoxidized molten steel.
  • the oxide composition is not more than 50 wt% 1 0% by mass or more of at least one content of the C a O and REM oxides, and T i oxide 90 wt% or less, a l 2 0 3 is It is preferably at most 70% by mass.
  • the content be 20 Oppm or less.
  • the maximum value of the Lorentz force driven by the oscillating magnetic field is not less than 500 (N / ms) and not more than 13000 (N / n). Further, when the flow rate of the unsolidified molten steel in continuous ⁇ for ⁇ and V (m / s), the maximum value of Lorentz forces driven by oscillating magnetic field and Fmax (N / m 3), VxFmax 3000 It is preferable to adjust so as to be (N / (s-m2)) or more.
  • FIG. 1 is a horizontal cross-sectional view schematically showing an example of a combination of an electromagnet and a triangle used in the present invention.
  • FIG. 2 is a front view schematically illustrating the calculation results of a velocity vector of molten steel flow induced by a magnetic field by electromagnetic field analysis and flow analysis for explaining the principle of the present invention.
  • FIG. 3 is a horizontal sectional view taken along the line III-III in FIG.
  • FIG. 4 is a vertical sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a line showing an example of a temporal change state of the applied current and the molten steel flow velocity in the present invention.
  • FIG. 4 is a diagram.
  • FIG. 6 is a horizontal cross-sectional view schematically showing another example of the combination of the electromagnet and the triangle used in the present invention.
  • FIG. 7 is a front view schematically illustrating the calculation results by electromagnetic field analysis and flow analysis of the velocity vector of a molten steel flow at a certain point induced by a magnetic field to explain the principle of the present invention.
  • FIG. 8 is a horizontal sectional view taken along the line III-III in FIG.
  • FIG. 9 is a vertical sectional view taken along the line IV-IV in FIG.
  • Fig. 10 schematically shows the results of electromagnetic field analysis and flow analysis of the velocity vector of molten steel flow at the next time point when the magnetic poles are reversed, induced by a magnetic field, to explain the principle of the present invention. It is a front view.
  • FIG. 11 is a horizontal sectional view taken along line VI-VI of FIG.
  • FIG. 12 is a vertical sectional view taken along the line VII-VII of FIG.
  • FIG. 13 is a diagram showing a temporal change state of the applied current and the flow rate of molten steel in the present invention.
  • FIG. 14 is a schematic plan view showing the relationship between the AC coil and the DC coil according to the present invention and the ⁇ type.
  • FIG. 15 is a schematic diagram showing the phase of an AC coil in the case of a moving magnetic field.
  • FIG. 16 is a schematic diagram showing the phase of an AC coil in the case of an oscillating magnetic field.
  • FIG. 17 is a schematic diagram showing the phase of the AC coil when the peak position of the oscillating magnetic field is locally moved.
  • FIG. 18 is another schematic diagram showing the phase of the AC coil when the peak position of the oscillating magnetic field is locally moved.
  • FIG. 19 is a horizontal sectional view schematically showing the continuous production facility of the first embodiment.
  • FIG. 20 is a horizontal sectional view schematically showing the continuous production facility of the second embodiment.
  • FIG. 21 is a graph showing the effect of the present invention.
  • FIG. 22 is a graph showing the effect when a static magnetic field according to the present invention is superimposed.
  • FIG. 23 is an explanatory diagram showing a temporal change of a phase of a current for generating a moving magnetic field.
  • FIG. 24 is an explanatory diagram showing a temporal change of the phase of the current for locally moving the peak position of the moving magnetic field.
  • FIG. 25 is another explanatory diagram showing a temporal change of the phase of the current for locally moving the peak position of the moving magnetic field.
  • FIG. 26 is a graph showing the relationship between the maximum Lorentz force Fmax and the defect mixing ratio.
  • FIG. 27 is a graph showing the relationship between the maximum value F max of Lorentz force and the blowhole number density.
  • Fig. 28 is a graph showing the relationship between the maximum Lorentz force Fmax and the norokami number density.
  • FIG. 29 is a perspective view schematically showing the mouth-Lentz force acting on the solidification interface.
  • FIG. 30 is a graph showing the distribution of Lorentz density.
  • FIG. 31 is a graph showing the relationship between the average Lorentz force F ave and the defect mixing ratio.
  • Fig. 32 is a graph showing the relationship between the average Lorentz force Fave and the blowhole number density.
  • Fig. 33 is a graph showing the relationship between the average value F ave of the mouth-to-Lent force and the norokami number density.
  • Fig. 34 is a graph showing the relationship between the molten steel flow velocity V and the defect mixing rate.
  • FIG. 35 is a graph showing the relationship between VxFmax and the defect mixing ratio. Description of the sign
  • an immersion nozzle 12 is suspended from the bottom of an upper tundish (not shown) and immersed in unsolidified molten steel 14 in a mold 10.
  • Supply 4 An oscillating magnetic field generator with three or more electromagnets (AC coils) arranged outside the long side of the ⁇ type 10 is installed.
  • An oscillating current that generates an oscillating magnetic field is applied to each of these electromagnets (AC coils), and the peak value of the oscillating current is applied so as to move along the long side direction of the ⁇ -type 10. .
  • This movement is applied so that the phases of adjacent AC coils have an arrangement of n, 2n, n or n, 3n, 2n.
  • Ultra-low carbon Ti deoxidized steel having a composition that satisfies condition 5 can be mentioned.
  • the molten steel is first decarburized by a vacuum degassing device, then deoxidized by a Ti-containing alloy, and then Ca ⁇ 1% by mass and REM ⁇
  • the oxide composition is such that the content of at least one of CaO and REM (rare earth element) oxide is 10% by mass or more and 50% by mass or less, and the Ti oxide is 90% by mass or less.
  • a 1 2 0 3 is in the 7 0 wt% or less.
  • the deoxidized molten steel is preliminarily deoxidized with any of Al, Si, and Mn to reduce the dissolved oxygen concentration in the molten steel in advance.
  • the molten steel produced in this way is subjected to gasless continuous production, the molten steel in the mold is electromagnetically stirred as described below to reduce surface defects of the piece.
  • FIG. 19 An example of a continuous production facility suitable for carrying out the present invention is shown in FIG. 19 in a schematic diagram of a horizontal section.
  • 10 is a ⁇ type
  • 12 is an immersion nozzle
  • 14 is molten steel
  • 20 is an oscillating magnetic field generator
  • 22 is a comb-shaped iron core
  • 24 is an AC coil
  • 26a and 26 b is the AC power supply
  • 28 is the magnetic pole.
  • a continuous structure is formed while applying a magnetic field to molten steel 14 in rectangular mold 10 composed of opposed long sides and short sides.
  • the applied magnetic field is a magnetic field that vibrates in the long side direction of the ⁇ type 10 (that is, an oscillating magnetic field).
  • the oscillating magnetic field to be applied is an alternating magnetic field having the long side direction of the ⁇ type 10 as an application direction. The direction is periodically inverted, and does not induce the macro flow of the molten steel 14.
  • the oscillating magnetic field can be generated, for example, using an oscillating magnetic field generator 20 as shown in FIG.
  • a comb-shaped iron core 22 having three or more (12 in Fig. 19) comb teeth in the long side direction of the ⁇ type 10 is used.
  • An AC coil 24 is arranged on these comb teeth to form a magnetic pole 28.
  • the magnetic pole 28 adjusts the winding of the AC coil and the AC current flowing through the AC coil so that the adjacent magnetic poles 28 have different polarities (N and S poles).
  • the direction of winding of the AC coil between the adjacent magnetic poles 28 should be opposite, and the current flowing through the AC coil should be the same phase.
  • An alternating current having a predetermined frequency, or an alternating current having a predetermined frequency, in which the coils of the adjacent magnetic poles 28 are wound in the same direction and the current flowing through the coil is out of phase with the adjacent magnetic poles 28 Preferably, it is a current. It is preferable that the phase shift of the alternating current flowing through the AC coil of the adjacent magnetic pole 28 be in the range of 130 ° to 230 °, at which the phase is substantially inverted.
  • the predetermined frequency of the alternating current is preferably from 1 to 8 Hz, and more preferably from 3 to 6 Hz.
  • the example shown in Fig. 19 is a case where the adjacent magnetic poles 28 have different phases (substantially reverse phases) in the AC current flowing through the AC coil with the same direction of winding of the AC coil.
  • the present invention is not limited to this.
  • the adjacent magnetic poles 28 have different polarities, The magnetic force acting on the molten steel between the magnetic poles 28 and the magnetic force acting on the molten steel 14 between the adjacent magnetic poles 28 are almost opposite in direction, and a macro flow of the molten steel 14 is induced.
  • the current flowing through the AC coil is an AC current
  • the polarity of each magnetic pole 28 is reversed at a predetermined cycle, and the molten steel 14 near the solidification interface vibrates in the long side direction of the ⁇ type 10. Can be induced. This makes it possible to suppress inclusions and bubbles from being trapped at the solidification interface, thereby significantly improving the surface quality of the piece.
  • the frequency of the AC current flowing through the AC coil is less than 1 Hz, it is too low to induce sufficient molten steel flow.
  • the frequency of the AC current flowing through the AC coil be 1 to 8 Hz and the oscillation period of the oscillating magnetic field be 1/8 to 1 s.
  • the magnetic flux density of the applied oscillating magnetic field is preferably less than 100 gauss. When the magnetic flux density exceeds 100 gauss, not only does the dendrite break, but the fluctuation of the molten metal surface becomes large, and there is a problem that the entrainment of mold flux is promoted.
  • a static magnetic field is applied in addition to the above-described application of the oscillating magnetic field.
  • a static magnetic field generator is installed on the long side of the ⁇ type 10 in the direction of the short side of the ⁇ type 10 (the thickness direction of the piece). Apply.
  • the flow velocity of molten steel in the vicinity of the center of the mold 10 can be reduced, and entrainment of mold flux can be prevented.
  • the magnetic flux density of the applied static magnetic field is not less than 200 gauss and not more than 300 gauss. It is preferable that it is less than If the magnetic flux density is less than ⁇ 100 gauss, the effect of reducing the flow rate of the molten steel is small, and if it exceeds 300 gauss, there is a problem that braking is too large to cause uneven solidification.
  • FIG. 20 shows an example in which an oscillating magnetic field generator 20 and a static magnetic field generator 30 are arranged on the long side of the ⁇ type 10.
  • the static magnetic field generator 30 has a pair of magnetic poles 28 arranged on the long side of the ⁇ type 10 with the ⁇ type 10 interposed therebetween, and the flowing current is used as a DC current from the DC power source 32 to the DC coil 34.
  • a static magnetic field is applied in the direction of the short side of the ⁇ type 10 (that is, the thickness of the piece).
  • the installation positions of the static magnetic field generator 30 and the oscillating magnetic field generator 20 may be the same in the vertical direction or may be different.
  • FIG. 14 shows a plan view of a ⁇ type 10 and an arrangement example of an AC electromagnet (AC coil 24) and a DC electromagnet (DC coil 34).
  • AC coil 24 AC electromagnet
  • DC coil 34 DC electromagnet
  • the immersion nozzle 12 connected to the bottom of the upper tundish (not shown) is immersed in the mold 10 to supply molten steel 14.
  • 12 comb-shaped AC electromagnets AC coils 24
  • outside the DC coils 34 are arranged.
  • An oscillating current for generating an oscillating magnetic field is supplied to each of the twelve AC coils 24, and the peak value of the oscillating current is applied so as to move along the long side direction of the ⁇ type 10. This shift of the peak value is realized by applying so that the phases of the adjacent AC coils have an arrangement part of n, 2n, n or n, 3n, 2n.
  • Fig. 15 to Fig. 18 show the distribution of the phase of the oscillating magnetic field in each of the two coils composing the AC coils 24a and 24b at a certain moment by numerical values (phase angle values). It is shown.
  • the peak position of the oscillating magnetic field is in the direction along the long side of type 10 Move sequentially.
  • FIG. 15 shows a moving magnetic field of two-phase alternating current in which the phase difference between adjacent AC coils is 90 ° and the opposite AC coils 24a and 24b are different by 180 °.
  • the phase difference between adjacent AC coils is 180.
  • the opposing alternating-current coils 24a and 24b are applied with an in-phase two-phase alternating-current oscillating magnetic field.
  • Figure 17 shows that the phase difference between adjacent AC coils is 90 °, and 180 ° for the opposing AC coils 24a and 24b.
  • Different half-wave rectification two-phase alternating current is applied.
  • FIG. 18 a half-wave rectified three-phase AC having a phase difference of 120 ° from an adjacent AC coil and a phase difference of 60 ° between the opposite AC coils is applied.
  • FIG. 23 shows a temporal change in the phase angle of the current for the moving magnetic field of FIG. 15 corresponding to each coil of the AC coil 24a.
  • the phase angle of the uppermost stage T 1 is the same as in FIG. 15, and time elapses downward.
  • Figures 24 and 25 show the same time-dependent changes in the local movement of the peak position of the oscillating magnetic field in Figures 17 and 18 respectively.
  • FIG. 20 An example of a continuous production facility suitable for carrying out the present invention is shown in FIG. 20 in a schematic cross-sectional view. This figure is equivalent to FIG. 19 with the addition of 30 static magnetic field generators.
  • a continuous structure is formed while applying a magnetic field to molten steel in a mold 10 having opposing long sides and short sides.
  • the applied magnetic field is a magnetic field that vibrates in the long side direction of the ⁇ type 10 (that is, a vibrating magnetic field) and a static magnetic field in the thickness direction.
  • the oscillating magnetic field to be applied is an alternating magnetic field with the long side direction of the ⁇ type 10 applied as the application direction. Is a magnetic field that does not induce macroscopic flow.
  • the oscillating magnetic field can be generated, for example, using an oscillating magnetic field generator 20 as shown in FIG.
  • the oscillating magnetic field generator 20 shown in FIG. 20 is substantially the same as that shown in FIG. 19 of the first embodiment, and thus detailed description is omitted.
  • a static magnetic field is applied in addition to the application of the oscillating magnetic field as in the first embodiment.
  • the static magnetic field is generated by installing a static magnetic field generator 30 on the long side of the ⁇ type 10 in the direction of the short side of the ⁇ type 10 (the thickness direction of the piece). Apply.
  • a static magnetic field in the short side direction of the mold 10
  • the flow velocity of molten steel near the center of the mold 10 can be reduced, and entrainment of mold flux can be prevented.
  • the magnetic flux density of the applied static magnetic field is not less than 200 Gauss and not more than 300 Gauss. If the magnetic flux density is less than 200 gauss, the effect of reducing the flow velocity of the molten steel is small, and if it exceeds 300 gauss, there is a problem that braking is too large and causes uneven solidification.
  • FIG. 20 shows an example in which an oscillating magnetic field generator 20 and a static magnetic field generator 30 are arranged on the long side of the ⁇ type 10.
  • the static magnetic field generator 30 has a pair of magnetic poles 28 arranged on the long side of the ⁇ type 10 with the ⁇ type 10 interposed therebetween, and the flowing current is used as a DC current from the DC power source 32 to the DC coil 34.
  • a static magnetic field is applied in the thickness direction of the ⁇ type 10.
  • the static magnetic field generator 30 and the oscillating magnetic field generator 20 may be installed at the same position in the vertical direction or at different positions.
  • Figure 14 shows a plan view of a Type 10 and an example of the arrangement of AC electromagnets (AC coils 24) and DC electromagnets (DC coils 34).
  • the immersion nozzle 12 connected to the bottom of the upper tundish (not shown) is immersed in the mold 10 to supply molten steel 14.
  • 12 comb-shaped AC electromagnets AC coils 24
  • a DC coil 34 is provided outside thereof.
  • An oscillating current for generating an oscillating magnetic field is supplied to each of the two AC coils 24, and the peak value of the oscillating current is applied so as to move along the long side direction of the ⁇ -type 10. This peak value shift occurs when the phase of the alternating coil is n, 2 n, n or! , 3 n, 2 n are realized by applying voltage.
  • Fig. 15 to Fig. 18 show the distribution of the phase of the oscillating magnetic field in each of the 12 coils composing the AC coils 24a and 24b at a certain moment by using numerical values (phase angle values). It is a thing.
  • the peak position of the oscillating magnetic field sequentially moves in the direction along the long side of the ⁇ type 10.
  • FIG. 15 shows a moving magnetic field of two-phase alternating current in which the adjacent AC coils have a phase difference of 90 ° and the opposite AC coils 24a and 24b have a difference of 180 °.
  • the phase difference between adjacent AC coils is 180 °, and an oscillating magnetic field of two-phase AC having the same phase is applied by the opposing AC coils 24a and 24b.
  • the phase difference between adjacent AC coils is 90 °, and half-wave rectified two-phase AC that differs by 180 ° between the opposing AC coils 24a and 24b is applied.
  • Fig. 18 half-wave rectified three-phase alternating current with a phase difference of 120 ° between adjacent AC coils and a difference of 60 ° between the opposing AC coils is applied.
  • the same molten steel as in the first embodiment is continuously gaslessly formed, so that only the solidification interface is efficiently vibrated, and the inclusions are eliminated. Since the capture can be suppressed, the surface quality of the piece can be greatly improved. Can be up.
  • VxFmax is 3000, where V is the flow rate of molten steel in the ⁇ -type 10 and V is the maximum value of the contact force driven by the magnetic field. (N / (s ⁇ m2)) or more and 6000 (N / S ⁇ m ⁇ ) or less.
  • the molten steel flow velocity V is an actual measurement, but if it is difficult to measure, the regression equation obtained by the inventor
  • V (m / sec) (43. 0— 0. 047 L S EN + 0. 0 93 ⁇ + 1 0.0 Q
  • L SEN Nozzle immersion depth (mm)
  • ⁇ 2 molten steel injection speed (sec / min)
  • immersion nozzle molten steel discharge angle
  • Q Ar nozzle blowing gas flow rate (1 / min)
  • W ⁇ The mold width (mm).
  • FIG. 34 shows the relationship between the defect mixing rate and the flow velocity of the molten steel due to the magnetic field, based on the results of the continuous fabrication as in the first embodiment.
  • FIG. 26 shows the relationship between the defect mixing ratio and the maximum value Fmax of the mouth-to-lent force.
  • Fig. 35 it is effective to reduce the defect contamination rate by setting VxFmax to 3000 or more with respect to the molten steel flow rates V and Fmax. It became clear that it was. It was also found that the effect did not change even if it exceeded 6000.
  • a comb-shaped iron core having 12 poles has been described.
  • the number of magnetic poles and the shape of the iron core are not limited thereto, and for example, the iron core may be divided.
  • the present invention is not limited to the case where the static magnetic field is superimposed.
  • equipment in which the DC coil 34 is removed from FIG. 20 may be used.
  • 0.5 Fe / alloy was added at 0.5 kg / ton to adjust the composition.
  • the Ti concentration after this treatment was 0.050% by mass, and the A1 concentration was 0.003% by mass.
  • the width of the slab was 1500 to 170 Omm, the thickness was 22 Omm, and the throughput of molten steel 14 was 4 to 5 tons.
  • a comb-shaped iron core divided into 12 equal parts in the width direction is used as the coil structure, and a magnetic field (that is, an oscillating magnetic field) in which the phase alternates in the width direction of the piece is generated. It was arranged to live.
  • Figure 21 summarizes the experimental conditions and the experimental results (defect mixing ratio) for ultra-low carbon steel.
  • the defect contamination rate refers to defects caused by inclusions, mold flux entanglement, professional holes and surface defects.
  • the slab was ground and then etched, and the number of segregated pieces per lm 2 was examined by visual observation.
  • the surface defects of the cold-rolled coil after cold rolling were visually inspected, a defect sample was collected, and the defect portion was analyzed to investigate the number of defects due to mold flux.
  • the amount of inclusions was determined by extracting the inclusions from the position of 1/4 thickness of the piece by the slime extraction method, and then measuring the weight.
  • the worst of all conditions was set to 10 and the linear ratio to the index was used.
  • the AC magnetic flux density can reduce surface segregation, defects due to mold flux entrainment, blowholes, and nonmetallic inclusions.
  • the intensity of the oscillating magnetic field is too strong, the flux on the surface of the molten steel becomes too large and the surface quality deteriorates. If the frequency is too high, the molten steel cannot follow the magnetic field and the solidification interface is cleaned. Is estimated to have decreased, and blowholes and inclusion defects have increased.
  • a comb tooth-shaped iron core having 12 poles has been described, but the number of magnetic poles and the shape of the iron core are not limited thereto, and for example, the iron core may be divided.
  • a slab was produced by the continuous production equipment shown in FIG. At that time, the width of the slab was set to 1500 to 1700 mm, the thickness was set to 2200 mm, and the throughput of molten steel 14 was set to 4 to 5 tons. Also, as shown in Fig. 6, a comb-shaped iron core divided into 12 equal parts in the width direction is used as the coil structure, and a magnetic field (that is, an oscillating magnetic field) whose phase is alternately inverted in the width direction of the piece is generated. It was arranged to live.
  • a magnetic field that is, an oscillating magnetic field
  • Fig. 22 summarizes the experimental conditions and results for an ultra-low carbon steel under a constant DC magnetic field of 1200 Gauss. Experimental results described in Fig. 22 The analysis method is the same as in the first embodiment.
  • the superposition of the oscillating magnetic field and the static magnetic field makes it possible to reduce surface segregation, defects due to the inclusion of mold flux, blowholes, and nonmetallic inclusions.
  • n is a phase angle
  • n 90 ° for two-phase AC
  • n 60 ° or 120 ° for three-phase AC.
  • molten steel 14 was smelted in a converter, converted into ultra-low carbon steel A1 killed steel by RH treatment, and slabs were produced by continuous production equipment.
  • Table 2 shows typical molten steel components. The width of the slab was 1500 to 1700 mm, the thickness was 220 mm, and the throughput of molten steel 14 was 4 to 5 ton / min.
  • a comb-shaped iron core divided into 12 equal parts in the width direction of the piece is used as the coil structure, and a magnetic field whose phase periodically changes in the width direction of the piece.
  • the continuous slab was fabricated in this way, and the results of inspection of the obtained slabs for the defect mixing rate, blowholes, and noro-kami are shown in Figs. 26, 27, and 28.
  • the defect contamination rate in the figure is the denominator of the total length of the cold-rolled coil after cold rolling, the numerator assuming one surface defect caused by bubbles or inclusions as 1 m, and the ratio expressed as a percentage. It is.
  • Professional Hole Opro-Nakomi cuts the surface of the piece by about 2 mm after fabrication and cutting, and creates a hole that appears on the surface of the piece. When there is a trace that the flux has been filled, it is counted as norokami, respectively, and the value is divided by the surface area of the piece examined.
  • the horizontal axis indicates the maximum value F max of the Lorentz force acting on the solidification interface.
  • the oral Frents force F is given by the above-mentioned equations (2) and (3), and B dc is It does not affect the time-averaged force, but the time-varying force increases as B increases.
  • the change in the Mouth-Lentz force F is represented by the phase of the change in current, and periodically changes for each coil as shown in FIG. 30 in which the horizontal axis corresponds to the long side of the ⁇ -type 10.
  • FIGS. 26 to 28 shows the maximum value Fmax of the Lorentz force calculated by each of the above formulas and the results of each inspection in an actual continuous production.
  • the defect mixing rate is effective when Fmax is 500 000 (N / ms) or more and 130 000 (NZms) or less. It can be seen from FIGS. 27 and 28 that Fmax is more than 500 (NZm 3 ).
  • Fave and Fave are not appropriate as an index for continuous production, but Fmax is effective as an index.
  • ⁇ Fifth embodiment> As in the case of the fourth embodiment, a slab was manufactured with a continuous manufacturing facility.
  • Fig. 34 shows the relationship between the obtained slab defect mixing ratio and the molten steel flow velocity.
  • the relationship between the defect mixing rate and the maximum Lorentz force Fmax is as shown in FIG.
  • a continuous structure is performed without blowing inert gas from an immersion nozzle, the entrainment of mold flux is suppressed, the internal quality of a piece is improved, and trapping of inclusions and bubbles is suppressed. ⁇
  • the surface quality of the piece can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

鋳型の長辺方向に沿って3個以上の電磁石を並べ、振動磁界を発生させながら、その振動磁界のピーク位置を鋳型の長辺方向に沿って移動させる。

Description

明 細 書 鋼の連続錶造方法 技術分野
本発明は、 鋼の連続鍀造方法に関し、 特に連続錶造用铸型 (以下、 铸型という) へ溶鋼を供給するノズルから不活性ガスを吹き込むことなく、 磁界を印加するこ とによって铸型内の溶鋼流動を改善する鋼の連続铸造方法に関する。 背景技術
近年、 自動車用鋼板を中心として、 鋼製品の品質向上の要求が厳しくなり、 ス ラブの段階から清浄度の優れた高品質のスラブの要求が高まっている。 このよう な高品質のスラブを製造する方法としては、 特開平 11-100611号公報に、 溶鋼に 含まれる介在物を低融点化することにより、 銹型へ溶鋼を供給するための浸漬ノ ズルの閉塞を防止して、 ノズルからアルゴン (A r ) 等の不活性ガスを吹き込む ことなく、 溶鋼を連続铸造するガスレス铸造技術が開示されている。
このように、 不活性ガスの吹き込みを無くして連続铸造すると、 得られる铸片 の表面に気泡が捕捉されることがなくなるために、 ガスを吹き込む場合に比べて 表面性状を向上できる。 ところが、 铸型内の溶鋼温度が低下することによって局 所的にモールドフラックスの凝固が起こり、 それが溶鋼中に巻き込まれて、 内部 欠陥の原因となるという問題点がある。 さらに、 表面性状の一層の向上も求めら れている。
ところで、 スラブの欠陥には、 介在物や気泡に起因するものや、 溶鋼中の成分 の偏析に起因するものがあり、 铸型内の溶鋼流動は、 これらと深い関係があるた め、 従来から多くの研究, 発明がなされてきた。 その一つとして、 錶型内の溶鋼 流動を磁界を用いて制御する方法が考えられている。
例えば、 (A) 移動磁界に直流磁界を重畳したものとして、 特開平 10-305353 号公報に、 鍀型長辺を挾み対向する上下 2段の磁極を铸型長辺背面に配置し、 ( a ) 下側に配置した磁極に直流静磁界と交流移動磁界とが重畳された磁界とす る、 あるいは、 (b )上側に配置した磁極に直流静磁界と交流移動磁界とが重畳さ れた磁界とし、 下側に配置した磁極に直流静磁界を印加する铸型内溶鋼流動の制 御方法が開示されている。
又、特許第 3067916号公報に、 複数個設置した電気コイルに適当なリニア駆動 用交流電流と制動用直流電流を流すことにより、 铸型内の溶鋼流動を制御する装 置が開示されている。
又、 特開平 5-154623号公報に、 位相が 1 2 0度ずつずれた交流移動磁界と直 流静磁界とを重畳する铸型内流動制御方法が開示されている。
又、特開平 6-190520号公報に、浸漬ノズル吐出孔の上方に置いた磁石により、 幅方向全域に静磁界と高周波磁界を重畳して作用させると共に、 吐出孔の下方に 置いた磁石により、 静磁界を作用させる鋼の铸造方法が開示されている。
( B ) 上部直流磁界と下部移動磁界を組合せたものとして、 特開昭 61-193755 号公報に、 浸漬ノズルから吐出された溶鋼流を包囲する位置に静磁場をかけ、 流 速を低下させると共に、 静磁場よりも下流位置に電磁撹拌装置を設置して水平方 向に撹拌する電磁撹拌方法が開示されている。
( C ) 上部移動磁界と下部直流磁界を組合わせたものとして、 特開平 6-226409 号公報に、 湯面から吐出孔 (下向き 5 0度以上) の間に極芯中心を設置した磁石 により移動磁界を作用させると共に、 極芯中心を浸漬ノズルより下部に設置した 磁石により静磁場を作用させる铸造方法が開示されている。 又、 特開平 9-262651号公報に、 浸漬ノズル下端よりも上部に電磁撹拌用磁石 を設置し、 浸漬ノズル下端よりも下部に移動磁界と静磁界が印加できる磁石を設 置し、 鋼種ゃ铸造速度に応じて静磁場と移動磁場を使い分ける鎵造方法が開示さ れている。
又、 特開 2000-271710号公報に、浸漬ノズル内に A rガスを吹き込みながら鋼 を铸造する時に、 浸漬ノズルから出た直後の溶鋼流に磁束密度が 0 . 1テスラ以 上の静磁場を作用させ、その上部で電磁撹拌装置により連続的に撹拌、あるいは、 撹拌方向を周期的に変化させる方法が開示されている。
又、 特開昭 61-140355号公報に、 錶型長辺側に錶型内に供給される溶鋼電流を 制御するように配された静磁場を有し、 上方に移動磁界発生装置を配して、 溶鋼 の上表面を水平断面中央から短辺側へ流動させる铸型及び鎵型上方の構造が開示 されている。
又、 特開昭 63-119959号公報に、 モールド上部に溶鋼に水平流動を生じさせる 電磁撹拌装置を設置し、 モールド下部に浸潰ノズルからの吐出流を減速するため の電磁ブレーキを設置して、 浸漬ノズルから出る吐出流を制御する技術が開示さ れている。
又、 特許第 2856960号公報に、 铸型内の溶鋼湯面に静磁場を用い、 連铸用ノズ ルとしてストレートノズルを使用し、 吐出口部に進行磁場を用い、 その下部に静 磁場を用いる鋅型内の溶鋼流動の制御技術が開示されている。
(D ) 直流磁界を単独で印加するものとして、 特開平 3-258442号公報に、 铸 型長辺側に対向して設置した、 長辺とほぼ同じ長さの電磁石により静磁場を作用 させる電磁ブレーキが開示されている。
又、 特開平 8-19841号公報に、 鎵型幅中央ないし铸型短辺より内側の所定位置 から両端部近傍にかけて、 铸型上方側へ曲げるか傾斜させた磁極を、 幅中央部で 浸漬ノズル吐出孔ょり下部に設置し、 直流磁場あるいは低周波交流磁場を作用さ せることによって铸型内の溶鋼流動を制御する方法が開示されている。
又、 国際公開特許 W095/26243号公報に、 铸型全幅にわたって、 ほぼ均一な磁 束密度分布を有する直流磁場を、 錡型厚み方向に加えて、 浸漬ノズルからの吐出 流を制御することにより、 メニスカス流速を 0. 20〜 0. 40m/sに制御す る技術が開示されている。
又、特開平 2-284750号公報に、錶片幅全体に铸型厚み方向の均一な静磁界を、 浸漬ノズル吐出孔の上部と下部に作用させ、溶鋼吐出流に効果的な制動力を与え、 流れを均一化する技術が開示されている。
(E) 直流磁界又は移動磁界を印加するものとして、 特開平 9-262650号公報 に、 浸漬ノズル吐出孔の下部に設けた複数のコイルに直流電流を流すことにより 静磁界を印加したり、 交流電流を流すことにより移動磁界を印加したりすること により溶鋼流動を制御する铸造方法が開示されている。
又、 「材料とプロセス」 vol.3(1990)p256に、 浸漬ノズルからの吐出流に交流移 動磁場を作用させることにより、吐出溶鋼流を制動(いわゆる EML S)したり、 加速 (いわゆる EMLA) したりする技術が開示されている。
(F) 移動磁界のみを印加するものとして、 特開平 8-19840号公報に、 電磁誘 導によって錶型内の溶鋼流動を制御する際に、 周波数 1〜 1 5Hzの静止交流磁 場を溶鋼に印加する技術が開示されている。
又、 「鉄と鋼」 66(1980)p797に、 スラブ連続铸造機において、 電磁撹拌により 铸型壁に沿った水平方向の溶鋼旋回流を得る技術 (いわゆる M— EMS) が開示 されている。
しかしながらこれらの (A) 〜 (F) の技術では、 モールドパウダーを巻き込 んだり、 又、 凝固界面への介在物の捕捉を防止できず、 錶片の表面品質が充分に 向上しないという問題があった。 そこで、 口一レンツ力の向きが周期的に反転す る磁界 (以下、 振動磁界という) を印加する技術が検討されている。
( G ) 振動磁界のみを印加するものとして、 特許第 2917223号公報に、 時間的 に移動しない低周波交流静止磁界を付与し、 凝固直前に低周波電磁振動を励起さ せることによって、 凝固前面の柱状デンドライトを破断させ、 溶融金属中に浮遊 させて、 凝固組織の微細化および中心偏祈の低減を目指す方法が開示されている が、 铸片の表面欠陥を低減する効果は小さい。
発明の開示
近年の表面品質向上やコストダウン等の必要性が高まっており、 铸片の表面や 内部の吏なる品質改善が望まれており、 効果的な铸型内の溶鋼流動の制御が必要 となっている。
本発明は、 従来の問題点を解決するべくなされたもので、 浸漬ノズルから不活 性ガスを吹き込むことなく連続铸造する際に、 モールドフラックスの巻き込みを 抑制し、 铸片の内部品質を向上させると共に、 介在物や気泡の凝固核への捕捉を 抑制して、 铸片の表面品質を向上できる、 鋼の連続铸造方法を提供することを目 的とする。
その目的を達成するために本発明では、 铸型内の未凝固の溶鋼の流速分布を規 制する。 すなわち、 铸片の厚み (すなわち铸型の短辺方向) 中央付近では溶鋼流 速を小さくしてモ一ルドフラックスの巻き込みを抑えつつ、 鎵型の壁面に近い凝 固界面近傍では溶鋼流速を大きくすることによって介在物や気泡に洗浄効果を与 えて、 凝固核への捕捉を抑制する。
本発明では、 铸型へ溶鋼を供給する浸漬ノズルから不活性ガスを吹き込まずに 銹造する際、 電磁攪拌を適用して铸型内の溶鋼温度を均一化させるようにする。 そのために、 铸型の短辺 (すなわち铸片の厚み) 方向の溶鋼流速の分布を規定す る。 即ち、 铸片の厚み中央付近では溶鋼流速を小さくしてモールドフラックスの 巻き込みを抑えつつ、铸型の壁面に近い凝固界面の溶鋼に局所的な流動を与えて、 気泡や介在物の捕捉を防止し、 錡片の表面欠陥を低減する。
このための方法として、 交流磁場の印加方法を工夫する必要があり、 モデル実 験及びシミュレーション計算を実施した結果、 以下の結論に至った。
特開平 6-190520号公報に示されるような、 铸片の厚み方向の磁場では、 交流 電流の表皮勃果を利用して、 凝固界面あるいは溶鋼の表面に口一レンツ力を集中 させていたが、 これだけでは、 効率的に凝固界面のみにローレンツ力を集中でき ず、 凝固界面に口一レンツ力を集中させるためには、 磁力線分布を制御する必要 がある。
そのための方法として、 錶片の幅 (すなわち铸型の長辺) 方向に交互に位相が 反転する電磁石を配置して、 交番させることが効果的である。 铸片の厚み方向に 磁界を振動させる場合には、 電磁力を錶型壁面、 即ち、 凝固界面に集中すること ができなくなるため、 铸片の幅方向に磁界を振動させる必要がある。 ここで、 交 互の電磁石に通電する電流の位相は実質反転する必要があり、 そのためには、 位 相は 1 3 0 °以上異なることが必要である。
一方、 コイル構造としては、 図 1に例示する如く、 铸片の幅方向に 3つ以上の 磁極を有する櫛歯状鉄芯 2 2に交流電流を流すコイル(以下、交流コイルという) を巻き、 且つ、 隣り同士の電流の位相を実質反転させることで、 幅方向の磁界を 振動させることができる。 図 1において、 1 0は铸型, 1 2は浸漬ノズル, 1 4 は溶鋼 (斜線部は低速領域) である。 その際の交流電流の周波数は、 低すぎると 十分な流動が励起されず、 高すぎると、 溶鋼が電磁場に追随しなくなるので、 1 H zから 8 H zの範囲が適当である。 このような電磁石を用いることで、 凝固前面から溶鋼を引き離す方向の流動を 誘起させることができ、 且つ、 励起される溶鋼流速が小さいので、 デンドライト を破断することなく、 凝固界面の洗浄効果が得られた。 図 2 (正面図), 図 3 (図 2の III一 III線に沿う水平断図面), 図 4 (図 2の IV— IV線に沿う垂直断面図) に、 磁極 2 8の数が 4個の場合について、 本発明の振動磁界で誘起される溶鋼流 動を、電磁場解析と流動解析によって計算した例をもとにして、模式的に示した。 なお図 2中の III— III線は、 磁極 2 8の中心を通る。 また図 2中の矢印 aは銬造 方向, bは铸型の長辺方向, cは溶鋼 1 4の局所的な流動を示す。 図 3中の矢印 dは铸型の短辺方向を示す。
本発明では、 図 5に示す如く、 次式に示すローレンツ力 Fに応じて発生する流 れの向きは同じで、 流速 Vのみ印加電流 Iの半分の周期で変動する。
F o J x B ... (1)
ここで、 Jは誘導電流、 Bは磁場である。
交流コイルの巻き方向を逆にすれば、 電流の位相が同じでも、 磁場の位相を反 転することができる。
特許第 2917223号公報には、時間的に移動しない低周波交流静止磁界を付与し、 凝固前面に低周波電磁振動を励起させることによって、 凝固前面の柱状デンドラ イトを破断させ、 溶鋼中に浮遊させて、 凝固組織の微細化と中心偏祈の低減を目 指す方法が開示されているが、 デンドライトが破断するような大きな電磁力を付 与すると、 溶湯上面のモールドフラックスを巻き込んで、 表面品質を劣化させて しまう。 よって、 交流振動磁界の磁束密度は 1 0 0 0ガウス未満が望ましい。 な お、 コイル配置によっては、 1 0 0 0ガウス以上でもデンドライトが破断しない ようにできる場合がある。
更に、 特許第 2917223号公報に開示された方法では、 デンドライトの破断が起 こって、 柱状晶組織から等軸晶組織に変化してしまう。 極低炭素鋼などでは、 圧 延時に、 柱状晶組織のみの方が集合組織として制御し易くなるため、 等軸晶化す ることで、 結晶方位を揃え難くなるという問題がある。 このため、 電磁力によつ て、 凝固前面のデンドライトが破断しないことが重要である。
以上の知見から、 铸型の長辺方向に磁界を振動させることによって、 铸片の厚 み方向および鎵造方向の流動を誘起させ、 気泡や介在物を凝固界面から引き離す ような溶鋼流動を与えることによって、 気泡や介在物の捕捉を防止することが効 果的であるという結論に至った。
本発明によって、 凝固界面のみを効率的に振動させて、 気泡や介在物の捕捉を 抑制できるので、 铸片の表面品質を大幅に向上させることができる。
更に、 铸片品質の向上を図るべく、 モデル実験及びシミュレーション計算を実 施した結果、 前記振動磁界を錶型内の溶鋼に作用させると共に、 铸型の短辺 (す なわち铸片の厚み) 方向に静磁界を重畳することも有効であるという知見が得ら れた。
このためのコイル構造としては、図 6に例示する如く、図 1に例示したものに、 更に直流電流を流すコイル 3 4 (以下、 直流コイルという) を追加したものを挙 げることができる。
このように、 直流コイル 3 4を設けて、 静磁界を重畳させることにより、 F == J x B (ここに F : 口一レンツ力、 J :誘導電流、 B :磁場) の磁場 B項が大き くなるために、 ローレンツ力 Fを増加させることができるが、 更に、 ローレンツ 力の向きが、 重畳しない場合と大きく異なり、 溶鋼流動も変化して、 錶片の幅方 向及び铸造方向の流動が大きくなるので、 凝固界面に捕捉される気泡や介在物の 洗浄効果が期待できる。
又、 重畳することにより、 錶片の厚み中央での溶鋼流速を低減でき、 モ一ルド フラックスの巻き込みも更に有効に防止できる。
図 7 (正面図), 図 8 (図 7の III一 III線に沿う水平断面図), 図 9 (図 7の IV —IV線に沿う垂直断面図) に、 磁極 28の数が 4個の場合について、 本発明の振 動磁界で誘起される、 ある時点の溶鋼流動を、 電磁場解析と流動解析によって計 算した例をもとにして、 模式的に示す。 図 7中の矢印 aは鎳造方向, bは铸型の 長辺方向, cは溶鋼 14の局所的な流動を示す。 図 8中の矢印 dは铸型の短辺方 向を示す。又、図 10 (正面図),図 1 1 (図 1 0の VI— VI線に沿う水平断面図), 図 1 2 (図 1 0の VII— VII線に沿う垂直面図) に、 次の時点の溶鋼流動を模式 的に示す。
本発明では、 図 1 3に示す如く、 次式に示すローレンツ力 Fに応じて発生する 流れの向きが、 印加電流 Iと同じ周期で反転する。
F«: J xB t ... (2)
B t =B d c +B a c>0 ... (3)
ここで、 Jは誘導電流、 B tは合計磁場、 B d cは直流磁場、 B a cは交流磁 場である。
この場合も、 磁界を振動させるための交流電流の周波数は、 前記したと同様に 1Hzから 8Hzの範囲が適当である。
以上の知見から、 錶型の長辺方向に磁界を振動させつつ、 铸片の厚み方向に直 流磁界を印加することにより、 铸型の長辺方向及び铸造方向に従来と大きく異な る溶鋼流動を誘起させ、 凝固界面のみを効率的に振動させて、 気泡や介在物の捕 捉を抑制し、 铸片の表面品質を大幅に向上させることができる。
更に、 交流磁場の印加態様を工夫するべく、 モデル実験及びシミュレ一シヨン 計算を実施した結果、 以下の結論が得られた。
移動磁界によるマクロ流動は、 凝固界面の気泡や介在物の捕捉を抑制するが、 時として、 モールドフラックスの巻き込みを増加させるため、 かえって品質を劣 化させる場合がある。
振動磁界を印加する際に、 振動磁界を強く受ける位置が固定されると、 電磁力 の弱い位置で、 介在物の捕捉を十分に抑制できない部分が生じる場合がある。 こ のため、 振動磁界によるローレンツ力のピーク位置を移動させることが効果的で める
ローレンツ力のピーク位置を移動させるには、 隣り合う 3つの電磁石に装着さ れる交流コイル、 あるいは、 交流コイル群の位相を、 真中の交流コイルの位相を 最後とするように設定するとよい。 ここで、 振動磁界とは、 時間と共にローレン ッ力の向きが反転する磁場をいう。
次に、 ローレンツ力のピーク位置の移動について説明する。 図 6と構造が実質 的に同一の図 1 4に示すような、 櫛歯状のコイル 2 4の各コイル (後述する図 2 0に示す) に振動磁界を与え、 各コイル毎に位相を変化させる。 図 1 5〜図 1 8 は、 このような各コイル毎に付与する位相の説明図である。 図中の交流コイル 2 4 a , 2 4 bの各コイルの横に付してある数字は、 ある時刻におけるその交流コ ィルの電流の位相角 (度) を記入したものである。 図 1 5〜図 1 7は 2相交流, 図 1 8は 3相交流の場合で、 図 1 5は移動磁界, 図 1 6は振動磁界, 図 1 7と図 1 8は振動磁界のピーク位置を局所的に移動させた場合の例を示した。
図 1 7 , 図 1 8に示すように、 铸型の長辺 (すなわち鎵片の幅) 方向に 3個以 上の電磁石を並べ、 隣り合う電磁石に通電する電流の位相が、 一方向に増加、 あ るいは、 減少することなく、 少なくとも真中の位相が両側の位相よりも遅れるよ うに設定することによって、 磁界は単に一方向に移動するのではなく、 振動しな がら局所的に移動することになる。
以上のように、 3個以上の電磁石のうち隣り合う電磁石に装着される交流コィ ルの位相が、 n, 2 n, nあるいは n, 3 n, 2 n (伹し、 nは 2相交流で 90°, 3相交流で 60°又は 1 20°) の配列部分をもたせることによって、 振動磁界の ピーク位置を局所的に移動させることができる。
ここで、 単純に振動磁界を誘起させた場合には、 振動磁界の振幅が大きいとこ ろと小さいところができる。このピーク位置を局所的に移動させることによって、 全ての位置で、 凝固界面を洗浄することが可能となる。
なお、 ここで、交流コイルの櫛歯数が 1 2本の例を示したが..櫛歯数は 4, 6, 8, 1 0 , 1 2, 1 6本などから選ぶことができ、 又、 交流は 2相, 3相のいず れでもよい。
そこで本発明では、 铸型の長辺方向に沿って 3個以上の電磁石を並べ、 振動磁 界を発生させながら、 その振動磁界のピーク位置を錶型の長辺方向に沿って移動 させることによって、 前記した課題を解決する。
なお本発明においては、 3個以上の電磁石のうち隣り合う電磁石に装着された コイルの位相が、 n, 2 n, nあるいは n, 3 n, 2 nの配列部分をもつことが 好ましい。 ただし、 3相交流で n= 60° 又は 1 20° , 2相交流で n= 90° である。 また振動磁界に加えて、 直流磁界を铸片の厚み方向に重畳することが好 ましい。
さらに铸型内の未凝固の溶鋼の介在物を低融点化することによって、 溶鋼を錶 型へ供給するノズルの閉塞を防止して、 ノズルから不活性ガスを吹き込むことな く連続铸造することが好ましい。 その場合、 介在物を低融点化した溶鋼が、 C≤ 0. 020質量%, S i≤ 0. 2質量%, Mn≤ 1. 0質量%, S≤ 0. 0 50 質量%, T i≥ 0. 0 1 0質量%を含み、 A 1≤ [質量%T i ] / 5の条件を満 足する組成からなる極低炭素 T i脱酸鋼であることが好ましい。 ここで [質量% T i ] は、 T iの含有量 (質量%) を指す。 また本発明を適用する溶鋼は、 溶鋼をまず真空脱ガス装置による脱炭処理した 後、 T i含有合金によって脱酸し、 その後、 脱酸溶鋼中に C a≥ 1 0質量%及び REM≥5質量%の 1種又は 2種と F e, A 1 , S i及び T iのうちから選ばれ る 1種又は 2種以上を含有する介在物組成調整用合金を添加することにより、 溶 鋼中の酸化物組成を C a Oおよび R E M酸化物のうちの少なくとも 1種の含有量 が 1 0質量%以上 50質量%以下で、 かつ T i酸化物が 90質量%以下, A l 2 03が 70質量%以下であることが好ましい。
その溶鋼は、脱炭処理した後、 T i含有合金による脱酸処理に先立って、 A 1 , S i , Mnのいずれかにて予備脱酸することにより、 溶鋼中の溶存酸素濃度を予 め 20 Oppm以下にすることが好ましい。
さらに本発明では、 振動磁界によって駆動されるローレンツ力の最大値を 50 0 0 (N/ms) 以上, 1 3000 (N/n ) 以下にすることが好ましい。 また、 連続铸造用铸型内の未凝固の溶鋼の流速を V (m/s) とし、 振動磁界によって 駆動されるローレンツ力の最大値を Fmax (N/m3) とするとき、 VxFmaxが 3000 (N/ ( s - m2)) 以上になるように調整することが好ましい。 図面の簡単な説明
図 1は、 本発明で用いられる電磁石と铸型の組合せの一例を模式的に示す水平 断面図である。
図 2は、 本発明の原理を説明するための、 磁場で誘起される溶鋼流動の速度べ クトルの電磁場解析と流動解析による計算結果を模式的に示す正面図である。 図 3は、 図 2の III -III線に沿う水平断面図である。
図 4は、 図 2の IV— IV線に沿う垂直断面図である。
図 5は、 本発明における印加電流と溶鋼流速の時間的な変化状態の例を示す線 4 000864 図である。
図 6は、 本発明で用いられる電磁石と铸型の組合せの他の一例を模式的に示す 水平断面図である。
図 7は、 本発明の原理を説明するための、 磁場で誘起される、 ある時点の溶鋼 流動の速度べクトルの電磁場解析と流動解析による計算結果を模式的に示す正面 図である。
図 8は、 図 7の ΙΠ— III線に沿う水平断面図である。
図 9は、 図 7の IV— IV線に沿う垂直断面図である。
図 1 0は、 本発明の原理を説明するための、 磁場で誘起される、 磁極が反転し た次の時点の溶鋼流動の速度べクトルの電磁場解析と流動解析による計算結果を 模式的に示す正面図である。
図 1 1は、 図 1 0の VI— VI線に沿う水平断面図である。
図 1 2は、 図 1 0の VII— VII線に沿う垂直断面図である。
図 1 3は、 本発明における印加電流と溶鋼流速の時間的な変化状態を示す線図 である。
図 1 4は、 本発明による交流コイル, 直流コイルと铸型との関係を示した平面 模式図である。
図 1 5は、 移動磁界の場合の交流コイルの位相を示した模式図である。
図 1 6は、 振動磁界の場合の交流コイルの位相を示した模式図である。
図 1 7は、 振動磁界のピーク位置を局所的に移動させる場合の交流コイルの位 相を示した模式図である。
図 1 8は、 振動磁界のピーク位置を局所的に移動させる場合の交流コイルの位 相を示した他の模式図である。
図 1 9は、 第 1実施形態の連続铸造設備を模式的に示す水平断面図である。 図 2 0は、 第 2実施形態の連続铸造設備を模式的に示す水平断面図である。 図 2 1は、 本発明による効果を示すグラフである。
図 2 2は、 本発明による静磁界を重畳した場合の効果を示すグラフである。 図 2 3は、 移動磁界を発生させる電流の位相の経時変化を示す説明図である。 図 2 4は、 移動磁界のピーク位置を局所的に移動させる電流の位相の経時変化 を示す説明図である。
図 2 5は、 移動磁界のピーク位置を局所的に移動させる電流の位相の経時変化 を示す他の説明図である。
図 2 6は、 ローレンツ力の最大値 F maxと欠陥混入率との関係を示すグラフで ある。
図 2 7は、 ローレンツ力の最大値 F maxとブローホール個数密度との関係を示 すグラフである。
図 2 8は、 ローレンツ力の最大値 F maxとノロカミ個数密度との関係を示すグ ラフである。
図 2 9は、 凝固界面に作用する口一レンツ力を模式的に示す斜視図である。 図 3 0は、 ローレンツ密度の分布を示すグラフである。
図 3 1は、 ローレンツ力の平均値 F ave と欠陥混入率との関係を示すグラフで ある。
図 3 2は、 ローレンツ力の平均値 F ave とブローホール個数密度との関係を示 すグラフである。
図 3 3は、 口一レンツ力の平均値 F ave とノロカミ個数密度との関係を示すグ ラフである。
図 3 4は、 溶鋼流速 Vと欠陥混入率との関係を示すグラフである。
図 3 5は、 V x F maxと欠陥混入率との関係を示すグラフである。 ぐ符号の説明 >
1 0 铸型
1 2 浸漬ノズル
1 4 溶鋼
2 0 振動磁界発生装置
2 2 櫛歯状鉄芯
2 4 交流コイル
2 6 a , 2 6 b 交流電源
2 8 磁極
3 0 静磁界発生装置
3 2 直流電源
3 4 直流コイル 発明を実施するための最良の形態
本発明について、 図面を参照して説明する。 本発明では、 図 1に示すように、 浸漬ノズル 1 2が上方のタンディッシュ (図示せず) の底部から吊り下げられて 鎵型 1 0内の未凝固の溶鋼 1 4に浸漬され、 溶鋼 1 4を供給する。 铸型 1 0の長 辺の外側に 3個以上の電磁石 (交流コイル) を並べた振動磁界発生装置が配設さ れる。 これらの電磁石 (交流コイル) には、 それぞれ振動磁界を発生する振動電 流が印加され、 その振動電流のピーク値は、 铸型 1 0の長辺方向に沿って移動す るように印加される。 この移動は、 隣り合う交流コイルの位相が n , 2 n , n又 は n , 3 n , 2 nの配列部分を持つように印加される。
まず、 このような装置を用いて振動磁界のみを作用させる本発明の第 1実施形 態を詳細に説明する。 第 1実施形態においては、 溶鋼の介在物を低融点化することにより、 溶鋼を鎵 型へ供給するノズルの閉塞を防止して、 ノズルから A r等の不活性ガスを吹き込 むことなく連続鎵造を行ないながら、 铸型内の未凝固の溶鋼に振動磁界を作用さ せる。
このようなガスレス連続鏡造に使用する介在物を低融点化した溶鋼としては、 前記した特開平 11-100611号公報に開示されている、 C≤ 0 . 0 2 0質量%, S
1≤ 0 . 2質量%, M n≤ 1 . 0質量%, S≤ 0 . 0 5 0質量%, T i≥ 0 . 0 1 0質量%を含み、 A 1≤ [質量%T i ] Z 5の条件を満足する組成からなる極 低炭素 T i脱酸鋼を挙げることができる。 この溶鋼は、 製造するに当り、 溶鋼を まず真空脱ガス装置による脱炭処理した後、 T i含有合金によって脱酸し、 その 後、脱酸溶鋼中に C a≥ 1 ひ質量%及び R E M≥ 5質量%の 1種又は 2種と F e , A 1 , S i及び T iのうちから選ばれる 1種又は 2種以上を含有する介在物組成 調整用合金を添加することにより、溶鋼中の酸化物組成を C a Oおよび R E M (希 土類元素) 酸化物のうちの少なくとも 1種の含有量が 1 0質量%以上 5 0質量% 以下で、 かつ T i酸化物が 9 0質量%以下、 A 1 203が 7 0質量%以下にする。 その際、 脱炭処理の溶鋼を、 T i含有合金による脱酸処理に先立って、 A l , S i , M nのいずれかにて予備脱酸することにより、 溶鋼中の溶存酸素濃度を予め
2 0 O ppm以下にすることが望ましい。
このように製造した溶鋼をガスレス連続铸造する際に、 以下のように鍀型内の 溶鋼を電磁攪拌することによって、 铸片の表面欠陥を低減する。
本発明の実施に好適な、 連続铸造設備の一例を、 水平断面の模式図で図 1 9に 示す。 図 1 9において、 1 0が铸型, 1 2が浸漬ノズル, 1 4が溶鋼, 2 0が振 動磁界発生装置, 2 2が櫛歯状鉄芯, 2 4が交流コイル, 2 6 aと 2 6 bが交流 電源, 2 8が磁極である。 本発明では、 相対する長辺と短辺からなる錶型 1 0内の溶鋼 1 4に、 磁界を印 加しながら連続铸造する。 印加する磁界は、 铸型 1 0の長辺方向に振動する磁界 (すなわち振動磁界) とする。 印加する振動磁界は、 铸型 1 0の長辺方向を印加 方向とする交流磁界で. その向きを周期的に反転させ、 溶鋼 1 4のマクロ的流動 を誘起することのない磁界である。
振動磁界は、 例えば、 図 1 9に示すような振動磁界発生装置 2 0を使用して、 発生させることができる。 図 1 9に示す振動磁界発生装置 2 0では、 铸型 1 0の 長辺方向に 3個以上 (図 1 9中では 1 2個) の櫛歯を有する櫛歯状鉄芯 2 2を用 いて、 これら櫛歯に交流コイル 2 4を配設して磁極 2 8とする。 磁極 2 8は、 隣 接する磁極 2 8同士が互いに異なる極性 (N、 S極) を有するように、 交流コィ ルの巻き方及び交流コイルに流す交流電流を調整する。 隣接する磁極 2 8同士が 互いに異なる極性 (N、 S極) とするためには、 隣接する磁極 2 8同士の交流コ ィルの巻き方を反対方向とし交流コイルに流す電流を同位相で所定の周波数を有 する交流電流とするか、 あるいは隣接する磁極 2 8同士のコイルの巻き方を同方 向としコイルに流す電流を隣接する磁極 2 8同士で位相がずれた、 所定の周波数 を有する交流電流とするのが好ましい。 隣接する磁極 2 8の交流コイルに流す交 流の位相のずれは、 実質的に位相が反転する、 1 3 0 °以上 2 3 0 °以下とするの が好ましい。
なお、 交流電流の所定の周波数としては、 1〜 8 H zとするのが好ましく、 よ り好ましくは 3〜 6 H zである。 図 1 9に示す例は、 隣接する磁極 2 8で、 交流 コイルの巻き方を同方向として交流コイルに流す交流電流を位相が異なる (実質 的に位相が反転する) ものとする場合であるが、 本発明はこれに限定されるもの ではない。
本発明では、 隣接する磁極 2 8同士が互いに異なる極性を有するため、 隣接す る磁極 2 8間で溶鋼に作用する電磁力とその隣りの磁極 2 8間で溶鋼 1 4に作用 する電磁力とは、 その向きがほぼ反対となり、 溶鋼 1 4のマクロな流動が誘起さ れることはない。又、本発明では、交流コイルに流す電流を交流電流とするため、 各磁極 2 8の極性が所定の周期で反転し、 铸型 1 0の長辺方向で凝固界面近傍の 溶鋼 1 4に振動を誘起させることができる。 これにより、 凝固界面への介在物や 気泡の捕捉を抑制することができ、 铸片の表面品質を顕著に向上させることがで さる。
交流コイルに流す交流電流の周波数が 1 H z未満では、 低すぎて十分な溶鋼流 動が誘起されない。 一方、 8 H zを超えると、 溶鋼 1 4が振動磁界に追従しなく なり、 磁界印加の効果が少なくなる。 このため、 交流コイルに流す交流電流の周 波数を l〜8 H zとし、振動磁界の振動周期を 1 / 8〜 1 sとするのが好ましい。 なお、 本発明では、 印加する振動磁界の磁束密度は 1 0 0 0ガウス未満とする のが好ましい。 磁束密度が 1 0 0 0ガウス以上になると、 デンドライトを破断す るだけでなく、 湯面変動が大きくなり、 モ一ルドフラックスの巻き込みを助長す るという問題がある。
又、 本発明では、 上記した振動磁界の印加に加えて、 静磁界を印加する。 静磁 界は、 図 2 0に示すように、 铸型 1 0の長辺側に静磁界発生装置 3 0を設置し、 铸型 1 0の短辺方向 (铸片の厚み方向) の向きに印加する。
铸型 1 0の厚さ方向に静磁界を印加することにより、 铸型 1 0中央部付近の溶 鋼流速を減少させることができ、 モールドフラックスの巻き込みを防止できる。 なお、 振動磁界の印加に静磁界の印加を重畳させることにより、 F = J x Bにお ける B項を大きくできるため、 更にローレンツ力を増加させることができるとい う効果もある。
又、 本発明では、 印加する静磁界の磁束密度は 2 0 0ガウス以上 3 0 0 0ガウ ス以下とするのが好ましい。 磁束密度が≥ 0 0ガウス未満では溶鋼流速の低減効 果が少なく、 また 3 0 0 0ガウスを超えると制動が大きすぎて不均一凝固を引き 起こすという問題がある。
図 2 0は、 铸型 1 0の長辺側に、 振動磁界発生装置 2 0と、 静磁界発生装置 3 0とを配設した例を示す。 静磁界発生装置 3 0は、 铸型 1 0の長辺側に铸型 1 0 を挟んで一対の磁極 2 8を配し、 流す電流を直流電流として直流電源 3 2から直 流コイル 3 4に流し、 铸型 1 0の短辺 (すなわち錶片の厚み) 方向に静磁界を印 加する。 静磁界発生装置 3 0と振動磁界発生装置 2 0の設置位置は、 垂直方向で 同じ位置としても、 又、 異ならせてもいずれでもよい。
次に、 移動磁界の場合と、 振動磁界のピーク位置を铸型 1 0の長辺方向に沿つ て局所的に移動させる場合を詳細に説明する。
図 1 4は錶型 1 0の平面図及び交流電磁石 (交流コイル 2 4 ) , 直流電磁石(直 流コイル 3 4 ) の配列例を示したものである。
铸型 1 0には、 上方のタンディッシュ (図示せず) の底部に連結されている浸 漬ノズル 1 2が浸漬され、 溶鋼 1 4を供給する。 铸型 1 0の長辺に沿って、 図 2 0と同様に、 1 2枚の櫛歯状の交流電磁石 (交流コイル 2 4 ) が配設され、 その 外側に直流コイル 3 4が配設されている。 1 2個の交流コイル 2 4にはそれぞれ 振動磁界を発生する振動電流が供給され、 その振動電流のピーク値は、 铸型 1 0 の長辺方向に沿って移動するように印加される。 このピーク値の移動は、 隣り合 う交流コイルの位相が n, 2 n , n又は n, 3 n , 2 nの配列部分をもつように 印加することにより実現される。
図 1 5〜図 1 8は、 ある瞬間における交流コイル 2 4 a、 2 4 bをそれぞれ構 成する 1 2個の各コイルにおける振動磁界の位相の分布を数字 (位相角の値) で 記載して示したものである。 振動磁界のピーク位置は铸型 1 0の長辺に沿う方向 に順次移動する。
図 1 5には隣接する交流コイルの位相差が 9 0 °で、対向する交流コイル 2 4 a , 2 4 bで 1 8 0 °異なる 2相交流の移動磁界が示されている。図 1 6には隣接する 交流コイルの位相差が 1 8 0。で、対向する交流コイル 2 4 a , 2 4 bで同位相の 2相交流の振動磁界が印加されている。 図 1 7には隣接する交流コイルの位相差 が 9 0 °で、 対向する交流コイル 2 4 a, 2 4 bで 1 8 0。異なる半波整流 2相交 流が印加されている。 図 1 8には隣接する交流コィルとの位相差が 1 2 0 °, 対向 する交流コイルで 6 0 °異なる半波整流 3相交流が印加されている。
ここで、 図 2 3には、 図 1 5の移動磁界について、 電流の位相角の経時的な変 化を交流コイル 2 4 aの各コイルに対応させて示す。 最上段 T 1 の位相角は図 1 5と同じであり、下方に向かって時間が経過している。又、図 2 4, 図 2 5には、 それぞれ図 1 7, 図 1 8の振動磁界のピーク位置の局所移動について同様の経時 変化を示す。
以上のようにして振動磁界のピーク位置を局所的に移動させることによって、 凝固界面のみを効率的に振動させて、 気泡や介在物の捕捉を抑制できるので、 铸 片の表面品質を大幅に向上させることができる。
次に、 更に図面を参照して、 振動磁界に静磁界を重畳する本発明の第 2実施形 態を詳細に説明する。
本発明の実施に好適な、 連続鍀造設備の一例を、 水平断面の模式図で図 2 0に 示す。 この図は、 図 1 9に、 3 0の静磁界発生装置を併設したものに相当する。 本発明では、 相対する長辺と短辺からなる錶型 1 0内の溶鋼に、 磁界を印加し ながら連続鎵造する。 印加する磁界は、 铸型 1 0の長辺方向に振動する磁界 (す なわち振動磁界) と厚み方向の静磁界とする。 印加する振動磁界は、 铸型 1 0の 長辺方向を印加方向とする交流磁界で、 その向きを周期的に反転させ、 溶鋼 1 4 のマクロ的流動を誘起することのない磁界である。
振動磁界は、 例えば、 図 2 0に示すような振動磁界発生装置 2 0を使用して、 発生させることができる。 図 2 0に示す振動磁界発生装置 2 0は、 第 1実施形態 の図 1 9に示したものと実質的に同一であるので、 詳細な説明は省略する。
又、 本発明では、 上記した第 1実施形態と同様の振動磁界の印加に加えて、 静 磁界を印加する。 静磁界は、 図 2 0に示すように、 铸型 1 0の長辺側に静磁界発 生装置 3 0を設置し、铸型 1 0の短辺方向(铸片の厚み方向)の向きに印加する。 铸型 1 0の短辺方向に静磁界を印加することにより、 铸型 1 0の中央部付近の 溶鋼流速を減少させることができ、モールドフラックスの巻き込みを防止できる。 なお、 振動磁界の印加に静磁界の印加を重畳させることにより、 F = J x Bにお ける B項を大きくできるため、 更に口一レンツ力を増加させることができるとい う効果もある。
又、 本発明では、 印加する静磁界の磁束密度は 2 0 0ガウス以上 3 0 0 0ガウ ス以下とするのが好ましい。 磁束密度が 2 0 0ガウス未満では溶鋼流速の低減効 果が少なく、 また 3 0 0 0ガウスを超えると制動が大きすぎて不均一凝固を引き 起こすという問題がある。
図 2 0は、 铸型 1 0の長辺側に、 振動磁界発生装置 2 0と、 静磁界発生装置 3 0とを配設した例を示す。 静磁界発生装置 3 0は、 铸型 1 0の長辺側に铸型 1 0 を挟んで一対の磁極 2 8を配し、 流す電流を直流電流として直流電源 3 2から直 流コイル 3 4に流し、 铸型 1 0の厚さ方向に静磁界を印加する。 静磁界発生装置 3 0と振動磁界発生装置 2 0の設置位置は、 垂直方向で同じ位置としても、 又、 異ならせても、 いずれでもよい。
次に、 更に図面を参照して、 振動磁界のピーク位置を铸型 1 0の長辺方向に沿 つて局所的に移動させる本発明の第 3実施形態を詳細に説明する。 図 14は铸型 1 0の平面図及び交流電磁石 (交流コイル 24), 直流電磁石(直 流コイル 34) の配列例を示したものである。
铸型 1 0には、 上方のタンディッシュ (図示せず) の底部に連結されている浸 漬ノズル 12が浸潰され、 溶鋼 14を供給する。 錡型 1 0の長辺に沿って、 図 2 0と同様に、 1 2枚の櫛歯状の交流電磁石 (交流コイル 24) が配設され、 その 外側に直流コイル 34が配設されている。 1 2個の交流コイル 24にはそれぞれ 振動磁界を発生する振動電流が供給され、 その振動電流のピーク値は、 铸型 1 0 の長辺方向に沿って移動するように印加される。 このピーク値の移動は、 瞵り合 う交流コイルの位相が n, 2 n, n又は]!, 3 n, 2 nの配列部分をもつように 印加することにより実現される。
図 1 5〜図 1 8は、 ある瞬間における交流コイル 24 a, 24 bをそれぞれ構 成する 1 2個の各コイルにおける振動磁界の位相の分布を数字 (位相角の値) で 記載して示したものである。 振動磁界のピーク位置は铸型 1 0の長辺に沿う方向 に順次移動する。
図 1 5には隣接する交流コイルの位相差が 90°で、対向する交流コイル 24 a, 24 bで 1 80°異なる 2相交流の移動磁界が示されている。図 16には隣接する する交流コイルの位相差が 1 80°で、対向する交流コイル 24 a, 24 bで同位 相の 2相交流の振動磁界が印加されている。 図 1 7には隣接する交流コイルの位 相差が 90°で、 対向する交流コイル 24 a, 24 bで 1 80°異なる半波整流 2 相交流が印加されている。 図 18には隣接する交流コイルとの位相差が 1 2 0°, 対向する交流コイルで 60°異なる半波整流 3相交流が印加されている。
振動磁界のピーク位置を局所的に移動させる本発明の方法によって、 第 1実施 形態の場合と同様の溶鋼をガスレス連続铸造することにより、 凝固界面のみを効 率的に振動させて、 介在物の捕捉を抑制できるので、 铸片の表面品質を大幅に向 上させることができる。
次に、 ローレンツ力と溶鋼流速の相互作用を好適範囲に維持する本発明の第 4 実施形態を詳細に説明する。
第 4実施形態においては 錡型 1 0内の溶鋼流速を V (m/s) とし、 磁場に よつて駆動される口一レンッ力の最大値を F max (N/ms) として、 VxFmax が 3000 (N/ ( s · m2)) 以上、 6000 (N/S · m^) 以下になるように する。
なお、 溶鋼流速 Vは実測値であるが、 測定が困難な場合には発明者が実験によ つて得た回帰式
V (m/sec) = (43. 0— 0. 047 LSEN+ 0. 0 93Θ+ 1 0. 0 Q
+ 0. 7 9 1 qAr- 0. 0398 W) /1 00
で代用してもよい。 但し、 LSEN:ノズル浸漬深さ (mm), <2 :溶鋼注入速度 (セ /min), Θ:浸漬ノズル溶鋼吐出角度 ), QAr : ノズル吹き込みガス流量 ( 1 /min) , W:铸型幅 (mm) である。
第 1実施形態と同様に連続铸造した結果に基づいて、 欠陥混入率と磁界による 溶鋼の流速の関係を図 34に示す。又、欠陥混入率と口一レンツ力の最大値 Fmax との関係は、 図 26に示してある。 又、 これらの結果を、 更に詳細に検討した結 果、 図 35に示すように、 溶鋼流速 Vと Fmaxに関して、 VxFmaxが 3000 以上であるようにすることが、 欠陥混入率を低減する上で有効であることが明ら かになつた。 又、 6000を超えても効果が変わらないことも分った。
なお、 ここでは、 極数が 1 2極の櫛歯状の鉄芯について説明したが、 磁極数や 鉄芯の形状はこれに限定されず、例えば鉄芯が分割されていてもかまわない。又、 静磁界を重畳する場合に限定されず、 例えば図 20から直流コイル 34を除いた 設備を使用するようにしてもよい。 〈実施例〉
〈第 1実施例〉
先ず、 溶鋼 14の代表例を説明する。 転炉から出鋼した後、 3 00 トンの溶鋼 14を RH真空脱ガス装置にて脱炭処理し., 溶鋼 14の成分組成を、 C= 0. 0
0 35質量%, S i = 0. 02質量%, Mn= 0. 20質量%, P= 0. 0 1 5 質量%, S = 0. 01 0質量%、 温度を 1 600°Cに調整した。 この溶鋼 14中 に、 A 1を 0. 5 k g/トン添加し、 溶鋼 14中の溶存酸素濃度を 1 5 Oppmま で低下させた。 この時の溶鋼 14中の A 1濃度は 0. 0 0 3質量%であった。 そ してこの溶鋼 14に、 7 0質量%T i— F e合金を 1. 2 k gZトン添加し脱酸 した。 その後、 溶鋼 14中に 20質量%C a— 1 0質量% REM— 50質量%T
1一 F e合金を 0. 5 k g/トン添加し、 成分調整を行なった。 この処理後の T i濃度は、 0. 0 50質量%、 A 1濃度は 0. 00 3質量%でぁった。
次いで、 図 19に示した連続錶造設備にて錶造実験を行なった。 このときの夕 ンディッシュ (図示せず) 内の介在物を調査した結果、 6 5質量%丁 1203— 1 5質量%C a 0- 1 0質量%C e23— 1 0質量%A 123の球状介在物であつ た。 铸造後、 イマ一ジョンノズル内には付着物はほとんどなかった。
なお、 スラブの幅は 1 500〜1 70 Omm, 厚みは 22 Omm, 溶鋼 14の スループット量は 4〜 5 トン Z分の範囲とした。
又、 コイル構造として、 図 1に示した如く、 幅方向に 1 2等分した櫛歯状の鉄 芯を用い、 铸片の幅方向に交互に位相が反転する磁場 (すなわち振動磁界) を発 生するように配置した。
図 2 1に、 極低炭素鋼についての実験条件及び実験結果 (欠陥混入率) をまと めて示す。 この図で欠陥混入率は、 介在物, モールドフラックス巻き込み, プロ 一ホールおよび表面欠陥起因の欠陥をいう。 なお、 铸片の表面偏析は、 スラブを研削した後、 エッチングを行い、 目視観察 によって l m2当たりの偏析個数を調査した。 又、 冷間圧延後の冷延コイルの表 面欠陥を目視検査し、 欠陥サンプルを採取後、 欠陥部を分析することによって、 モールドフラックスによる欠陥個数を調査した。 介在物量は、 铸片の 1 / 4厚み の位置からスライム抽出法によって介在物を抽出後、重量を測定した。表面偏析, モールドフラックス欠陥及び介在物量とも、 指数化に際しては、 全条件のうち、 もっとも悪かったものを 1 0とし、 それに対する線形な比で表示した。
図 2 1からわかるように、 交流磁束密度によって、 表面偏析、 モールドフラッ クス巻込による欠陥、 ブローホール、 非金属介在物低減が可能となる。
ここで、 振動磁界の強度が強すぎると、 溶鋼表面のフラックスの巻き込みが大 きくなつて、 表面品質を悪化させ、 周波数が高すぎると、 磁界に溶鋼が追随でき なくなって、 凝固界面の洗浄効果が低下し、 ブローホールや介在物欠陥が増加し ているものと推定される。
なお、 ここでは、 極数が 1 2極の櫛歯状の鉄芯について説明したが、 磁極数や 鉄芯の形状はこれに限定されず、 例えば鉄芯が分割されていてもかまわない。
〈第 2実施例〉
転炉で溶製した第 1実施例と同様の溶鋼 1 4を使用し、 図 2 0の連続铸造設備 でスラブを铸造した。 その際、 同様に、 スラブの幅は 1 5 0 0〜 1 7 0 0 mm, 厚みは 2 2 0 mm, 溶鋼 1 4のスル一プット量は 4〜 5トン Z分の範囲とした。 又、 コイル構造として、 図 6に示した如く、 幅方向に 1 2等分した櫛歯状の鉄 芯を用い、 铸片の幅方向に交互に位相が反転する磁場 (すなわち振動磁界) を発 生するように配置した。
図 2 2に、 極低炭素鋼について、 直流磁界 1 2 0 0ガウス一定の下で行なった 場合の実験条件及び実験結果をまとめて示す。 図 2 2に記載されている実験結果 の解析方法は、 第 1実施例と同様である。
図 2 2からわかるように、 振動磁界印加に静磁界重畳によって、 表面偏析, モ 一ルドフラックス巻込による欠陥, ブローホール, 非金属介在物低減が可能とな る。
この場合も、 振動磁界の強度が強すぎると、 溶鋼表面のフラックスの巻き込み が大きくなつて、 表面品質を悪化させ、 周波数が高すぎると、 磁界に溶鋼が追随 できなくなって、 凝固界面の洗浄効果が低下し、 ブローホール, 介在物欠陥が増 加しているものと推定される。
〈第 3実施例〉
コイル構造として、 図 1 4に示すような、 铸片の幅方向に 1 2等分した櫛歯状 の鉄芯を用い、 铸片の幅方向に交互に位相が反転する磁場 (すなわち振動磁界) を発生するように配置した。 交流磁界による磁束は最大 1 0 0 0ガウスとした。 表 1に、 実験条件及び実験結果をまとめて示した。 実験結果の解析方法は、 第 1実施例と同様である。 なお表 1中のコイル位相パターンの符号は次の通りであ る。
A: n, 2 n , n (実施例)
B : n , 3 n, 2 n (実施例)
C : 0 , n , 2 n , 3 n (比較例)
D : 0 , 2 n, 0, 2 n (比較例)
但し、 nは位相角で、 2相交流では n = 9 0 °, 3相交流では n = 6 0 °又は 1 2 0 °である。
表 1から分かるように、 振動磁界を印加することによって、 表面偏析, モール ドフラックス巻込による欠陥, ブローホール, 非金属介在物低減が可能となる。 第 1実施例と同様に、 振動磁界の強度が強すぎると、 溶鋼表面のフラックスの 巻き込みが大きくなつて、 表面品質を悪化させ、 周波数が高すぎると、 磁界に溶 鋼が追随できなくなって、 凝固界面の洗浄効果が低下し、 気泡や介在物欠陥が増 加している。
表 1
Figure imgf000029_0001
〈第 4実施例〉
約 300トンの溶鋼 14を転炉で溶製し、 RH処理によって極低炭素鋼の A 1 キルド鋼とし、 連続鎊造設備でスラブを铸造した。 代表的な溶鋼成分を表 2に示 す。 なお、 スラブの幅は 1500〜 1700 mm, 厚みは 220mm、 溶鋼 14 のスループット量は 4〜 5トン/分の範囲とした。
又、 コイル構造として、 図 6, 図 14等に示した如く、 铸片の幅方向に 12等 分した櫛歯状の鉄芯を用い、 錡片の幅方向に位相が周期的に変化する磁場 (すな わち振動磁界) を発生するように配置した, 表 2
Figure imgf000030_0001
こうして連続铸造を行ない、 得られたスラブの欠陥混入率, ブローホール, ノ ロカミの検査結果を図 2 6, 図 2 7 , 図 2 8に示す。
ここで、図中の欠陥混入率は、冷間圧延後の冷延コイル全長を分母とし、気泡, 介在物起因の表面欠陥 1つを 1 mとみなして分子とし、 その比率を%で表わす値 である。 また、 プロ一ホールおょぴノロカミは、 錶造および切断の後の铸片の表 面を約 2 mm溶削した後铸片表面に現れた穴を、 内部が空洞の場合にブローホー ル, モールドフラックスが充鎮されていた痕跡がある場合にノロカミとしてそれ ぞれ計数し、 調査した铸片の表面積でその数値を除した値である。
図 2 6〜図 2 8は、 いずれも横軸が凝固界面に働くローレンツ力の最大値 F max める。
図 2 9に交流コイル 2 4と、 モールド鋼板で示す錶型 1 0の内壁に付着した溶 鋼の凝固界面との関係を模式的に示すように、 交流コイル 2 4に流れる電流が変 化すると、 凝固界面の溶鋼 1 4にローレンツ力 Fが作用する。
この口一レンツ力 Fは、 図 6 , 図 1 9に示したような振動磁界に直流磁界を重 畳する場合であると、 前記した (2 ) , ( 3 ) 式で与えられ、 B d cは時間平均し た力には影響しないが、 時間変動する力は Bが大きくなる分だけ大きくなる。 こ の口一レンツ力 Fの変化を、 電流変化を位相で表わして、 横軸が铸型 1 0の長辺 に相当する図 3 0に示すように、 各コイル毎に周期的に変動する。 振動磁界の場合、 口一レンツ力の最大値 (ピーク) Fmax (N/m3) と、 その 時間平均値 Fave (N/m3) は、 数値計算の結果を回帰して得られた次式で与え られる。
(振動)
F max= 1. 5 7x 1 0 GB a c - B d c + 1. 2 0x 1 0&B a c 2
ave= 0
図 1 5の移動磁界, 図 1 7又は図 1 8の振動移動 (振動磁界のピーク位置の局 所的な移動) の場合も、 同様に下式で与えられる。
(移動)
Fmax= 2. 2 8x 1 Οββ a c · B d c + 4. 1 7x 1 06B a c2
F ave: 7 6x l 06B a c2
(振動移動)
F max= 1. 8 6x1 Οββ a c · B d c + 2. 3 1 x 1 06B a c2
Figure imgf000031_0001
図 2 6〜図 2 8の各データは、 実際に連続錶造した際に上記の各式により計算 されたローレンツ力の最大値 Fmax と各検査結果とを対応させて示したもので ある。
図 2 6から、 欠陥混入率は、 Fmax が 5 0 0 0 (N/ms) 以上, 1 3 0 0 0 (NZms) 以下が有効であることが分かる。 図 2 7, 図 2 8でも、 Fmax が 5 0 0 0 (NZm3) 以上が有効であることが分かる。
なお、 参考のために、 図 3 1〜図 3 3に Fave と関係を示したように、 この F aveは連続錡造する際の指標には適切ではないが、 F maxが指標として有効であ ることが分かる。
〈第 5実施例〉 第 4実施例と同様に、 連続铸造設備でスラブを铸造した。 得られたスラブの欠 陥混入率と溶鋼流速との関係を図 3 4に示す。 なお、 欠陥混入率とローレンツ力 最大値 F maxとの関係は図 2 6に示す通りである。
これらの結果.から、溶鋼流速 Vとローレンツ力最大値 F maxについて詳細に検 討した結果、 図 3 5に示すように、 V X F maxの値が 3 0 0 0以上でれば、 欠陥 混入率を低減できることが分かった。 但し、 V X F max値が 6 0 0 0を超えても 欠陥混入率低減の効果は飽和し、 欠陥混入率が一定の水準で推移する。 産業上の利用可能性
本発明によれば、 浸漬ノズルから不活性ガスを吹き込むことなく連続铸造を行 ない、 モールドフラックスの巻き込みを抑制して铸片の内部品質を向上し、 かつ 介在物や気泡の捕捉を抑制して铸片の表面品質を向上できる。

Claims

請 求 の 範 囲
1 . 連続铸造用錶型の長辺方向に沿って 3個以上の電磁石を並べ、 振動磁界を 発生させながら前記振動磁界のピーク位置を前記長辺方向に沿って移動させるこ とを特徴とする鋼の連続铸造方法。
2 . 前記 3個以上の電磁石のうち、 隣り合う電磁石に装着されるコイルの位相 が、 n、 2 n、 nあるいは n、 3 n、 2 nの配列部分を有することを特徴とする 請求項 1に記載の鋼の連続铸造方法。
3 . 前記振動磁界に加えて、 直流磁界を铸片の厚み方向に重畳することを特徴 とする請求項 1または 2に記載の鋼の連続铸造方法。
4 . 前記鎵型内の未凝固の溶鋼の介在物を低融点化することにより、 前記溶鋼 を前記铸型へ供給するノズルの閉塞を防止して、 前記ノズルから不活性ガスを吹 き込むことなく連続铸造を行なうことを特徴とする請求項 1、 2または 3に記載 の鋼の連続錡造方法。
5 . 前記溶鋼が、 C≤ 0 . 0 2 0質量%、 S i≤0 . 2質量%、 M n≤ 1 . 0 質量%、 S≤ 0 . 0 5 0質量%、 T i≥ 0 . 0 1 0質量%を含み、 A 1≤ [質量% T i ] / 5の条件を満足する組成からなる極低炭素 T i脱酸鋼であることを特徴 とする請求項 4に記載の鋼の連続錶造方法。
6 . 前記溶鋼を製造するに当り、 前記溶鋼をまず真空脱ガス装置による脱炭処 理した後、 T i含有合金によって脱酸し、その後、脱酸溶鋼中に C a≥ 1 0質量% 及び R E M≥ 5質量%の 1種又は 2種と F e、 A l 、 S i及び T iのうちから選 ばれる 1種又は 2種以上を含有する介在物組成調整用合金を添加することにより、 前記溶鋼中の酸化物組成を C a Oおよび R E M酸化物のいずれか少なくとも 1種 の含有量が 1 0質量%以上 5 0質量%以下で、かつ T i酸化物が 9 0質量%以下、 A 1203が 70質量%以下にすることを特徴とする請求項 5に記載の鋼の連続铸 造方法。
7. 前記脱炭処理後の溶鋼を、 前記 T i含有合金による脱酸処理に先立って、 Aし S i、 Mnのいずれかにて予備脱酸することにより、 溶鋼中の溶存酸素濃 度を予め 20 Oppm 以下にすることを特徴とする請求項 6に記載の鋼の連続铸 造方法。
8. 前記振動磁界によって駆動されるローレンツ力の最大値を 5000 (N/ m3) 以上、 1 3 00 0 (Nノ m3) 以下にすることを特徵とする請求項 1、 2、 3、 4、 5、 6または 7に記載の鋼の連続铸造方法。
9. 前記錶型内の未凝固の溶鋼の流速を V (m/s) とし、 前記振動磁界によ つて駆動される口一レンツ力の最大値を Fmax(NZm3) とするとき、 VxFmax が 3000 (Nノ ( s - m2)) 以上になるように調整することを特徴とする請求 項 1、 2、 3、 4、 5、 6、 7または 8に記載の鋼の連続錶造方法。
PCT/JP2004/000864 2003-04-11 2004-01-29 鋼の連続鋳造方法 WO2004091829A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602004005978T DE602004005978T2 (de) 2003-04-11 2004-01-29 Stranggussverfahren für stahl
EP04706310A EP1623777B1 (en) 2003-04-11 2004-01-29 Continuous casting method for steel
US10/552,414 US7448431B2 (en) 2003-04-11 2004-01-29 Method of continuous steel casting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-108344 2003-04-11
JP2003108344A JP4348988B2 (ja) 2003-04-11 2003-04-11 鋼の連続鋳造方法
JP2003117340A JP4539024B2 (ja) 2003-04-22 2003-04-22 鋼の連続鋳造方法
JP2003-117340 2003-04-22

Publications (1)

Publication Number Publication Date
WO2004091829A1 true WO2004091829A1 (ja) 2004-10-28

Family

ID=33302200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000864 WO2004091829A1 (ja) 2003-04-11 2004-01-29 鋼の連続鋳造方法

Country Status (5)

Country Link
US (1) US7448431B2 (ja)
EP (1) EP1623777B1 (ja)
KR (1) KR100764945B1 (ja)
DE (1) DE602004005978T2 (ja)
WO (1) WO2004091829A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408125B1 (en) * 2001-06-28 2010-08-18 Nippon Steel Corporation Low carbon steel sheet,low carbon steel cast piece and method for production thereof.
TW200835800A (en) * 2006-12-04 2008-09-01 Heraeus Inc Magnetic pulse-assisted casting of metal alloys & metal alloys produced thereby
KR101536882B1 (ko) * 2011-12-22 2015-07-14 에이비비 에이비 연속 주조 프로세스에서 용융 금속의 유동 제어를 위한 배열체 및 방법
JP6379515B2 (ja) * 2014-02-25 2018-08-29 新日鐵住金株式会社 鋼の連続鋳造方法
EP3221070B1 (en) 2014-11-20 2020-06-03 ABB Schweiz AG Electromagnetic brake system and method of controllong molten metal flow in a metal-making process
EP3415251A1 (en) * 2017-06-16 2018-12-19 ABB Schweiz AG Electromagnetic brake system and method of controlling an electromagnetic brake system
CN111842821B (zh) * 2020-07-30 2021-11-23 鼎镁新材料科技股份有限公司 一种铝合金流盘铸造的熔体电磁处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100611A (ja) * 1997-09-29 1999-04-13 Kawasaki Steel Corp 含Ti極低炭素鋼の製造方法
JP2002028763A (ja) * 2000-07-10 2002-01-29 Kawasaki Steel Corp 金属の連続鋳造方法
JP2003103349A (ja) * 2001-02-20 2003-04-08 Kawasaki Steel Corp 鋼の連続鋳造方法及び設備
JP2003103348A (ja) * 2001-02-20 2003-04-08 Kawasaki Steel Corp 鋼の連続鋳造方法及び設備

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2485411B1 (fr) 1980-06-27 1985-11-08 Siderurgie Fse Inst Rech Lingotiere de coulee continue electromagnetique de produits metalliques a section rectangulaire allongee
JPS61140355A (ja) 1984-12-12 1986-06-27 Kawasaki Steel Corp 鋳型内溶鋼流動制御用電磁装置
JPS61193755A (ja) 1985-02-25 1986-08-28 Toshiba Corp 電磁撹拌方法
JPS63119959A (ja) 1986-11-06 1988-05-24 Kawasaki Steel Corp 連続鋳造用浸漬ノズルの吐出流制御装置
JP2917223B2 (ja) 1989-04-14 1999-07-12 新日本製鐵株式会社 金属の凝固組織微細化鋳造方法
JP2726096B2 (ja) 1989-04-27 1998-03-11 川崎製鉄株式会社 静磁場を用いる鋼の連続鋳造方法
JPH0787974B2 (ja) 1990-03-09 1995-09-27 新日本製鐵株式会社 連続鋳造鋳型の電磁ブレーキ装置
JP2856960B2 (ja) 1991-10-04 1999-02-10 川崎製鉄株式会社 進行磁場と静磁場による鋼スラブの連続鋳造方法
JPH05154623A (ja) 1991-12-04 1993-06-22 Nippon Steel Corp 鋳型内溶鋼流動制御方法
JP3236422B2 (ja) 1992-10-16 2001-12-10 川崎製鉄株式会社 磁界を用いる鋼の連続鋳造方法
JP3067916B2 (ja) 1992-12-18 2000-07-24 新日本製鐵株式会社 溶融金属の流動制御装置
JPH06226409A (ja) 1993-02-04 1994-08-16 Nippon Steel Corp 高清浄鋼の連続鋳造方法
EP0707909B1 (en) 1994-03-29 1999-06-16 Nippon Steel Corporation Method of controlling flow in casting mold by using dc magnetic field
JPH0819841A (ja) 1994-07-04 1996-01-23 Nkk Corp 連続鋳造方法
JPH0819840A (ja) 1994-07-04 1996-01-23 Nkk Corp 連続鋳造方法
JPH09262650A (ja) 1996-03-28 1997-10-07 Nippon Steel Corp 連続鋳造における鋳型内流動制御方法および装置
JPH09262651A (ja) 1996-03-28 1997-10-07 Nippon Steel Corp 連続鋳造における非金属介在物の低減方法
JPH10305353A (ja) 1997-05-08 1998-11-17 Nkk Corp 鋼の連続鋳造方法
TW408184B (en) * 1997-09-29 2000-10-11 Kawasaki Steel Co Manufacturing method for producing Titanium killed steel with smooth surface texture
EP1726383B1 (en) 1997-12-08 2016-05-25 Nippon Steel & Sumitomo Metal Corporation Cast slab and method for casting molten metal, apparatus for the same
JP3692253B2 (ja) 1999-03-24 2005-09-07 新日本製鐵株式会社 鋼の連続鋳造方法
JP3937651B2 (ja) 1999-05-19 2007-06-27 Jfeスチール株式会社 鋼の連続鋳造方法および装置
CA2646757A1 (en) * 2000-07-10 2002-01-10 Jfe Steel Corporation Method and apparatus for continuous casting of metals
JP3937961B2 (ja) * 2002-07-29 2007-06-27 Jfeスチール株式会社 鋼の連続鋳造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100611A (ja) * 1997-09-29 1999-04-13 Kawasaki Steel Corp 含Ti極低炭素鋼の製造方法
JP2002028763A (ja) * 2000-07-10 2002-01-29 Kawasaki Steel Corp 金属の連続鋳造方法
JP2003103349A (ja) * 2001-02-20 2003-04-08 Kawasaki Steel Corp 鋼の連続鋳造方法及び設備
JP2003103348A (ja) * 2001-02-20 2003-04-08 Kawasaki Steel Corp 鋼の連続鋳造方法及び設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1623777A4 *

Also Published As

Publication number Publication date
US7448431B2 (en) 2008-11-11
KR20060002968A (ko) 2006-01-09
EP1623777A4 (en) 2006-08-09
EP1623777B1 (en) 2007-04-18
US20070272388A1 (en) 2007-11-29
EP1623777A1 (en) 2006-02-08
KR100764945B1 (ko) 2007-10-08
DE602004005978D1 (de) 2007-05-31
DE602004005978T2 (de) 2008-01-17

Similar Documents

Publication Publication Date Title
US7628196B2 (en) Method and apparatus for continuous casting of metals
EP2295169B1 (en) Apparatus for casting molten metal
KR20100129795A (ko) 강의 연속 주조 방법 및 그것에 이용하는 전자 교반 장치
JP4348988B2 (ja) 鋼の連続鋳造方法
US3952791A (en) Method of continuous casting using linear magnetic field for core agitation
WO2004091829A1 (ja) 鋼の連続鋳造方法
JP4539024B2 (ja) 鋼の連続鋳造方法
JP3697585B2 (ja) 鋼の連続鋳造方法及び設備
KR20100005226A (ko) 강의 연속 주조 방법 및 주형 내 용강의 유동 제어 장치
JP4263396B2 (ja) 鋼の連続鋳造方法及び設備
JP3697584B2 (ja) 鋼の連続鋳造方法及び設備
JP4591456B2 (ja) 鋼の連続鋳造方法
JP3937961B2 (ja) 鋼の連続鋳造方法
JP7151247B2 (ja) 薄スラブ連続鋳造の流動制御装置及び薄スラブの連続鋳造方法
JP5429139B2 (ja) 鋼の連続鋳造方法
JP7143731B2 (ja) 連続鋳造方法
JPH09262650A (ja) 連続鋳造における鋳型内流動制御方法および装置
JP5076465B2 (ja) 鋼の連続鋳造方法及び設備
JP7256386B2 (ja) 連続鋳造方法
JP2007118089A (ja) 鋼の連続鋳造方法
JP7273304B2 (ja) 連続鋳造方法及び鋳型設備
JP2010110766A (ja) 鋼の連続鋳造装置及び鋼の連続鋳造方法
JP2021154297A (ja) 連続鋳造方法
JP2000317593A (ja) 溶鋼の連続鋳造方法
JP2006159280A (ja) 鋼の連続鋳造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048095773

Country of ref document: CN

Ref document number: 1020057019223

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004706310

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057019223

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004706310

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10552414

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004706310

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10552414

Country of ref document: US