WO2004090117A1 - 酵母宿主、形質転換体および異種タンパク質の製造方法 - Google Patents

酵母宿主、形質転換体および異種タンパク質の製造方法 Download PDF

Info

Publication number
WO2004090117A1
WO2004090117A1 PCT/JP2004/005162 JP2004005162W WO2004090117A1 WO 2004090117 A1 WO2004090117 A1 WO 2004090117A1 JP 2004005162 W JP2004005162 W JP 2004005162W WO 2004090117 A1 WO2004090117 A1 WO 2004090117A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
yeast
hexokinase
host
transformant
Prior art date
Application number
PCT/JP2004/005162
Other languages
English (en)
French (fr)
Inventor
Masao Sakurai
Hideki Thoda
Yuko Hama
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2004090117A1 publication Critical patent/WO2004090117A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention provides a yeast host in which a specific gene of the yeast host has been inactivated for the purpose of improving the efficiency of production of a heterologous protein by the transformant of the yeast host, a transformant of the host, and a transformant of the host.
  • the present invention relates to a method for producing a heterologous protein using a transformant.
  • a yeast host a yeast of the genus Schizosaccharomyces called fission yeast is preferable.
  • E. coli Escherichia coli
  • proteins derived from various organisms are to be produced, and many are already industrially produced and used in pharmaceuticals and the like.
  • yeasts are eukaryotic cells in the development of various hosts for the production of heterologous proteins, they are considered to have high similarity to animals and plants in terms of transcription and translation, and to have good expression of proteins in animals and plants.
  • Bread yeast Sacharomyces cerevis iae
  • fission yeast is divided early from other yeasts in the evolution process, and as a result of evolving differently, as shown by the fact that it grows by means of division rather than budding, it has properties similar to animal cells. It is known to have. Therefore, by using fission yeast, particularly Schizosaccliaromyces pombe (hereinafter referred to as S. pombe), as a host for expressing a heterologous protein, it is possible to obtain a gene that is more natural and similar to animal cells. It is expected that child products will be obtained.
  • S. pombe Schizosaccliaromyces pombe
  • Heterologous protein production systems using yeast can be easily carried out using known microbiological methods and recombinant DNA technology, and have demonstrated high production capacity. It is rapidly being used for actual production. In actual production, the high production efficiency per cell obtained in the laboratory is maintained after scale-up.
  • An object of the present invention is to improve the production efficiency of a heterologous protein, and has the following gist.
  • a yeast host comprising a yeast from which the hexokinase gene has been deleted or inactivated, for producing a heterologous protein by using the transformant.
  • ⁇ 2> The yeast host according to ⁇ 1>, wherein the yeast is a fission yeast.
  • ⁇ 3> The yeast host according to ⁇ 1> or ⁇ 2>, wherein the hexokinase gene is replaced or replaced with a marker gene to delete or inactivate the hexokinase gene.
  • the yeast is Sdiizosaccharomyces pombe and the hexokinase gene is the gene encoding hexokinase II of the yeast, ⁇ 1>, ⁇ 2> or ⁇ 3>.
  • the yeast host according to 1.
  • ⁇ 5> A transformant obtained by using a yeast in which hexokinase gene has been deleted or inactivated as a host, and introducing a foreign gene encoding a heterologous protein into the host by a gene recombination method.
  • ⁇ 6> The transformant according to ⁇ 5>, wherein the yeast is a fission yeast.
  • ⁇ 7> The yeast according to ⁇ 5> or ⁇ 6>, wherein the yeast is Sdiizosaccharomyces pombe, and the hexokinase gene is a gene encoding hexokinase II of the yeast. Transformants.
  • ⁇ 8> ⁇ 5>, ⁇ 6> or ⁇ 7>, wherein the transformant according to ⁇ 7> is produced by producing the heterologous protein and collecting the heterologous protein c.
  • ⁇ 9> The method according to ⁇ 8>, wherein the yeast is a fission yeast.
  • ⁇ 10> The method according to ⁇ 9>, wherein the fission yeast is Schizosaccharomyces pombe. BRIEF DESCRIPTION OF THE FIGURES
  • Figure 1 Graph showing the relationship between the culture time (H r) and the cell density (OD660) of the genetically disrupted strains prepared in Example 1 and Comparative Example 1.
  • the yeast is preferably a yeast of the genus Saccharomyces such as the baker's yeast, a yeast of the genus Schizosaccharomyces such as S. pombe, or a yeast of the genus Pichia.
  • Particularly preferred yeasts in the present invention are yeasts of the genus Schizosaccharomyces, especially S. pombe.
  • a gene encoding a protein not originally possessed by the host ie, a heterologous protein (hereinafter referred to as a heterologous gene) is introduced into a yeast host by a gene recombination method, and the host (ie, a transformant) into which the heterologous gene has been introduced is introduced.
  • a heterologous gene a protein not originally possessed by the host
  • the host ie, a transformant
  • methods for producing the heterologous protein and collecting the heterologous protein have been widely used.
  • various expression systems, particularly expression vectors have been developed to more stably and efficiently express heterologous proteins. For example, as an expression system using S.
  • JP-A-2776085 JP-A-07-163373
  • JP-A-10-215867 JP-A-10-234375
  • JP-A-11-192094 JP-A-2000-136199, 2000-262284 and the like are known.
  • the present invention is suitable for the production of heterologous proteins using these expression systems.
  • the efficiency of producing a heterologous protein of a transformant is improved by deleting or inactivating the hexokinase gene.
  • unnecessary or harmful genes are thought to be present in a large number in the genome in addition to the hexokinase gene.
  • the yeast host of the present invention is obtained by deleting or inactivating at least a hexokinase gene, and a part of a gene other than this gene may be further deleted or inactivated.
  • Hexokinase is an enzyme that catalyzes the reaction of synthesizing D-hexose 6-phosphate from D-hexose and ATP, and glucose, fructose, and mannose as hexose substrates. It is said that there are two types of yeast hexokinase, both of which are enzymes with a molecular weight of 51,000.
  • S. pombe which is a preferred yeast host in the present invention, has two types of hexokinase genes. Among them, the gene encoding hexokinase II is preferable as the hexokinase gene to be deleted or inactivated in the present invention.
  • S. pombe has one gene encoding hexokinase II. The entire DNA sequence of the genome of S. pombe is known (see Nature 415, 871-880 (2002)), and this hexokinase II gene has a 136 bp ⁇ RF called SPAC4F8.07C. It has a gene.
  • Deletion or inactivation of the yeast kinase hexokinase gene can be performed by a known method.
  • the portion that deletes or inactivates the hexokinase II gene may be the ORF portion or the regulatory sequence portion.
  • Deletion of the hexokinase gene may delete the entire gene, or may delete a part of the gene to inactivate the gene.
  • inactivation of a hexokinase gene is not limited to deleting a part of the gene, but also means modifying the hexokinase gene without deleting it.
  • the distribution of the gene to be inactivated Other genes or DNAs can be inserted into the row to inactivate the target hexokinase gene.
  • the gene is rendered inactive by causing the target koxokinase gene to be incapable of transcription or translation by the target, or by encoding a protein having no hexokinase activity.
  • the heterologous protein is not limited, but is preferably a protein produced by a multicellular animal or plant. Particularly preferred are proteins produced by mammals (including humans). When such a protein is produced using a prokaryotic microbial host such as E.co1i, a highly active protein cannot be obtained in many cases, and when an animal cell such as CHO is used as a host, Usually low production efficiency. These problems are expected to be solved when the genetically modified yeast of the present invention is used as a host.
  • Example 1 is preferably a protein produced by a multicellular animal or plant. Particularly preferred are proteins produced by mammals (including humans). When such a protein is produced using a prokaryotic microbial host such as E.co1i, a highly active protein cannot be obtained in many cases, and when an animal cell such as CHO is used as a host, Usually low production efficiency.
  • the primers of sequence 1 and sequence 3 contain the 5 ′ and 3 ′ end sequences of the ura 4 gene fragment which is a marker gene.
  • a vector (hereinafter referred to as a gene disruption vector) for deleting the hexokinase II gene was prepared.
  • This gene disruption vector is a gene disruption vector corresponding to a genomic DNA sequence in which the oRF of the gene encoding hexokinase II has been replaced with the ura4 gene.
  • S. pombe (leul-32, ura4-D18) strain was transformed using the gene disruption vector described above.
  • the transformed bacteria were cultured in a minimal medium to obtain a strain that does not require peracil that forms a colony in the minimal medium.
  • the genomic DNA of this strain was examined by a method in which a DNA fragment was amplified only when the target gene had been disrupted by PCR amplification, and it was confirmed that the hexokinase II gene SPAC4F8.07C was destroyed. .
  • the final cell density (OD660) of this disrupted strain was about 38,
  • FIG. 1 shows the culture time of this disrupted strain (Hxk2-). The relationship between the cell density and the cell density (OD 660) is shown. Furthermore, it was found that the above-mentioned broken cell strain reached 5% of glucose at the same density as the final cell density reached by the target strain when glucose was adjusted to 15% in the YPD medium. From these results, it was found that in the disrupted strain, the consumption efficiency of glucose, which is a carbon source in the medium, was high, and the added carbon source was efficiently used for cell growth without being converted into alcohol.
  • the hexokinase II gene-disrupted strain was transformed using the expression vector pSL2P36a'cl described in Example 13 of International Publication No. 96/23890 and the pSL2P36a'cl described in FIG. 7 and obtained after screening.
  • the obtained transformant was aerobically cultured in a YPD liquid medium, and a human inulin leukin 6 mutant (IL-6a, cl) secreted into the culture solution was collected. Similar tests were performed using the S. pombe (leu32, ura4-D18) strain as the target host. These transformations and cultures were carried out according to the tests described in Reference Example 1, Reference Example 2, and Example 14 described in the above pamphlet.
  • the final cell turbidity reached about 20 for the target strain, but reached 50 for the disrupted strain, and the number of growing cells per unit culture was 2 .5 times increased.
  • the secretory expression level of IL-6a, cl was measured by ELISA, and the secretory expression level of the target strain was determined by colorimetry using a microplate reader (Corona MTP-32 + MTPF2).
  • the secreted expression level of the disrupted strain was about three times.
  • S. pombe alcohol dehydrogenase I-encoding gene SPAC13B11.01 J Biol Chem 258, 143-149 (1983)
  • the sequences were prepared by PCR amplification using the following sequences 5 to 8 as primers.
  • the alcohol dehydrogener of S. pombe The gene encoding zeta IV SPAC5H1.0.06C (Mol Gen Genet. 1987 Sep; 209 (2): 374-81.) 400 bp genome on the 5 'side and 3' side adjacent to ⁇ RF (1269 bp) DNA sequences were prepared by PCR amplification using the following base sequences 9 to 12 as primers.
  • an alcohol dehydrogenase I gene disruption vector and an alcohol dehydrogenase IV gene disruption vector were prepared in the same manner as in Example 1.
  • the S. pombe (leul-32, ura4-D18) strain was transformed using these gene disruption vectors in the same manner as in Example 1, and the alcohol dehydrogenase I gene and the alcohol dehydrogenase IV gene were transformed.
  • a disrupted strain (ADH1-4-) in which both were destroyed at the same time was obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

酵母を宿主とした形質転換体における異種タンパク質の産生効率を向上させる。 ヘキソキナーゼ遺伝子を削除または不活性化した酵母、特にシゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)、からなる宿主、その酵母宿主に外来遺伝子を導入してなる形質転換体、および、その形質転換体を用いた異種タンパク質の製造方法。

Description

明 細 書
酵母宿主、 形質転換体および異種タンパク質の製造方法 技術分野
本発明は、 酵母宿主の形質転換体による異種タンパク質の産生効率を向上さ せることを目的として該酵母宿主の特定の遺伝子を不活性化した該酵母宿主、 該宿主の形質転換体、 および該形質転換体を用いた異種タンパク質の製造方法 に関する。 該酵母宿主としては、 分裂酵母と呼ばれるシゾサッカロマイセス属 (Schizosaccharomyces) の酵母が好ましい。 背景技術
組換え D NA技術を用いた異種タンパク質の生産はエツシエリシァ 'コリ (E scherichia col i、 以下 E. col iという) をはじめとした様々な微生物や動物細胞 を宿主として行われている。また様々な生物由来のタンパク質 (本明細書では、 ボリぺプチドを含む意味で使用する) が生産対象とされ、 既に多くのものがェ 業的に生産され、 医薬品等に用いられている。
異種タンパク質生産のための種々の宿主が開発されてきた中で酵母は真核細 胞であるため、 転写、 翻訳などの点で動植物と共通性が高く動植物のタンパク 質発現が良好であると考えられ、 パン酵母 (Saccharomyces cerevis iae) など が宿主として広く使用されている。 酵母のうちでも分裂酵母は進化過程で他の 酵母とは早い時期に分かれ、 別の進化をとげた結果、 出芽ではなく分裂という 手段で増殖することからもわかるように、 動物細胞に近い性質を持つことが知 られている。 このため異種タンパク質を発現させる宿主として分裂酵母、 特に シゾサッカロマイセス .ボンべ(Schizosaccliaromyces pombe、 以下 S. pombeとい う)、 を用いることによって、 動物細胞の場合と同様の、 より天然体に近い遺伝 子産物が得られることが期待される。
酵母を用いた異種タンパク質生産系は、 既に知られている微生物学の方法と 組換え D NA技術を用いて容易に実施でき、 かつ高い生産能力を示すため、 既 に大容量の培養も実施されて実生産に急速に利用されてきている。 実生産にあ たり、 実験室で得られた菌体あたりの高い産生効率はスケールァップ後も維持 される。
しかしながら、 実生産の場合にしばしば求められる、 より低コストの生産法 を考えた場合、 菌体の増殖効率そのものの向上、 目的異種タンパク質の分解の 抑制、 酵母特有の修飾の効率的実施、 栄養源の利用効率の向上、 などの異種夕 ンパク質の産生効率を向上させる方策が必要と考えられる。 たとえば、 生育の ために培地に添加した炭素源から目的とする異種タンパク質への変換効率をよ り高めることができれば、 菌体増殖ひいては異種夕ンパク質の産生効率が格段 に上昇することが期待される。 なぜなら、 菌体自身の生育や目的異種タンパク 質の産生に不要である代謝系 (たとえばエタノール醱酵系) に培地中の炭素源 が消費 (たとえばエタノール生産に使用) されることにより、 目的異種タンパ ク質の産生のための炭素源の利用効率が低下していると考えられるからである このため、 異種タンパク質産生に不要または有害な宿主ゲノム部分の一部ま たは全部を削除または不活化した宿主を用いることにより、 異種タンパク質の 産生効率を向上させようとする試みが行われている (国際公開第 0 2 / 1 0 1 0 3 8号パンフレツト参照) 。
上記特許文献に記載のように、 異種タンパク質産生に不要または有害な宿主 ゲノム部分の一部または全部を削除または不活化した宿主を用いることにより. 異種タンパク質の産生効率が向上する。 しかし、 削除または不活性化したゲノ ム部分 (特に遺伝子部分) の種類に応じて異種タンパク質の産生効率が変化す ることより、 より高い産生効率を達成するためには改変対象とするゲノム部分 の更なる検討が必要であると考えられる。 発明の開示
本発明者は以上の点に鑑み検討を行った結果、 酵母宿主のへキソキナーゼ遺 伝子を削除または不活性化することにより異種タンパク質の産生効率を大幅に 向上させうることを見出した。 本発明は、 異種タンパク質の産生効率を向上さ せることを目的とし、 下記を要旨とする。
<1>:へキソキナーゼ遺伝子を削除または不活性化した酵母からなる、 そ の形質転換体により異種タンパク質を産生させるための酵母宿主。
<2>:酵母が分裂酵母である、 ぐ 1 >に記載の酵母宿主。
< 3 >へキソキナーゼ遺伝子の〇 R F部分をマーカー遺伝子に置換して当該 へキソキナーゼ遺伝子を削除または不活性化する、 < 1 >またはぐ 2 >に記載 の酵母宿主。
<4>:酵母が、シゾサッカロマイセス ·ボンべ (Sdiizosaccharomyces pombe) であり、 へキソキナーゼ遺伝子がその酵母のへキソキナーゼ IIをコードする遺 伝子である、 <1>、 < 2 >または < 3 >に記載の酵母宿主。
<5>:へキソキナーゼ遗伝子を削除または不活性化した酵母を宿主とし、 該宿主に遺伝子組換え法により異種タンパク質をコードする外来遺伝子を導入 した形質転換体。
<6>:酵母が分裂酵母である、 < 5 >に記載の形質転換体。
<7>:酵母がシゾサッカロマイセス ·ボンべ(Sdiizosaccharomyces pombe) であり、 へキソキナ一ゼ遺伝子がその酵母のへキソキナーゼ IIをコードする遺 伝子である、 < 5 >または < 6 >に記載の形質転換体。
ぐ 8>:<5>、 <6 >または < 7 >に記載の形質転換体を培養して該異種 夕ンパク質を産生させて採取することを特徴とする異種夕ンパク質の製造方法 c < 9 >:酵母が分裂酵母である、 < 8 >に記載の方法。
< 1 0 >:分裂酵母がシゾサッカロマイセス ·ボンべ(Schizosaccharomyces pombe)である、 < 9 >に記載の方法。 図面の簡単な説明
図 1 :実施例 1、 比較例 1で作成した遺伝子破壌株の培養時間 (H r ) と菌体 密度 (O D660) の関係を示すグラフ。 発明を実施するための最良の形態
本発明において、 酵母としては、 前記パン酵母などのサッカロマイセス属の 酵母、 S. pombeなどのシゾサッカロマイセス属の酵母、 ピキア属の酵母などが好 ましい。 本発明において特に好ましい酵母はシゾサッカロミセス属の酵母、 特 に S. pombeである。
酵母宿主にその宿主が本来有しないタンパク質 (すなわち、 異種タンパク質) をコードする遺伝子 (以下、 異種遺伝子という) を遺伝子組換え法により導入 し、 異種遺伝子を導入した宿主 (すなわち、 形質転換体) にその異種タンパク 質を産生させ、 その異種タンパク質を採取する方法は近年広く行われている。 酵母を宿主として用いた遺伝子組換え法に関しては、 異種タンパク質をより安 定に効率よく発現させるために種々の発現システム、 特に発現ベクター、 が開 発されている。 例えば、 S. pombeを宿主とした発現システムとしては、 特許 2776 085、特開平 07- 163373、特開平 10- 215867、特開平 10-234375、特開平 11- 192094、 特開 2000-136199、 特開 2000-262284等が知られている。 本発明はこれら発現シ ステムを用いた異種タンパク質製造に適している。
形質転換体を培養して異種タンパク質を産生させる場合、 形質転換体の培養 環境下において異種タンパク質の産生に不要または有害なゲノム部分が存在す る。 このゲノム部分は遺伝子であってもよく非遺伝子部分であってもよい。 本 発明においてはへキソキナーゼ遺伝子を削除または不活性化して形質転換体の 異種タンパク質の産生効率を向上させる。 このような不要または有害な遺伝子 はへキソキナーゼ遺伝子以外にゲノムに多数存在すると考えられる。 本発明に おける酵母宿主は少なくともへキソキナーゼ遺伝子を削除または不活性化して なるものであり、 さらにこの遺伝子以外の遺伝子の一部がさらに削除または不 活性化されていてもよい。
へキソキナーゼは D—へキソースと A T Pから D—へキソース 6 _リン酸を 合成する反応を触媒する酵素であり、 基質のへキソースとしてはグルコース、 フルクトース、 マンノースなどがある。 酵母のへキソキナーゼには 2種存在す るといわれ、 いずれも分子量 5 . 1万の酵素である。
本発明において好ましい酵母宿主である S. pombeには 2種類のへキソキナー ゼ遺伝子が存在する。 このうち、 本発明において削除または不活性化の対象と するへキソキナーゼ遺伝子としてはへキソキナーゼ I Iをコードする遺伝子が好 ましい。 S. pombeにはへキソキナーゼ I Iをコードする遺伝子が 1つ存在する。 S. pombeのゲノムの全 D N A配列は公知であり(Nature 415, 871-880 (2002)参 照)、 このへキソキナーゼ I I遺伝子は SPAC4F8. 07Cと呼ばれている 1 3 6 8 b p の〇R Fを有する遗伝子である。
酵母宿主のへキソキナーゼ遗伝子の削除や不活性化は公知の方法で行うこと ができる。 へキソキナーゼ遗伝子の削除や不活性化を行う部分は O R F部分で あってもよく、 調節配列部分であってもよい。 また、 へキソキナーゼ遺伝子の 削除はその遺伝子の全体を削除してもよく、 その遺伝子の一部を削除してその 遺伝子を不活性化してもよい。 さらに、 へキソキナーゼ遺伝子の不活性化は、 その遺伝子の一部を削除することに限られず、 へキソキナーゼ遺伝子を削除す ることなく改変する場合も意味する。 また、 不活性化の対象である遺伝子の配 列の中に他の遺伝子や D NAを揷入して対象のへキソキナーゼ遺伝子を不活性 化することもできる。 いずれの場合も、 対象へキソキナーゼ遺伝子を、 対象へ キソキナーゼ遺伝子が転写や翻訳できないものとする、 へキソキナーゼ活性の ないタンパク質をコードするものとする、 などにより、 不活性なものとする。 特に対象へキソキナーゼ遺伝子の O R F部分をマーカー遺伝子に置換し、 その マーカー遺伝子の存在を確認して対象へキソキナーゼ遺伝子の削除や不活性化 を確認できるようにすることが好ましい。
異種タンパク質としては、 限定されるものではないが、 多細胞生物である動 物や植物が産生するタンパク質が好ましい。 特に哺乳動物 (ヒトを含む) の産 生するタンパク質が好ましい。 このようなタンパク質は E. co 1 iなどの原核細胞 微生物宿主を用いて製造した場合活性の高いタンパク質が得られない場合が多 く、 また C HOなどの動物細胞を宿主として用いた場合には通常産生効率が低 い。 本発明における遺伝子改変した酵母を宿主とする場合はこれらの問題が解 決されると考えられる。 実施例
以下に本発明を具体的な実施例によりさらに詳細に説明する。 以下の実施例 は、 へキソキナーゼ I I遺伝子をマ一力一遺伝子に置換してへキソキナーゼ II遺 伝子を削除した S. pombeの例であり、 以下この遺伝子削除を破壊ともいう。
[実施例 1 ]
<へキソキナーゼ I I遺伝子 SPAC4F8. 07C (hexokinasell) を削除した S. pombe の構築 >
S. pombeのへキソキナーゼ IIをコードする遺伝子 SPAC4F8. 07C (Nature 415, 871-880 (2002) )の O R F (1368bp) に隣接する 5'側および 3'側の 4 0 0 b pの ゲノム D NA配列をそれぞれ、 塩基配列 [gtgggat t tgtagctaagctgct tat tataaat taatta:配列 1] と [catcgttUtctttgacttt:配列 2] および塩基配列 [tttcg tcaatatcacaagctatcatgttagatgtctgtta: と [taaatttgagataatagggt: 配列 4] をプライマ一として PC R増幅法で作製した。 これらプライマーの内 配列 1と配列 3のプライマーは、 マーカー遺伝子である u r a 4遺伝子断片の 5 '側および 3'側の末端配列を含むものである。 増幅したこれらのゲノム DNA断 片に、 1. 81^ の11 34遺伝子断片を加ぇ、 上記配列 2の塩基配列と上 記配列 4の塩基配列をプライマ一として用い、 PCR増幅法によりこれらの D N A断片と u r a 4遺伝子断片 1. 8 k b pとを連結させてへキソキナーゼ II 遺伝子を削除するためのベクタ一 (以下、 遺伝子破壊ベクターという) を作製 した。 この遺伝子破壊ベクターは、 へキソキナーゼ IIをコードする遺伝子の o RFが u r a 4遺伝子と入れ替わつたゲノム D N A配列に相当する遗伝子破壊 ベクターである。
上記遺伝子破壊べクタ一を用いて S. pombe (leul-32, ura4-D18)菌株を形質転 換した。 形質転換した菌を最少培地で培養し、 最少培地でコロニーを形成する ゥラシル非要求性の株を取得した。 この菌株について、 PCR増幅法により目 的遺伝子が破壌されていた場合のみ DNA断片が増幅する方法でゲノム DNA を調べたところ、 へキソキナーゼ II遺伝子 SPAC4F8.07Cが破壊されていることが 確認できた。
ぐ改変宿主の炭素源利用効率の上昇の確認 >
上記破壊株と対象株である S. pombe (leul-32, ura4-D18)菌株とをそれぞれ Y PD培地(1% yeast extract, 2% peptone, 2% glucose)にて好気的に培養し、 エタノール生産量を比較した。 その結果、 培地中に生産されるエタノールは対 象株では 2 %程度であることが確認されたが、 本破壊株では検出限界以下であ つた。 また、 本破壊株の最終到達菌体密度 (OD660) は約 38であり、 対象株
(OD660が約 20) の約 2倍であった。 図 1に本破壊株 (Hxk2- ) の培養時間 と菌体密度 (O D 660) の関係を示す。 さらに、 Y P D培地においてグルコース を 1 5 %にした時に対象株が到達した最終菌体密度と同じ密度に、 上記破壌株 はグルコース 5 %で到達することがわかった。 これらの結果より、 破壊株では 培地中の炭素源であるグルコースの消費効率が高く、 添加炭素源がアルコール に転換せずに効率よく菌体生育に利用されることがわかつた。
ぐ異種タンパク質の分泌生産量の向上の確認 >
国際公開第 9 6 / 2 3 8 9 0号パンフレツ卜の実施例 1 3および図 7に記載 の発現ベクター pSL2P36a' clを用いて上記へキソキナーゼ II遺伝子破壊株を形 質転換し、 スクリーニング後、 得られた形質転換体を Y P D液体培地で好気的 に培養して培養液中に分泌されたヒトイン夕一ロイキン 6変異体 (IL-6a, c l) を採取した。 対象宿主として S. pombe (leu卜 32, ura4-D18)菌株を用い同様の試 験を行った。 これらの形質転換や培養は上記パンフレット記載の参考例 1、 参 考例 2、 実施例 1 4等の試験に準じて行った。
上記培養の結果、 最終到達菌体濁度は、 対象株が 2 0程度であるのに対し、 破壊株では 5 0まで到達し、 単位培養液あたりの生育菌体数が対象株に比べて 2 . 5倍増加していた。 また、 IL - 6a, clの分泌発現量を ELISA法により測定し たところ、 マイクロプレー卜リーダー (コロナ社製 MTP- 32+MTPF2) を用いた比 色定量により、 対象株の分泌発現量の値に対し、 破壊株の分泌発現量は約 3倍 であった。
[比較例 1 ]
ぐアルコールデヒドロゲナーゼ遺伝子破壊株の構築と培養 >
S. pombeのアルコールデヒドロゲナーゼ Iをコードする遺伝子 SPAC13B11. 01 (J Biol Chem 258, 143-149 (1983) )の O R F (1053bp) に隣接する 5'側および 3'側の 4 0 0 b pのゲノム D N A配列をそれぞれ下記配列 5〜8をプライマー として P C R増幅法で作製した。 同様に、 S. pombeのアルコールデヒドロゲナー ゼ I Vをコードする遺伝子 SPAC5H1.0.06C(Mol Gen Genet. 1987 Sep; 209 (2) :37 4-81.)の〇RF (1269bp) に隣接する 5'側および 3'側の 400 b pのゲノム D N A配列をそれぞれ下記塩基配列 9〜 12をプライマーとして PC R増幅法で 作製した。
配歹 IJ5 ; aaatactctagcatccatatgtggttagaaaaaagaa
配歹【J6 ; ttaccatatcataaagtttt
配歹 |J7 ; caaagactttctcagcattaagggaatgagaatgtgatcca
配列 8 ; caactgatgaagagagtaaa
配歹 (J 9 ; aaatactctagcatccatttaaaaagaaaatcgcatc
ffi^'J 10 ; ttggaggtgatttgatgtcg
配歹 (J 1 1 ; caaagactttctcagcattaaatagaacgttatctcgatac
配列 12 ; aacaaatctattaagcttca
これらの DNA断片と u r a 4遺伝子断片 1. 8 k b pと使用して実施例 1 と同様にしてアルコールデヒドロゲナ一ゼ I遺伝子破壊ベクターとアルコール デヒドロゲナーゼ I V遺伝子破壊べクタ一を作製した。 これら遺伝子破壌べク ターを用いて実施例 1と同様に S. pombe (leul-32, ura4-D18)菌株を形質転換し、 アルコールデヒドロゲナーゼ I遗伝子とアルコールデヒドロゲナ一ゼ I V遺伝 子の両者が同時に破壊された破壊株 (ADH1-4-) を得た。
上記破壊株を実施例 1と同じ条件で YPD培地にて好気的に培養した結果、 上記破壊株の最終到達菌体密度 (OD660) は約 1 1であった。 図 1に上記破壌 株 (ADH1- 4- ) の培養時間と菌体密度 (OD660) の関係を示す。 産業上の利用可能性
S. pombeのへキソキナーゼ遺伝子を不活性化することにより、 S. pombeのエタ ノール生産が減少し、 培養液中における菌体密度が上昇した。 また、 このよう なへキソキナーゼ遺伝子破壌株を宿主として用いることにより、 形質転換体の 異種タンパク質の産生効率が向上した。

Claims

請求の範囲
1 . へキソキナーゼ遺伝子を削除または不活性化した酵母からなる、 その形質 転換体により異種タンパク質を産生させるための酵母宿主。
2 . 酵母が分裂酵母である、 請求項 1に記載の酵母宿主。
3 . へキソキナーゼ遺伝子の O R F部分をマ一カー遺伝子に置換して当該へキ ソキナーゼ遺伝子を削除または不活性化する、 請求項 1または 2に記載の酵母 宿主。
4.酵母がシゾサッカロマイセス ·ボンべ(Sdiizosacctiaromyces pombe)であり、 へキソキナ一ゼ遺伝子がその酵母のへキソキナーゼ IIをコードする遺伝子であ る、 請求項 1、 2または 3に記載の酵母宿主。
5 . へキソキナーゼ遺伝子を削除または不活性化した酵母を宿主とし、 該宿主 に遺伝子組換え法により異種タンパク質をコードする外来遺伝子を導入した形 質転換体。
6 . 酵母が分裂酵母である、 請求項 5に記載の形質転換体。
7 .酵母がシゾサッカロマイセス 'ボンべ (Schizosaccharomyces pombe)であり, へキソキナ一ゼ遺伝子がその酵母のへキソキナーゼ 11をコ一ドする遺伝子であ る、 請求項 5または 6に記載の形質転換体。
8 . 請求項 5、 6または 7に記載の形質転換体を培養して該異種タンパク質を 産生させて採取することを特徴とする異種タンパク質の製造方法。
9 . 酵母が分裂酵母である、 請求項 8に記載の方法。
1 0 . 分裂酵母がシゾサッカロマイセス ·ボンべ(Schizosaccharomyces pombe) である、 請求項 9に記載の方法。
PCT/JP2004/005162 2003-04-10 2004-04-09 酵母宿主、形質転換体および異種タンパク質の製造方法 WO2004090117A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003106262A JP2006109701A (ja) 2003-04-10 2003-04-10 酵母宿主、形質転換体および異種タンパク質の製造方法
JP2003-106262 2003-04-10

Publications (1)

Publication Number Publication Date
WO2004090117A1 true WO2004090117A1 (ja) 2004-10-21

Family

ID=33156906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005162 WO2004090117A1 (ja) 2003-04-10 2004-04-09 酵母宿主、形質転換体および異種タンパク質の製造方法

Country Status (2)

Country Link
JP (1) JP2006109701A (ja)
WO (1) WO2004090117A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2182060A1 (en) 2005-08-03 2010-05-05 Asahi Glass Company, Limited Transformed yeast host cells and method of producing foreign protein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052522B2 (ja) 2006-04-12 2008-02-27 松下電器産業株式会社 ネットワーク機器及びネットワーク機器管理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541789A (ja) * 1999-04-13 2002-12-10 ユニヴェルシテイト ファン アムステルダム 機能的に欠失されたhxk2遺伝子を含む酵母バイオマスの生産方法
WO2002101038A1 (fr) * 2001-05-29 2002-12-19 Asahi Glass Company, Limited Procede de construction d'un hote et procede de production d'une proteine etrangere

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541789A (ja) * 1999-04-13 2002-12-10 ユニヴェルシテイト ファン アムステルダム 機能的に欠失されたhxk2遺伝子を含む酵母バイオマスの生産方法
WO2002101038A1 (fr) * 2001-05-29 2002-12-19 Asahi Glass Company, Limited Procede de construction d'un hote et procede de production d'une proteine etrangere

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EGEL-MITANI M. ET AL: "Yield improvement of heterologous peptides expressed in yps1-disrupted Saccharomyces cerevisiae strains", ENZYME MICROB TECHNOL., vol. 26, no. 9-10, 1 June 2000 (2000-06-01), pages 671 - 677, XP002283345 *
PETIT T. ET AL: "Schizosaccharomyces pombe possesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases", FEBS LETTERS, vol. 378, no. 2, 8 January 1996 (1996-01-08), pages 185 - 189, XP002979536 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2182060A1 (en) 2005-08-03 2010-05-05 Asahi Glass Company, Limited Transformed yeast host cells and method of producing foreign protein
US8329448B2 (en) 2005-08-03 2012-12-11 Asahi Glass Company, Limited Yeast host, transformant and method for producing heterologous proteins

Also Published As

Publication number Publication date
JP2006109701A (ja) 2006-04-27

Similar Documents

Publication Publication Date Title
JP5772594B2 (ja) 形質転換体およびその製造方法、ならびに乳酸の製造方法
US9617570B2 (en) Acid resistant yeast cell and use thereof
JP2012507274A (ja) エタノール産生のための胞子形成欠損好熱性微生物
CN102016024B (zh) 突变体酵母及使用其的物质生产方法
JP5804378B2 (ja) クルイベロマイセス・マルシアヌス由来の高発現プロモーター
JP4211603B2 (ja) シゾサッカロマイセス・ポンベ(Schizosaccharomycespombe)宿主の構築方法および異種タンパク質の製造方法
Watanabe et al. A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production
CN106701844B (zh) 克雷伯氏肺炎杆菌生产木糖酸的方法
JP6620375B2 (ja) 形質転換体およびその製造方法、ならびに乳酸の製造方法
Li et al. Genome shuffling of Aspergillus niger for improving transglycosylation activity
CN106867922A (zh) 克雷伯氏肺炎杆菌生产α-酮异戊酸和异丁醇的方法
WO2004090117A1 (ja) 酵母宿主、形質転換体および異種タンパク質の製造方法
KR20160111947A (ko) 재조합 미생물의 생산 방법
CN102120966A (zh) Ura3缺陷型毕赤酵母x-33菌株的构建及应用
CN109929853B (zh) 嗜热菌来源的热激蛋白基因的应用
CN108424859B (zh) 生产胞磷胆碱的基因工程菌的构建与应用
US20150152423A1 (en) Method for enhanced fermentation through the destruction of mitochondrial dna in yeast
CN110616161A (zh) 一种利用Y家族聚合酶Rev1调节酿酒酵母氧胁迫的方法
JP6499587B2 (ja) 形質転換体およびその製造方法、ならびに乳酸の製造方法
KR102613937B1 (ko) 갈락토스 이용에 관여하는 모든 유전자가 결손된 효모 균주 및 이를 이용한 재조합 단백질 생산방법
CN115960920B (zh) 协氧蛋白FHb及其重组菌X33-pPICZαA-102C300C-FHb2和应用
KR102253701B1 (ko) 하이브리드형 해당 경로
CN110713940B (zh) 一种高产重油出芽短梗霉菌株及其构建方法与用途
JP4674343B2 (ja) 生存性の低い胞子を作る糸状菌の作成方法
JP6620373B2 (ja) 形質転換体およびその製造方法、ならびに炭素数4のジカルボン酸の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase