WO2004086860A1 - 土壌処理方法 - Google Patents

土壌処理方法 Download PDF

Info

Publication number
WO2004086860A1
WO2004086860A1 PCT/JP2003/011953 JP0311953W WO2004086860A1 WO 2004086860 A1 WO2004086860 A1 WO 2004086860A1 JP 0311953 W JP0311953 W JP 0311953W WO 2004086860 A1 WO2004086860 A1 WO 2004086860A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
microwave
radiator
underground
ground
Prior art date
Application number
PCT/JP2003/011953
Other languages
English (en)
French (fr)
Inventor
Ken Taniwaki
Yuichi Kobayashi
Wataru Iijima
Masateru Yamashita
Hajime Odani
Original Assignee
Celltec Project Management Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celltec Project Management Co., Ltd. filed Critical Celltec Project Management Co., Ltd.
Priority to EP03816550A priority Critical patent/EP1611788A1/en
Priority to US10/551,264 priority patent/US20060283364A1/en
Priority to AU2003264501A priority patent/AU2003264501A1/en
Publication of WO2004086860A1 publication Critical patent/WO2004086860A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/22Killing insects by electric means
    • A01M1/226Killing insects by electric means by using waves, fields or rays, e.g. sound waves, microwaves, electric waves, magnetic fields, light rays
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B35/00Other machines for working soil not specially adapted for working soil on which crops are growing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G11/00Sterilising soil by steam
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects

Definitions

  • the present invention relates to an agricultural soil treatment method used for the purpose of, for example, exterminating nematodes in a field, adjusting the growth of crops, adjusting the germination time, improving the soil, and more particularly to a soil treatment method using microwaves. About.
  • methyl bromide a low-cost, easy-to-use and highly effective agent, has been widely used for disinfection of floor soil for vegetables and flowers, nursery beds for leafy vegetables, and soil disinfection of institutional vegetables.
  • the use of this methyl bromide was agreed by the Montreal Protocol on Substances That Deplete the Ozone Layer, adopted by the Vienna Convention in 1987, and after several revisions. The entire use was banned on January 1, 2005.
  • the usual crops in the field for example, root crops, etc.
  • the condition is that the temperature of the soil existing in the range of about 40 cm from the ground, which is the planting depth, is maintained at a predetermined temperature (for example, 60 degrees Celsius) for at least several minutes. .
  • a predetermined temperature for example, 60 degrees Celsius
  • the temperature of the hot water drops rapidly during infiltration into the ground, and to ensure that nematodes in the soil at the desired depth are killed or rendered harmless, It takes a long time (for example, about one week).
  • the present inventors tried to achieve the above-mentioned temperature condition by microwave irradiation on a field.
  • the mouth of the microphone is irradiated from directly above the ground of the field, the depth to the depth of about 10 cm below the ground is at best, and the desired depth (for example, about 4 Ocm below the ground) It was found that the temperature conditions described above could not be achieved.
  • the present invention has been made on the basis of the above-described findings, and it is an object of the present invention that microphone mouth wave irradiation on the surface of a field is hardly affected It can effectively affect the effects of microwaves on deep soils, thereby providing a variety of agricultural benefits such as crop growth control, germination time adjustment, soil disinfection and soil improvement.
  • An object of the present invention is to provide a soil treatment method capable of expecting an effect.
  • a more specific object of the present invention is to provide a soil capable of reliably and quickly exterminating nematodes contained in soil in a range of crop planting depth in a field, and having good economy and workability. Disinfection method and device are provided.
  • the microwave radiator is sunk into the soil, and then the microwave is radiated from the microwave radiator to the soil to be treated.
  • the microwave radiator can be sunk into the soil by using a submersible claw mechanism similar to a chisel or subsoil while running an agricultural machine, or by vertically inserting or pulling into the soil with a power arm.
  • Various techniques can be adopted.
  • microwave radiation may be performed with the microphone mouthpiece radiator sunk into the soil at rest, or may be performed while moving in a substantially vertical direction or a substantially horizontal direction.
  • large amounts of microwaves can be applied to specific soil points (eg, planting sites) with low power consumption.
  • moving state When doing so, microwaves are continuously applied to the soil line along the locus of movement (for example, planting line for horizontal movement or the entire depth range of a specific spot for vertical movement). Can be irradiated.
  • a soil disinfection method includes a step of radiating microwaves from a microwave radiator that travels a predetermined depth underground to the ground, thereby disinfecting the soil to be disinfected. It is to be disinfected along the route.
  • the microphone mouth wave transmitter instead of irradiating the microwave from directly above the surface of the field, the microphone mouth wave transmitter itself submerges in the ground, allowing the microwave to arbitrarily move from the position of the submergence depth to the ground. It radiates at an angle.
  • microwaves by positioning the microwave transmitter itself in the ground, even if the soil is at a depth where microwaves cannot reach sufficiently by vertical irradiation on the ground of the field, this can be achieved. Irradiation of microwaves with sufficient intensity to the temperature of the soil to be disinfected to the temperature required for disinfection by dielectric heating, or by irradiating microorganisms with the microphone mouth wave itself Microorganisms (nematodes, etc.) intended for disinfection can be killed or made harmless.
  • the soil rises in layers only by dielectric heating within a predetermined depth range. Because of being heated, microorganisms such as nematodes that live in a certain depth range in the soil can be intensively killed or made harmless.
  • the microwave radiator travels underground twice or more along the same travel trajectory and at different depths, a series of soils from the ground to a specified depth will overlap the heated layers of each time. As a result, the soil in the range of planting depth can be uniformly disinfected.
  • microwave irradiators can be adjusted in the direction orthogonal to the traveling direction. If the microwave radiators are arranged at an appropriate distance, the soil to be disinfected can be disinfected in a strip shape over a predetermined width along the ground with the progress of the plurality of microwave radiators.
  • a superimposed electric field of microwaves is formed between the two microwave irradiators. It can be done by disinfecting the soil more aggressively.
  • the soil to be disinfected is mixed with a fertilizer that is a salt (for example, a chemical fertilizer containing nitrogen, phosphoric acid, and potassium, etc.)
  • a fertilizer for example, a chemical fertilizer containing nitrogen, phosphoric acid, and potassium, etc.
  • the target temperature for heating the soil is 60 ° C or higher.
  • the depth range of the soil to be heated is preferably within about 40 cm from the ground.
  • a soil disinfection device of the present invention includes: a field mobile having an underground advancing part and a ground advancing part; a microwave radiator built in the underground advancing part of the field mobile; A device comprising: a microwave generation source held in a traveling section; and a waveguide connecting the microwave generation source held in a ground traveling section to a microphone mouthpiece radiator built in an underground traveling section.
  • the "underground penetration part” is a part having the function of sunk into the ground as it progresses and traveling at a substantially constant depth, and the underground penetration part of agricultural equipment such as chisel and subsoiler is It can be said that this concept is similar to this.
  • the microwave transmitter is built in the underground traveling section and travels underground, while being generated from a microwave source (for example, a magnetron or the like) held in the ground traveling section.
  • a microwave source for example, a magnetron or the like
  • Microwave is underground through waveguide Since the microwave transmitter is guided to the ground, the microwave transmitter itself is located in the ground, so that the soil cannot reach the depth enough for the microwave to reach the field by vertical irradiation on the ground. Irradiates a microphone with sufficient intensity to this, and reliably raises the temperature of the soil to be disinfected to the temperature required for disinfection by dielectric heating, killing microorganisms (nematodes, etc.) intended for disinfection. Alternatively, it can be rendered harmless. Moreover, since the microwave generation source is located on the ground, there is no hindrance to cooling.
  • the field moving body has a plurality of underground traveling parts arranged at an appropriate distance in the direction perpendicular to the traveling direction, and the microwave irradiator is built in each part of the middle traveling f section If it has been done, the soil to be disinfected is heated in a strip shape by dielectric heating over a predetermined width along the ground with the progress of the plurality of microwave radiators, whereby the field is spread over an arbitrary width. It can be disinfected in a strip.
  • the soil is heated in a layered manner by dielectric heating only within a predetermined depth range.
  • microorganisms such as nematodes living in a certain depth range in the soil can be intensively killed or made harmless.
  • the microwave transmissions ⁇ ⁇ held in each of the adjacent underground submerged parts are opposed to each other, a superimposed electric field of microwaves is formed between the two microwave irradiators.
  • more powerful disinfection of the soil can help.
  • a dive depth adjuster for adjusting the dive depth of the underground advancing part, it is possible to arbitrarily change the dive depth and selectively disinfect the soil at the desired depth. It is possible to disinfect the same field two or three times at different depths by disinfecting the same field, thereby digging deep into the field and continuously disinfecting a series of soil from the ground to a specified depth. Can be. Also, if there is a shield to prevent the microwave transmitted from the microphone mouthpiece transmitter held in the underground traveling part from leaking to the ground, workers will be careless It is possible to prevent the danger of being hit by a microphone.
  • the field moving body described above may be of a towed type or a self-propelled type.
  • the traction type it may be attached to, for example, the rear part of the cultivator, and in the case of the self-propelled type, it may be attached to a so-called mit-mount type agricultural work machine.
  • the microwave radiator is sunk into the soil in a substantially vertical direction, and then applied to a soil treatment method that radiates microphone mouth waves from the microphone mouth wave radiator to the soil to be treated. Farming tools to be used are required.
  • Agricultural work tools used for such purposes have a main body that can be inserted into the soil in a substantially vertical direction.
  • the tip of the body has a sharpened portion for entry.
  • the main body has a microwave radiation port on the side surface.
  • the main body has a microwave inlet at the rear end.
  • a waveguide that guides microwaves from the microwave inlet to the microphone outlet is built into the main unit.
  • a small power arm is used to vertically insert and withdraw into the soil, and various vertical excavators are used to vertically insert into the soil while applying vibration as necessary.
  • Use a variety of methods such as a method of pulling out and pulling out, incorporating it into manual work tools such as shovels and hoes, and manually submerging in the soil
  • FIG. 1 is a schematic side sectional view of the device of the present invention in use.
  • FIG. 2 is a schematic plan view of the device of the present invention.
  • FIG. 3 is a schematic front view of the device of the present invention.
  • FIG. 4 is a cross-sectional plan view of the device of the present invention mainly showing the arrangement of the microphone mouth wave transmitter.
  • FIG. 5 is a configuration diagram showing an example of a waveguide with a microwave transmitter.
  • FIG. 6 is a perspective view of a waveguide with a microwave.
  • FIG. 7 is a side sectional view for explaining the operation of the device of the present invention.
  • FIG. 8 is a front view for explaining the operation of the device of the present invention.
  • FIG. 9 is a diagram showing a result of a computer simulation showing a heating energy distribution between opposed microwave transmitters.
  • FIG. 10 is a graph showing a comparison of economics between the microwave soil disinfection method and the boiling water soil disinfection method.
  • FIG. 11 is an explanatory diagram showing a state of a field after microwave irradiation.
  • FIG. 12 is an explanatory diagram showing a relationship between a field after microwave irradiation and a root vegetable planting position.
  • FIG. 13 is a configuration diagram showing another example of the device of the present invention.
  • FIG. 14 is an operation explanatory view of another example of the device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic side sectional view of the device of the present invention in use
  • FIG. FIG. 3 is a schematic front view of the device of the present invention
  • FIG. 3 is a schematic front view of the device of the present invention
  • FIG. 4 is a plan sectional view of the device of the present invention showing the arrangement of the microwave transmitter.
  • the field moving body 100 has an underground traveling section A and a ground traveling section B.
  • Underground traveling section A has built-in microphone mouth wave transmitters 21a to 21d and holds them.
  • the ground traveling section B holds magnetrons 31a to 31d, which are microphone mouth-wave generation sources.
  • the magnetrons 31 a to 31 d held on the ground traveling section B and the microphone mouth wave transmitter 21 a to 21 d held on the underground traveling section A are waveguides 41 a to 4 Tied through 1d. Therefore, while the microwave transmitters 21a to 21d travel inside the ground while being held in the underground traveling section A, they are generated from the magnetrons 31a to 31d held in the ground traveling section B.
  • the microphone mouth wave is guided through the waveguides 41a to 41d to the underground microphone mouth wave generator 21a to 21d, so that the microwave transmitter 21a to 21d d
  • microwaves with sufficient intensity can be irradiated.
  • the temperature of the soil to be disinfected can be reliably raised to the required disinfection temperature by the dielectric heating action, and the microorganisms (nematodes, etc.) to be disinfected can be killed or made harmless.
  • the field moving object 100 is mainly composed of the base frame 1.
  • the base frame 1 includes eight vertical ribs 15 in a rectangular frame including a front support bar 11, a rear support bar 12, a left support bar 13, and a right support bar 14. And four horizontal ribs 16 are integrated.
  • On the base frame 1, four underground submersible bodies 21, 22, 23, 24 are mounted vertically downward. Each of the underground submersible bodies 21, 22, 23, 24 does not show left and right side walls 25, 26 made of steel plate.
  • the space surrounded by the left and right side wall plates 25 and 26 communicates in the up-down direction, and the front portion is connected to the tip metal (described later). (See Fig. 1) As shown in FIG.
  • FIG. 1 shows the field mobile object 100 shown in FIG. 2 as viewed from the left side surface with the left side wall plate 26 removed. As shown in Fig.
  • the two microphone mouthpiece transmitters 2 la and 21b are mounted horizontally and rightward in the traveling direction
  • the two microphone mouthpiece transmitters 2 1 c and 21 d are mounted horizontally leftward in the direction of travel.
  • the four microphone mouthpiece transmitters 22 a to 22 d housed in a horizontal line at the lower part of the underground submersible 22 two of them are arranged at the rear of the traveling direction
  • the microwave transmitters 22a and 22 are mounted horizontally leftward in the direction of travel
  • the two microphone mouthpiece transmitters 22c and 22d arranged in front of the direction of travel Is mounted horizontally rightward in the direction of travel.
  • the four microphone mouth-wave transmitters 23a to 23d housed in a horizontal line at the bottom of the underground submersible 23 two of them are arranged at the rear in the traveling direction.
  • Microwave transmitters 23a and 23b are mounted horizontally and rightward in the traveling direction, and two microwave transmitters 23c and 2 arranged in front of the traveling direction 3d towards the direction of travel Mounted horizontally left.
  • the microwave transmitters 24a to 24d housed in a horizontal line in the lower part of the underground submergence body 24 two placed at the rear in the traveling direction
  • the microwave transmitters 24a and 24b are mounted horizontally leftward in the traveling direction, and two microwave transmitters 24c and 24d arranged in front of the traveling direction. Is mounted horizontally rightward in the direction of travel.
  • two microphone mouth-wave transmitters 2 la and 21 b provided in the submerged submersible 21 are installed in the submerged submersible 22 adjacent to it.
  • the two microwave transmitters 22a and 22b are placed facing each other, and the microwave transmitters are located between the microphone transmitters as shown by arrows in the figure.
  • a superimposed electric field is formed.
  • the 3d will be placed facing each other, and a superimposed electric field of microwaves will be formed between these microphone transmitters as shown by the arrow in the figure.
  • two microwave transmitters 23a and 23b provided in the underground submersible 23 and two microwave transmitters provided in the adjacent submerged vehicle 24 The devices 24a and 24b are arranged to face each other, and a superimposed electric field of microwaves is formed between the microwave transmitters as shown by arrows in the figure.
  • a strong microwave is radiated to the soil between the four underground submersible bodies 21 to 24 as the field mobile body 100 moves, and the soil 8 Heat will be applied.
  • a magnetron that is a microwave source (for example, 2.
  • each of the four underground vehicles 21 to 24 has four waveguides 41 a to 41 d coupled to the microwave radiator.
  • 42a to 42d, 43a to 43d, and 44a to 44d are accommodated in the vertical direction, and a magnetron is provided for each of the upper ends of the waveguides. -ing As a result, the microwaves emitted from the magnet port travel through the waveguide to reach the microwave radiator, where they are turned rightward or leftward in the horizontal direction and emitted into the ground.
  • circular openings are formed in the left and right side wall plates 25 and 26 constituting the underground submersible bodies 21 to 24, corresponding to the radiation ports of the microwave radiator. Microwaves are radiated into the ground through this circular opening. Although not shown, the microwave radiation opening is closed with a Teflon blind plate so that foreign substances such as mud do not enter the microwave radiator. ⁇
  • the microphone mouth waves released into the ground in this way are used to heat the soil, but there is no close contact between the left and right sides of the submerged vehicles 21 to 24 and the soil in contact with them. However, it is conceivable that microwaves leak to the ground from those gaps. Therefore, as shown in FIG. 2, the space between the adjacent underground vehicles 21 to 24 is closed by a shield plate 9 made of a steel plate or the like. This will prevent the danger of workers accidentally receiving leaked microphones during soil disinfection.
  • a bracket 51 is provided at the rear of the base frame 1, and two left and right ruler wheels 65, 65 are supported on the bracket 51 (see FIG. 2). That is, in the figure, reference numeral 64 denotes a shaft of the ruler wheel, reference numeral 63 denotes a forked yoke for supporting a shaft of the ruler wheel, reference numeral 61 denotes a support rod fixed to the yoke 63, and reference numeral 62 denotes a support rod. This is a stopper for adjusting the length.
  • the height of the ruler wheel 65 (that is, the dive depth D 1) can be arbitrarily adjusted by changing the protruding length of the pad 61.
  • a bracket 52 is provided at the front of the base frame 1, and two left and right ruler wheels 65, 65 are also supported on the bracket 52 (see FIG. 2). That is, in the figure, reference numeral 64 denotes a shaft of a ruler wheel, reference numeral 63 denotes a forked yoke for supporting the shaft of the ruler wheel, reference numeral 61 denotes a support rod fixed to the yoke 63, and reference numeral 62 denotes a support opening 61.
  • the stopper is used to adjust the length of this stono, and the protruding length of the support rod 61 is changed by moving up and down the position of ° 62, and the height of the ruler wheel 65 (that is, The search D 1) can be adjusted arbitrarily.
  • a front base plate 73 is physically fixed to the front end of the base frame 1.
  • the front base plate 73 is provided with a puller 71 and a pull rod 72 for use in towing work.
  • FIGS. 7 and 8 are a side view and a front view for explaining the operation of the device of the present invention.
  • the soil disinfection method using the device of the present invention will be described in detail below with reference to those figures.
  • the field moving body 100 In using the field moving body 100, first, as shown in FIG. 7, it is attached to the rear of the cultivator 200 and towed. At this time, by adjusting the height of the ruler wheel 65, the dive depth D 1 (see FIG. 1) of the underground submersible bodies 21 to 24 is appropriately set. In fields where root crops are to be planted, for example, disinfect the soil that is 40 cm below the ground.
  • salt fertilizers for example, chemical fertilizers containing nitrogen, phosphoric acid, and potassium, etc.
  • the mixing of fertilizer may be performed simultaneously with the tillage work.
  • the field moving body 100 is caused to travel to the disinfection scheduled area of the field while being pulled by the cultivator 200.
  • the soil existing in the area sandwiched by the underground submersible bodies 21 to 24 becomes inductively heated by microwave irradiation from both sides in the horizontal direction.
  • the temperature is increased by heating.
  • the power of the microwave and the moving speed of the field mobile are set appropriately, the temperature of the soil to be disinfected will be at least 60 degrees Celsius, and that state will be maintained for at least several minutes. Therefore, the target nematode can be reliably killed or rendered harmless over the entire width and the planned depth (about 4 O cm from the ground surface) of the field mobile object 100.
  • FIGS. 11 and 12 The condition of the field that has been disinfected in this way is shown in FIGS. 11 and 12.
  • Fig. 11 when there are a plurality of planned planting lines al to a5 in a field, the planned planting lines al to a5 are grouped together and, for example, a depth of 40 cm from the ground surface. Microwave soil disinfection is performed over the entire area and twice in depth. Therefore, after such disinfection, as shown in FIG. 12, no matter where the plant is planted on the planting lines al to a5, the root vegetables 201 are in the disinfected areas b0 to b4. , c 1 and c 2 can be grown without being affected by nematodes.
  • Fig. 11 when there are a plurality of planned planting lines al to a5 in a field, the planned planting lines al to a5 are grouped together and, for example, a depth of 40 cm from the ground surface. Microwave soil disinfection is performed over the entire area and twice in depth. Therefore, after such disinfection,
  • area b0 is the area outside the underground submerged body
  • area b1 is the area sandwiched by the underground submerged bodies 21 and 22
  • area b2 is the underground submerged body.
  • the area sandwiched by bodies 22 and 23, area b 3 is the area sandwiched by underground bodies 23 and 24, and area b 4 is the area outside underground body 24 Side area.
  • c1 is, for example, a first disinfecting layer
  • c2 is, for example, a second disinfecting layer.
  • the field moving body of the present invention is configured as a towed type.
  • the field moving body may be configured as a self-propelled type by mounting it on a mit-mount type agricultural work machine. It is.
  • the microwave radiator is built in each row.
  • the arrangement of the underground submarines and the microwave radiation built therein are included.
  • the number and orientation of the vessels are not limited to this.
  • the configuration and frequency of the microwave source are not limited to this.
  • a ruler wheel is also shown as a dive depth adjuster.
  • a structure is adopted in which the height can be adjusted at the joint between the puller 71 and the cultivator 200. Is also good.
  • this waveguide has a rectangular tubular waveguide 91 having a rectangular cross section and a predetermined length, and a distal end portion of the rectangular tubular waveguide 91. And a circular arm-shaped radiator 92 with a flat bottom attached to the radiator.
  • Stainless steel (SUS) is used as the material of the rectangular tubular waveguide 91 and the circular arm-shaped radiator 92.
  • the rectangular tubular waveguide 91 has a rectangular cross-sectional shape having a width W and a height H.
  • the circular arm radiator 92 has a depth D2 and has a flat arm profile at the bottom 92a.
  • the diameter of the circular arm-shaped radiator 92 is larger than the width W of the rectangular tubular waveguide 91.
  • a part of the inner circumference of the circular arm-shaped radiator 92 is cut out for connection with the rectangular tubular waveguide 91.
  • the tip of the rectangular tubular waveguide 91 is It is cut according to the curvature of the peripheral surface of the arm-shaped radiator 92 to be connected.
  • the preformed square tubular waveguide 91 and the circular arm-shaped radiator 92 are joined by welding with the cuts 9 la and 91 b aligned.
  • 9 1 c is a mounting bracket.
  • Fig. 9 shows the results of a computer simulation showing the distribution of heating energy between the facing microwave transmitters. As shown in the figure, where a waveguide with a microwave transmitter having the structure shown in Figs. 5 and 6 was used, a high-density heating energy distribution was found between the two microwave radiators. Was obtained.
  • the left and right side walls constituting the underground submersible bodies 21 to 24 It can be stored in a compact space between the plates 25 and 26.
  • a hard material SUS
  • SUS hard material
  • it has the advantage of being easy to manufacture. In other words, it is conceivable to bend the rectangular tubular waveguide itself with a press and bend the tip of the rectangular tubular waveguide at a right angle. In this case, however, the processing is extremely difficult. If, as in this example, the radiator portion is formed by pressing while the radiator portion is welded to the waveguide portion, the fabrication is remarkably easy because no bending is required.
  • FIG. 1 A graph comparing the economics of the microwave soil disinfection method and the boiling water soil disinfection method is shown in FIG. As is clear from the figure, According to trial calculations made by the inventors, it has been found that the use of the method of the present invention is more advantageous than the hot water spraying method in a region where the treatment area exceeds 180 hectares.
  • the microwave radiator is sunk into the soil in a substantially vertical direction, and then applied to a soil treatment method in which the microwave radiator emits microwaves to the target soil. Farming tools to be used are required.
  • the agricultural working tool used for such a purpose has a metal body 202 that can be inserted into the soil in a substantially vertical direction.
  • the main body 202 has a sharpened portion 203 at the tip end for intrusion.
  • the side surface of the main body 202 has a microphone opening wave opening 204 closed by a blind plate 205 made of Teflon.
  • a microphone mouthpiece inlet 207 for receiving a microphone mouthwave from the microwave generation source 206.
  • a microwave inlet 200 is provided inside the main body 202.
  • a waveguide 208 for guiding microwaves from 7 to a microphone mouth wave transmission port 204 is built in.
  • reference numeral 209 denotes a bracket to be mounted on the power arm.
  • the small power arm vertically inserts into and pulls out of the soil (see Fig. 14), while using various vertical excavators to apply vibration as necessary.
  • the desired spot on the field can be obtained by using various methods such as a method of vertically inserting and pulling out into the soil, a method of incorporating it into a manual work tool such as a shovel and a hoe, and sunk into the soil by human power.
  • a method of vertically inserting and pulling out into the soil a method of incorporating it into a manual work tool such as a shovel and a hoe, and sunk into the soil by human power.
  • Into the soil at a predetermined depth Can be irradiated with microwaves.
  • 210 is the distal arm of the power arm device
  • 211 is the drive rod of the small power arm device
  • 212 is the intermediate arm of the power arm device
  • 211 is the main body of 202.
  • An arrow indicating the direction of extraction of the soil into the soil 215, and 218
  • the method and apparatus of the present invention are applied to the control of nematodes harmful to root crops in soil. It can be widely applied to growth adjustment, germination timing adjustment, soil improvement, etc. Industrial applicability
  • the effect of microwaves can be effectively exerted on the soil in the deep region, which is hardly affected by microwave irradiation on the field surface
  • Various agricultural beneficial effects can be expected, for example, crop growth control, germination timing control, soil disinfection, soil improvement.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Catching Or Destruction (AREA)
  • Soil Working Implements (AREA)

Abstract

 本発明の土壌処理方法は、マイクロ波放射器を土壌中に潜り込ませ、しかるのち、マイクロ波放射器から処理対象となる土壌へとマイクロ波を放射するものである。ここで、マイクロ波放射器を土壌中に潜り込ませる手法としては、マイクロ波放射器を内蔵する潜行体を、チゼルやサブソイルと同様な潜行爪機構で農作業機を走行させながら潜らせる手法、パワーアームで土壌中に垂直に差し込んだり引き抜いたりする手法、各種の垂直掘削装置を利用して土壌中に垂直に差し込んだり引き抜いたりする手法、を採用することができる。 本発明によれば、圃場表面に対するマイクロ波照射では影響を与えにくい深層領域の土壌に対しても、マイクロ波による影響を効果的に及ぼすることができ、それにより、例えば作物の生育調整、発芽時期の調整、土壌消毒、土壌改良のような様々な農業上有益な作用を期待することができる。

Description

土壌処理方法 技術分野
この発明は、 例えば圃場の線虫駆除、 作物の生育調整、 発芽時期の調 整、 土壌改良等の目的で使用される農業用の土壌処理方法に係り、 特に、 マイクロ波を利用した土壌処理方法に関する。
書 背景技術
従来、 野菜類、 花卉類の床土消毒、 葉菜類の苗床消毒、 施設野菜の土 壌消毒については、 廉価で使用方法が簡単かつ効果の高い薬剤である 『臭化メチル』 が広く利用されてきた。 しかし、 この臭化メチルは、 1 9 8 7年にウィーン条約締結国によって採択された 『オゾン層を破壊す る物質に関するモントリオール議定書』 によってその使用制限が合意さ れ、 その後数回の改訂を経て、 2 0 0 5年 1月 1日を以て全面使用禁止 が決定された。
こうした状況を受けて、 臭化メチルにィ弋わる土壌消毒技術の開発が試 みられており、 その代表的なものとして、 太陽熱消毒、 温湯消毒、 燻蒸 消毒等が挙げられるが、 いずれも有効性、 経済性、 作業性において問題 を残しており、 代替案が確立したとは言い難い。 タイムリミットとなる 2 0 0 5年の年頭まで余すところ 2年弱であり、 有効な技法の確立が急 務とされている。
マイクロ波を利用した殺菌、 殺虫、 除草等はかって欧州で試みられた 1 安定した技法としての認知はなされていないのが現状である。 なお、 マイクロ波を照射することにより、 誘電加熱作用を利用して含有水分を 加熱膨張させることにより、 岩盤や地盤を破壊させる土木技術は従来よ り知られている (例えば、 特開平 0 7— 9 1 1 8 1号公報参照) 。
圃場に植え付けられた作物が土壌中の線虫から受ける影響 (所謂、 連 作障害) を、 土壌の加熱殺菌消毒により防止するためには、 圃場におけ る通常の作物 (例えば、 根菜類等) の植え付け深さである地面から 4 0 c m程度に至る範囲に存在する土壌の温度を、 少なくとも数分程度の間、 所定温度 (例えば摂氏 6 0度) 以上に維持することが条件とされている。 このような加熱殺菌消毒のための温度条件を圃場に対する熱湯散布に より実現しょうとすると、 大量の熱湯の供給、 その散布、 散布後の保温 用シートによる被覆、 それらの作業の繰り返し、 等々のために多大なる 手間と費用が掛かることに加えて、 地中浸透に際して熱湯の温度は急激 に低下するため、 目的とする深さの土壌中の線虫を確実に死滅又は無害 化するためには、 長期間 (例えば、 1週間程度) を要する。
そこで、 本発明者等は、 上述の温度条件を圃場に対するマイクロ波照 射により達成することを試みた。 しかし、 圃場の地面に対して真上から マイク口波を照射したところでは、 地面下 1 0 c m程度の深さまでが 精々であって、 目的とする深さ (例えば、 地面下 4 O c m程度) まで上.. 述の温度条件を達成することはできないとの知見が得られた。
加えて、 マイクロ波の送信出力を増加させても、 マイクロ波の地中浸 透深さはあまり変わらないらしく、 実際、 比較的に浅い領域 (例えば、 地面から 1 0 c m程度までの深さ領域) の土壌に関する到達温度は送信 出力に応じて上昇するものの、 それ以上の深さ領域については送信出力 を増大させても、 なかなか目的とする温度にまで到達しないとの知見も 得られた。
この発明は、 上述の知見に基づいてなされたものであり、 その目的と するところは、 圃場表面に対するマイク口波照射では影響を与えにくい 深層領域の土壌に対してマイクロ波による影響を効果的に及ぼすること ができ、 それにより、 例えば作物の生育調整、 発芽時期の調整、 土壌消 毒、 土壌改良のような様々な農業上有益な作用を期待することができる 土壌処理方法を提供することにある。
この発明のより具体的な目的とするところは、 圃場における作物植え 付け深さ範囲の土壌に含まれる線虫を確実かつ短時間に駆除することが でき、 しかも経済性並びに作業性も良好な土壌消毒方法及び装置を提供 することにある。
この発明のさらに他の目的並びに作用効果については、 明細書の以下 の記述を参照することにより、 当業者であれば容易に理解されるであろ う。 発明の開示
本発明の土壌処理方法は、 マイクロ波放射器を土壌中に潜り込ませ、 しかるのち、 マイクロ ·波放射器から処理対象となる土壌へとマイクロ波 を放射するものである。 ここで、 マイクロ波放射器を土壌中に潜り込ま せる手法としては、 チゼルやサブソィルと同様な潜行爪機構で農作業機 を走行させながら潜らせる手法、 パワーアームで土壌中に垂直に差し込 んだり引き抜いたりする手法、 各種の垂直掘削装置を利用して土壌中に 垂直に差し込んだり引き抜いたりする手法、 シャベルや鍬のような手動 作業具に組み込んで、 人力で土壌中に潜り込ませる手法な、 のよう様々 な手法を採用することができる。 一方、 マイクロ波の放射は、 土壌中に 潜り込ませたマイク口波放射器を静止させた状態で行なってもよいし、 略垂直方向又は略水平方向へと移動させながら行なってもよい。 静止状 態で行う場合には、 特定の土壌ポイント (例えば、 株植え箇所) に対し て多量のマイクロ波を低消費電力で照射することができる。 移動状態で 行う場合には、 その移動軌跡に沿う土壌ライン (例えば、 水平移動であ れば株の植え付けライン、 垂直移動であれば特定のスポットの全深さ範 囲) に対してマイクロ波を連続的に照射することができる。
本発明の一実施形態である土壌消毒方法は、 地下所定深さを進行する マイクロ波放射器から地中へとマイクロ波を放射することにより、 消毒 対象となる土壌をマイクロ波放射器の進行軌跡に沿つて消毒するもので ある。 つまり、 圃場の表面に真上からマイクロ波を照射するのではなく、 マイク口波送波器それ自体を地中に潜行させることで、 その潜行深さの 位置からマイクロ波を地中へと任意の角度で放射するのである。
このような構成によれば、 マイクロ波送波器それ自体を地中に位置さ せることで、 圃場の地面への垂直照射ではマイクロ波が十分に届かない 深さの土壌であっても、 これに十分な強度を有するマイクロ波を照射し、 誘電加熱作用により消毒対象となる土壌の温度を消毒必要温度にまで確 実に上昇させ、 あるいはマイク口波それ自体を微生物に照射することに よる影響で、 消毒目的とする微生物 (線虫等) を死滅又は無害化するこ とができる。
このとき、 マイクロ波放射器から地中へと放射されるマイクロ波の放 射中心軸の方向をほぼ水平方向とすれば、 土壌は所定の深さ範囲内にお いてのみ誘電加熱により層状に昇温されるから、 土壌中の一定の深さ範 囲に生息する線虫等の微生物を集中的に死滅又は無害化することができ る。
また、 マイクロ波放射器の地中進行を同一進行軌跡に沿って 2回以上 かつ深さを異ならせて行わせれば、 地面から所定深さに至る一連の土壌 が各回の既加熱層を重ねるようにして全体的に加熱され、 その結果、 作 物植え付け深さ範囲の土壌を均一に消毒することができる。
また、 複数台のマイクロ波照射器を進行方向と直交する方向へと適当 な距離を隔てて配置すれば、 それら複数のマイクロ波放射器の進行に伴 い消毒対象となる土壌を地面に沿った所定幅に亘つて帯状に消毒するこ とができる。
さらに、 複数台のマイクロ波照射器のうちの相隣接する 2台が互いに 放射面を向かい合わせて配置されていれば、 それにより 2台のマイクロ 波照射器の間にマイクロ波の重畳電場が形成されて、 土壌をより強力に 消毒することでがきる。
本発明方法の実施にあたっては、 マイクロ波の照射に先立ち、 消毒対 象となる土壌に塩類である肥料 (例えば、 窒素、 リン酸、 カリウムを含 む化成肥料等) を混入すれば、 その分だけ土壌の複素誘電率が高くなり、 マイクロ波照射による加熱効率が向上する。 また、 土壌中の線虫を対象 として加熱消毒を行う場合、 土壌の昇温目標温度としては摂氏 6 0度以 上とすることが好ましい。 さらに、 植え付け対象となる作物が根菜類で ある場合には、 昇温されるべき土壌の深さ範囲は地面から 4 0 c m程度 の範囲内であることが好ましい。
次に、 本発明の土壌消毒装置は、 地中進行部と地上進行部とを有する 圃場移動体と、 圃場移動体の地中進行部に内蔵されたマイクロ波放射器 と、 圃場移動体の地上進行部に保持されたマイクロ波発生源と、 地上進 行部に保持されたマイクロ波発生源と地中進行部に内蔵されたマイク口 波放射器とを繋ぐ導波管と、 を具備するものである。 ここで、 『地中進 行部』 とは、 進行に伴い地中に潜り込んでほぼ一定の深さを進行する作 用を有する部分であり、 チゼルやサブソィラ等の農機具における地中潜 行部がこれに近似する概念と言えるであろう。
このような構成によれば、 マイクロ波送波器は地中進行部に内蔵され て地中を進行する一方、 地上進行部に保持されたマイクロ波発生源 (例 えば、 マグネトロン等) から発生したマイクロ波は導波管を通じて地中 のマイクロ波送波器へと導かれるから、 マイクロ波送波器それ自体を地 中に位置させることで、 圃場の地面への垂直照射ではマイクロ波が十分 に届かない深さの土壌であっても、 これに十分な強度を有するマイク口 波を照射し、 誘電加熱作用により消毒対象となる土壌の温度を消毒必要 温度にまで確実に上昇させ、 消毒目的とする微生物 (線虫等) を死滅又 は無害化することができる。 しかも、 マイクロ波発生源は地上に位置す るから、 冷却等に支障を来すこともない。
このとき、 圃場移動体が、 進行方向と直交する方向へと適当な距離を 隔てて配置された複数個の地中進行部を有し、 マイクロ波照射器は各地 中進 f部のそれぞれに内蔵されていれば、 それら複数のマイクロ波放射 器の進行に伴い消毒対象となる土壌を地面に沿った所定幅に亘つて誘電 加熱により帯状に昇温させ、 それにより任意の幅に亘つて圃場を帯状に 消毒することができる。
また、 マイクロ波放射器の放射中心軸が進行方向と直交する方向にお いてほぼ水平方向に向けられていれば、 土壌は所定の深さ範囲内におい てのみ誘電加熱により層状に昇温されるから、 土壌中の一定の深さ範囲 に生息する線虫等の微生物を集中的に死滅又は無害化することができる。 また、 相隣接する地中潜行部のそれぞれに保持されたマイクロ波送波 ^§が互いに対向していれば、 それにより 2台のマイクロ波照射器の間に マイクロ波の重畳電場が形成されて、 土壌をより強力に消毒することで がきる。
また、 地中進行部の潜行深さを調整するための潜行深さ調整具を有し ていれば、 潜行深さを任意に変更して所望深さの土壌を選択的に消毒す ることができると共に、 同一の圃場を 2乃至 3回に分けて深さを異なら せて消毒することにより、 圃場を深く掘り下げるようにして、 地面から 所定深さに至る一連の土壌を連続的に消毒することができる。 また、 地中進行部に保持されたマイク口波送波器から送波されたマイ クロ波が地上へと漏洩することを防止するための遮蔽体を有していれば、 作業者が不用意にマイク口波を浴びる危険を未然に防止することができ る。
以上説明した圃場移動体は、 牽引式としても、 自走式としてもよい。 ここで、 牽引式とした場合には、 例えば耕耘機の後部に取り付ける等し て牽引すればよく、 又自走式とした場合には、 所謂ミツドマウント方式 の農作業機に取り付ければ良いであろう。
ところで、 ビュルハウスで根菜類等を栽培する状況を想定すると、 ト ラクタ等の大型作業機をビニルハウス内で走行させることは不都合であ る。 そのような場合、 株の植え付け位置が既知であれば、 その部分だけ を局部的に深さ方向へと集中的に消毒すれば足りる。 このような場合に は、 マイクロ波放射器を土壌中に略垂直方向に潜り込ませ、 しかるのち、 マイク口波放射器から処理対象となる土壌へとマイク口波を放射する土 壌処理方法に適用される農作業具が必要となる。
このような目的で使用される農作業具は、 土壌中に略垂直方向へと差 し込み可能な本体を有する。 この本体の先端部には突入のための先鋭部 を有する。 また、 本体の側面にはマイクロ波放射口を有する。 また、 本 体の後端部にはマイクロ波導入口を有する。 さらに、 本体の内部にはマ ィクロ波導入口からマイク口波送波口へとマイクロ波を案内する導波管 が内蔵される。
このような構成よりなる農作業具によれば、 小型のパワーアームで土 壌中に垂直に差し込んだり引き抜いたりする手法、 各種の垂直掘削装置 を利用して必要により振動を加えながら土壌中に垂直に差し込んだり引 き抜いたりする手法、 シャベルや鍬のような手動作業具に組み込んで、 人力で土壌中に潜り込ませる手法等のような様々な手法を利用すること により、 圃場の所望スポットに差し込んで所定深さの土壌にマイクロ波 を照射することができる。 図面の簡単な説明
第 1図は、 本発明装置の使用状態における概略的側断面図である。 第 2図は、 本発明装置の概略的平面図である。
第 3図は、 本発明装置の概略的正面図である。
第 4図は、 マイク口波送波器の配置を中心として示す本発明装置の平 断面図である。
第 5図は、 マイクロ波送波器付き導波管の一例を示す構成図である。 第 6図は、 マイクロ波付き導波管の斜視図である。
第 7図は、 本発明装置の作用を説明するための側断面図である。 第 8図は、 本発明装置の作用を説明するための正面図である。
第 9図は、 対向するマイクロ波送波器間における加熱エネルギー分布 を示すコンピュータシミュレーション結果を示す図である。
第 1 0図は、 マイクロ波式土壌消毒方法と熱湯式土壌消毒方法とで経 済性を比較して示すグラフである。
第 1 1図は、 マイクロ波照射後の圃場の状態を示す説明図である。 第 1 2図は、 マイクロ波照射後の圃場と根菜類植え付け位置との関係 を示す説明図である。
第 1 3図は、 本発明装置の他の一例を示す構成図である。
第 1 4図は、 本発明装置の他の一例における作用説明図である。 発明を実施するための最良の形態
以下に、 この発明に係る土壌消毒方法並びにそれを実施するための土 壌消毒装置の好適な実施の一形態を添附図面を参照しつつ詳細に説明す る。 第 1図は本発明装置の使用状態における概略的側断面図、 第 2図は 本発明装置の概略的平面図、 第 3図は本発明装置の概略的正面図、 第 4 図はマイクロ波送波器の配置を示す本発明装置の平断面図である。
第 1図に示されるように、 本発明に係る圃場移動体 1 0 0は、 地中進 行部 Aと地上進行部 Bとを有する。 地中進行部 Aにはマイク口波送波器 2 1 a〜 2 1 dが内蔵されて保持されている。 地上進行部 Bにはマイク 口波発生源であるマグネトロン 3 1 a〜3 1 dが保持されている。 地上 進行部 Bに保持されたマグネトロン 3 1 a〜 3 1 dと地中進行部 Aに保 持されたマイク口波送波器 2 1 a〜 2 1 dとは導波管 4 1 a〜4 1 dを 介して結ばれている。 そのため、 マイクロ波送波器 2 1 a〜 2 1 dは地 中進行部 Aに内蔵保持されて地中を進行する一方、 地上進行部 Bに保持 されたマグネトロン 3 1 a〜 3 1 dから発生したマイク口波は導波管 4 1 a〜4 1 dを通じて地中のマイク口波発生器 2 1 a〜 2 1 dへと導力、 れるから、 マイクロ波送波器 2 1 a〜2 1 dそれ自体を地中に位置させ ることで、 圃場の地面への垂直照射ではマイクロ波が十分に届かない深 層の土壌 8であっても、 これに十分な強度を有するマイクロ波を照射し、 誘電加熱作用により消毒対象となる土壌の温度を消毒必要温度にまで確 実に上昇させ、 消毒目的とする微生物 (線虫等) を死滅又は無害化する ことができる。
より詳細に説明すると、 第 4図に示されるように、 圃場移動体 1 0 0 は、 ベースフレーム 1を主体として構成されている。 ベースフレーム 1 は、 前部支持バー 1 1と、 後部支持バー 1 2と、 左側部支持パー 1 3と、 右側部支持バー 1 4とからなる矩形フレーム内に、 8本の縦方向リブ 1 5と、 4本の横方向リブ 1 6とを組み込んで一体化したものである。 このベースフレーム 1には、 4個の地中潜行体 2 1, 2 2 , 2 3 , 2 4が垂直下向きに取り付けられている。 地中潜行体 2 1, 2 2 , 2 3 , 2 4のそれぞれは、 鋼板よりなるの左右の側壁板 2 5, 2 6を図示しな いスぺーサを介して対向一体化してなるものであり、 それら左右の側壁 板 2 5 , 2 6で囲まれる空所は上下方向へと連通すると共に、 前部は後 述する先き金 (第 1図参照) 2 7にて塞がれている。 第 1図に示される ように、 先き金 2 7の先端部には、 地中に潜り込ませるための前下がり のテーパ面を有する爪 2 8が設けられている。 したがって、 圃場移動体 1 0 0が前方へと進行すると、 先き金 2 7の先端に設けられた爪 2 8に 案内されて、 地中潜行体 2 1, 2 2, 2 3 , 2 4は地中に潜り込み、 そ れによりマイクロ波送波器 2 1 a〜 2 1 d、 2 2 a〜2 2 d、 2 3 a〜 2 3 d、 2 4 a〜 2 4 dについても、 地中潜行体に保護されつつ地中を 潜行することとなる。 なお、 第 1図は、 第 2図に示される圃場移動体 1 0 0を、 左側壁板 2 6を取り外して左側面より見た状態を示している。 第 4図に示されるように、 地中潜行体 2 1内の下部に水平一列に収容 された 4個のマイク口波送波器 2 1 a〜2 1 dのうちで、 進行方向後部 に配置された 2個のマイク口波送波器 2 l a , 2 1 bは進行方向に向か つて水平右向きに取り付けられており、 進行方向前部に配置された 2個 のマイク口波送波器 2 1 c , 2 1 dは進行方向に向かって水平左向きに 取り付けられている。 同様にして、 地中潜行体 2 2内の下部に水平一列 に収容された 4個のマイク口波送波器 2 2 a〜2 2 dのうちで、 進行方 向後部に配置された 2個のマイクロ波送波器 2 2 a, 2 2 は進行方向 に向かって水平左向きに取り付けられており、 進行方向前部に配置され た 2個のマイク口波送波器 2 2 c , 2 2 dは進行方向に向かって水平右 向きに取り付けられている。 同様にして、 地中潜行体 2 3内の下部に水 平一列に収容された 4個のマイク口波送波器 2 3 a〜 2 3 dのうちで、 進行方向後部に配置された 2個のマイクロ波送波器 2 3 a , 2 3 bは進 行方向に向かって水平右向きに取り付けられており、 進行方向前部に配 置された 2個のマイクロ波送波器 2 3 c , 2 3 dは進行方向に向かって 水平左向きに取り付けられている。 同様にして、 地中潜行体 2 4内の下 部に水平一列に収容された 4個のマイクロ波送波器 2 4 a〜2 4 dのう ちで、 進行方向後部に配置された 2個のマイクロ波送波器 2 4 a , 2 4 bは進行方向に向かって水平左向きに取り付けられており、 進行方向前 部に配置された 2個のマイクロ波送波器 2 4 c, 2 4 dは進行方向に向 かって水平右向きに取り付けられている。
そのため、 '第 4図から明らかなように、 地中潜行体 2 1に設けられた 2個のマイク口波送波器 2 l a , 2 1 bと隣接する地中潜行体 2 2に設 けられた 2個のマイクロ波送波器 2 2 a , 2 2 bとは互いに向かい合わ せに配置されることとなり、 それらのマイク口波送波器間には図中矢印 で示されるようにマイクロ波の重畳電場が形成される。 同様にして、 地 中潜行体 2 2に設けられた 2個のマイクロ波送波器 2 2 c , 2 2 dと隣 接する地中潜行体 2 3に設けられた 2個のマイクロ波送波器 2 3 c , 2
3 dとは互いに向かい合わせに配置されることとなり、 それらのマイク 口波送波器間にも図中矢印に示されるようにマイクロ波の重畳電場が形 成される。 同様にして、 地中潜行体 2 3に設けられた 2個のマイクロ波 送波器 2 3 a , 2 3 bと隣接する地中潜行体 2 4に設けられた 2個のマ ィクロ波送波器 2 4 a , 2 4 bとは互いに向かい合わせに配置されるこ ととなり、 それらのマイクロ波送波器間にも図中矢印に示されるように マイクロ波の重畳電場が形成される。 これにより、 圃場移動体 1 0 0の 移動に連れて、 4個の地中潜行体 2 1〜 2 4の間の土壌には、 強力なマ ィクロ波が放射され、 誘電加熱作用により土壌 8の加熱がなされること となる。
第 1図に戻って、 マイクロ波発生源であるマグネトロン (例えば、 2 .
4 5 G H z ) 3 1 a〜3 1 dは、 図示しない支持機構を介して導波管 4 1 a〜4 1 dの上部に支持固定され、 それには図示しないが冷却用のブ ロワが付設されている。 すなわち、 第 2図に示されるように、 4個の地 中潜行体 2 1〜 2 4のそれぞれには、 マイクロ波放射器に結合される 4 本の導波管 4 1 a〜 4 1 d, 4 2 a〜4 2 d , 4 3 a〜 4 3 d, 4 4 a 〜4 4 dが垂直方向に向けて収容されており、 それらの導波管の上端部 のそれぞれ毎にマグネトロンが設けられているのである。 そのため、 マ グネト口ンから発せされたマイクロ波は導波管を伝ってマイクロ波放射 器へと至り、 ここで水平方向右側又は左側へと向きを変えて地中へ放出 されることとなる。 なお、 地中潜行体 2 1〜2 4を構成する左右の側壁 板 2 5 , 2 6には、 図示しないが、 マイクロ波放射器の放射口に対応し て円形の開口が形成されており、 この円形開口を介してマイクロ波は地 中へと放射される。 なお、 図示しないが、 このマイクロ波放射用の開口 は、 泥等の異物がマイクロ波放射器へと入り込むことがないように、 テ フロン製の盲板で塞がれている。 ·
こうして地中に放出されたマイク口波は土壌の加熱に供されるのであ るが、 地中潜行体 2 1〜 2 4の左右側面とそれに接する土壌との間は密 に接してはいないから、 それらの隙間よりマイクロ波が地上へと漏洩す ることが考えられる。 そのため、 第 2図に示されるように、 相隣接する 地中潜行体 2 1〜 2 4の間の空所は鋼板等よりなるシールド板 9にて塞 がれている。 これにより、 土壌消毒作業中に作業者が誤って漏洩マイク 口波を浴びると言った危険が防止される。
第 1図に戻って、 ベースフレーム 1の後部にはブラケット 5 1が設け られ、 このブラケット 5 1には左右 2個の定規輪 6 5, 6 5が支持され ている (第 2図参照) 。 すなわち、 図において、 6 4は定規輪のシャフ ト、 6 3は定規輪のシャフトを支える二股状のヨーク、 6 1はヨーク 6 3に固定された支持ロッ ド、 6 2は支持ロッド 6 1の長さを調整するた めのストツパであり、 このストツパ 6 2の位置を上下することで支持口 ッ ド 6 1の突出長さを変更して、 定規輪 6 5の高さ (すなわち、 潜行深 さ D 1 ) を任意に調整可能となされている。 同様にして、 ベースフレー ム 1の前部にもブラケット 5 2が設けられ、 このブラケット 5 2にも左 右 2個の定規輪 6 5, 6 5が支持されている (第 2図参照) 。 すなわち、 図において、 6 4は定規輪のシャフト、 6 3は定規輪のシャフトを支え る二股状のヨーク、 6 1はヨーク 6 3に固定された支持ロッド、 6 2は 支持口ッド 6 1の長さを調整するためのストッパであり、 このストッノ、 ° 6 2の位置を上下することで支持ロッド 6 1の突出長さを変更して、 定 規輪 6 5の高さ (すなわち、 潜行探さ D 1 ) を任意'に調整可能となされ ている。
さらに、 第 2図に示されるように、 ベースフレーム 1の前端部には、 前部ベース板 7 3がー体的に固定されている。 この前部ベース板 7 3に は、 牽引作業の際に用いるための引き手 7 1並びに引き棒 7 2が取り付 けられている。
本発明装置の作用を説明するための側面図並びに正面図が第 7図及び 第 8図に示されている。 それらの図を参照しながら、 本発明装置を使用 した土壌消毒方法を以下に詳細に説明する。
圃場移動体 1 0 0の使用にあたっては、 先ず、 これを第 7図に示され るように、 耕耘機 2 0 0の後部に取り付けて牽引させる。 このとき、 定 規輪 6 5の高さを調整することにより、 地中潜行体 2 1〜2 4の潜行深 さ D 1 (第 1図参照) を適切に設定する。 根菜類等の植え付けが予定さ れる圃場の場合、 例えば地面から 4 0 c mの深さ範囲に存在する土壌を 消毒する。 この場合、 例えば、 1回目は 4 0 c mから 2 0 c mの深さ範 囲 (又は 2 0 c mから地表面までの深さ範囲) 、 2回目は 2 O c mから 地表面までの深さ範囲 (又は 4 0 c mから 2 0 c mの深さ範囲) と言つ たように 2回に分けて消毒を行うとすれば、 定規輪 6 5の高さをそのよ うな深さ D 1に合わせて設定する。 次に、 土壌消毒に先立って、 対象土 壌の複素誘電率を高めるために、 圃場の消毒予定領域に塩類である肥料 (例えば、 窒素、 リン酸、 カリウムを含む化成肥料等) を混入する。 尚、 肥料の混入は耕耘作業と同時に行ってもよい。 次に、 耕 '耘機 2 0 0に牽 引させながら、 圃場移動体 1 0 0を圃場の消毒予定領域に走行さ.せる。 1回目の走行が完了したならば、 定規輪 6 5の高さを変えて、 2回目の 走行を行わせる。 すると'、 各走行の毎に、 地中潜行体 2 1〜 2 4に挟ま れる領域に存在する土壌は、 第 8図に示されるように、 水平方向両側か らのマイクロ波照射による誘電加熱作用によって加熱昇温される。 この とき、 マイクロ波のパワー並びに圃場移動体の移動速度を適切に設定し ておけば、 消毒対象となる土壌の温度は摂氏 6 0度以上となり、 しかも その状態は少なくとも数分程度は維持されるから、 目的とする線虫を圃 場移動体 1 0 0の全幅並びに予定深さ (地表から 4 O c m程度) に亘っ て確実に死滅又は無害化させることができる。
こうして消毒された圃場の様子が、 第 1 1図及び第 1 2図に示されて いる。 第 1 1図に示されるように、 圃場に作物の植え付け予定ライン a l〜a 5が複数本存在する場合、 それらの植え付け予定ライン a l〜a 5を一纏めにして、 例えば地表から 4 0 c mの深さ範囲に亘つて、 かつ 2回に深さを分けて、 マイクロ波による土壌消毒が行われる。 そのため、 このような消毒後にあっては、 第 1 2図に示されるように、 植え付けラ イン a l〜a 5上のどこに植え付けられようとも、 根菜類 2 0 1は消毒 済領域 b 0〜b 4 , c 1 , c 2の範囲内において線虫の害を受けずに生 育できる。 なお、 第 1 2図において、 領域 b 0は地中潜行体 2 1の外側 の領域、 領域 b 1は地中潜行体 2 1と 2 2とにより挟まれた領域、 領域 b 2は地中潜行体 2 2と 2 3とにより挟まれた領域、 領域 b 3は地中潜 行体 2 3と 2 4とにより挟まれた領域、 領域 b 4は地中潜行体 2 4の外 側の領域である。 また、 c 1は例えば一回目の消毒層、 c 2は例えば 2 リ 回目の消毒層である。
なお、 以上の実施形態においては、 本発明の圃場移動体を牽引式に構 成したが、 それに替えて、 ミツドマウント式農作業機に装着する等して、 自走式に構成することもできることは勿論である。
また、 以上の実施形態においては、 地中潜行体を圃場移動体に 4列設 け、 それぞれにマイクロ波放射器を内蔵させたが、 地中潜行体の配列並 びにそれに内蔵されるマイクロ波放射器の個数並びに向きはこれに限定 されるものではない。
また、 以上の実施形態においては、 マイクロ波発生源として 2 . 4 5
G H zのマグネトロンを採用したが、 マイクロ波発生源の構成並びに周 波数もこれに限定されるものではない。
さらに、 以上の実施形態においては、 潜行深さ調整具として定規輪も 示したが、 例えば引き手 7 1と耕耘機 2 0 0とのジョイント部で高さ調 整できるような構造を採用してもよい。
次に、 本発明装置に好適なマイクロ波送波器付の導波管について第 5 図及び第 7図を参照して説明する。 第 5図及び第 6図に示されるように、 この導波管は、 断面長方形状を有する所定長さの角筒状導波管 9 1と、 この角筒状導波管 9 1の先端部に取り付けられる底の平坦な円形腕状放 射器 9 2とから構成されている。 角筒状導波管 9 1並びに円形腕状放射 器 9 2の素材としてはステンレス (S U S ) が使用される。 角筒状導波 管 9 1は幅 W並びに高さ Hからなる長方形状の断面形状を有する。 円形 腕状放射器 9 2は深さ D 2を有しかつ底部 9 2 aの平坦な腕状外形を有 する。 また、 円形腕状放射器 9 2の直径は、 角筒状導波管 9 1の幅 Wよ りも大径とされている。 円形腕状放射器 9 2の内周の一部は角筒状導波 管 9 1との接続のために切り欠かれる。 角筒状導波管 9 1の先端部は、 接続対象となる腕状放射器 9 2の周側面の曲率に合わせて切断される。 こうして予備加工された角筒状導波管 9 1と円形腕状放射器 9 2とは切 り口 9 l a , 9 1 bを整合させて溶接により結合される。 なお、 図にお いて、 9 1 cは取付け用のブラケットである。
こうして得られたマイクロ波送波器付き導波管によれば、 導波管に沿 つて伝播されたマイクロ波を、 導波管の先端部から直角方向に曲げて外 部に放射することができ、 しかも導波管先端で反射して戻るマイクロ波 が極めて少なく、 マイクロ波を効率よく地中へと放射することができる。 対向するマイクロ波送波器間における加熱エネルギ分布を示すコンビュ ータシミュレーション結果が第 9図に示されている。 同図に示されるよ うに、 第 5図及び第 6図に示される構造のマイクロ波送波器付きの導波 管を使用したところでは、 両マイクロ波放射器間に高密度の加熱エネル ギ分布が得られることが確認された。
また、 角筒状導波管 9 1の高さ Hと円形腕状放射器 9 2の深さ D 2と はほぼ同等であるため、 地中潜行体 2 1〜 2 4を構成する左右の側壁板 2 5 , 2 6の間にコンパク トに収容することができる。 加えて、 角筒状 導波管 9. 1と円形腕状放射器 9 2とを溶接一体化すると言う加工方法を 採用しているため、 素材として曲げ加工が難しい硬質素材 (S U S ) を 使用しつつも、 製作が容易であると言う利点もある。 すなわち、 角筒状 導波管それ自体をプレスで曲げ加工して、 角筒状導波管の先端部を直角 に曲げることも考えられるが、 その場合には著しく加工が困難であるの に対して、 この例のように、 放射器部分はプレスで成形しつつも、 これ と導波管部分とを溶接するようにすれば、 曲げ加工が不要であるから製 作が著しく容易となる。
マイクロ波式土壌消毒方法と熱湯式土壌消毒方法とで経済性を比較し て示すグラフが第 1 0図に示されている。 同図から明らかなように、 本 発明者等による試算によれば、 処理面積が 1 8 0ヘクタールを越える領 域においては、 熱湯散布方式よりも、 本発明方法の採用が有利であるこ とが判明した。
ところで、 ビニルハウス等で根菜類を栽培する状況を想定すると、 乗 用型の耕耘機等の大型作業機をビニルハウス内で走行させることは不都 合である。 そのような場合、 株の植え付け位置が既知であれば、 その部 分だけを局部的に深さ方向へと集中的に消毒すれば足りる。
このような場合には、 マイクロ波放射器を土壌中に略垂直方向に潜り 込ませ、 しかるのち、 マイクロ波放射器から処理対象となる土壌へとマ イク口波を放射する土壌処理方法に適用される農作業具が必要となる。 このような目的で使用される農作業具は、 第 1 3図に示されるように、 土壌中に略垂直方向へと差し込み可能な金属製本体 2 0 2を有する。 こ の本体 2 0 2の先端部には突入のための先鋭部 2 0 3を有する。 また、 本体 2 0 2の側面にはテフロン製の盲板 2 0 5で塞がれたマイク口波放 射口 2 0 4を有する。 また、 本体 2 0 2の後端部にはマイクロ波発生源 2 0 6からのマイク口波を受け入れるマイク口波導入口 2 0 7を有する さらに、 本体 2 0 2の内部にはマイクロ波導入口 2 0 7からマイク口波 送波口 2 0 4へとマイクロ波を案内する導波管 2 0 8が内蔵される。 な お、 第 1 3図において、 2 0 9はパワーアームに装着するためのプラケ ットである。
このような構成よりなる農作業具によれば、 小型パワーアームで土壌 中に垂直に差し込んだり引き抜いたりする手法 (第 1 4図参照) 、 各種 の垂直掘削装置を利用して必要により振動を加えながら土壌中に垂直に 差し込んだり引き抜いたりする手法、 シャベルや鍬のような手動作業具 に組み込んで、 人力で土壌中に潜り込ませる手法等のような様々な手法 を利用することにより、 圃場の所望スポットに差し込んで所定深さの土 壌にマイクロ波を照射することができる。 なお、 第 1 4図において、 2 1 0はパワーアーム装置の先端アーム、 2 1 1は小型パワーアーム装置 の駆動ロッド、 2 1 2はパワーアーム装置の中間アーム、 2 1 3は本体 2 0 2の土壌 2 1 5への揷抜方向を示す矢印、 2 1 4は放射されたマイ クロ波である。
なお、 以上の実施形態においては、 本発明方法及び装置を土壌中の根 菜類に有害な線虫駆除に適用したが、 本発明方法及び装置はそれ以外に も、 例えばマイクロ波照射による作物の生育調整、 発芽時期の調整、 土 壌改良等に広く適用することができる。 産業上の利用可能性
以上の説明で明らかなように、 本発明によれば、 圃場表面に対するマ ィクロ波照射では影響を与えにくい深層領域の土壌に対してマイクロ波 による影響を効果的に及ぼすることができ、 それにより、 例えば作物の 生育調整、 発芽時期の調整、 土壌消毒、 土壌改良のような様々な農業上 有益な作用を期待することができる。

Claims

請 求 の 範 囲
1 . マイクロ波放射器を土壌中に潜り込ませ、 しかるのち、 マイクロ 波放射器から処理対象となる土壌へとマイクロ波を放射する土壌処理方 法。
2 . マイクロ波の放射は、 土壌中に潜り込ませたマイクロ波放射器を 静止させた状態で行われる請求の範囲第 1項に記載の土壌処理方法。
3 . マイクロ波の放射は、 土壌中に潜り込ませたマイクロ波放射器を 略垂直方向へと移動させながら行われる請求の範囲第 1項に記載の土壌 処理方法。
4 . マイクロ波の放射は、 土壌中に潜り込ませたマイクロ波放射器を 略水平方向へと移動させながら行われる請求の範囲第 1項に記載の土壌 処理方法。
5 . 地下所定深さを潜行するマイク口波放射器から地中へとマイク口 波を放射することにより、 消毒対象となる土壌をマイクロ波放射器の進 行軌跡に沿って消毒する土壌消毒方法。
6 . マイク口波放射器から地中へと放射されるマイク口波の放射方向 がほぼ水平方向とされ、 それにより消毒対象となる土壌が所定の深さ範 囲内において消毒される請求の範囲第 5項に記載の土壌消毒方法。
7 . マイクロ波放射器の地中進行が同一進行軌跡に沿って 2回以上か つ深さを異ならせて行われ、 それによりマイクロ波放射器の進行に伴い 地面から所定深さに至る一連の土壌が消毒される請求の範囲第 6項に記 載の土壌消毒方法。
8 . 複数台のマイクロ波照射器が進行方向と直交する方向へと適当な 距離を隔てて配置され、 それによりマイクロ波放射器の進行に伴い消毒 対象となる土壌が地面に沿った所定幅に亘つて消毒される請求の範囲第 6項又は第 7項に記載の土壌消毒方法。
9 . 複数台のマイクロ波照射器のうちの相隣接する 2台が互いに放射 面を向かい合わせて配置され、 それにより 2台のマイクロ波照射器の間 にマイク口波の重畳電場が形成される請求の範囲第 8項に記載の土壌消 毒方法。
1 0 . マイクロ波の照射に先立ち、 消毒対象となる土壌に塩類である 肥料を混入する請求の範囲第 5項〜第 9項のいずれかに記載の土壌消毒 方法。
1 1 . 消毒は、 土壌の温度を誘電加熱により 6 0度以上に昇温させる ことで行われる請求の範囲第 5項〜第 1 0項のいずれかに記載の土壌消 毒方法。
1 2 . 昇温される土壌の深さ範囲が根菜類の植え付け深さ範囲である 請求の範囲第 5項〜第 1 0項のいずれかに記載の土壌消毒方法。
1 3 . 地中進行部と地上進行部とを有する圃場移動体と、 圃場移動体 の地中進行部に内蔵されたマイクロ波放射器と、 圃場移動体の地上進行 部に保持されたマイクロ波発生源と、 地上進行部に保持されたマイク口 波発生源と地中進行部に保持されたマイクロ波放射器とを繋ぐ導波管と、 を具備する土壌処理装置。
1 4 . 圃場移動体が、 進行方向と直交する方向へと適当な距離を隔て て配置された複数個の地中進行部を有し、 マイクロ波照射器は各地中進 行部のそれぞれに内蔵されている請求の範囲第 1 3項に記載の土壌処理 装置。
1 5 . マイクロ波放射器の放射中心軸が進行方向と直交する方向にお いてほぼ水平方向に向けられている請求の範囲第 1 3項又は第 1 4項の いずれかに記載の土壌処理装置。
1 6 . 相隣接する地中進行部のそれぞれに内蔵されたマイクロ波送波 器が互いに対向している請求の範囲第 1 5項に記載の土壌処理装置。
1 7 . 地中進行部の進行深さを調整するための進行深さ調整具を有す る請求の範囲第 1 3'項〜第 1 6項のいずれかに記載の土壌処理装置。
1 8 . 地中進行部に内蔵されたマイクロ波送波器から送波されたマイ クロ波が地上へと漏洩することを防止するための遮蔽体を有する請求の 範囲第 9項〜第 1 2項のいずれかに記載の土壌処理装置。
1 9 . 圃場移動体が牽引式とされた請求の範囲第 1 3項〜第 1 8項の いずれかに記載の土壌処理装置。
2 0 . 圃場移動体が自走式とされた請求の範囲第 1 3項〜第 1 8項の いずれかに記載の土壌処理装置。
2 1 . マイクロ波放射器を土壌中に潜り込ませ、 しかるのち、 マイク 口波放射器から処理対象となる土壌へとマイク口波を放射する土壌処理 方法に適用される農作業具であって、
土壌中に略垂直方向へと差し込み可能な構造体とされ、
先端部には突入のための先鋭部を有し、
先端部の側面にはマイク口波放射口を有し、
後端部にはマイクロ波導入口を有し、
内部には、 マイク口波導入口からマイクロ波送波口へとマイク口波を 案内する導波管が内蔵され、
それにより、 圃場の所望スポットに差し込んで所定深さの土壌にマイ ク口波を照射できるようにした農作業具。
PCT/JP2003/011953 2003-03-28 2003-09-19 土壌処理方法 WO2004086860A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03816550A EP1611788A1 (en) 2003-03-28 2003-09-19 Soil processing method
US10/551,264 US20060283364A1 (en) 2003-03-28 2003-09-19 Soil processing method
AU2003264501A AU2003264501A1 (en) 2003-03-28 2003-09-19 Soil processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003092909A JP3765490B2 (ja) 2003-03-28 2003-03-28 土壌消毒方法及び装置
JP2003-92909 2003-03-28

Publications (1)

Publication Number Publication Date
WO2004086860A1 true WO2004086860A1 (ja) 2004-10-14

Family

ID=33127343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011953 WO2004086860A1 (ja) 2003-03-28 2003-09-19 土壌処理方法

Country Status (7)

Country Link
US (1) US20060283364A1 (ja)
EP (1) EP1611788A1 (ja)
JP (1) JP3765490B2 (ja)
KR (1) KR20060010733A (ja)
CN (1) CN100418416C (ja)
AU (1) AU2003264501A1 (ja)
WO (1) WO2004086860A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900648A (zh) * 2016-04-22 2016-08-31 固镇县绿禾家庭农场 一种无公害冬瓜的种植方法
CN105900645A (zh) * 2016-04-22 2016-08-31 固镇县绿禾家庭农场 一种优质黄瓜的种植方法
CN105917892A (zh) * 2016-04-22 2016-09-07 固镇县绿禾家庭农场 一种优质白菜的种植方法
CN105917891A (zh) * 2016-04-22 2016-09-07 固镇县绿禾家庭农场 一种优质高产芥蓝的种植方法
CN105917894A (zh) * 2016-04-22 2016-09-07 固镇县绿禾家庭农场 一种白菜的种植方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100583249B1 (ko) * 2006-02-16 2006-05-25 (주)수림건설 준설토의 배수로 형성과 해충의 박멸을 위한 일체식시공장비 및 그의 공법
DE102007043326A1 (de) * 2007-09-12 2009-03-19 Claas Saulgau Gmbh Verfahren und Vorrichtung zur Bekämpfung einer Verbreitung von fressenden Pflanzenschädlingen
FR2963242B1 (fr) * 2010-07-29 2013-04-26 Cie Continentale Simmons Procede de desinfection d'elements de literie par micro-ondes, notamment de matelas, et installation associee
JP2013031394A (ja) * 2011-08-01 2013-02-14 National Agriculture & Food Research Organization 土壌処理方法及び土壌処理装置
CN102487911B (zh) * 2011-12-23 2013-06-05 潍坊科技学院 一种在大蒜生长期灭杀蒜蛆的微波照射机
CN102487910B (zh) * 2011-12-23 2013-04-17 潍坊科技学院 一种大蒜生长期灭杀蒜蛆的方法
CN102487930B (zh) * 2011-12-23 2013-08-28 潍坊科技学院 一种作物全生育期微波灭杀根结线虫的方法
CN102487933B (zh) * 2011-12-23 2013-08-14 潍坊科技学院 一种灭杀保护地蔬菜全生育期根结线虫的微波机
CN102487929B (zh) * 2011-12-23 2013-08-28 潍坊科技学院 一种灭杀地下害虫蛴螬的方法
US20140146632A1 (en) * 2012-05-04 2014-05-29 Leap Technologies, Inc. Microwave processing unit for pavement recycling and asphalt pavement production
KR101515867B1 (ko) * 2014-11-05 2015-05-04 (주)에이에이치씨시스템 마그네트론을 이용한 칡 제거 장치
KR101520881B1 (ko) * 2014-11-07 2015-05-15 (주)에이에이치씨시스템 마그네트론을 이용한 잡초 제거 장치
WO2017165664A1 (en) 2016-03-23 2017-09-28 A.L.M Holding Company Batch asphalt mix plant
US10512222B1 (en) 2016-08-08 2019-12-24 Edward E. Woerner Steam treatment of soil
US10433494B1 (en) * 2016-08-08 2019-10-08 Edward E. Woerner Steam treatment of soil
CN106376382A (zh) * 2016-08-30 2017-02-08 广德县时顺竹木有限公司 一种智能移动园林花圃与其操作方法
DK179614B1 (da) * 2016-10-28 2019-03-01 Weed Fighter Aps Maskine og metode til ukrudtsbekæmpelse med mikrobølger
PL3599810T3 (pl) * 2017-03-21 2021-06-28 Soil Steam International As Układ i sposób przetwarzania gleby
BR112019023237A2 (pt) 2017-05-09 2020-06-02 Taxon Biosciences Inc. Micróbios de promoção de crescimento de planta, composições, e usos
CN107624291A (zh) * 2017-08-28 2018-01-26 杭州波光中道农业科技有限责任公司 一种土壤催肥电路和土壤催肥装置
WO2019104592A1 (zh) * 2017-11-30 2019-06-06 惠州大亚湾四海风园林工程有限公司 一种土壤病虫害微波防治设备
CN108184808B (zh) * 2018-03-12 2023-07-25 宁夏大学 微波消毒机构以及微波消毒设备
US20210400985A1 (en) 2018-10-10 2021-12-30 Pioneer Hi-Bred International, Inc. Plant growth-promoting microbes, compositions, and uses
CN110278935B (zh) * 2019-06-06 2021-11-30 广西科学院 一种利用微波对土壤灭菌杀虫的方法
IL272383A (en) * 2020-01-30 2021-08-31 Barel Nimrod Purification of contaminated soils by using electric voltage
NL2026583B1 (en) * 2020-09-30 2022-06-01 Rootbarrier B V Systems and methods for killing or damaging a plant
KR102377111B1 (ko) * 2021-04-02 2022-03-21 김영숙 마이크로파를 사용한 다환경 방제장치 및 이를 이용한 방제 방법
KR102373976B1 (ko) * 2021-04-02 2022-03-11 김영숙 마이크로파를 사용하는 토양방제장치 및 이를 이용한 토양방제방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720882U (ja) * 1980-07-14 1982-02-03
US4778970A (en) * 1985-08-29 1988-10-18 Electromagnetic Energy Corporation Viscosity reduction apparatus using microwave energy
US5287818A (en) * 1993-05-11 1994-02-22 Aqua Heat Technology Inc. Method for killing soil pathogens with micro-wave energy
US20020090268A1 (en) * 2001-01-08 2002-07-11 Haller Harold Earl Microwave energy applicator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2064522A (en) * 1931-12-10 1936-12-15 Jesse H Davis Method of and apparatus for treating materials for the destruction of insect life therein
US4092800A (en) * 1973-09-24 1978-06-06 Phytox Corporation Vegetation control
CA2054841C (en) * 1991-10-31 1999-12-07 Erick Schmidt Methods for treating infectious wastes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720882U (ja) * 1980-07-14 1982-02-03
US4778970A (en) * 1985-08-29 1988-10-18 Electromagnetic Energy Corporation Viscosity reduction apparatus using microwave energy
US5287818A (en) * 1993-05-11 1994-02-22 Aqua Heat Technology Inc. Method for killing soil pathogens with micro-wave energy
US20020090268A1 (en) * 2001-01-08 2002-07-11 Haller Harold Earl Microwave energy applicator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900648A (zh) * 2016-04-22 2016-08-31 固镇县绿禾家庭农场 一种无公害冬瓜的种植方法
CN105900645A (zh) * 2016-04-22 2016-08-31 固镇县绿禾家庭农场 一种优质黄瓜的种植方法
CN105917892A (zh) * 2016-04-22 2016-09-07 固镇县绿禾家庭农场 一种优质白菜的种植方法
CN105917891A (zh) * 2016-04-22 2016-09-07 固镇县绿禾家庭农场 一种优质高产芥蓝的种植方法
CN105917894A (zh) * 2016-04-22 2016-09-07 固镇县绿禾家庭农场 一种白菜的种植方法

Also Published As

Publication number Publication date
CN100418416C (zh) 2008-09-17
KR20060010733A (ko) 2006-02-02
JP3765490B2 (ja) 2006-04-12
CN1829436A (zh) 2006-09-06
JP2004298026A (ja) 2004-10-28
US20060283364A1 (en) 2006-12-21
AU2003264501A1 (en) 2004-10-25
EP1611788A1 (en) 2006-01-04

Similar Documents

Publication Publication Date Title
WO2004086860A1 (ja) 土壌処理方法
US20030215354A1 (en) Systems and methods for in situ soil sterilization, insect extermination and weed killing
US6401637B1 (en) Microwave energy applicator
JP2009148207A (ja) 土壌処理方法及び同方法に好適な農作業機
US5287818A (en) Method for killing soil pathogens with micro-wave energy
KR100472190B1 (ko) 토양살균방법및토양살균장치
JP6818713B2 (ja) 電磁波地中照射装置
CA2483749A1 (en) Method and device for combating pests living in the earth, especially termites
BR112020017642A2 (pt) Tratamento de solo usando peróxido
Peruzzi et al. An innovative self-propelled machine for soil disinfection using steam and chemicals in an exothermic reaction
KR101225931B1 (ko) 토양멸균기
US7560673B2 (en) Device for soil sterilization, insect extermination, and weed killing using microwave energy
EP3030069A1 (en) Method for preparing agricultural grounds for cultivations and machine for performing such method
EP1183943B1 (en) Method and apparatus for the disinfection of soil
JP2002521039A (ja) 農作物の病原生物及び有害生物を駆除するための方法及び装置
JP2008072964A (ja) 土壌殺菌装置
JP2011019501A (ja) 播種装置及び播種方法
FI74191B (fi) FOERFARANDE FOER SKYDDANDE AV NYTTOVAEXTER. SIIRRETTY PAEIVAEMAEAERAE-FOERSKJUTET DATUM PL 14 ç 13.12.85.
KR102135127B1 (ko) 씨앗 발아 억제 장치
KR102373976B1 (ko) 마이크로파를 사용하는 토양방제장치 및 이를 이용한 토양방제방법
NL1022156C2 (nl) Inrichting en werkwijze voor het steriliseren van grond.
US20230232811A1 (en) Microwaves for plant and pest control
JPS5841820Y2 (ja) 高周波土壌消毒装置
CN117546826A (zh) 一种微波灭杀土壤病虫草害的装置和方法
JP2020110549A (ja) Led利用の移動式土壌消毒装置利用の方法。

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038262428

Country of ref document: CN

Ref document number: 1020057018344

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003816550

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003816550

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057018344

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006283364

Country of ref document: US

Ref document number: 10551264

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10551264

Country of ref document: US