WO2004085687A1 - Verfahren zum selektiven gewinnen von gold aus goldhaltigen materialien - Google Patents

Verfahren zum selektiven gewinnen von gold aus goldhaltigen materialien Download PDF

Info

Publication number
WO2004085687A1
WO2004085687A1 PCT/EP2004/003249 EP2004003249W WO2004085687A1 WO 2004085687 A1 WO2004085687 A1 WO 2004085687A1 EP 2004003249 W EP2004003249 W EP 2004003249W WO 2004085687 A1 WO2004085687 A1 WO 2004085687A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
metals
complexing agent
oxidizing agent
agent
Prior art date
Application number
PCT/EP2004/003249
Other languages
English (en)
French (fr)
Inventor
Ralf Schmidt
Jutta Mueller
Karl-Heinz Zuber
Hansjörg Griese
Monika Hannemann
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2004085687A1 publication Critical patent/WO2004085687A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/046Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/16Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
    • C22B3/1666Leaching with heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/16Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
    • C22B3/1666Leaching with heterocyclic compounds
    • C22B3/1675Leaching with a mixture of organic agents wherein one agent at least is a heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/36Heterocyclic compounds
    • C22B3/362Heterocyclic compounds of a single type
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/406Mixtures at least one compound thereof being a heterocyclic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for extracting gold from materials such as mixtures or mixtures which may contain gold only in very small amounts.
  • the method according to the invention is particularly suitable for mining gold or selectively recovering gold from mixtures which can contain a wide variety of materials, for example organic components such as epoxy resins, ceramic material, glass fibers, metal-containing compounds and metals such as gold, copper, nickel, tin , Lead and / or iron.
  • the proportion of gold in the solid earth's crust is approximately 4 mg / t (4 ppb).
  • Gold is particularly found in quartz rock in the form of passages, veins, etc. Here, the gold is often accompanied by pyrite, arsenic gravel, copper and. Silver ores. Most of the gold is solid (mostly the gold tinsel is microscopic). It is almost always alloyed with silver, but can also contain impurities in copper, platinum and other metals.
  • gold minerals especially telluride
  • Sylvanite AgAuTe
  • Nagyagite AuTe 2 x 6Pb (S, Te)]. That in Transylvania u.
  • Electrum found on the Altai is a light gold with 15-30% silver.
  • the original metal irregularly sprinkled in quartz veins from mountains in quantities of 1-25 g per t rock.
  • Berggold is weathered in the river sands u. is then called gold soap.
  • Gold is extracted on an industrial scale in the form of ore mining, the gold-containing ore obtained being chemically "leached".
  • the most commonly practiced process for this is cynaid leaching, which takes advantage of the good complexing properties of cyanide ions to dissolve metallic gold and separate gold ions from their natural chemical partners in the ore.
  • a variety of publications from the past Decades have dealt with specific aspects of gold mining.
  • Zinc powder is reductively precipitated.
  • metals such as silver, copper or iron are carried along because they also form cyanide complexes.
  • Alternative processing methods are selective adsorption on activated carbon (e.g. carbon in pulp process - CIP) or ion exchangers (e.g. resin in pulv process - RIP) with subsequent desorption with concentrated cyanide solution or zinc cyanate in ion exchangers.
  • activated carbon e.g. carbon in pulp process - CIP
  • ion exchangers e.g. resin in pulv process - RIP
  • the gold ions can be reduced from the cyanide complexes electrolytically or by adding zinc powder.
  • Patent 3,886,055 describes a method for separating silver, gold or one Silver-gold alloy made of a composite metal body in which the silver, gold or alloy is present as an outer layer over a ferritic or austenitic, stainless steel substrate.
  • the separation is carried out by controlled potentiometric electrolysis, in which the metal acts as an anode and in which the electrolyte solution contains an alkali metal cyanide and an alkali metal hydroxide.
  • CN 1031255 teaches the teaching of leaching gold with the help of thiourea.
  • complex formation of other heavy metals must be assumed, since thiourea forms coordinative compounds with many metals.
  • amalgams are formed by contacting the metals present in the ore, which are present in reduced form, with mercury and are fractionated by subsequent distillation. All processes have in common that the primary dissolution of the gold is not selective and, consequently, the fractions have to be separated by the complex steps described.
  • the MAK values of Hg are set at 0.1 mg / m 3 (air saturated with gaseous Hg contains 29.6 mg / m 3 Hg) and cyanide at 5 mg / m 3 .
  • 90 ml / m 3 cyanide is life-threatening or fatal after prolonged exposure, and concentrations of more than 180 ml / m 3 are quickly fatal.
  • the value for LD 50 oral rat (acute oral toxicity expressed as a lethal dose LD 50 at which 50% of the test animals die) is 5 mg / kg.
  • Gold is also associated with various accompanying metals, especially in waste and old products from electrical engineering / electronics.
  • Gold is used in the electronics industry because of its high chemical resistance as a surface finish on printed circuit boards for the realization of various
  • connection technologies such as soldering, gluing and wire bonding as well as to ensure low contact resistance at connection points such as connectors and contacts e.g. used in relays.
  • the coating takes place on metallic surfaces (mostly nickel). Flash gold layers on bond pads have a thickness of 100 nm, autocatalytically deposited layers especially for thermosonic bonding are larger than 0.3 ⁇ m.
  • the gold bonding wire used has a thickness of approximately 10 to 30 ⁇ m.
  • the recovery of gold contained in electronic assemblies is desirable since the average gold content e.g. of printed circuit boards from applications such as information and communication technology is around 0.1 to 1.1 g / kg. These levels correspond to those of good ore deposits. In e.g. In Germany approx. 100,000 t of electronic assemblies accruing annually contain approx. 5 t of gold.
  • the object of the present invention is to provide a method with which gold can be obtained selectively from any materials, mixtures or mixtures and whose toxicity is low.
  • the method according to the invention is intended to avoid entraining other (noble) metals which may also be present in the material, the mixture or the mixture and to enable gold to be separated off to a high degree of purity.
  • the stated object is achieved by the provision of a leaching process in which, in addition to one or more oxidizing agents and possibly other additives such as wetting agents, pH stabilizers, inhibitors or accelerators are added exclusively (at least) to a complexing agent for gold which is selected in such a way that it may not be able to complex, or only to an insignificant amount, other metals present in the material, the mixture or the mixture to be treated.
  • oxidizing agents in addition to one or more oxidizing agents and possibly other additives such as wetting agents, pH stabilizers, inhibitors or accelerators are added exclusively (at least) to a complexing agent for gold which is selected in such a way that it may not be able to complex, or only to an insignificant amount, other metals present in the material, the mixture or the mixture to be treated.
  • the process according to the invention generally makes subsequent fractionation steps superfluous. This saves working time and materials; Above all, however, the environmental hazard potential is greatly reduced.
  • the complexed and oxidized gold can be reduced directly to metal or can be recycled in some other way.
  • the complexing agent which can be used according to the invention is selected such that it complexes only or essentially only the gold among the metals present in the material.
  • it should meet the criterion of water solubility if possible, since the process according to the invention is generally carried out with aqueous solvents or suspending agents.
  • Cyanide is unsuitable for this because cyanide complexes a large number of metals and is highly toxic. The same applies to a whole range of compounds that complex metals via one or more nitrogen bonds.
  • Phosphines such as triphenylphosphine are generally also unsuitable, since they are insoluble and / or unstable in water or an aqueous environment.
  • Suitable complexing agents are known to the person skilled in the art.
  • L-histidine an amino acid with affinity for gold and nickel. Accordingly, L-histidine can be used if the material contains no or only insignificant amounts of nickel. Dimercaptopropanesulfonic acid can also be used, although it will generally not be used for cost reasons.
  • mercaptotriazole in particular 3-mercapto-1,2,4-triazole. This substance forms stable complexes with gold (I), but under certain circumstances also with palladiu (II).
  • mercaptotriazole is significantly more specific than gold relative to a number of frequently occurring accompanying metals (nickel, copper, silver, palladium, iron) than some other compounds containing SH groups, such as mercaptosuccinic acid or
  • Dimercaptopropanesulfonic acid so that this substance is particularly preferred as a complexing agent.
  • all of the aforementioned substances are readily water-soluble and temperature resistant. It is expedient to use the complexing agent in a concentration of approximately 0.01 to 1 mol / 1 etching solution. About 0.05 to 0.5 mol / l are preferred.
  • the oxidizing agent (s) to be used according to the invention should also be selected from the viewpoint of selectivity with regard to the accompanying metals present.
  • the existing Go.ld, but not alloyed with it or other metal in the mixture or essentially oxidized in a compound / ore and brought into solution should be essentially exclusively present.
  • At least those metals that can be complexed by the complexing agent used should not be oxidized.
  • the oxidizing agent in the etching solution used should be largely chemically stable. In particular, it must be chosen so that no or essentially no side reactions occur with the complexing agent or other components contained. For these reasons, most common strong oxidizing agents such as persulfate, permanganate or hydrogen peroxide are not suitable.
  • Aromatic nitro compounds which have good stability in aqueous solution and nevertheless can act as a selective oxidizing agent have proven to be favorable oxidizing agents for the purposes of the present invention.
  • O- and / or p-substituted aromatics are preferably used.
  • 2-nitrobenzoic acid 2-aminobenzoic acid is formed by reducing the nitro to the amino group:
  • Nitrobenzenesulfonic acid may be mentioned as a further example of a nitroaromatic which can be used.
  • the pK a values of the nitro compounds are preferably in the
  • etching solution is advantageously 0.01 to 1 mol / 1 etching solution, preferably 0.05 to 0.5 mol / 1.
  • the process according to the invention can be operated in a pH range from about 6 to 12, preferably from 6.5 to 9, and particularly preferably at pH 7.5 to 8. Since the reaction characteristics (see equation 1) can lead to considerable pH shifts, a pH stabilizer (buffer) is preferably added to the system to stabilize the dissolution conditions.
  • the buffer systems suitable in the desired pH range and known to the person skilled in the art can be used.
  • the operating temperature can be set between 20 and 80 ° C. Convection can be used, but is not mandatory.
  • the gold can then be reduced at any time using standard methods, for example by reducing activated carbon or by electrolytic means.
  • the metals to be examined are applied as thin layers with thicknesses of 50 to 100 nm on inert material (e.g. glass ceramic).
  • inert material e.g. glass ceramic
  • PVD processes are well suited for this.
  • the prepared samples are exposed to the respective test solutions together for a period of 2 weeks and temporarily subjected to a thermal load of up to 80 ° C. The evaluation can be carried out visually on these samples, if necessary using an incident light microscope.
  • printed circuit boards have an average metal content of 0.04% gold, 0.02% palladium, 0.004% platinum, 0.3% silver, 14.4% copper, 1.9% tin, 1.3% nickel, 2, 5% lead and 7.3% iron.
  • the electronic scrap was placed on a discontinuously operated gold dissolver.
  • the working vessel was set up over a plastic tub. Loading and removal of residues took place from above.
  • the feed material was sunk into the working vessel in a plastic woven bag.
  • Process liquid and rinsing water were drained into the PE canister via the floor drain valve.
  • the process solution was heated to 80 ° C cyclically every 5 hours with a duration of 2 hours.
  • the etching solution used for the gold dissolution had the following composition:
  • LP200 is a surface-active component that acts as a wetting agent.
  • the addition of potassium bromide favors the avoidance of a surface inhibition of the gold.
  • the solution used is less toxic than cyanide baths (toxic potential of the complexing agent compared to cyanide 7% TPI) and can potentially be subjected to a biological wastewater treatment process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum selektiven Gewinnen von Gold aus goldhaltigen Materialien. Das goldhaltige Material wird einer Ätzlösung ausgesetzt, die ein Oxidationsmittel für Gold umfasst, welches, verglichen mit der für andere im Material vorhandene Metalle, eine hohe Selektivität für Gold aufweist. Ausserdem umfasst die Ätzlösung ein Komplexierungsmittel, das Gold im wesentlichen selektiv gegenüber den weiteren im Material vorhandenen Metallen komplexieren kann. Das Komplexierungsmittel wird vorzugsweise unter SH-gruppenhaltigen Substanzen ausgewählt und ist besonders bevorzugt 3-Mercapto-1,2,4-trizol. Das Oxidationsmittel wird vorzugsweise unter aromatischen Nitroverbindungen ausgewählt, beispielsweise 2-Nitrobenzoesäure.

Description

Verfahren zum selektiven Gewinnen von Gold aus goldhaltigen Materialien
Die vorliegende Erfindung betrifft ein Verfahren zum Gewinnen von Gold aus Materialien wie Mischungen oder Gemengen, die Gold möglicherweise nur in sehr geringen Mengen enthalten. Insbesondere ist das erfindungsgemäße Verfahren geeignet, um bergmännisch Gold abzubauen oder Gold selektiv aus Gemengen zurück zu gewinnen, die die verschiedensten Materialien enthalten können, beispielsweise organische Bestandteile wie Epoxidharze, keramisches Material, Glasfasern, metallhaltige Verbindungen und Metalle wie Gold, Kupfer, Nickel, Zinn, Blei und/oder Eisen.
Der Anteil von Gold an der festen Erdkruste beträgt etwa 4 mg/t (4 ppb) . Gold befindet sich insbesondere im Quarzgestein in Form von Gängen, Adern usw.. Hier ist das Gold oft begleitet von Pyrit, Arsenkies, Kupfer- u. Silbererzen. Das meiste Gold kommt gediegen vor (meist sind die Gold-Flitter mikroskopisch klein) . Es ist es fast immer mit Silber legiert, kann aber auch Verunreinigungen von Kupfer, Platin und weiteren Metallen enthalten. Daneben findet man in der Natur auch einige Gold- Minerale (v.a. Telluride), beispielsweise Calaverit (AuTe2) , Sylvanit (AgAuTe ) , Nagyagit [AuTe2 x 6Pb(S, Te) ] . Das in Siebenbürgen u. am Altai gefundene Elektrum ist ein lichtes Gold mit 15-30% Silber. Das ursprüngliche, in Mengen von 1-25 g je t Gestein in Quarzgänge von Gebirgen unregelmäßig eingesprengte, metall . Berggold kommt bei der Verwitterung in die Flußsande u. heißt dann Seifengold.
Die Gewinnung von Gold erfolgt großtechnisch in Form von Erzabbau, wobei das gewonnene goldhaltige Erz chemisch "gelaugt" wird. Das am häufigsten praktizierte Verfahren hierfür ist die Cynaidlaugerei, die sich die guten Komplexierungseigenschaften von Cyanidionen zunutze macht, um metallisches Gold aufzulösen und Goldionen von ihren natürlichen chemischen Partnern im Erz zu trennen. Eine Vielzahl von Veröffentlichungen der vergangenen Jahrzehnte hat sich mit spezifischen Aspekten der Goldlaugerei befasst .
Allerdings werden beim Laugen die im Erz enthaltenen Begleitmetalle ebenfalls gelöst, so dass im Anschluss an das
Laugen aufwändige Fraktionierungsschritte notwendig sind, um das gewünschte Metall in Reinform zu erhalten. So wird Gold aus einem z.B. Platinmetalle enthaltenden Erz häufig mit stark alkalischen cyanidischen Lösungen und Luftsauerstoff oder alternativen Oxidationsmitteln ausgelaugt, worauf es mit
Zinkpulver reduktiv ausgefällt wird. Dabei werden Begleitmetalle wie Silber, Kupfer oder Eisen mitgeschleppt, da diese ebenfalls cyanidische Komplexe bilden.
Alternative Aufbereitungsverfahren sind die selektive Adsorption an Aktivkohle (z.B. carbon in pulp process - CIP) oder Ionenaustauschern (z.B. resin in pulv process - RIP) mit nachfolgender Desorption mit konzentrierter Cyanidlösung bzw. Zinkcyanat bei Ionenaustauschern. Die Goldionen können aus den cyanidischen Komplexen elektrolytisch oder durch Zugaben von Zinkpulver reduziert werden.
In der US 5,147,617 ist vorgeschlagen worden, goldhaltige Erze mit Schwefelsäure zu extrahieren. Das Erz wird gemahlen, die Aufschlämmung wird mit einem Chelatisierungsmittel versetzt und dann einer gleichzeitigen S02-Laugung und einem
Ionenaustauschharz-Adsorptionsschritt in Gegenwart von gelöstem Sauerstoff unterworfen. Das Gold wird anschließend durch chemisches Stripping wieder vom Harz getrennt. Gemäß der US- Patentschrift 5,147,618 wird die Aufschlämmung mit einem oxidierenden und komplexierenden Mittel wie H2S oder einem Sulfit-Salz behandelt. Ein chelatisierendes Mittel, S02, Luft und ein Anionaustauscherharz werden zugesetzt, um das Erz einer gleichzeitigen schwefligsauren Extraktion in Kombination mit einem Adsorptionsschritt an das Harz zu unterwerfen. Das an das Harz gebundene Gold wird später mit Hilfe von chemischem Stripping wieder davon getrennt. Die US-Patentschrift 3,886,055 beschreibt ein Verfahren zum Trennen von Silber, Gold oder einer Silber-Gold-Legierung aus einem Komposit-Metallkörper, in dem das Silber, das Gold oder die Legierung als äußere Schicht über einem ferritischen oder austenitischen, rostfreien Stahlsubstrat vorhanden ist. Die Abtrennung erfolgt durch kontrollierte potentiometrische Elektrolyse, in der das Metall als Anode fungiert und in der die Elektrolytlösung ein Alkalimetall-cyanid und ein Alkalimetall-hydroxid enthält.
Die CN 1031255 vermittelt die Lehre, Gold mit Hilfe von Thioharnstoff zu laugen. Auch hier muß von der Komplexbildung weiterer Schwermetalle ausgegangen werden, da Thioharnstoff mit vielen Metallen koordinative Verbindungen eingeht.
In einem weiteren Trennungsverfahren werden durch Kontakt der im Erz enthaltenen, in reduzierter Form vorliegenden Metalle mit Quecksilber Amalgame gebildet und durch anschließende Destillation fraktioniert. Allen Verfahren ist gemein, dass die primäre Auflösung des Goldes nicht selektiv ist und demzufolge durch die beschriebenen aufwändigen Schritte eine Trennung der Fraktionen vorgenommen werden muss.
Für diese komventionellen eingesetzten Chemikalien zur Goldgewinnung besteht erhebliches (human) toxikologisches und ökologisches Gefährdungspotential. So sind beispielsweise die MAK-Werte von Hg auf 0, 1 mg /m3 (mit gasförmigem Hg gesättigte Luft enthält 29,6 mg/m3 Hg) und von Cyanid auf 5 mg/m3 festgesetzt. 90 ml/m3 Cyanid wirkt lebensgefährlich bzw. tödlich nach längerer Einwirkung, und Konzentrationen von mehr als 180 ml/m3 wirken rasch tödlich. Der Wert für LD50 (oral Ratte) (akute orale Toxizität ausgedrückt als letale Dosis LD50, bei der 50% der Versuchstiere sterben) beträgt 5 mg/kg.
Vom Cyanwasserstoff geht neben -seiner Giftigkeit durch seine hohe Entzündlichkeit eine große Umweltgefährdung aus. Die Instabilität von Cyanwasserstoff bzw. seinen wässrigen Lösungen kann zu explosionsartig verlaufenden Polymerisationen unter starker Wärmeentwicklung führen. Wenn die Gefahr der Cyanwasserstoffbildung besteht, sind die Explosionsschutz- Richtlinien einzuhalten.
Gold findet sich aber auch vergesellschaftet mit diversen Begleitmetallen vor allem in Abfällen und Altprodukten der Eletrotechnik/Elektronik.
Gold wird in der Elektronikindustrie wegen seiner hohen chemischen Beständigkeit als Oberflächen-Finish auf Leiterplatten zur Realisierung der verschiedenen
Verbindungstechniken wie Löten, Kleben und Drahtbonden sowie zur Gewährleistung niedriger Kontaktwiderstände an Verbindungsstellen, wie Steckverbindern und Kontakten z.B. in Relais, eingesetzt. Die Beschichtung erfolgt auf metallischen Flächen (meist Nickel) . Flashgoldschichten auf Bondpads haben Stärken von 100 nm, autokatalytisch abgeschiedene Schichten speziell für das Thermosonicbonden sind größer 0,3 μm. Der verwendete Gold-Bonddraht hat eine Dicke von etwa 10 bis 30 μm. Die Rückgewinnung von in elektronischen Baugruppen enthaltenem Gold ist erstrebenswert, da der durchschnittliche Goldgehalt z.B. von Leiterplatten aus Anwendungen wie der Informations- und Kommunikationstechnik bei etwa 0,1 bis 1,1 g/kg liegt. Diese Gehalte entsprechen denen guter Erzlagerstätten. In den z.B. in Deutschland jährlich anfallenden ca. 100.000 t elektronischen Baugruppen sind ca. 5 t Gold enthalten.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren bereitzustellen, mit dem Gold selektiv aus beliebigen Materialien, Mischungen oder Gemengen gewonnen werden kann und dessen Toxizität niedrig ist. Insbesondere soll das erfindungsgemäße Verfahren das Mitschleppen von möglicherweise in dem Material, der Mischung oder dem Gemenge ebenfalls vorhandenen anderen (Edel-) Metallen vermeiden und die Abtrennung von Gold in einem hohen Reinheitsgrad ermöglichen.
Die genannte Aufgabe wird durch die Bereitstellung eines Laugungsverfahrens gelöst, bei dem neben einem oder mehreren Oxidationsmitteln und ggf. weiteren Zusätzen wie Netzmitteln, pH-Stabilisatoren, Inhibitoren oder Beschleunigern ausschließlich (mindestens) ein Komplexbildner für Gold zugesetzt wird, der derartig ausgewählt ist, dass er möglicherweise in dem zu behandelnden Material, der Mischung oder dem Gemenge vorhandene weitere Metalle nicht oder nur in unwesentlicher Menge komplexieren kann. Das erfindungsgemäße Verfahren macht anschließende Fraktionierungsschritte in der Regel überflüssig. Dadurch werden Arbeitszeit und Materialien eingespart; vor allem wird aber auch das Umweltgefährdungspotential stark reduziert.
Aus den erfindungsgemäß erhaltenen Lösungen kann das komplexierte und oxidierte Gold direkt zu Metall reduziert oder auf andere Weise der Wiederverwendung zugeführt werden.
Der erfindungsgemäß einsetzbare Komplexbildner wird je nach Zusammensetzung des dem Verfahren zu unterwerfenden Materials derart ausgewählt, dass er nur oder im wesentlichen nur das Gold unter den im Material vorhandenen Metallen komplexiert. Außerdem sollte er möglichst dem Kriterium der Wasserlöslichkeit genügen, da das erfindungsgemäße Verfahren in der Regel mit wässrigen Lösungs- oder Suspensionsmitteln durchgeführt wird. Cyanid ist hierfür ungeeignet, da Cyanid eine Vielzahl von Metallen komplexiert und hochgiftig ist. Vergleichbares gilt für eine ganze Reihe von Verbindungen, die Metalle über eine oder mehrere Stickstoffbindung (en) komplexieren. Ebenfalls ungeeignet sind in der Regel Phosphine wie Triphenylphosphan, da sie in Wasser oder wässriger Umgebung unlöslich und/oder instabil sind. Außerdem sind natürlich solche Komplexbildner ungeeignet, die empfindlich gegenüber der Gegenwart von Oxidationsmitteln sind. Aus diesem Grunde scheiden beispielsweise manche Aminosäuren wie Tryptophan und meist auch Cystein als Komplexbildner aus. Aminosäuren komplexieren in der Regel neben Gold auch Kupfer und Nickel. Gut geeignet sind dagegen häufig Verbindungen mit schwefelhaltigen Gruppen, beispielsweise SH-Gruppen, oder Materialien, die eine chelatisierende Wirkung haben. Die Komplexierung von Au (I) -Ionen ist gegenüber der von Au (III) -Ionen zu bevorzugen, um den Oxidationsmittelaufwand einzuschränken und die Wahrscheinlichkeit der Eignung für Abscheidungssysteme zu erhöhen.
Dem Fachmann sind geeignete Komplexbildner geläufig.
Beispielhaft für die vorliegende Erfindung sei
Mercaptobernsteinsäure genannt, das ganz allgemein Schwermetalle gut komplexiert. Mercaptobernsteinsäure kann aus diesem Grunde allerdings nur dann eingesetzt werden, wenn außer Gold keine weiteren solchen Schwermetalle in der dem erfindungsgemäßen Verfahren zu unterwerfenden Material vorhanden sind. Vergleichbares gilt für Thioharnstoff, das im sauren Milieu Schwermetallkomplexe bildet. Natriumthiosulfat bildet prinzipiell sehr stabile Komplexe mit Gold und auch mit Silber; allerdings ist Natriumthiosulfat leicht zu Polythionaten oxidierbar. Bei der Verwendung von Thioharnstoff oder Natriumthiosulfat ist weiterhin zu beachten, dass diese Stoffe pH-abhängig mit Kupfer reagieren bzw. es komplexieren. Da Kupfer häufig in relativ großen Mengen in Elektronikschrott vorhanden ist, ist der Einsatz der genannten Mittel relativ begrenzt. Allerdings kann hier der Einsatz eines selektiven Oxidationsmittels Abhilfe schaffen, das Kupfer nicht löst. Ein weiteres Beispiel ist L-Histidin, eine Aminosäure mit Affinität zu Gold und Nickel. L-Histidin kann dementsprechend zum Einsatz kommen, wenn das Material kein oder nur unwesentliche Mengen an Nickel enthält. Auch Dimercaptopropansulfonsäure ist brauchbar, obwohl es aus Kostengründen in der Regel nicht zum Einsatz kommen wird. Ein weiteres Beispiel ist Mercaptotriazol, insbesondere 3-Mercapto-l, 2, 4-triazol. Diese Substanz bildet mit Gold(I) stabile Komplexe, allerdings unter bestimmten Umständen auch solche mit Palladiu (II) . Im übrigen ist Mercaptotriazol gegenüber Gold relativ zu einer Reihe von häufig auftretenden Begleitmetallen (Nickel, Kupfer, Silber, Palladium, Eisen) wesentlich spezifischer als manche andere SH-Gruppen enthaltende Verbindung wie Mercaptobernsteinsäure oder
Dimercaptopropansulfonsäure, so dass diese Substanz als Komplexierungsmittel besonders bevorzugt ist. Alle vorgenannten Substanzen sind im übri en gut wasserlöslich und temperaturbeständig. Günstig ist es, den Komplexbildner in einer Konzentration von etwa 0,01 bis 1 mol/1 Ätzlösung einzusetzen. Bevorzugt sind etwa 0,05 bis 0,5 mol/1.
Das oder die erfindungsgemäß zu verwendende (n) Oxidationsmittel sollte (n) ebenfalls unter dem Aspekt der Selektivität in Hinblick auf die vorhandenen Begleitmetalle ausgewählt werden. Mit anderen Worten: Es sollte im wesentlichen ausschließlich 'das vorhandene Go.ld, nicht aber damit legiertes Beimetall oder sonstiges in der Mischung gediegen oder in einer Verbindung / einem Erz vorliegendes Metall oxidiert und in Lösung gebracht werden. Zumindest sollten solche Metalle nicht oxidiert werden, die vom eingesetzten Komplexierungsmittel komplexiert werden können. Weiterhin sollte das Oxidationsmittel in der verwendeten Ätzlösung chemisch weitgehend stabil sein. Insbesondere muß es so gewählt werden, dass keine oder im wesentlichen keine Nebenreaktionen mit dem Komplexbildner oder weiteren enthaltenen Komponenten auftreten. Aus diesen Gründen sind die meisten geläufigen starken Oxidationsmittel wie Persulfat, Permanganat oder Wasserstoffperoxid nicht geeignet. Als für die Zwecke der vorliegenden Erfindung günstige Oxidationsmittel haben sich aromatische Nitroverbindungen erwiesen, die sich in wäßriger Lösung durch gute Stabilität auszeichnen und trotzdem als selektives Oxidationsmittel fungieren können. So wird z.B. Kupfer von Nitroaromaten nicht oxidiert. Vorzugsweise werden o- und/oder p-substituierte Aromaten eingesetzt. So entsteht beispielsweise bei Verwendung von 2-Nitrobenzoesäure durch Reduktion der Nitro- zur Aminogruppe 2-Aminobenzoesäure:
N02C6H4COOH + 6 H+ + 2e~ → NH2C5H4COOH + 2 H20 ( Gleichung 1 )
Als weiteres Beispiel für einen einsetzbaren Nitroaromaten sei Nitrobenzolsulfonsäure genannt.
Die pKs-Werte der Nitroverbindungen liegen vorzugsweise im
Bereich zwischen 1,5 und 8. Ihre Konzentration in der Ätzlösung liegt vorteilhaft bei 0,01 bis 1 mol/1 Ätzlösung, bevorzugt bei 0,05 bis 0,5 mol/1. Das erfindungsgemäße Verfahren kann in einem pH-Bereich von etwa 6 bis 12, vorzugsweise von 6,5 bis 9, und besonders bevorzugt bei pH 7,5 bis 8 betrieben werden. Da es aufgrund der Reaktionscharakteristik (siehe Gleichung 1) zu erheblichen pH-Verschiebungen kommen kann, wird dem System zur Stabilisierung der Auflösungsbedingungen vorzugsweise ein pH-Stabilisator (Puffer) zugesetzt. Hierzu können die im angestrebten pH-Bereich geeigneten Puffersysteme angewendet werden, die dem Fachmann bekannt sind.
Die Betriebstemperatur kann zwischen 20 und 80 °C eingestellt werden. Konvektion kann eingesetzt werden, ist aber nicht zwingend erforderlich.
Die Reduktion des Goldes kann dann zu einem beliebigen Zeitpunkt durch Standardmethoden erfolgen, beispielsweise durch Reduktion an Aktivkohle oder auf elektrolytischem Weg.
Nachstehend soll die Erfindung anhand eines Beispiels näher erläutert werden.
Beispiel
Zur Prüfung der Selektivität verschiedener Lösung werden die zu untersuchenden Metalle (Au, Fe, Ni, Cu, Sn, Pb, Pd, Pt, Ag) als dünne Schichten mit Dicken von 50 bis lOOnm auf inertes Material (z.B. Glaskeramik) aufgetragen. Dazu sind beispielsweise PVD- Verfahren gut geeignet. Die vorbereiteten Proben werden gemeinsam den jeweiligen Versuchslösungen über einen Zeitraum von 2 Wochen ausgesetzt und dabei temporär bis 80 °C thermisch belastet. Die Auswertung kann auf diesen Proben visuell, ggf. unter Verwendung eines Auflichtmikroskops erfolgen.
Aufgrund dieser Vorversuche wurde z.B. festgestellt, dass 2- Nitrobenzoesäure Kupfer nicht löst. Die Vorversuche ergaben, dass Ätzlösungen mit 0,01 bis 1 mol/1 3-Mercapto-l, 2, 4-triazol, 0,01 bis 1 mol/1 2-Nitrobenzoesäure, 0,01 bis 1 mol/1 KBr und 0,01 bis 10 mol/1 LP200, die mit Natriumtetraborat auf pH 7-11, vorzugsweise auf 7,5 bis 8 eingestellt wurden, für das erfindungsgemäße Verfahren gut geeignet sind. Es wurde gefunden, daß Ätzlösungen mit 3-Mercapto-l, 2, 4-triazol und Nitrobenzoesäure die goldbeschichteten Probenplatten angriffen, während die anderen Platten im wesentlichen unverändert blieben.
Goldlaugung aus Elektronikschrott
Verschiedene Elektronikschrott-Materialien (Leiterplatten oder Steckkontakte oder Kermaik-Chips (Prozessoren) wurden in einer Schneid- oder Hammermühle getrennt zerkleinert, um alle edelmetallhaltigen Struturen der Ätzlösung zugänglich zu machen. Die Partikelgröße des zerkleinerten Schrotts lag bei oder unter 1 mm Durchmesser.
Leiterplatten haben laut Literatur einen durchschnittlichen Metallgehalt von 0,04% Gold, 0,02% Palladium, 0,004% Platin, 0,3% Silber, 14,4% Kupfer, 1,9% Zinn, 1,3% Nickel, 2,5% Blei und 7,3% Eisen.
Der Elektronikschrott wurde auf eine diskontinuierlich betriebene Goldlöseanlage aufgegeben. Diese bestand aus einem verschließbaren glasfaserverstärkten Epoxidharzbehälter mit einem Fassungsvermögen von 20 1 mit Bodenauslauf und automatisch gesteuerter Stabheizung. Das Arbeitsgefäß war über einer Kunststoffwanne aufgebaut. Beschickung und Reststoffentnähme erfolgte von oben. Das Aufgabegut wurde in einem Beutel aus Kunststoffgewebe in das Arbeitsgefäß versenkt. Prozessflüssigkeit und Spülwasser wurden über das Bodenablaufventil in PE-Kanister abgelassen. Es erfolgte eine Temperierung der Prozesslösung auf 80°C zyklisch alle 5h mit einer Dauer von 2h. Die für die Goldauflösung verwendete Ätzlösung hatte die folgende Zusammensetzung:
3-Mercapto-l,2,4-triazol 0,1 mol/1 2-Nitrobenzoesäure 0,1 mol/1
KBr 0,5 mol/1
LP200 1 mol/1
Natriumtetraborat auf pH 8.
LP200 ist eine oberflächenaktive Komponente, die als Netzmittel wirkt. Der Zusatz von Kaliumbromid begünstigt die Vermeidung einer Oberflächeninhibierung des Goldes.
Die verwendete Lösung ist weniger toxisch als cyanidische Bäder (toxisches Potential des Komplexbildners im Vergleich zu Cyanid 7% TPI) und kann potentiell einem biologischen Abwasserreinigungsverfahren unterworfen werden.

Claims

Ansprüche :
1. Verfahren zum selektiven Gewinnen von Gold aus goldhaltigen Materialien, dadurch gekennzeichnet, dass goldhaltiges Material einer Ätzlösung ausgesetzt wird, umfassend
(a) ein Oxidationsmittel für Gold, das eine hohe ' Selektivität für Gold, verglichen mit der für andere im Material vorhandene Metalle, aufweist und
(b) ein Komplexierungsmittel, das Gold im wesentlichen selektiv gegenüber den weiteren im Material vorhandenen
Metallen komplexieren kann.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Komplexierungsmittel unter mindestens eine SH-Gruppen enthaltenden organischen Verbindungen ausgewählt ist, und dass das eingesetzte Oxidationsmittel ausgewählt ist unter solchen, in deren wässriger Lösung das Komplexierungsmittel stabil ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Komplexierungsmittel 3-Mercapto-l, 2, 4-triazol ist.
4. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Oxidationsmittel unter aromatischen Nitroverbindungen ausgewählt ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Oxidationsmittel 2-Nitrobenzoesäure ist.
6. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Ätzlösung einen pH von 6 bis 12, vorzugsweise von etwa 7,5 bis 8 aufweist.
7. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Ätzlösung ein pH-Stabilisator zugesetzt wird.
8. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass mit dem verwendeten Oxidationsmittel keine Auflösung der vorhandenen Begleitmetalle erfolgt.
9. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass keine Nebenreaktionen mit dem Komplexbildner oder weiteren enthaltenen Komponenten auftreten.
10. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das goldhaltige Material ein Gemenge ist, das neben anderen Metallen oder Metallverbindungen Gold in metallischer Form enthält.
11. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das goldhaltige Material Elektronikschrott ist.
12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das goldhaltige Material metallisches Gold, ggf. in Legierung mit Silber und/oder anderen Edelmetallen und/oder verunreinigt mit Beimengungen anderer Metalle und/oder vergesellschaftet mit Metallerzen vorliegt.
PCT/EP2004/003249 2003-03-27 2004-03-26 Verfahren zum selektiven gewinnen von gold aus goldhaltigen materialien WO2004085687A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003113887 DE10313887A1 (de) 2003-03-27 2003-03-27 Verfahren zum selektiven Gewinnen von Gold aus goldhaltigen Materialien
DE10313887.0 2003-03-27

Publications (1)

Publication Number Publication Date
WO2004085687A1 true WO2004085687A1 (de) 2004-10-07

Family

ID=33038785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003249 WO2004085687A1 (de) 2003-03-27 2004-03-26 Verfahren zum selektiven gewinnen von gold aus goldhaltigen materialien

Country Status (2)

Country Link
DE (1) DE10313887A1 (de)
WO (1) WO2004085687A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU102054B1 (de) * 2020-07-27 2022-01-27 Centuro Ag Verfahren zur Gewinnung von Gold und Silber aus Rohstoffen
WO2022022987A1 (de) * 2020-07-27 2022-02-03 Centuro Ag Verfahren zur gewinnung von gold und silber aus rohstoffen
CN114249477A (zh) * 2021-11-15 2022-03-29 中国科学院上海微系统与信息技术研究所 氮化物薄膜刻蚀液的再生方法和氮化物薄膜的刻蚀方法
WO2023191722A1 (en) * 2022-03-31 2023-10-05 Singapore Polytechnic Method for high and selective extraction of a precious metal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3545964A (en) * 1968-04-18 1970-12-08 Atomic Energy Commission Gold recovery process
DD262333A7 (de) * 1982-11-18 1988-11-30 Allami Penzveroe,Hu Praeparat zur losloesung von gold, silber, palladium, kupfer, nickel, zinn und blei
US5147617A (en) * 1991-05-21 1992-09-15 Freeport-Mcmoran Inc. Process for recovery of gold from gold ores using a complexing pretreatment and sulfurous acid leaching
US5277790A (en) * 1992-07-10 1994-01-11 Technic Incorporated Non-cyanide electroplating solution for gold or alloys thereof
US5683490A (en) * 1994-12-23 1997-11-04 The United States Of America As Represented By The Secretary Of The Interior Solution mining of precious metals using aqueous, sulfur-bearing solutions at elevated temperatures
JPH1112664A (ja) * 1997-06-20 1999-01-19 Otsuka Chem Co Ltd 貴金属分離回収剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3347165A1 (de) * 1983-12-27 1985-07-04 Skw Trostberg Ag, 8223 Trostberg Verfahren zur gewinnung von edelmetallen
DE3503497A1 (de) * 1985-02-02 1986-08-07 Merck Patent Gmbh, 6100 Darmstadt Komplexierungsmittel zur selektiven abtrennung von edelmetallen aus waessrigen loesungen
DE4113283C2 (de) * 1991-04-24 1994-05-05 Kernforschungsz Karlsruhe Verwendung einer Ätzlösung zum selektiven Abätzen einer metallischen Opferschicht bei der Herstellung von Mikrostrukturen
AU673107B2 (en) * 1993-10-28 1996-10-24 Shell Internationale Research Maatschappij B.V. Catalyst composition and process for the preparation of polymers
DE69616956T3 (de) * 1995-12-21 2014-01-30 Syngenta Participations Ag 3-Amino-2-mercaptobenzoesäure-Derivate und Verfahren zu ihrer Herstellung
DE19641247A1 (de) * 1996-01-22 1997-07-24 Oeste Franz Dietrich Dipl Ing Verfahren zur Anwendung von Huminsäure und ihren Salzen als Ferment fixiert in/an biologischen Filmen und als Katalysator in der Gas-, Wasser- und Feststoffreinigung
DE19715319C2 (de) * 1997-04-04 2001-03-01 Werner Fabian Dreistufiges hydrometallurgisches Verfahren zur Metallabtrennung von Elektronikschrott insbesondere von Leiterplatten und metallhaltigen Kunststoffrückständen
GB2349876B (en) * 1999-05-10 2003-03-05 Rio Tinto Technology Dev Ltd Process for the Recovery of Noble Metals
DE19927286B4 (de) * 1999-06-15 2011-07-28 Qimonda AG, 81739 Verwendung einer Schleiflösung zum chemisch-mechanischen Polieren einer Edelmetall-Oberfläche
DE10211084C1 (de) * 2002-03-13 2003-08-07 Mrut Mess Regel Umwelt Technik Verfahren zur Rückgewinnung von Edelmetallen, insbesondere zur Rückgewinnung von Gold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3545964A (en) * 1968-04-18 1970-12-08 Atomic Energy Commission Gold recovery process
DD262333A7 (de) * 1982-11-18 1988-11-30 Allami Penzveroe,Hu Praeparat zur losloesung von gold, silber, palladium, kupfer, nickel, zinn und blei
US5147617A (en) * 1991-05-21 1992-09-15 Freeport-Mcmoran Inc. Process for recovery of gold from gold ores using a complexing pretreatment and sulfurous acid leaching
US5277790A (en) * 1992-07-10 1994-01-11 Technic Incorporated Non-cyanide electroplating solution for gold or alloys thereof
US5683490A (en) * 1994-12-23 1997-11-04 The United States Of America As Represented By The Secretary Of The Interior Solution mining of precious metals using aqueous, sulfur-bearing solutions at elevated temperatures
JPH1112664A (ja) * 1997-06-20 1999-01-19 Otsuka Chem Co Ltd 貴金属分離回収剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 1999-148900 *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 04 30 April 1999 (1999-04-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU102054B1 (de) * 2020-07-27 2022-01-27 Centuro Ag Verfahren zur Gewinnung von Gold und Silber aus Rohstoffen
WO2022022987A1 (de) * 2020-07-27 2022-02-03 Centuro Ag Verfahren zur gewinnung von gold und silber aus rohstoffen
CN114249477A (zh) * 2021-11-15 2022-03-29 中国科学院上海微系统与信息技术研究所 氮化物薄膜刻蚀液的再生方法和氮化物薄膜的刻蚀方法
WO2023191722A1 (en) * 2022-03-31 2023-10-05 Singapore Polytechnic Method for high and selective extraction of a precious metal

Also Published As

Publication number Publication date
DE10313887A1 (de) 2004-10-28

Similar Documents

Publication Publication Date Title
DE3424460C2 (de)
EP3110982A1 (de) Nässebasierte formulierungen zur selektiven entfernung von edelmetallen
DE60002838T2 (de) Verfahren zur rückgewinnung von zinn, zinnlegierungen oder bleilegierungen aus leiterplatten
DE2528861A1 (de) Verfahren zur oxydation von metallsulfiden in waessrigen medien
JP4207959B2 (ja) 高純度塩化銀の分離精製方法とそれを用いた高純度銀の製造方法
EP2984192B1 (de) Verfahren zur konzentration von metallen aus metallhaltigen abfällen
Segura-Bailón et al. Selective leaching of base/precious metals from E-waste of cellphone printed circuit boards (EWPCB): Advantages and challenges in a case study
Kulandaisamy et al. The aqueous recovery of gold from electronic scrap
WO2004085687A1 (de) Verfahren zum selektiven gewinnen von gold aus goldhaltigen materialien
KR20170055049A (ko) 폐무연솔더로부터 유가금속 및 레진의 회수방법
DE3139757C2 (de) Verfahren zur Regenerierung von Palladium und Zinn enthaltenden wäßrigen Aktivatorlösungen
DE10310699B4 (de) Verfahren zur Feinstraffination von Gold
DE19715319C2 (de) Dreistufiges hydrometallurgisches Verfahren zur Metallabtrennung von Elektronikschrott insbesondere von Leiterplatten und metallhaltigen Kunststoffrückständen
EP3749792B1 (de) Verfahren zur hydrometallurgischen aufarbeitung einer edelmetall-zinn-legierung
DE10211084C1 (de) Verfahren zur Rückgewinnung von Edelmetallen, insbesondere zur Rückgewinnung von Gold
Soare et al. Recovery of metals from waste electrical and electronic equipment (WEEE) by anodic dissolution
DE102004038650A1 (de) Verfahren zur Auflösung von Zink in Laugen
DE3407049A1 (de) Verfahren zur hydrometallurgischen gewinnung von edelmetallen
WO2000001863A2 (de) Verfahren zur rückgewinnung von edelmetallen
EP1604047B1 (de) Verfahren zu raffination von gold
DE2540100C2 (de) Verwendung einer Vorrichtung zum kontinuierlichen Ausfällen von Zementkupfer aus einer mit Eisenstücken versetzten Kupferlösung
Panda et al. Recuperation of gold from waste printed circuit boards of small electronic devices
Madanhire et al. E-Waste Recycling to Recover Base and Precious Metals
DE1210988C2 (de) Verfahren zur Aufloesung von metallhaltigen Produkten zum Zwecke ihrer Reinigung
CN117999370A (zh) 用于使用非水溶剂提取金属的组合物和方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)