WO2004083688A1 - 自動変速機の特性補正システム - Google Patents

自動変速機の特性補正システム Download PDF

Info

Publication number
WO2004083688A1
WO2004083688A1 PCT/JP2004/003519 JP2004003519W WO2004083688A1 WO 2004083688 A1 WO2004083688 A1 WO 2004083688A1 JP 2004003519 W JP2004003519 W JP 2004003519W WO 2004083688 A1 WO2004083688 A1 WO 2004083688A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic transmission
duty
difference
correction system
torque converter
Prior art date
Application number
PCT/JP2004/003519
Other languages
English (en)
French (fr)
Inventor
Yasuyuki Miyake
Koichi Inoue
Tokuju Kuji
Original Assignee
Fuji Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo Kabushiki Kaisha filed Critical Fuji Jukogyo Kabushiki Kaisha
Priority to CA002519415A priority Critical patent/CA2519415C/en
Priority to AU2004221584A priority patent/AU2004221584B2/en
Priority to US10/549,669 priority patent/US7468016B2/en
Publication of WO2004083688A1 publication Critical patent/WO2004083688A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0053Initializing the parameters of the controller

Definitions

  • the present invention relates to a characteristic correction system for an automatic transmission, which can obtain a good shift quality by correcting a characteristic variation between individuals.
  • a solenoid pulp is provided for each friction engagement element such as a clutch or a brake to control engagement of each friction engagement element (that is, control hydraulic pressure).
  • the hydraulic pressure of each clutch and the like is measured to determine whether or not it is within the allowable range and whether or not it can be shipped. Therefore, there is a possibility that the calibration error of the oil pressure sensor that detects the hydraulic pressure, which is caused by machine differences due to the specification difference of each receiving cab and the deviation of the calibration value of the oil pressure sensor, and that air may enter the piping, etc. There is a limit. For this reason, there has been a problem that in order to obtain a good shift quality that eliminates individual variations of the automatic transmission, it is necessary to wait for a certain amount of learning results of actual driving in the market.
  • the present invention has been made in view of the above circumstances, and has a characteristic correction system for an automatic transmission capable of correcting a characteristic variation of each individual without waiting for the promotion of learning by actual running and obtaining a good shift quality. It is intended to provide. Disclosure of the invention
  • a characteristic correction system for an automatic transmission is an automatic transmission that performs a shift operation by engaging and releasing friction engagement elements of a multi-stage transmission unit connected to a torque converter by respective hydraulic control valves.
  • a characteristic correction system comprising: means for calculating a correction amount of control data based on reference characteristics of the automatic transmission based on a result of a test run performed after assembly of the automatic transmission; and Means for storing the correction amount in an electronic control device for controlling the automatic transmission after the vehicle is assembled to the vehicle.
  • FIG. 1 is an explanatory diagram showing a characteristic correction system of an automatic transmission by a receipt operation
  • FIG. 2 is a diagram of a characteristic variation of the automatic transmission by a receipt operation
  • FIG. 3 is a flowchart showing a measurement process
  • FIG. 3 is an explanatory diagram of a shipping determination standard
  • 4 to 6 relate to a second embodiment of the present invention
  • FIG. 4 is a flowchart of a characteristic variation correction process of an automatic transmission in a vehicle
  • FIG. 5 is an explanatory diagram showing a correlation between a correction amount and a learning value.
  • FIG. 6 is an explanatory diagram showing the relationship between the reference characteristic and the upper and lower limit characteristics.
  • 1 to 3 show a first embodiment of the present invention.
  • Fig. 1 shows the automatic transmission characteristic correction system built on the production and shipping lines in the factory.
  • FCA is a transmission assembly factory
  • FCB is an automatic transmission 1 transported from the transmission assembly factory FCA.
  • This is a vehicle assembly factory that assembles the control unit (TCU) 50 with the vehicle body 100 and performs outfitting.
  • the automatic transmission 1 is provided with a solenoid valve for each friction engagement element such as a clutch or a brake, and controls the engagement of each friction engagement element (that is, controls the hydraulic pressure).
  • This is a transmission, which is similar to the automatic transmission disclosed in Japanese Patent Application Laid-Open No. 2003-004130 by the present applicant. ⁇
  • the automatic transmission 1 includes a torque converter to which a driving force from an engine output shaft is input, and a multi-speed transmission unit connected to the torque converter.
  • the multi-speed transmission unit includes a planetary gear gut disposed on the input shaft, and a high clutch that engages and disengages power transmission between the input shaft and the planetary carrier as a frictional engagement element, and the input shaft.
  • Reverse clutch for engaging and disengaging power transmission between sun gear
  • 2-4 brake for engaging and disengaging between sun gear and automatic transmission case
  • low clutch for disengaging between planetary carrier and ring gear
  • planetary carrier Low one-way clutch that engages and disengages in one direction between the low clutch drum and the automatic transmission case that rotate integrally with the gear
  • low and reverse (L-R) that engages and disengages between the low clutch drum and the automatic transmission case. It has a brake, etc., and the duty control of the duty solenoid valve for adjusting the hydraulic pressure of the control valve is performed to control the engagement of each friction engagement element. Hydraulic control).
  • the automatic transmission 1 assembled by FCA is subjected to characteristic inspections at the receiving cab 3 and the type of vehicle to be mounted.
  • An identification number 2 consisting of a bar code, etc., for identifying different specifications for each type of engine model etc. is attached to each Shipping to FCB.
  • Receiving operation at the receiving cab 3 is executed and controlled by the receiving operation executing device 5 for each individual with the identification number 2 read by the identification number reading device 4, and is disposed inside the automatic transmission 1.
  • the control of the solenoid valve for adjusting the hydraulic pressure of the control valve and the receiving cab 3, the determination of the amount of correction for the characteristic variation of the automatic transmission 1, and the determination of shipment are performed collectively.
  • the reception operation result of the automatic transmission 1 is stored in the reception operation result storage device 6 in association with the identification number 2 for each automatic transmission 1, and the communication line or the storage medium is stored in the vehicle assembly factory FCB. Sent through.
  • the automatic transmission 1 is incorporated into the vehicle body 100, and data for correcting characteristic variations is written to the TCU50 in the free roller check process on the chassis dynamometer 7 at the line end.
  • the identification number 2A is read with a bar code or the like, and the identification number reading device 8 that reads the corresponding receipt operation data from the receipt operation result storage device 6;
  • a correction amount writing device 9 for determining a correction amount for the characteristic variation and writing the correction amount to the TCU 50 is used.
  • the identification number 2A may be the identification number attached to the automatic transmission 1, but usually, after the automatic transmission 1 is mounted on the vehicle body 100, the identification number of the automatic transmission 1 is read. Since it is not easy, the identification number 2 of the automatic transmission 1 may be replaced with the vehicle body number or the like of the automatic transmission 1 when it is mounted on the vehicle body 100. In this case, the correspondence between the vehicle body number and the identification number 2 of the automatic transmission 1 is stored in the identification number reading device 8.
  • the temperature of the automatic transmission oil (ATF), the input rotation speed, and the like are relatively stable with respect to the actual traveling state during the receiving operation of the automatic transmission 1. Maintain and understand the amount of correction to the characteristics that can provide good shifting quality. Then, the grasped correction amount is written and stored in the TCU 50 for controlling the automatic transmission 1, so that the time for promoting learning by actual traveling is omitted, and a better shift quality than the initial time at the time of shipment is obtained.
  • the hydraulic pressure of each clutch is measured, it is checked whether it is within the allowable range or not, and it is determined whether or not it can be shipped. It was difficult to improve the measurement accuracy due to the influence of the deviation of the calibration value of the oil pressure sensor that detects the machine difference and the oil pressure, the mixing of air in the piping, and so on.However, in the receiving operation in this embodiment, Analog measurement, which includes many errors, has been abolished, enabling more accurate shipping inspections.
  • the output shaft of the automatic transmission 1 is fixed to the receiving cab 3 and set to a predetermined shift position, and a constant input speed is given to the torque converter.
  • one of the two engaged clutches (brake) is used to reduce the clutch oil pressure so that the difference between the input speed of the torque converter and the turbine speed of the torque converter becomes the reference value.
  • the two clutches intentionally create a half-clutch state, and the clutch that reduces the hydraulic pressure has the drive necessary to create a constant torque that maintains the difference between the input speed and the turbine speed at the reference value. Measure the duty.
  • the drive duty of the control pulp for the duty solenoid valve is determined by the characteristics of the components constituting the automatic transmission 1, such as the hydraulic characteristics of the control valve, the friction coefficient of the clutch, the output torque characteristics of the torque converter, It is affected by variations in the various factors such as the biasing force of the clutch piston's return spring and the clutch clearance. Appears as Tsuki. Therefore, by storing the difference between the measured drive duty and the reference value as a correction amount in the TCU 50, good shift quality can be secured from the time of shipment.
  • step S1 a target value (target differential rotation) ⁇ of a rotational difference between the input rotational speed Ni 11 of the torque converter and the turbine rotational speed Nt is set.
  • the target differential rotation ⁇ ⁇ is the rotation when the automatic solenoid valve 1 is set to the predetermined gear position and the duty valve of the control valve for controlling the hydraulic pressure of the target clutch or brake is driven at the reference duty value.
  • Difference For example, 700 rpm when measuring with 2-4 brakes, and 140 rpm when measuring with high clutch and low clutch. '
  • step S2 an instruction to set the input rotation speed of the automatic transmission 1 to a fixed rotation speed (for example, l OOO r pm) is output to the receiving cab 3, and in step S3, the control valve is opened. Output an instruction to set the drive duty duty of the duty solenoid valve for controlling the specified clutch and brake to a reference value (different for each clutch * brake), and then proceed to step S4.
  • a fixed rotation speed for example, l OOO r pm
  • step S4 the turbine speed Nt is measured by the turbine speed sensor provided in the automatic transmission 1, and in step S5, the input speed Nin and the turbine speed already kept constant are measured. Calculate the rotation difference (N in-N t) from the number N t and compare it with the target difference rotation ⁇ .
  • step S5 if ⁇ > ⁇ inN t and the rotation difference (N in— N t) is larger than the target difference rotation ⁇ , the process proceeds from step S5 to step S6 to change the drive duty duty of the duty solenoid valve. , Decrease by the set value a according to the deviation (duty—duty— ⁇ ;). In addition, if ⁇ Nin—Nt, and the rotation difference (N inNt) is smaller than the target difference rotation ⁇ , the process proceeds from step S5 to step S7 to drive the duty solenoid valve. Increase duty by the set value ⁇ according to the deviation (dutyduty + ⁇ ).
  • step S8 the rotation difference (N in— Nt) is changed to the target differential rotation ⁇ .
  • step S8 the rotation difference (N in— Nt) is changed to the target differential rotation ⁇ .
  • step S9 it is checked whether or not the drive duty duty converging to the target differential rotation ⁇ satisfies the shipping determination standard, and a shipping determination is made as to whether shipping is possible.
  • the drive duty du that converges to the target differential rotation ⁇ is determined as shown in Fig. 3.
  • ty is set as an allowable area between the upper limit value duty_upper and the lower limit value duty_1ower when the design tolerances are accumulated, and shipped by checking whether it is within this area. Make a decision.
  • the drive duty value duty of each automatic transmission 1 is the difference from the reference value in the free roller process after installation into the vehicle as the correction amount of each automatic transmission 1. Written to TCU 50.
  • the drive of the duty solenoid valve in which the difference between the input rotation speed and the turbine rotation speed becomes the reference value is performed.
  • a correction system for an automatic transmission is also constructed on the vehicle side.
  • the automatic transmission 1 The duty ratio of the duty solenoid valve Measurement, and reflect this variation in the learning value.
  • step S21 and S22 it is determined whether the engine speed Ne is within the specified range and whether the ATF temperature is within the specified range ⁇ , respectively. Find out. This is to check whether or not the same conditions as those of the receiving operation of the automatic transmission 1 in the first embodiment are satisfied.
  • step S23 the process proceeds to step S23.
  • an instruction is issued to output the duty duty of the duty solenoid valve for controlling the designated clutch or brake of the control valve as a reference value, and the flow proceeds to step S24.
  • step S24 the turbine speed Nt is measured by the turbine speed sensor provided in the automatic transmission 1, and in step S25, the engine speed Ne, which is the input speed of the automatic transmission, and the turbine speed Nt are measured.
  • the rotation difference (Ne-Nt) from the rotation speed Nt is calculated and compared with the target difference rotation ⁇ .
  • step S25 the drive duty duty of the duty solenoid valve is reduced by a set value corresponding to the deviation (duty—duty— ⁇ )
  • step S27 the drive duty duty of the duty solenoid valve by a set value corresponding to the deviation (dutyuty + a).
  • this learning value is reflected in the learning value correction amount 0 when the driving duty duty is the reference value, and the learning value is adjusted according to the increase / decrease ratio of the measured driving duty duty to the reference value. Increase or decrease the correction amount.
  • the drive duty duty is the upper limit value dut y_upper with respect to the reference value set in advance according to the ATF temperature.
  • lower limit dty 1 ower Check if it is between. When it is within the range of the upper and lower limits, the correction amount is stored in the control data memory in the TCU 50, and when it is out of the range, it is determined to be abnormal, and the data is stored in the backup memory for failure diagnosis. A warning is issued to the driver, and the process ends.
  • the characteristic correction system of the automatic transmission 1 is constructed by using the TCU 50 on the vehicle side and characteristic variations are corrected in advance, for example, for inspection at a dealer in a market. Even if the automatic transmission 1 or TCU 50 is replaced at the time of repair, or if the learning value is reset by turning off the power of the TCU 50, etc., the transmission quality can be improved by resetting the learning value. Good shifting quality can be obtained without deterioration and without waiting for promotion of learning.
  • the characteristic correction system of the present invention can be applied to a control clutch in a four-wheel drive transfer in addition to a transmission clutch of an automatic transmission, and corrects a relationship between a control amount and a transmission torque. This improves the traction performance and expands the area where the tight corner braking phenomenon can be prevented.
  • the hydraulic control valve is described as a duty solenoid valve, but the present invention is not limited to this, and the hydraulic control valve is provided with another solenoid valve, for example, a linac solenoid valve. Also applicable to Industrial applicability

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本発明による自動変速機の特性補正システムにおいては、トルクコンバータの入力回転数Ninとタービン回転数Ntとの回転差を目標差回転ΔNと比較してフィードバックにより増減し(S6,S7)、回転差が目標差回転ΔNに収束したか否かを調べる(S8)。そして、目標差回転ΔNに収束したときの駆動デューティdutyが出荷判定規格内にあるとき、その値を記憶・保存する(S10)。この記憶・保存された個々の自動変速機の駆動デューティ値dutyと基準値との差分を個々の自動変速機の補正量としてTCUに書込むことにより、出荷初期から自動変速機の個体毎の特性バラツキを補正することができ、実走行による学習促進を待つことなく、良好な変速品質を得ることができる。

Description

明 細 書 自動変速機の特性補正システム 技術分野
本発明は、 個体毎の特性バラツキを補正して良好な変速品質を得ることのでき る自動変速機の特性補正システムに関する。 背景技術
一般に、 自動車等の車両に搭載される自動変速機には、 各構成要素に部品公差 が存在するため、 最終的なァッセンプリの状態では個体差による若干の特性のバ ラツキが発生することは避けられない。 このパラツキ量は、 車両としての性能向 上を図る上では極力抑えなければならない一方で、 生産工場における工程能力を 確保しつつ公差を縮小することは、 コストアップ等の跳ね返りに繋がる可能性が ある。
特に、 クラッチやブレーキ等の摩擦係合要素毎に、 ソレノイ ドパルプを設け、 各摩擦係合要素の係合制御 (すなわち油圧の制御) を行う、 いわゆるダイレク ト
A T方式の自動変速機では、 ソレノィ ドバルブや摩擦係合要素の製造時のばらつ きや経年変化、 フリクシヨン等に起因して変速品質にバラツキが発生することが める。
このような変速品質のパラツキを低減し、 安定した良好な変速品質を得るため には、 自動変速機の入力回転数情報に基く学習制御が行われることが一般的であ り、 例えば、 特開平 1 0— 1 8 4 4 1 0号公報には、 シフトアップ時のイナーシ ャ相で、 入力回転数の変化率と目標回転数の変化率とに基づいて目標油圧 (制御 油圧) を学習補正する技術が開示されている。
しかしながら、 学習制御によって良好な変速品質を確保するためには、 相当時 間の実走行が必要である。 従って、 工場のタスクタイムを考慮すると、 製品出荷 段階で学習を実施することは困難であり、 このため、 従来、 自動変速機の出荷に 際しては、 自動変速機を領収運転 (試運転) 台で運転し、 各クラッチ等の油圧を 計測する出荷検査を行い、 この出荷検査で計測した油圧が許容範囲内にあるか否 かにより合否を判断していた。
また、 前述したように、 従来の自動変速機の領収運転では、 各クラッチ等の油 圧を計測し、 許容範囲内にあるか否かを調ぺ出荷可能か否かを判断している。 従 つて、 領収運転台毎の仕様差による機差や油圧を検出する油圧センサの校正値の ズレゃ劣化、 配管中のエア混入等の影響を受ける可能性があり、 計測精度を高め るには限界がある。 このため、 自動変速機の個体バラツキを解消した良好な変速 品質を得るためには、 或る程度、 市場における実走行の学習結果を待たねばなら ないという問題があった。
本発明は、 上記事情に鑑みてなされたものであり、 実走行による学習促進を待 つことなく個体毎の特性バラツキを補正し、 良好な変速品質を得ることのできる 自動変速機の特性補正システムを提供することを目的としている。 発明の開示
本発明による自動変速機の特性補正システムは、 トルクコンバータに連設され る多段変速部の各摩擦係合要素を、 各々の油圧制御バルブにより係合 ·解放させ て変速動作を行う自動変速機の特性補正システムであって、 上記自動変速機の組 立後に行う試運転の結果に基づいて、 上記自動変速機の基準特性に基づく制御デ ータの補正量を算出する手段と、 上記自動変速機を車両に組付けた後、 上記補正 量を上記自動変速機を制御する電子制御装置に記憶させる手段とを備えたことを 特徴とする。 図面の簡単な説明
図 1〜図 3は本発明の実施の第 1形態に係り、 図 1は領収運転による自動変速 機の特性捕正システムを示す説明図、 図 2は領収運転による自動変速機の特性パ ラツキの計測処理を示すフローチャート、 図 3は出荷判定規格の説明図である。 図 4〜図 6は本発明の実施の第 2形態に係わり、 図 4は車両における自動変速 機の特性パラツキ補正処理のフローチヤ一ト、 図 5は補正量と学習値との相関を 示す説明図、 図 6は基準特性と上下限特性との関係を示す説明図である。 発明を実施するための最良の形態
以下、 添付の図面を参照して本発明の実施の形態を説明する。
(本発明の実施の第 1形態)
先ず、 本発明の実施の第 1形態について説明する。 図 1〜図 3は本発明の実施 の第 1形態を示す。
図 1は、 工場での生産 ·出荷ラインに構築した自動変速機の特性補正システム を示し、 符号 F C Aは変速機組立工場、 符号 F C Bは変速機組立工場 F C Aから 搬送された自動変速機 1を電子制御装置 (T C U) 5 0と共に車体 1 0 0に組付 け、 艤装を行う車両組立工場である。 自動変速機 1は、 クラッチやブレーキ等の 摩擦係合要素毎にソレノイドバルブを設け、 各摩擦係合要素の係合制御 (すなわ ち油圧の制御) .を行う、 いわゆるダイレク ト A T方式の自動変速機であり、 本出 願人による特開 2 0 0 3 - 0 0 4 1 3 0号公報に開示の自動変速機と同様のもの である。 ·
すなわち、 概略的には、 自動変速機 1は、 エンジン出力軸からの駆動力が入力 されるトルクコンバータと、 このトルクコンバータに連設される多段変速部とを 備えている。 多段変速部は、 入力軸上に配設されたプラネタリギヤュュットを備 え、 摩擦係合要素として、 入力軸とプラネタリキヤリャとの間の動力伝達を係脱 するハイクラッチ、 入力軸とサンギヤとの間の動力伝達を係脱するリバースクラ ツチ、 サンギヤと自動変速機ケースとの間を係脱する 2— 4ブレーキ、 プラネタ リキヤリャとリングギヤとの間を係脱するロークラッチ、 ブラネタリキヤリャと 一体回転するロークラツチドラムと自動変速機ケースとの間を一方向に係脱する ローワンウェイクラッチ、 ロークラッチドラムと自動変速機ケースとの間を係脱 するローアンドリバース ( L - R ) ブレーキ等を有しており、 コントロールバル ブの油圧調整用デューティソレノィ ドバルブをデューティ駆動することで、 各摩 擦係合要素の係合制御 (油圧制御) を行うことができる。
変速機組立工場 F C Aで組立て完成された自動変速機 1は、 領収運転台 3で特 性検査が行われ、 搭載される車種。エンジン型式等の種類別に異なる仕様を識別 するためのバーコ一ド等からなる識別番号 2が各個体毎に貼付されて車両組立ェ 場 F C Bに出荷される。
領収運転台 3での領収運転は、 識別番号読取装置 4で読取られた識別番号 2に よる各個体毎に、 領収運転実行装置 5により実行 ·制御され、 自動変速機 1内部 に配設されたコント口ールバルブの油圧調整用ソレノィ ドバルブや領収運転台 3 の制御、 自動変速機 1の特性バラツキに対する補正量の決定、 出荷判定が一括し て行われる。 この自動変速機 1の領収運転結果は、 個々の自動変速機 1毎に識別 番号 2と対応させて領収運転結果記憶装置 6に記憶され、 車両組立工場 F C Bに 通信回線或レ、は記憶媒体を介して送られる。
車両組立工場 F C Bでは、 自動変速機 1を車体 1 0 0に組込み、 ラインエンド のシャーシダイナモメータ 7上でのフリ一ローラチェック工程で T C U 5 0に特 性パラツキを補正するデータを書込む。 このフリーローラチェック工程には、 識 別番号 2 Aをバーコード等により読取ると共に、 領収運転結果記憶装置 6から対 応する領収運転データを読込む識別番号読取装置 8、 各自動変速機 1毎の特性バ ラツキに対する補正量を決定して T C U 5 0に書込む補正量書込装置 9が用いら れる。
尚、 識別番号 2 Aは、 自動変速機 1に貼付された識別番号でも良いが、 通常、 自動変速機 1が車体 1 0 0に搭載されだ後は、 自動変速機 1の識別番号を読み取 ることは容易ではないため、 車体 1 0 0に搭載される段階で自動変速機 1の識別 番号 2を車両の車体番号等に置き換えたものとしても良い。 この場合、 車体番号 と自動変速機 1の識別番号 2との対応関係は、 識別番号読取装置 8内に保存され る。
以上の構成による自動変速機の補正システムでは、 自動変速機 1の領収運転時 に、 自動変速機オイル (A T F ) の温度や入力回転数等を実走行状態に対して、 比較的安定した状態に保ち、 良好な変速品質を得ることができる特性への補正量 を把握する。 そして、 把握した補正量を、 自動変速機 1を制御する T C U 5 0に 書込んで記憶させることにより、 実走行による学習促進の時間を省き、 出荷時初 期より良好な変速品質を得る。
すなわち、 従来の領収運転では、 各クラツチの油圧を計測し、 許容範囲内にあ るか否かを調べて出荷可能か否かを判断しており、 領収運転台毎の仕様差による 機差や油圧を検出する油圧センサの校正値のズレゃ劣化、 配管中のエア混入等の 影響を受け、 計測精度を高めることが困難であつたが、 本実施の形態における領 収運転では、 誤差を多く含むアナログ計測を廃止し、 より高精度な出荷検査を可 能としている。
具体的には、 自動変速機 1の出力軸を領収運転台 3に固定して所定の変速位置 に設定し、 トルクコンバータに一定の入力回転数を与える。 その状態で、 締結し ている 2つのクラツチ (ブレーキ) のうち、 1つの油圧をトルクコンバータの入 力回転数と トルクコンバータのタービン回転数との差が基準値となるように、 ク ラツチ油圧を調整する油圧制御弁としてのデューティソレノィ ドバルブの制御量 (駆動デューティ) を調整する。 つまり、 2つのクラッチにより半クラツチ状態 を意図的に作り出し、 油圧を低下させた方のクラツチが入力回転数とタービン回 転数との差を基準値に保つ一定のトルクを作り出すために必要な駆動デューティ を計測する。
この場合、 コントロールパルプのデューティソレノィドバルブに対する駆動デ ユーティは、 自動変速機 1を構成する各構成要素の特性、 例えば、 コントロール バルブの油圧特性、 クラッチの摩擦係数、 トルクコンバータの出力トルク特性、 クラッチピストンのリターンスプリングの付勢力、 クラツチクリァランス等の各 要因のバラツキによって左右され、 これらのバラツキは、 入力回転数とタービン 回転数との差を一定に保つデューティソレノィ ドバルブの駆動デューティのバラ ツキとして現れる。 従って、 計測した駆動デューティと基準値との差分を補正量 として T C U 5 0に記憶させておくことで、 出荷時から良好な変速品質を確保す ることができる。
次に、 この自動変速機 1の領収運転による特性バラツキの計測処理について、 図 2のフローチヤ一トを用いて説明する。
この処理では、 先ず、 ステップ S 1において、 トルクコンバータの入力回転数 N i 11とタービン回転数 N tとの回転差の目標値 (目標差回転) Δ Νを設定す る。 この目標差回転 Δ Νは、 自動変速機 1を所定のギヤ位置に設定した状態で、 対象とするクラツチやブレーキの油圧を制御するコントロールバルブのデューテ イソレノィ ドバルブを基準デューティ値で駆動したときの回転差であり、 例え ば、 2— 4ブレーキを対象とした計測時は 700 r p m、 ハイクラッチ及ぴロー クラツチを対象とした計測時は 140 r p mである。 '
次に、 ステップ S 2へ進み、 領収運転台 3へ自動変速機 1の入力回転数を一定 回転数 (例えば、 l O O O r pm) とする指示を出力し、 ステップ S 3で、 コン トロールバルブの指定クラツチやブレーキを制御するためのデューティソレノィ ドバルブの駆動デューティ d u t yを、 基準値 (クラッチ *ブレーキ毎に異な る) とする出力指示を行い、 ステップ S 4へ進む。
ステップ S 4では、 自動変速機 1に備えられているタービン回転数センサによ りタービン回転数 N tを計測し、 ステップ S 5で、 既に一定に保っている入力回 転数 N i nとタービン回転数 N tとの回転差 (N i n— N t) を算出し、 目標差 回転 ΔΝと比較する。
その結果、 ΔΝ>Ν i n-N tで回転差 (N i n— N t) が目標差回転 ΔΝよ りも大きい場合には、 ステップ S 5からステップ S 6へ進んでデューティソレノ ィドバルブの駆動デューティ d u t yを、 偏差に応じた設定値 aだけ減少させる (d u t y— d u t y— α;) 。 また、 ΔΝく N i n— N tであり、 回転差 (N i n-N t) が目標差回転 ΔΝよりも小さい場合には、 ステップ S 5からステップ S 7へ進んでデューティソレノィドバルブの駆動デューティ d u t yを、 偏差に 応じた設定値 αだけ増大させる (d u t y d u t y + α) 。
以上によりデューティソレノィ ドの駆動デューティ d u t yを、 目標差回転 Δ Νとの偏差に基づくフィードパックにより増減した後、 ステップ S 8へ進み、 回 転差 (N i n— N t) が目標差回転 ΔΝに収束したか否かを調べる。 その結果、 ΔΝ≠ (N i n— N t) であり、 未だ目標差回転 ΔΝに収束していない場合に は、 ステップ S 8からステップ S 5へ戻って上述の処理を継続し、 ΔΝ= (N i n-N t) で目標差回転 ΔΝに収束した場合には、 ステップ S 8からステップ S 9へ進む 0
ステップ S 9では、 目標差回転 ΔΝに収束する駆動デューティ d u t yが出荷 判定規格を満足するか否かを調べ、 出荷可能か否かの出荷判定を行う。 出荷判定 規格は、 図 3に示すように、 AT F温度を設定範囲 (略 40° C〜60° C) に 保って領収運転を実行したとき、 目標差回転 ΔΝに収束する駆動デューティ d u t yが、 設計上の公差を積み上げていった場合の上限値 d u t y _ u p p e rと 下限値 d u t y __ 1 o w e r との間の許容領域として設定され、 この領域内にあ るか否かを調べることで出荷判定を行う。
そして、 計測した駆動デューティ d u t yが、 出荷判定規格の領域内にあれ ば、 出荷可能と判断してステップ S 1 0で駆動デューティ値 d u t yを記憶》保 存して処理を終了し、 領域内に無い場合、 出荷不可と判断してステップ S 1 1で N G内容を記録し、 処理を終了する。 出荷可能と判定されて記憶 ·保存された個 々の自動変速機 1の駆動デューティ値 d u t yは、 車両組込み後のフリーローラ 工程において、 基準値との差分が個々の自動変速機 1の補正量として T C U 5 0 に書き込まれる。
このように、 本実施の形態においては、 自動変速機の出荷段階において、 誤差 を多く含むアナログ計測を行うことなく、 入力回転数とタービン回転数との差が 基準値となるデューティソレノイドバルブの駆動デユーティを計測して個体毎の 特性バラツキを求めるため、 出荷時の領収運転における計測精度を高めて本来必 要としている公差に近づけることができ、 しかも、 自動変速機の油圧バラツキの みでなく、 クラツチ摩擦係数、 クラッチクリアランス、 クラッチピストンのリタ ーンスプリング等のバラツキを含め、 自動変速機全体としての性能を管理するこ とができる。 そして、 この高精度の計測によって求めた特性バラツキの捕正量を T C U 5 0に記憶させておくため、 実走行による学習促進を待つことなく、 製品 出荷初期から良好な変速品質を得ることができる。
更には、 領収運転に際して、 領収運転台毎の機差が生じないため、 出荷判定の ための領収運転台間の相関設定が不要となり、 作業効率を向上して工数削減に寄 与することができる。
(本発明の実施の第 2形態)
次に、 本発明の実施の第 2形態について説明する。 図 4〜図 6は本発明の実施 の第 2形態を示す。
第 2形態は、 自動変速機の補正システムを車両側にも構築するものであり、 図 4に示す処理を T C U 5 0で実行することで、 領収運転に準じた条件下で自動変 速機 1のデューティソレノィ ドバルブに対する駆動デューティ d u t yのバラッ キを計測し、 このバラツキを学習値に反映させる。
すなわち、 図 4に示す処理では、 先ず、 ステップ S 21, S 22で、 それぞ れ、 エンジン回転数 N eが規定範囲内にあるか否か、 AT F温度が規定範囲內に あるか否かを調べる。 これは、 第 1形態における自動変速機 1の領収運転と同様 の条件にあるか否かを調べるものであり、 エンジン回転数 N e及び A T F温度が 規定範囲内にあるとき、 ステップ S 23へ進んで、 コントロールバルブの指定ク ラッチやブレーキを制御するためのデューティソレノィ ドバルブの駆動デューテ ィ d u t yを、 基準値とする出力指示を行い、 ステップ S 24へ進む。
ステップ S 24では、 自動変速機 1に備えられているタービン回転数センサに よりタービン回転数 N tを計測し、 ステップ S 25で、 自動変速機の入力回転数 であるエンジン回転数 N eとタービン回転数 N tとの回転差 (Ne— N t) を算 出し、 目標差回転 ΔΝと比較する。
その結果、 ΔΝ>Ν e— N tのときには、 ステップ S 25からステップ S 26 へ進んでデューティソレノィドバルブの駆動デューティ d u t yを、 偏差に応じ た設定値 だけ減少させ (d u t y— d u t y— α) 、 ΔΝく Ne— N tのとき には、 ステップ S 25からステップ S 27へ進んでデューティソレノィ ドバルブ の駆動デューティ d u t yを、 偏差に応じた設定値 だけ増大させる (d u t y u t y + a) 。
その後、 ステップ S 28へ進み、 回転差 (Ne—N t) が目標差回転 ΔΝに収 束したか否かを調べる。 そして、 ΔΝ≠ (Ne—N t) のときには、 ステップ S 28からステップ S 25へ戻って上述の処理を継続し、 ΔΝ= (Ne—N t) で 目標差回転 ΔΝに収束した場合、 ステップ S '28からステップ S 29へ進んで、 このときの駆動デューティ d u t yの基準値からのズレを T CU 50内での学習 値に反映させる演算を行う。 この学習値への反映は、 図 5に示すように、 駆動デ ユーティ d u t yが基準値のときを学習値補正量 0とし、 計測された駆動デュー ティ d u t yの基準値に対する増減割合に応じて学習値補正量を増減させる。 ステップ S 29での学習値反映化演算を行った後は、 ステップ S 30へ進み、 図 6に示すように、 駆動デューティ d u t yが A T F温度に応じて予め設定され た基準値に対する上限値 d u t y_u p p e rと下限値 d t y 1 o w e rと の間にあるか否かを調べる。 そして、 上下限の範囲内にあるときには、 T C U 5 0内の制御用データメモリに補正量を記憶し、 範囲外のときには、 異常と判断し てデータを故障診断用のバックァップメモリに記憶すると共に運転者に警告を発 し、 処理を終了する。
第 2形態では、 自動変速機 1の特性捕正システムを、 車両側の T C U 5 0によ り構築して特性バラツキを予め捕正しておくことにより、 例えば、 市場における ディーラでの点検。修理の際に、 自動変速機 1や T C U 5 0を交換した場合、 或 いは T C U 5 0の電源を遮断して学習値がリセットされた場合等においても、 学 習値のリセットによる変速品質の悪化を生じることがなく、 学習促進を待たずに 良好な変速品質を得ることができる。
以上、 本発明の実施の形態について説明したが、 本発明は、 上述の実施の各形 態に限定されるものではなく、 本発明の精神を逸脱しない範囲で幾多の変化がな しえることは勿論である。 例えば、 本発明の特性補正システムは、 自動変速機の 変速クラッチ以外にも、 4輪駆動用のトランスファーにおける制御クラッチに適 用することが可能であり、 制御量と伝達トルクとの関係を補正することで、 トラ クシヨン性能を向上させると共に、 タイ トコーナブレーキ現象の防止を可能とす る領域を拡大することができる。 また、 上述した実施の各形態では、 油圧制御弁 をデューティソレノィドバルブで説明したが、 本発明はこれに限定されるもので はなく、 他のソレノィドバルブ例えばリニャソレノィドバルブを備えるものにも 適用できる。 産業上の利用可能性
以上説明したように本発明によれば、 実走行による学習促進を待つことなく個 体毎の特性パラツキを補正し、 良好な変速品質を得ることができる。 関連出願へのクロスリファレンス
本出願は、 (1 ) 2 0 0 3年 3月 1 9日に日本国に出願された特願 2 0 0 3— 7 6 1 3 1号を優先権主張の基礎として出願するものであり、 上記 (1 ) の開示 内容は、 本願明細書、 請求の範囲、 図面に引用されたものとする。

Claims

請求の範囲
1 . トルクコンバータに連設される多段変速部の各摩擦係合要素を、 各々の油圧 制御バルブにより係合 '解放させて変速動作を行う自動変速機の特性補正システ ムであって、
上記自動変速機の組立後に行う試運転 ( )結果に ¾づいて、 上記自動変速機の基 準特性に基づく制御データの補正量を算出する手 と、
上記自動変速機を車両に ¾付けた後、 上記補正量を上記自動変速機を制御する 電子制御装置に記憶させる手段とを備えたことを;寺徴とする自動変速機の特性補 正システム。
2 . 請求項 1に記載の自動変速機の特性補正システムにおいて、 ■
上記試運転で上記トルクコンバータの入力回転数と上記トルクコンバータのタ 一ビン回転数との差を一定に保つ上記油圧制御バルブの制御量を計測し、
記補正量を、 上記油圧制御バルブの制御量の計測値と基準値との差分として 記憶させることを特徴とする。
3 . 請求項 2に記載の自動変速機の特性補正システムにおいて、
上記油圧制御バルブの制御量の計測値が、 予め設定した許容範囲内にあるか否 かにより、 上記自動変速機の出荷判定を行うことを特徴とする。
4 . 請求項 3に記載の自動変速機の特性補正システムにおいて、
上記出荷判定を、 上記自動変速機のオイル温度を考慮して行うことを特徴とす る。
5 . トルクコンバータに連設される多段変速部の各摩擦係合要素を、 各々の油圧 制御バルブにより係合 ·解放させて変速動作を行う自動変速機の特性補正システ ムであって、
設定条件下で上記トルクコンバータの入力回転数と上記トルクコンバータのタ 一ビン回転数との差を一定に保つ上記油圧制御バルブの制御量を計測する手段 と、
上記油圧制御バルブの制御量の計測値と基準値との差分を、 上記自動変速機の 特性を学習した学習結果に反映させる手段とを備えたことを特徴とする自動変速 機の特性補正システム (
PCT/JP2004/003519 2003-03-19 2004-03-17 自動変速機の特性補正システム WO2004083688A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002519415A CA2519415C (en) 2003-03-19 2004-03-17 Property correcting system of automatic transmission
AU2004221584A AU2004221584B2 (en) 2003-03-19 2004-03-17 Characteristics correction system for automatic transmission
US10/549,669 US7468016B2 (en) 2003-03-19 2004-03-17 Characteristics correction system for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-76131 2003-03-19
JP2003076131A JP2004286062A (ja) 2003-03-19 2003-03-19 自動変速機の特性補正システム

Publications (1)

Publication Number Publication Date
WO2004083688A1 true WO2004083688A1 (ja) 2004-09-30

Family

ID=33027881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003519 WO2004083688A1 (ja) 2003-03-19 2004-03-17 自動変速機の特性補正システム

Country Status (5)

Country Link
US (1) US7468016B2 (ja)
JP (1) JP2004286062A (ja)
AU (1) AU2004221584B2 (ja)
CA (1) CA2519415C (ja)
WO (1) WO2004083688A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053042A1 (de) * 2004-11-03 2006-05-24 Daimlerchrysler Ag Verfahren zur Regelung eines Antriebsstrangs eines Kraftfahrzeugs
JP4188954B2 (ja) * 2005-08-08 2008-12-03 三菱電機株式会社 不帰還型負荷電流装置
JP4756961B2 (ja) * 2005-09-07 2011-08-24 日立建機株式会社 自動変速機のクラッチ油圧特性値設定方法
JP4979233B2 (ja) * 2005-12-28 2012-07-18 アイシン・エィ・ダブリュ株式会社 自動変速機の補正値測定方法および測定装置、ならびにこれら測定方法および測定装置によって測定された補正値を利用する自動変速機
JP4432950B2 (ja) 2006-09-15 2010-03-17 トヨタ自動車株式会社 車両用自動変速機の調整方法
JP2008121834A (ja) 2006-11-14 2008-05-29 Fuji Heavy Ind Ltd 自動変速機の特性補正システム
DE102009051720A1 (de) * 2008-11-24 2010-06-02 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Inbetriebnahme
JP2010210020A (ja) * 2009-03-10 2010-09-24 Toyota Motor Corp 車両用油圧制御装置
KR101103970B1 (ko) * 2009-09-16 2012-01-06 기아자동차주식회사 차량의 tcu 티칭 방법
DE102011017515B4 (de) * 2011-04-26 2018-06-21 Zf Friedrichshafen Ag Verfahren zur Bestimmung von Kenngrößen eines Automatikgetriebes
JP2013072529A (ja) * 2011-09-29 2013-04-22 Hitachi Automotive Systems Ltd リニアソレノイドモジュール
KR101826547B1 (ko) * 2015-12-14 2018-02-07 현대자동차 주식회사 자동변속기의 제어 장치 및 방법
CN108302192B (zh) * 2018-01-30 2019-09-17 吉利汽车研究院(宁波)有限公司 变速箱自学习状态进入方法与装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017929A1 (de) * 1996-10-21 1998-04-30 Zf Friedrichshafen Ag Verfahren zur bestimmung von kenngrössen eines automatgetriebes
JPH10184410A (ja) * 1996-12-25 1998-07-14 Aisin Aw Co Ltd 自動変速機の変速制御装置
JP2002295662A (ja) * 2001-03-29 2002-10-09 Komatsu Ltd 指令信号の補正装置
JP2003004130A (ja) * 2001-06-21 2003-01-08 Fuji Heavy Ind Ltd 自動変速機の制御装置
JP2003014119A (ja) * 2001-04-10 2003-01-15 Aisin Aw Co Ltd パワートレイン並びにその検査方法及び検査装置
JP2003254418A (ja) * 2002-03-04 2003-09-10 Denso Corp 自動変速装置の製造方法、およびその製造方法で製造した自動変速装置
JP2003287119A (ja) * 2002-03-28 2003-10-10 Aisin Seiki Co Ltd 自動変速機の油圧特性値設定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951205A (en) * 1988-04-29 1990-08-21 Chrysler Corporation Method of diagnostic protection for an electronic automatic transmission system
US5121820A (en) * 1990-12-24 1992-06-16 Ford Motor Company Feedforward control for automatic transmission torque converter bypass clutch slip
JPH07239019A (ja) * 1994-02-24 1995-09-12 Mazda Motor Corp 自動変速機の油圧制御装置
DE19601555B4 (de) * 1995-01-18 2004-07-15 Mitsubishi Jidosha Kogyo K.K. Gangänderungssteuerungsvorrichtung für ein Automatikgetriebe
JP3773977B2 (ja) * 1995-01-18 2006-05-10 三菱自動車工業株式会社 自動変速機の変速制御装置
DE19511897C2 (de) * 1995-03-31 1999-06-02 Daimler Chrysler Ag Verfahren zum Steuern einer ein- und ausrückbaren Reibschlußverbindung bei einer Schaltungsvorrichtung eines automatischen Stufengetriebes eines Kraftfahrzeuges
DE19934486A1 (de) * 1999-07-22 2001-01-25 Zahnradfabrik Friedrichshafen Verfahren zur Prüfung der Funktion eines elektrohydraulisch gesteuerten Automatgetriebes
JP2002031222A (ja) * 2000-07-11 2002-01-31 Fuji Heavy Ind Ltd 自動変速機の自動ニュートラル制御装置
JP4132631B2 (ja) * 2000-10-11 2008-08-13 富士重工業株式会社 車載電子制御装置の補正システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017929A1 (de) * 1996-10-21 1998-04-30 Zf Friedrichshafen Ag Verfahren zur bestimmung von kenngrössen eines automatgetriebes
JPH10184410A (ja) * 1996-12-25 1998-07-14 Aisin Aw Co Ltd 自動変速機の変速制御装置
JP2002295662A (ja) * 2001-03-29 2002-10-09 Komatsu Ltd 指令信号の補正装置
JP2003014119A (ja) * 2001-04-10 2003-01-15 Aisin Aw Co Ltd パワートレイン並びにその検査方法及び検査装置
JP2003004130A (ja) * 2001-06-21 2003-01-08 Fuji Heavy Ind Ltd 自動変速機の制御装置
JP2003254418A (ja) * 2002-03-04 2003-09-10 Denso Corp 自動変速装置の製造方法、およびその製造方法で製造した自動変速装置
JP2003287119A (ja) * 2002-03-28 2003-10-10 Aisin Seiki Co Ltd 自動変速機の油圧特性値設定方法

Also Published As

Publication number Publication date
US20060229788A1 (en) 2006-10-12
AU2004221584B2 (en) 2008-07-24
JP2004286062A (ja) 2004-10-14
CA2519415C (en) 2008-07-22
AU2004221584A1 (en) 2004-09-30
CA2519415A1 (en) 2004-09-30
US7468016B2 (en) 2008-12-23

Similar Documents

Publication Publication Date Title
WO2004083688A1 (ja) 自動変速機の特性補正システム
US6253140B1 (en) Engagement control logic for an automatic transmission clutch with adaptive engagement feel
JP4333784B2 (ja) 無段変速機の故障判定装置および故障判定方法
JP4561752B2 (ja) 自動変速機の故障診断装置
US7108633B2 (en) Control apparatus for automatic transmission
US8050826B2 (en) Characteristic correction system for automatic transmission
US20110035125A1 (en) Control apparatus for automatic transmission
US5693878A (en) Torque converter clutch engagement test
US7979184B2 (en) Automatic transmission solenoid control system and method
JP4085916B2 (ja) 自動変速機及び自動変速機の油圧特性値設定方法
US6106435A (en) Tie-up decision device for automatic transmission, and gearshift control apparatus employing the same
JP3189216B2 (ja) 自動変速機の液圧制御装置
US20200309256A1 (en) Method for preventing incorrect learning of clutch torque of transmission of vehicle
JP4126493B2 (ja) 自動変速機及び自動変速機の待機油圧値設定方法
US20090325757A1 (en) Automatic transmission
US8180538B2 (en) Adapting stroke pressure of a transmission control element
KR100838119B1 (ko) 차량용 자동 변속기의 편차 보정방법
US20050143222A1 (en) Control method for suppressing blow-up phenomenon during power-on 2-3 upshift of automatic transmission
US6572510B1 (en) Control device of automatic transmission
JP3063521B2 (ja) 車両用総合制御装置
US20090005957A1 (en) Actuator control system and actuator
JP4400077B2 (ja) 自動変速機の制御装置
JP4756961B2 (ja) 自動変速機のクラッチ油圧特性値設定方法
JP3194844B2 (ja) 油圧作動式変速機の変速特性良否判定装置
SE542258C2 (en) A method for clutch torque adaptation, a control unit for clutch torque adaptation, a vehicle comprising such a control unit, a computer program and a computer-readable medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004221584

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2519415

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006229788

Country of ref document: US

Ref document number: 10549669

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004221584

Country of ref document: AU

Date of ref document: 20040317

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004221584

Country of ref document: AU

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10549669

Country of ref document: US