WO2004078363A1 - 塗布膜の乾燥方法および光学フィルム - Google Patents

塗布膜の乾燥方法および光学フィルム Download PDF

Info

Publication number
WO2004078363A1
WO2004078363A1 PCT/JP2004/002720 JP2004002720W WO2004078363A1 WO 2004078363 A1 WO2004078363 A1 WO 2004078363A1 JP 2004002720 W JP2004002720 W JP 2004002720W WO 2004078363 A1 WO2004078363 A1 WO 2004078363A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
plate
drying
coating
film
Prior art date
Application number
PCT/JP2004/002720
Other languages
English (en)
French (fr)
Inventor
Makoto Komatsubara
Ryuuichi Inoue
Mie Oota
Kazuki Tsuchimoto
Seiji Kondou
Tomoaki Masuda
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US10/548,409 priority Critical patent/US20070110894A1/en
Priority to CNB2004800061813A priority patent/CN100542686C/zh
Priority to KR1020057016625A priority patent/KR100739389B1/ko
Publication of WO2004078363A1 publication Critical patent/WO2004078363A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a technique for continuously drying a coating solution applied to a traveling elongate support, and particularly to a drying method and an optical functional layer formed by the method.
  • the present invention relates to an optical film having a structure, a polarizing plate including the optical film, and an image display device including the polarizing plate.
  • drying methods such as blowing hot air on a coating surface in a drying device after coating or irradiating far-infrared rays.
  • the present invention has been made in view of the above problems, and provides a method for drying a coating film capable of stably producing a coating film having a small thickness variation, and a method for drying a coating film formed by the method. It is an object of the present invention to provide an optical film having a structure in which a plurality of optical functional layers are stacked, a polarizing plate having the optical film, and an image display device including the polarizing plate.
  • the present inventors set the evaporation rate (drying rate) of the coating liquid immediately after coating to 0.1 g Zm 2 'when drying the coating film formed by applying the coating liquid to the running long support. It was found that a coating film having a uniform thickness can be dried by setting the thickness to s or less, and a coating film having a uniform thickness can be formed.
  • the present invention provides a method for drying a coating film formed by applying a coating liquid to a running elongate support, wherein the evaporating rate of the solvent is set immediately after the coating liquid is applied to the elongate support.
  • the drying is carried out while keeping the pressure at or below 0.1 lg Zm 2 's.
  • the drying at an evaporation rate of 0.1 lg / m 2 's or less is performed before the elongate support coated with the coating liquid enters the drying device.
  • the drying step in which the evaporation rate is set to 0.1 g / m 2 -s or less may be performed, and the drying may be terminated without providing a separate drying device.
  • a plate parallel to the long support immediately after the coating liquid is applied, and a gap between the coating and the coating film are provided. It is preferable to arrange them. This prevents wind from the surrounding environment from entering the gap between the plate and the coating film, almost completely fills the gap with solvent vapor, and reduces the evaporation rate to 0.1 g / m 2 s or less. can do.
  • the temperature of the plate is controlled to be equal to or higher than the dew point of the vapor of the coating liquid.
  • the evaporation rate can be controlled within a range of 0.1 gm 2 -s or less, and dew condensation of steam can be prevented, and stable drying can be performed.
  • the air flow accompanying the traveling of the long support affects the coating film in the undried state. This prevents a coating film having a uniform thickness.
  • the viscosity of the coating solution is 300 mPa ⁇ s or less, more stable drying can be performed. Furthermore, if it is 50 mPa ⁇ s or less, particularly stable drying can be performed.
  • the coating film is formed as an optical function layer having an optical function. As a result, it is possible to obtain a coated product with little external appearance unevenness even in recent years, even for a coated product for an optical application requiring a severe appearance.
  • an optical film having a structure in which optical functional layers are laminated by the drying method as described above a film suitable for optical use with less appearance unevenness can be obtained. Furthermore, by laminating such optical films to form a polarizing plate, a polarizing plate suitable for optical use with less unevenness in appearance can be obtained.
  • an image display device is manufactured using the polarizing plate, a high-quality device with less unevenness in appearance can be realized.
  • the present invention provides a method for drying a coating film formed by applying a coating solution to a running elongate support, comprising: coating a plate having a plate width equal to or greater than the width of the elongate support. It is arranged along the traveling path of the long support on the downstream side of the coating device, and the long support immediately after the coating film is formed by the coating device, and the coating film is placed on the plate surface of the plate.
  • the present invention also relates to a method for drying a coating film, in which the coating film is dried at least partially in the above-mentioned gap by running along a running path while being opposed to each other with a predetermined gap therebetween. Thereby, drying can be performed while reducing the influence of wind and the like from the surrounding environment, and it is possible to stably produce a coating film with small thickness variations.
  • FIG. 1 is a view showing a configuration in which a plate is provided on the side of a long-sized support on which a coating film is formed.
  • FIG. 2 is a diagram showing a configuration in which plates are provided on both the side on which a coating film is formed and the side on which a coating film is not formed on a long support.
  • FIG. 3 is a diagram showing a configuration in which an enclosing plate is provided so as to surround the elongate support immediately after the application liquid is applied.
  • FIG. 4 is a diagram showing a configuration in which flat fins are provided on the plate in the configuration of FIG. 1.
  • FIG. 5 is a diagram showing average values of coating film thicknesses of Example 1 and Comparative Example 1.
  • FIG. 6 is a diagram showing the dispersion of the coating film thickness in Example 1 and Comparative Example 1.
  • FIG. 7 is a diagram showing average values of the coating film thicknesses of Example 2 and Comparative Example 2.
  • FIG. 8 is a diagram showing the dispersion of the coating film thickness in Example 2 and Comparative Example 2.
  • FIG. 1 is a view showing a configuration in which a plate is provided on the side of a long support on which a coating film is formed.
  • the long support 10 serves as a base material for forming a coating film.
  • a flat long flexible surface formed of a web-like film / sheet is used. It is a base material, and runs at a substantially constant speed in the right direction on the paper while being supported by a plurality of rollers 35 and the like.
  • the traveling path of the long support 10 includes a coating device 3 such as a die coater for applying a coating liquid to at least one surface side (the top surface in FIG. 1 and the same in other drawings) of the long support 10.
  • the coating liquid is for forming, for example, a protective sheet for a polarizing plate or an optical functional layer (specific examples will be described later).
  • the coating film 11 applied to the long support 10 is opposed to the coating device 11.
  • a substantially parallel plate 20 is provided on the main surface (coated surface) of the elongated support 10, and a certain gap G is provided between the plate 20 and the coating film 11.
  • the side 20 s of the plate 2 ⁇ facing the coating film 11 1 is finished as smooth as possible, and the plate 20 is coated with the coating film 1 1 in the width direction of the elongated support 10 (perpendicular to the paper surface). And is arranged along the traveling path of the elongated support 10.
  • Plate 20 is a long support
  • the main purpose is to prevent the coating film 11 formed on the body 10 from being affected by wind and the like from the environment around the traveling route in an undried state. Is preferably 1 O mm or less.
  • the gap between the plate 20 and the coating film 11 is almost completely filled with the vapor of the solvent, and the evaporation rate of the solvent can be reduced to 0.1 lg Zms or less, and the uniform state can be obtained.
  • the coating film is dried, and a coating film having a uniform thickness is formed.
  • the plate 20 prevents the solvent evaporation environment of the coating film 11 in the gap G while preventing the coating film 11 from being exposed to the outside airflow (Japanese Patent Application Laid-Open No. 2000-17070). It does not function as forced air blowing as in JP-A-5-47) but functions as an evaporation environment control plate that autonomously and uniformly controls the vapor pressure of the solvent evaporated from the coating film 11 itself.
  • the plate 20 is formed so as to exhibit uniform thermal conductivity, and the temperature of the plate 20 (particularly, facing the coating surface) is controlled by a temperature control unit 25 including a heat source.
  • the temperature of the surface 20 s is controlled to be equal to or higher than the dew point of the solvent.
  • the temperature is adjusted so that the evaporation rate of the solvent is 0.1 lg Zm 2 -s or less. This makes it possible to arbitrarily adjust the evaporation rate within a range of 0.1 lg Zm 2 's or less, while preventing condensation of the solvent vapor in the gap G between the plate 20 and the coating film 11. Will be possible.
  • the plate 20 can be, for example, a metal plate or a plate material whose lower surface 20 s is covered with a metal layer, and the temperature controller 25 can have, for example, an electric heater as a heat source.
  • a temperature sensor 26 for detecting the temperature of the plate material 20 or the gap G is provided, and feedback control of the temperature control unit 25 is performed by using a temperature detection value of the temperature sensor 26 to obtain the plate 20. The temperature can be adjusted more precisely.
  • the drying step using the plate 20 as described above is preferably performed immediately after the application of the coating liquid and before the elongate support 10 enters the drying device 40. By doing so, it is possible to satisfactorily prevent the influence of the wind from the surrounding environment or the like before the undried coating liquid enters the drying device 40.
  • the elongated support 10 on which the coating film 11 has been formed and passed below the plate 20 enters a conventional drying device 40 and is heated or irradiated with ultraviolet light to complete the coating film 11. Drying or curing takes place.
  • the temperature of the plate 20 provided immediately after the coating device 30 is adjusted, the gap G below the plate 20 is at a higher temperature than room temperature. Has a drying acceleration effect. Therefore, the coating film 11 may be completely dried by the action of the plate 20, and in that case, it is not necessary to provide the drying device 40.
  • the evaporation rate of the solvent becomes 0 g / m 2 s. It may be controlled as follows. In this case, the elongate support 10 on which the coating film 11 is formed is guided to the drying device 40 in a state where it is not dried at all by the surrounding environment, so that a coating film having a good and uniform film thickness is formed. On the other hand, when the drying device 40 is not provided, it is necessary to perform complete drying while the elongate support 10 passes below the plate 20. Is controlled to a value at least higher than 0 g / m 2 ⁇ S. In this case, the specific lower limit of the evaporation rate is set to a speed at which complete drying is possible based on the length of the plate 20 with respect to the traveling direction, the moving speed of the elongated support 10 and the like.
  • the viscosity of the coating solution used is preferably 30 OmPas or less. More preferably, by setting the viscosity of the coating solution to 5 OmPa ⁇ s or less, particularly stable drying can be performed.
  • FIG. 2 shows a configuration different from that of FIG. 1, and is a view showing a configuration in which plates are provided on both sides of a long-sized support on which a coating film is formed and on which no coating film is formed.
  • the long support 1 is disposed on the side of the long support 10 on which the coating film is formed so as to face the coating film 11.
  • a first plate 20 a substantially parallel to 0 is provided, and a long support is provided on the non-coated side of the long support 10 so as to face the long support 10.
  • a second plate 20b substantially parallel to the body 10 is provided.
  • fixed gaps G 1 and G 2 are provided between the first plate 20 a and the coating film 11, and between the second plate 20 b and the elongated support 10. are respectively provided.
  • the gap G1 between the first plate 20a and the coating film 11 is almost completely filled with the vapor of the solvent.
  • the evaporation rate of the solvent can be reduced to 0.1 lg Zm 2 's or less, and the coating film is dried in a uniform state to form a coating film having a uniform thickness.
  • each of the plates 20a and 20b is formed so as to exhibit uniform thermal conductivity, and the temperature control sections 25a and 25b including the heat source are provided.
  • the temperature of each of the plates 20a and 20b (particularly, the temperature of the surface facing the coated surface or the surface of the support) is individually controlled so as to be higher than the dew point of the solvent.
  • the temperature sensors 26a and 26b that measure the temperatures of the plates 20a and 20b or the gaps Gl and G2 respectively It is preferable to provide a feedback control for each of the temperature control sections 25a and 25b separately, but it is preferable to detect the temperature of one of them (for example, the temperature sensor 26a on the side facing the coating surface).
  • the feedback control of both of the two temperature control units 25a and 25b may be performed with reference to the value.
  • FIG. 3 shows a configuration different from that described above.
  • An enclosing plate (flat tunnel structure) 20 c is arranged so as to surround the elongated support immediately after the application liquid is applied. It is a figure showing the composition provided.
  • FIG. 3 is a cross-sectional view perpendicular to the traveling direction of the elongated support 10, and the elongated support 10 travels in a direction perpendicular to the plane of the paper.
  • the surrounding plate 20 c is disposed immediately after the coating device 30 on the traveling path of the elongated support 10, and the elongated support 1 immediately after the coating film 11 is formed. 0 enters the tunnel-shaped internal space 21 formed by the surrounding plate 20c.
  • the surrounding plate 20c has a structure in which plates are provided not only on the side on which the coating film is formed and on the non-formed side of the long support 10 but also on the side.
  • the support 10 and the coating film 1 travel in the internal space 21 of the surrounding plate 20c, the influence of wind and the like from the surrounding environment can be significantly reduced.
  • the surface of the surrounding plate 20 c facing the coating film 11 The side, certain amount of air gap G 1 is provided as described above between the coating film 1 1 and surrounding plate 2 0 c, the evaporation rate of the solvent is 0. Lg Zm 2 's or less.
  • the surrounding plate 20c is formed so as to exhibit uniform thermal conductivity, and the temperature of the surrounding plate 20c (particularly the inner surface) is controlled by a temperature control unit 25 including a heat source. (Side temperature) is controlled to be equal to or higher than the dew point of the solvent. As a result, the evaporation rate is reduced to 0.1 while preventing condensation of the solvent vapor in the gap G1 between the surrounding plate 20c and the coating film 11 and the internal space 21 of the surrounding plate 20c. It can be adjusted arbitrarily within the range of g / m 2 ⁇ s or less.
  • FIG. 4 is a diagram showing a configuration in which a plurality of flat fins 22a to 22d are provided on the plate 20 in the configuration of FIG.
  • the fins 22 a to 22 d are suspended from the surface of the plate 20 facing the coating film 11 so as to cross the running path of the elongated support 10.
  • a certain gap G is set between the lower ends of the fins 22a to 22d and the coating film 11. Is provided.
  • the fins 22 a to 22 d are generated as the elongated support 10 coated with the coating liquid travels.
  • the effect of the irregular airflow 8 causing the evaporation rate of the solvent to be non-uniform can be reduced. That is, the airflow 8 generated in the traveling direction is prevented from entering the void space G between the plate 20 and the coating film 11 by the fins 22a, and is stable without being affected by the airflow 8. Drying can be performed. Airflow is also assumed to occur in the void space G between the plate 20 and the coating film 11, but these may be affected by the fins 22 b and 22 c over a wide area. Prevented and stable drying can be performed.
  • the above-mentioned fins 22 a to 22 d may be arranged at equal intervals in the running direction of the long support 10, and may be arranged near the end of the plate 20 and at the center of the plate 20.
  • the arrangement interval in the vicinity may be different. That is, in the vicinity of these ends (especially near the entrance corresponding to the left side of the figure), each part of the elongated support 10 having the coating film 11 is a plate.
  • the surrounding air is easily entrained when entering the lower space of 20.
  • the fins by arranging the fins at a relatively short pitch near the end, the effect of preventing the entrainment of the airflow can be enhanced. Further, as shown in FIG.
  • the fins 20 a and 20 d on the end side of the plurality of fins 22 a to 22 d are aligned with the position of the end face 20 e of the plate 20. It is preferable to install them. Thus, the airflow 8 can be prevented from entering at the end of the plate 20.
  • the plate 20 is formed so as to exhibit uniform thermal conductivity in order to control the evaporation rate of the solvent, and the temperature of the plate 20 is controlled by a temperature control unit 25 including a heat source. (Particularly the temperature of the surface facing the coating surface) is controlled so as to be equal to or higher than the dew point of the solvent. As a result, the evaporation rate is reduced to 0.1 lg / m 2 -s or less while preventing dew condensation of the solvent vapor in the gap space G between ⁇ 20, the coating film 11 and each of the fins 22a to 22d. Can be arbitrarily adjusted within the range.
  • the temperature of the plate 20 can be individually controlled for each partial void space partitioned by each of the fins 22a to 22d, and in this case, the drying state of the coating liquid can be improved to a higher degree. It can be adjusted.
  • the temperature sensor 26 is also provided for each subspace (divided space), and the temperature control function is particularly enhanced if the feedback control of the temperature for each zone is performed.
  • the lower surface of the plate 20 may be formed in a wavy shape instead of the fins. In this case, a plurality of wave structures each extending in a direction substantially perpendicular to the running direction of the elongated support 10 are formed by a long wave.
  • the coating film 11 can be formed, for example, as an optical functional layer having an optical function.
  • the optical film and the polarizing plate used in the image display device can be formed as a structure in which the above-mentioned optical functional layer is laminated. That is, the above-described drying step is particularly useful for forming an optical functional layer laminated on an optical film or a polarizing plate.
  • the polarizing plate is made of, for example, a polyvinyl alcohol-based film containing a dichroic substance. It is configured as a structure in which a protective sheet or another optical film is provided on one or both sides of the resulting polarizer.
  • polarizer various types can be used without particular limitation. Examples thereof include a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene / butyl acetate copolymer-based partially saponified film.
  • a polarizer made of a polyvinyl alcohol-based film and a dichroic substance such as iodine is preferred.
  • the material includes transparency, mechanical strength, heat stability, moisture shielding, isotropic, and the like. Those having excellent properties and the like are preferred.
  • polyester-based polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate; cenorellose-based polymers such as diacetinolose and triacetyl / reseno-relose; acrylic polymers such as polymethyl methacrylate; polystyrene and acetic acid nitrile.
  • Styrene polymers such as styrene copolymer (AS resin) and polycarbonate polymers are mentioned.
  • amide polymers such as polyethylene, polypropylene, polyolefin having a cyclo- or norbornene structure, polyolefin polymers such as ethylene-propylene copolymer, vinyl chloride polymers, nylon-aromatic polyamides, and imido polymers.
  • Sulfone-based polymers Polyethenoles-norethone-based polymers, Polyetheno-oleateno-leketone-based polymers, Polyphenylene sulfide-based polymers, Bull alcohol-based polymers, Vinylidene chloride-based polymers, Vinylinolebutyral-based polymers, arylate-based polymers, Polymethylene-based polymers, epoxy-based polymers, blends of the above polymers, and the like are also examples of the polymer that forms the protective sheet.
  • the protective sheet can be formed as a cured layer of a thermosetting resin such as an acrylic resin, a urethane resin, an acrylic urethane resin, an epoxy resin, or a silicone resin, or an ultraviolet curable resin.
  • a thermosetting resin such as an acrylic resin, a urethane resin, an acrylic urethane resin, an epoxy resin, or a silicone resin, or an ultraviolet curable resin.
  • the above-mentioned polarizing plate is used by laminating various optical functional layers in practical use.
  • the drying method described above can also be used when laminating and forming an optical functional layer.
  • the optical functional layer is not particularly limited, but, for example, for the purpose of hard coating treatment, anti-reflection treatment, statesking prevention, diffusion or anti-glare on the surface of the protective sheet without the polarizer. Surface treatment or lamination of an oriented liquid crystal layer for the purpose of compensating for a viewing angle.
  • an optical functional layer used for forming an image display device such as a reflection plate, a semi-transmission plate, a retardation plate (including a wavelength plate ( ⁇ plate) such as ⁇ or /), a viewing angle compensation layer, etc.
  • a laminate of two or more layers In particular, a reflective polarizing plate or a transflective polarizing plate in which a reflecting plate or a transflective reflecting plate is laminated on a polarizing plate, an elliptically polarizing plate or a circular polarizing plate in which a retardation plate is laminated, and a viewing angle compensation layer are laminated.
  • a wide viewing angle polarizing plate or a polarizing plate having a brightness enhancement layer laminated thereon is preferable.
  • the viewing angle compensation layer is an optical function layer for widening the viewing angle so that the image can be seen relatively clearly even when the screen of the image display device is viewed from a slightly oblique direction, not perpendicular to the screen.
  • the wide viewing angle polarizing plate having such a viewing angle compensating layer laminated thereon includes, for example, a retardation plate, an alignment film such as a liquid crystal polymer, and a film in which an alignment layer such as a liquid crystal polymer is supported on a transparent substrate.
  • a normal retardation plate is a birefringent polymer film uniaxially stretched in the plane direction, whereas a retardation plate used as a viewing angle compensation film is biaxially stretched in the plane direction.
  • Birefringent polymer film and force biaxially stretched uniaxially in the plane direction and also stretched in the thickness direction, birefringent polymer with controlled birefringence in the thickness direction
  • a stretched film or the like is used.
  • the obliquely oriented film include a film obtained by bonding a heat shrinkable film to a polymer film and subjecting the polymer film to a stretching treatment and / or a shrinking treatment under the action of the shrinkage force caused by heating, or a liquid crystal polymer obliquely oriented. And the like.
  • an appropriate polymer may be used for the purpose of preventing coloring or the like due to a change in the viewing angle based on the phase difference due to the liquid crystal cell, or expanding the viewing angle for good visibility.
  • the optical compensation by supporting the alignment layer of liquid crystal polymer, especially the optically anisotropic layer composed of the tilted alignment layer of discotic liquid crystal polymer with a triacetyl cellulose film.
  • a retardation plate can be preferably used.
  • the drying method described above can be applied to the formation of a viewing angle compensation layer having such an optical compensation function.
  • a coating solution containing a liquid crystalline discotic compound is applied to a long triacetyl cellulose film and the coating film is dried, the above-described drying method can be applied, thereby reducing appearance unevenness. And a retardation plate can be obtained.
  • the polarizing plate on which the brightness enhancement layer is laminated is usually used by being provided on the back side of a liquid crystal cell.
  • the brightness enhancement layer has the property of reflecting linearly polarized light of a predetermined polarization axis or circularly polarized light of a predetermined direction when natural light enters due to reflection from the backlight of an image display device such as a liquid crystal display device or the back side, and transmits other light.
  • the polarizing plate on which the brightness enhancement layer is laminated receives light from a light source such as a backlight to obtain transmitted light in a predetermined polarization state, and reflects light other than the predetermined polarization state without transmitting the light. .
  • the light reflected on the film surface of such a brightness enhancement layer is further inverted via a reflection layer or the like provided on the rear side and re-entered on the brightness enhancement layer, and a part or all of the light having a predetermined polarization state is reflected.
  • the brightness is improved. That is, when light is incident through a polarizer from the back side of a liquid crystal cell with a backlight or the like without using a brightness enhancement layer (brightness enhancement film), the polarization direction that does not match the polarization axis of the polarizer is changed.
  • the brightness enhancement layer reflects light having a polarization direction that can be absorbed by the polarizer, temporarily reflects the light on the brightness enhancement layer without entering the polarizer, and further inverts the light through a reflective layer or the like provided behind it. And then re-enter the brightness enhancement layer, and transmit only the polarized light whose polarization direction is reflected or inverted between the two so that it can pass through the polarizer, and supply it to the polarizer.
  • To efficiently use light from a backlight, etc. for image display Can make the screen brighter.
  • a diffusion plate can be provided between the luminance enhancement layer and the reflection layer.
  • the light in the polarization state reflected by the brightness enhancement layer goes to the reflection layer, etc., but the diffuser installed diffuses the light passing therethrough at the same time, and at the same time, eliminates the polarization state to make it a non-polarization state. That is, it returns to the original natural light state.
  • the light in the non-polarized state that is, the natural light state is directed to the reflection layer and the like, is reflected through the reflection layer and the like, passes through the diffusion plate again, and is incident again on the brightness enhancement layer.
  • the diffuser By providing the diffuser for returning to the original natural light state, it is possible to maintain the brightness of the display screen and at the same time reduce the unevenness of the brightness of the display screen and provide a uniform bright screen.
  • the number of repetitions of the first incident light is appropriately increased, and a uniform bright display screen can be provided in combination with the diffuser function of the diffuser.
  • the brightness enhancement layer exhibiting the optical function as described above is, for example, either a left-handed or right-handed circle such as an oriented film of a cholesteric liquid crystal polymer or a film in which the oriented liquid crystal layer is supported on a film substrate.
  • Appropriate materials such as those exhibiting characteristics of reflecting polarized light and transmitting other light can be used.
  • the drying method described above can be applied to the formation of this type of brightness enhancement layer. For example, when applying a coating liquid for forming a directional liquid crystal layer on a long film base material and drying the coating film, the drying method described above can be applied, whereby the appearance unevenness can be improved. It is possible to form a brightness enhancement layer with a small number of layers.
  • a brightness enhancement layer for example, a property of transmitting linearly polarized light having a predetermined polarization axis and reflecting other light, such as a multilayer thin film of a dielectric or a multilayer laminate of thin films having different refractive index anisotropy, is used.
  • These types of brightness enhancement layers are also used.
  • this type of brightness enhancement layer the transmitted light is incident on the polarizing plate as it is, with the polarization axis aligned, so that the absorption by the polarizing plate can be suppressed and the light can be transmitted efficiently. become able to. Therefore, this kind of brightness enhancement layer may be laminated on the optical functional layer formed by the above-mentioned drying method to form a polarizing plate having a multilayer structure.
  • the light in a brightness enhancement layer that transmits circularly polarized light, such as a cholesteric liquid crystal layer, the light can be directly incident on the polarizer, but from the viewpoint of suppressing absorption loss, the circularly polarized light is linearly polarized through a retardation plate. It is preferable that the light is incident on a polarizing plate. What By using a 14-wave plate as the retardation plate, circularly polarized light can be converted to linearly polarized light.
  • a retardation plate that functions as a 1/4 wavelength plate in a wide wavelength range such as a visible light castle is, for example, a retardation layer that functions as a 1/4 wavelength plate for monochromatic light with a wavelength of 550 nm, and other retardation layers. It can be obtained by a method in which a retardation layer exhibiting characteristics, for example, a retardation layer functioning as a half-wave plate is overlapped. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement layer may be composed of one or more retardation layers. Also, such a retardation layer can be formed by forming a coating film by applying a coating solution and then drying the coating film, so that appearance unevenness is reduced! / ⁇ A retardation layer can be formed.
  • a coating liquid is applied to a long support (film or the like) serving as a base material to form a coating film, and the coating film is dried by the drying method described above. By doing so, an optical functional layer without unevenness is formed. Therefore, by laminating such an optical functional layer on an optical film, a high-quality optical film without unevenness can be obtained. Furthermore, by laminating this optical film on a polarizing plate, a high-quality polarizing plate without unevenness can be obtained.
  • the polarizing plate may be formed by stacking a polarizing plate and two or three or more optical functional layers. Therefore, a reflective elliptically polarizing plate or a transflective elliptically polarizing plate obtained by combining a reflective polarizing plate, a transflective polarizing plate, and a retardation plate may be used. Further, the optical film or the polarizing plate may be provided with at least one optical functional layer formed by the above-described drying method. Therefore, in an optical film or a polarizing plate having a multilayer structure, a polarizing plate in which at least one layer is formed by the above-described drying method and other layers are formed by a conventional method may be used.
  • the timing of the lamination may be before or after the protective sheet is laminated to the polarizer.
  • the optical functional layer is laminated by applying a coating solution to the protective sheet, the protective sheet alone or a laminate of the polarizer and the protective sheet is used as the long support 10.
  • Drying methods can be employed. By the drying method, stable drying can be performed, and an optical functional layer without unevenness is formed.
  • an optical film having an optical functional layer as described above is laminated on a polarizing plate
  • the optical film and the polarizing plate are separately formed, and the optical film and the polarizing plate are produced separately in a manufacturing process of an image display device such as a liquid crystal display device.
  • These films can be formed by laminating them by laminating them together.However, those in which an optical film is laminated on a polarizing plate in advance are superior in terms of quality stability and assembling work. There is an advantage that the manufacturing process of the display device is made more efficient.
  • the polarizing plate obtained as described above can be preferably used for forming a liquid crystal display device.
  • the present invention can be used for a reflection type, a semi-transmission type, or a transmission / reflection type liquid crystal display device in which a polarizing plate is disposed on one side or both sides of a liquid crystal cell.
  • the liquid crystal cell substrate may be either a plastic substrate or a glass substrate.
  • the liquid crystal cell that forms the liquid crystal display device is arbitrary, for example, an active matrix drive type represented by a thin transistor type, a simple matrix drive type represented by a twisted nematic type or a super nematic type, and the like. A liquid crystal cell of an appropriate type may be used.
  • the polarizing plate having a structure in which the optical functional layers formed by the above-described drying method are laminated is used for a liquid crystal display device, so that a high quality image display without unevenness is realized in the liquid crystal display device.
  • the polarizing plate obtained as described above is not limited to a liquid crystal display device, and can be preferably used for an image display device such as an organic EL display device and a plasma display device.
  • an image display device having no unevenness in appearance can be realized, and such an image display device can be realized.
  • the device can be obtained stably. Further, high-quality image display without unevenness is realized in the image display device.
  • Example 1 Example 1
  • UV curable liquid crystal on PET film (75 / m thickness) by die coater
  • a coating solution with a viscosity of 6 mPa's (measuring device: Rakemeter RS-1 manufactured by Haake), diluted with an organic solvent (cyclopentanone) to a solid content of 30%, is dried to a thickness of 4. 0 / im, and after passing this coating film through the zone where the plate 20 provided with a certain gap G between the coating film and the coating film as shown in FIG.
  • the sheet After drying with hot air at 70 ° C., the sheet was cured by ultraviolet irradiation (integrated light amount of 300 mJ / cm 2 ) to obtain a sheet having an optical functional layer.
  • the evaporation rate of the coating liquid in the arrangement zone of the plate 20 as measured on the basis of gas concentration distribution of steam generated with air volume (the wind speed), been filed with 0. 03 g Zm 2 ⁇ s .
  • the relationship between the gas concentration and wind speed and the drying speed is calculated in advance by placing the coating solution on an electronic balance in a batch system and measuring the weight change over time while monitoring the gas concentration and wind speed.
  • the evaporation rate was calculated using this relationship. Specifically, a hole is made in the center of the substrate 20 in the flow direction of the substrate and in the center of the substrate in the width direction, and a gas concentration measuring device (portable VOC monitor manufactured by Yokogawa Electric Corporation) is formed in the hole.
  • a wind speed measuring device (Anemomaster made by Nippon Kanomax Co., Ltd.) are arranged to measure the gas concentration and the wind speed, and the above evaporation rate 0.03 gZm 2 ⁇ s is obtained from the relationship previously obtained by the above method. Was done.
  • the wind direction was the same direction (forward direction) as the substrate traveling direction, and the measured wind speed was 0.1 lmZs.
  • Example 1 a coating film was formed under the same conditions as above except that the plate 20 was removed. At this time, when the evaporation rate of the coating solution in the portion where the plate 20 was removed was measured in the same manner as described above, it was 0.12 gZm 2 ⁇ s.
  • the sensors of the gas concentration measurement device and the wind speed measurement device were installed so as to be at the same position as in Example 1, and were installed at a position 5 mm from the surface of the coating film. When the wind speed at this time was confirmed, it was the same as in Example 1. Evaluation 1.
  • FIG. 5 shows the average value of the coating film thickness of Example 1 and Comparative Example 1
  • FIG. 6 shows the dispersion of the coating film thickness.
  • the average value of the coating film remains unchanged between Example 1 and Comparative Example 1, but as shown in FIG. 6, the dispersion of the coating film in Example 1 is higher than that in Comparative Example 1. It was also found that an optical functional layer having a small thickness and a small variation in thickness could be formed. Therefore, immediately after the application of the coating liquid, drying is performed while the evaporation rate is kept at 0.1 lg / ⁇ 2 ⁇ s or less. Is formed.
  • Example 1 drying is performed at an evaporation rate of 0.1 g / m 2 ⁇ s or less. Thus, a good optical film can be obtained.
  • a coating liquid (viscosity 250 mPa ⁇ s) prepared by diluting a thermosetting resin to a solid content of 10% with an organic solvent (MIBK (methyl isobutyl ketone)) on a TAC film (thickness 85 ⁇ ) using a die coater ) was applied to a thickness of 3.0 ⁇ m after drying, and the coated film was placed on a plate 20 having a constant gap G between the coated film and the coated film as shown in FIG. After passing through the zone, the sheet was dried with hot air at 100 ° C. in a drying device 40 to obtain a sheet having an optical functional layer. At this time, the evaporation rate of the coating solution in the zone where the plate 20 was arranged was measured in the same manner as in Example 1 based on the gas concentration distribution of the generated steam and the air volume (wind speed). m 2 ⁇ s.
  • MIBK methyl isobutyl ketone
  • the device for measuring the viscosity of the coating liquid was the same as that in Example 1, and the wind speed at this time was the same as that in Example 1.
  • Example 2 a coating film was formed under the same conditions as above except that the plate 20 was removed. At this time, when the evaporation rate of the coating solution in the portion where the plate 20 was removed was measured in the same manner as described above, it was 0.15 g / m 2 ⁇ s.
  • the sensors of the gas concentration measuring device and the wind speed measuring device were installed so as to be at the same position as in the case of the second embodiment.
  • the wind speed at this time was confirmed to be 0.1 lm / s. Evaluation 2.
  • FIG. 7 shows the average value of the coating film thickness of Example 2 and Comparative Example 2
  • FIG. 8 shows the dispersion of the coating film thickness.
  • the average value of the coating film does not change between Example 2 and Comparative Example 2.However, as shown in FIG. 8, the dispersion of the coating film is different from that of Example 2. It was found that an optical functional layer smaller than Comparative Example 2 and having a small variation in thickness could be formed. Therefore, immediately after the application of the coating liquid, drying is performed with the evaporation rate kept at 0.1 lg / ⁇ 2 ⁇ s or less. Is formed. Also, in Example 2, the thickness dispersion was 0.03 xm or less, and a favorable optical film with less noticeable unevenness in appearance was obtained.

Abstract

 本発明は、塗布膜の乾燥方法に関するものであって、厚みのバラツキの少ない塗布膜を安定して製造できるようにすることを目的としている。そのため、走行する長尺状支持体10に塗布液を塗布して形成される塗布膜11の乾燥方法において、長尺状支持体10に対して塗布液が塗布された直後、溶剤の蒸発速度を0.1g/m2・s以下に保って塗布膜11を乾燥させる。好ましくは、塗布直後の塗布膜11の走行路上に、塗布膜11との間に一定の空隙を設けて板20を配置し、塗布液の蒸発速度を規制する。

Description

明 細 書 塗布膜の乾燥方法および光学: 技術分野
本発明は、 走行する長尺状支持体に塗布される塗布液を連続的に乾燥させるた めの技術に関するものであり、 特に、 その乾燥方法、 その方法によって形成され る光学機能層を積層した構造を有する光学フィルム、 その光学フィルムを有する 偏光板、 及び、 その偏光板を備えた画像表示装置に関する。 背景技術
走行する長尺状支持体に塗布液を塗布して形成される塗布膜を連続的に乾燥さ せる方法として、 塗布面に対して一方向から空調された風を送り込むものがある
(例えば、 特開 2 0 0 1— 1 7 0 5 4 7号公報) 。 またこの他にも、 塗布後の乾 燥装置において熱風を塗布面に吹き付けたり、 遠赤外線を照射する等の乾燥方法 がある。
ところで、 近年、 液晶表示装置等の光学用途向けのフィルム等の分野において 、 使用用途によっては塗布後の外観に厳しい要求がなされている。 特に 1 0 /i m 以下の薄層塗工がなされる商品では、 塗布膜の斑 (ムラ) によって生じる外観の ムラが非常に顕著に現れやすい反面、 そのような外観ムラを低減することが望ま れている。
しかしながら、 従来の乾燥方法では、 塗工装置において走行する長尺状支持体 に塗布液を塗布してから、 乾燥装置において乾燥させるまでの間は、 装置周辺の 周囲環境下にさらされる区間が存在し、 例えば周囲環境からの不規則な速度 ·方 向の風等による外乱因子の影響で乾燥速度にバラツキが生じることになる。 その 結果、 塗布膜の表面張力に差が生じて塗布液が流動してしまうため、 塗布膜の厚 みにムラが生じ、 これが外観ムラを生じさせるという問題があつた。 発明の開示 本発明は、 上記課題に鑑みてなされたものであって、 厚みのバラツキの少ない 塗布膜を安定して製造することのできる、 塗布膜の乾燥方法を提供するとともに 、 その方法によつて形成される光学機能層を稂層した構造を有する光学フィルム 、 その光学フィルムを有する偏光板、 及び、 その偏光板を備えた画像表示装置を 提供することをその目的としている。
本発明者らは、 走行する長尺状支持体に塗布液を塗布して形成された塗布膜を 乾燥させる際、 塗布直後の塗布液の蒸発速度 (乾燥速度) を 0 . I g Zm2 ' s以 下にすることで均一な状態で塗布膜を乾燥させることができ、 厚みの均一な塗布 膜が形成されることを見出した。
よって、 本発明は、 走行する長尺状支持体に塗布液を塗布して形成される塗布 膜の乾燥方法において、 長尺状支持体に対して塗布液が塗布された直後、 溶剤の 蒸発速度を 0 . l g Zm2 ' s以下に保って乾燥を行う、 塗布膜の乾燥方法にかか るものである。 これにより、 均 な状態で塗布膜を乾燥させて、 厚みのバラツキ の少ない塗布膜を安定して製造することができる。 そのため、' 塗布膜が形成され た状態の外観は良好なものとして得られる。
また、 蒸発速度を 0 . l g /m2 ' s以下にした乾燥は、 塗布液の塗布された長 尺状支持体が乾燥装置に入るまでの間に行われることが、 より好ましい。 ただし 、 蒸発速度を 0 . 1 g /m2 - s以下にした乾燥工程のみを行い、 別に乾燥装置を 設けることなく、 乾燥を終了させるようにしてもよレ、。
また、 本発明では、 蒸発速度を 0 . l g Zm2 ' s以下にするために、 塗布液が 塗布された直後の長尺状支持体に平行な板を、 塗布膜との間に空隙を設けて配置 することが好ましい。 これにより、 板と塗布膜との間の空隙に周辺環境からの風 等が入ることを防止し、 その空隙を溶剤の蒸気でほぼ満たし、 蒸発速度を 0 . 1 g /m2 · s以下にすることができる。
また、 上記板の温度が塗布液の蒸気の露点以上に制御されることが好ましい。 これにより、 蒸発速度を 0 . 1 g m2 - s以下の範囲でコントロールすることが できるとともに、 蒸気の結露を防ぎ、 安定した乾燥を行うことができる。
また、 上記板の長尺状支持体側の面にフィンを設けることが好ましい。 これに より、 長尺状支持体の走行に伴う空気流れが未乾燥状態の塗布膜に影響を与える ことを防止し、 厚みの均一な塗布膜を得ることができる。
また、 塗布液の粘度が 3 0 0 m P a · s以下であれば、 より安定した乾燥を行 うことができる。 さらに、 5 0 m P a · s以下であれば、 特に安定した乾燥を行 うことができる。
また、 塗布膜が光学機能を有する光学機能層として形成されることが好ましい 。 これにより、 近年、 シビアな外観が要求される光学用途向けの塗工物であつて も、 外観ムラの少ない塗工物を得ることができる。
また、 以上のような乾燥方法によって、 光学機能層を積層した構造を有する光 学フィルムを製造することにより、 外観ムラの少ない光学用途に適したフィルム を得ることができる。 さらに、 そのような光学フィルムを積層して偏光板を形成 することにより、 外観ムラの少ない光学用途に適した偏光板が得られる。
また、 その偏光板を用いて画像表示装置を製造すれば、 外観ムラの少ない、 高 品位な装置を実現することができる。
さらに、 本発明は、 走行する長尺状支持体に塗布液を塗布して形成される塗布 膜の乾燥方法において、 長尺状支持体の幅以上の板幅を有する板を、 塗布液の塗 ェ装置の下流側における長尺状支持体の走行経路に沿つて配置しておき、 塗工装 置によって塗布膜が形成された直後の長尺状支持体を、 塗布膜を前記板の板面と 所定の間隙を隔てて対向させつつ、 走行経路に沿って走行させることにより、 前 記間隙において塗布膜の乾燥の少なくとも一部を行なう、 塗布膜の乾燥方法にか かるものでもある。 これにより、 周囲環境からの風等の影響を低減しつつ乾燥を 行うことができ、 厚みのバラツキの少ない塗布膜を安定して製造することが可能 になる。
本発明の目的、 特徴、 局面、 および利点は、 以下の詳細な説明と添付図面とに よって、 より明白となる。 図面の簡単な説明
図 1は、 長尺状支持体の塗布膜形成側に板を設けた構成を示す図である。 図 2は、 長尺状支持体の塗布膜形成側と非形成側との双方に板を設けた構成を 示す図である。 図 3は、 塗布液が塗布された直後において長尺状支持体を囲むように包囲板を 設けた構成を示す図である。
図 4は、 図 1の構成において板に平板状のフィンを設けた構成を示す図である 図 5は、 実施例 1及び比較例 1の塗布膜厚みの平均値を示す図である。
図 6は、 実施例 1及ぴ比較例 1の塗布膜厚みの分散を示す図である。
図 7は、 実施例 2及び比較例 2の塗布膜厚みの平均値を示す図である。
図 8は、 実施例 2及ぴ比較例 2の塗布膜厚みの分散を示す図である。 発明を実施するための最良の形態
以下、 本発明を画像表示装置の偏光板等の製造プロセスに適用可能に構成した 実施の形態について図面を参照しつつ詳細に説明する。
図 1は長尺状支持体の塗布膜形成側に板を設けた構成を示す図である。 長尺状 支持体 1 0は塗布膜形成の基材となるものであって、 例えば偏光板の製造におい てはウェブ状のフィルムゃシート等で構成された平坦な長尺可撓性の面状基材で あり、 複数のローラ 3 5等に支持された状態で紙面右方向にほぼ一定速度で走行 するようになつている。 長尺状支持体 1 0の走行経路には、 長尺状支持体 1 0の 少なくとも一面側 (図 1では上面側、 他図も同様) に塗布液を塗布するダイコー ター等の塗工装置 3 0が設けられており、 長尺状支持体 1 0が塗工装置 3 0を走 行する際、 その上面側に塗布液が均一な状態で塗布されて塗布膜 1 1が形成され る。 塗布液は、 例えば偏光板の保護シートや光学機能層を形成するためのもので ある (具体例は後述) 。
長尺状支持体 1 0の走行経路において塗工装置 3 0の直後 (製造プロセス上の 下流側) には、 長尺状支持体 1 0に塗布された塗布膜 1 1と対向するように、 長 尺状支持体 1 0の主面 (被塗布面) にほぼ平行な板 2 0が設けられており、 板 2 0と塗布膜 1 1との間には一定の空隙 Gが設けられる。 板 2◦の塗布膜 1 1と対 向する面 2 0 s側はなるべく滑らかな状態に仕上げられ、 板 2 0は長尺状支持体 1 0の幅方向 (紙面垂直方向) について塗布膜 1 1を全て覆うような板幅とされ 、 長尺状支持体 1 0の走行経路に沿って配置される。 また、 板 2 0は長尺状支持 体 1 0に形成された塗布膜 1 1が未乾燥状態において走行経路周辺環境からの風 等の影響を受けることを抑制することを主眼としているものであるため、 板 2 0 と塗布膜 1 1との間の空隙 Gは好ましくは、 1 O mm以下とされる。 この結果、 板 2 0と塗布膜 1 1との間の空隙は溶剤の蒸気でほぼ満たされることとなり、 溶 剤の蒸発速度を 0 . l g Zm s以下にまで低下させることができ、 均一な状態 で塗布膜が乾燥して、 厚みの均一な塗布膜が形成される。
したがって、 板 2 0は、 塗布膜 1 1が外部の気流に曝されることを防止しつつ 、 間隙 G内における塗布膜 1 1の溶剤蒸発環境を、 (特開 2 0 0 1— 1 7 0 5 4 7号公報のような強制送風などではなく ) 塗布膜 1 1から蒸発した溶剤の蒸気圧 自身で自律的かつ均一に制御する蒸発環境制御板として機能する。
また、 溶剤の蒸発速度をコントロールするために、 板 2 0は均一な熱伝導性を 示すように形成され、 熱源を含む温度制御部 2 5によって板 2 0の温度 (特に塗 布面に対向する面 2 0 sの温度) が溶剤の露点以上の温度となるように制御され る。 ただし、 この場合も溶剤の蒸発速度が 0 . l g Zm2 - s以下となるように温 度調整される。 これにより、 板 2 0と塗布膜 1 1との間の空隙 Gにおいて溶剤の 蒸気の結露を防止しつつ、 蒸発速度を 0 . l g Zm2 ' s以下の範囲内で任意に調 整することが可能になる。
板 2 0は、 たとえば金属板や、 金属層によって下面 2 0 sを覆った板材とする ことが可能であり、 温度制御部 2 5はたとえば電気的ヒータを熱源として有する ことができる。 好ましくは、 板材 2 0または空隙 Gの温度を検出する温度センサ 2 6を設け、 この温度センサ 2 6の温度検出値を用いて温度制御部 2 5のフィー ドバック制御を行うことによって、 板 2 0の温度調整をより精密に行うことがで きる。
上記のような板 2 0を用いた乾燥工程は、 塗布液の塗布直後であって、 長尺状 支持体 1 0が乾燥装置 4 0に入るまでに行われることが好ましく、 そのようなタ ィミングで行われることにより、 未乾燥状態の塗布液が乾燥装置 4 0に入るまで の間に周囲環境からの風等による影響を良好に防止できる。
その後、 塗布膜 1 1が形成されて板 2 0の下方を通過した長尺状支持体 1 0は 従来の乾燥装置 4 0に入り、 加熱又は紫外線照射が行われて塗布膜 1 1の完全な 乾燥又は硬化が行われる。 ただし、 塗工装置 3 0の直後に設けた板 2 0が温度調 整されていることから、 板 2 0の下方の空隙 Gは室温よりも高い温度となってお り、 塗布膜 1 1の乾燥加速作用がある。 したがって、 板 2 0の作用によって塗布 膜 1 1を完全に乾燥させるようにしてもよく、 その場合は乾燥装置 4 0を設ける 必要はない。
なお、 長尺状支持体 1 0が板 2 0の下方を通過した後、 乾燥装置 4 0にて別途 乾燥処理が行われる場合には、 溶剤の蒸発速度が 0 g /m2■ sとなるように制御 されてもよい。 この場合、 塗布膜 1 1が形成された長尺状支持体 1 0が周囲環境 によって全く乾燥しない状態で乾燥装置 4 0に導かれるので、 良好で均一な膜厚 の塗布膜が形成される。 これに対し、 乾燥装置 4 0が設けられない場合には、 長 尺状支持体 1 0が板 2 0の下方を通過している間に完全な乾燥を行う必要がある ため、 溶剤の蒸発速度は少なくとも 0 g /m2 · Sよりも高い値に制御される。 こ の場合における具体的な蒸発速度の下限値は、 走行方向に対する板 2 0の長さや 、 長尺状支持体 1 0の移動速度などに基づいて完全な乾燥が可能な速度に定めら れる。
以上のようにしてムラのない安定した塗布膜 1 1を生成するためには、 使用す る塗布液の粘度が 3 0 O m P a · s以下であることが好ましい。 さらに好ましく は、 塗布液の粘度を 5 O m P a · s以下とすることで、 特に安定した乾燥が可能 になる。
次に、 図 2は図 1とは異なる構成を示すものであり、 長尺状支持体の塗布膜形 成側と非形成側との双方に板を設けた構成を示す図である。 長尺状支持体 1 0の 走行経路において塗工装置 3 0の直後には、 長尺状支持体 1 0の塗布膜形成側に 塗布膜 1 1と対向するように、 長尺状支持体 1 0にほぼ平行な第 1の板 2 0 a 設けられており、 また、 長尺状支持体 1 0の塗布膜非形成側に長尺状支持体 1 0 と対向するように、 長尺状支持体 1 0にほぼ平行な第 2の板 2 0 bが設けられる 。 この場合も第 1の板 2 0 aと塗布膜 1 1との間、 及び、 第 2の板 2 0 bと長尺 状支持体 1 0との間にはそれぞれ一定の空隙 G 1 , G 2がそれぞれ設けられる。 塗布膜 1 1と対向する側に第 1の板 2 0 aが設けられることにより、 第 1の板 2 0 aと塗布膜 1 1との間の空隙 G 1は溶剤の蒸気でほぼ満たされることとなり 、 溶剤の蒸発速度を 0 . l g Zm2 ' s以下にまで低下させることができ、 均一な 状態で塗布膜が乾燥して、 厚みの均一な塗布膜が形成される。
また、 長尺状支持体 1 0の塗布膜形成側と非形成側との双方に板 2 0 a , 2 0 bを設けることにより、 周囲環境からの風等の影響をさらに良好に防ぐことが可 能になる。
また、 溶剤の蒸発速度をコントロールするために、 板 2 0 a, 2 0 bのそれぞ れは均一な熱伝導性を示すように形成され、 熱源を含む温度制御部 2 5 a , 2 5 bによって各板 2 0 a, 2 0 bの温度 (特に塗布面若しくは支持体表面に対向す る面の温度) が溶剤の露点以上の温度となるように個別に制御される。 板 2 0 a と 2 0 bとを個別に制御することにより、 溶剤の蒸発速度をコントロールする際 に微妙な調整が可能となり、 蒸発速度を 0 . l g /m2 ' s以下の安定した状態を 高精度に実現することができる。
板 2 0 a、 2 0 bの温度を独立に制御する場合には、 板 2 0 a、 2 0 bまたは 空隙 G l , G 2のそれぞれの温度を測定する温度センサ 2 6 a、 2 6 bを別個に 設けて温度制御部 2 5 a、 2 5 bのそれぞれのフィードバック制御を行うこと力 S 好ましいが、 このうちの一方 (たとえば塗布面に対向する側の温度センサ 2 6 a ) の温度検出値を参照して 2つの温度制御部 2 5 a、 2 5 bの双方のフィ一ドバ ック制御を行ってもよい。
次に、 図 3は上述したものとは異なる構成を示すものであり、 塗布液が塗布さ れた直後において長尺状支持体を囲むように包囲板 (扁平なトンネル構造体) 2 0 cを設けた構成を示す図である。 なお、 図 3は長尺状支持体 1 0の走行方向に 垂直な断面図を示しており、 長尺状支持体 1 0は紙面に垂直な方向に走行する。 図 3の構成において、 包囲板 2 0 cは長尺状支持体 1 0の走行経路において塗 ェ装置 3 0の直後に配置され、 塗布膜 1 1が形成された直後の長尺状支持体 1 0 は包囲板 2 0 cによつて形成されるトンネル状の内部空間 2 1に入り込む。 すな わち、 包囲板 2 0 cは長尺状支持体 1 0の塗布膜形成側及び非形成側だけでなく 、 側方側にも板が設けられた構造となつており、 長尺状支持体 1 0及び塗布膜上 1が包囲板 2 0 cの内部空間 2 1を走行する問は周囲環境からの風等による影響 を著しく低減することができる。 そして包囲板 2 0 cの塗布膜 1 1と対向する面 側には、 塗布膜 1 1と包囲板 2 0 cとの間に上述した一定の空隙 G 1が設けられ 、 溶剤の蒸発速度が 0 . l g Zm2 ' s以下となる。
また、 溶剤の蒸発速度をコントロールするために、 包囲板 2 0 cは均一な熱伝 導性を示すように形成され、 熱源を含む温度制御部 2 5によって包囲板 2 0 cの 温度 (特に内面側の温度) が溶剤の露点以上の温度となるように制御される。 こ れにより、 包囲板 2 0 cと塗布膜 1 1との間の空隙 G 1や包囲板 2 0 cの内部空 間 2 1において溶剤の蒸気の結露を防止しつつ、 蒸発速度を 0 . 1 g /m2 · s以 下の範囲内で任意に調整することが可能になる。
次に、 図 4は図 1の構成において板 2 0に平板状の複数のフィン 2 2 a〜2 2 dを設けた構成を示す図である。 図 4に示すように、 フィン 2 2 a〜2 2 dは板 2 0の塗布膜 1 1に対向する面に対し、 長尺状支持体 1 0の走行路上を横断する ように垂設される。 またフィン 2 2 a〜2 2 dの下端部が塗布膜 1 1と接触しな いように、.フィン 2 2 a〜2 2 dの下端部と塗布膜 1 1との間に一定の隙間 Gが 設けられる。
このように板 2 0の塗布膜 1 1と対向する面にフィン 2 2 a〜2 2 dが設けら れることにより、 塗布液が塗布された長尺状支持体 1 0の走行に伴って発生する 不規則な気流 8が溶剤の蒸発速度を不均一ならしめる影響を低減することができ る。 すなわち、 走行方向に向かって発生する気流 8はフィン 2 2 aによって板 2 0と塗布膜 1 1との間の空隙空間 Gに侵入することが防止され、 気流 8の影響を 受けることなく安定した乾燥を行うことができる。 また、 板 2 0と塗布膜 1 1と の間の空隙空間 G内においても気流が発生することが想定されるが、 それらはフ イン 2 2 b , 2 2 cによって広範囲に影響を与えることが防止され、 安定した乾 燥を行うことができる。 また、 フィン 2 2 a〜2 2 dを設けることにより、 板 2 0と塗布膜 1 1との間の空隙空間 Gが、 周囲環境からの影響を受けることを良好 に低減することが可能である。
上記のフィン 2 2 a〜 2 2 dは、 長尺状支持体 1 0の走行方向に関して等間隔 に配置してもよく、 板 2 0の端部付近での配置間隔と板 2 0の中央部付近での配 置間隔とを異なるものとしてもよい。 すなわち、 これらの端部付近 (特に図の左 側に相当する入口付近) では、 塗布膜 1 1を有する長尺状支持体 1 0の各部が板 2 0の下方空間に入る際に周囲の空気を巻込みやすいが、 端部付近では比較的短 いピッチでフィンを配列することによつて気流の卷き込み防止作用を高めること ができる。 また、 図 4に示すように、 好ましくは複数のフィン 2 2 a〜2 2 dの うち端部側のフィン 2 0 a、 2 0 dは板 2 0の端面 2 0 eの位置と整合させて設 けておくことが好ましい。 これによつて、 気流 8の侵入を板 2 0の端部で防止で さる。
また、 図 1の構成と同様に、 溶剤の蒸発速度をコントロールするために、 板 2 0は均一な熱伝導性を示すように形成され、 熱源を含む温度制御部 2 5によって 板 2 0の温度 (特に塗布面に対向する面の温度) が溶剤の露点以上の温度となる ように制御される。 これにより、 扳 2 0と塗布膜 1 1と各フィン 2 2 a〜2 2 d の間の空隙空間 Gにおいて溶剤の蒸気の結露を防止しつつ、 蒸発速度を 0 . l g /m2 - s以下の範囲内で任意に調整することが可能になる。 また、 各フィン 2 2 a〜2 2 dによって仕切られる部分空隙空間ごとに板 2 0の温度を個別に制御す るように構成することもでき、 その場合は塗布液の乾燥状態をより高度に調整す ることが可能である。 このような分割制御の場合には、 温度センサ 2 6も各部分 空間 (分割空間) ごとに設け、 ゾーンごとの温度のフィードバック制御をすれば 特に温度調整機能が高まる。 また、 フィンのかわりに板 2 0の下面を波状に形成 してもよく、 この場合には、 それぞれが長尺状支持体 1 0の走行方向に略直角な 方向に伸びる複数の波構造を長尺状支持体 1 0の走行方向に平行配列させたもの とすればよい。 すなわち、 図 4のようなフィンの配列形成が好ましい態様ではあ るが、 一般に、 長尺状支持体 1 0の走行方向に略直角な方向に伸びた複数の凸構 造を板 2 0の下面に略平行に配列することよって、 気流の巻き込み防止の効果を 得ることが可能である。
以上のような塗布 ·乾燥工程により、 上記塗布膜 1 1を例えば光学機能を有す る光学機能層として形成することができる。 そして、 画像表示装置に使用される 光学フィルムゃ偏光板を、 上記光学機能層が積層された構造として形成すること ができる。 すなわち、 上述した乾燥工程は、 光学フィルムや偏光板に積層される 光学機能層を形成する上で特に有益なものとなる。
偏光板は、 例えば、 二色性物質含有のポリビニルアルコール系フィルム等から なる偏光子の片面又は両面に、 保護シートやその他の光学フィルムを設けた構造 として構成される。
偏光子としては、 特に限定されることなく各種のものを使用することができ、 例えば、 ポリビニルアルコール系フィルム、 部分ホルマール化ポリビニルアルコ —ル系フィルム、 エチレン ·酢酸ビュル共重合体系部分ケン化フィルム等の親水 性高分子フィルムにヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸し たもの、 ポリビニルアルコールの脱水処理物ゃポリ塩化ビニルの脱塩酸処理物等 ポリェン系配合フィルム等があげられる。 これらのなかでもポリビュルアルコー ル系フィルムとョゥ素等の二色性物質からなる偏光子が好適である。
偏光子の片面又は両面に設けられる保護シートを、 本発明の実施形態における 塗布膜 1 1として形成する場合、 その材料としては、 透明性、 機械的強度、 熱安 定性、 水分遮蔽性、 等方性'等に優れるものが好ましい。 例えば、 ポリエチレンテ レフタレー ト ( P E T ) やポリエチレンナフタレー ト等のポリエステノレ系ポリマ 一、 ジァセチノレセ レロースやトリァセチ /レセノレロース等のセノレロース系ポリマー 、 ポリメチルメタクリレート等のアクリル系ポリマー、 ポリスチレンやアタリ口 二トリル . スチレン共重合体 (A S樹脂) 等のスチレン系ポリマー、 ポリカーボ ネート系ポリマーがあげられる。 また、 ポリエチレン、 ポリプロピレン、 シクロ 系ないしはノルボルネン構造を有するポリオレフイン、 エチレン■プロピレン共 重合体の如きポリオレフイン系ポリマー、 塩化ビニル系ポリマー、 ナイロンゃ芳 香族ポリアミ ド等のアミ ド系ポリマー、 イミ ド系ポリマー、 スルホン系ポリマー 、 ポリエーテノレスノレホン系ポリマー、 ポリエーテノレエーテノレケトン系ポリマー、 ポリフエ二レンスルフィ ド系ポリマー、 ビュルアルコール系ポリマー、 塩化ビニ リデン系ポリマー、 ビニノレブチラ一ル系ポリマー、 ァリレート系ポリマー、 ポリ ォキシメチレン系ポリマー、 ェポキチ系ポリマー、 又は前記ポリマーのブレンド 物なども保護シー トを形成するポリマーの例としてあげられる。
また、 保護シートは、 アクリル系、 ウレタン系、 アク リルウレタン系、 ェポキ シ系、 シリコーン系等の熱硬化型、 紫外線硬化型の樹脂の硬化層として形成する こともできる。 この場合、 熱硬化作用又は紫外線硬化作用を示す塗布液を塗工装 置 3 0によって長尺状支持体 (偏光子) 1 0に塗布した直後、 乾燥装置 4 0に入 るまでの間に、 上述した乾燥方法を用いるこで、 ムラのない安定した硬化層を得 ることができる。
また、 以上のような偏光板は、 実用に際して各種光学機能層を積層して用いら れる。 そして上述した乾燥方法は光学機能層を積層形成する際にも使用しうる。 その光学機能層については特に限定されるものではないが、 例えぱ、 保護シー トの偏光子を設けない面に対して、 ハードコート処理や反射防止処理、 ステイツ キング防止や、 拡散ないしァンチグレアを目的とした表面処理を施したり、 視角 捕償等を目的とした配向液晶層を積層することがあげられる。 また、 反射板や半 透過板、 位相差板 (1 / 2や 1 / 4等の波長板 (λ板) を含む) 、 視角補償層等 の画像表示装置の形成に用いられる光学機能層を 1層又は 2層以上積層したもの があげられる。 特に、 偏光板に反射板又は半透過反射板が積層されてなる反射型 偏光板又は半透過型偏光板、 位相差板が積層されてなる楕円偏光板又は円偏光板 、 視角補償層が積層されてなる広視野角偏光板、 あるいは輝度向上層が積層され てなる偏光板が好ましい。
視角補償層は、 画像表示装置の画面を、 画面に垂直でなくやや斜め方向から見 た場合でも、 画像が比較的鮮明に見えるように視野角を広げるための光学機能層 である。 このような視角補償層が積層された広視野角偏光板としては、 例えば位 相差板、 液晶ポリマー等の配向フィルムゃ透明基材上に液晶ポリマー等の配向層 を支持したものなどからなる。 通常の位相差板は、 その面方向に一軸延伸された 複屈折を有するポリマーフィルムが用いられるのに対し、 視角補償フイルムとし て用いられる位相差板には、 面方向に二軸に延伸された複屈折を有するポリマー フィルムと力、 面方向に一軸に延伸され、 厚さ方向にも延伸された、 厚さ方向の 屈折率を制御した複屈折を有するポリマーや傾斜配向フィルムのような二方向延 伸フィルムなどが用いられる。 傾斜配向フィルムとしては、 例えばポリマーフィ ルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィ ルムを延伸処理または/およぴ収縮処理したものや、 液晶ポリマーを斜め配向さ せたものなどが挙げられる。 位相差板の素材原料ポリマーは、 液晶セルによる位 相差に基づく視認角の変化による着色等の防止や良視認の視野角の拡大などを目 的とした適宜なものを用いうる。 また、 良視認の広い視野角を達成する点などにより、 液晶ポリマーの配向層、 特にディスコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリ ァセチルセルロースフィルムにて支持した光学補償位相差板が好ましく用いうる 。 そしてこの種の光学補償機能を示す視角補償層の形成には、 上記乾燥方法を適 用しうる。 例えば長尺状のトリァセチルセルロースフィルムに液晶性ディスコテ イツク化合物を含む塗布液を塗布し、 その塗布膜を乾燥させる際に、 上述の乾燥 方法を適用することができ、 それによつて外観ムラの少なレ、位相差板を得ること ができる。
輝度向上層が積層された偏光板は、 通常液晶セルの裏側サイドに設けられて使 用される。 輝度向上層は液晶表示装置などの画像表示装置のバックライトゃ裏側 からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向 の円偏光を反射し、 他の光は透過する特性を示すもので、 輝度向上層を積層した 偏光板は、 バックライト等の光源からの光を入射させて所定偏光状態の透過光を 得るとともに、 前記所定偏光状態以外の光を透過させずに反射させる。 このよう な輝度向上層のフィルム面で反射した光をさらにその後ろ側に設けられた反射層 等を介し反転させて輝度向上層に再入射させ、 その一部または全部を所定偏光状 態の光として透過させて輝度向上層を透過する光の増量を図るとともに、 偏光子 に吸収させにくい偏光を供給して、 画像表示に利用しうる光量の増大を図ること により輝度を向上させるものである。 すなわち、 輝度向上層 (輝度向上フィルム ) を使用せずに、 バックライトなどで液晶セルの裏側から偏光子を通して光を入 射した場合には、 偏光子の偏光軸に一致していない偏光方向を有する光は、 ほと んど偏光子に吸収されてしまい、 偏光子を透過してこない。 すなわち、 用いた偏 光子の特性によっても異なるが、 およそ 5 0 %の光が偏光子に吸収されてしまい 、 その分、 画像表示に利用しうる光量が減少し、 画像が暗くなる。 輝度向上層は 偏光子に吸収されるような偏光方向を有する光を偏光子に入射させずに、 輝度向 上層でいったん反射させ、 さらにその後ろ側に設けられた反射層等を介して反転 させて輝度向上層に再入射させることを繰り返し、 この両者間で反射、 反転して いる光の偏光方向が偏光子を通過しうるような偏光方向となった偏光のみを透過 させて偏光子に供給するので、 バックライトなどの光を効率的に画像表示に使用 でき、 画面を明るくすることができる。
また、 輝度向上層と反射層等との間に拡散板を設けることもできる。 輝度向上 層によって反射した偏光状態の光は反射層等に向かうが、 設置された拡散板は通 過する光を均一に拡散すると同時に偏光状態を解消し、 非偏光状態とする。 すな わち元の自然光状態にもどす。 この非偏光状態すなわち自然光状態の光が反射層 等に向かい、 反射層等を介して反射して、 拡散板を再び通過して輝度向上層に再 入射することを繰り返す。 元の自然光状態に戻す拡散板を設けることにより、 表 示画面の明るさを維持しつつ、 同時に表示画面の明るさのムラを少なくし、 均一 の明るい画面を提供することができる。 元の自然光状態に戻す拡散板を設けるこ とにより、 初回の入射光は反射の繰り返し回数が程よく増加し、 拡散板の拡散機 能とあいまって均一の明るい表示画面を提供することができる。
以上のような光学的機能を示す輝度向上層としては、 例えばコレステリック液 晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持したものの 如き、 左回りまたは右回りのいずれか一方の円偏光を反射して他の光は透過する 特性を示すものなどの適宜なものを用いうる。 そしてこの種の輝度向上層の形成 にも上記乾燥方法を適用することができる。 例えば長尺状のフィルム基材上に配 向液晶層を形成するための塗布液を塗布し、 その塗布膜を乾燥させる際に、 上述 の乾燥方法を適用することができ、 それによつて外観ムラの少なレ、輝度向上層を 形成することができる。
また、 輝度向上層として、 例えば誘電体の多層薄膜や屈折率異方性が相違する 薄膜フィルムの多層積層体の如き、 所定偏光軸の直線偏光を透過して他の光は反 射する特性を示すものなども用いられ、 この種の輝度向上層では、 その透過光を そのまま偏光板に偏光軸をそろえて入射させることにより、 偏光板による吸収口 スを抑制しつつ、 効率よく透過させることができるようになる。 したがって、 こ の種の輝度向上層が、 上述した乾燥方法によつて形成された光学機能層に積層さ れて、 多層構造の偏光板が形成されてもよい。
一方、 コレステリック液晶層の如く円偏光を透過するタイプの輝度向上層では 、 そのまま偏光子に入射させることもできるが、 吸収ロスを抑制する点よりその 円偏光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい。 な お、 その位相差板として 1 4波長板を用いることにより、 円偏光を直線偏光に 変換することができる。
可視光城等の広い波長範囲で 1 / 4波長板として機能する位相差板は、 例えば 波長 5 5 0 n mの単色光に対して 1 / 4波長板として機能する位相差層と他の位 相差特性を示す位相差層、 例えば 1 / 2波長板として機能する位相差層とを重畳 する方式などにより得ることができる。 したがって、 偏光板と輝度向上層の間に 配置する位相差板は、 1層または 2層以上の位相差層からなるものであってもよ い。 また、 このような位相差層についても、 塗布液を塗布することによって塗布 膜を形成した後、 その塗布膜を乾燥させることによって形成することができ、 外 観ムラの少な!/ヽ位相差層を形成することができる。
このように各種光学機能層を形成する際、 母材となる長尺状支持体 (フィルム など) に塗布液を塗布して塗布膜を形成し、 その塗布膜を上述した乾燥方法によ つて乾燥させることにより、 ムラのない光学機能層が形成される。 よって、 この ような光学機能層が光学フィルムに積層されることで、 ムラのない高品質な光学 フィルムが得られる。 さらに、 この光学フィルムが偏光板に積層されることによ り、 ムラのない高品質な偏光板が得られる。
また、 偏光板は、 偏光板と 2層または 3層以上の光学機能層とを積層したもの からなつていてもよい。 したがって、 反射型偏光板や半透過型偏光板と位相差板 を組み合わせた反射型楕円偏光板や半透過型楕円偏光板などであってもよい。 ま た、 光学フィルムや偏光板には、 上述した乾燥方法によって形成される光学機能 層が少なくとも 1層設けられていればよい。 そのため、 多層構造を有する光学フ イルムや偏光板において、 少なくとも 1層が上述した乾燥方法によって形成され 、 他の層が従来の手法によって形成された偏光板であってもよい。
また、 上記のような光学機能層を保護シートに積層する場合、 その積層するタ イミングは、 保護シートを偏光子に貼り合わせる前でもよいし、 貼り合わせた後 であってもよい。 保護シートに対して塗布液を塗布することで光学機能層を積層 する場合には、 保護シート単独又は偏光子と保護シ一トとの積層体を長尺状支持 体 1 0とし、 この長尺状支持体 1 0に対して塗工装置 3 0にて光学機能を有する 塗布液を塗布した直後、 その塗布膜が乾燥装置 4 0に入るまでの間に、 上述した 乾燥方法を採用することができる。 そしてその乾燥方法によって、 安定した乾燥 を行うことができ、 ムラのない光学機能層が形成されることになる。
また、 上記のような光学機能層を有する光学フィルムを、 偏光板に積層する場 合、 光学フィルムと偏光板とを別個に生成して、 液晶表示装置等の画像表示装置 の製造プ口セスでこれらを互 、に貼り合わせることによって積層する方式にても 形成することができるが、 あらかじめ偏光板に対して光学フィルムを積層したも のは、 品質の安定性や組立作業等の優れていて画像表示装置の製造工程を効率化 させるという利点がある。
そして上記のようにして得られる偏光板は、 液晶表示装置の形成に好ましく用 いることができる。 例えば、 偏光板を液晶セルの片面又は両面に配置してなる反 射型や半透過型、 あるいは透過 ·反射両用型の液晶表示装置に用いることができ る。 液晶セル基板は、 プラスチック基板、 ガラス基板のいずれでもよい。 また液 晶表示装置を形成する液晶セルは任意であり、 例えば薄型トランジスタ型に代表 されるアクティブマトリクス駆動型のもの、 ッイストネマチック型やスーパーッ イストネマチック型に代表される単純マトリクス駆動型のものなど、 適宜なタイ プの液晶セルを用いたものであってもよい。 そして上記乾燥方法によつて形成さ れた光学機能層を積層した構造を有する偏光板が、 液晶表示装置に用いられるこ とにより、 液晶表示装置においてムラのない高品質な画像表示が実現される。 また、 上記のようにして得られる偏光板は、 液晶表示装置に限られず、 有機 E L表示装置やプラズマ表示装置等の画像表示装置にも好ましく用いることができ る。
そして画像表示装置に、 上述した乾燥方法によって形成される光学機能層を積 層した偏光板を用いることにより、 外観上ムラのない画像表示装置を実現するこ とができるとともに、 そのような画像表示装置を安定して得ることができる。 ま た、 画像表示装置においてムラのない高品質な画像表示が実現される。
以下に、 実施例及び比較例を示しつつ、 本発明をさらに具体的に説明する。 た だし、 本発明はこれら実施例及び比較例によって限定されるものではない。 実施例 1 .
ダイコーターにて P E Tフィルム (厚さ 7 5 / m) 上に、 紫外線硬化型の液晶 モノマーを有機溶剤 (シクロペンタノン) で固形分 3 0%に希釈した、 粘度 6m P a ' s (測定装置: H a a k e社製レオメータ R S— 1 ) の塗布液を、 乾燥後 の厚みで 4. 0 /imとなるように塗布し、 この塗布膜を、 図 1の如く、 塗布膜と の間に一定の空隙 Gを設けた板 20の配置されたゾーンに通過させた後、 乾燥装 置 40にて、 7 0°Cの熱風による乾燥後、 紫外線照射 (積算光量 300mJ/c m2) により硬化させることによって、 光学機能層を有するシートを得た。 このと き、 板 20の配置されたゾーンにおける塗布液の蒸発速度を、 発生する蒸気のガ ス濃度分布と風量 (風速) とに基づいて測定すると、 0. 03 g Zm2 · sであつ た。
ここでバッチ式の乾燥方式において、 蒸発速度と発生する蒸気のガス濃度分布 との間に相関関係があることは発明者らによつて確認されている。 バッチ式で電 子天秤上に塗布液をのせ、 ガス濃度と風速を監視しつつ経時的な重量変化を測定 することで、 ガス濃度および風速と、 乾燥速度との関係 (検量線) を予め算出し ておき、 本実施例ではこの関係を利用して蒸発速度を算出した。 具体的には、 板 20における基材の流れ方向中央部分であって、 かつ基材の幅方向中央部分に孔 をあけ、 その孔に、 ガス濃度測定装置 (横河電気社製ポータブル VOCモニター
) および風速測定装置 (日本カノマックス社製ァネモマスター) の各センサーを 配置してガス濃度および風速を測定し、 上記方法によって予め求めておいた関係 から上記の蒸発速度 0. 03 gZm2■ sが求められた。
なお、 本実施例において風向きは基材進行方向と同じ方向 (順方向) とし、 測 定された風速は 0. lmZsであった。
比較例 1.
実施例 1において、 板 20を取り除いた他は上記と同条件にて塗布膜を形成さ せた。 このとき、 板 20を取り除いた部分における塗布液の蒸発速度を、 上記と 同様に測定すると、 0. 1 2 gZm2■ sであった。
なお、 本比較例においては、 ガス濃度測定装置および風速測定装置の各センサ 一が実施例 1の場合と同じ位置になるように設置され、 塗布膜表面から 5 mmの 位置に設置した。 そしてこのときの風速を確認すると、 実施例 1と同様であった 評価 1.
図 5に実施例 1及び比較例 1の塗布膜厚みの平均値を、 図 6に塗布膜厚みの分 散を示す。 図 5に示すように塗布膜の平均値は実施例 1と比較例 1とで変わると ころはないが、 図 6に示すように塗布膜の分散については実施例 1の方が比較例 1よりも小さく、 厚みのばらつきの小さな光学機能層が形成できることが判明し た。 したがって、 塗布液の塗布直後、 その蒸発速度が 0. l g/ηι2 · s以下に保 たれた状態で乾燥が行われることにより、 それよりも蒸発速度が速い場合と比較 すれば、 厚みのばらつきの小さな光学機能層が形成されることになる。
また、 厚み分散が 0. 03 μιη以下になれば、 フィルムの外観ムラが目立たな くなるので、 実施例 1のように 0 · 1 g /m2■ s以下の蒸発速度で乾燥を行うこ とによって良好な光学フィルムを得ることができる。
実施例 2.
ダイコーターにて TACフィルム (厚さ 85 μπι) 上に、 熱硬化型の樹脂を有 機溶剤 (MI BK (メチルイソプチルケトン) ) で固形分 10 %に希釈した塗布 液 (粘度 250mP a · s) を、 乾燥後の厚みで 3. 0 μ mとなるように塗布し 、 この塗布膜を、 図 1の如く、 塗布膜との間に一定の空隙 Gを設けた板 20の配 置されたゾーンに通過させた後、 乾燥装置 40にて、 100°Cの熱風で乾燥させ て、 光学機能層を有するシートを得た。 このとき、 板 20の配置されたゾーンに おける塗布液の蒸発速度を、 発生する蒸気のガス濃度分布と風量 (風速) とに基 づいて実施例 1と同様に測定すると、 0. 06 g/m2 · sであった。
なお、 本実施例においても塗布液の粘度を測定した装置は実施例 1と同様であ り、 また、 このときの風速を確認すると、 実施例 1と同様であった。
比較例 2.
実施例 2において、 板 20を取り除いた他は上記と同条件にて塗布膜を形成さ せた。 このとき、 板 20を取り除いた部分における塗布液の蒸発速度を、 上記と 同様に測定すると、 0. 15 g/m2 · sであった。
なお、 本比較例においても、 ガス濃度測定装置および風速測定装置の各センサ 一が実施例 2の場合と同じ位置になるように設置した。 そしてこのときの風速を 確認すると、 0. lm/sであった。 評価 2 .
図 7に実施例 2及び比較例 2の塗布膜厚みの平均値を、 図 8に塗布膜厚みの分 散を示す。 図 7に示すように塗布膜の平均値は実施例 2と比較例 2とで変わると ころはないが、 図 8に示すように塗布膜の分散につレ、ては実施例 2の方が比較例 2よりも小さく、 厚みのばらつきの小さな光学機能層が形成できることが判明し. た。 したがって、 塗布液の塗布直後、 その蒸発速度が 0 . l g /ηι2 · s以下に保 たれた状態で乾燥が行われることにより、 それよりも蒸発速度が速い場合と比較 すれば、 厚みのばらつきの小さな光学機能層が形成されることになる。 また、 実 施例 2においても厚み分散が 0 . 0 3 x m以下であり、 外観ムラの目立たない良 好な光学フィルムとなっている。 以上で、 本発明は詳細に説明されたが、 上記した説明は、 すべての局面におい て、 例示であって、 本発明がそれに限定されるものではない。 例示されていない 無数の変形例が、 本発明の範囲から外れることなく想定され得るものと解される

Claims

' 請求の範囲
1 . 走行する長尺状支持体に塗布液を塗布して形成される塗布膜の乾燥方法にお いて、
前記長尺状支持体に対して前記塗布液が塗布された直後、 溶剤の蒸発速度を 0 . 1 g /m2 - s以下に保って乾燥を行う、 塗布膜の乾燥方法。
2 . 前記塗布液の塗布された前記長尺状支持体が乾燥装置に入るまでの間に前記 乾燥を行うことを特徴とする請求の範囲第 1項記載の塗布膜の乾燥方法。
3 . 前記塗布液が塗布された直後の前記長尺状支持体に平行な板が前記塗布膜と の間に空隙を設けて配置され、 前記塗布膜が当該空隙を走行する間に前記乾燥を 行うことを特徴とする請求の範囲第 1項記載の塗布膜の乾燥方法。
4 . 前記板の温度が前記塗布液の蒸気の露点以上に制御されることを特徴とする 請求の範囲第 3項記載の塗布膜の乾燥方法。
5 . 前記板の前記長尺状支持体側の面にフィンが設けられることを特徴とする請 求の範囲第 3項記載の塗布膜の乾燥方法。
6 . 前記塗布膜が光学機能を有する光学機能層として形成されることを特徴とす る請求の範囲第 1項乃至第 5項のいずれかに記載の塗布膜の乾燥方法。
7 . 請求の範囲第 6項に記載の塗布膜の乾燥方法によつて形成される前記光学機 能層を積層した構造を有する光学:
8 . 請求の範囲第 7項に記載の光学フィルムを有する偏光板。
9 . 請求の範囲第 8項に記載の偏光板を備えた画像表示装置 c
1 0 . 走行する長尺状支持体に塗布液を塗布して形成される塗布膜の乾燥方法に おいて、
前記長尺状支持体の幅以上の板幅を有する板を、 前記塗布液の塗工装置の下流 側における前記長尺状支持体の走行経路に沿つて配置しておき、
前記塗工装置によつて塗布膜が形成された直後の前記長尺状支持体を、 前記塗 布膜を前記板の板面と所定の間隙を隔てて対向させつつ、 前記走行経路に沿って 走行させることにより、 前記間隙において前記塗布膜の乾燥の少なくとも一部を 行なうことを特徴とする、 塗布膜の乾燥方法。
1 1 . 前記板が第 1の板として設けられるとともに、 前記長尺状支持体の両面の うち前記塗布膜が存在する側とは反対の面に間隔を隔てて対向する第 2の板が前 記第 1の板と略平行に設けられ、
前記塗布膜が形成された直後の長尺状支持体を、 前記第 と第 2の板の間隙を 通って走行させることを特徴とする請求の範囲第 1 0項記載の塗布膜の乾燥方法
1 2 . 前記長尺状支持体の走行方向に略直角な方向に伸びた複数の凸構造を、 前 記走行方向に沿って前記板の下面に略平行に配列してあることを特徴とする請求 の範囲第 1 0項記載の塗布膜の乾燥方法。
1 3 . 前記板は、 前記長尺状支持体の走行経路を囲む扁平なトンネル構造体の 1 面として設けられていることを特徴とする請求の範囲第 1 0項記載の塗布膜の乾 燥方法。
1 4 . 前記板の温度を、 前記塗布液の蒸気の露点以上に調整することを特徴とす る請求の範囲第 1 0項乃至第 1 3項のいずれかに記載の塗布膜の乾燥方法。
PCT/JP2004/002720 2003-03-07 2004-03-04 塗布膜の乾燥方法および光学フィルム WO2004078363A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/548,409 US20070110894A1 (en) 2003-03-07 2004-03-04 Method for drying coating film, and optical film
CNB2004800061813A CN100542686C (zh) 2003-03-07 2004-03-04 涂布膜的干燥方法和光学薄膜
KR1020057016625A KR100739389B1 (ko) 2003-03-07 2004-03-04 도포막의 건조 방법 및 광학 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-061805 2003-03-07
JP2003061805 2003-03-07

Publications (1)

Publication Number Publication Date
WO2004078363A1 true WO2004078363A1 (ja) 2004-09-16

Family

ID=32958974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002720 WO2004078363A1 (ja) 2003-03-07 2004-03-04 塗布膜の乾燥方法および光学フィルム

Country Status (5)

Country Link
US (1) US20070110894A1 (ja)
KR (1) KR100739389B1 (ja)
CN (2) CN101229543A (ja)
TW (1) TW200417421A (ja)
WO (1) WO2004078363A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5001197B2 (ja) * 2007-03-29 2012-08-15 富士フイルム株式会社 フィルム乾燥方法及び装置並びに溶液製膜方法
KR101182226B1 (ko) * 2009-10-28 2012-09-12 삼성디스플레이 주식회사 도포 장치, 이의 도포 방법 및 이를 이용한 유기막 형성 방법
JP2012172960A (ja) * 2011-02-24 2012-09-10 Dainippon Screen Mfg Co Ltd 乾燥装置および熱処理システム
CA2843492A1 (en) 2011-08-01 2013-02-07 Fmp Technology Gmbh Fluid Measurements & Projects Method and device for drying a fluid film applied to a substrate
KR20150021579A (ko) * 2012-06-20 2015-03-02 에프엠피 테크놀로지 지엠비에이치 플루이드 메져먼츠 앤드 프로젝츠 기판에 가해진 유체 필름 건조를 위한 방법 및 장치
JP5728555B2 (ja) * 2013-10-18 2015-06-03 ユニ・チャーム株式会社 不織布の嵩回復装置、及び嵩回復方法
CN107626539B (zh) * 2016-07-19 2023-05-02 扬州万润光电科技股份有限公司 涂布膜干燥和自切断装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444214A (ja) * 1990-06-07 1992-02-14 Seiko Epson Corp 半導体装置の製造方法
JPH06502341A (ja) * 1991-05-08 1994-03-17 ナウチュノ・プロイズヴォドストヴェンナヤ フィルマ アクトシオネルノエ オブシェストヴォ ザクリトゴ ティパ“テクノロジア オボルドヴァニエ マテリアリ”(アー/オー“トム”) 物品の表面に塗った保護用ポリマー被覆剤中の溶液の乾燥方法
JP2001198518A (ja) * 2000-01-20 2001-07-24 Mitsubishi Paper Mills Ltd 乾燥方法
JP2001286817A (ja) * 2000-04-05 2001-10-16 Konica Corp 塗膜の乾燥方法
JP2001314798A (ja) * 2000-05-09 2001-11-13 Konica Corp 塗布乾燥装置、塗布乾燥方法及び其れにより造られた塗布物
JP2003031476A (ja) * 2001-07-17 2003-01-31 Ricoh Co Ltd レジスト膜形成方法、レジスト膜形成装置及びレジスト膜
JP2003236799A (ja) * 2002-02-20 2003-08-26 Minoru Sasaki スプレーコーティングによるレジスト膜の成膜方法とこれを実施したレジスト膜の成膜装置
JP2004034002A (ja) * 2002-07-08 2004-02-05 Nitto Denko Corp 被膜シートの製造方法、光学機能層、光学素子および画像表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694701A (en) * 1996-09-04 1997-12-09 Minnesota Mining And Manufacturing Company Coated substrate drying system
DE19721461C2 (de) * 1997-05-22 1999-03-11 Daimler Benz Aerospace Airbus Verfahren zur Trocknung von Lacken auf metallischen oder nichtmetallischen Einzelteilen oder montierten Baugruppen beliiebiger Struktur
JP2000515927A (ja) * 1997-05-23 2000-11-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 金属酸化物を塗布した二酸化チタン薄片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444214A (ja) * 1990-06-07 1992-02-14 Seiko Epson Corp 半導体装置の製造方法
JPH06502341A (ja) * 1991-05-08 1994-03-17 ナウチュノ・プロイズヴォドストヴェンナヤ フィルマ アクトシオネルノエ オブシェストヴォ ザクリトゴ ティパ“テクノロジア オボルドヴァニエ マテリアリ”(アー/オー“トム”) 物品の表面に塗った保護用ポリマー被覆剤中の溶液の乾燥方法
JP2001198518A (ja) * 2000-01-20 2001-07-24 Mitsubishi Paper Mills Ltd 乾燥方法
JP2001286817A (ja) * 2000-04-05 2001-10-16 Konica Corp 塗膜の乾燥方法
JP2001314798A (ja) * 2000-05-09 2001-11-13 Konica Corp 塗布乾燥装置、塗布乾燥方法及び其れにより造られた塗布物
JP2003031476A (ja) * 2001-07-17 2003-01-31 Ricoh Co Ltd レジスト膜形成方法、レジスト膜形成装置及びレジスト膜
JP2003236799A (ja) * 2002-02-20 2003-08-26 Minoru Sasaki スプレーコーティングによるレジスト膜の成膜方法とこれを実施したレジスト膜の成膜装置
JP2004034002A (ja) * 2002-07-08 2004-02-05 Nitto Denko Corp 被膜シートの製造方法、光学機能層、光学素子および画像表示装置

Also Published As

Publication number Publication date
CN101229543A (zh) 2008-07-30
US20070110894A1 (en) 2007-05-17
TWI312297B (ja) 2009-07-21
CN100542686C (zh) 2009-09-23
TW200417421A (en) 2004-09-16
CN1758964A (zh) 2006-04-12
KR20050110660A (ko) 2005-11-23
KR100739389B1 (ko) 2007-07-13

Similar Documents

Publication Publication Date Title
JP6276393B2 (ja) 有機el表示装置
US11016230B2 (en) Optical element and optical device
JP2007004120A5 (ja)
US6894751B2 (en) Process for making an optical compensator film comprising an anisotropic nematic liquid crystal
JP6527076B2 (ja) 旋光フィルム
US20090046229A1 (en) Optical compensation plate, liquid crystal cell, and liquid crystal display device
JP2007155970A (ja) 楕円偏光板及びその製造方法
JPWO2014119457A1 (ja) 積層位相差フィルム及びその製造方法
JP2009192845A (ja) 位相差板の製造方法
TWI816867B (zh) 附相位差層之偏光板及使用了該附相位差層之偏光板的影像顯示裝置
US6582775B1 (en) Process for making an optical compensator film comprising photo-aligned orientation layer
KR102140552B1 (ko) 광학 소자, 광학 소자의 제조 방법 및 액정 표시 장치
WO2004078363A1 (ja) 塗布膜の乾燥方法および光学フィルム
JP4369773B2 (ja) 塗布膜の乾燥方法
JP2009015273A (ja) 偏光板の製造
CN114509841A (zh) 偏光片及显示装置
JP4716036B2 (ja) 光学補償フィルムの製造方法
TWI816868B (zh) 帶相位差層的偏光板及使用了該帶相位差層的偏光板的影像顯示裝置
JP2000098392A (ja) 基板のラビング方法
WO2019208508A1 (ja) 広帯域波長フィルム及びその製造方法、並びに円偏光フィルムの製造方法
JP2022152302A (ja) 偏光板および偏光板の製造方法
US5926313A (en) Phase retarder film
WO2018164045A1 (ja) 有機エレクトロルミネッセンス表示装置、位相差フィルム、円偏光板
JP6724729B2 (ja) 偏光板のセット及びそれを用いたipsモード液晶表示装置
JP6699514B2 (ja) Ipsモード用の偏光板のセット及びそれを用いたipsモード液晶表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057016625

Country of ref document: KR

Ref document number: 20048061813

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007110894

Country of ref document: US

Ref document number: 10548409

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057016625

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10548409

Country of ref document: US